EXECUTIVE SUMMARY

VO	LUME 1:	EIS PROCESS OVERVIEW	
VO	LUME 2:	PROJECT DESCRIPTION	
VO	LUME 3:	ENVIRONMENTAL ASSESSMENT OF GAS FIELD COMPONENT	
VO	LUME 4:	ENVIRONMENTAL ASSESSMENT OF PIPELINE COMPONENT	
VO	LUME 5:	ENVIRONMENTAL ASSESSMENT OF LNG COMPONENT	
VO	LUME 6:	ENVIRONMENTAL ASSESSMENT MARINE FACILITIES	
Cha	apter 1		
1		INTRODUCTION	1
Cha	apter 2		
2		IMPACT ASSESSMENT – PHYSICAL ENVIRONMENT	4
2.1		SCOPE OF DREDGING ACTIVITIES PROPOSED	4
2.2		DREDGE METHODOLOGY	4
	2.2.1	Cutter Suction Dredge (CSD)	4
	2.2.2	Backhoe Dredge (BHD)	5
	2.2.3 2.2.4	Jetting Approach to the Dradaing Assessment	5 5
2.3	2.2.4	Approach to the Dredging Assessment DREDGE PLUME MODELLING	6
2.3	2.3.1	Description of Additional Modelling	6
	2.3.2	Description of Modelled scenarios	8
	2.3.3	Dredge Plume Modelling Summary of Results	13
	2.3.4	Total Suspended Solids	28
	2.3.5	Depth Averaged Total Suspended Solids Concentration	41
	2.3.6	Sedimentation	55
2.4		LIGHT ATTENUATION	63
	2.4.1	Methodology Regults of Light Attenuation Modelling	63 65
2 F	2.4.2	Results of Light Attenuation Modelling	65 80
2.5	2.5.1	ACID SULFATE SOILS Construction Dock and MOF	80
	2.5.2	Crossing of The Narrows	82
		∵	

QGC LIMITED PAGE 1 JANUARY 2010

2.6	ACID SULFATE SOILS MANAGEMENT PLAN FRAMEWORK	83
2.7	OFFSETS	83
2.8	SEDIMENT QUALITY	83
2.9	CONCLUSION	84
Figures		
6.2.1	LOCATION OF TIME SERIES OUTPUT SITES MOF AND CONSTRUCTION DOCK	11
6.2.2	LOCATION OF TIME-SERIES OUTPUT SITES NARROWS PIPELINE CROSSING	12
6.2.3	SNAPSHOT OF MAXIMUM PREDICTED TSS CONCENTRATION PLUME (ABOVE AMBIENT) GENERATED FROM LOSS AT THE CUTTER HEAD DURING DREDGING THE MOF STAGE II, DURING A TYPICAL FEBRUARY EBB (TOP) AND FLOOD (BOTTOM) PEAK CURRENT	OF 15
6.2.4	HOURLY TIME SERIES PLOTS (8 AM, 9 AM, 10 AM AND 11 AM 4TH FEBRUARY 2009) OF MAXIMUM TSS PLUMES (MG/L) GENERATED FROM LOSS AT THE CUTTER HEAD WHILE DREDGING WITHIN THE MOF (STAGE 2)	16
6.2.5	HOURLY TIME SERIES PLOTS (8 AM, 9 AM, 10 AM AND 11AM 4TH FEBRUARY 2009) OF BOTTOM THICKNESS (MILLIMETRES) GENERATED FROM LOSS AT TH CUTTER HEAD WHILE DREDGING WITHIN THE MOF (STAGE 2)	IE 17
6.2.6	Hourly Time Series Plots (9 Am, 10 Am, 11 Am And 12am) Of Maximum T Plumes (Mg/L) Generated By The Tail-Water Discharge At The North Western Sector Of The Reclamation Site	
6.2.7	HOURLY TIME SERIES PLOTS (8 AM, 9 AM, 10 AM AND 11 AM 4TH FEBRUARY 2009) OF MAXIMUM TSS PLUMES (MG/L) GENERATED FROM LOSS AT THE BH BUCKET WHILE DREDGING WITHIN THE MOF (STAGE 1)	'D 21
6.2.8	SNAPSHOT OF THE MAXIMUM PREDICTED SUSPENDED SEDIMENT CONCENTRATED AT ANY DEPTH LAYER (ABOVE BACKGROUND) GENERATED FROM LOSSES BY BHD WHILE TRENCHING WITHIN TARGINIE CREEK DURING A SAMPLE FEBRUAR 2009, FLOOD (ABOVE) AND EBB (BELOW) TIDE	THE
6.2.9	SNAPSHOT OF THE MAXIMUM PREDICTED SUSPENDED SEDIMENT CONCENTRATE (ABOVE BACKGROUND) AT ANY DEPTH LEVEL GENERATED FROM LOSSES BY BHD WHEN TRENCHING ON THE WEST SIDE OF THE NARROWS SECTION DURA SAMPLE FEBRUARY 2009 FLOOD (TOP) AND EBB (BOTTOM) SPRING TIDE	THE
6.2.10	Hourly Time Series Plots (6 Pm, 7 Pm, 8 Pm And 9 Pm 1st February 200 Of Maximum TSS Plumes (Mg/L) Generated From The Propeller Wash	•
6.2.11	CUMULATIVE BOTTOM THICKNESS (METRES) FROM 91 DAYS OF DISCHARGE A RATE OF 6 DISCHARGES PER DAY INTO THE CENTRE OF THE GLADSTONE POI CORPORATION EXISTING SPOIL GROUND	
6.2.12	TIME SERIES GRAPHS OF MAXIMUM PREDICTED TSS CONCENTRATION (ABOVE BACKGROUND) AT SITES 1, 2 AND 3. RESULTS ARE BASED ON SEDIMENT SOURCES IDENTIFIED IN SCENARIO 1	E 30
6.2.13	TIME SERIES GRAPHS OF MAXIMUM PREDICTED TSS CONCENTRATION (ABOVE BACKGROUND) AT SITES 4, 5 AND 6. RESULTS ARE BASED ON SEDIMENT SOURCES IDENTIFIED IN SCENARIO 1	E 31

QGC LIMITED PAGE 2 JANUARY 2010

6.2.14	TIME SERIES GRAPHS OF MAXIMUM PREDICTED TSS CONCENTRATION (ABOVE	
	BACKGROUND) AT TURTLE ISLAND, DIAMANTINA AND BUSHY ISLET. RESULTS A	
	BASED ON SEDIMENT SOURCES IDENTIFIED IN SCENARIO 1	32
6.2.15	TIME SERIES GRAPHS OF MAXIMUM PREDICTED TSS CONCENTRATION (ABOVE BACKGROUND) AT SITES 1, 2 AND 3. RESULTS ARE BASED ON SEDIMENT	
	Sources Identified In Scenario 2	34
6.2.16	TIME SERIES GRAPHS OF MAXIMUM PREDICTED TSS CONCENTRATION	
	(ABOVE BACKGROUND) AT SITES 4, 5 AND 6. RESULTS ARE BASED ON SEDIM	
	Sources Identified In Scenario 2	35
6.2.17	TIME SERIES GRAPHS OF MAXIMUM PREDICTED TSS CONCENTRATION (ABOVE	
	BACKGROUND) AT TURTLE ISLAND, DIAMANTINA AND BUSHY ISLET. RESULTS A	
0.0.40	BASED ON SEDIMENT SOURCES IDENTIFIED IN SCENARIO 2	_36 _
6.2.18	TIME SERIES GRAPHS OF MAXIMUM PREDICTED TSS CONCENTRATION (ABOVE BACKGROUND) AT SITES 1, 2 AND 3. RESULTS ARE BASED ON SEDIMENT	
	Sources Identified In Scenario 3	38
6.2.19	TIME SERIES GRAPHS OF MAXIMUM PREDICTED TSS CONCENTRATION (ABOVE BACKGROUND) AT SITES 4, 5 AND 6. RESULTS ARE BASED ON SEDIMENT	
	SOURCES IDENTIFIED IN SCENARIO 3	39
6.2.20	TIME SERIES GRAPHS OF MAXIMUM PREDICTED TSS CONCENTRATION (ABOVE	
	BACKGROUND) AT TURTLE ISLAND, DIAMANTINA AND BUSHY ISLET. RESULTS A	
	BASED ON SEDIMENT SOURCES IDENTIFIED IN SCENARIO 3	40
6.2.21	MAXIMUM TSS CONCENTRATIONS PREDICTED AT ANY DEPTH LEVEL OVER TIME AT SITE 1 (ABOVE) AND SITE 2 (BELOW) WITHIN TARGINIE CREEK (INCLUSIVE CAVERAGE PROCEDULED TSS FORWATED)	
0.0.00	AVERAGE BACKGROUND TSS ESTIMATES)	. •
6.2.22	MAXIMUM TSS CONCENTRATIONS PREDICTED AT ANY DEPTH LEVEL OVER TIM AT SITE 3 (ABOVE) AND SITE 4 (BELOW) WITHIN TARGINIE CREEK (INCLUSIVE OF AVERAGE BACKGROUND TSS ESTIMATES)	
6.2.23	SCENARIO 1 TSS DEPTH-AVERAGED 50TH PERCENTILE CONCENTRATION	77
0.2.20	CONTOUR PLOTS WITHOUT (TOP) AND WITH BACKGROUND LEVELS INCLUDED	
	(BOTTOM)	45
6.2.24	SCENARIO 1 TSS DEPTH-AVERAGED 95TH PERCENTILE CONCENTRATION	
	CONTOUR PLOTS WITHOUT (TOP) AND WITH BACKGROUND LEVELS INCLUDED (BOTTOM)	46
6.2.25	SCENARIO 2 TSS DEPTH-AVERAGED 50TH PERCENTILE CONCENTRATION	
	CONTOUR PLOTS WITHOUT (TOP) AND WITH BACKGROUND LEVELS INCLUDED	
	(Воттом)	48
6.2.26	SCENARIO 2 TSS DEPTH-AVERAGED 95TH PERCENTILE CONCENTRATION	
	CONTOUR PLOTS WITHOUT (TOP) AND WITH BACKGROUND LEVELS INCLUDED	
	(Воттом)	49
6.2.27	SCENARIO 3 TSS DEPTH-AVERAGED 50TH PERCENTILE CONCENTRATION	
	CONTOUR PLOTS WITHOUT (TOP) AND WITH BACKGROUND LEVELS INCLUDED (BOTTOM)	51
6.2.28	SCENARIO 3 TSS DEPTH-AVERAGED 95TH PERCENTILE CONCENTRATION	
	CONTOUR PLOTS WITHOUT (TOP) AND WITH BACKGROUND LEVELS INCLUDED	
	(Воттом)	52
6.2.29	ESTIMATES FOR THE 95TH PERCENTILE CONCENTRATIONS OVER TIME	
	CALCULATED FOR DEPTH-AVERAGED TSS. RESULTS ARE SHOWN WITH (ABOV AND WITHOUT (BELOW) BACKGROUND ESTIMATES	/E) 54

QGC LIMITED PAGE 3 JANUARY 2010

6.2.30	PREDICTED 50TH PERCENTILE (TOP) AND 95TH PERCENTILE (BOTTOM) SEDIMENTATION RATE (G/M2/DAY) FROM DREDGING OPERATIONS IN SCENARIO	156
6.2.31	PREDICTED 50TH PERCENTILE (TOP) AND 95TH PERCENTILE (BOTTOM) SEDIMENTATION RATE (G/M2/DAY) FROM DREDGING OPERATIONS IN SCENARIO	258
6.2.32	PREDICTED 50TH PERCENTILE (TOP) AND 95TH PERCENTILE (BOTTOM) SEDIMENTATION RATE (G/M2/DAY) FROM DREDGING OPERATIONS IN SCENARIO	360
6.2.33	ESTIMATES FOR THE CUMULATIVE SEDIMENTATION (ABOVE BACKGROUND) DUE TO THE COMBINED OPERATIONS	62
6.2.34	DERIVED 50TH PERCENTILE AMBIENT LEVELS, IN ABSENCE OF DREDGING, OF % AT THE SEABED FOR PORT CURTIS OVER THE MODELLED PERIOD	5S1 67
6.2.35	DERIVED 95TH PERCENTILE AMBIENT LEVELS, IN ABSENCE OF DREDGING, OF % AT THE SEABED FOR PORT CURTIS OVER THE MODELLED PERIOD	5S1 68
6.2.36	DERIVED DIFFERENCE IN 50TH PERCENTILE LEVELS OF %SI (AMBIENT VERSUS DREDGE CONDITIONS) AT THE SEABED FOR PORT CURTIS OVER THE MODELED PERIOD, FOR SCENARIO 1	71
6.2.37	DERIVED DIFFERENCE IN 95TH PERCENTILE LEVELS OF %SI (AMBIENT VERSUS DREDGE CONDITIONS) AT THE SEABED FOR PORT CURTIS OVER THE MODELED PERIOD, FOR SCENARIO 1	72
6.2.38	DERIVED DIFFERENCE IN 50TH PERCENTILE LEVELS OF %SI (AMBIENT VERSUS DREDGE CONDITIONS) AT THE SEABED FOR PORT CURTIS OVER THE MODELED PERIOD, FOR SCENARIO 2	74
6.2.39	DERIVED DIFFERENCE IN 95TH PERCENTILE LEVELS OF %SI (AMBIENT VERSUS DREDGE CONDITIONS) AT THE SEABED FOR PORT CURTIS OVER THE MODELED PERIOD, FOR SCENARIO 2	75
6.2.40	DERIVED DIFFERENCE IN 50TH PERCENTILE LEVELS OF %SI (AMBIENT VERSUS DREDGE CONDITIONS) AT THE SEABED FOR PORT CURTIS FOR THE MODELED PERIOD, FOR SCENARIO 3	77
6.2.41	DERIVED DIFFERENCE IN 95TH PERCENTILE LEVELS OF %SI (AMBIENT VERSUS DREDGE CONDITIONS) AT THE SEABED FOR PORT CURTIS OVER THE MODELED PERIOD, FOR SCENARIO 3	78
Tables		
6.1.1	RESPONSE TO SUBMISSIONS ON DRAFT EIS: DREDGING	2
6.2.1	PREDICTED AREA OF COVERAGE AS A FUNCTION OF THICKNESS, CALCULATED FROM A 91 DAY DISPOSAL OPERATION AT THE EXISTING GPC OFFSHORE SPOIL GROUND	<u>.</u> 26
6.2.2	PUBLISHED VALUES OF MINIMUM LIGHT REQUIREMENTS BY SPECIES, FOR LOCALLY OCCURRING OR MORPHOLOGICALLY SIMILAR SPECIES	69
6.2.3	TIME AND LIGHT LEVELS WHERE SEAGRASS DECLINES WERE SIGNIFICANT AND/OR MORTALITY WAS OBSERVED, FOR LOCALLY OCCURRING OR MORPHOLOGICALLY SIMILAR SPECIES	69

QGC LIMITED PAGE 4 JANUARY 2010

VOLUME 7: GREENHOUSE GAS MANAGEMENT

VOLUME 8: SOCIAL, CULTURAL AND ECONOMIC IMPACT ASSESSMENT

VOLUME 9: GAS FIELD COMPONENT ENVIRONMENTAL MANAGEMENT PLAN

VOLUME 10: NO UPDATE TO VOLUME 10 (REFER TO DRAFT EIS)

VOLUME 11: LNG COMPONENT ENVIRONMENTAL MANAGEMENT PLAN

VOLUME 12: STAKEHOLDER CONSULTATION

VOLUME 13: EPBC ASSESSMENT REPORT

APPENDICES