

CLIENTS PEOPLE PERFORMANCE

Gladstone Ports Corporation

Report for Western Basin Dredging and Disposal Project Water Quality Report

October 2009

INFRASTRUCTURE | MINING & INDUSTRY | DEFENCE | PROPERTY & BUILDINGS | ENVIRONMENT

Contents

1.	Intro	oduction	1
	1.1	Background	1
	1.2	Project Location	1
	1.3	Purpose and Scope	1
	1.4	Approach to the Study	2
2.	Des	cription of Water Quality Environmental Values	3
	2.1	Water Quality Environmental Values	3
	2.2	Summary of Environmental Values	6
3.	Wat	er Quality Guidelines	10
4.	Bas	eline Water Quality Methods	12
	4.1	Overview	12
	4.2	Water Quality Loggers	15
	4.3	Vessel-Based Water Quality Monitoring	17
	4.4	Elutriate Water Quality Monitoring	19
	4.5	Reporting	19
5.	Bas	eline Water Quality Results	21
	5.1	Rainfall	21
	5.2	In Situ Physico-Chemical Profiling	22
	5.3	Vessel-Based Water Quality	30
	5.4	Elutriate Water Quality	48
	5.5	Water Quality Loggers	55
	5.6	Summary of Baseline Water Quality in the Project Area	77
6.	Pote	ential Impacts and Mitigation Measures	79
	6.1	Project Activities	79
	6.2	Modelling Overview	81
	6.3	Impacts of Construction of the Reclamation on Water Quality	85
	6.4	Impacts of the Reclamation and Dredging on Hydrodynamics and Flushing	87
	6.5	Potential Impacts of the Dredging and Decant on Turbidity and Light Climate	93
	6.6	Potential Impacts of Dredging and Decant on Sedimentation	110

	6.7	Potential Impacts on Water Quality of Sediment Quality and Elutriate Release during Dredging	113
	6.8	Maintenance Dredging	115
	6.9	Overview of Potential Impacts and Mitigation Measures	116
7.	Risk	Assessment	120
8.	Cum	nulative Impacts and Mitigation Strategies	131
	8.1	Background	131
	8.2	Cumulative Impacts	133
9.	Con	clusion	136
10.	Refe	erences	138

Table Index

Table 2-1	Environmental Values and Applicable Water Quality Guidelines for Coastal Waters within the Project Area	7
Table 3-1	Guidelines for Physico-Chemical Indicators in Central Queensland Waters	11
Table 3-2	Trigger Values for Metals and Metalloids in Marine Water for Slightly to Moderately Disturbed Systems (ANZECC 2000)	11
Table 4-1	Location of Water Quality Survey Sites and Method of Data Collection	12
Table 4-2	Summary of Fixed Water Quality Logger Parameters	15
Table 4-3	Vessel-Based Water Quality Monitoring Dates and Site Locations (Figure 4-1)	17
Table 5-1	Mean Monthly and 2009 Rainfall at Gladstone Airport	21
Table 5-2	BTEX Chemical Species and Limits of Reporting	30
Table 5-3	Herbicide Species and Limits or Reporting	31
Table 5-4	Metolachlor Water Quality Monitoring Results	31
Table 5-5	Monitored Metals and Metalloids Species and Limits of Reporting	33
Table 5-6	Metals and Metalloids above Limits of Reporting	34
Table 5-7	Nutrient Data Measured During Vessel Based Water Quality Sampling	37
Table 5-8	Organochlorine Species and Limits or Reporting	39

Table 5-9	Organophosphorus Species and Limits or Reporting	40	
Table 5-10	All Recorded Chlorpyrifos Data	40	
Table 5-11	PAHs and Phenols Species and Limits or Reporting		
Table 5-12	Phenoxy Acid Herbicide Species and Limits of		
	Reporting	42	
Table 5-13	TPH Species and Limits of Reporting	43	
Table 5-14	VOC Species and Limits of Reporting	44	
Table 5-15	Other Laboratory Physico-Chemical and Chemical Data	45	
Table 5-16	Elutriate Metal and Metalloid Species and Limits of Reporting	48	
Table 5-17	Overall Statistical Summary of Elutriate Metals and Metalloids	49	
Table 5-18	Statistical Summary by Dredge Area of Elutriate Metals and Metalloids	50	
Table 5-19	Comparison of Metals and Metalloids in Elutriate and the Water Column	51	
Table 5-20	Organochlorine Species and Limits or Reporting	52	
Table 5-21	Organophosphorus Pesticide Species and Limits or Reporting	52	
Table 5-22	PAHs and Phenol Species and Limits or Reporting	53	
Table 5-23	PAHs and Phenols at Site 1A-063	53	
Table 5-24	PCBs Limits of Reporting	54	
Table 5-25	Semi-VOCs Limits of Reporting	54	
Table 5-26	Logger Configuration for Deployments	55	
Table 5-27	Summary of Logger Turbidity Data (Units NTU)	57	
Table 5-28	Sources of Continuous Turbidity Data	62	
Table 5-29	Summary of all Available Recent Continuous Turbidity Data	64	
Table 5-30	Summary Available Turbidity and TSS Datasets	66	
Table 6-1	Overview of the Four Hydrodynamic Modelling Scenarios	81	
Table 6-2	Overview of the Four Dredge Plume Scenarios and Associated TSS Loadings	84	
Table 6-3	Summary of Median and 95 th Percentile Turbidity for Dry Season Deployments in Deep Waters throughout the Project Area for this EIS	94	
Table 6-4	Summary of Median and 95 th Percentile Turbidity, TSS and Modelled Plume for Dry Season for		

	Shallow Water and Deep Water Deployments in Western Basin Area	96
Table 6-5	Comparison of 50 th , 20 th , 10 th and 5 th Probability Exceedance of Simulated TSS Versus the Dredge Plume TSS Objective	103
Table 6-6	Weightings for Integrated Light Climate	100
	Assessment for Each Tidal Range Percentile	106
Table 6-7	Light Climate Impact Assessment	109
Table 6-8	Daily Sedimentation Rates of Dredge Plume Material (mm/day)	113
Table 6-9	Overall Ammonia Elutriate Impact Assessment for Indirect Impacts	114
Table 6-10	Overview of Potential Impacts of the Project on	
	Water Quality	117
Table 7-1	GPC Threat Criteria and Consequence Scales	123
Table 7-2	GPC Likelihood Rating	123
Table 7-3	GPC Risk Assessment Matrix	124
Table 7-4	Risk Levels and Management Action (Example)	124
Table 7-5	Water Quality Risk Assessment	126

Figure Index

Figure 4-1	ADCP sites, water quality monitoring locations and	
	logger stations	14
Figure 4-2	Fixed Water Quality Logger Prior to Deployment	16
Figure 5-1	Rainfall recorded at Gladstone Airport in 2009	21
Figure 5-2	Temperature Data Recorded In Situ	23
Figure 5-3	Electrical conductivity (EC) Data Recorded In Situ	24
Figure 5-4	pH Data Recorded In Situ	26
Figure 5-5	DO Saturation Data Recorded In Situ	27
Figure 5-6	Turbidity Data Recorded In Situ	28
Figure 5-7	ORP data recorded in situ	29
Figure 5-8	Turbidity Logger Data at Location 1	58
Figure 5-9	Turbidity Logger Data at Location 2	58
Figure 5-10	Turbidity Logger Data at Location 3	58
Figure 5-11	Turbidity Logger Data at Location 4	59
Figure 5-12	Turbidity Logger Data at Location 6	59
Figure 5-13	Turbidity Logger Data at Location 7	59
Figure 5-14	Turbidity Logger Data at Location 8	60

Figure 5-15	Turbidity logger data at location 9	60
Figure 5-16	Turbidity Logger Data at Location 10	60
Figure 5-17	Relation of TSS versus turbidity	67
Figure 5-18	PAR at Location 1 with Water Level Range of 4-7 m	68
Figure 5-19	PAR at Location 2 of with Water Level Range of 4-9 m	68
Figure 5-20	PAR at Location 3 with Water Level Range of 7.5- 12 m	69
Figure 5-21	PAR at Location 4 with Water Level Range of 2.5-6 m	69
Figure 5-22	PAR at Location 8 where Water Level Range Not Recorded	69
Figure 5-23	PAR at Location 9 with Water Level Range of 13-17 m	70
Figure 5-24	Time Series of ASSD over 10 Minute Intervals and Cumulative ASSD over each Deployment at Location 1	70
Figure 5-25	Time Series of ASSD over 10 Minute Intervals and Cumulative ASSD Over Each Deployment at Location 2	71
Figure 5-26	Time Series of ASSD Over 10 Minute Intervals and Cumulative ASSD Over Each Deployment at Location 3	71
Figure 5-27	Time Series of ASSD Over 10 Minute Intervals and Cumulative ASSD Over Each Deployment at Location 4	72
Figure 5-28	Time Series of ASSD Over 10 Minute Intervals and Cumulative ASSD Over Each Deployment at Location 9	72
Figure 5-29	Water Depth at Location 1	73
Figure 5-30	Water Depth at Location 2	73
Figure 5-31	Water Depth at Location 3	74
Figure 5-32	Water Depth at Location 4	74
Figure 5-33	Water Depth at Location 9	74
Figure 5-34	Wave Height at Location 1	75
Figure 5-35	Wave Height at Location 2	75
Figure 5-36	Wave Height at Location 3	76
Figure 5-37	Wave Height at Location 4	76
Figure 5-38	Wave Height at Location 9	76

Figure 6-1	Project Area with outlines of each stage of dredging works, the developed reclamation and the locations of model output time series	80
Figure 6-2	Probability Exceedance Plots of Water Level at Two Locations in the Western Basin Intertidal Area	87
Figure 6-3	Time Series of Spring tide Current Speeds at Two Locations in the Western Basin Inter-tidal Area	88
Figure 6-4	Time Series of Spring Tide Current Speeds at Two Locations in or Near Newly Dredged Areas	88
Figure 6-5	Peak Spring Ebb Tide Current Speeds for Base Case and Velocity Impacts of each Scenario	89
Figure 6-6	Tracer Distribution during Spring Tide for the Base Case and impact (difference) associated with each Scenario	91
Figure 6-7	Spatial Estimates of Fitted e-folding times during Spring Tide for Base Case and Changes (Differences) for each Scenario	92
Figure 6-8	Spatial Representation of Simulated Maximum and 10% Exceedance TSS for Scenario 3	97
Figure 6-9	Total Suspended Solids at the Decant Discharge Location (WBM19)	97
Figure 6-10	Spatial Representation of 10% TSS Exceedance for all Scenarios	100
Figure 6-11	Probability Exceedance Plots of TSS at four key Seagrass Bed Locations	102
Figure 6-12	Percentile (95 th , 75 th , 50 th , 25 th and 5 th) Predicted Astronomical Semi-diurnal Tides	104
Figure 6-13	Percent of Incident PAR at the Seabed for 95 th Percentile Tidal Range (Spring Tide) in 2 m of Depth Relative to MSL for Background and Dredge	
Figure 6-14	Plume Scenarios Percent of Incident PAR at the Seabed for 25 th	105
	Percentile Tidal Range (Large Neap Tide) in 2 m of Depth Relative to MSL for Background and Dredge Plume Scenarios	105
Figure 6-15	Percent of Incident PAR at the Seabed for 50 th Percentile Tidal Range (transition tide) in 1.0 m of Depth Relative to MSL for Background and Dredge Plume Scenarios	106
Figure 6-16	Percent of Incident PAR Estimate at the Seabed Across All Tidal Cycles for 2.0 m Depth Relative to MSL for Background and Dredge Plume Scenarios	100

Figure 6-17	Percent of lincident PAR Estimate at the Seabed Across All Tidal Cycles for 1.5 m Depth Relative to MSL for Background and Dredge Plume Scenarios	108
Figure 6-18	Percent of Incident PAR Eestimate at the Seabed Across All Tidal Cycles for 1.0 m Depth Relative to MSL for Background and Dredge Plume Scenarios	108
Figure 6-19	Spatial Representation of TSS Plume Deposition	112
Figure 8-1	Existing and Proposed Industries	132

Appendices

- A Review of Previous Water and Sediment Quality Studies
- B Laboratory Analysis and Interpretive Quality Control Certificates for Water Quality Monitoring
- C Field Quality Control and Quality Assurance Data
- D Summary of Quality Assurance and Quality Control Program

1. Introduction

1.1 Background

The Gladstone Ports Corporation (GPC) contracted GHD to undertake scientific studies in support of the development of an Environmental Impact Statement (EIS) for the proposed Western Basin Dredging and Disposal Project (the "Project"). The Project has been declared 'Significant Project' under the *State Development and Public Works Organisation Act 1971,* and as such will be assessed under the statutory conditions and regulations of this Act. The Australian Government Minister for the Department of Environment, Water, Heritage and the Arts (DEWHA) determined that the Project is also a 'controlled action'. Accordingly the Project will also be assessed against controlling provisions under the Environment Protection and Biodiversity Conservation Act 1999 (Cth) (EPBC Act).

The EIS comprises multiple elements, including sections on the description and assessment of potential impacts on the benthic marine ecological values of the Project Area. This document provides a summary of the water quality monitoring performed to date and recommendations for incorporation into the EIS. Additional documents that complement this report are the Review of Previous Water and Sediment Quality (Appendix A), Sediment Quality Report (GHD 2009a), Western Basin Dredging Strategy (GHD 2009b), Coastal Processes Report (GHD 2009c), the Numerical Modelling Studies Report (WBM 2009, Appendix J of main EIS) and the Marine Ecology Report (GHD 2009d). Readers should be familiar with all relevant documents to assist in providing context to the findings reported here.

1.2 Project Location

The area monitored for water quality encompasses the Western Basin Reclamation Area, the areas of capital and maintenance dredging, and the areas with the potential to be impacted by the construction and operation of the proposed Project ("Project Area").

The Project Area is located 10 km north of Gladstone City and is comprised of shallow subtidal and intertidal mud flats and deeper water channels. An area within the Project Area is identified for reclamation works and several areas identified for dredging works.

A number of locations were monitored for water quality through vessel-based and continuous logger monitoring over 4 months from April-July 2009. The locations of water quality stations and logger deployment sites were selected on the likelihood that they are expected to be impacted by the proposed reclamation and dredging works and reference areas against which potential impacts and shifts in water quality can be assessed in future. Accordingly, areas targeted for sampling included the Western Basin Reclamation Area, the existing channels, areas targeted for future dredging works and offsite areas in The Narrows, Fisherman's Landing Basin and Pelican Banks, and southeast of Curtis Island. These areas are hereafter referred to as the Study Area.

1.3 Purpose and Scope

This report is based on a combination of a review of available information regarding the water quality of the Project Area, field measurements to support this EIS (vessel-based and continuous loggers), additional logger data from the Port Curtis Seagrass Water Quality study (Wilson *et al.* 2008), vessel-based turbidity and total suspended solids (TSS) data provided by WBM, elutriate data provided by

QGC, and hydrodynamic and plume simulations from the Numerical Modelling Studies Report (WBM 2009).

The purpose of this report is to supply sufficient information on the water quality values of the Project Area and adjacent surrounds such that the impacts of the proposed project on these values, including any cumulative impacts related to associated/adjacent projects, can be assessed. Information and recommendations on mitigation measures identified in this report will be used to support the findings of the EIS.

1.4 Approach to the Study

The present and predicted (from the Project) water quality of the areas potentially affected by the Project are described and assessed to facilitate a risk based assessment of potential impacts.

Water quality technical studies specifically for this EIS included:

- Summary of physico-chemical measurement of temperature, conductivity, dissolved oxygen (DO), pH, oxidation-reduction potential (ORP) and turbidity from multi-probe *in situ* and laboratory instruments at/from twelve water quality stations throughout the Project Area over five monthly sampling events (April, May, June, July, August);
- Vessel-based collection of water samples with subsequent laboratory analysis of anthropogenic contaminants, metals, metalloids and nutrients at twelve water quality stations throughout the Project Area; and
- Collection of continuous time series of turbidity, photosynthetically available radiation (PAR), accumulated suspended solids deposition (ASSD), water depth and wave height at 5 to 10 locations by JCU.

Additionally, the following technical studies and data sets were also used in this Water Quality Report:

- Hydrodynamic and plume numerical modelling predictions of the effect of the Project on the hydrodynamics, flushing and turbidity (i.e. TSS) of the Project Area from the Numerical Modelling Studies Report (WBM 2009, Appendix J of main EIS);
- Elutriate water quality data of anthropogenic contaminants, metals, metalloids and nutrients by QGC and provided to GPC for use in this EIS;
- Additional continuous logger turbidity data from the Port Curtis Seagrass Water Quality study (Wilson et al. 2008);
- Simultaneous vessel-based spot measurements of TSS and turbidity by GHD and WBM; and
- Relevant information from the Review of Previous Water and Sediment Quality (GHD 2009).

2. Description of Water Quality Environmental Values

2.1 Water Quality Environmental Values

The environmental values of an area are determined by the existing beneficial uses of that area including conservation values and significance, human uses and spiritual and cultural significance. In order to determine the water quality parameters that are relevant to an area it is important to establish the existing condition and use of the area.

Various water types within the project area have been identified on the basis of the classification system in the Queensland Water Quality Guidelines 2006 (QWQG 2006), Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC 2000), and by information in both the State Coastal Plan – Queensland's Coastal Policy (State Coastal Plan) and the Curtis Coast Regional Coastal Management Plan (Curtis Coastal Plan, EPA 2003) for coastal resource types. The project area is located within the Central Coast region and the relevant water type is inshore marine waters (QWQG 2006). The coastal resources (as listed in the Coastal Plans) that require consideration for the project include coastal wetlands, soft-bottom (benthic) systems, mid-water column (pelagic) systems, coastal and estuarine waters, indigenous traditional owner cultural resources, and cultural sites. Whilst not all the coastal resources listed are necessarily water types, many align with the water types listed in the QWQG (2006), and therefore are assessed with those parameters.

The Environmental Protection Act 1994, Section 9, defines 'environmental value' (EV) as:

(a) a quality or physical characteristic of the environment that is conducive to ecological health or public amenity or safety; or

(b) another quality of the environment identified and declared to be an environmental value under an environmental protection policy or regulation.

Environmental values have been extracted from the Environmental Protection (Water) Policy 1997 (EPP (Water)), the State Coastal Plan and Curtis Coastal Plan for this project and are discussed in the following sections and summarised in Table 2-1.

2.1.1 Environmental Protection (Water) Policy 1997

The Environmental Protection (Water) Policy 1997 (EPP (Water)) is subordinate legislation to the Environmental Protection Act 1994 and applies to all Queensland waters. As stated in the EPP (Water), section 6:

The purpose of this policy is to be achieved by providing a framework for-

(a) identifying environmental values for Queensland waters; and

(b) deciding and stating water quality guidelines and objectives to enhance or protect the environmental values; and

(c) making consistent and equitable decisions about Queensland waters that promote efficient use of resources and best practice environmental management; and

(d) involving the community through consultation and education, and promoting community responsibility.

Part 3, section 7 of the policy states:

(1) The environmental values of waters to be enhanced or protected under this policy are:

(a) for a water in schedule 1, column 1—the environmental values stated in the document opposite the water in schedule 1, column 2; or

(b) for another water-the qualities in subsection (2).

(2) For subsection (1)(b), the qualities are-

(a) for high ecological value waters—the biological integrity of an aquatic ecosystem that is effectively unmodified or highly valued; and

(b) for slightly to moderately disturbed waters—the biological integrity of an aquatic ecosystem that is affected adversely to a relatively small but measurable degree by human activity; and

(c) for highly disturbed waters—the biological integrity of an aquatic ecosystem that is measurably degraded and of lower ecological value than waters mentioned in paragraph (a) or (b); and

(d) suitability for-

(i) primary recreational use; or

(ii) secondary recreational use; or

(iii) visual recreational use; and

(e) suitability for minimal treatment before supply as drinking water; and

Note—

For guidelines that apply to water after it has been treated or is to be used for drinking, see-

(a) the guidelines about drinking water published by Queensland Health; or

(b) the document called 'Australian drinking water guidelines 2004', developed by the National Health and Medical Research Council and the Natural Resource Management Ministerial Council.

- (f) suitability for agricultural use; and
- (g) suitability for aquacultural use; and
- (h) suitability for producing aquatic food for human consumption; and
- (i) suitability for industrial use; and
- (j) the cultural and spiritual values of the water.

(3) However, if a natural property of the water precludes enhancement or protection of a particular environmental value, subsection (1)(b) does not apply to the value.

(4) For subsection (1)(a), a document is taken to state environmental values for a water if it states one or more values (however described) that are equivalent to a quality or qualities in subsection (2)

(5) In this section-

cultural and spiritual values, of a water, means places, objects, or uses, in or near the water, that have anthropological, archaeological, historic, sacred or scientific significance or value.

primary recreational use, of a water, means full body contact with the water, including, for example, diving, swimming, surfing, waterskiing and windsurfing.

secondary recreational use, of a water, means contact other than full body contact with the water, including, for example, boating and fishing.

visual recreational use, of a water, means viewing the water without contact with it.

Marine waters in the Port Curtis area are not included in schedule 1 of the EPP (Water), therefore environmental values and water quality objectives need to be derived in accordance with the Queensland Water Quality Guidelines (QWQG) (2006).

In accordance with the QWQG (2006), the aquatic ecosystem condition is assessed as a Level 2 -Slightly to moderately disturbed ecosystem where the ecosystem has previously been "...adversely affected to a relatively small but measurable degree by human activity" and is "...immediately adjacent to metropolitan areas". Water quality trigger values are therefore, those that are defined for Level 2 waters.

2.1.2 State Coastal Management Plan

The State Coastal Management Plan — Queensland's Coastal Policy describes management requirements for the Queensland coastal zone and has statutory effect under the *Coastal Protection and Management Act 1995* (Coastal Act 1995). The Coastal Act defines 'Coastal Zone' in section 15 as:

(a) coastal waters; or

(b) all areas to the landward side of coastal waters in which there are physical features, ecological or natural processes or human activities that affect, or potentially affect, the coast or coastal resources.

Major values and pressures for Queensland's coastal resources are tabulated in the State Coastal Plan and these 'values' could also be categorised as 'environmental values' in accordance with the definition provided in the *Environmental Protection Act 1994*, section 9(a), as they have "a quality or physical characteristic of the environment that is conducive to ecological health, public amenity or safety". Consequently, 'values' potentially relevant to this project have been extracted from the State Coastal Plan for a range of coastal resources such as for coastal wetlands, soft-bottom (benthic) systems, midwater column (pelagic) systems, coastal and estuarine waters, indigenous traditional owner cultural resources, and cultural sites.

2.1.3 Curtis Coast Regional Coastal Management Plan

Like the State Coastal Plan, the Curtis Coastal Plan is also a statutory instrument under the Coastal Act 1995. The Curtis Coastal Plan identifies the coastal management district for the Curtis Coast region, addresses matters of international, national, state or regional importance within the region, and provides direction on future development and land management decisions in the coastal zone.

As previously stated for the State Coastal Plan, the values tabulated in the Curtis Coastal Plan can be considered environmental values as defined in the *Environmental Protection Act 1994*. Environmental values associated with water quality, extracted from the Curtis Coastal Plan, are also provided in Table 2-1 for coastal resources such as coastal wetlands, mid-water column (pelagic) systems, coastal and estuarine waters, indigenous traditional owner cultural resources, and cultural sites. The coastal resource 'soft-bottom (benthic) systems' is not included in the Curtis Coastal Plan, however, there are potential

impacts on benthic marine biota that may occur as a result of the project and as such, consideration is given to this environmental value.

2.2 Summary of Environmental Values

A summary of environmental values, as determined from information contained in the QWQG (2006), State Coastal Plan, Curtis Coastal Plan and from existing data, are presented in Table 2-1. The QWQG (2006) recommends default guidelines for use when no Queensland guidelines are available for a range of environmental values. Where the levels of water quality indicators differ for the protection of the different environmental values, the most stringent indicator should be applied to protect identified environmental values.

Environmental Values	Information Source	Management Goal	Applicable Water Quality Guidelines
Modified aquatic	EPP (Water)	Maintain biological integrity of system where the water quality is not pristine (EPP(Water)) and it is a Level 2-slightly	QWQG (2006) ^a
ecosystem			ANZECC (2000) ^b , Ch 3 – Aquatic ecosystems
		to moderately disturbed ecosystem (QWQG 2006).	Toxicants in water, sediment and biota as per ANZECC (2000) (QWQG 2006)
			Release of sewage from vessels to be controlled in accordance with requirements of the <i>Transport Operations (Marine Pollution) Act and Regulations 1995</i> (QWQG 2006)
			Comply with Code of Practice for Antifouling and in-water Hull Cleaning and Maintenance, ANZECC (2000) (QWQG 2006)
Recreational	EPP (Water)	Meet guideline values for primary contact, secondary contact and visual use recreational activities	Guidelines for Managing Risks in Recreational Water (2008) ^c
uses	State Coastal Plan		ANZECC (2000), Ch 5 – Guidelines for recreational water quality
Also as scenic and recreational amenity in coastal plans	Curtis Coastal Plan		and aesthetics
Industrial uses	EPP (Water)	Water quality requirements for industry vary and the ANZECC (2000) do not	Code of Practice for antifouling and In-water Hull Cleaning and maintenance
		provide guidelines to protect industrial water use and these are assessed on a case-by-case basis. In any case, the industrial use of marine water shall not compromise marine environment water quality such that existing aquatic ecosystem EVs shall be protected.	Transport Operations (Marine Pollution) Act and Regulations 1995

Table 2-1 Environmental Values and Applicable Water Quality Guidelines for Coastal Waters within the Project Area

Information Source	Management Goal	Applicable Water Quality Guidelines
Local knowledge	Food grown and or caught in the	ANZECC (2000) ^d
	environment meets human consumption guidelines as provided in the FDFA Guidelines.	Guidelines as per ANZECC (2000) and Food Standards Code, Australia New Zealand Food Authority 1996 and updates (QWQG 2006)
Directory of Important Wetlands	Meet guidelines where possible or not lead to a deterioration of water quality values.	ANZECC (2000), Protection of slightly disturbed aquatic ecosystems. TVs for physical and chemical stressors, salinity and turbidity in Tropical Australia (Table 3.3.4 and 3.3.5 in ANZECC)
State Coastal Plan	Protect or restore Indigenous and non-	
Curtis Coastal Plan	Indigenous cultural heritage consistent with relevant policies and plans (QWQG 2006).	
State Coastal Plan	Protect habitat for native and migratory animals. Meet quidelines were possible	ANZECC (2000), Protection of slightly disturbed aquatic ecosystems.
Curtis Coastal Plan	or not lead to a deterioration of water quality values.	
State Coastal Plan	Protect habitat for native plants. Meet	ANZECC (2000), Protection of slightly disturbed aquatic
Curtis Coastal Plan	deterioration of water quality values.	ecosystems.
State Coastal Plan	Protect habitat for fish nursery purposes.	
Curtis Coastal Plan	lead to a deterioration of water quality values.	ecosystems.
State Coastal Plan	Protect environment for fishing	ANZECC (2000), Protection of slightly disturbed aquatic
Curtis Coastal Plan	purposes. Meet guidelines were possible or not lead to a deterioration of water quality values.	ecosystems.
	Source Local knowledge Directory of Important Wetlands State Coastal Plan Curtis Coastal Plan Curtis Coastal Plan Curtis Coastal Plan Curtis Coastal Plan State Coastal Plan Curtis Coastal Plan State Coastal Plan State Coastal Plan	SourceLocal knowledgeFood grown and or caught in the environment meets human consumption guidelines as provided in the FDFA Guidelines.Directory of Important WetlandsMeet guidelines where possible or not lead to a deterioration of water quality values.State Coastal Plan Curtis Coastal PlanProtect or restore Indigenous and non- Indigenous cultural heritage consistent with relevant policies and plans (QWQG 2006).State Coastal Plan Curtis Coastal PlanProtect habitat for native and migratory animals. Meet guidelines were possible or not lead to a deterioration of water quality values.State Coastal Plan Curtis Coastal PlanProtect habitat for native plants. Meet guidelines were possible or not lead to a deterioration of water quality values.State Coastal Plan Curtis Coastal PlanProtect habitat for native plants. Meet guidelines were possible or not lead to a deterioration of water quality values.State Coastal Plan Curtis Coastal PlanProtect habitat for fish nursery purposes. Meet guidelines were possible or not lead to a deterioration of water quality values.State Coastal Plan Curtis Coastal PlanProtect environment for fishing purposes. Meet guidelines were possible or not lead to a deterioration of water quality values.

Environmental Values	Information Source	Management Goal	Applicable Water Quality Guidelines
Localities for maritime infrastructure	State Coastal Plan Curtis Coastal Plan	Localities be utilised for maritime infrastructure requirements as and where appropriate.	No applicable guidelines

a. Queensland Water Quality Guidelines (2006) prepared by the Environmental Protection Agency, Queensland Government.

b. Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2000) prepared by the Australian and New Zealand Environmental and Conservation Council (ANZECC) and the Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ).

- c. Guidelines for Managing Risks in Recreational Water (2008) prepared by NHMRC, Australian Government.
- d. Australia New Zealand Food Standards Code (2000).
- e. The Port Curtis Wetland (QLD019) is listed on the Directory of Important Wetlands and includes all tidal areas in the vicinity of Gladstone, from a line between Laird Point and Friend Point (southern end of The Narrows), to a line between Gatcombe Head and Canoe Point, including the seaward side of facing Island and Sable Chief Rocks, and southern Curtis Island west of a line between North Point an Connor Bluff (DEWHA 2008)
- f. Indigenous traditional owner cultural resource values (significant animals, fishing practices, spiritual significance, cultural significance, economic significance, self determination, knowledge systems)

3. Water Quality Guidelines

An overview of the applicable water quality guidelines in QWQG (2006) and ANZECC (2000) for the protection of identified environmental values is provided in this chapter.

The QWQG (2006) provides information on guideline development with the concept of an acceptable departure from a natural or reference condition. With this approach, criteria from a reference site are used as indicators of physico-chemical, biological and habitat characteristics. However, this monitoring method is unsuitable for this project because adjacent sites for which there is data available do not comply with reference site criteria, namely:

- No significant point-source wastewater discharge within the estuary or within 20 km upstream; and
- No major urban area (>5000 population) within 20 km upstream.

The QWQG (2006) regional guideline values for physico-chemical indicators in the Central Coast region and water types identified in the project area are summarised in Table 3-1.

The ANZECC (2000) guidelines are also provided in Table 3-1 where the QWQG (2006) indicate that they must be followed. The ANZECC (2000) guidelines do not have specific values for Central Queensland, but rather present guidelines for south east Australia and tropical Australia. Central Queensland is geographically positioned between these two regions, but for the purposes of this EIS the Tropical Australian guidelines are adopted because of the sub-tropical (versus temperate) character of the coastal waters. Where the ANZECC (2000) guidelines are used, they are referenced with the system of guideline 'trigger values'. Trigger values are defined in ANZECC (2000) as:

"...concentrations that if exceeded, would indicate a potential environmental problem, and so 'trigger' a management response, e.g. further investigation and subsequent refinement of the guidelines according to local conditions".

Trigger values are default guideline values to provide an appropriate level of low-risk protection against chronic exposures. As these data are not based on objective biological criteria or specificity, "...default trigger values should only be used until site or ecosystem-specific values can be generated" (ANZECC 2000).

Trigger values for metals and metalloids in marine water for slightly-moderately disturbed systems are provided in Table 3-2 for the recommended level of protection for aquatic ecosystems, in accordance with requirements set out in Table 3.4.1 of ANZECC (2000). For metals and metalloids that have the potential to bioaccumulate or where 95% protection levels provide inadequate protection, a 99% protection level is recommended in ANZECC (2000). For some metals and metalloids, there are insufficient data available for a trigger value to be derived. No trigger values are available for Aluminium, Antimony, Arsenic, Beryllium or Iron.

Indigenous traditional owner cultural resources and cultural sites were identified as environmental values in the State and Curtis Coastal Plans, however there are no water quality guidelines for the protection of these values. Instead, Indigenous interests are recognised and managed through native title and cultural heritage legislation.

Table 3-1 Guidelines for Physico-Chemical Indicators in Central Queensland Waters

Central Region Water Type	Enclosed coastal (QWQG 2006)	Marine Inshore Waters (Tropical Australia) (ANZECC 2000)
рН	8.0 - 8.4	8.0 - 8.4
Turbidity (NTU)	6	1 – 20
Secchi depth (m)	1.5	-
Suspended Solids (SS) (mg/L)	15	-
Dissolved Oxygen (DO) (% sat)	90 – 100	90 – nd*
Ammonia as N (µg N/L)	8	1 – 10
Oxidised Nitrogen as N (µg N/L)	3	-
Organic Nitrogen (µg N/L)	180	-
Total Nitrogen as N (µg N/L)	200	100
Filterable Reactive Phosphate as P (μ g P/L)	8	5
Total Phosphorus as P (µg P/L)	25	15
Chlorophyll-a (μg/L)	4	0.7 – 1.4

*nd - no data

Table 3-2 Trigger Values for Metals and Metalloids in Marine Water for Slightly to Moderately Disturbed Systems (ANZECC 2000)

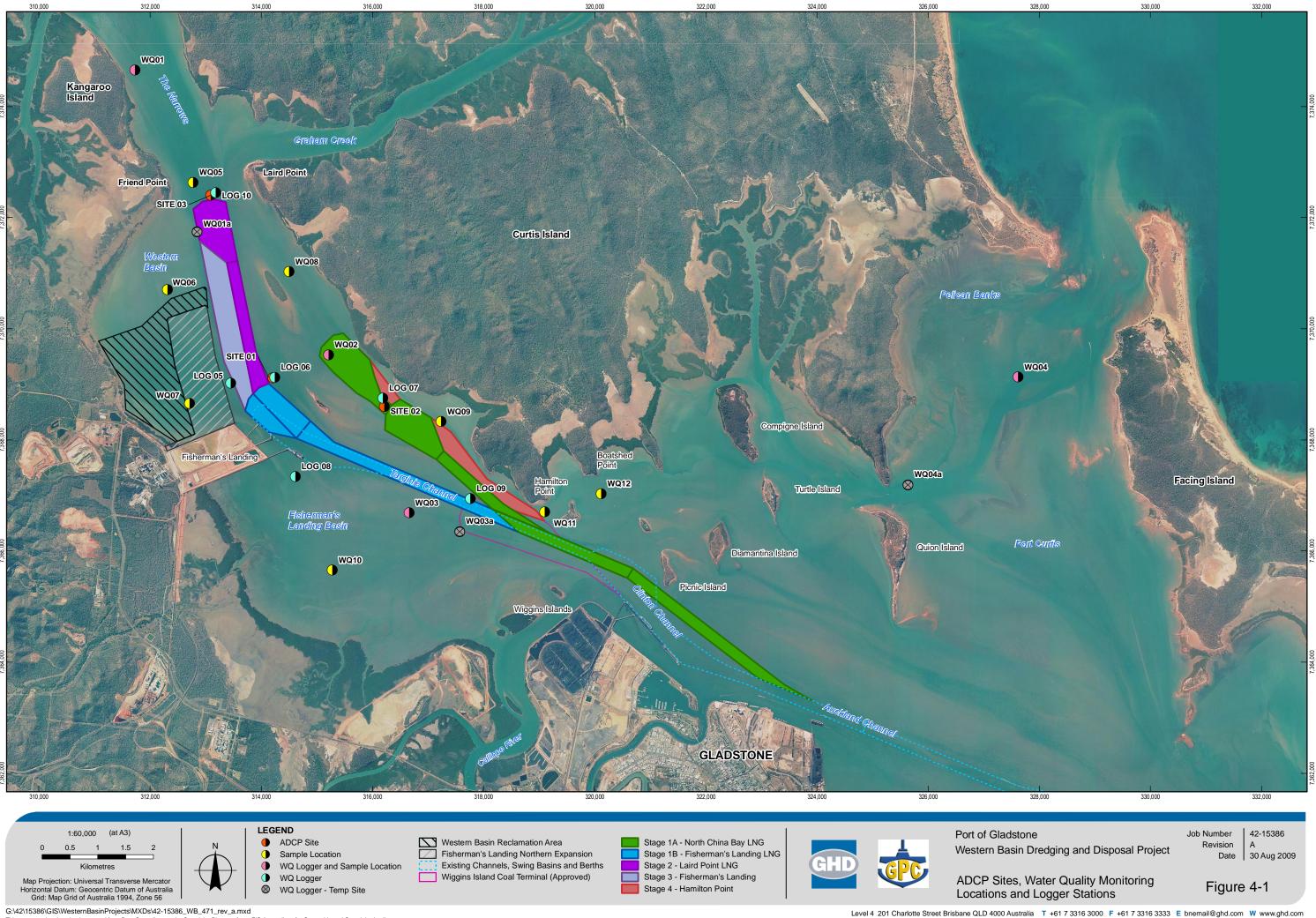
Metals and Metalloids	TV for Marine Water (μg/L)	Level of Protection (% species)
Ammonia	910	95
Cadmium	0.7	99
Chromium (Cr III)	27.4	95
Chromium (Cr VI)	4.4	95
Cobalt	1	95
Copper	1.3	95
Lead	4.4	95
Mercury (inorganic)	0.1	99
Nickel	7	99
Silver	1.4	95
Tributyltin (as Sn)	0.006	95
Vanadium	100	95
Zinc	15	95

4. Baseline Water Quality Methods

4.1 Overview

A baseline water quality monitoring program was undertaken in Gladstone Harbour as part of the Project investigations. The program will involve six months of data collection (of which four months of monitoring have been undertaken at the time of writing) from the following two sources with coordinates (Table 4-1) and spatial locations (Figure 4-1) also provided:

- Fixed water quality loggers provided by James Cook University (JCU); and
- Monthly vessel-based monitoring of *in situ* water quality measurements and collection of samples for laboratory analysis of water quality parameters.


The monitoring program also included a survey of elutriate water quality in the proposed water quality sampling areas collected by QGC and provided by GPC for use in this EIS in raw excel format. In the next section the methodology for the baseline water quality monitoring program is described.

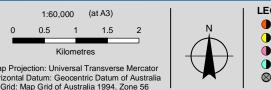

Survey Site	Purpose	Survey Location	Easting (GDA 94, Zone 56K)	Northing (GDA 94, zone 56K)
WQ01	Water Quality (Chemical and JCU Logger)	The Narrows, north of Graham Creek	311728	7374656
WQ02	Water Quality (Chemical and JCU Logger)	Between North and South Passage Island	315212	7369532
WQ03	Water Quality (Chemical and JCU Logger)	Adjacent to Wiggins Island Seagrass bed, halfway between Wiggins Island and Fisherman's Landing	316663	7366685
WQ04	Water Quality (Chemical and JCU Logger)	Pelican Banks seagrass bed	327623	7369129
WQ05	Water Quality (Chemical Only)	Entrance to The Narrows, between Friend and Laird Points	312776	7372634
WQ06	Water Quality (Chemical Only)	North of existing Fisherman's Landing, outside proposed Reclamation Area	312313	7370704
WQ07	Water Quality (Chemical Only)	North of existing Fisherman's Landing, within proposed reclamation area	312707	7368656
WQ08	Water Quality (Chemical Only)	Inside of North Passage	314505	7371026

Table 4-1 Location of Water Quality Survey Sites and Method of Data Collection

Survey Site	Purpose	Survey Location	Easting (GDA 94, Zone 56K)	Northing (GDA 94, zone 56K)
WQ09	Water Quality (Chemical Only)	China Bay, southern side of Curtis Island	317236	7368326
WQ10	Water Quality (Chemical Only)	Wiggins Island seagrass beds, halfway between Wiggins Island and Fisherman's Landing	315280	7365653
WQ11	Water Quality (Chemical Only)	Hamilton Point	319099	7366705
WQ12	Water Quality (Chemical Only)	Boatshed Point	320117	7367026
Logger 05	JCU Logger	Fisherman's Landing west	313451	7369022
Logger 06	JCU Logger	Fisherman's Landing east	314242	7369125
Logger 07	JCU Logger	China Bay	316192	7368750
Logger 08	JCU Logger	South west of Berth 1, Fisherman's Landing	314615	7367336
Logger 09	JCU Logger	Targinie Channel	317765	7366941
Logger 10	JCU Logger	Entrance to The Narrows	313184	7372450

G:\42\15386\GIS\WesternBasinProjects\WXDs\42-15386_WB_471_rev_a.mxd This map contains data that is sourced from Data Custodians under Copyright. Please refer to EIS Appendices for Ownership and Copyright details. © 2009. This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was produced. Unauthorised use of this document in any way is prohibited. While GHD has taken care to ensure the accuracy of this product. GHD Pty Ltd and Data Custodians make no representations or warranties about its accuracy, completeness or suitability for any particular purpose. GHD Pty Ltd and Data Custodians cannot accept liability of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred as a result of the product being inaccurate, incomplete or unsuitable in any way and for any reason.

4.2 Water Quality Loggers

4.2.1 Locations

At the onset of the monitoring program, fixed *in situ* water quality loggers were deployed on the seabed at four locations as shown in Figure 4-1 and listed in Table 4-1 (i.e. sites WQ01 to WQ04). Vessel-based water quality monitoring with a multi-parameter probe and water sample collection for subsequent laboratory analysis was carried out at twelve locations (i.e. sites WQ01 to WQ12) of which the first four corresponded with the fixed logger deployments (Figure 4-1 and Table 4-1).

Six additional water quality loggers (i.e. locations Logger05 to Logger10) and three ADCPs were deployed for approximately 2 months to aid in calibration of the hydrodynamic model. Further, monitoring of the turbidity plume generated by dredging from the Wombat cutter suction dredge was also carried out over this EIS data collection period by WBM (WBM 2009) and GHD (2009e). Turbidity data from both these monitoring programs has been incorporated into the current EIS.

4.2.2 Water Logger Parameters

The JCU Mk10 sediment deposition and turbidity sensor is a 68HC11 based data logger that can simultaneously measure the deposition of sediment on a flat plate, the turbidity of the water from which the settling is occurring, photosynthetic available radiation (PAR), water pressure, and wave height. The method of recording each of the sedentary water logger parameters is provided in Table 4-2.

Parameter	Method of Measurement
Accumulated Suspended Solids Deposition (ASSD)	ASSD was measured using an upward pointing fibre optic bundle to measure the backscatter of light produced by fallen sediment. Periodically, a mechanical wiper is activated removing the deposited sediment from the plate. The difference in reading before and after the wipe provides a measure of sediment mass per unit area deposited on the plate.
Turbidity	Turbidity was measured using a backscatter probe; cleaned using a mechanical wiper. This was done to allow long deployment periods where bio-fouling would otherwise seriously affect readings. Bio-fouling of the logger was controlled by antifoul paint externally and a mechanical wiper on the sensor.
	The sediment samples required to enable the conversion of data from Total Suspended Solids (TSS) to NTU were taken at the time of initial deployment of each logger. These samples were taken from the same sites where the loggers were deployed. Samples of sediment were suspended in saltwater in a large container and simultaneous measurements of NTU were taken in situ with a hand held water quality logger. The water sample was then analysed by a NATA accredited laboratory to determine the TSS concentration. Approximately 6 different TSS/NTU pairs per site were used to provide the calibration of the nephelometer.
	Note that the backscatter probe does not measure turbidity according to the standard method associated with the Nephelometric Turbidity Unit (NTU) which requires a 90 degree scatter angle. The instruments used employ a 180 degree scatter angle. The probe is calibrated to produce reading comparable with NTU, and are reported in NTU units.
Photosynthetically Available Radiation (PAR)	PAR provides a good indicative measure for potential impacts of reduced light on seagrass habitat.

 Table 4-2
 Summary of Fixed Water Quality Logger Parameters

Parameter	Method of Measurement
Water Pressure	It is known that waves are the key drivers of sediment re-suspension in environments similar to those found at the Port of Townsville (Dr Peter Ridd, pers. comm.). It is therefore important to be able to estimate the wave climate when interpreting turbidity readings.
	For example, water pressure which is influenced in a known manner by waves and tides was measured once a second for ten seconds at ten minute intervals. By recording the water pressure at this interval, a measure of the pressure fluctuation caused by the waves (RMS) water depth is calculated as outlined in Equation 1, where WD1 to WD10 are the ten samples taken. This value shows the variation in water depth and is therefore an indication of wave height and, hence, the wave climate at the Port of Townsville.
	Equation 1:
	$RMS_WaterDepth = \left(\frac{(WD1 - MeanWD)^2 + \dots + (WD10 - MeanWD)^2}{10} \right)^{1/2}$

4.2.3 Calibration

Calibration of turbidity sensors were checked in the field against standard grey PVC blocks placed at a precise distance in front of the optical aperture prior to and after deployments to allow for correction if required. Instrument calibration in the laboratory was carried out with sediments at the location of each logger's deployment to estimate both sediment deposition thickness and TSS concentration. The calibrated reading of the turbidity sensor against the standard grey PVC blocks was also carried out in the lab prior to deployment. All pressure sensors were calibrated against a pressure gauge and the pressure converted into depth in metres (m).

4.2.4 Logger Deployment

Loggers were deployed in April 2009 and serviced on a monthly basis. Each parameter (turbidity, PAR, water pressure and ASSD) was measured and recorded by the logger every 10 minutes. Logging units were attached to solid metal stands (30 – 40 kg), submerged and marked with a weighted rope to aid in relocating the loggers during the monthly download and maintenance events (Figure 4-2). The submerged logger setup was utilised to minimise the likelihood of vessel fouling and/or tampering as the loggers were deployed in locations with heavy commercial and recreational vessel activity.

Figure 4-2 Fixed Water Quality Logger Prior to Deployment

4.2.5 Data Download and Logger Maintenance

During the sampling period the logger(s) underwent a monthly retrieval for data download and maintenance. This monthly period of deployment and maintenance has been shown through previous studies to provide the maximum level of confidence in data. This consisted of the loggers being thoroughly cleaned of biofouling during each maintenance event before redeployment.

4.2.6 Data Analysis

Data from the loggers was provided to GHD by JCU in excel format and analysed (and plotted) with the MATLAB package.

4.3 Vessel-Based Water Quality Monitoring

4.3.1 Overview, Dates and Locations

Vessel-based monitoring and water sample collection was conducted to coincide with the maintenance and data download regime for the fixed loggers. Two forms of data were collected during vessel-based monitoring, namely *in situ* physico-chemical parameters and water samples for laboratory analysis. Samples were collected from the twelve water quality monitoring sites throughout the Project Area (Figure 4-1 and Table 4-1). On the first sampling date (20 April 2009) only four stations were sampled, but subsequent monthly sampling required two days to complete the monitoring program of twelve stations (

Table 4-3 and Figure 4-1).

Sampling Event	Date	Sampling Locations
1	20 April 2009	WQ01, WQ02, WQ03, WQ04
2	21 May 2009	WQ01, WQ04, WQ05, WQ08, WQ10, WQ11, WQ12
3	26 May 2009	WQ02, WQ03, WQ06, WQ07, WQ09
4	23 June 2009	WQ02, WQ03, WQ04, WQ08, WQ10, WQ11, WQ12
5	24 June 2009	WQ01, WQ05, WQ06, WQ07, WQ09
6	27 July 2009	WQ02, WQ03, WQ04, WQ08, WQ10, WQ11, WQ12
7	28 July 2009	WQ01, WQ05, WQ06, WQ07, WQ09
8	17 August 2009	WQ0,1 WQ02, WQ05, WQ08, WQ09, WQ10, WQ11, WQ12
9	18 August 2009	WQ04, WQ06, WQ07
10	19 August 2009	WQ03

Table 4-3	Vessel-Based Water Quality	ty Monitoring Dates and Site Locations (Figure 4-1)
	Teeee Bueeu Hater Quant	

4.3.2 Water Quality Grab Samples

Water quality sampling was undertaken in accordance with the following guidelines and standards:

- Queensland EPA Water Quality Sampling Manual (1999);
- ANZECC and Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) October 2000 Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Volume 1, The Guidelines (Chapters 1-7) (ANZECC 2000);
- ANZECC/ARMCANZ October 2000 Australian Guidelines for Water Quality Monitoring and Reporting (2000), Chapters 1-7 (ANZECC 2000);
- Australian Standard Number 5667.1.1998 Water Quality Sampling Guidance on the design of sampling programs, sampling techniques and the preservation and handling of samples;
- Australian Standard Number 5667.9:1998 Water Quality Sampling Guidance on sampling of marine waters; and
- Environmental Protection (Water) Policy 1997.

Water samples were collected in laboratory supplied containers at each monitoring station and two sites were randomly sampled to provide quality assurance samples. Water samples were collected from approximately 0.2 m below the water surface.

The following water quality parameters were recorded on a monthly basis:

- Dissolved metals and metalloids (Aluminium, Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Manganese, Mercury, Nickel, Silver, and Vanadium);
- Nutrients (Ammonia, Nitrate, Nitrite, Total Oxidised Nitrogen, Total Kjeldahl Nitrogen, Total Nitrogen, Reactive Phosphorus, Total Phosphorus);
- Total Dissolved Solids (TDS);
- Chlorophyll-a;
- Total Suspended Solids (TSS);
- ▶ pH; and
- Electrical Conductivity.

The following water quality parameters were monitored during the initial round of sampling, and on an ongoing basis if concentrations were found to be above the limits of reporting:

- BTEX(Benzene, Toluene, Ethylbenzene, and Xylenes (3));
- Fungicide (one species);
- Herbicides (nine species);
- Organochlorine pesticides (twenty-six species);
- Organophosphorus pesticides (twenty species);
- Tributyltin,
- Polycyclic aromatic hydrocarbons (PAHs) and Phenols (twenty-nine species);
- Phenoxy acid herbicides (fourteen species);

- Phenoxyacetic acid herbicides (two species);
- Cyanide;
- Total petroleum hydrocarbons (TPHs) (five species); and
- Volatile organic compounds (VOCs) (three species).

Water samples were stored on ice and couriered overnight to the NATA accredited ALS Laboratory Group for analysis under Chain of Custody documentation as recorded in Appendix B.

4.3.3 In Situ Physico-Chemical Profiling

The *in situ* physico-chemical water quality parameters were collected with a hand-held electronic multiparameter water quality meter with logging capability for turbidity, DO, pH, salinity, ORP and temperature. The data was stored on the logger and downloaded at the end of each field day. The *in situ* physico-chemical water quality values for each of the twelve locations had ten replicates recorded at three depths (surface, middle and bottom). *In situ* physico-chemical water quality data have been presented as medians for each of the three depths.

4.4 Elutriate Water Quality Monitoring

When dredge material is released into the natural environment, pollutants present in the pore water can be released into the water column. Elutriate water quality testing is used to estimate the water quality impacts of the release of dredged material. The elutriate water quality testing was undertaken by QGC, with a full description of the methodology described in the Queensland Curtis Pre-Dredging Assessment Plan (Sampling and Analysis Plan) (2009).

Samples were analysed for the following categories of water quality:

- Ammonia;
- Seventeen metals and metalloids;
- Hexachlorobenzene;
- Organochlorine pesticides (twenty-five species);
- Organophosphorus pesticides (nineteen species);
- PAHs and Phenols (eighteen species);
- Polychlorinated Biphenyls (eight species); and
- Semi-VOCs (6 species).

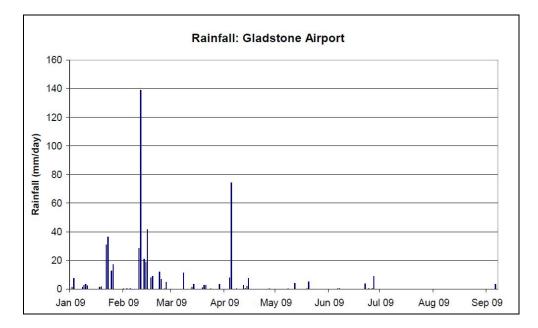
4.5 Reporting

Medians of measurements taken at the surface, mid-depth and near-bottom of the *in situ* physicochemical multi-probe parameters are presented to identify temporal and spatial trends.

Water quality of the vessel-based grab samples and elutriate data were compared to relevant guidelines including:

- QWQG (2006) for enclosed coastal waters; and
- ANZECC (2000) for marine inshore waters of tropical Australia; and

• ANZECC (2000) trigger values for metals and metalloids in marine waters for slightly to moderately disturbed systems.


Again these guidelines and trigger values have been summarised beforehand in Table 3-1 and Table 3-2.

5. Baseline Water Quality Results

5.1 Rainfall

Figure 5-1 shows the rainfall recorded at Gladstone Airport during 2009. Little rainfall was recorded during the baseline data collection period though 74.4 mm was recorded on the 5 April approximately two weeks prior to the initial field sampling event and deployment of loggers. The mean monthly rainfall (based on 15 years of records) and 2009 rainfall is summarised in Table 5-1.

Figure 5-1 Rainfall recorded at Gladstone Airport in 2009

	Mean Monthly Rainfall (mm)	2009 Rainfall
Jan	114	118.6
Feb	178.8	291
Mar	48.3	26
Apr	39.7	95.2
May	36	9.6
Jun	45.3	13.8
Jul	22.4	0
Aug	32.5	0
Sep	29.6	Incomplete
Oct	65	Incomplete
Nov	59.8	Incomplete
Dec	104.4	Incomplete

5.2 In Situ Physico-Chemical Profiling

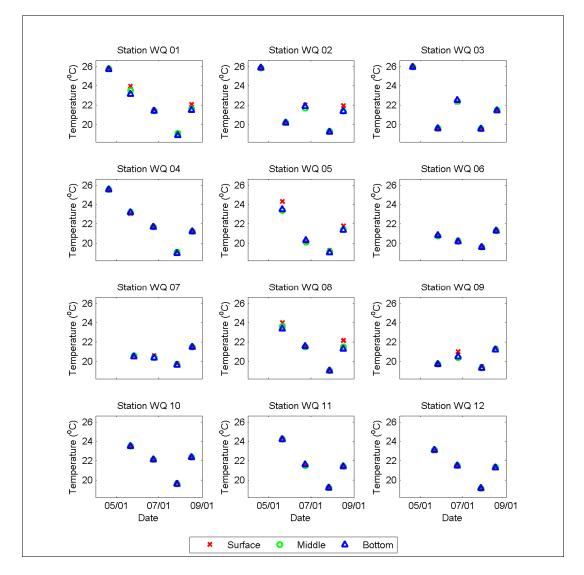
The following six water quality parameters were measured at water quality sampling station WQ01 to WQ12 with a Yeokal water quality profiling instrument:

- Water temperature;
- DO;
- Electrical conductivity;
- ▶ pH;
- Turbidity; and
- ORP.

Measurements were made near the surface, at mid-depth and near the bottom at each location at approximately a monthly frequency (see

Table 4-3). At each depth, several measurements were logged so that simple statistics could be computed. Figure 5-2 to Figure 5-7 show the monthly medians of these physico-chemical measurements at the three depths over the four sampling dates.

The following sections provide an overview of the spatial and temporal trends of *in situ* physico-chemical water quality recorded as part of the monthly vessel-based water quality monitoring program.


5.2.1 Temperature

There are no applicable temperature guidelines in QWQG (2006) or ANZECC (2000). Median values of multiple measurements at each of three depths (near-surface, mid-depth, near-bottom) at each of the twelve sampling sites over the four (WQ05-WQ12) to five (WQ01-WQ04) months are shown in Figure 5-2.

The monthly median *in situ* temperatures at all of the stations had the following patterns over the four to five months:

- Temperatures were almost always homogeneous through the water column at each station. There were several exceptions, where for example, during May 2009 at WQ01 and WQ05 the bottom waters were 0.2-0.5°C cooler than the mid- and near surface waters; and
- Generally, temperatures were cooling over the 4 months from 26°C in April to 19-20°C in July, with the initiation of heating of water in September.

Figure 5-2 Temperature Data Recorded In Situ

5.2.2 Electrical Conductivity

There are no applicable electrical conductivity (or salinity) guidelines in the QWQG (2006) or ANZECC (2000). Medians at three depths (near-surface, mid-depth, near-bottom) at each of the twelve sampling sites over the four (WQ05-WQ12) to five (WQ01-WQ04) months are shown in Figure 5-3.

The monthly median *in situ* electrical conductivity at all of the stations had the following patterns over the four to five months:

- Electrical conductivity was almost always homogeneous through the water column at each station. There are several exceptions, where for example. during May 2009 at WQ01 and WQ03 the bottom waters were 1 mS/cm more saline than the mid- and/or near surface waters; and
- Generally, electrical conductivity increased across the Western Basin over the 4 months from 53-54 mS/cm in May to 55-56 mS/cm in August. Presumably, this is simply a function of reduced freshwater

inputs relative to the wet season, thereby nearing typical ocean values as well regional evapoconcentration over the course of the dry season.

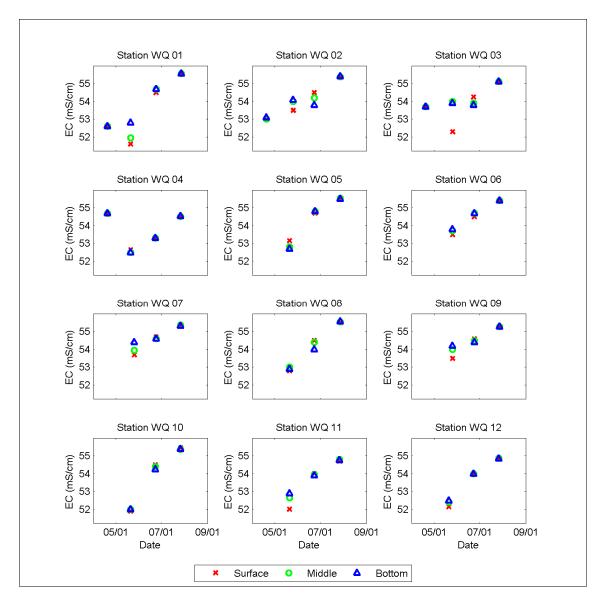
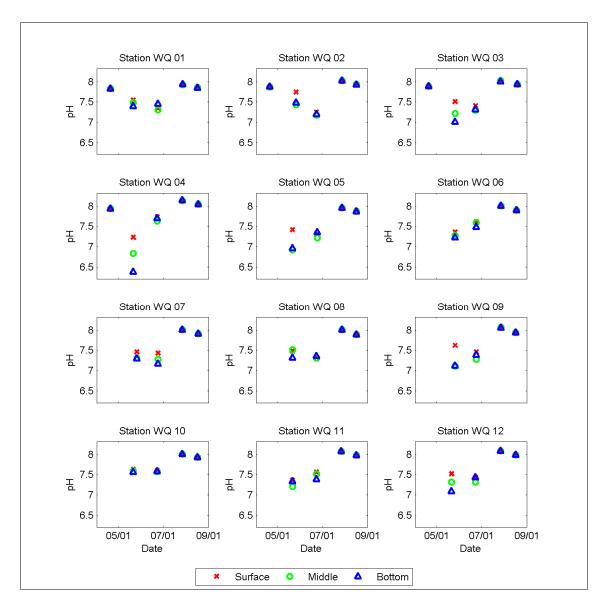


Figure 5-3 Electrical conductivity (EC) Data Recorded In Situ



5.2.3 pH

The QWQG (2006) guideline for pH in a Central Coast Region for an enclosed coastal area has a lower limit of 8.0 and an upper limit of 8.4. Medians at three depths (near-surface, mid-depth, near-bottom) at each of the twelve sampling sites over the four (WQ05-WQ12) to five (WQ01-WQ04) months are shown in Figure 5-4. The following are noted about the pH data:

- For the most part, pH was homogeneous through the water column at each station. There are several exceptions, where for example, during May 2009 at WQ03 and WQ04 where the pH of the near-bottom measurements were lower than at the surface;
- Generally, pH followed similar temporal patterns across all of the stations with elevated pH during May and August and Iower pH during June and July; and
- Over the four sampling events, only during the August sampling event were all sites and depths within the lower and upper guidelines. The four stations sampled during the May event were nearly within the guidelines, but the June and July events were well below the lower guideline value of 8.0 (ca. <7.5).</p>

Figure 5-4 pH Data Recorded In Situ

5.2.4 Dissolved Oxygen

The QWQG (2006) guideline range for DO saturation consists of upper and lower guideline values of 90% and 100%, respectively. Medians of multiple measurements at three depths (near-surface, middepth, near-bottom) at each of the twelve sampling stations over the four (WQ05-WQ12) to five (WQ01-WQ04) months are shown in Figure 5-5. Results are summarised as follows:

- DO saturation was generally in the range of 80 100%, and generally highest at the surface;
- Deviations below and above the 90%–100% guideline were common, but generally in 75-110% range; and
- Where differences were observed in DO saturation levels between the surface, middle and bottom of the water column, measurements at the surface were generally higher than middle, which was in turn greater than the bottom.

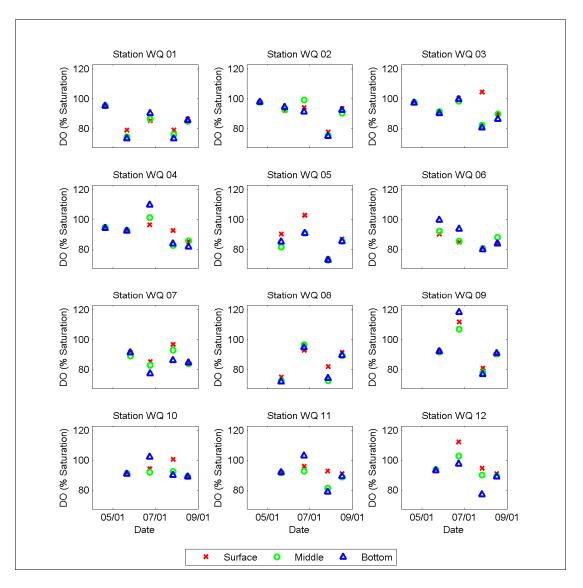


Figure 5-5 DO Saturation Data Recorded In Situ

5.2.5 Turbidity

The QWQG (2006) turbidity guideline for an enclosed coastal area of the Central Coast Region is 6 NTU, while the ANZECC (2000) turbidity guideline range for tropical Australian estuarine and marine waters is 1–20 NTU. The in situ vessel-based turbidity data are presented in Figure 5-6. Results are summarised as follows:

- The *in situ* dry season turbidity measurements ranged approximately up to 30 NTU. Generally, turbidity at the surface was lower or near to levels at the bottom of the water column;
- It is not possible to make conclusions about the temporal turbidity dynamics of the area with this dataset because turbidity varies over short time-scales, and this data has a monthly frequency;
- No significant rainfall events occurred within several weeks of these monthly turbidity measurements;

- With the exception of station WQ04, turbidity generally exceeded the QWQG (2006) guideline level of 6 NTU. WQ04 is a suitable reference site some distance from the Project Area near the confluence with the coastal ocean, and as such, generally had considerably lower turbidity; and
- The records across the sites were generally below the upper ANZECC (2000) guideline level of 20 NTU, except at WQ02 and WQO3, which exceeded this upper limit in May 2009.

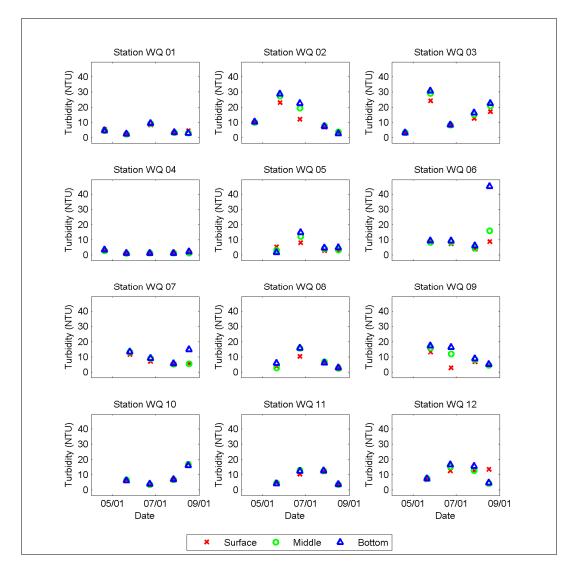


Figure 5-6 Turbidity Data Recorded In Situ

5.2.6 Oxidation-Reduction Potential

ORP at each site and monitoring date was nearly equivalent throughout the water column. Positive values at all sites and dates throughout the water column were consistent with a generally well oxygenated water column.

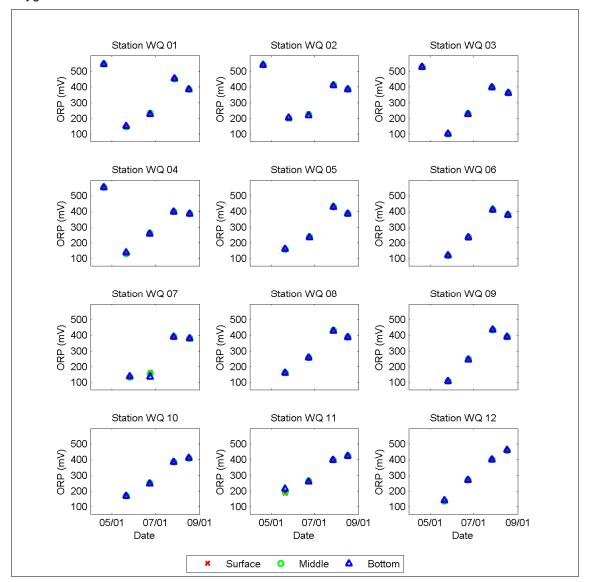


Figure 5-7 ORP data recorded in situ

5.2.7 Summary of Field Multi-probe Measurements

In summary, the in situ physico-chemical profiles indicate the following:

- Generally, all measured parameters (temperature, electrical conductivity, pH, DO, turbidity, ORP) were homogeneously distributed throughout the water column, indicative of vertically well-mixed conditions;
- Seasonal signals included decreasing water temperatures, increasing electrical conductivity, increasing ORP, increasing pH and decreasing turbidity, all of which are indicative of less influence of freshwater inputs and reduced primary productivity from lower winter insolation; and
- PH tended to be lower than the CQWQ (2006) guideline range, as did turbidity. However, turbidity tended to be near the upper limit of the ANZECC (2000) guideline range. DO saturation tended to be within the CQWQ (2006) guideline range of 90-100%, with occasional measurements above or below this range.

5.3 Vessel-Based Water Quality

Water samples collected from stations WQ01 to WQ12 were analysed for a broad range of chemical and physical properties, which are summarised in this section. Laboratory analysis and quality control certificates are provided in Appendix B and a summary of field quality control samples are provided in Appendix C.

Overall, the results of the Quality Control programs adopted by the laboratory and by GHD, indicate that the results of the following chemical analyses are of sufficient quality to be confidently used to determine the concentrations of substances of the waters within the Project Area, for comparison with the nominated guidelines. Appendix B (Laboratory Analysis and Interpretive Quality Control Certificates for Water Quality Monitoring), and Appendix D (Quality Assurance and Quality Control), provide the details of this overall assessment.

5.3.1 Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX)

One sample taken at each of the 12 water quality monitoring stations was analysed for the chemical species described in Table 5-2. Stations WQ01, WQ04, WQ05, WQ08 WQ10, WQ11 and WQ12 were sampled on the 21 May 2009 while stations WQ02, WQ03, WQ06, WQ07, and WQ09 were sampled on the 26 May 2009.

Chemical Species	Limit of Reporting
Benzene	1 µg/L
Ethylbenzene	2 µg/L
Toluene	2 µg/L
Xylene (meta- and para-)	2 µg/L
Xylene (<i>ortho-</i>)	2 µg/L
Total Xylene	4 µg/L

Table 5-2 BTEX Chemical Species and Limits of Reporting

No samples exceeded the limits of reporting, so these measurements were not included as part of the suite of measurements during subsequent field monitoring dates.

5.3.2 Fungicide

One water sample at each of the 12 water quality monitoring stations (i.e. WQ01-WQ12) was analysed for Propiconazole, a triazole fungicide. Stations WQ01, WQ04, WQ05, WQ08 WQ10, WQ11 and WQ12 were sampled on the 21 May 2009 while stations WQ02, WQ03, WQ06, WQ07, and WQ09 were sampled on the 26 May 2009.

No samples were above the limit of reporting of 0.01 (μ g/L), so Propiconazole was not included as part of the suite of measurements during subsequent field monitoring dates

5.3.3 Herbicides

Samples from the 12 water quality monitoring stations were analysed for the 9 herbicide species summarised in Table 5-3. Samples in May, June and August 2009 were analysed for some of the herbicide species, while others were analysed for May the sampling event only. With the exception of metolachlor (i.e. a chloroacetanilide herbicide), all samples were below the limit of reporting. The recorded concentrations for metolachlor are shown in Table 5-4.

Herbicide Species	Limit of Reporting	Samples Taken
Atrazine	0.005 µg/L	May and June
Diuron	0.005 µg/L	May and June
Hexazinone	0.01 µg/L	Мау
Metolachlor	0.005 µg/L	May and June
Molinate	0.005 µg/L	May and June
Simazine	0.005 µg/L	May and June
Tebuthiuron	0.01 µg/L	Мау
Thiobencarb	0.005 µg/L	May and June
Trifluralin	0.005 µg/L	May and June

Table 5-3 Herbicide Species and Limits or Reporting

Table 5-4 Metolachlor Water Quality Monitoring Results

Date	Station	Metolachlor (ug/L)
21/05/2009	WQ01	<0.005
24/06/2009	WQ01	0.013
17/08/2009	WQ01	<0.005
26/05/2009	WQ02	<0.005

Date	Station	Metolachlor (ug/L)
23/06/2009	WQ02	0.009
17/08/2009	WQ02	<0.005
26/05/2009	WQ03	<0.005
23/06/2009	WQ03	<0.005
19/08/2009	WQ03	<0.005
21/05/2009	WQ04	<0.005
23/06/2009	WQ04	<0.005
18/08/2009	WQ04	<0.005
21/05/2009	WQ05	<0.005
24/06/2009	WQ05	<0.005
17/08/2009	WQ05	<0.005
26/05/2009	WQ06	<0.005
24/06/2009	WQ06	0.099
18/08/2009	WQ06	<0.005
26/05/2009	WQ07	<0.005
24/06/2009	WQ07	0.03
18/08/2009	WQ07	<0.005
21/05/2009	WQ08	<0.005
23/06/2009	WQ08	0.273
17/08/2009	WQ08	<0.005
26/05/2009	WQ09	<0.005
24/06/2009	WQ09	0.027
17/08/2009	WQ09	<0.005
21/05/2009	WQ10	<0.005
23/06/2009	WQ10	<0.005
17/08/2009	WQ10	<0.005
21/05/2009	WQ11	<0.005
23/06/2009	WQ11	<0.005
17/08/2009	WQ11	<0.005
21/05/2009	WQ12	<0.005

Date	Station	Metolachlor (ug/L)
23/06/2009	WQ12	0.075
17/08/2009	WQ12	<0.005

5.3.4 Metals and Metalloids

Samples at each of the 12 water quality monitoring stations were analysed for the 16 metal and metalloid species summarised in Table 5-5 each month. Samples were filtered prior to analysis. Four sets of samples were collected in May, June, July and August 2009. All results for antimony, beryllium, cobalt, lead and mercury were below the limits of reporting. The results for the remaining species are shown in Table 5-6. This table also includes a comparison of data to the trigger values included in the ANZECC (2000) guidelines.

Except for cadmium, all metals species with trigger values listed in the ANZECC (2000) were below the relevant trigger values. Cadmium exceeded its trigger value during the May sampling event at stations WQ06 and WQ09.

Metal Species	Limit of Reporting
Aluminium	10 µg/L
Antimony	0.5 μg/L
Arsenic	0.5 μg/L
Barium	1 μg/L
Beryllium	0.1 µg/L
Cadmium	0.2 μg/L
Chromium(III+VI)	0.5 µg/L
Cobalt	0.2 μg/L
Copper	1 μg/L
Iron	5 μg/L
Lead	0.2 μg/L
Manganese	0.5 µg/L
Mercury	0.1 µg/L
Nickel	0.5 µg/L
Silver	0.1 µg/L
Vanadium	0.5 μg/L

Table 5-5 Monitored Metals and Metalloids Species and Limits of Reporting

Table 5-6 Metals and Metalloids above Limits of Reporting

No No<			Aluminium (µg/L)	(hg/L)	(µg/L)	Cadmium (µg/L)	Chromium (III+VI) (µg/L)	(µg/L))(L)	Manganese (µg/L)	(µg/L)	µg/L)	Vanadium (µg/L)
11 13 -0.2 -0.5 -1 -6 11 0.6 -0.1 13 24062001 WQD1 <10 0.6 7 -0.2 -0.5 -1 -5 1.2 -0.5 -0.1 -5 0.5 -0	ate	tation	lumin	rsenic	arium	admiu	thromi ug/L)	opper	Srl) uo.	langar	lickel (ilver (anadi
24082003 WGC1													
17/08/2009 WOD1 30 0.8 8 +0.2 +0.5 +1 +ds +ds +0.5 +0.1 +1.4 2000/2009 WOD2 +10 1.4 9 +0.2 +0.5 1 +ds +0.5 +0.1 1.1 2000/2009 WOD2 +10 1 8 +0.2 +0.5 +1 +ds +0.5 +0.1 1.1 1700/2009 WOD2 50 0.9 8 +0.2 +0.5 +1 +ds 2.1 +0.5 +0.1 +0.5 2000/2009 WOD2 +10 0.6 7 +0.2 +0.5 +1 +ds +0.1 +0.5 +0.1 +1.1 11 2000/2009 WOD3 +10 1.2 8 +0.2 +0.5 +1 +6 1.7 +0.5 +0.1 +1.8 210052009 WOD4 +10 0.6 3 +0.2 +0.5 +1 +6 1.7 +0.5 +0.1 +0.5 210052009 WOD4 +10 1.5 6 +0.2 <	24/06/2009	WQ01	<10	0.6	7	<0.2	<0.5	<1	<5	1.2	<0.5	<0.1	1.1
28052008 WG02 <10 1.4 9 <0.2 <0.5 <1 <5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.1 <0.5 <0.5 <0.1 <0.5 <0.5 <0.1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	28/07/2009	WQ01	<10	1	9	<0.2	<0.5	<1	<5	3	<0.5	<0.1	0.9
Z3062/009 WQ02 <10 0.6 7 <0.2 <0.5 <1 <0.5 <0.1 1.1 Z30772009 WQ02 50 0.9 8 <0.2	17/08/2009	WQ01	30	0.8	8	<0.2	<0.5	<1	<5	4.5	0.5	<0.1	<0.5
	26/05/2009	WQ02	<10	1.4	9	<0.2	<0.5	1	<5	<0.5	0.5	<0.1	1.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23/06/2009	WQ02	<10	0.6	7	<0.2	<0.5	<1	<5	0.8	<0.5	<0.1	1.1
	28/07/2009	WQ02	<10	1	8	<0.2	<0.5	<1	<5	1	<0.5	<0.1	1.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17/08/2009	WQ02	50	0.9	8	<0.2	<0.5	<1	<5	2	<0.5	<0.1	<0.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	26/05/2009	WQ03	<10	1.3	10	<0.2	<0.5	<1	<5	<0.5	0.6	<0.1	1.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23/06/2009	WQ03	<10	0.8	7	<0.2	<0.5	<1	<5	2.3	<0.5	<0.1	1.1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	27/07/2009	WQ03	<10	1.2	8	<0.2	<0.5	<1	<5	0.7	<0.5	<0.1	1.2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	19/08/2009	WQ03	30	1.6	7	<0.2	<0.5	<1	6	1.7	<0.5	<0.1	3.6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	21/05/2009	WQ04	<10	1.7	8	<0.2	<0.5	1	6	3.4	<0.5	<0.1	1.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23/06/2009	WQ04	<10	0.6	3	<0.2	<0.5	<1	<5	<0.5	<0.5	<0.1	0.9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	27/07/2009	WQ04	<10	1.3	6	<0.2	<0.5	<1	<5	1.4	<0.5	<0.1	1.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18/08/2009	WQ04	60	1.5	5	<0.2	<0.5	<1	<5	1.5	0.8	<0.1	2.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21/05/2009	WQ05	<10	1.5	12	<0.2	<0.5	1	6	8.5	0.7	<0.1	2.3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	24/06/2009	WQ05	<10	0.7	7	<0.2	<0.5	<1	<5	0.6	<0.5	<0.1	1.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28/07/2009	WQ05	<10	1.1	10	<0.2	<0.5	<1	<5	2.1	<0.5	<0.1	1.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17/08/2009	WQ05	<10	0.8	8	<0.2	<0.5	<1	12	3	0.7	<0.1	<0.5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	26/05/2009	WQ06	<10	1.2	10	2.7	<0.5	1	<5	0.8	1.2	<0.1	1.5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	24/06/2009	WQ06	<10	0.7	8	<0.2	2.9	<1	<5	1.6	0.7	<0.1	1.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28/07/2009	WQ06	<10	1	8	<0.2	<0.5	<1	<5	1.8	<0.5	<0.1	1.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18/08/2009	WQ06	70	1.2	8	<0.2	<0.5	<1	<5	2.1	0.6	<0.1	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	26/05/2009	WQ07	<10	1.3	10	<0.2	<0.5	<1	<5	0.8	0.9	<0.1	1.5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	24/06/2009	WQ07	<10	0.7	8	<0.2	<0.5	<1	<5	0.7	<0.5	<0.1	1.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	27/07/2009	WQ07	<10	1.2	9	<0.2	<0.5	<1	<5	2.2	<0.5	<0.1	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	18/08/2009	WQ07	210	1	8	<0.2	<0.5	<1	<5	2.9	<0.5	<0.1	0.8
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	21/05/2009	WQ08	<10	1.6	12	<0.2	<0.5	1	<5	7.5	0.7	<0.1	2.2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	23/06/2009	WQ08	<10	0.6	7	<0.2	<0.5	<1	<5	1.1	0.5	<0.1	1.3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	28/07/2009	WQ08	<10	1	9	<0.2	<0.5	<1	<5	1	<0.5	<0.1	0.9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	17/08/2009	WQ08	<10	0.8	8	0.4	<0.5	<1	<5	3	<0.5	<0.1	<0.5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	26/05/2009	WQ09	<10	1.2	8	1.7	<0.5	<1	<5	<0.5	0.8	<0.1	1.4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	24/06/2009	WQ09	<10	0.6	6	<0.2	<0.5	<1	<5	<0.5	<0.5	<0.1	1.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28/07/2009	WQ09	<10	1.3	8	<0.2	<0.5	<1	<5	0.8	0.9	<0.1	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17/08/2009	WQ09	140	0.8	8	<0.2	<0.5	<1	<5	2.9	<0.5	<0.1	0.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21/05/2009	WQ10	<10	1.7	12	<0.2	<0.5	1	<5	6.8	0.6	<0.1	2.7
17/08/2009 WQ10 <10 1.1 8 <0.2 <0.5 <1 <5 8.2 <0.5 <0.1 0.6 21/05/2009 WQ11 <10	23/06/2009	WQ10	<10	0.8	8	<0.2	<0.5	<1	<5	1.5	0.5	<0.1	1.3
21/05/2009 WQ11 <10 1.8 10 <0.2 <0.5 1 5 3 0.5 <0.1 2.9 23/06/2009 WQ11 <10	27/07/2009	WQ10	<10	1	8	<0.2	<0.5	<1	<5	2.8	<0.5	<0.1	1.1
23/06/2009 WQ11 <10 0.9 6 <0.2 <0.5 <1 <5 <0.5 <0.1 1.4 27/07/2009 WQ11 <10	17/08/2009	WQ10	<10	1.1	8	<0.2	<0.5	<1	<5	8.2	<0.5	<0.1	0.6
27/07/2009 WQ11 <10 1.3 7 <0.2 <0.5 <1 <5 0.7 <0.5 <0.1 0.8	21/05/2009	WQ11	<10	1.8	10	<0.2	<0.5	1	5	3	0.5	<0.1	2.9
	23/06/2009	WQ11	<10	0.9	6	<0.2	<0.5	<1	<5	<0.5	<0.5	<0.1	1.4
17/08/2009 WQ11 10 0.9 7 <0.2 <0.5 <1 <5 1.7 <0.5 <0.1 0.8	27/07/2009	WQ11	<10	1.3	7	<0.2	<0.5	<1	<5	0.7	<0.5	<0.1	0.8
	17/08/2009	WQ11	10	0.9	7	<0.2	<0.5	<1	<5	1.7	<0.5	<0.1	0.8

Date	Station	Aluminium (µg/L)	Arsenic (µg/L)	Barium (µg/L)	Cadmium (µg/L)	Chromium (III+VI) (µg/L)	Copper (µg/L)	lron (µg/L)	Manganese (µg/L)	Nickel (µg/L)	Silver (µg/L)	Vanadium (µg/L)
21/05/2009	WQ12	<10	1.9	10	<0.2	<0.5	<1	6	2.2	<0.5	<0.1	2.3
23/06/2009	WQ12	<10	0.8	6	<0.2	<0.5	<1	<5	<0.5	<0.5	0.1	1.5
27/07/2009	WQ12	<10	1.4	8	<0.2	<0.5	<1	<5	0.7	<0.5	<0.1	1.3
17/08/2009	WQ12	80	0.8	7	<0.2	<0.5	<1	<5	1.5	<0.5	<0.1	1
Т	otal Number of Samples	48	48	48	48	48	48	48	48	48	48	48
	Number Above LoR	9	48	48	3	1	7	7	41	18	1	44
	Maximum Value	210	1.9	13	2.7	2.9	1	12	11	1.2	0.1	3.6
Median V	/alue (inc. results < LoR)	<10	1	8	<0.2	<0.5	<1	<5	2.15	<0.5	<0.1	1.3
ANZECO	C (2000) Guideline Level	-	-	-	0.7	27.4 / 4.4 *	1.3	-	-	7	1.4	100
Number Ab	oove ANZECC Guideline	-	-	-	2	0	0	-	-	0	0	0

* Trigger values for Chromium (III) and Chromium (IV) respectively.

5.3.5 Nutrients

Nutrient species were measured at all 12 water quality monitoring locations each month (May, June, July, and August 2009) as shown in Table 5-7.

Ammonia concentrations exceeded the QWQG (2006) guideline level 10 times, and the ANZECC (2000) guideline level six times. Total oxidised nitrogen exceeded the QWQG (2006) guideline level 26 times out of a total of 48 measurements with the median value (0.004 mg/L) greater than the guideline level (0.003 mg/L). Total kjeldahl nitrogen exceeded the QWQG (2006) level twice from 48 samples.

Reactive phosphorus did not exceed the QWQG (2006) guideline level, however it did exceed the ANZECC (2000) guideline level on 6 occasions. Total phosphorus did not exceed the QWQG (2006) guideline level or the ANZECC (2000) guideline level during the monitoring period.

Date	Station	Ammonia (mg/L)	Nitrate (as N) (mg/L)	Nitrite (as N) (mg/L)	Nitrogen (Total Oxidised) (mg/L)	TKN (as N) (mg/L)	Nitrogen (Total) (mg/L)	Reactive Phosphorus as P (mg/L)	Total Phosphorus (mg/L)
21/05/2009	WQ01	0.006	0.004	<0.002	0.004	0.15	0.15	0.002	<0.005
24/06/2009	WQ01	0.005	0.005	<0.002	0.005	0.14	0.15	0.002	0.009
28/07/2009	WQ01	0.007	0.004	<0.002	0.004	0.17	0.17	0.005	<0.005
17/08/2009	WQ01	<0.005	<0.002	<0.002	<0.002	0.06	0.06	<0.001	0.01
26/05/2009	WQ02	<0.005	<0.002	<0.002	-	0.14	0.14	0.003	<0.005
23/06/2009	WQ02	<0.005	0.006	<0.002	0.006	0.15	0.16	0.002	<0.005
28/07/2009	WQ02	0.009	0.006	<0.002	0.006	0.17	0.17	0.005	<0.005
17/08/2009	WQ02	0.014	0.003	<0.002	0.003	0.06	0.06	<0.001	0.008
26/05/2009	WQ03	<0.005	0.005	<0.002	-	0.12	0.13	0.004	<0.005
23/06/2009	WQ03	0.006	0.014	<0.002	0.014	0.16	0.17	0.002	0.007
27/07/2009	WQ03	0.011	0.008	0.002	0.01	0.14	0.14	0.006	<0.005
21/05/2009	WQ04	<0.005	0.003	<0.002	0.003	0.12	0.12	<0.001	<0.005
23/06/2009	WQ04	<0.005	0.003	<0.002	0.003	0.08	0.08	<0.001	<0.005
27/07/2009	WQ04	0.007	0.006	<0.002	0.006	0.15	0.15	0.004	<0.005
18/08/2009	WQ04	<0.005	<0.002	<0.002	<0.002	0.09	0.09	0.002	<0.005
21/05/2009	WQ05	<0.005	0.003	<0.002	0.003	0.13	0.13	0.002	<0.005
24/06/2009	WQ05	0.006	0.006	<0.002	0.006	0.11	0.12	0.002	0.006
28/07/2009	WQ05	0.008	0.004	<0.002	0.004	0.14	0.14	0.006	<0.005
17/08/2009	WQ05	<0.005	0.003	<0.002	0.003	0.09	0.09	0.001	0.01
26/05/2009	WQ06	0.007	0.003	<0.002	-	0.15	0.15	0.004	0.011
24/06/2009	WQ06	0.006	0.006	<0.002	0.006	0.14	0.15	0.002	0.006
28/07/2009	WQ06	0.007	0.005	<0.002	0.005	0.14	0.15	0.005	<0.005
18/08/2009	WQ06	0.019	<0.002	<0.002	<0.002	0.14	0.14	0.008	0.005
26/05/2009	WQ07	<0.005	0.002	<0.002	-	0.13	0.13	0.003	<0.005
24/06/2009	WQ07	0.006	0.009	<0.002	0.009	0.11	0.12	0.002	<0.005
27/07/2009	WQ07	0.01	0.004	<0.002	0.004	0.18	0.19	0.005	<0.005
18/08/2009	WQ07	0.013	<0.002	<0.002	<0.002	0.13	0.13	0.006	0.006
21/05/2009	WQ08	0.006	0.005	<0.002	0.005	0.14	0.14	0.002	0.006
23/06/2009	WQ08	0.005	0.004	<0.002	0.004	0.16	0.16	0.002	0.007
28/07/2009	WQ08	0.011	0.005	<0.002	0.005	0.14	0.15	0.006	<0.005
17/08/2009	WQ08	<0.005	<0.002	<0.002	<0.002	<0.05	<0.05	<0.001	0.01
19/08/2009	WQ08	<0.005	0.002	<0.002	0.002	0.11	0.12	0.007	0.006
26/05/2009	WQ09	0.006	0.004	<0.002	-	1.88	1.88	0.004	<0.005
24/06/2009	WQ09	<0.005	0.007	<0.002	0.007	0.11	0.12	0.001	<0.005
28/07/2009	WQ09	0.009	0.006	<0.002	0.006	0.14	0.15	0.005	<0.005
17/08/2009	WQ09	<0.005	0.003	<0.002	0.003	<0.05	<0.05	<0.001	0.01
21/05/2009	WQ10	<0.005	0.003	<0.002	0.003	0.12	0.12	<0.001	<0.005
23/06/2009	WQ10	<0.005	0.004	<0.002	0.004	0.12	0.12	0.002	<0.005
27/07/2009	WQ10	0.008	0.004	<0.002	0.004	0.15	0.15	0.005	<0.005
17/08/2009	WQ10	<0.005	<0.002	<0.002	<0.002	0.05	0.05	<0.001	0.014
21/05/2009	WQ11	0.006	0.006	<0.002	0.006	0.1	0.11	0.002	<0.005
23/06/2009	WQ11	0.006	0.004	<0.002	0.004	0.1	0.1	<0.001	<0.005

Table 5-7 Nutrient Data Measured During Vessel Based Water Quality Sampling

Date	Station	Ammonia (mg/L)	Nitrate (as N) (mg/L)	Nitrite (as N) (mg/L)	Nitrogen (Total Oxidised) (mg/L)	TKN (as N) (mg/L)	Nitrogen (Total) (mg/L)	Reactive Phosphorus as P (mg/L)	Total Phosphorus (mg/L)
27/07/2009	WQ11	0.01	0.005	<0.002	0.005	0.13	0.14	0.005	<0.005
17/08/2009	WQ11	<0.005	0.005	<0.002	0.005	<0.05	<0.05	<0.001	0.009
21/05/2009	WQ12	0.006	0.007	<0.002	0.007	0.24	0.25	0.002	<0.005
23/06/2009	WQ12	0.008	0.004	<0.002	0.004	0.11	0.11	0.002	<0.005
27/07/2009	WQ12	0.012	0.005	<0.002	0.005	0.13	0.14	0.004	<0.005
17/08/2009	WQ12	<0.005	<0.002	<0.002	<0.002	<0.05	<0.05	<0.001	0.01
Total Num	ber of Samples	48	48	48	43	48	48	48	48
Num	ber Above LoR	29	40	1	36	44	44	37	18
Ν	laximum Value	0.019	0.014	0.002	0.014	1.88	1.88	0.008	0.014
Median Value	e (inc. results < LoR)	0.006	0.004	<0.002	0.004	0.13	0.135	0.002	<0.005
QWQG (2006) (Guideline Level	0.008	-	-	0.003	0.18	0.2	0.008	0.025
Number	Above QWQG	10	-	-	28	2	2	0	0
ANZECC (2	2000) Guideline Level	0.01	-	-	-	-	0.1	0.005	0.015
Number A	Above ANZECC Guideline	6	-	-	-	-	37	6	0

5.3.6 Organochlorine Pesticides

One sample at each of the 12 water quality monitoring stations (i.e. WQ01-WQ12) was analysed for a suite of 26 organochlorine pesticides. Stations WQ01, WQ04, WQ05, WQ08 WQ10, WQ11 and WQ12 were sampled on the 21 May 2009 while stations WQ02, WQ03, WQ06, WQ07, and WQ09 were sampled on the 26 May 2009. The species tested and the limits of reporting are shown in Table 5-8.

Species	Limit of Reporting	Species	Limit of Reporting
4,4-DDE	0.01 µg/L	Endosulfan	0.01 µg/L
a-BHC	0.01 µg/L	Endosulfan I	0.01 µg/L
Aldrin	0.01 µg/L	Endosulfan II	0.01 µg/L
Aldrin + Dieldrin	0.02 µg/L	Endosulfan sulphate	0.01 µg/L
b-BHC	0.01 µg/L	Endrin	0.01 µg/L
chlordane	0.01 µg/L	Endrin aldehyde	0.01 µg/L
Chlordane (cis)	0.01 µg/L	Endrin ketone	0.01 µg/L
Chlordane (trans)	0.01 µg/L	g-BHC (Lindane)	0.01 µg/L
d-BHC	0.01 µg/L	g-BHC (Lindane)	0.01 µg/L
DDD	0.01 µg/L	Heptachlor (including its epoxide)	0.02 µg/L
DDT	0.01 µg/L	Hexachlorobenzene	0.01 µg/L
DDT+DDE+DDD	0.02 µg/L	Methoxychlor	0.01 µg/L
Dieldrin	0.01 µg/L		

 Table 5-8
 Organochlorine Species and Limits or Reporting

None of the samples collected across the twelve sites exceeded the limits of reporting for any of the species tested. As such, they were not tested for in subsequent water quality tests.

5.3.7 Organophosphorus Pesticides

One sample taken at each of the 12 water quality monitoring stations (i.e. WQ01-WQ12) during the May monthly monitoring event and analysed for a suite of 20 organophosphorus pesticides. Stations WQ01, WQ04, WQ05, WQ08 WQ10, WQ11 and WQ12 were sampled on the 21 May 2009 while stations WQ02, WQ03, WQ06, WQ07, and WQ09 were sampled on the 26 May 2009. The organophosphorus pesticide species tested and the limits of reporting are shown in Table 5-9.

With the exception of chlorpyrifos, all species tested were below the limit of reporting. Chlorpyrifos was detected at several locations, and was measured again during the June monthly monitoring, along with diazinon and malathion. Diazinon and malathion measurements did not exceed the limits of reporting on during either occasion at any site. The results for chlorpyrifos are summarised in Table 5-10.

Species	Limit of Reporting	Species	Limit of Reporting
Azinophos methyl	0.1 µg/L	Ethion	0.1 µg/L
Bromophos	0.1 µg/L	Fenamiphos	0.1 µg/L
Carbophenothion	0.1 µg/L	Fenthion	0.1 µg/L
Chlorfenvinphos Z	0.1 µg/L	Malathion	0.002 µg/L
Chlorpyrifos	0.005 µg/L	Methyl parathion	0.1 µg/L
Chlorpyrifos-methyl	0.1 µg/L	Monocrotophos	0.1 µg/L
Demeton-S-methyl	0.1 µg/L	Parathion	0.1 µg/L
Diazinon	0.005 µg/L	Pirimphos-ethyl	0.1 µg/L
Dichlorvos	0.1 µg/L	Prothiofos	0.1 µg/L
Dimethoate	0.1 µg/L	Temephos	0.01 µg/L

Table 5-9 Organophosphorus Species and Limits or Reporting

Table 5-10 All Recorded Chlorpyrifos Data

Date	Station	Chlorpyrifos	
21/05/2009	WQ01	0.012	
24/06/2009	WQ01	0.024	
17/08/2009	WQ01	<0.005	
26/05/2009	WQ02	<0.005	
23/06/2009	WQ02	<0.005	
17/08/2009	WQ02	<0.005	
26/05/2009	WQ03	<0.005	
23/06/2009	WQ03	<0.005	
19/08/2009	WQ03	<0.005	
21/05/2009	WQ04	0.008	
23/06/2009	WQ04	<0.005	
18/08/2009	WQ04	<0.005	
21/05/2009	WQ05	0.012	
24/06/2009	WQ05	<0.005	
17/08/2009	WQ05	<0.005	
26/05/2009	WQ06	<0.005	
24/06/2009	WQ06	<0.005	
18/08/2009	WQ06	<0.005	
26/05/2009	WQ07	<0.005	

Date	Station	Chlorpyrifos
24/06/2009	WQ07	<0.005
18/08/2009	WQ07	<0.005
21/05/2009	WQ08	0.016
23/06/2009	WQ08	<0.005
17/08/2009	WQ08	<0.005
26/05/2009	WQ09	<0.005
24/06/2009	WQ09	<0.005
17/08/2009	WQ09	<0.005
21/05/2009	WQ10	0.02
23/06/2009	WQ10	<0.005
17/08/2009	WQ10	<0.005
21/05/2009	WQ11	<0.005
23/06/2009	WQ11	<0.005
17/08/2009	WQ11	<0.005
21/05/2009	WQ12	<0.005
23/06/2009	WQ12	<0.005
17/08/2009	WQ12	<0.005

5.3.8 Tributyltin

One sample at each of the 12 sites was analysed for tributyltin. Stations WQ01, WQ04, WQ05, WQ08 WQ10, WQ11 and WQ12 were sampled on the 21 May 2009 while stations WQ02, WQ03, WQ06, WQ07, and WQ09 were sampled on the 26 May 2009.

None of the tributyltin samples analysed exceeded the limit of reporting of 2 ng(Sn)/L.

5.3.9 Polycyclic Aromatic Hydrocarbons (PAHs) and Phenols

One sample taken at each of the 12 water quality monitoring stations (i.e. WQ01-WQ12) during the May monthly monitoring event was analysed for a suite of twenty-seven PAHs and phenols. Stations WQ01, WQ04, WQ05, WQ08 WQ10, WQ11 and WQ12 were sampled on the 21 May 2009 while stations WQ02, WQ03, WQ06, WQ07, and WQ09 were sampled on the 26 May 2009. The species tested, and the limits of reporting, are shown in Table 5-11.

Species	Limit of Reporting	Species	Limit of Reporting
2-nitrophenol	1 µg/L	Chrysene	1 µg/L
3-&4-methylphenol	2 µg/L	Dibenz(a,h)anthracene	1 µg/L
4-chloro-3- methylphenol	1 µg/L	Fluoranthene	1 µg/L
Acenaphthene	1 µg/L	Fluorene	1 µg/L
Acenaphthylene	1 µg/L	Indeno(1,2,3- c,d)pyrene	1 µg/L
Anthracene	1 µg/L	Naphthalene	1 µg/L
Benz(a)anthracene	1 µg/L	Pentachlorophenol	4 µg/L
Benzo(a) pyrene	0.5 μg/L	Phenanthrene	1 µg/L
Benzo(b)fluoranthene	1 µg/L	Phenol	1 µg/L
Benzo(g,h,i)perylene	1 µg/L	Pyrene	1 µg/L
Benzo(k)fluoranthene	1 µg/L		

Table 5-11 PAHs and Phenols Species and Limits or Reporting

None of the species measured exceeded the limits of reporting. These species were not investigated on subsequent monthly water quality monitoring samples.

5.3.10 **Phenoxy Acid Herbicides**

One sample at each of the 12 water quality monitoring stations (i.e. WQ01-WQ12) during the May 2009 monthly monitoring event was analysed for a suite of 14 phenoxy acid herbicides. Stations WQ01, WQ04, WQ05, WQ08 WQ10, WQ11 and WQ12 were sampled on the 21 May 2009 while stations WQ02, WQ03, WQ06, WQ07, and WQ09 were sampled on the 26 May 2009. The phenoxy acid herbicide species tested, and the limits of reporting, are shown in Table 5-12.

None of the phenoxy acid herbicide species measured exceeded the limits of reporting. These phenoxy acid herbicide species were not investigated on subsequent monthly water quality monitoring samples.

Table 5-12 Phenoxy Acid Herbicide Species and Limits of Reporting						
Species	Limit of Reporting	Species	Limit of Reporting			
2,4,5 trichlorophenoxyacetic acid	0.01 µg/L	Dicamba	0.01 µg/L			
2-(2,4,5-trichlorophenoxy)propionic acid (Silvex)	0.01 µg/L	Fluroxypyr	0.01 µg/L			
2,4-dichlorophenoxyacetic acid	0.01 µg/L	2-methyl-4-chlorophenoxyacetic acid	0.01 µg/L			
4-(2,4-dichlorophenoxy)butyric acid	0.01 µg/L	4-(4-chloro-o-tolyloxy)butyric acid	0.01 µg/L			

Species	Limit of Reporting	Species	Limit of Reporting
2,4-dichlorophenoxy-acetic acid	0.01 µg/L	Mecoprop	0.01 µg/L
4-chlorophenoxy acetic acid	0.01 µg/L	Picloram	0.05 μg/L
Clopyralid	0.05 µg/L	Triclopyr	0.01 µg/L

5.3.11 Phenoxyacetic Acid Herbicides

One sample at each of the 12 water quality monitoring stations (i.e. WQ01-WQ12) during the May 2009 monthly monitoring event was analysed for 2 species of phenoxyacetic acid herbicides.

Stations WQ01, WQ04, WQ05, WQ08 WQ10, WQ11 and WQ12 were sampled on the 21 May 2009 while stations WQ02, WQ03, WQ06, WQ07, and WQ09 were sampled on the 26 May 2009. The species tested, and the limits of reporting, are shown in Table 5-12.

All measurements of 2,4,6-trichlorophenol and Dichlorprop were below their limit of reporting values (0.1 μ g/L and 0.01 μ g/L respectively) across all sites.

5.3.12 TPHs

One sample at each of the 12 water quality monitoring stations (i.e. WQ01-WQ12) during the May 2009monthly monitoring event was analysed for a suite of 5 species of TPHs. Stations WQ01, WQ04, WQ05, WQ08 WQ10, WQ11 and WQ12 were sampled on the 21st of May 2009 while stations WQ02, WQ03, WQ06, WQ07, and WQ09 were sampled on the 26th of May 2009. The TPH species tested and the limits of reporting are shown in Table 5-13.

None of the TPH species measured exceeded the limits of reporting. These TPH species were not investigated on subsequent monthly water quality monitoring samples.

Species	Limit of Reporting
TPH C 6 - C 9 Fraction	20 µg/L
TPH C10 - C14 Fraction	50 µg/L
TPH C15 - C28 Fraction	100 µg/L
TPH C29-C36 Fraction	50 µg/L
TPH+C10 - C36 (Sum of total)	200 µg/L

Table 5-13 TPH Species and Limits of Reporting

5.3.13 Volatile Organic Compounds (VOC)

One sample at each of the 12 water quality monitoring stations (i.e. WQ01-WQ12) during the May 2009 monthly monitoring event was analysed for a suite of 3 species of VOCs. Stations WQ01, WQ04, WQ05, WQ08 WQ10, WQ11 and WQ12 were sampled on the 21 May 2009 while stations WQ02, WQ03, WQ06,

WQ07, and WQ09 were sampled on the 26 May 2009. The VOC species tested and the limits of reporting are shown in Table 5-14.

None of the VOC species measured exceeded the limits of reporting. These VOC species were not investigated on subsequent monthly water quality monitoring samples.

Table 5-14	VOC S	pecies	and Limits	of	Reporting
		p00.00		•••	

Species	Limit of Reporting
1,1,1-trichloroethane	1 μg/L
1,1,2-trichloroethane	5 μg/L
1,2,4-trichlorobenzene	0.5 µg/L

5.3.14 Other Laboratory Measurements of Physico-Chemical and Chemical Species

A number of additional measurements of physico-chemical and chemical properties were carried out in the laboratory on water samples from the 12 stations on a monthly basis including:

- Cyanide;
- Chlorophyll a
- ▶ pH;
- Electrical Conductivity;
- TDS; and
- TSS.

Cyanide was measured during the May 2009 monthly sampling event. Stations WQ01, WQ04, WQ05, WQ08 WQ10, WQ11 and WQ12 were sampled on the 21 May 2009 while stations WQ02, WQ03, WQ06, WQ07, and WQ09 were sampled on the 26 May 2009. No cyanide samples exceeded the limit of reporting for this species (4 μ g/L).

The remaining measurements had numerous values above the limit or reporting as reported in Table 5-15.

Chlorophyll *a* exceeded the limits or reporting on several occasions, reaching a maximum of 5 μ g/L. The QWQG guideline for Chlorophyll *a* is 2.0 μ g/L or mg/m³.

The QWQG (2006) guideline for pH in an enclosed coastal area of the Central Coast Region has a lower limit of 8.0 and an upper limit of 8.4. Laboratory pH was generally at the lower end of this range, or below the lower limit of 8.0, in agreement with the *in situ* measurements.

Some variability in electrical conductivity and TDS was observed as expected from mixing between different water types in the Project Area (e.g. mixing between fresh water inputs and sea water) and because of evapo-concentration over the monitoring period that coincided with the dry season.

The majority of the TSS measurements exceeded the QWQG (2006) guideline for an enclosed coastal area of the Central Coast Region (15 mg/L) with only one measurement below the limit of reporting (5 mg/L).

Electrical Date Station Chlorophyll a рΗ TDS (mg/L) TSS (mg/L) Conductivity (us/cm) 21/05/2009 WQ01 5 47600 7.81 47000 94 WQ01 24/06/2009 <1 68200 7.64 37100 21 28/07/2009 WQ01 3 50400 8.06 43000 17 17/08/2009 WQ01 1 50000 7.93 39700 6 WQ02 1 55700 26/05/2009 8.03 38500 53 23/06/2009 WQ02 72000 8 38800 18 <1 28/07/2009 WQ02 1 52100 8.17 42700 10 17/08/2009 WQ02 50000 8 40100 16 <1 26/05/2009 WQ03 <1 54900 8.05 47600 52 23/06/2009 WQ03 <1 72100 8.01 40000 20 27/07/2009 WQ03 1 48700 8.16 43700 14 19/08/2009 WQ03 51000 <1 7.94 38300 53 21/05/2009 WQ04 5 51100 8.1 44800 90 23/06/2009 WQ04 <1 69600 8.17 39600 10 27/07/2009 WQ04 49200 42200 <1 8.27 16 WQ04 18/08/2009 <1 51000 7.95 42600 65 21/05/2009 WQ05 5 48900 8.05 44600 44 24/06/2009 WQ05 67200 7.71 39200 21 <1 28/07/2009 WQ05 51200 44200 14 <1 8.11 17/08/2009 WQ05 <1 50100 8.01 42800 8 26/05/2009 WQ06 6 55100 8.04 48600 27 24/06/2009 WQ06 2 63900 7.77 38800 17 28/07/2009 WQ06 51100 8.16 42300 5 <1 18/08/2009 WQ06 1 51800 7.89 41900 37 29 26/05/2009 WQ07 <1 56000 8.04 49400 24/06/2009 WQ07 <1 59500 7.77 39600 15 27/07/2009 WQ07 2 50500 8.17 43600 <5 18/08/2009 WQ07 51500 43100 47 <1 7.88 WQ08 21/05/2009 5 49100 8 45700 110 23/06/2009 WQ08 <1 72100 7.97 40400 20 28/07/2009 WQ08 50000 43700 7 <1 8.15 17/08/2009 WQ08 50400 8 38700 7 <1 26/05/2009 WQ09 54700 <1 8.11 49000 25 WQ09 58600 40200 24/06/2009 <1 7.88 12 28/07/2009 WQ09 1 50100 42100 12 8.21 17/08/2009 WQ09 2 6 50000 8.04 40800

Table 5-15 Other Laboratory Physico-Chemical and Chemical Data

21/05/2009	WQ10	5	49000	8.05	44600	104
23/06/2009	WQ10	<1	72400	8.02	40600	12
27/07/2009	WQ10	5	50800	8.18	46200	8
17/08/2009	WQ10	1	51000	8.08	38600	32
21/05/2009	WQ11	3	49400	8.08	45400	75
23/06/2009	WQ11	1	71900	8.09	40000	18
27/07/2009	WQ11	<1	50500	8.04	42800	12
17/08/2009	WQ11	1	50400	8.13	39000	7
21/05/2009	WQ12	5	50500	8.09	43200	94
23/06/2009	WQ12	<1	70300	8.1	40300	28
27/07/2009	WQ12	1	49400	8.2	44100	10

Date	Station	Chlorophyll a	Electrical Conductivity (us/cm)	рН	TDS (mg/L)	TSS (mg/L)
17/08/2009	WQ12	<1	50000	8.15	40000	8
	Total Number of Samples	48	48	48	48	48
	Number Above LoR	23	48	48	48	47
	Maximum Value	6	72400	8.27	49400	110
Mediar	n Value (inc. results < LoR)	<1	51000	8.045	42250	18
QW	QG (2006) Guideline Level	4	-	8.0 8.4	-	15
	Number Above QWQG	8	-	12	-	28
ANZE	CC (2000) Guideline Level	1.4	-	8.0-8.4	-	-
Number	Above ANZECC Guideline	13	-	12	-	-

5.3.15 Summary of Grab Water Quality Measurements

The majority of species analysed from the water quality grab samples were below the limit of reporting across all sites, which included:

- All five of the BTEX species (benzene, toluene, ethylbenzene, and xylenes);
- The single fungicide species (propiconazole);
- All 9 herbicides except metolachlor;
- All 26 organochlorine pesticides species;
- All 20 organophosphorus pesticides except chlorpyrifos;
- Tributyltin;
- All 29 PAHs and phenols;
- All 14 phenoxy acid herbicides;
- Both of the phenoxyacetic acid herbicides;
- Cyanide;
- All 5 TPHs; and
- All 3 VOCs.

Chlorpyrifos, an organophosphorus pesticide, and metolachlor, an herbicide, exceeded the limit of reporting on six out of thirty-six recordings.

In regards to dissolved metals, all measurements of antimony, beryllium, cobalt, lead and mercury were below the limits of reporting throughout the monitoring period. The remaining metals species of aluminium, arsenic, barium, cadmium, chromium (III+VI), copper, iron, manganese, nickel, silver and vanadium included measurements above their respective limit or recording. Of these, only cadmium exceeded the ANZECC (2000) trigger value on two occasions during the period of monitoring.

All nitrogen nutrient species exceeded the QWQG (2006) and/or ANZECC (2000) guidelines on at least one occasion over the monitoring period. The most regularly exceeded guideline levels were:

- Total oxidised nitrogen with a median of 0.004 mg/L above the QWQG (2006) guideline level of 0.003 mg/L; and
- Total nitrogen with a median of 0.135 mg/L exceeded the ANZECC (2000) guideline level of 0.1 mg/L on 37 occasions.
- Both reactive and total phosphorus were always lower than the QWQG (2006) guideline levels.
 Reactive phosphorus exceeded the ANZECC (2000) guideline level of 0.005 mg/L on 6 occasions.

Chlorophyll *a* exceeded both the QWQG (2006) and ANZECC (2000) guideline levels on 8 and 13 occasions, respectively, out of a total of 48 samples over the monitoring period.

Generally, pH was below the lower guideline limit of both QWQG (2006) and ANZECC (2000).

TSS exceeded the QWQG (2006) guideline level of 15 mg/L on 28 occasions out of the 48 measurements with a median TSS of 18 mg/L.

In summary, the water quality of the Project Area generally met the relevant adopted guidelines.

5.4 Elutriate Water Quality

In this section elutriate monitoring results are presented. Of the 121 elutriate samples across the 4 proposed dredge areas, most water quality parameters were analysed for a subset of 100 of these samples. Filtered arsenic was measured on a subset of 10 samples, while ammonia was analysed for a subset of 71 samples. Samples were collected across the following proposed dredge areas:

- Area 1A: 32 samples;
- Area 1B: 22 samples;
- Area 2: 24 samples.
- Area 3: 14 samples; and
- Area 4: 8 samples.

Figure 6-1 illustrates the various dredge areas.

5.4.1 Hexachlorobenzene

One hundred of the one hundred and twenty-one elutriate samples were analysed for hexachlorobenzene. None of the samples in any of the areas exceeded the detection limit of 0.01 μ g/L.

5.4.2 Ammonia

Ammonia elutriate measurements at 33 sites had a median of 783 ug/L, well in excess of the QWQG (2006) guideline level of 8 ug/L and the ANZECC (2000) guideline upper limit of 10 ug/L, but compliant to the ANZECC (2000) toxicant guideline of 910 ug/L. The largest ammonia concentration recorded was 8,680 ug/L.

5.4.3 Metals

One hundred of the 121 elutriate samples were analysed for the metal and metalloid species shown in Table 5-16, except for filtered arsenic, which had only ten samples analysed. Levels of lead and mercury were below the limit of reporting in all samples.

Table 5-17 summarises all of the metals elutriate measurements that exceeded the limits of reporting. Cobalt and copper exceeded the ANZECC (2000) marine environment trigger values on several occasions. These same results are broken down based on the different proposed dredging areas in Table 5-18.

Metal Species	Limit of Reporting
Aluminium	10 µg/L
Antimony	0.5 μg/L
Arsenic	0.5 µg/L
Cadmium	0.2 µg/L
Chromium(III+VI)	0.5 μg/L

Table 5-16 Elutriate Metal and Metalloid Species and Limits of Reporting

GHD

Cobalt	0.2 μg/L
Copper	1 μg/L
Iron	5 µg/L
Lead	0.2 μg/L
Manganese	0.5 μg/L
Mercury	0.1 μg/L
Nickel	0.5 μg/L
Selenium	2 µg/L
Silver	0.1 μg/L
Vanadium	0.5 μg/L
Zinc	5 µg/L

Table 5-17 Overall Statistical Summary of Elutriate Metals and Metalloids

Species	Number of Samples	Number of Samples Above LoR	Median Value (ug/L)	95th Percentile Value (ug/L)	Maximum Value (ug/L)	ANZECC (2000) Guideline (ug/L)	Number of Samples over ANZECC Guideline
Aluminium	100	12	<10	30	190	-	-
Antimony	100	69	4.2	10.2	12.2	-	-
Arsenic	100	99	4.85	18.9	29.6	-	-
Cadmium	100	3	<0.2	<0.2	0.4	0.7	0
Chromium (III+VI)	100	5	<0.5	<0.5	1.7	27.4 / 4.4	0
Cobalt	100	49	<0.2	4	22.9	1	22
Copper	100	11	<1	2	2	1.3	6
Iron	100	69	8	140	201	-	-
Manganese	100	99	399	984	3030	-	-
Nickel	100	80	0.9	3	6.7	7	0
Selenium	100	1	<2	<2	5	-	-
Silver	100	5	<0.1	<0.1	0.8	1.4	0
Vanadium	100	99	8.45	34.1	89.8	100	0
Zinc	100	21	<5	9	12	15	0

	Site 1A (n = 32) Sit		e 1B (n = 2	22)	Si	te 2 (n = 2	4)	Si	te 3 (n = 1	4)	S	ite 4 (n = 8	3)		
	Min (ug/L)	Median (ug/L)	Max (ug/L)	Min (ug/L)	Median (ug/L)	Max (ug/L)	Min (ug/L)	Median (ug/L)	Max (ug/L)	Min (ug/L)	Median (ug/L)	Max (ug/L)	Min (ug/L)	Median (ug/L)	Max (ug/L)
Aluminium	<10	<10	10	<10	<10	10	<10	<10	190	<10	<10	<10	<10	<10	<10
Antimony	<0.5	1.4	9.4	<0.5	<0.5	8.4	<0.5	6.6	10.7	3.2	6.3	11.7	<0.5	2.05	12.2
Arsenic	1.2	3.05	19.2	0.6	1.75	20.2	1.4	9.45	18.9	3.6	7.65	19.5	1	3.2	29.6
Cadmium	<0.2	<0.2	0.4	<0.2	<0.2	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chromium (III+VI)	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	0.7	<0.5	<0.5	1.7	<0.5	<0.5	1.3
Cobalt	<0.2	<0.2	8	<0.2	0.6	22.9	<0.2	0.3	5	<0.2	<0.2	1.2	<0.2	<0.2	0.3
Copper	<1	<1	2	<1	<1	2	<1	<1	1	<1	<1	<1	<1	<1	2
Iron	<5	5.5	148	<5	6.5	201	<5	8.5	110	8	64	161	<5	5.5	26
Manganese	1.1	302.5	1790	7.8	445	3030	18.8	367	757	268	490	862	0.7	143.25	960
Nickel	<0.5	0.85	3.9	0.5	1.8	<0.5	<0.5	0.85	4.1	<0.5	0.7	1.4	<0.5	1.15	2
Selenium	<2	<2	<2	<2	<2	<2	<2	<2	5	<2	<2	<2	<2	<2	<2
Silver	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.3	<0.1	<0.1	0.8	<0.1	<0.1	<0.1
Vanadium	1.4	8	89.8	0.5	2.75	16.2	0.7	16.5	63.3	2	5.8	80.2	1.4	7.7	31.8
Zinc	<5	<5	12	<5	<5	11	<5	<5	9	<5	<5	5	<5	<5	9

Table 5-18 Statistical Summary by Dredge Area of Elutriate Metals and Metalloids

A comparison between median elutriate metal and metalloid concentrations with median water column concentrations is presented in Table 5-19. The median water column values are based on 4 months of monthly sampling conducted between May and August 2009. Not all species were recorded in both sets of data (NR indicates that a species was not recorded). Results from the elutriate testing are higher than those measured in the water column, or below the limit of reporting.

	Median Water Column Concentration (ug/L)	Median Elutriate Concentration (ug/L)
Aluminium	<10	<10
Antimony	<0.5	4.2
Arsenic	1	4.85
Barium	8	NR
Cadmium	<0.2	<0.2
Chromium (III+VI)	<0.5	<0.5
Cobalt	<0.2	<0.2
Copper	<1	<1
Iron	<5	8
Manganese	2.15	399
Nickel	<0.5	0.9
Selenium	NR	<2
Silver	<0.1	<0.1
Vanadium	1.3	8.45
Zinc	NR	<5

Table 5-19	Comparison of Metals and Metalloids in Elutriate and the Water Column
------------	---

5.4.4 Organochlorine Pesticides

One hundred of the 121 elutriate samples were analysed for the organochlorine pesticides species shown in Table 5-20. None of these samples exceeded their respective limits of reporting.

Species	Limit of Reporting	Species	Limit of Reporting
4,4-DDE	0.01 µg/L	Endosulfan	0.01 µg/L
a-BHC	0.01 µg/L	Endosulfan I	0.01 µg/L
Aldrin	0.01 µg/L	Endosulfan II	0.01 µg/L
Aldrin + Dieldrin	0.02 µg/L	Endosulfan sulphate	0.01 µg/L
b-BHC	0.01 µg/L	Endrin	0.01 µg/L
Chlordane	0.01 µg/L	Endrin aldehyde	0.01 µg/L
Chlordane (cis)	0.01 µg/L	Endrin ketone	0.01 µg/L
Chlordane (trans)	0.01 µg/L	g-BHC (Lindane)	0.01 µg/L
d-BHC	0.01 µg/L	g-BHC (Lindane)	0.01 µg/L
DDD	0.01 µg/L	Heptachlor	0.05 µg/L
DDT	0.01 µg/L	Heptachlor epoxide	0.01 µg/L
DDT+DDE+DDD	0.03 µg/L	Methoxychlor	0.01 µg/L
Dieldrin	0.01 µg/L		

Table 5-20 Organochlorine Species and Limits or Reporting

5.4.5 Organophosphorus Pesticides

One hundred of the 121 elutriate samples were analysed for the organochlorine pesticides species shown in Table 5-21. None of these samples exceeded their respective limits of reporting.

Table 5-21	Organophosphorus Pesticide Species and Limits or Reporting
------------	--

Species	Limit of Reporting	Species	Limit of Reporting
Azinophos methyl	0.1 µg/L	Ethion	0.1 µg/L
Bromophos	0.1 µg/L	Fenamiphos	0.1 µg/L
Carbophenothion	0.1 µg/L	Fenthion	0.1 µg/L
Chlorfenvinphos Z	0.1 µg/L	Malathion	0.1 µg/L
Chlorpyrifos	0.05 µg/L	Methyl parathion	0.1 µg/L
Chlorpyrifos-methyl	0.1 µg/L	Monocrotophos	0.1 µg/L
Demeton-S-methyl	0.1 µg/L	Parathion	0.1 µg/L
Diazinon	0.1 µg/L	Pirimphos-ethyl	0.1 µg/L
Dichlorvos	0.1 µg/L	Prothiofos	0.1 µg/L
Dimethoate	0.1 µg/L		

5.4.6 Polycyclic Aromatic Hydrocarbons (PAHs) and Phenols

One hundred of the 121 elutriate samples were analysed for the organochlorine pesticides species in Table 5-21. None of these samples exceeded their respective limits of reporting, apart from at Site 1A-063 in dredge area 1A. Table 5-23 summarises the data recorded at Site 1A-063 which were above the limits of reporting.

Species	Limit of Reporting	Species	Limit of Reporting
3-methylcholanthrene	0.1 µg/L	Chrysene	0.1 µg/L
Acenaphthene	0.1 µg/L	Dibenz(a,h)anthracene	0.1 µg/L
Acenaphthylene	0.1 µg/L	Fluoranthene	0.1 µg/L
Anthracene	0.1 µg/L	Fluorene	0.1 µg/L
Benz(a)anthracene	0.1 µg/L	Indeno(1,2,3-c,d)pyrene	0.1 µg/L
Benzo(a) pyrene	0.05 µg/L	Naphthalene	0.1 µg/L
Benzo(b)fluoranthene	0.1 µg/L	Pentachlorophenol	0.1 µg/L
Benzo(g,h,i)perylene	0.1 µg/L	Phenanthrene	0.1 μg/L
Benzo(k)fluoranthene	0.1 µg/L	Pyrene	0.1 µg/L

Table 5-22 PAHs and Phenol Species and Limits or Reporting

Table 5-23 PAHs and Phenols at Site 1A-063

Species	Concentration (µg/L)
Acenaphthene	0.1
Acenaphthylene	0.1
Anthracene	0.1
Benz(a)anthracene	0.1
Chrysene	0.1
Fluoranthene	0.1
Fluorene	0.1
Naphthalene	0.2
Phenanthrene	0.1
Pyrene	0.1

5.4.7 Polychlorinated Biphenyls (PCBs)

One hundred of the 121 elutriate samples were analysed for polychlorinated biphenyls (PCBs) shown in Table 5-24. None of these samples exceeded their respective limits of reporting.

Table 5-24	PCBs Limits of Reporting	g
------------	--------------------------	---

Species	Limit of Reporting
Arochlor 1016	0.1 µg/L
Arochlor 1221	0.1 µg/L
Arochlor 1232	0.1 μg/L
Arochlor 1242	0.1 μg/L
Arochlor 1248	0.1 μg/L
Arochlor 1254	0.1 μg/L
Arochlor 1260	0.1 µg/L
Total PCBs	0.1 μg/L

5.4.8 Semi-Volatile Organic Compounds

One hundred of the 121 elutriate samples were analysed for the semi-VOCs species in Table 5-25. All measurements were below their respective limits or reporting apart from Site 1A-063 at which 7,12-dimethylbenz(a) anthracene was measured at $0.2 \mu g/L$.

Table 5-25	Semi-VOCs Limits of Reporting
------------	-------------------------------

Species	Limit of Reporting
2-(acetylamino) fluorene	0.1 µg/L
2-methylnaphthalene	0.1 μg/L
7,12-dimethylbenz(a)anthracene	0.1 μg/L
Benzo(e)pyrene	0.1 μg/L
Coronene	0.1 µg/L
Perylene	0.1 μg/L

5.4.9 Summary of Elutriate Water Quality Measurements

Concentrations of organochlorine pesticides, organophosphorus pesticides, PAHs, phenols, PCBs and semi-VOCs were below the limits or reporting apart for one site in dredge area 1A that had some PAHs and phenols above the limit or reporting.

Concentrations of metals, metalloids and ammonia were generally much higher that those levels recorded in the water column, with ammonia compliant to the ANZECC (2000) toxicant guideline, but exceeding the QWQG (2006).

5.5 Water Quality Loggers

The water quality loggers deployed in this study measured turbidity, light intensity, sediment accumulation, water depth and wave height. However, not all parameters were recorded at every station during every deployment (Table 5-26). The process of redeploying the instruments took several days and as such, the deployment dates overlap on occasion. The dates specified in the table cover the time from when the first logger was activated, to when the last logger was retrieved.

	Deployment 1	Deployment 2	Deployment 3	Deployment 4
Deployment Dates	20 Apr – 19 May	19 May – 25 Jun	23 Jun – 28 Jul	27 Jul – 19 Aug
Logger 1	T, L, A			T, L, A, D, W
Logger 2	T, L, A, D, W		T, L, A, D, W	T, L, A, D, W
Logger 3	Τ, Α	T, L, A	T, L, A, D, W	T, L, A, D, W
Logger 4	T, L, A, D, W	T, L, A, D, W	T, L, A	T, L, A, D, W
Logger 5		т	т	
Logger 6			Т	
Logger 7		т	т	
Logger 8		т	T, L	
Logger 9		т	T, L, A, D, W	
Logger 10			т	

Table 5-26	Logger Configuration	for Deployments
------------	----------------------	-----------------

T = Turbidity, L = Light, A = Aggregated Suspended Solids Deposition, D = Depth, W = Wave Height

5.5.1 Turbidity Logger Data

The logger turbidity data over the first four deployments is summarised with simple statistics in Table 5-27 and plotted in Figure 5-8 to Figure 5-16. Whilst all loggers were located in relatively deep water (depth greater than 4m), a comparison of the median turbidity indicates differences between sites still exist. Higher values were seen in those channel areas that were slightly deeper (i.e. loggers 2, 3, 6 and 9). However, according to the equipment supplier, the turbidity data collected with Logger 5 showed indications of bio-fouling and has been excluded from this analysis.

Separation of turbidity measurements during neap and spring tide conditions shows a strong relationship between tidal conditions and turbidity (Table 5-27). At all locations, median turbidity under spring tide

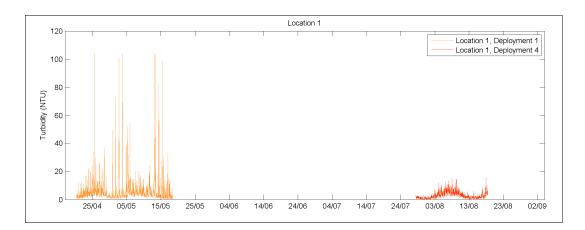

conditions is substantially greater than during neap tide conditions. Across all of the logger locations, the turbidity exceeded the QWQG (2006) guideline level of 6 NTU around 20 - 50% of the time. In general, turbidity levels were below the ANZECC (2000) upper guideline of 20 NTU limit for 80 - 99% of the time.

Table 5-27 Summary of Logger Turbidity Data (Units NTU)

Logger (or subset of logger data)	Season (Wet or Dry)	Tidal Conditions	Number of Samples	20 th Percentile Turbidity	50 th Percentile Turbidity	80 ^h Percentile Turbidity	95 th Percentile Turbidity	99 th Percentile Turbidity
Logger 01	Dry	Neap and Spring	6625	1.53	3.04	5.93	11.39	33.64
Spring Tide Subset	Dry	Spring	3185	2.85	4.41	7.12	12.87	25.56
Neap Tide Subset	Dry	Neap	3440	1.12	1.88	3.69	9.67	43.51
Logger 02	Dry	Neap and Spring	10755	1.57	5.26	12.91	27.98	70.19
Spring Tide Subset	Dry	Spring	4749	4.67	9.1	16.74	30.32	54.31
Neap Tide Subset	Dry	Neap	6006	1	3.01	7.23	23.49	86.58
Logger 03	Dry	Neap and Spring	16925	2.65	5.02	9.32	15.77	19.7
Spring Tide Subset	Dry	Spring	8504	4.64	7.17	12.62	17.54	21.38
Neap Tide Subset	Dry	Neap	8421	1.99	3.16	5.7	9.69	13.63
Logger 04	Dry	Neap and Spring	17196	1.84	3.22	5.86	11.31	20.44
Spring Tide Subset	Dry	Spring	8489	2.3	3.9	6.78	12.43	20.26
Neap Tide Subset	Dry	Neap	8707	1.38	2.61	4.7	9.83	20.76
Logger 06	Dry	Neap and Spring	4426	1.75	4.54	11.74	25.41	96.49
Spring Tide Subset	Dry	Spring	2274	3.66	8.07	15.56	30.11	146.03
Neap Tide Subset	Dry	Neap	2152	1.16	2.48	5.86	15.17	76.93
Logger 07	Dry	Neap and Spring	8900	1.08	2.9	6.37	13.81	21.06
Spring Tide Subset	Dry	Spring	4709	2.65	4.76	9.21	16.54	24.35
Neap Tide Subset	Dry	Neap	4191	0.52	1.41	3.03	4.9	7.97
Logger 08	Dry	Neap and Spring	8911	1.98	4.06	8.47	20.17	107.54
Spring Tide Subset	Dry	Spring	4714	2.95	5.52	10.8	27.13	120.07
Neap Tide Subset	Dry	Neap	4197	1.44	2.7	5.52	13.63	75.97
Logger 09	Dry	Neap and Spring	9830	3.11	8.63	16.42	27.85	38.26
Spring Tide Subset	Dry	Spring	5235	6.64	12.01	21	31.73	42.86
Neap Tide Subset	Dry	Neap	4595	1.69	3.92	10.91	17.22	26.36
Logger 10	Dry	Neap and Spring	1007	1.35	3.07	8.23	16.08	27.58
Spring Tide Subset	Dry	Spring	109	4.98	9.21	15.27	22.52	29.84
Neap Tide Subset	Dry	Neap	898	1.23	2.7	6.83	14.12	26.41

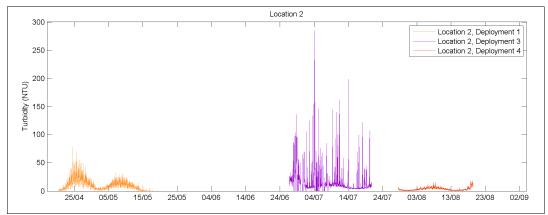


Figure 5-9 Turbidity Logger Data at Location 2

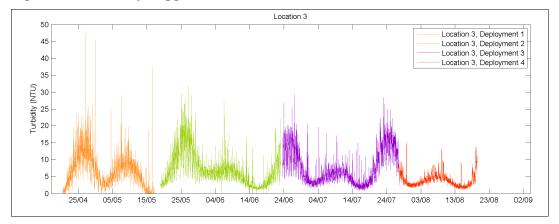


Figure 5-10 Turbidity Logger Data at Location 3

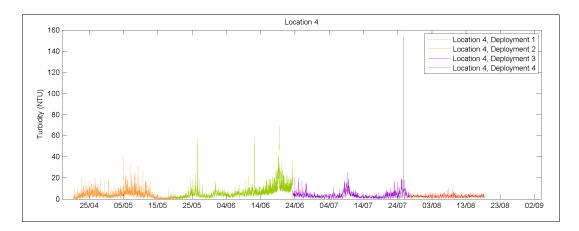


Figure 5-11 Turbidity Logger Data at Location 4

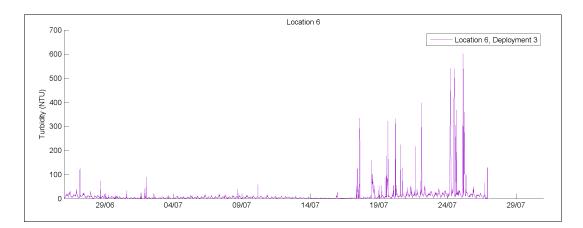


Figure 5-12 Turbidity Logger Data at Location 6

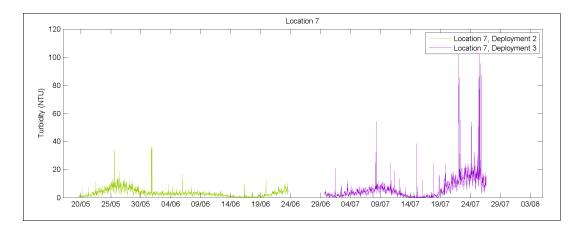


Figure 5-13 Turbidity Logger Data at Location 7

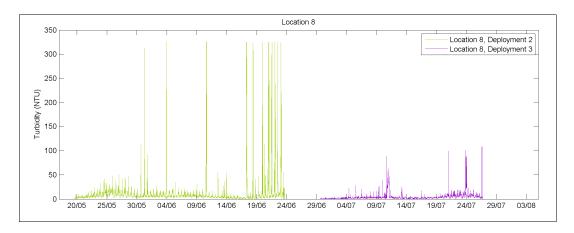


Figure 5-14 Turbidity Logger Data at Location 8

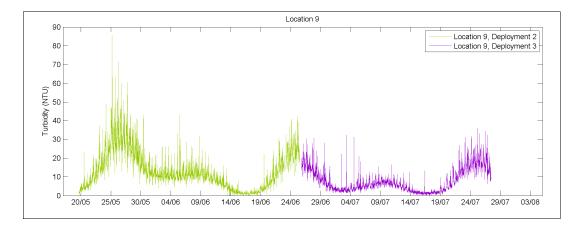


Figure 5-15 Turbidity logger data at location 9

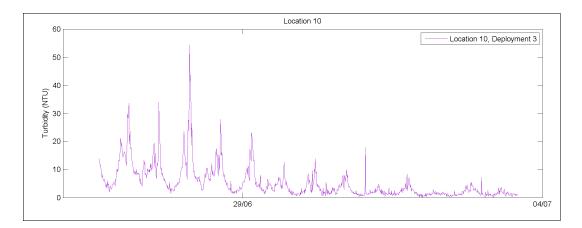


Figure 5-16 Turbidity Logger Data at Location 10

5.5.2 Incorporation of Other Recent Turbidity Data

With the primary impact on water quality from the Project likely to be attributable to the effects of the capital dredging and reclamation decant effluent on turbidity within the Project Area, recent *in situ* turbidity logger and profiling data have been incorporated into the analysis. This section therefore provides a complete data set from which to determine appropriate interim turbidity trigger values for this Project.

Turbidity as an Indicator of Water Quality

Turbidity is an optical property of water. As light passes through water, it can be scattered by particles suspended in the water. Turbidity is a measure of the degree to which light is scattered as it passes through water. It is a measurement that can be made *in situ* or in the laboratory. Spot measurements of turbidity can be made *in situ* with a handheld device. Alternatively measurements can be made continuously at one location with a turbidity logger.

Turbidity is commonly reported in Formazin Nephelometric Units (FTU) or Nephelometric Turbidity Units (NTU). NTU is a special case of the FTU standard.

Turbidity is used as an indirect indicator of the amount of suspended material in suspension. Different sediment types have different light scattering properties and as such, the relationship between turbidity and suspended solid concentration is site specific.

Variability in Turbidity in the Project Area

Measurements of turbidity in the Project Area during 2009 were collected as part of the baseline data, which indicates that turbidity varies considerably between sites as well as between neap and spring tide conditions (Section 5.5.1). The measurements made also indicate that turbidity can vary considerably over short time periods.

All continuous turbidity measurements made to date for the Project as part of the baseline data set have been collected during the dry season with minimal influence from rainfall events and associated catchment inputs. It is expected, on the basis of previous experience, that turbidity will vary between wet and dry seasons owing to sediment laden catchment inputs into the Project Area.

Sources of Turbidity Data

Measurements of turbidity in the Project Area can be divided into two classes – continuous measurements and spot measurements. High temporal resolution data (i.e. 10 minute frequency) recorded for this EIS's baseline data indicates turbidity can vary substantially over a short period of time (i.e. less than one day) during the dry season as demonstrated in Figure 5-8 to Figure 5-16.

Given this established pattern of variability, spot measurements of turbidity taken infrequently (e.g. weekly, monthly) cannot identify trends. Indeed, spot measurements taken on a regular basis (e.g. monthly) have significant potential for bias because of the dependency of turbidity on tidal (i.e. current) conditions. As such, only continuous measurements of turbidity are considered in this analysis to characterise the turbidity climate of the Project Area.

Sources of continuous turbidity data relevant to the Project Area are summarised in Table 5-28. Some of the continuous turbidity data from past studies coincided with the wet season, which has not yet been covered by the monitoring program for this Project. Therefore, data from other sources was made available for this project to allow estimates of characteristic turbidity ranges during the wet season.

Date	Reference
Feb – Apr 2005 <i>(Wet Season)</i>	Capital Dredging of the Fourth Berth at RG Tanna Coal Terminal, Protection of the Marine Environment During Dredging and Dewatering. (GHD Gladstone 2005)
2008-2009 (Wet and Dry Seasons)	Port Curtis Seagrass Water Quality (Wilson et al. 2008)
2008 (Dry Season)	WBM Turbidity Data from Fisherman's Landing)(WBM 2008)
2009	Fisherman's Landing Baseline Turbidity Report (Wilson and Andersen 2009)
2009 (Dry Season)	GHD Baseline Study for the Western Basin EIS.

Table 5-28 Sources of Continuous Turbidity Data

Much of the data previously collected has been made available as raw data. Hence, all data presented here have been analysed in a similar manner as summarised in the following section.

Summary Turbidity Statistics

Turbidity data in the natural environment often displays a skewed frequency distribution. In the case of turbidity, the data often contains many relatively low turbidity readings and a few very high measurements. Hence, application of conventional averaging techniques to turbidity data sets can produce misleading results, as these infrequent, high level turbidity events can skew the computed average.

The preferred method for presenting statistical summaries of turbidity data sets is the application of 'percentage exceedance' or 'percentile' calculations. This allows the data to be summarised in terms of ambient (or background) behaviour with the median (50th percentile) and extreme behaviour with a higher percentile value (e.g. 95th percentile).

Table 5-29 presents a statistical summary of the all available recent logger data that has been collated in the Project Area. From the combined data sets, the following conclusions can be drawn:

- Median dry season turbidity in deep water logger deployment locations (GHD logger deployments for this EIS, Berth 5 Fisherman's Landing June-October 2008) varies from around 3 to 9 NTU with the 95th percentile ranging from 11-35 NTU;
- Median dry season turbidity in shallow logger deployment locations of 9 NTU and a 95th percentile range from 30-90 NTU; (refer Fisherman's Landing shallow water samples from August-September 2008, Seagrass bed 8 north of Fisherman's Landing May to November 2008, and seagrass bed 5 west of Wiggins Island May to November 2008)
- Median wet season turbidity in shallow logger deployment locations (Fisherman's Landing shallow water January-April 2008 and December 2008-April 2009, Bed 8 north of Fisherman's Landing January-April 2008 and December 2008-April 2009) of 10 and 23 NTU, and the 95th percentile of 127 and 176 NTU; and

 During the dry season the turbidity during spring tide conditions is 2-4 times those in neap tide conditions.

Though the available data indicates that the turbidity is substantially higher during the wet season, less data has been collected over this period relative to the dry season (approximately 15% of all data). As such, it is likely that the wet season statistics are heavily biased towards individual events during the wet season as the record is not sufficiently long to ascertain otherwise. However, it could reasonably be expected that turbidity will be higher in the wet season due to impacts from higher catchment runoff.

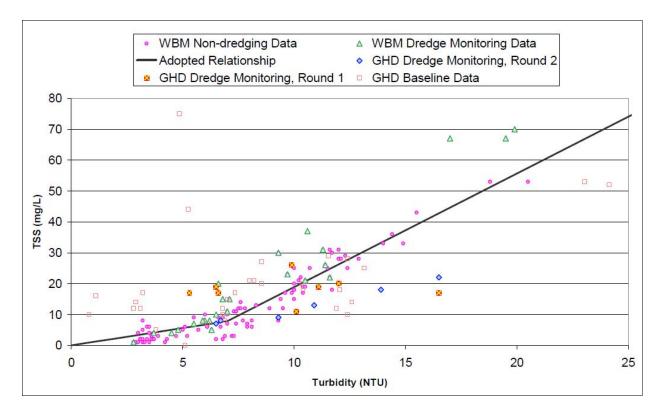
Table 5-29 Summary of all Available Recent Continuous Turbidity Data

Location	Season	Tide	n Samples	80 th percentile	50 th percentile	20 th percentile	5 th percentile	1 st percentile
	Wet and	Neap and	Not	Not				
Clinton Wharf, Feb 2004 – Apr 2005	Dry	Spring	Reported	Reported	5	17	38	52
Targinie Channel, Jun 2008 (4 days)	Dry	Spring	Not Reported	Not Reported	Not Reported	Not Reported	Not Reported	Not Reported
Berth 5 Fisherman's Landing, Jun - Oct 2008	Dry	Neap and Spring	14493	4	9	17	35	81
Spring Tide Subset	Dry	Spring	7769	6	12	20	35	83.32
Neap Tide Subset	Dry	Neap	6724	3	6	12	33	77
Fisherman's Landing, Deep Water, Aug - Sept 2008	Dry	Neap and Spring	Not Reported	Not Reported	Not Reported	Not Reported	Not Reported	Not Reported
Spring Tide Subset								
Neap Tide Subset								
Fishermonia Londing, Shellow Water, Aug., Sont 2009	Drak	Neap and	4020		0.14	16.07	20.52	72.4
Fisherman's Landing, Shallow Water, Aug - Sept 2008 Spring Tide Subset	Dry Dry	Spring Spring	4920 2995		9.14 12.38	16.87 20.42	30.53 34.94	73.4
Neap Tide Subset	Dry	Neap	1925		5.13	8.69	16.8	50.76
Bed 8, North of Fisherman's Landing, Jan 2008 - Apr	Wet and	Neap and						
2009	Dry	Spring	23796	4.92	14.14	43.32	95.29	207.94
Spring Tide Subset (Wet and Dry Seasons)	Wet and Dry	Spring	12824	6.2	16.96	43.32	89.92	174.14
Neap Tide Subset (Wet and Dry Seasons)	Wet and Dry	Neap	10972	4.16	10.81	43.32	104.25	234.56
Wet Season (Neap and Spring Tides) Subset	Wet	Neap and Spring	12273	7.23	23.36	62.17	126.78	259.99
Wet Season, Spring Tide Subset	Wet	Spring	6441	8.51	26.17	64.32	111.93	233.5
Wet Season, Neap Tide Subset	Wet	Neap	5832	6.72	18.75	59.71	146.47	284.9
Dry Season (Neap and Spring Tides) Subset	Dry	Neap and Spring	11523	3.39	9.28	23.87	54.84	109.1
Dry Season, Spring Tide Subset	Dry	Spring	6383	4.67	12.09	26.17	53.82	97.1
Dry Season, Neap Tide Subset	Dry	Neap	5140	2.62	6.72	18.24	57.66	115.00
Bed 5, West of Wiggins Island, Jan 2008 - Apr 2009	Wet and Dry Wet and	Neap and Spring	14114	3.33	9.47	29.96	161.73	201.03
Spring Tide Subset (Wet and Dry Seasons)	Dry	Spring	8989	3.33	8.97	24.12	75.76	200.5
Neap Tide Subset (Wet and Dry Seasons)	Wet and Dry	Neap Neap and	5125	3.41	10.56	66.89	197.94	201.63
Wet Season (Neap and Spring Tides) Subset	Wet	Spring	10512	3.33	9.57	32.14	175.99	201.1
Wet Season, Spring Tide Subset Wet Season, Neap Tide Subset	Wet Wet	Spring Neap	6323 4189	3.43	9.57	25.6	95.52	200.8
Wet Season, Neap The Subset	vvei	Neap and		3.23	9.76	71.01	199.94	201.7
Dry Season (Neap and Spring Tides) Subset Dry Season, Spring Tide Subset	Dry Dry	Spring Spring	3602 2666	3.33 3.03	9.07 7.78	24.91 18.28	90.84 63.13	196.6 176.4
Dry Season, Neap Tide Subset	Dry	Neap	936	4.32	15.65	45.11	163.11	176.4
		Neap and						
GHD WQ Station 01	Dry	Spring	6625	1.53	3.04	5.93	11.39	33.6
Spring Tide Subset	Dry	Spring	3185	2.85	4.41	7.12	12.87	25.5
Neap Tide Subset	Dry	Neap	3440	1.12	1.88	3.69	9.67	43.5
GHD WQ Station 02	Dry	Neap and Spring	10755	1.57	5.26	12.91	27.98	70.1
Spring Tide Subset	Dry	Spring	4749	4.67	9.1	16.74	30.32	54.3
Neap Tide Subset	Dry	Neap	6006	1	3.01	7.23	23.49	86.5
CHD W/O Station 02	Dre	Neap and	40005	0.05	E 00	0.00		10
GHD WQ Station 03 Spring Tide Subset	Dry Dry	Spring Spring	16925 8504	2.65 4.64	5.02 7.17	9.32 12.62	15.77 17.54	19. 21.3
Neap Tide Subset	Dry	Neap	8421	1.99	3.16	5.7	9.69	13.60
		Neap and						
GHD WQ Station 04 Spring Tide Subset	Dry Dry	Spring Spring	17196 8489	1.84 2.3	3.22 3.9	5.86 6.78	11.31 12.43	20.44 20.20
Neap Tide Subset	Dry	Neap	8409 8707	1.38	2.61	4.7	9.83	20.20
		Nean and						
GHD WQ Station 06	Dry	Neap and Spring	4426	1.75	4.54	11.74	25.41	96.49
Spring Tide Subset	Dry	Spring	2274	3.66	8.07	15.56	30.11	146.03

				80 th	50 th	20 th	5 th	1 st
Location	Season	Tide	n Samples	percentile	percentile	percentile	percentile	percentile
Neap Tide Subset	Dry	Neap	2152	1.16	2.48	5.86	15.17	76.93
		Neap and						
GHD WQ Station 07	Dry	Spring	8900	1.08	2.9	6.37	13.81	21.06
Spring Tide Subset	Dry	Spring	4709	2.65	4.76	9.21	16.54	24.35
Neap Tide Subset	Dry	Neap	4191	0.52	1.41	3.03	4.9	7.97
		Neap and						
GHD WQ Station 08	Dry	Spring	8911	1.98	4.06	8.47	20.17	107.54
Spring Tide Subset	Dry	Spring	4714	2.95	5.52	10.8	27.13	120.07
Neap Tide Subset	Dry	Neap	4197	1.44	2.7	5.52	13.63	75.97
		Neap and						
GHD WQ Station 09	Dry	Spring	9830	3.11	8.63	16.42	27.85	38.26
Spring Tide Subset	Dry	Spring	5235	6.64	12.01	21	31.73	42.86
Neap Tide Subset	Dry	Neap	4595	1.69	3.92	10.91	17.22	26.36
		Neap and						
GHD WQ Station 10	Dry	Spring	1007	1.35	3.07	8.23	16.08	27.58
Spring Tide Subset	Dry	Spring	109	4.98	9.21	15.27	22.52	29.84
Neap Tide Subset	Dry	Neap	898	1.23	2.7	6.83	14.12	26.41

42/15386/26/91531 Western Basin Dredging and Disposal Project Water Quality Report

Relation of TSS versus Turbidity


As previously discussed, turbidity is an optical property and can only be considered an indicator of the TSS concentration. The relationship between turbidity and TSS is site specific and must be determined on a case by case basis with simultaneous measurements of turbidity and TSS.

Several turbidity and TSS datasets are available (Table 5-30). These include data collected under normal conditions, periods of dredging and data collected through the process of calibrating nephelometer sensors. In order to establish a common relation between turbidity and suspended solids, these datasets have been combined and a simple relation derived for application in this EIS.

Dataset Title	Recorded By	Comments
Non-dredging Data	WBM	Past measurements by WBM under non-dredging conditions over the Project Area.
Dredge Monitoring Data	WBM	Data collected by WBM during dredging operations, Fisherman's Landing Berth 1, June/July 2009.
Dredge Monitoring Data, Round 1	GHD	Data collected by GHD during dredging operations, Fisherman's Landing Berth 1, June/July 2009.
Dredge Monitoring Data, Round 2	GHD	Data collected by GHD during dredging operations, Fisherman's Landing Berth 1, June/July 2009.
Baseline Data	GHD	Data collected during the baseline monitoring for this EIS across the Project Area.

Table 5-30 Summary Available Turbidity and TSS Datasets

Figure 5-17 Relation of TSS versus turbidity

The adopted relation between turbidity and TSS in Figure 5-17 is a piece-wise linear function, based on the largest and most consistent dataset available (WBM Non-dredging Data), and is defined as follows:

- TSS = 1.12 x [turbidity] where [turbidity] is between 0 and 7 NTU; and
- ▶ TSS = 3.68 x [turbidity] 17.92 where [turbidity] is greater than 7 NTU.

The relation reflects the current data-set and may therefore change to some degree as additional data is collected. There is considerable scatter above and below the adopted relation. This is not unexpected as naturally occurring resuspended material, suspended material bought into the estuary by freshwater inputs, and suspended material generated by dredging are likely to have different physical and optical characteristics.

Given the degree of scatter, it is suggested that turbidity be used rather than TSS, as the primary indicator and point of comparison of water clarity, as it is a direct measure.

5.5.3 Photosynthetically Available Radiation

Photosynthetically available radiation (PAR) is used to measure the amount of visible light available for photosynthetic processes for the benthic primary producer communities (e.g. seagrass communities). Plots of the light intensity time series data at logger locations with a PAR sensor are presented in Figure 5-18 to Figure 5-23. PAR measurements (not shown) exhibit a strong diurnal fluctuation associated with the natural variability between day and night, as well as variation from day to day. Variation from day to day can be caused by:

• Changes in incoming light intensity (due to atmospheric conditions);

- Seasonal changes in the Sun's angle;
- Changes in water depth during the light portion of the day caused by tides; and
- Attenuation through the water column as a function of particles and phytoplankton.

Differences in peak daily light intensity between sites are primarily a function of deployment depth. The closer the sensor is to the surface, the more PAR will reach the sensor and the higher the recorded measurement. A typical daylight light intensity at the surface is approximately 1,800 uE/m²s⁻¹. Differences in light intensity between deployments are likely to be caused by small changes in deployment depth (Figure 5-29 to Figure 5-33) and removal of bio-fouling from the light sensor.

Because of the large range of the depth of deployments of the PAR sensors, the primary influence on the underwater light intensity data was water depth with turbidity (or TSS) levels a secondary influence.

In the case of logger 9 (Figure 5-23), the light is very heavily attenuated and does not increase to more that 2 uE/m^2s^{-1} under normal conditions. Because the resolution of this instrument is 1 uE/m^2s^{-1} , the graph has an unusual appearance, with the intensity jumping between 0, 1, 2 uE/m^2s^{-1} over time. As this logger is deployed in relatively deep water (approximately 15 m) and has relatively high turbidity, the attenuation of PAR through the water column is high.

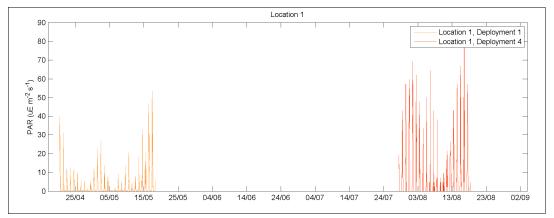


Figure 5-18 PAR at Location 1 with Water Level Range of 4-7 m

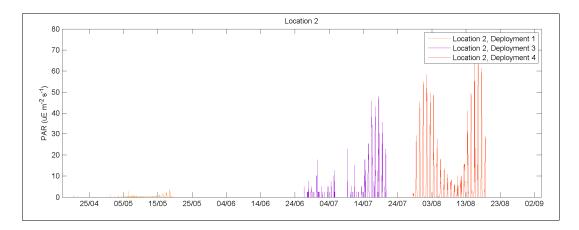


Figure 5-19 PAR at Location 2 of with Water Level Range of 4-9 m

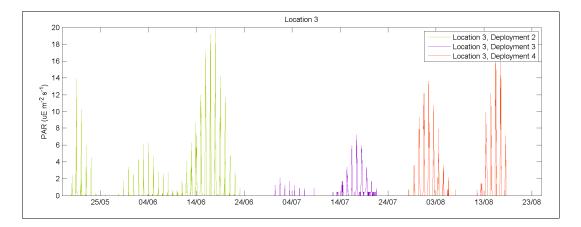


Figure 5-20 PAR at Location 3 with Water Level Range of 7.5-12 m

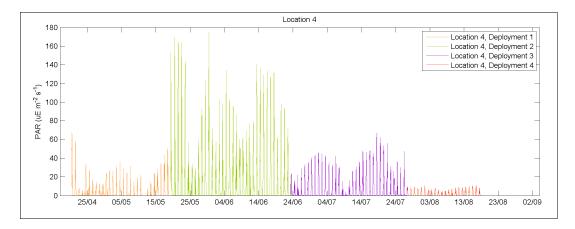


Figure 5-21 PAR at Location 4 with Water Level Range of 2.5-6 m

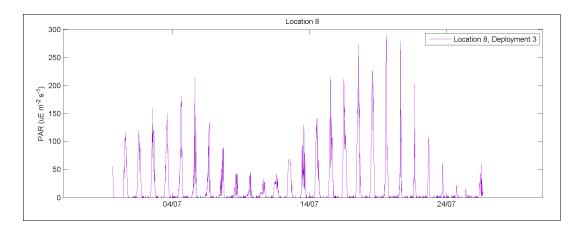
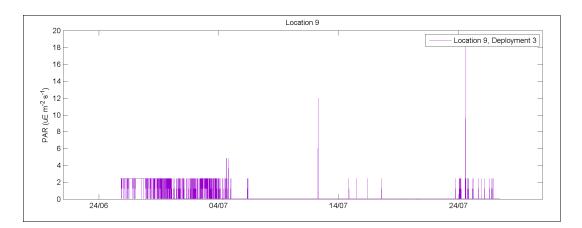
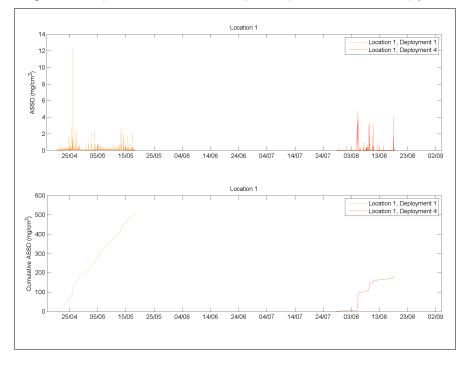



Figure 5-22 PAR at Location 8 where Water Level Range Not Recorded



5.5.4 Accumulated Suspended Solids Deposition

Both the 10-minute record values and the cumulative value over each deployment of the accumulated suspended sediment deposition (ASSD) recorded over the four deployments is plotted in Figure 5-24 to Figure 5-28. As no sediment traps were deployed to correlate with this indirect measure of sedimentation, and owing to the high variability between and within deployments, ASSD is not considered quantitatively reliable; rather a qualitative measure of when high deposition events occur. For example, based on the net sedimentation measurements the duration to accumulate 30 cm of sediment ranges from 2 (i.e. Location 4, Period 3) to 70 (Location 3, Period 2) years.

Figure 5-24 Time Series of ASSD over 10 Minute Intervals and Cumulative ASSD over each Deployment at Location 1

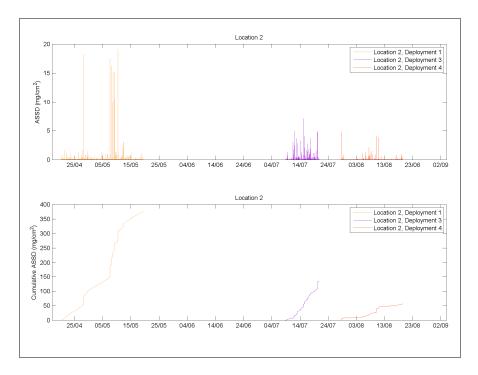
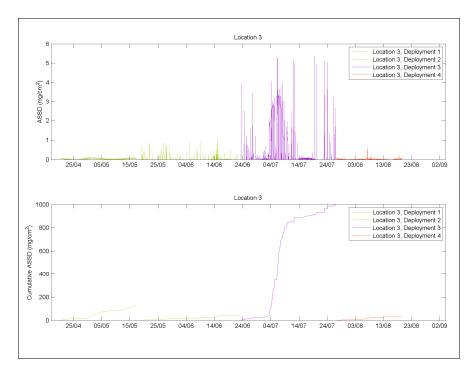



Figure 5-25 Time Series of ASSD over 10 Minute Intervals and Cumulative ASSD Over Each Deployment at Location 2

Figure 5-26 Time Series of ASSD Over 10 Minute Intervals and Cumulative ASSD Over Each Deployment at Location 3

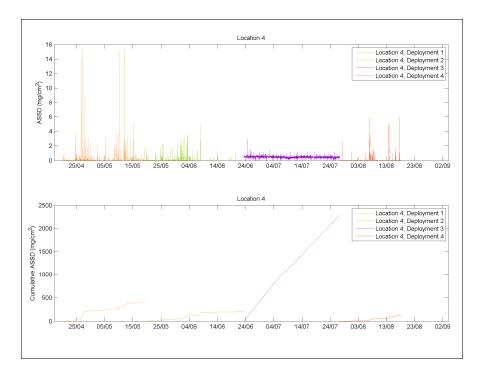
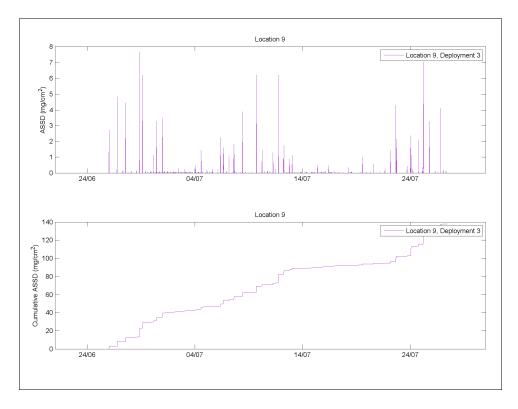



Figure 5-27 Time Series of ASSD Over 10 Minute Intervals and Cumulative ASSD Over Each Deployment at Location 4



Figure 5-28 Time Series of ASSD Over 10 Minute Intervals and Cumulative ASSD Over Each Deployment at Location 9

5.5.5 Water Depth

Variations in water depth recorded over the four deployments are plotted in Figure 5-29 to Figure 5-33 at locations that were equipped with a depth sensor. Changes in depth between deployments are evident, as the instruments were bought to the surface and redeployed at slightly different locations.

Figure 5-29 Water Depth at Location 1

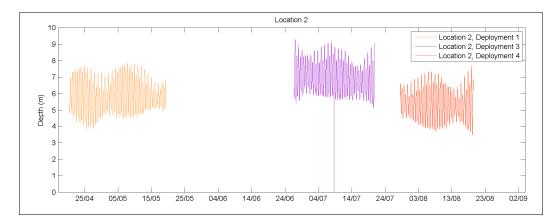


Figure 5-30 Water Depth at Location 2

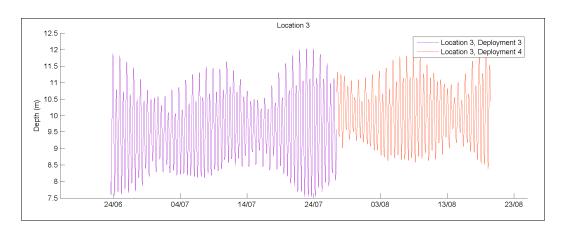


Figure 5-31 Water Depth at Location 3

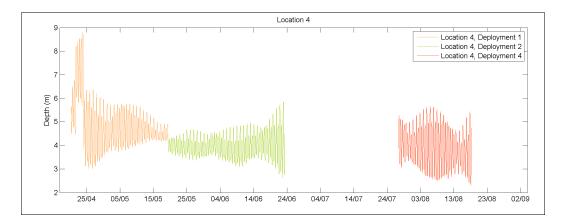


Figure 5-32 Water Depth at Location 4

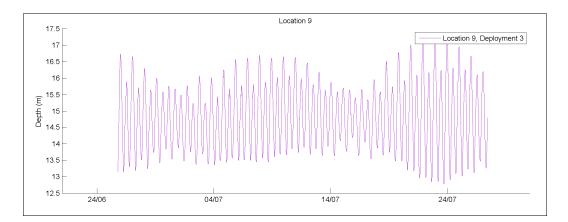


Figure 5-33 Water Depth at Location 9

5.5.6 Wave Height

Wave height data (extracted from variation in the pressure signal) is plotted in Figure 5-34 to Figure 5-38. Changes in depth between deployments are evident, as the instruments were bought to the surface and redeployed at slightly different locations. Firstly wave height measurements are extremely low. Secondly, because of the depth of most deployments (ca. >5 m), waves are not likely to influence resuspension.

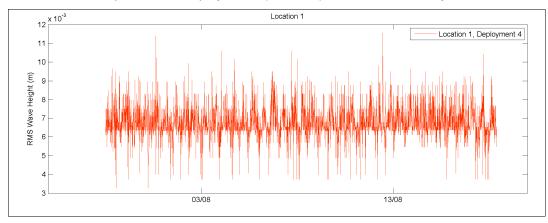


Figure 5-34 Wave Height at Location 1

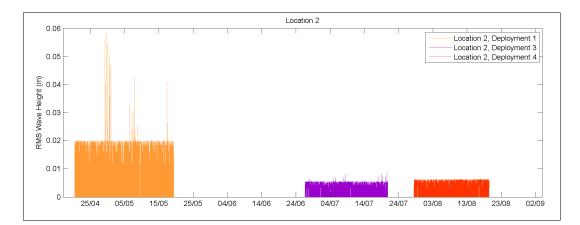


Figure 5-35 Wave Height at Location 2

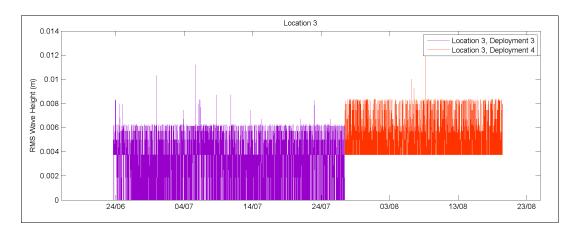


Figure 5-36 Wave Height at Location 3

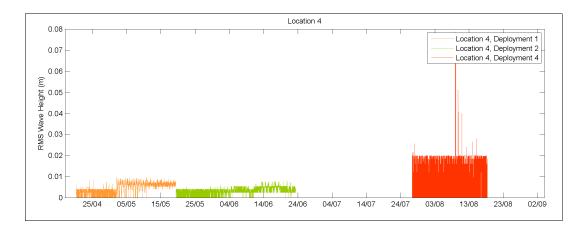


Figure 5-37 Wave Height at Location 4

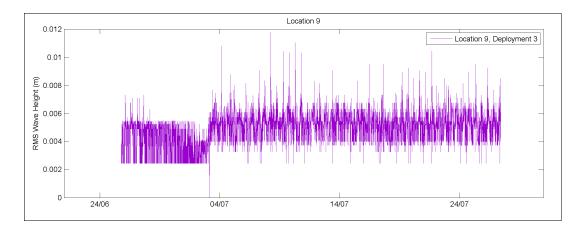


Figure 5-38 Wave Height at Location 9

5.6 Summary of Baseline Water Quality in the Project Area

This section provides a summary of the water quality data that is based on the baseline monitoring data collected for this EIS and other available recent turbidity logger data within the Project Area.

5.6.1 Turbidity

Results for turbidity (monthly and continuous data) and suspended solids indicate that the Project Area is a naturally turbid system. The continuous logger data indicates that turbidity is regularly elevated above the QWQG (2006) and ANZECC (2000) guidelines. Turbidity logger data indicates the following characterisation of the Project Area:

- The median and 95th percentile turbidity ranges during the dry season in deep waters (approximately >2 m LAT) of the Project Area are 3-9 NTU and 11-35 NTU, respectively;
- The median and 95th percentile turbidity ranges during the dry season in shallow waters (approximately <2 m LAT) of the Project Area are 9 NTU and 30-90 NTU, respectively;
- The median and 95th percentile turbidity ranges during the wet season in shallow waters of the Project Area are 10-23 NTU and 127-176 NTU, respectively; and
- During the dry season the turbidity during spring tide conditions is 2-4 times those in neap tide conditions.

Though the data available indicates that the turbidity is substantially higher during the wet season, much less data has been collected over this period relative to the dry season (approximately 15% of all data). As such, it is possible that the wet season statistics may be heavily biased towards individual events during the wet season as the record is not sufficiently long to ascertain otherwise.

Nonetheless, two environmental variables appear to influence sediment concentrations in the water column in the Project Area; tidal state current speeds that induce resuspension of bottom sediments and wet season inflows from the catchment, both of which are natural events.

Monthly turbidity profiles (surface, mid-depth, bottom) for this EIS support the dry season deep water characterisation with a range of 5-30 NTU over four monthly field events.

The adopted relation between turbidity and TSS in Figure 5-17 is a piece-wise linear function, based on the largest and most consistent dataset available and is defined as follows:

- TSS = 1.12 x [turbidity] where [turbidity] is between 0 and 7 NTU; and
- TSS = 3.68 x [turbidity] 17.92 where [turbidity] is greater than 7 NTU.

5.6.2 Water Quality

The majority of water quality parameters analysed from the vessel-based monitoring program were below the limit of reporting except for:

- One herbicide, metolachlor, exceeded the limit of reporting on six out of thirty-six recordings;
- One organophosphorus pesticide, chlorpyrifos, exceeded the limit of reporting on six out of thirty-six recordings;

- Of the dissolved metals, aluminium, arsenic, barium, cadmium, chromium (III+VI), copper, iron, manganese, nickel, silver and vanadium had some measurements above their respective limit or recording. Only cadmium exceeded the ANZECC (2000) trigger value on two occasions;
- All nitrogen nutrient species exceeded the QWQG (2006) and/or ANZECC (2000) guidelines on at least one occasion over the monitoring period. The most regularly exceeded guideline levels were:
 - Total oxidised nitrogen with a median of 0.004 mg/L above the QWQG (2006) guideline level of 0.003 mg/L;
 - Total nitrogen with a median of 0.135 mg/L exceeded the ANZECC (2000) guideline level of 0.1 mg/L on 37 occasions;
- Both reactive and total phosphorus were always lower than the QWQG (2006) guideline levels.
 Reactive phosphorus exceeded the ANZECC (2000) guideline level of 0.005 mg/L on 6 occasions;
- Chlorophyll a exceeded both the QWQG (2006) and ANZECC (2000) guideline levels on 8 and 13 occasions, respectively, out of a total of 48 samples over the monitoring period;
- Laboratory and *in situ* pH tended to be below the lower limit specified in both the QWQG (2006) and ANZECC (2000) guidelines, but not above the upper limit;
- TSS exceeded the QWQG (2006) guideline level of 15 mg/L on 28 occasions out of the forty-eight measurements with a median TSS of 18 mg/L;
- In situ turbidity tended to be near the upper limit of the ANZECC (2000) guideline range of 20 NTU and above the CWQG (2006) guideline of 6 NTU; and
- In situ DO saturation tended to be within the CQWQ (2006) guideline range of 90-100% with occasional measurements above or below this range.

The results indicate that anthropogenic contaminant inputs are minor (one herbicide, one pesticide, one metal) and that nitrogen regularly exceeds the adopted guidelines. This may indicate anthropogenic input of nitrogen from urban and agricultural sources (e.g. sewage effluent and fertilisers), but this may also result from naturally high levels in the Project Area.

5.6.3 Elutriate Water Quality

Concentrations of metals, metalloids and ammonia were generally much higher that those levels recorded in the water column or the relevant ecosystem water quality guidelines, so mobilisation of these water quality parameters need to be assessed with regards to potential impacts during dredging works on the Project Area.

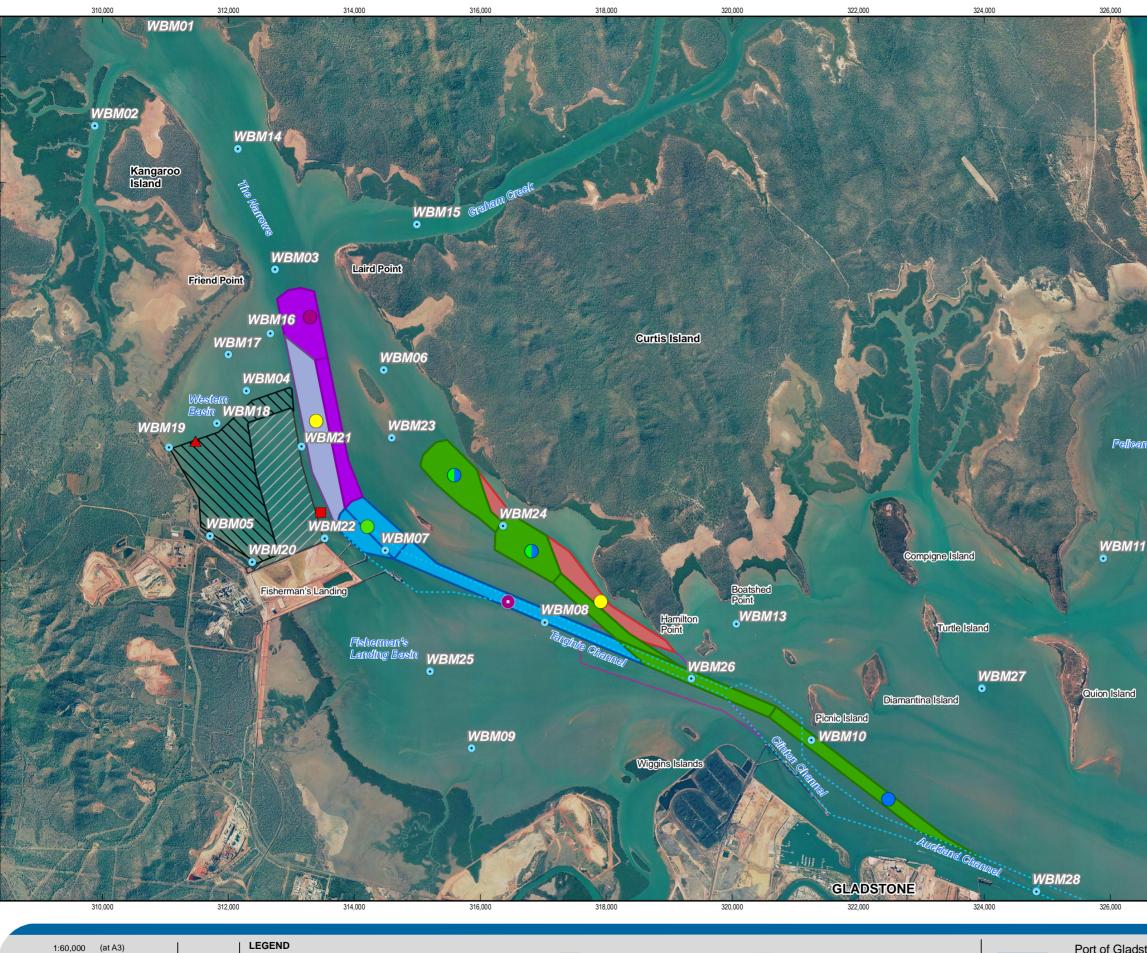
6. Potential Impacts and Mitigation Measures

6.1 Project Activities

The Western Basin Dredging and Disposal Project is expected to require the following construction works:

- Construction of a rock revetment bund;
- Reclamation of land;
- Dredging to deepen and widen existing channels;
- Dredging of new channels, swing basins, berth pockets; and
- Rehandling of dredge materials into the reclamation.

To facilitate construction of the reclamation a rock revetment bund will be established. This bund, it is understood, will be lined with geofabric material to reduce the potential for leaching of fine sediments back into the marine environment through the bund wall during reclamation and dewatering works. Rehandling of some dredged material, that collected by a trailer suction hopper dredger, is expected to be required. Dredged material will be deposited adjacent to the eastern face of the revetment before being rehandled into the reclamation area.


The positioning of the reclamation works will create a tidally influenced channel on the western side of the reclamation works adjacent to the existing soft sediment, mangrove fringed, shoreline. The channel is proposed to be 40 m in width from the edge of the mangroves to the revetment.

Dredging activities for the channels are expected to occur in three phases. These are identified on Figure 6-1. Stages 1A and part of stage 1B (Stage 1) are expected to be dredged from 2010 to 2011 (over a period of two years). The remainder of Stage 1B and Stage 2 are expected to commence in 2012 and require a period of 12 months to complete. Stages 3 and 4 could commence in 2013, as required and will be undertaken to meet market demand. It is expected that large cutter suction dredges (CSD) will be used for the majority of works with a large trailer suction hopper dredger (TSHD) required for some works in Stage 1A in the Clinton Bypass Channel area and Stage 1B.

For the purposes of this water quality impact assessment, the following activities were considered to fall within the construction phase of the proposed development:

- Construction of the bund wall;
- Dredging, rehandling and placement of material within the bund; and
- Decant of tailwaters from placement of dredged material within the bund.

The exact nature of the import and export industries that will develop on the Western Basin site once the reclamation process is complete are not currently defined. As such, this EIS does not specifically address the potential impacts of these future developments.

0.5

0

1

Kilometres

Map Projection: Universal Transverse Mercator Horizontal Datum: Geocentric Datum of Australia Grid: Map Grid of Australia 1994, Zone 56

1.5

GHD

Western Basin Reclamation Area

Wiggins Island Coal Terminal (Approved)

Existing Channels, Swing Basins and Berths

2

Decant Outfall

TSHD Scenario 1a

CSD Scenario 1b

TSHD Dumping/ CSD Rehandling

G:\42\15386\GISWesternBasinProjects\MXDs\42-15386_WB_470_rev_a.mxd This map contains data that is sourced from Data Custodians under Copyright. Please refer to EIS Appendices for Ownership and Copyright details. © 2009. This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was produced. Unauthorised use of this document in any way is prohibited. While GHD has taken care to ensure the accuracy of this product, GHD Pty Ltd and Data Custodians cannot accept liability of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred as a result of the product being inaccurate, incomplete or unsuitable in any way and for any reason.

•

CSD Scenario 1a, 1b

TSHD Scenario 2

CSD Scenario 3

Model Output Location

CSD Scenario 2

Stage 1A - North China Bay LNG

Stage 2 - Laird Point LNG

Stage 4 - Hamilton Point

Stage 3 - Fisherman's Landing

Stage 1B - Fisherman's Landing LNG

Level 4 201 Charlotte Street Brisbane QLD 4000 Australia T +61 7 3316 3000 F +61 7 3316 3333 E bnemail@ghd.com W www.ghd.com

6.2 Modelling Overview

As described later in this chapter, limited offsite water quality impacts are expected from CSD operation. However, the TSHD will likely produce more extensive plumes, which will, depending on the tide, extend up to The Narrows and out past Barney Point. This report summarises the water quality impacts associated with the construction of the developed reclamation and dredging channels. In addition to the water quality data described in Chapter 5, this chapter relies on the Numerical Modelling Studies Report (WBM 2009, Appendix J of main EIS) for this EIS to predict the Project's impacts on hydrodynamics, flushing, turbidity climate and sedimentation that may potentially be experienced in Port Curtis under the proposed reclamation and dredging operations associated with the Project.

6.2.1 Methodology for Hydrodynamic and Flushing Simulations

The predicted changes to hydrodynamics and flushing efficiency from the Project, which in turn can impact water quality, were assessed with a numerical hydrodynamic model (WBM 2009). Four scenarios were simulated, namely:

- Base case Existing conditions including approved dredge works in the Wiggins Island area (already approved);
- Scenario 1 Base case with Western Basin bund and Stage 1A and Stage 1B (Stage 1) dredging;
- Scenario 2 As for Scenario 1 along with Stage 1B (Full) and Stage 2 dredging; and
- Scenario 3 As for Scenario 2 along with Stages 3 and 4.

These simulated hydrodynamic/flushing scenarios are described in Table 6-1. Each hydrodynamic modelling scenario was simulated assuming the existence of the fully developed reclamation and completion of dredging works. This allows impact assessment of the hydrodynamics/flushing after the completion of dredging scheduled for each scenario.

Scenario	Stages	Details
Base		Existing Reclamation
		- Existing Fisherman's Landing reclamation
		Dredging
		- Existing Channels
		- Present Fisherman's Landing Berth 1
		- Ultimate Wiggins Island Coal Terminal

Table 6-1 Overview of the Four Hydrodynamic Modelling Scenarios

Scenario	Stages	Details			
Scenario 1	Reclamation	Developed Reclamation			
	Western Basin reclamation fully constructed	 Area to north of existing Fisherman's Landing reclamation 			
	Dredging	- Setback buffer from shoreline 40m			
	Stage 1A	Stage 1A			
	Stage 1B (Stage 1)	- Clinton Bypass channel 200m wide at -13m LAT			
		- Spur channel to China Bay 200m wide at -13m LAT			
		- China Bay Swing Basins (2) 600m wide at -13m LAT			
		Stage 1B (Stage 1)			
		- Targinie Channel 180m wide at -10.6m LAT			
		- Fisherman's Landing Bulk Liquids Wharf Swing Basin 550m wide at -10.6m LAT			
		 Fisherman's Landing Bulk Liquids Wharf Swing Berth to 430m long at -12.5m LAT 			
Scenario 2	Scenario 1 completed	Stage 1B (Fully Developed)			
	Dredging	- Targinie Channel 180m wide at -13.0m LAT			
	Stage 1B (fully developed) Stage 2	- Fisherman's Landing Swing Basin 650m wide at -13.0m LAT			
		 Fisherman's Landing Bulk Liquids Wharf Swing Berth to 430m long at -13.0m LAT 			
		Stage 2 Dredging			
		- Channel extension to Laird Point 200m wide at -13m LAT			
		- Laird Point Swing Basin approx 650m wide at -13m LAT			
Scenario 3	Scenario 1 completed	Stage 3 Dredging			
	Scenario 2 completed	- Berth and Swing Basins to Laird Point 450m wide (total 650m) at -13m LAT			
	Dredging				
	Stage 3	Stage 4 Dredging			
	Stage 4	 China Bay and Hamilton Point additional Swing Basins and Departure Areas at -13m LAT 			

Modelling assessments indicate that the effects on the hydrodynamics within the Project Area are not consistent across sites or tides and will include:

- Changes in water velocity;
- Changes in water levels;
- Changes in bed shear stresses; and
- Changes in tidal flows.

These are described in detail the complementary Numerical Modelling Studies Report (Appendix J of main EIS).

The various construction and operation activities for the Project are expected to result in a range of impacts on the water quality within the Project Area, including reduced flushing of dissolved constituents and increased turbidity levels from dredging, which are described in the following sections.

6.2.2 Methodology for Dredge Plume Simulations

Turbidity (or TSS) plumes generated from the dredging operations were assumed to occur from:

- Dredge head TSS source during dredging by Trailer Suction Hopper Dredge (TSHD) and Cutter Suction Dredge (CSD);
- TSHD hopper overflowing during dredging;
- TSHD hopper dumping at a rehandling site in vicinity of Fisherman's Landing berth and swing basin; and
- Decant discharge from the reclamation.

Simulations only modelled the "dredge plume", which is the TSS in the water generated from dredging above natural background levels after settling of coarser material (i.e. cobbles, gravel, large sand particles, clay clumps). The increased TSS/turbidity from the dredge plume and the additional sediment deposition are two of the primary potential environmental impacts arising from the Project. Details of the derivation of loadings, plume settling parameters and relations, and dredge plume and decant particle sizes are given in the Numerical Modelling Studies Report (Appendix J of main EIS).

Dredging is proposed to occur progressively over a number of stages with combinations of:

- Large CSDs with dredge slurry pumped to the reclamation and eventually discharging via the decant outlet (after sufficient residence time to allow substantive TSS settling);
- A large TSHD at locations not practical for the CSD pumped slurry operation; and
- A medium CSD for rehandling of at the TSHD rehandling location.

These stages have been grouped into four dredge plume scenarios as outlined in Table 6-2. Definition of the TSS loading from each source to generate dredge plumes are also summarised in Table 6-2. All dredge plume loads were simulated as stationary sources with TSS inputs into a single model "cell", which assumed:

- Continuous operation for the CSDs and decant sources; and
- A continuous TSHD cycle of 3 hours with 1 hour of hopper filling (and overflow) during dredging and a 10 minute period of dumping.

These are deemed to be conservative plume modelling assumptions as not all dredgers can maintain continuous operations. Further, all plume modelling assumed the bathymetry for each scenario was at the initiation of dredging, which may be considered as a conservative measure as less volumetric dilution is simulated.

Table 6-2	Overview of the Four Dredge Plume Scenarios and Associated TSS Loadings					
Scenario	Stage	Description	Loading			
	1A	Western Basin Middle with Large CSD	4 kg/s continuous			
		Western Basin North with Large CSD	4 kg/s continuous			
		Decant from Piped Slurry from Western Basin Middle & North Direct to Reclamation	100 mg/L TSS @ 5 m ³ /s			
4-		Clinton Wedge & Bypass, Western Basin South with Large TSHD	75 kg/s for 1 hour every 3 hours			
1a		Dumping at Fisherman's Landing Dumping Ground with Large TSHD	340 kg/s for 10 min every 3 hours			
		Rehandle at Fisherman's Landing with Medium CSD	4 kg/s continuous			
		Decant from Piped Slurry from Fisherman's Landing Rehandling Site Direct to Reclamation	100 mg/L TSS @ 1.25 m ³ /s			
	1A	Western Basin Middle with Large CSD	4 kg/s continuous			
		Western Basin North with Large CSD	4 kg/s continuous			
		Decant from Piped Slurry from Western Basin Middle & North Direct to Reclamation	100 mg/L TSS @ 5 m ³ /s			
41-	1B Stage 1	Fisherman's Landing Swing Basin with Large TSHD	75 kg/s for 1 hour every 3 hours			
1b		Dumping at Fisherman's Landing Dumping Ground with Large TSHD	340 kg/s for 10 min every 3 hours			
		Rehandle at Fisherman's Landing with Medium CSD	4 kg/s continuous			
		Decant from Piped Slurry from Fisherman's Landing Rehandling Site Direct to Reclamation	100 mg/L TSS @ 1.25 m ³ /s			

Table 6-2 Overview of the Four Dredge Plume Scenarios and Associated TSS Loadings

Scenario	Stage	Description	Loading		
		Laird Point with Large CSD	4 kg/s continuous		
	2	Decant from Piped Slurry from Laird Point to Reclamation	100 mg/L TSS @ 2.5 m³/s		
	1B Full	Targinie Channel with Large TSHD	75 kg/s for 1 hour every 3 hours		
2		Dumping at Fisherman's Landing Rehandling Site with Large TSHD	340 kg/s for 10 min every 3 hours		
		Rehandle at Fisherman's Landing with Medium CSD	4 kg/s continuous		
		Decant from Piped Slurry from Fisherman's Landing Rehandling Site Direct to Reclamation	100 mg/L TSS @ 1.25 m ³ /s		
	3	Fisherman's Landing North with Large CSD	4 kg/s continuous		
-	4	Hamilton Point with Large CSD	4 kg/s continuous		
3	3 & 4	Decant from Piped Slurry from Fisherman's Landing North and Hamilton Point Direct to Reclamation	100 mg/L TSS @ 5 m ³ /s		

6.3 Impacts of Construction of the Reclamation on Water Quality

This section outlines the potential water quality impacts associated with:

- Construction of the bund; and
- Filling of the bund

6.3.1 Construction of Bund Wall

Potential Impacts

Construction of the bund will involve placement of core material and rock armour by trucks. It is not proposed to remove the soft surface sediments before placement of the rock as this is not necessary to achieve the agreed design criteria for geotechnical stability of the bund wall. Therefore, as the rock is placed onto the seabed during the construction of the bund wall, soft sediments will be mobilised into the water column and will also be pushed out the front and sides of the bund wall. This is likely to result in the generation of a small yet visible turbid plume. While a turbid plume will reduce light penetration over nearby seagrass beds, these meadows experience elevated turbidity on a regular basis through natural tidal resuspension of the soft seabed sediments. It is likely that any sediments disturbed by the construction of the bund wall that deposit over the seagrass beds will be remobilised and transported away from the tidal flats again during tidal movements and elevated wave conditions.

The disturbance of the soft seabed sediments will be limited to the first layer of rocks, after which any additional rock for that section will be placed on rock and not the soft seabed sediments. Therefore, the generation of plumes through the placement of rock is likely to be transient. Also, migration of turbid plumes will be somewhat minimised by the presence of the rock on the seabed, which will act to reduce water movement in the immediate vicinity of the bund construction as the height of the rock increases.

There will be an increased risk of remobilisation of the mud wave during elevated wind and wave conditions, or during spring tides. The potential for waves to erode core material during storm (cyclone) conditions may arise over the course of construction, although armouring of the core should be close behind the rate of core construction.

There is the potential for spillage (either minor, through drips or major through a leak/accident) of oils and fuels from construction equipment to impact on marine water quality.

Mitigation

Generation of turbid plumes by the placement of rock during bund construction can be limited through control of the material being used. The fine material (<20 mm) will be scalped from the core material for the bund wall, removing this potential source of turbid plume generation during construction. The erosion of core material by waves during potential storm conditions will be managed by placement of armour material to the exposed face of the core material closely behind the core work face. A small stockpile of armour material will be held at the quarry, sufficient to cover any exposed core if a cyclone were to approach. Contingency planning for a storm may require the placement of the stockpiled armour material to cover exposed faces of the core material. A maximum unarmoured length of 50 m will be maintained during construction.

Monitoring and management of any material that is displaced above LAT or its current elevation will be undertaken in accordance with an Acid Sulphate Soil Management Plan (ASSMP).

No refuelling or maintenance of construction equipment will occur on the site, nor will equipment be parked at the site for a significant time, reducing the potential for significant spills of oils and fuels to occur. All construction equipment will undergo regular maintenance and pre-start inspections will be undertaken on a daily basis to identify any leaks. Spill kits for land and water based spills will be kept at the site and personnel trained in their use. Emergency response procedures will be established.

6.3.2 Filling of the Bund

Potential Impacts

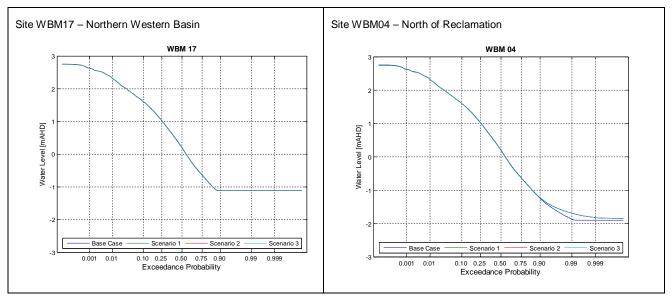
The bund design includes the placement of geotextile fabric on the inner face of the bund before commencement of filling operations. This will act to minimise the migration of fines through the bund wall and into the surrounding waters from the differential pressures created on either side of the wall by the rise and fall of the tide. Once a significant amount of dredged material is beached against the inner wall, this will also act as a filter layer to assist in preventing the migration of fine material through the bund wall into the receiving environment. Therefore, minimal direct impacts to water quality are expected from the filling of the bund with dredged material. The potential impacts of decant waters are discussed in Section 6.5.

Mitigation Measures

No further mitigation measures are recommended for construction of the reclamation as minimal impacts to water quality are expected.

6.4 Impacts of the Reclamation and Dredging on Hydrodynamics and Flushing

This section outlines the potential impacts of the developed reclamation and dredging channels on the hydrodynamics and flushing efficiency of the Project Area. Changes to hydrodynamics (water level and current speed) can affect turbidity via re-suspension. Changes to the flushing efficiency can modify the water quality because of differences with coastal oceanic exchange. Hence, impacts to hydrodynamics and flushing are needed to assess impacts to water quality.


6.4.1 Hydrodynamics

Potential Impacts Affecting Turbidity

Changes to hydrodynamics (water level and current speed) can affect turbidity via the process of resuspension. Predicted impacts on water levels at two shallow locations in the northern Western Basin inter-tidal area (refer WBM04 and WBM17 sites in Figure 6-1) are considered here owing to their proximity to the developed Reclamation Area and seagrass beds. Results are presented in the form of exceedance plots in Figure 6-2. These show no change at WBM17, and only a minor change at WBM04.

Water level differences (time of low tide) are predicted to be more substantive in the 40 m tidal channel (refer sites WBM20 and WBM05) and the immediate vicinity of the northern perimeter of the reclamation wall (refer sites WBM19 and WBM18).

Water level variations in other regions of the Project Area are more subtle as detailed in the Numerical Modelling Studies Report (Appendix J of main EIS).

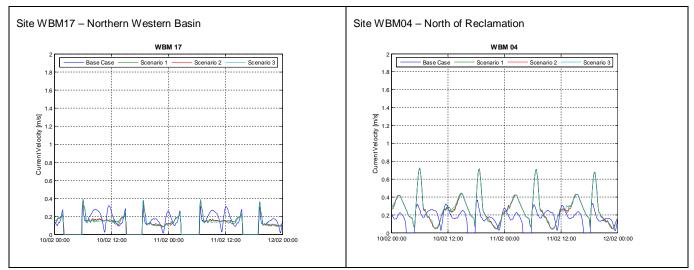
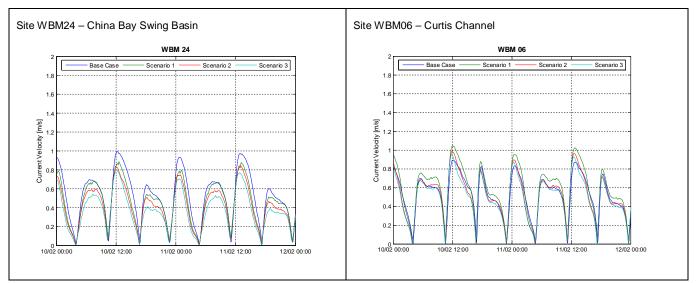


Figure 6-2 Probability Exceedance Plots of Water Level at Two Locations in the Western Basin Intertidal Area

Predicted current velocity impacts during spring tides (10-12 February 2009) at the same two locations (WBM17 and WBM04) again illustrate that the effect of the reclamation (difference between Base Case and Scenario 1) is greater than expansion of dredged areas (differences between Scenarios 1, 2 and 3) (Figure 6-3). At WBM04. as with other locations around the perimeter of the developed reclamation,



current velocities are generally predicted to increase. In contrast, at the northern Western Basin location at WBM17, current velocities are predicted to become more consistent. In short, the impacts to current speeds in the inter-tidal and sub-tidal areas decreases with distance north from the reclamation and proximity to the deeper channels.

Figure 6-3 Time Series of Spring tide Current Speeds at Two Locations in the Western Basin Inter-tidal Area

Predicted current velocity impacts at two locations within a newly dredged area (WBM24) and upstream of a newly dredged channel (WBM06) are illustrated in Figure 6-3. The impact on spring tide current speeds at WBM24 is a decrease with each successive scenario that deepens the channel. In contrast, the impact on spring tide current speeds at the upstream location (WBM 06) are smaller in scale.

Figure 6-4 Time Series of Spring Tide Current Speeds at Two Locations in or Near Newly Dredged Areas

Predicted spatial water velocity impacts between the base case and the three scenarios during spring ebb tides (simulation date and time: 10 February 2009 at 12:30) generally exhibit lower peak velocities in

dredged areas and higher peak velocities in the upstream regions of completed dredging channels during each stage (Figure 6-5). For the reclamation the increased velocities at the north-eastern corner is expected as this is a topographic constraint during ebb tides. This snap shot (results at a given instant) indicates the model predicts increased velocities upstream of dredged areas, at the north-eastern corner of the reclamation and in the narrow tidal channel bounded by the reclamation and shoreline. Decreased velocities are predicted in the dredged areas as well as along the eastern margin of the reclamation. Similar patterns occur during flood tide cycles, though the high velocities along the north-eastern corner are not predicted.

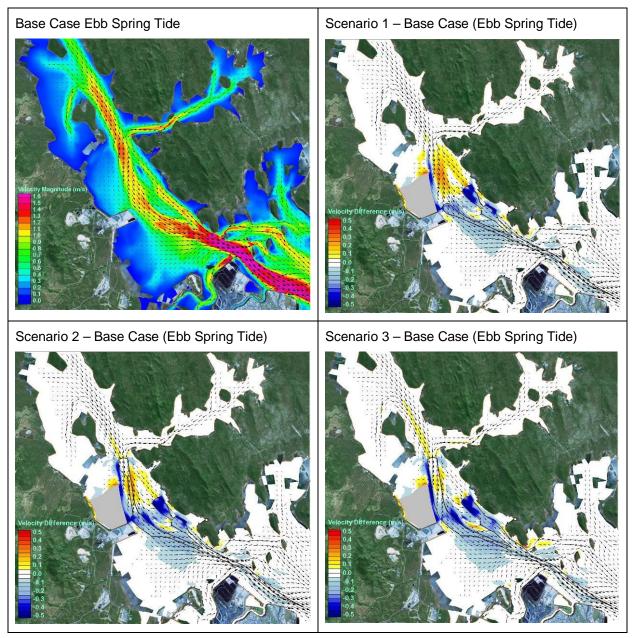


Figure 6-5 Peak Spring Ebb Tide Current Speeds for Base Case and Velocity Impacts of each Scenario

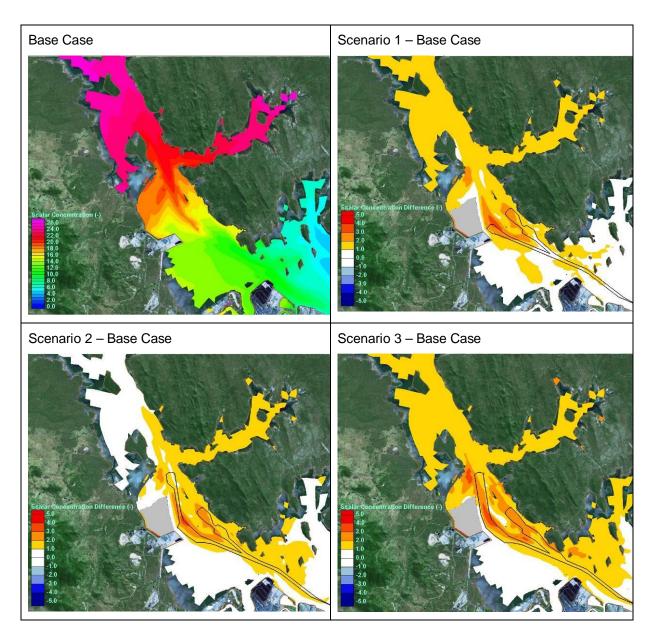
The Numerical Modelling report (Appendix J of main EIS) has identified the following hydrodynamic impacts arising from the proposed reclamation and dredging works:

- The proposed reclamation reduces the inter-tidal storage area of the Western Basin region sufficiently to subtly alter the tidal propagation dynamics (i.e. water levels and currents) generally.
- Predicted water levels indicate that the Reclamation Area works have negligible impact (<1 cm) on high tide levels in the Project Area, but can increase low tide levels by 1-5 cm with some tidal slight phase changes.
- The relative impact of the Reclamation Area and associated loss of inter-tidal storage on the Project Area hydrodynamics is greater than the dredging works.
- Generally, current velocities tend to decrease in dredged areas as well as those laterally adjacent. Increased velocity typically occurs to adjacent areas upstream and downstream of the newly dredged areas.
- Tide flows are expected to increase between Mud Island and Hamilton Point, not change at The Narrows, and to decrease at Targinie Channel. This is predicted presumably, as a consequence of the loss of tidal storage volume from the reclamation.

Mitigation Measures

There are no mitigation measures proposed in response to the minor predicted changes in hydrodynamics arising from the construction of the Western Basin Reclamation Area and dredging works.

6.4.2 Flushing


Potential Impacts

Changes to flushing efficiency can modify water quality because of differences with coastal oceanic exchange. Spatial impacts on flushing efficiency were assessed by tracking a uniform initial conservative tracer concentration of 100 units throughout the model domain and determining the e-folding time for each grid cell in the domain for each scenario, where e-folding time denotes the time for the tracer to reduce from 100 units to I/e (i.e. 36.8% or 36.8 units). Details of the methodology are provided in the Numerical Modelling Studies Report (Appendix J of main EIS).

A comparison of tracer results between the Base Case and the three scenarios (during slack water at high tide near the end of the 2 month simulations) show higher tracer in response to the developed Reclamation Area and dredging works (Figure 6-6). Generally, the tracer levels increase with each successive scenario except for Scenario 2. This indicates that the effect of the dredging works on broad scale circulation patterns also influences flushing. After the 2 month simulation duration there is an approximate increase of 1-2% of tracer for the scenarios in the model domain relative to the Base Case.

Impacts to flushing were characterised with spatial representations of e-folding times between the Base Case and three Scenarios (Figure 6-7). Generally, a 1-2 day increase in the e-folding flushing time was predicted in response to the Project. The remnant 40 m tidal waterway bounded by the developed reclamation and shoreline has the greatest reduction in flushing efficiency of up to 7 days, though model predictions in this region are not considered robust because of coarse grid resolution of this tidal channel.

Figure 6-6 Tracer Distribution during Spring Tide for the Base Case and impact (difference) associated with each Scenario

The base case e-folding time is approximately 30-40 days, so a reduction of 1-2 days yields a 3-5% reduction in terms of impacts to flushing. There will also be slight reductions in flushing efficiency of areas surrounding the Passage Islands and the western shoreline of Curtis Island.

The base case e-folding time is approximately 30-40 days, so a reduction of 1-2 days yields a 3-5% reduction in terms of impacts to flushing. There will also be slight reductions in flushing efficiency of areas surrounding the Passage Islands and the western shoreline of Curtis Island.

Further to the above, flushing has the potential to affect the fate of various pollutants within the water column. This relates to nitrogen species (TKN, TN, NH_x, TON, FRP¹), chlorophyll², pH, the organo-

¹ Regularly above ANZECC (2000) only, but not QWQG (2006).

phosphorus pesticide chlorpyrifos, the herbicide metolachlor and cadmium, all of which were indicated at levels above or nearing guideline values (Chapter 5). Hence, any potential increases from reduced flushing to the levels of these constituents may need to be captured in monitoring programs of the Project Area.

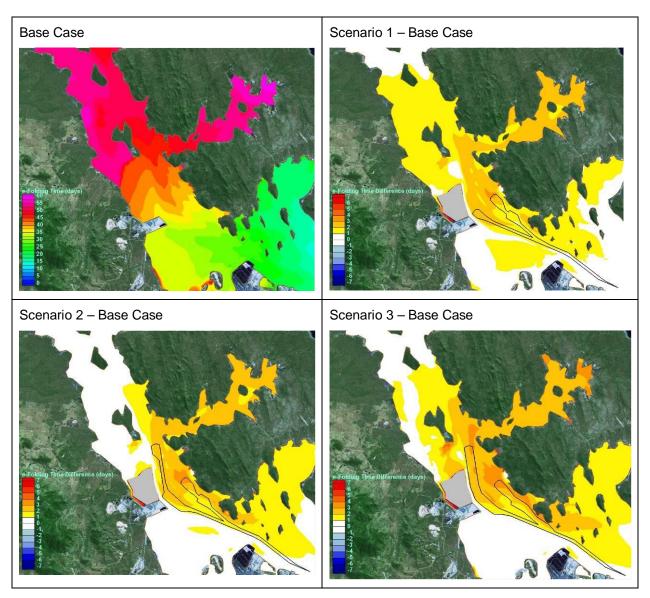


Figure 6-7 Spatial Estimates of Fitted e-folding times during Spring Tide for Base Case and Changes (Differences) for each Scenario

At most a 3-5% increase in these levels would be expected if they behaved in a conservative manner (i.e. the predicted decrease in flushing from the Project). However, all of these substances are likely to undergo a variety of natural processes (e.g. decomposition, mineralisation, adsorption to particles and burial) so that any increases from flushing will be substantially lower. Hence, it is unlikely that changes to concentrations of these substances from reduced flushing will be detected.

² Regularly above ANZECC (2000) and QWQG (2006).

Mitigation Measures

There are no practical mitigation measures to address the minor predicted changes in flushing regime as a result of the construction of the Western Basin Reclamation Area and dredging works.

6.5 Potential Impacts of the Dredging and Decant on Turbidity and Light Climate

This section summarises the potential impacts of turbid plumes generated by dredging and decant activities on the turbidity of the project area. The impact on sensitive habitats in the project area, namely seagrass and mangrove communities, is evaluated in the Marine Ecology Report (GHD 2009d).

The four dredge and decant plume scenarios were those summarised in Table 6-2.

Additionally, as the plume simulations utilise TSS as the model state variable where the following relation between TSS and turbidity is used from Section 5.5.2:

TSS = Turbidity * 1.12	for Turbidity between 0 and 7 NTU; and
TSS = 3.68 * Turbidity - 17.92	for turbidity greater than 7 NTU.

As spatial representations from the plume simulations are in units of TSS (mg/L), this relation is used to convert TSS simulation output to turbidity when needed. Turbidity has been adopted as the basis for monitoring because hand-held instruments can be used for *in situ* instantaneous monitoring.

6.5.1 Development of Site Specific Turbidity Objectives and Simulation Thresholds

The ANZECC (2000) guidelines favour the development of site specific water quality objectives, based on natural conditions and known tolerances of key sensitive species and habitats. Background turbidity in the Project Area regularly exceeds the QWGQ (2006) and ANZECC (2000) guidelines. Therefore, it is appropriate to develop site specific guideline values for turbidity.

In this section, site specific turbidity objectives were developed for the decant discharge, decant receiving environment, shallow water Berth 5 Fisherman's Landing, northern Western Basin seagrass bed (Bed 8), west Wiggins Island seagrass bed (Bed 5) and deeper waters potentially impacted by the Project from recent continuous turbidity measurements. The development of these turbidity objectives are based on sections 5.5.1 and 5.5.2, and Table 5-29.

McArthur *et al.* (2004) indicate that the 95th percentile turbidity represents a suitable tolerance threshold for a marine community in the absence of direct physiological response data because of adaptation to frequent intensities and durations of elevated turbidity and accompanying regimes of light attenuation and sediment deposition.

The methodology used here in the development of site specific turbidity objectives was to:

- Utilise the dry season turbidity data to establish the water quality objectives. Available recent continuous turbidity data is heavily biased towards dry season measurements. Elevated turbidity during the wet season from catchment loads is highly variable depending on frequency and intensity of rainfall events. An adaptive water quality objective for the wet season that is dependent on interannual variability of wet season turbidity may be appropriate;
- Utilise median turbidity to represent the background concentration levels; and
- Utilise the 95th percentile turbidity to represent the site specific water quality objectives.

For this EIS, turbidity loggers were deployed over the 'dry' season in numerous 'deep' water locations (>3 m LAT). The purpose of these deployments was to develop turbidity objectives in regions throughout the Project Area in which dredging and/or decant potential impacts may occur. A summary of medians and 95th percentiles at each of the deep water logger locations is summarised in Table 6-3. An average of these values was adopted as the turbidity objective for the dry season, namely 5 NTU for the median and 20 NTU for 95th percentile, representative of background and impact threshold levels.

Logger	Median (NTU)	95 th Percentile (NTU)
1	3	11.4
2	5.3	28
3	5	15.8
4 ³	3.2	11.3
6	4.5	25.4
7	2.9	13.8
8	4.1	20.2
9	8.6	27.9
10	3.1	16.1
FL Berth	9	35
verage	4.9	20.5

Table 6-3Summary of Median and 95th Percentile Turbidity for Dry Season Deployments in
Deep Waters throughout the Project Area for this EIS

Table 6-4 summarises site (i.e. 3 shallow and 1 deep water objectives) specific turbidity objectives (i.e. the 95th percentile values), the background levels (i.e. medians), conversion to TSS with the adopted relation from turbidity (Section 5.5.2), and the simulation TSS threshold (i.e. 95th percentile minus median) for analysis of plume simulations. To reiterate, the plume simulations only model the dredge plume material, and not the ambient TSS levels. Hence, the simulation TSS threshold was used to evaluate the modelled plume scenarios.

Justification for each of these site specific turbidity objectives includes:

- Decant receiving environment:
 - Median turbidity of 9 NTU was the same at all shallow water locations and higher than the deep water locations, presumably because of greater resuspension (i.e. shallower depths) and greater proportion of fine particles relative to deeper waters with higher tidal current speeds;

³ Not used to derive turbidity objective because of proximity to coastal ocean. Logger location 5 was not used because of unreliable data.

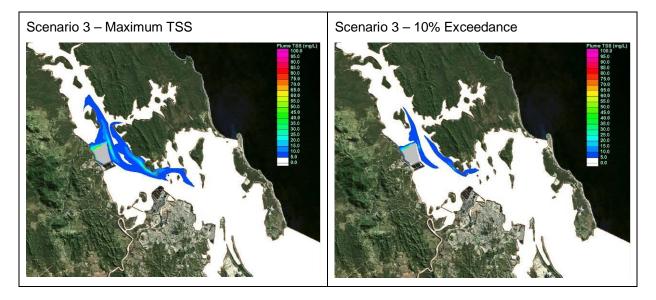
- The 95th percentile of 30 NTU was the lowest of all shallow water locations because it was not in proximity to either extensive salt pans (source of turbidity) or any rivers (another source of turbidity);
- Monitoring of the decant plume from previous dredging and reclamation projects indicates that it generally cannot be seen or measured approximately 20 50 m from the outfall (GHD 2009f).
 However, the decant discharge from this Project is expected to be substantially greater than those in the past, so the decant plume is likely to extend over a greater area; and
- As outlined in the Review of Previous Water and Sediment Quality (Appendix A), GPC has
 previously undertaken a number of capital and maintenance dredging programs in accordance
 with approved Dredge Management Plans. GPC successfully complied with the requirements of
 the Dredge Management Plans, however, the water quality guidelines applied to turbidity at the
 final reclamation cell in the Development Approvals for both the RG Tanna Coal Terminal Berth 4
 and Fisherman's Landing Berth 1 dredging projects were quite low in comparison to the turbidity
 objectives determined here. These previous water quality guidelines were 20 NTU in winter (May
 September) and 40 NTU in summer (October April).
- Northern Western Basin seagrass beds:
 - The median turbidity of 9 NTU is in agreement with all of the other dry season values in shallow waters; and
 - The elevated 95th percentile turbidity of 55 NTU relative to 30 NTU near the existing Fisherman's Landing reclamation is likely from a combination of shallower depths and proximity to the salt pan to the north. Nonetheless, it is indicative of adaptation to substantially greater turbidity levels by the seagrass meadows in this region.
- Wiggins Island and South Fisherman's Landing seagrass beds:
 - The median turbidity of 9 NTU is in agreement with all of the other dry season values; and
 - The elevated 95th percentile turbidity of 91 NTU relative to 55 NTU for the northern Western Basin seagrass beds is likely from the combined effect of the salt pans to the west as well as the Calliope River (i.e. two sources of turbidity in addition to resuspension of fine material). This is indicative of adaptation to substantially greater turbidity levels by the seagrass meadows in this region.
- Deep channel waters:
 - The median turbidity of 4.5 NTU for the deeper channel waters is approximately half of the dry season levels for the shallow sites because of a range of factors such as greater dilution, less resuspension and larger particle size classes; and
 - The 95th percentile value of 20 NTU is substantially lower than the dry season levels for the shallow sites (33-91 NTU) as expected for the same range of factors as the lower median values at deeper sites.

Table 6-4Summary of Median and 95th Percentile Turbidity, TSS and Modelled Plume for Dry
Season for Shallow Water and Deep Water Deployments in Western Basin Area

		Turbidity (NTU)		TSS (mg/L)		Dredge Plume TSS (mg/L)
Data Source	Applicability	Median	95th Percentile	Median	95th Percentile	Threshold
FL Shallow Water (Aug- Sep 2008) WBM	Decant receiving environment	9	30	15	92	77
Bed 8, North of FL (May- Nov 2008)	Western Basin seagrass beds	9	55	15	184	169
Bed 5, West of Wiggins Island (May-Nov 2008)	Wiggins Island, South FL seagrass beds	9	91	15	317	302
GHD May-Aug 2009 at 8 sites	Deep channel waters	4.5	20	5	56	51

6.5.2 Impacts of Decant Outfall on Turbidity

Potential Impacts


This section summarises the potential impacts of plumes generated from the developed reclamation's decant outfall on the turbidity of the Western Basin region. The recommended turbidity objectives for the decant outfall are:

- 100 NTU in the final reclamation cell prior to discharge into the receiving environment, which is equivalent to 350 mg/L TSS; and
- 30 NTU in the receiving environment adjacent to the decant outfall, which is equivalent to 92 mg/L TSS. With the indicative background TSS value at this location of 15 mg/L TSS, the corresponding threshold to compare with the plume simulations is 77 mg/L (i.e. 92 mg/L minus 15 mg/L) (Table 6-4).

In order to assess the potential impact and extent of the decant plume, reference is made to the results of Scenario 3. Scenario 3 involves the simultaneous operations of two CSDs that pump dredge material slurry to the reclamation with decant discharge from the north-eastern corner after sufficient residence time to meet the turbidity objective of 100 NTU (350 mg/L TSS). These CSDs do not generate a large dredge plume (refer to Table 6-2 for loading rates used). Hence, Scenario 3 was used to evaluate the likely plume impacts from the decant discharge on the Western Basin inter-tidal and sub-tidal TSS (or turbidity) climate.

Spatial TSS representations of the maximum level and 10% exceedance levels for Scenario 3 over the two month simulations are illustrated in Figure 6-8. The simulations show that the decant discharge into the receiving environment does not reach the adopted decant plume TSS objective of 77 mg/L.

Figure 6-8 Spatial Representation of Simulated Maximum and 10% Exceedance TSS for Scenario 3

Inspection of the time series location at WBM19, adjacent to the decant discharge, illustrates that the decant TSS objective of 77 mg/L is not exceeded for Scenario 3 (Figure 6-9), with the 95th percentile being of the order of only 20 mg/L TSS. In the simulations the decant discharge was input as 100 mg/L TSS.

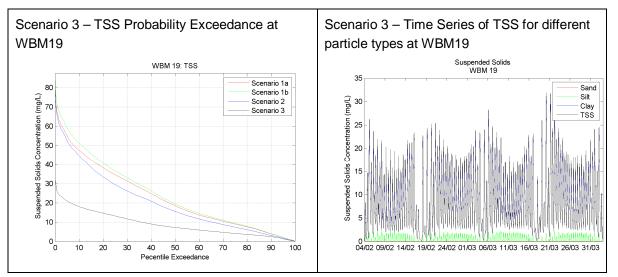


Figure 6-9 Total Suspended Solids at the Decant Discharge Location (WBM19)

The conclusions from analysis of the plume modelling of Scenario 3 with respect to the decant are:

- The predicted increase in TSS (and turbidity) is within the natural range and variability that has been measured within the Western Basin inter-tidal and sub-tidal regions of the Project Area;
- The spatial extent of TSS introduced by the reclamation decant outfall cannot be clearly separated because Scenario 3 also modelled two CSDs that generated a modest dredge plume that interacted

with the decant plume. Nonetheless, the combined areal extent of the decant outfall and the two CSDs was predicted to have elevated TSS levels restricted to the northern boundary of the Reclamation Area; and

• Therefore, impacts from the decant on seagrass beds are expected to be focused along the northern boundary of the developed Reclamation Area.

Mitigation Measures

To achieve water quality objectives, multiple cells will be established within the reclamation to allow the finer materials to settle out of suspension. These cells will be connected via weir boxes with adjustable gates, allowing water to be retained for longer periods when more time is required for fine materials to settle out of suspension. The final weir box at the outfall will be able to be completely closed to allow retention of decant waters should the water quality objective value in the receiving environment be exceeded. Floating booms will also be available on site and will be deployed into the reclamation cells should wind conditions result in waves stirring up deposited sediments within the reclamation cells.

Detailed calculations will be undertaken prior to each dredging program once the dredger, volume, production rate and time frame of the particular program is known, to ensure that the nominated turbidity objective can be maintained over the course of the decant. These calculations will also allow design of the number of reclamation cells and the area required to achieve the water quality objectives.

A Dredge Management Plan will be developed employing a similar monitoring program as undertaken for the recent Berth 1 dredging at Fisherman's Landing, including daily monitoring of sites adjacent to the dredge, within the final reclamation cell, at the outfall and at the northern Western Basin seagrass bed. Monitoring will commence a minimum of two weeks prior to dredging and will continue during decant discharge. The control measures will be re-assessed if the turbidity exceeds 100 NTU in the final reclamation cell or 30 NTU in the receiving environment adjacent to the outfall or if the visible plume extends beyond the spatial extent predicted by the modelling.

6.5.3 Impacts on Turbidity and Light Climate

Potential Impacts

This section presents a discussion of the potential impacts with respect to turbidity and the light climate at representative seagrass locations. It supports the assessment of impact on sensitive habitats in the Project Area, namely seagrass communities, which is evaluated in the Marine Ecology Report (GHD 2009d).

Potential Spatial Impacts from Cutter Suction Dredgers on Turbidity

Previous dredging programs have indicated that the spatial extent of the visible plume from a cutter suction dredger is typically not large, most recently evidenced with the recent Wombat CSD capital dredging at Fisherman's Landing Berth 1 (GHD 2009e and Appendix J of main EIS). Monitoring of this campaign indicated that elevated turbidity levels near the dredger were less than 45 NTU during daily measurements.

Hence, the effect of the CSD dredge plumes from capital dredging operations at the North and Middle Western Basin, Laird Point, Fisherman's Landing North and Hamilton Point are likely to be localised to a relatively small area surrounding the dredger with a visible plume likely to extend along the channel in

the direction of tidal current flow. Model predictions of the generation of dredge plumes by CSD supports the suggestion that limited impact on the turbidity climate will result, as illustrated in Figure 6-8.

Potential Spatial Impacts from Trailer Suction Hopper Dredges on Turbidity

In contrast to CSDs, TSHDs will have a greater impact on the turbidity environment of the Project Area. This is clearly evident through inspection of Table 6-2 where large TSS source rates have been estimated during overflow while dredging (i.e. 75 kg/s for 1 hour because of overflow) and rapid release of the dredged material at the dumping ground (i.e. 340 kg/s for 10 minutes).

Spatial representations of plumes for Scenarios 1a, 1b and 2 are plotted as 10% exceedance TSS levels over the 2 month simulations. These are utilised in a comparative analysis in order to provide a more robust measure of elevated turbidity levels that sensitive habitats are likely to experience (Figure 6-10).

For Scenarios (1a, 1b, 2) where combinations of CSD and TSHD dredges operating simultaneously have been simulated, several key insights into spatial dredge plume patterns are obtained. These can then be used to inform potential impacts to sensitive environments and potential operational mitigation measures. The following patterns are described with respect to the adopted deep water (channel) TSS objective of 50 mg/L (Table 6-4):

- All three Scenarios included one large TSHD dredger dumping in the vicinity of the north-eastern corner of the current Fisherman's Landing reclamation. Inspection of animations of the simulated dredge plume clearly show that when TSHD dumping occurs coincidentally with a flood tide, much of the dredged material is transported into the shallow waters of the northern part of the Western Basin, with a strong tendency to accumulate along the northern margin of the developed Reclamation Area. Similarly, the dumping of dredged material during flood tides will lead to higher TSS concentrations in The Narrows and Graham Creek;
- In contrast, TSHD dumping during ebb tides offers a reduced impact on the seagrass beds in the shallow waters between Fisherman's Landing and Wiggins Island as the majority of the dredge plume material is transported along and within the adjacent dredged channels. This difference between flood and ebb tides provides a potential operational measure to reduce impacts to the northern Western Basin and The Narrows seagrass beds on the basis of the programming of TSHD dumping events;
- TSHD operations locales were predicted to experience elevated TSS levels in response to hopper overflows of 1 hour duration. Hence, the proximity of the TSHD dredging location to the dumping location has a substantive effect on the areal extent of plume. For example, for Scenario 1a with TSHD dredging of the Clinton Channel, distinct elevations of TSS are predicted at the dredge and dumping locations. However, for Scenario 1b with the TSHD operating in close proximity to the dumping ground, the areal extent that exceeds the TSS objective of 50 mg/L increases dramatically. The areal extent of dredge plume exceedance for Scenario 2 is somewhat reduced relative to Scenario 1b, because of the greater separation distance between the overflow and dumping dredge plume sources.

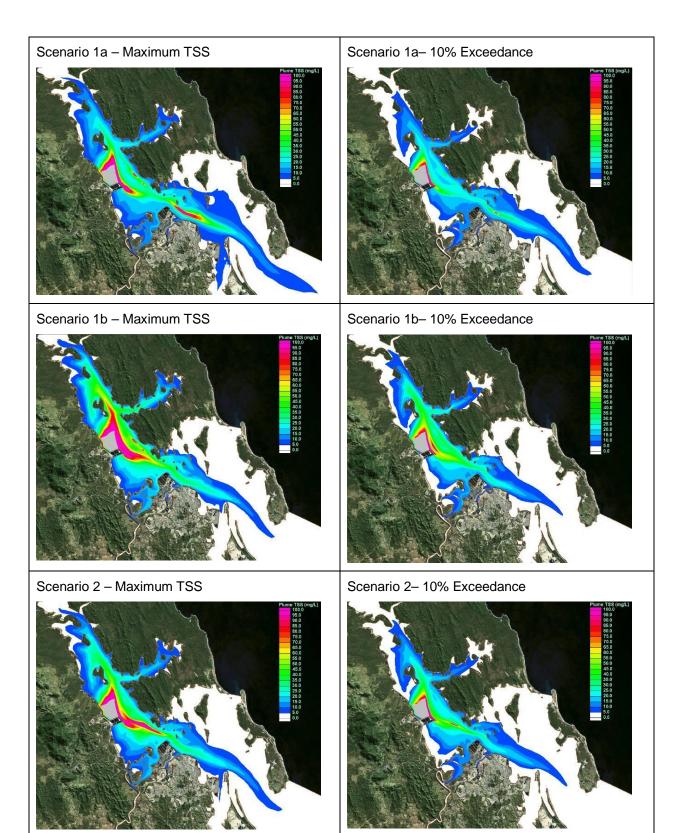


Figure 6-10 Spatial Representation of 10% TSS Exceedance for all Scenarios

Potential Impacts of Dredge Plumes to TSS Climate of Seagrass Beds

Potential light climate impacts from the predicted dredge plumes for the four scenarios have been evaluated at representative locations of environmental sensitivity (i.e. seagrass beds). These include the following model time series points, the locations of which were illustrated in Figure 6-1:

- WBM17 Northern Western Basin seagrass beds;
- WBM04 Middle Western Basin seagrass beds;
- WBM02 Narrows seagrass beds; and
- WBM09 Wiggins Island seagrass beds.

Probability exceedance plots of TSS at each of these locations are provided in Figure 6-11 and can be summarise as:

- Scenario 3 with dredging only by CSDs has substantially lower dredge plume TSS concentrations than the other three scenarios;
- The middle Western Basin (WBM04) dredge plume TSS levels are substantially greater for Scenarios 1a, 1b and 2 by a factor of two over the northern Western Basin (WBM17) with impacts to The Narrows (WBM02) and Wiggins Island (WBM09) seagrass beds substantially lower; and
- Scenario 1a has lower dredge plume TSS concentrations than the other two TSHD scenarios and Scenario 1b has the highest TSS concentrations.

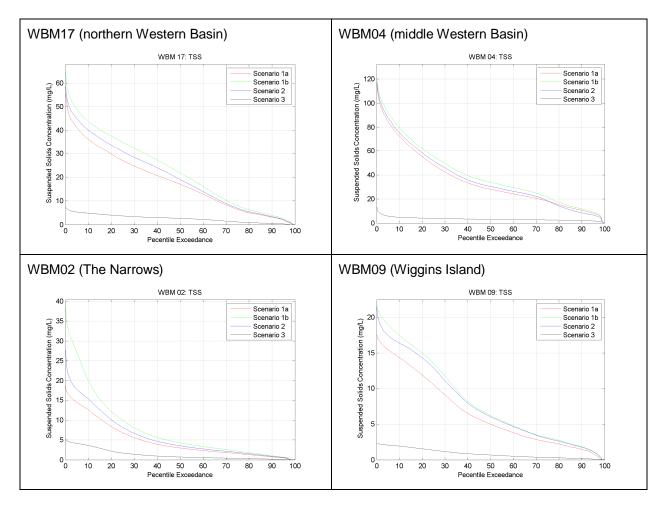


Figure 6-11 Probability Exceedance Plots of TSS at four key Seagrass Bed Locations

A tabular comparison of the 50th, 20th, 10th and 5th probability exceedance TSS concentrations at four representative locations relative to the turbidity/TSS objectives is summarised in Table 6-5. Of these, Scenario 3 experiences dredge plume TSS concentrations at all locations well below the TSS objective. Concentrations are higher for Scenarios 1a, 1b and 2, with the following conclusions offered:

- Seagrass beds at Wiggins Island (WBM09) are predicted to be subjected to turbidity levels well below a TSS objective based on either the 95th or 80th percentile of data;
- Seagrass beds at The Narrows (WBM02) and the northern Western Basin (WBM17) are predicted to be subjected to turbidity levels below a TSS objective based on the 95th percentile of data, and would still meet the objective if an 80th percentile criteria was adopted; and
- Seagrass beds in the middle Western Basin (WBM04) are predicted to be impacted, including a strong influence from elevated dredge plumes generated by TSHD dumping at the rehandling site coincident with flood tides.
- All results need to be considered in terms of the duration for which they occur, and must recognise the significant natural variability that occurs in these waters.

Scenario	Data Derived Simulations						
	TSS Objective (95 th	Alternate TSS Objective (80 th					
Scenario	Percentile)	Percentile)	Median	20th%ile	10th%ile	5%ile	
Location: WBM04 (Middle Western Basin)							
Scenario 1a	77	29	28	55	73	85	
Scenario 1b	77	29	33	63	80	93	
Scenario 2	77	29	30	58	76	89	
Scenario 3	77	29	4	4.5	5	6	
Location: WBM17 (Nor	th Western Bas	sin)					
Scenario 1a	169	55	17	30	36	41	
Scenario 1b	169	55	22	37	44	49	
Scenario 2	169	55	19	34	40	45	
Scenario 3	169	55	3	4	5	6	
Location: WBM02 (The	Narrows - Obj	ective as WB	M04)				
Scenario 1a	77	29	3	8	12	14	
Scenario 1b	77	29	4	12	20	27	
Scenario 2	77	29	3.5	10	15	18	
Scenario 3	77	29	1	2	3	4	
Location: WBM09 (Wig	gins Island)						
Scenario 1a	302	59	5	12	14	16	
Scenario 1b	302	59	6.5	15	17.5	18.5	
Scenario 2	302	59	6	14	16.5	17.5	
Scenario 3	302	59	1	2	2.5	2.5	

Table 6-5Comparison of 50th, 20th, 10th and 5th Probability Exceedance of Simulated TSS Versus
the Dredge Plume TSS Objective

Note: Grey shading denotes where suggested trigger value is exceeded (e.g. 5% exceedance is higher than 95% occurrence). Trigger value based on difference between median and nominated threshold.

Potential Impacts of Dredge Plumes to Light Climate of Seagrass Beds

The specific attenuation coefficient of TSS was estimated through comparisons with measured PAR near the seabed by the loggers at locations 1, 2 and 4 with a background turbidity of 5 NTU (5.6 mg TSS L⁻¹). These values yield a specific attenuation coefficient of roughly 0.15 m⁻¹ (mg TSS L⁻¹)⁻¹ over the range of water levels in Figure 6-12. Estimates here also assumed a median chlorophyll a level of 1 ug chla L⁻¹ (Table 5-15) with a specific attenuation coefficient of 0.02 m⁻¹ (mg chla L⁻¹).

The relative percentage of incident PAR at the seabed was calculated with Beer's Law assuming seagrass beds were located -1, -1.5 and -2 m relative to mean sea level. A base case turbidity of 9 NTU (15.6 mg TSS L^{-1}) was used to estimate the current background PAR climate for each of the shallow water depths considered. An average of the median TSS for Scenarios 1a, 1b and 2 (Table 6-5) was added to the background TSS to assess light climate impacts at each of the four locations with the following values:

- Wiggins Island seagrass beds: 5.8 mg L⁻¹ above background TSS;
- Narrows seagrass beds: 3.5 mg L⁻¹ above background TSS;

- ▶ North Western Basin seagrass beds: 19.3 mg L⁻¹ above background TSS; and
- Middle Western Basin seagrass beds: 30.3 mg L⁻¹ above background TSS.

An example of the relative percentage of incident PAR at the seabed for the representative 95th percentile tidal cycle (i.e. spring tide) is illustrated in Figure 6-13. The highest percentage occurs at tidal cycle hour 6 when the water level is at a minimum (i.e. 10 cm, Figure 6-12). The impact of the dredge plume at Wiggins Island (WBM09) and upper Narrows (WBM02) is minimal, but substantially greater at the two Western Basin locations (WBM17 and WBM04), in terms of both light intensity and the duration of light exposure on the seabed.

Figure 6-14 shows that a large neap tide (25th percentile tidal range) results in a substantial decrease for all cases of the relative percentage of incident PAR. This is attributable to the greater minimum water during the tidal cycle. Further, the relative impacts are also much greater because of the non-linear relation between light absorption through the turbid water column and depth. A decrease in the seabed depth to 1.0 m below mean sea level yields substantial exposure of seagrass to incident light for the 50th percentile tidal range with periods of 100% light exposure at the seabed (Figure 6-15).

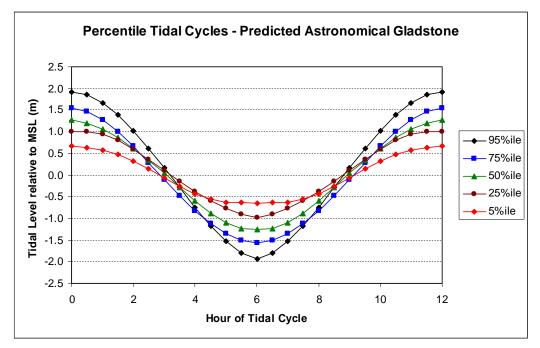


Figure 6-12 Percentile (95th, 75th, 50th, 25th and 5th) Predicted Astronomical Semi-diurnal Tides

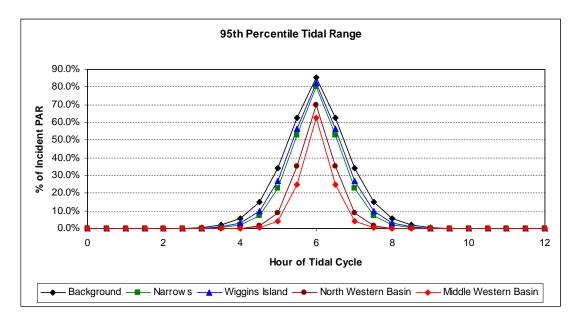


Figure 6-13 Percent of Incident PAR at the Seabed for 95th Percentile Tidal Range (Spring Tide) in 2 m of Depth Relative to MSL for Background and Dredge Plume Scenarios

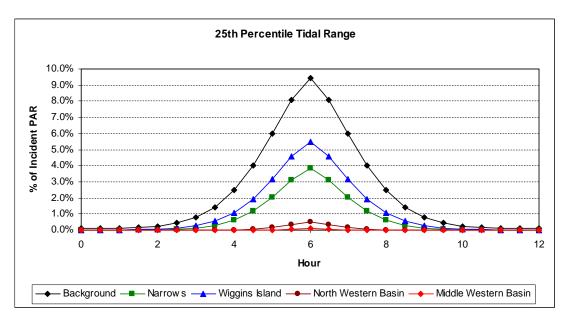
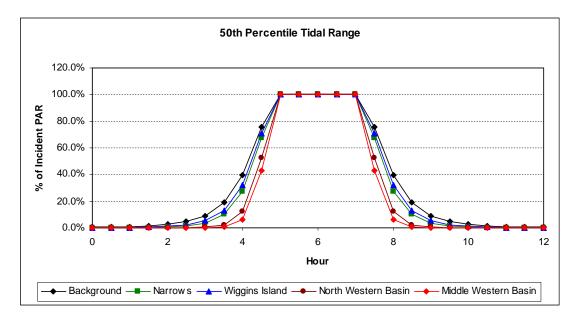



Figure 6-14 Percent of Incident PAR at the Seabed for 25th Percentile Tidal Range (Large Neap Tide) in 2 m of Depth Relative to MSL for Background and Dredge Plume Scenarios

Figure 6-15 Percent of Incident PAR at the Seabed for 50th Percentile Tidal Range (transition tide) in 1.0 m of Depth Relative to MSL for Background and Dredge Plume Scenarios

With the dredging period expected to occur over several years, the following assumptions were made in order to provide an integrated light climate impact assessment over this time scale:

- The range of tidal cycles and water depths are evenly distributed across dredging years in terms of high insolation periods (e.g. several hours either side on solar noon);
- No account made for any differences in variable background TSS between spring and neap tides;
- Assume that the median dredge plume TSS is a reasonable representation of the long-term particle climate that is added to the background levels for impact assessment over yearly time scales.

Allowing for these assumptions, an integrated measure of light climate impacts can be derived through a coarse integration of the representative tidal ranges for each combination of the four locations and three depths as shown in Table 6-6.

Approximation Percentile	Upper Representative Percentile	Lower Representative Percentile	Percentile Weighting (w _p)
95	100.0	90.0	0.10
75	90.0	62.5	0.28
50	62.6	37.5	0.25
25	37.5	10.0	0.28
5	10.0	0.0	0.10

Table 6-6 Weightings for Integrated Light Climate Assessment for Each Tidal Range Percentile

For each location, an approximation of the overall relative percentage PAR over all tidal cycles over 30 minute intervals at 3 depths was estimated as:

$$L_t = \sum_{p=1}^5 w_p I_{tp}$$

where t is each 30 minute interval across the approximate tidal cycle, p is the percentile tidal cycle that has been approximated (i.e. 5^{th} , 25^{th} , 50^{th} , 75^{th} , 95^{th}), w_p is the tidal cycle weighting (Table 6-6) and I_{tp} is the relative incident PAR at time t and tical cycle p. This approximation of the relative incident PAR percentage at the seabed highlights that the impact of the dredge plume is substantially greater for water depths of 2 m than 1 m (Figure 6-16, Figure 6-17, Figure 6-18).

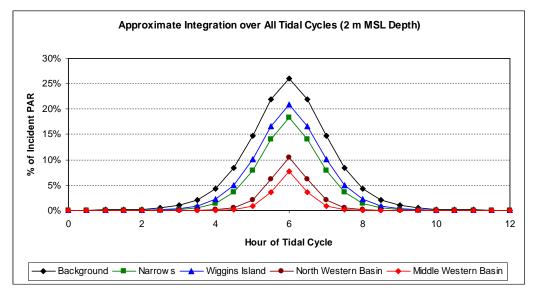


Figure 6-16 Percent of Incident PAR Estimate at the Seabed Across All Tidal Cycles for 2.0 m Depth Relative to MSL for Background and Dredge Plume Scenarios

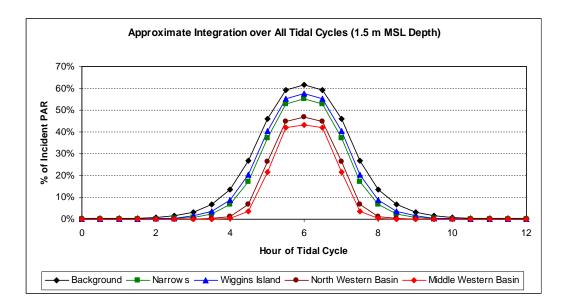
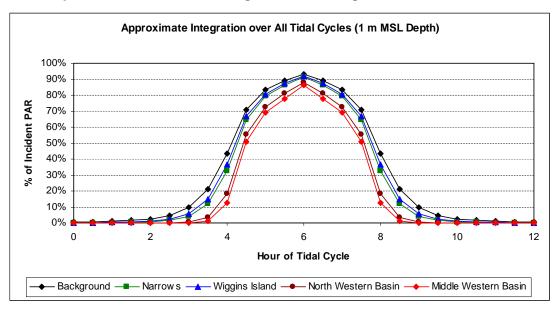



Figure 6-17 Percent of lincident PAR Estimate at the Seabed Across All Tidal Cycles for 1.5 m Depth Relative to MSL for Background and Dredge Plume Scenarios

Figure 6-18 Percent of Incident PAR Eestimate at the Seabed Across All Tidal Cycles for 1.0 m Depth Relative to MSL for Background and Dredge Plume Scenarios

A measure of the potential impact to the light climate is to integrate the following equation was used to calculate the overall light climate percentage over each 30 minute interval:

$$L = \frac{\sum_{t=0}^{12} \sum_{p=1}^{5} w_p I_{tp}}{n_t}$$

Where t is each 30 minute interval across a tidal cycle, p is the percentile tidal cycle that has been approximated, w_p is the tidal cycle weighting (Table 6-6) and I_{tp} is the relative incident PAR at t and p for a particular location.

An annual light climate impact assessment on the basis of representative astronomical tides, high incident PAR of 1800 μ /m²/s and mean water depths of 1, 1.5 and 2 m (Table 6-7), can be summarised as:

- For a 1 m water depth, relative percentage of incident PAR ranges from 20% (Western Basin) to 30% (Background). The relative decrease in PAR is approximately 10% at Wiggins Island and the Narrows and 30% at the Western Basin site;
- For a 1.5 m water depth, relative percentage of incident PAR ranges from 7% (Western Basin) to 15% (Background). The relative decrease in PAR is approximately 20% at Wiggins Island and the Narrows and 50% in Western Basin; and
- For a 2 m water depth, relative percentage of incident PAR ranges from 1% (Western Basin) to 5% (Background). The relative decrease in PAR is approximately 30-40% at Wiggins Island and the Narrows and 80-90% in Western Basin.

Depth (m)	Background	Narrows	Wiggins Island	North Western Basin	Middle Western Basin			
% of Incident	% of Incident PAR at Seabed							
1	30.0%	26.2%	27.5%	22.1%	20.4%			
1.5	15.2%	11.7%	12.8%	8.3%	7.1%			
2	5.3%	2.9%	3.7%	1.1%	0.7%			
% Change of	Incident PAR relati	ve to Background	1					
1		13%	9%	27%	32%			
1.5		23%	16%	46%	53%			
2		45%	31%	79%	88%			

Table 6-7 Light Climate Impact Assessment

Mitigation Measures

A Dredge Management Plan will be developed for the Western Basin capital dredging, employing a similar monitoring program to that undertaken for the recent Berth 1 dredging at Fisherman's Landing, including daily monitoring of sites adjacent to the dredger, within the final reclamation cell, at the outfall and at the Fisherman's Landing and Wiggins Island seagrass beds.

Several operational considerations for the period of capital dredging have been identified as a means to potentially reduce dredge plume impacts to sensitive habitats. It is noted that:

• The effect on the Narrows and northern portion of the Western Basin is greater during the flood phase of large spring tides as tidal transport of dredge material to this region is predicted to be

substantial. Hence, TSHD dumping during daytime flood tides should be minimised through programming wherever possible (with emphasis on periods of large spring tides); and

The same constraints are not present during ebb tides as most of the dumped dredge material is predicted to be constrained to the deeper channels and does not greatly elevate TSS levels at the Wiggins Island seagrass beds.

Operationally, utilisation of the option to pump from TSHDs directly into the reclamation during the periods identified above should be considered. As TSHD bottom dumping events are predicted to produce elevated TSS levels for relatively short durations, this approach may also provide benefit to the seagrass beds during dredging works.

Improved characterisation of the light environment of the seagrass beds is also recommended, as the light climate is not well characterised to date. Deployment of a PAR logger array in the Wiggins Island and Northern Western Basin seagrass beds is recommended for consideration to achieve this outcome.

As specified previously, the turbidity objectives derived for this EIS are based predominately on dry season continuous logger measurements. With wet season turbidity likely to exhibit strong inter-annual variability as a function of rainfall and resultant catchment loadings, it is recommended that wet season logger deployments in both deep and shallow waters be implemented to allow for the further development of wet season turbidity objectives.

Dredging programs will need to be undertaken in accordance with Dredge Management Plans approved under the *Coastal Management and Protection Act 1995* and *Environmental Protection Act 1994*.

6.6 Potential Impacts of Dredging and Decant on Sedimentation

Potential Impacts

Potential Impacts of Sand-Sized and Fine Material Dredge Plume Sedimentation on Deeper Waters

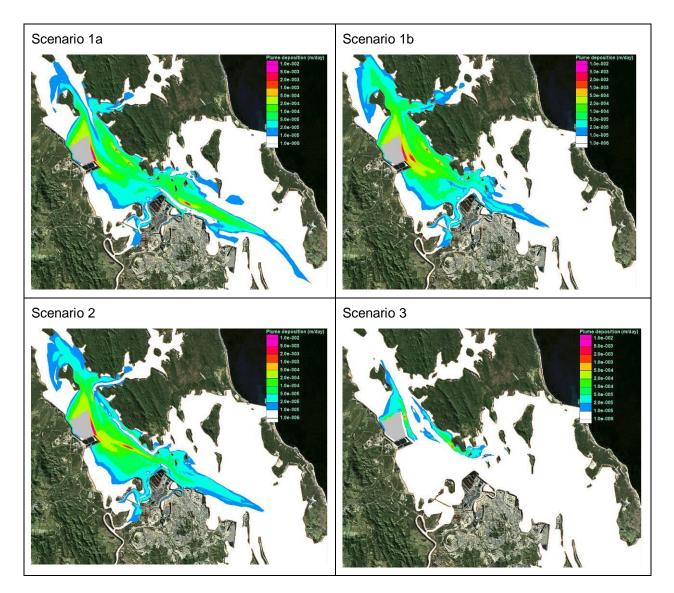
Potential impacts to bed shear stresses, and sand-sized and silt-sized sedimentation in the deeper waters (>2 m LAT) are reported in the Numerical Modelling Studies Report (Appendix J of main EIS). The purpose of this assessment was to provide sedimentation estimates to inform maintenance dredging frequency, which indicates the following:

- Bed shear stresses during spring tides in channels are large enough so that fine sediments will not be stable deposits in the long term, which is consistent with observations of limited fine material in the main channel. The shallower areas with lower velocities have smaller bed shear stresses that is consistent with the natural deposition of fine material in these areas. The predicted Project impact is a reduction in bed shear stresses in the dredged areas where depths are greater and velocities lower as well as laterally adjacent areas where velocities are reduced;
- Additional sand-sized sedimentation is predicted to occur in the Project Area for all of the scenarios relative to the base case because of the expanded dredge footprint. It is noted that sand-sized sedimentation for areas less than -2 m LAT were not estimated because of likely over-prediction due to lack of incorporation of resuspension dynamics that are likely an important mobilisation process; and
- The substantial (17-fold) increase in fine material siltation of dredged areas is due to the much larger dredged area footprint in the developed cases, this dredge footprint occurs largely in a region of

lower tidal flow energy than the existing port channels, and the further decrease in tidal velocities due to the dredging associated with the developed cases. Sedimentation rates of up to 0.08 m/year occur at siltation hotspots within the dredged areas. Therefore, a 0.3 m over-dredging allowance should accommodate 3+ years of sedimentation between maintenance dredging campaigns.

These sedimentation predictions focused on the dredged areas to determine maintenance dredging requirements and utilised currents and bed shear stresses from the hydrodynamic/flushing simulations.

Predicted Spatial Impacts from Plume Sedimentation


An output from the dredge plume simulations was the average sedimentation rate of the dredge plume material over the 2 month simulations (Figure 6-19). The assumptions in the modelling included:

- No provision for re-suspension of already deposited plume material as it will generally become mixed with and hence, indistinguishable from the re-suspension of the natural bed material; and
- Settling will occur in areas when currents and waves (and hence bed shear stresses) are sufficiently low; and
- Resuspension is dependent on prevailing conditions and the nature of the material rather than the origin of the material.

Given these assumptions, spatial representations of the sedimentation predictions are shown in Figure 6-19, which have the following patterns:

- Elevated sedimentation rates are predicted to occur at locations of dredging operations (CSD, TSHD overflow, TSHD dumping) and the decant outfall. Those at the actual dredging location are, of course, artificial estimates, in that they will continue to be removed as part of the dredging process until design depth is achieved;
- Scenario 3 has a relatively small dredge plume sedimentation footprint in comparison with the other scenarios confined primarily to the operating locales of the two CSDs and the decant outfall. Clearly, there is an interaction between the CSD operating in Fisherman's Landing North and the decant outfall that enlarges the sedimentation footprint;
- The other three scenarios (1a, 1b, and 2) all have similarly sized plume deposition patterns with differences in sedimentation hot spots coincident with CSD and TSHD overflow locations. The deposition footprint of Scenario 1a extends further south owing to TSHD operations in the Clinton Channel. In contrast, the deposition footprint extends further up The Narrows for Scenario 1b as a consequence of TSHD operations in the Fisherman's Landing swing basin, the northern most extent of simulated TSHD operations; and
- Sedimentation in the Western Basin inter-tidal and sub-tidal areas is predicted to be substantially greater for those scenarios inclusive of TSHD dumping.

Figure 6-19 Spatial Representation of TSS Plume Deposition

Potential Impacts of Dredge Plume Sedimentation at Representative Seagrass Bed Locations

Potential sedimentation impacts to seagrass beds may result from smothering of existing substrates by settling of dredge plume material during the dredging operations. Smothering of seagrass can weigh down leaves, restrict light penetration and cause stress on the plants. The seagrass communities in the vicinity of the Project Area may experience an increase in sedimentation because of the Project. Potential sedimentation impacts from the predicted dredge plumes are assessed at the same representative locations of environmental sensitivity (i.e. seagrass beds) as for the prior light climate impact analysis, namely (Figure 6-1):

- WBM17 Northern Western Basin seagrass beds;
- WBM04 Middle Western Basin seagrass beds;
- WBM02 Narrows seagrass beds; and
- WBM09 Wiggins Island seagrass beds.

Daily sedimentation rates of dredge plume material at these four locations are summarised in Table 6-8.

Scenario	Narrows	Wiggins Island	North Western Basin	Middle Western Basin
1a	0.008	0.033	0.167	0.367
1b	0.022	0.047	0.217	0.400
2	0.012	0.043	0.192	0.383
3	0.003	0.003	0.025	0.033

 Table 6-8
 Daily Sedimentation Rates of Dredge Plume Material (mm/day)

Daily sedimentation rates at the Western Basin seagrass beds are clearly much greater than The Narrows and Wiggins Island sites, particularly for Scenarios 1a, 1b and 2. These estimates should be viewed as qualitative comparisons as the resuspension of natural bed material has not been modelled. Hence, these estimates are more representative of calm and low current conditions when wave and current induced resuspension is minimal.

Mitigation Measures

Operationally, addition of the option to pump directly from TSHDs into the Reclamation Area during the flood phase of large spring tides coincident with daytime could be considered. TSHD bottom dumping events are predicted to produce elevated rates of TSS sedimentation over the Western Basin seagrass beds at these times.

Mitigation measures to reduce turbidity from the decant are also applicable for reduction of sedimentation rates.

6.7 Potential Impacts on Water Quality of Sediment Quality and Elutriate Release during Dredging

Potential Impacts

Potential Impacts from Dredged Sediments

The Project will encompass a wide range of sediment types with a range of physical (i.e. cobble, gravel, sand, silt and clay relative composition) and quality properties. Nonetheless, the analysis of QGC sediment quality data in the Sediment Quality Report (GHD 2009a) indicates that sediments are 'clean' with the following overall characteristics:

- The analysis of a large number of sediment samples from each of the dredge stages for an extensive suite of potential contaminants has revealed that the overall quality of the sediments in the Project Area are compliant to the NAGD (2009) and the EPA Draft Guidelines for the Assessment and Management of Contaminated Land in Queensland (1998) Environmental Investigation Levels; and
- The only exception to the compliance of the sediment quality with the adopted guideline values is the elevated manganese concentrations observed within the Stage 1B area.

Due comprehensive nature of the sediment sampling and analysis program, the findings are considered representative of the sediments to be dredged for the Project. The results of the sediment chemical characteristics are also consistent with a number of other recent capital and maintenance dredging

sampling programs within Port Curtis. It is therefore considered that the sediments proposed to be dredged are suitable for placement within the proposed Western Basin Reclamation.

Potential Impacts from Elutriate on Water Quality during Dredging and Rehandling

Median elutriate concentrations of ammonia (783 ug N L⁻¹) and manganese (399 ug Mn L⁻¹) were substantially greater than median values in the water column (NH₄=6 ug N L⁻¹, Mn=2.2 ug Mn L⁻¹) (Section 5.4). The QWQG (2006) guideline for indirect effects (i.e. eutrophication) of ammonia/ammonium is 8 ug N L⁻¹ and no guideline exists for manganese in marine waters.

The NAGD (2009) defaults to the ANZECC (2000) 95th percentile level of protection for direct toxicity effects from elutriate after 'initial dilution' estimates. Hence, for ammonia elutriate the relevant guideline is 910 ug N L⁻¹, so the median elutriate ammonia level is below the relevant NAGD (2009) guideline for direct toxic effects on the ambient waters of the Project Area during overflow and rehandling operations.

Because of the potential indirect (i.e. eutrophication) impacts from ammonia elutriate during TSHD overflow and rehandling operations, estimates of the near-field (i.e. in close proximity to the TSHD) concentrations of the receiving estuarine waters were derived with the following assumptions:

- ▶ TSHD filling discharge rate is 16.7 m³ s⁻¹ (i.e. 10,000 m³ hopper capacity filling in 10 minutes);
- TSHD overflows for 50 minutes of 60 minutes (10 minutes to fill);
- Concentrations of ammonia elutriate of 783 ug L⁻¹ and receiving waters 6 ug L⁻¹;
- 7.83 kg of ammonia elutriate dredged per 3 hour cycle of TSHD;
- 75% of the ammonia elutriate released during 50 minutes of overflow and remaining 25% during 10 minute dump, which assumes the majority of the ammonia elutriate is discharged during released overflow operations;
- Assumed overflow and rehandling TSS plumes have a cross-current length scale of 100 m (characteristic length scale);
- Assumed a completely mixed water column of 10 m depth (characteristic depth scale); and
- Assumed conservative behaviour (i.e. no oxidation to NO_X, no particle adsorption, no transfers across air-water interface).

These assumptions were used to calculate the near-field ammonia concentrations for representative current speeds of 0.1 m/s (slack), 0.5 m/s (neap) and 1 m/s (spring) as shown in Table 6-9.

Current (m/s)	Time (s)	Dilution Volume (m³)	Median NH _X (g/m³)	Overflow Volume (m³)	NH _x Elutriate Mass (g)	NH _x Hopper Elutriate (mg/L)	NH _x (mg/L) Near- Field	Ratio Relative to Guideline
Overflow								
0.1	3000	300,000	0.006	50000	5873	0.117	0.022	2.7
0.5	3000	1,500,000	0.006	50000	5873	0.117	0.010	1.2
1	3000	3,000,000	0.006	50000	5873	0.117	0.008	1.0

Table 6-9 Overall Ammonia Elutriate Impact Assessment for Indirect Impac
--

Current (m/s)	Time (s)	Dilution Volume (m ³)	Median NH _x (g/m ³)	Overflow Volume (m³)	NH _x Elutriate Mass (g)	NH _x Hopper Elutriate (mg/L)	NH _x (mg/L) Near- Field	Ratio Relative to Guideline
Rehandling								
0.1	600	60,000	0.006	10000	1958	0.196	0.033	4.1
0.5	600	300,000	0.006	10000	1958	0.196	0.012	1.5
1	600	600,000	0.006	10000	1958	0.196	0.009	1.1

This conservative approach indicates that the QWQG (2006) guideline will be exceeded during rehandling and overflow activities except during elevated currents (i.e. 1 m/s) for both overflow and rehandling operations. In contrast, because of the much smaller dilution volume during low slack tide currents, ammonia levels of 3 - 4 fold over the guideline values are estimated in this situation.

This analysis does not take into account far-field dispersion processes nor non-conservative processes (i.e. adsorption to particles and settling, volatilisation across the air-water interface, oxidation to oxidised inorganic nitrogen or uptake by photosynthetic organisms) and as such should be interpreted as a very conservative measure of potential indirect impacts from increased levels of nitrogen availability to primary producers.

Application of the NAGD (2009) guidelines to estimate 'initial dilution' over a 4 hour period will substantially reduce these estimates as dispersion of the elutriate will be much greater than the conservative approach used here (i.e. elutriate dilution in water volume that moves past during overflow and rehandling activities). Generally, the most likely indirect impact under these circumstances is the stimulation of phytoplankton growth or blooms, which is highly unlikely as the ammonia plume is coincident with a turbid plume, which greatly reduces light availability.

It is noted that the concentration of metals and ammonia in the decant waters from the reclamation were not considered in this analysis as the majority of the pore water fraction would be fluxed out of the sediments during dredging, overflow and rehandling.

Mitigation Measures

There are no mitigation measures proposed for the predicted changes in water quality associated with elutriate inputs or sediment mobilised into the water column as a result of the dredging operations other than to monitor ammonia and manganese periodically in the locale of dredging operations.

6.8 Maintenance Dredging

Maintenance dredging will be required on occasion to maintain the channels, swing basins and berths to their declared depths and to maintain shipping safety. Based on current maintenance dredging for Port Curtis, it is likely that dredging will continue to be required annually. The impacts of maintenance dredging will be much reduced relative to those of capital dredging because the duration will be considerably less than the capital dredging programs. Sediment quality will be analysed prior to any dredging and appropriate disposal locations identified based on the physical and chemical properties of the material to be dredged. GPC will obtain all required permits for maintenance dredging and will

implement mitigation measures and monitoring programs to minimise impacts on the receiving environment, in particular water quality.

6.9 Overview of Potential Impacts and Mitigation Measures

Potential impacts and mitigation measures for water quality are summarised in Table 6-10.

Construction Aspect	Construction Process	Potential Impacts	Potential Mitigation Measures
Construction of Bund Wall	Construction of the bund will involve placement of core material and rock armour into the harbour by trucks.	The disturbance of soft seabed sediments will be limited to the first layer of rocks, after which subsequent any additional rock for that section will be dumped on rock and not the soft seabed sediments.	Generation of turbid plumes during rock placement to be visually monitored and photographed daily during initial construction stages. Difficult to mitigate this plume as the large tidal range and strong tidal currents limit the practicality of silt curtains in this environment. A stockpile of armour material will be held at the
		There will be an increased risk of remobilisation of the mud wave during elevated wind and wave conditions, or during spring tides. There will also be the potential	a storm will require the placement of the stockpiled armour material to cover exposed faces of the core material.
		for waves to erode core material during storm (cyclone) conditions that may arise over the course of construction.	No refuelling or maintenance of construction equipment will occur on the site, nor will equipment be parked at the site for a significant time, reducing the potential for significant spills of oils and fuels to
		There is the potential for spillage (either minor through drips or major through a leak/accident) of oils and fuels from construction	occur. Spill kits for land and water based spills will be kept at the site and personnel trained in their use. Emergency response procedures will be established.
		equipment to impact on marine water quality.	No mitigation measures for flushing and hydrodynamic changes.
		Small reduction in flushing because of loss of inter-tidal storage and small changes to currents, water levels and tide phases.	

Table 6-10 Overview of Potential Impacts of the Project on Water Quality

Construction Aspect	Construction Process	Potential Impacts	Potential Mitigation Measures
Filling of Bund Wall and Reclamation Decant	Dredged plume material will either be pumped	Placement of geotextile fabric will act to minimise the migration	No mitigation required for migration of dredge plume material through the bund.
	from CSD locations or dumped by a TSHD adjacent to the reclamation and rehandled by a medium- sized CSD into the reclamation.	significant amount of dredged material is beached against the inner wall, this will also act as a filter layer to assist in preventing the migration of fine material	To achieve water quality objectives multiple cells within the reclamation will allow finer materials to settle out of suspension via weir boxes with adjustable gates so that water can be retained for longer periods if needed, and the final weir box at the outfall can be completely closed if water quality objective is exceeded.
	receiving environment. TSS (and turbidity) from th decant is within the natura	receiving environment.	Floating booms will also be available on site and will be deployed into the reclamation cells should wind
		decant is within the natural range and variability that has been	conditions result in waves stirring up deposited sediments within the reclamation cells.
		measured within the Western Basin intertidal and subtidal regions of the Project Area with elevated levels primarily along the northern boundary of the reclamation, which is likely to the	Prior to each dredging program, once the dredger, volume, production rate and time frame of the particular program is known, calculations will allow design of the number of reclamation cells and the area required to achieve the water quality objectives.
		region of impacts to seagrass beds.	Development of a Dredge Management Plan including daily monitoring of sites within the final reclamation cell, at the outfall and at the northern Western Basin seagrass bed that commences two weeks prior to dredging, and continues during decant discharge.

Construction Aspect	Construction Process	Potential Impacts	Potential Mitigation Measures
0 0	Material removed from seafloor by pumped CSD or TSHD rehandling with	Increased turbidity in vicinity of CSD, TSHD overflow and TSHD dumping.	Monitoring of water quality during dredging and comparison of results to site specific water quality objectives for turbidity.
	placement in reclamation	Development of large turbid plumes that impact seagrass beds in Western Basin (primarily during flood tides because of TSHD dumping), but less so for those in The Narrows and Wiggins Island.	Sediment sampling undertaken for the EIS determined dredged material is suitable for reclamation material, therefore the risk of contaminants being mobilised into the water column is considered low.
			Where possible, reduce occurrence of TSHD dumping during selected periods (such as flood
		Decrease in the light climate experienced by seagrass beds in shallow waters.	phase of large spring tides) through programming, as this is when much of the dredge plume material will be transported into the Western Basin seagrass
		Slight reductions in net circulation patterns and flushing.	beds, and to a lesser extent, beyond these beds. No mitigation for changes to circulation patterns and flushing.

7. Risk Assessment

To assess the risk posed to the marine environment by activities undertaken as part of the proposed project a risk assessment has been undertaken. This risk assessment addresses the construction and operational aspects of the Western Basin Dredging and Disposal Project and, therefore, takes into consideration potential compounded impacts from multiple dredging programs. The assessment identifies aspects of the works that pose an environmental risk, and classes these risked into one of four categories (High, Medium, Low and Very Low). The classification then allows priorities to be set for addressing and mitigating these risks.

7.1.1 The Risk Assessment Process

No international standard exists for risk management and as a result the risk assessment methodology employed here is based on the Australian Standard AS/NZS 4360: 1999 *Risk Management* (the Standard), HB 203: 2000 *Environmental Risk Management – Principles and Process* (the Guidelines), and the GPC Environment Procedure for Risk Assessment. The Standard and Guidelines set out a generic framework for establishing the context, identifying, analysing, evaluating, treating, monitoring and communicating risks. The Best Practice Environmental Management in Mining, Environmental Risk Assessment (EA, 1999) also adopts this standard though different definitions have been adopted by EA. The GPC Environment Procedure for Risk Assessment provides a whole of business risk matrix to assist in calculating the level of consequence and likelihood for identified risks.

Risk Assessment Methodology

The objective of a risk assessment is to filter the minor acceptable risks from the major non-acceptable risks. It involves consideration of the sources of risk, the consequences and the likelihood that those consequences may occur.

Risk analysis may be undertaken to various degrees of refinement depending upon the risk information and data available. Analysis techniques include:

- Qualitative assessment;
- Semi-Quantitative assessment; and
- Quantitative assessment.

In practice, a qualitative analysis is often used to first obtain a general indication of the level of risk and then a more quantitative analysis is applied to refine the risk.

A quantitative risk assessment can be undertaken based on statistical analysis for various consequences and probabilities. In the absence of statistical data, an estimate may be made of the degree of the consequence and frequency (refer to Section 4.3 of the Standard).

The risk assessment methodology for this EIS uses a semi-quantitative process for determining risk. The semi-quantitative process estimates the degree of the consequence and probability and assigns a score to each. The assigned scores for consequence and probability are not linearly related to each other or to the level of environmental impact but are weighted descriptors (refer to Section 4.3.4 of the Standard). The risk and impact assessment process used here to assess and weight potential project risks was

undertaken using an Environmental Risk and Likely Impact ("ERLI") approach. For each possible impact aspect, two key areas were addressed:

Environmental Risk

This essentially considers the risk of irreversible change to natural ecological processes and community interaction. Assessment addresses:

- Conservation significance of environmental, social and cultural values and regional context of these values;
- Current level of integrity of natural ecosystem processes;
- Known sensitivity of ecosystem processes/natural values to human induced change;
- Natural change and resilience of relevant ecosystem processes/natural values;
- Potential for cumulative social and environmental impacts; and
- Level of scientific certainty of the above factors.

Likely Impact

This considered the likely impact of the project, as modified and undertaken in accordance with mitigation strategies (including any environmental management plans or conditions from licensing/approval agencies) and includes:

- Geographic extent of the activities;
- Duration of the activities;
- Magnitude of potential environmental change;
- Confidence in prediction of impact;
- Confidence in mitigation strategies to minimise ecological and social risks; and
- Ability to monitor the impacts and detect change before irreversible change to system processes occurs.

The approach considered direct and indirect impacts, short and long term, cumulative, temporary and irreversible, and adverse and beneficial impacts.

The relative importance of each impact was examined to provide context and an ability to justifiably determine the impact's significance. In particular, the duration of the impact (temporary vs. permanent) and reversibility were considered. The ability of natural systems (including population, communities and ecosystems) to accept or assimilate impacts was also considered.

The above approach is used to provide the essential information that is used in the formal Risk Assessment as based on the Australian/New Zealand Standard 4360:2004. This methodology is outlined below.

Stage 1: Identification of Risk

This included identification of all relevant risks, addresses all known activities and related environmental aspects of the Project.

Stage 2: Risk Analysis

An important feature is recognition of the fact that an event's consequence extends beyond the immediate impact. This methodology ensures that the full consequences of events are visible to risk owners and managers and that the effects on the Project are all understood and treated. Each class of consequence is rated a score of 1 - 5, where "1" is minor consequence to "5" is critical.

An analysis of each risk is undertaken to determine an environmental event's likelihood of occurrence and its consequences. A five-level qualitative description of the likelihood and consequences for each risk enables a semi-quantitative method to be used to calculate a 'score' for each risk.

Definitions and scales for Consequences that are in accordance with the GPC Environment Procedure for Risk Assessment are shown in Table 7-1 and definitions and scales for Likelihood are shown in Table 7-2.

Stage 3: Calculation of Risk Level

Two levels of risk are used:

The **Primary Risk Level (PRL)** is a conservative measure of risk, based on the most severe consequences across all the relevant criteria. PRL is calculated according to the equation:

Primary Risk Level (PRL) = Likelihood Rating X Maximum Consequence Rating

The **Secondary Risk Level (SRL)** is a less conservative measure of risk, which incorporates all relevant criteria, not just the most severe ones. SRL is calculated according to the equation:

Secondary Risk Level (SRL) = Likelihood Rating X Average Consequence Rating

In most circumstances PRL should be the preferred measure, as it is more conservative. Risk scores are banded into risk levels, which provides a "plain English" view of the risk. Scores will always be visible to enable prioritisation within bands.

Table 7-3 and Table 7-4 show the bands, their threshold values and indicative management action.

Stage 4: Determination of Options for Treatment of Risks

Following the analysis of a risk it is necessary to investigate the options available for risk treatment and then determine the option or options that provide the greatest cost benefit.

Risks may be treated in one or a combination of ways⁴:

- Avoiding a risk by preventing the activity that leads to the risk eventuating;
- Reducing the likelihood of the risk eventuating;
- Reducing the consequences if the risk does eventuate;
- Transfer the risk; and
- Retaining the risk.

⁴ After AS/NZS 4360:2004

Category	Workplace Health & Safety	Environment	Financial Impact on Earnings before Interest and Tax	Community or Customer Reputation	Legal	Process Interruption
1 Minor	Near miss/no injury	On site release of pollutant contained without external assistance	Losses less than \$100,000	Isolated complaint	Court action with small fine – less than \$10,000	Less than 1 hour
2 Moderate	First Aid Treatment	On site release of pollutants contained with external assistance	Losses of \$100,000 to \$1 million	Multiple community or customer complaints	Court action with moderate fine - \$10,000 to \$75,000	1 hour to 1 shift
3 Significant	Medical treatment	Significant on or off site release and detrimental impacts	Losses of \$1 million to \$2.5 million	Community action with possible delays to project	Court action with significant fine - \$75,000 to \$250,000	1 shift to 1 day
4 Major	Serious injury/lost time injury	Major offsite release and detrimental impacts	Losses of \$2.5 million to \$5 million	Community action severely delays project	Court action with major fine - Greater than \$250,000	1 day to 1 week
5 Critical	Major extensive injury (permanent disablement) or fatality	EPA ordered shutdown of major part of process	Losses of greater than \$5 million	Community or customer outrage prevents projects or results in severe damage to Corporate image which limits future options	Court action with jail sentence	More than 1 week

Table 7-2 GPC Likelihood Rating

Likelihood	Rating	Likelihood Calculator
Rare	1	The risk may occur only in exceptional circumstances (The risk is not likely to occur in the next 25 years)
Unlikely	2	The risk could occur at some time (The risk is likely to occur once in the next 5-25 years)
Possible	3	The risk might occur at some time (This risk is likely to occur in the next 2-5 years)

Likelihood	Rating	Likelihood Calculator
Likely	4	The risk will probably occur in most circumstances (The risk is likely to occur in 1-2 years)
Almost Certain	5	The risk is expected to occur in most circumstances (The risk is likely to occur within the next 12 months)

Table 7-3 GPC Risk Assessment Matrix

	Consequence				
Likelihood	Critical (5)	Major (4)	Significant (3)	Moderate (2)	Minor (1)
Almost Certain (5)	High	High	High	Medium	Medium
Likely (4)	High	High	Medium	Medium	Low
Possible (3)	High	Medium	Medium	Low	Low
Unlikely (2)	Medium	Medium	Low	Low	Very Low
Rare (1)	Medium	Low	Low	Very Low	Very Low

Table 7-4 Risk Levels and Management Action (Example)

Risk Level (PRL or SRL)	Descriptor	Indicative Management Action
1-4	Low	Manage by routine procedures, unlikely to need specific application of resources
5-10	Medium	Manage by specific monitoring or response procedures, develop more detailed actions as resources allow
10-16	High	Senior management attention needed and management responsibilities specified for further action
17-25	Extreme	Immediate action required, senior management will be involved

Limitations

As with any model, the relevance and applicability of the risk model revolves around a number of basic assumptions and limitations. The application of the risk model has been based on subjective ranges of consequences and probabilities.

Limitations of the application of the risk methodology for this study include:

- The assessment is based on the professional judgement of a limited number of experienced GHD staff and does not incorporate the collective experience of all parties involved with the Project. The full range of risks and the most appropriate consequence and likelihood rating would be best completed in a workshop involving key stakeholders;
- The assessment has been limited to a selected number of primary risks and the assessment of cumulative risk to the environment from multiple pollution sources or sources of environmental

degradation has not been addressed. Cumulative risks are approached for this study in a qualitatively manner only.

Although a semi-quantitative methodology was used to conduct the risk assessment, the resultant risk estimation is purely relative. The risk estimations do not imply an absolute scale of risk that can be applied to any other situation or assessment.

7.1.2 Applying the Process to Expected Impacts

Table 7-5 adopts the process described above to provide an assessment of water quality risks for the Project.

Table 7-5 Water Quality Risk Assessment

Activity Description	Potential Impacts and their Consequences	Preliminary Risk Assessment (C, L) Score	Additional Control Strategy	Residual Risk with Additional Control Strategies Adopted (C, L) Score
Construction Pha	ase			
Construction of Bund	Impact upon hydrodynamic regime and slightly reduced flushing of the Project Area with potential for small increases to background water quality levels.	(1,5) Medium	No ability to control impact.	(1,5) Medium
	Impact upon turbidity of the Western Basin inter-tidal and sub-tidal area from the disturbance of soft seabed sediments will be limited to the first layer of rocks after which any additional rock will be dumped on rock and not the soft seabed sediments.	(1, 5) Medium	Little ability to control impact. Silt curtains inappropriate given high flow environment. Minimal impacts expected.	(1, 5) Medium
	Increased risk of remobilisation of disturbed sediments during elevated wind and wave conditions, or during spring tides. There will also be the potential for waves to erode core material during storm (cyclone) conditions that may arise over the course of construction.	(2, 3) Low	Small stockpile of armour material held at the quarry sufficient to cover any exposed core if a cyclone approaches. Construction technique likely to have armour layer only 20 to 30m behind core. Minimise exposed core to 50m.	(2, 2) Low

GHD

Activity Description	Potential Impacts and their Consequences	Preliminary Risk Assessment (C, L) Score	Additional Control Strategy	Residual Risk with Additional Control Strategies Adopted (C, L) Score
	There is the potential for spillage (either minor through drips or major through a leak/accident) of oils and fuels from construction equipment to impact on marine water quality.	(3, 5) High	No refuelling or maintenance of construction equipment to occur on site, nor equipment to be parked at the site for a significant time. Readily available spill kits for land and water to be kept on site with trained personnel. Emergency response procedures will be established. Adherence to waste management controls identified in the EMP for this Project.	(1, 5) Medium
Filling of the Bund and Dredge Decant	Placement of geotextile fabric will minimise migration of fines through bund wall into surrounding waters. Once substantial amount of dredged material is beached against the inner wall this will act as an additional filter layer to prevent fine material migration through the bund wall into the receiving environment.	(3,4) Medium	No additional mitigation required.	(3,4) Medium
	Predicted TSS (and turbidity) from the decant results primarily in elevated levels along the northern boundary of the reclamation, which is the likely region of impacts to seagrass beds.	(3,5) High	Appropriate design and construction of bund, including lining with geotextile fabric and installing internal bunding, to reduce potential for fines to be moved back into marine environment through the bund wall or via the decant waters.	(3,4) Medium
			Monitor tailwater decant to meet conditions/objectives within pond and/or within approved mixing zone. Provision to modify internal bund structure or discharge weir arrangement if required.	

Activity Description	Potential Impacts and their Consequences	Preliminary Risk Assessment (C, L) Score	Additional Control Strategy	Residual Risk with Additional Control Strategies Adopted (C, L) Score
Remnant Channel to West of Reclaimed Area	Reduction in net circulation and flushing	(1, 3) Low	Limited ability to control impact.	(1, 3) Low
CSD Dredging	Increased turbidity in vicinity of CSD	(1, 5) Medium	Limited impact in comparison to TSHD, with DMP to be adopted. No additional measure proposed.	(1, 5) Medium
	Metals concentrations exceed trigger level due to CSD operation including release of sediment due to the activity of the cutter	(1, 5) Medium	No ability to control impact, but likely extent and persistence minimal.	(1, 5) Medium
TSHD Dredging	Increased turbidity in vicinity of TSHD overflow. Primary impact will be on seagrass bed areas in the Western Basin.	(4,4) High	Monitoring and control of dredge regime to be in accordance with dredge management plan (DMP).	(4,3) Medium
			Monitor turbidity levels against site specific objective within relevant sensitive ecosystem receptors and adjacent habitats and respond as required by DMP.	
			Activity alteration may include reducing duration of dredging at particular locations during spring tide, relocating dredge to different areas in accordance with dredge program, planned increase in period between dredging activity at any one location.	
			Use of a CSD has been nominated for areas closest to The Narrows and Graham Creek.	

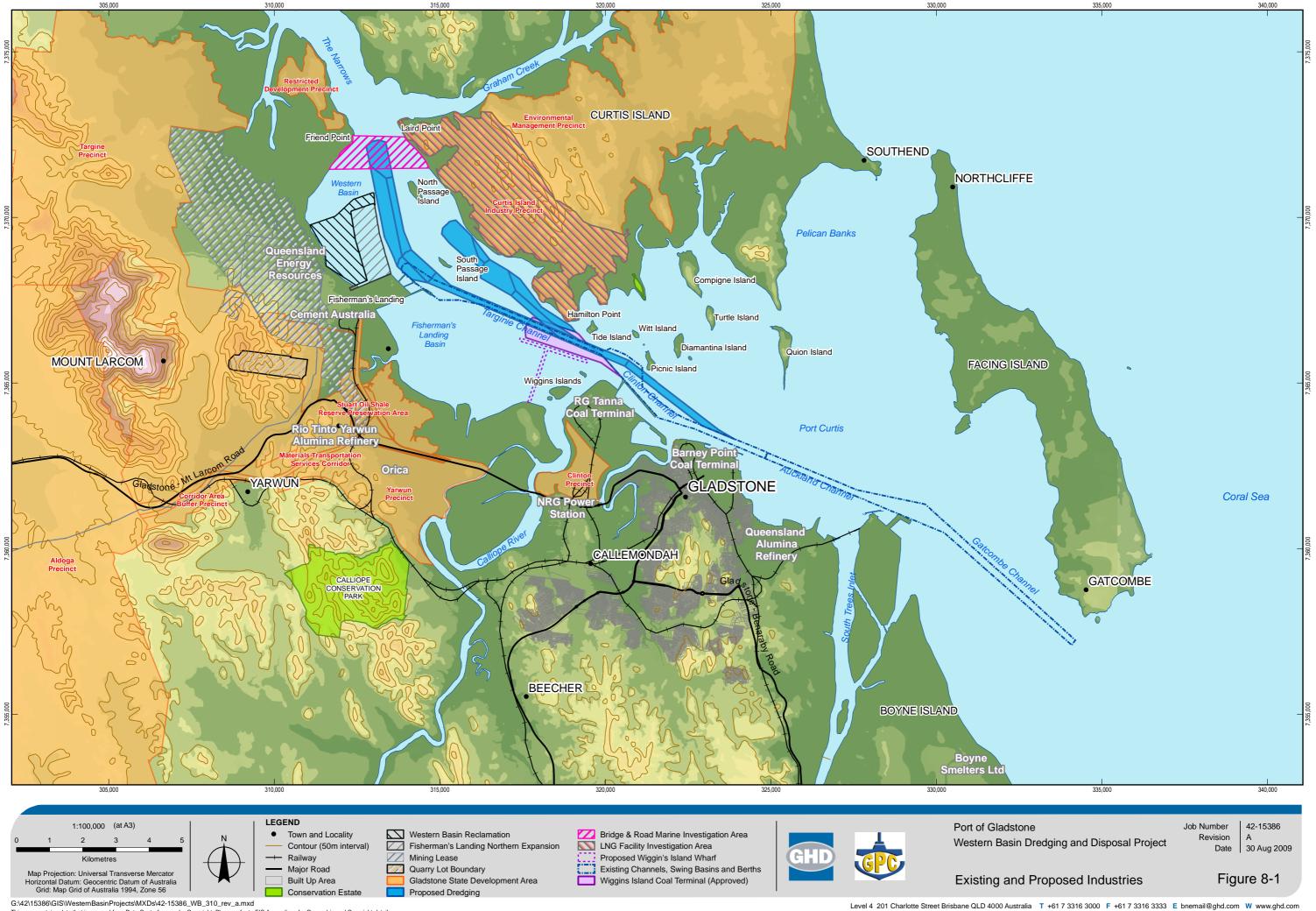
Activity Description	Potential Impacts and their Consequences	Preliminary Risk Assessment (C, L) Score	Additional Control Strategy	Residual Risk with Additional Control Strategies Adopted (C, L) Score
	Increased turbidity and decreased light on seagrass beds in Western Basin owing to TSHD dumping, with reduced impact on areas such as The Narrows and Grahams	(4, 5) High	Program dredge activity to avoid, where practicable, use of TSHD in dump mode in northern extents of Western Basin during flood phase of large spring tides.	(3, 5) High
	Creek.		Implement offset program in accordance with conditions.	
	Increased turbidity and decreased light on seagrass beds other than the Western Basin because of TSHD dumping	(2, 4) Medium	Dumping and rehandling primarily affect remnant part of Western Basin immediately to north of reclamation. Recommendations as above.	(2, 3) Low
	Metals concentrations exceed trigger level due to TSHD operation including release of sediment due to the activity of the cutter	(2, 5) Medium	No ability to control impact, but perhaps relatively large extent and moderate persistence.	(2, 5) Medium
	Potential release of waste materials or pollutants associated with the dredger into the marine environment resulting in reduction in biodiversity.	(4, 3) Medium	Adherence to waste management controls for vessel operations.	(4, 2) Medium
Operational Pha	ase			
Water Quality Impacts	Impacts to marine water quality from alteration of stormwater input, including increased erosion or storm water run-off to adjacent marine environment during storm / flooding events. Potential to mobilise contaminants into the marine environment and reduce biodiversity.	(2, 3) Low	Implement appropriate topside waste and stormwater management system. Design stormwater drainage systems to avoid increased scouring potential at release points in adjacent marine environment or concentration of freshwater inputs at outflow points to reduce impacts at point of introduction.	(2, 2) Low

Activity Description	Potential Impacts and their Consequences	Preliminary Risk Assessment (C, L) Score	Additional Control Strategy	Residual Risk with Additional Control Strategies Adopted (C, L) Score
Maintenance Dredging	Maintenance dredge program will increase in keeping with extended network of channels. Turbidity will be generated accordingly, subject to the type of dredge used. Similar practices to those currently employed for maintenance dredging likely to be employed.	(2, 5) Medium	Sediment quality will be analysed prior to any dredging and appropriate disposal locations identified based on the physical and chemical properties of the material to be dredged. GPC will obtain all required permits for maintenance dredging and will implement mitigation measures and monitoring programs to minimise impacts on the receiving environment, in particular water quality. Review and update DMP for maintenance dredging.	(2, 5) Medium

8. Cumulative Impacts and Mitigation Strategies

8.1 Background

Any proposed development has the potential to impact upon the environmental, social or economic values of a region as a result of its development. It also has the potential to produce a cumulative impact upon those values when the proposed activity is conducted in combination with other developments. The typical effect is a compounded impact resulting from the interaction of multiple stressors from different projects. To have complete understanding of the full impact potential of a proposed development, it is necessary to assess the potential cumulative impacts that may result from the Project in combination with other projects. In addition, assessing the direct and indirect impacts attributable only to the project of interest must be carried out.


An assessment of cumulative environmental impacts considers the potential impact of a proposed development in the context of:

- Previous developments to provide context to environmental resilience;
- Existing developments to understand direct potential confounding impacts; and
- Future developments to consider all potential and indirect environmental impacts.

The assessment enables all potential impacts of a project to be understood in relative context and not in isolation from other projects. Assessment of previous developments should be conducted in context of the current baseline conditions of the environment. In this regard the existing environment has been characterised through studies conducted to complete the EIS and is reported in the main body of the EIS. Economic and social impacts from the Project are also presented in the body of the EIS, and, in accordance with the ToR, the cumulative impacts of relevance to these sections are noted here and detailed in the following sections.

A number of coastal developments are being undertaken in the Gladstone region concurrently (Figure 8-1). These include:

- Annual maintenance dredging of the shipping channels, swing basins and berth pockets of various Port of Gladstone facilities by the '*Brisbane*' trailer hopper suction dredger;
- Development of the Wiggins Island Coal Terminal (approved);
- LNG Ltd Stage 1 dredging at the existing Fisherman's Landing reclamation Bulk Liquids Wharf;
- Fisherman's Landing Northern Expansion (draft EIS on public display); and
- Construction of marine offload facilities, including associated dredging, on the western coast of Curtis Island to facilitate the import of materials for LNG plant construction (Curtis Island industry precinct).

G:\42\15386\GIS\WestermBasinProjects\MXDs\42-15386_WB_310_rev_a.mxd This map contains data that is sourced from Data Custodians under Copyright. Please refer to EIS Appendices for Ownership and Copyright details. © 2009. This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was produced. Unauthorised use of this document in any way is prohibited. While GHD has taken care to ensure the accuracy of this product. GHD Pty Ltd and Data Custodians make no representations or warrantices about its accuracy, completeness or suitability for any particular purpose. GHD Pty Ltd and Data Custodians cannot accept liability of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred as a result of the product being inaccurate, incomplete or unsuitable in any way and for any reason.

The Western Basin Dredging and Disposal Project, which will be developed in parallel with the above projects, is required by GPC to provide additional capacity for land based disposal of material from capital and maintenance dredging works in the Port of Gladstone. A comparative assessment of opportunities for disposal of the dredged material in other locations has been undertaken as part of this EIS and determined that placement of material within the Western Basin footprint provides the least impact approach. This assessment is detailed under Chapter 1 of the main EIS document.

If one or more other projects proceed in parallel with this project, there is potential for cumulative environmental impacts to the region resulting from concurrent or successive developments, particularly with regard to compounding impacts from multiple dredging activities.

Impacts from future developments are not able to be quantified and, accordingly, it is appropriate to examine cumulative impacts across all developments from a qualitative perspective. In this regard the methodological approach to assessment of cumulative impacts for the proposed Western Basin Dredging and Disposal Project has been to:

- Describe the existing baseline conditions of relevance to the Project Area;
- Ascertain potential direct and indirect impacts from the Western Basin Dredging and Disposal Project;
- Identify mitigation and management measures for each identified impact;
- Ascertain which of the identified impacts may be compounded by concurrent or successive other developments within the local region;
- Qualitatively describe how identified impacts are compounded; and
- Identify mitigation and management measures against the compounded impact potential.

In accordance with the ToR, the following describes identified cumulative impacts and mitigation measures for the water quality considerations of the Western Basin Dredging and Disposal Project. This section focuses on the impacts identified in Section 6 that may be compounded by other projects occurring concurrently or in succession.

8.2 Cumulative Impacts

8.2.1 Project Context

The Port of Gladstone has experienced ongoing development since the beginning of the twentieth century. Surveys in recent years and those for this EIS have identified good water quality in the Project Area under existing port operational conditions. However, as dredging and reclamation have both direct and indirect impacts on water quality, it follows that the implementation of additional dredging and reclamation projects will have a cumulative impact.

The proposed dredging activities intend to utilise the Western Basin reclamation site for dredged material disposal. An ability to better assess the potential cumulative impacts that could occur from the multiple dredging programs that are proposed for the Gladstone region has been achieved by including and simulating a large number of potential future dredging works under the impact assessment for this EIS. Works proposed for Fisherman's Landing, LNG Limited and Wiggins Island Coal Terminal have not been included in the impact assessment for this project. Wiggins Island Coal Terminal has already achieved approval and the dredging works to be undertaken for Fisherman's Landing and LNG Limited are being assessed under separate EIS processes.

Construction and operational cumulative impacts beyond dredging works have not, however, been addressed under this project. Accordingly, in conjunction with the assessment of impacts from all dredging activities, it is appropriate to also explore potential cumulative impacts that may result from concurrent water based construction projects within the Project Area as these could compound and amplify the impacts identified by this project. With respect to turbidity, these changes are likely to be limited to piling, and construction of marine off-loading facilities (MOFs) (dredging of MOFs is included in this EIS, but MOF construction activities may also generate turbidity).

8.2.2 Approaches to Reduce Cumulative Impact Potential within Gladstone

By locating the Western Basin Dredging and Disposal Project adjacent to the Fisherman's Landing Northern Expansion, the potential impacts of these projects are amalgamated in one area. This amalgamation of impact areas has allowed for the avoidance of multiple regions of degraded water quality in the port.

8.2.3 Expected Cumulative Impacts in Addition to Dredging Activities

Hydrodynamic modelling as well as water and sediment quality studies undertaken to support this EIS have been used to inform what potential impacts may occur as a direct or indirect result of all (cumulative) reclamation and dredging works. This includes scenarios with multiple dredgers operating. A full quantitative assessment of potential impacts from all concurrent projects would require detailed understanding of construction requirements and approaches, which is beyond the scope of this study currently. However, the risk assessment for this project also identified a range of in-water construction impacts, which are likely applicable across all projects and have been considered here for the qualitative assessment.

On this basis, potential cumulative impacts from concurrent projects in the Project Area are expected to result in some degradation of water quality and have been identified to include:

- Declines in water and sediment quality (including increased pollution) associated with construction events such as bund construction, bund filling and capital dredging works (as simulated in the modelling process);
- The flow on effects to benthic habitats and communities, particularly with respect to increased turbidity; and
- Declines in water and sediment quality associated with longer maintenance dredging requirements relative to those currently employed.

8.2.4 Expected Effects on Water Quality from Identified Cumulative Impact Activities

Mitigation strategies against each impact for the Proposed Western Basin Dredging and Disposal Project were identified in the Section 7.1.2 under Table 7-5. These took into consideration the potential impacts from multiple dredging projects occurring concurrently. These are considered to be the biggest concern with regard to cumulative impact potential relating to the multiple project development that may occur within the Project Area. Degradation of water quality is only expected to be temporary, coincident with active dredging operations as the flushing time scale is approximately 30-40 days. Accordingly, impacted areas are not expected to be permanently impacted from declines in water quality or altered hydrodynamic regimes, as assessed by this Project.

8.2.5 Offsets and Mitigation of Potential Cumulative Impacts

The major cumulative impact of approved and proposed projects on water quality is likely to lead to reductions to the extent of seagrass beds and suitable habitat for other marine communities in the Project Area. This is addressed further under the Marine Ecology Report (GHD 2009d), which should be referred to for a discussion of all potential cumulative impacts to marine ecology.

9. Conclusion

Water quality monitoring for this EIS and past data of the Project Area has characterised the locality as a turbid environment with relatively good water quality. Most of the physico-chemical and chemical parameters were within adopted guidelines.

As the Project involves reclamation of approximately 235 ha of seabed, there is a minor impact on tidal currents, water levels and flushing efficiency with diminishing effects with distance from the Reclamation Area. The hydrodynamic and flushing impacts of the proposed capital dredging areas are less than those associated with the loss of the tidal volume from the Reclamation Area.

The main potential construction impacts, including potential cumulative impacts, which may result during the reclamation and channel dredging works are, therefore:

- Decant discharge during filling of the Reclamation Area is predicted to generate elevated turbidity in the region of the outfall and particularly along the northern bund wall. However, the effects of the decant discharge on the northern Western Basin inter-tidal and sub-tidal regions are greatly diminished relative to the northern bund wall area. Representative locations of sensitive seagrass beds (i.e. Wiggins Island and the Narrows) are not significantly impacted by elevating the decant discharge;
- CSD plants are predicted to have a low impact on turbidity and water quality, as most of the dredged material will be pumped directly to the Reclamation Area;
- TSHD plants are predicted to have greater impacts in terms of areal extent during dredging works. Regions of persistent elevated turbidity are predicted as a consequence of overflows during active dredging and emptying of the hopper adjacent to the eastern bund wall with subsequent rehandling by a dedicated CSD plant with dredge material pumped into the Reclamation Area. In particular, hopper dumping coincident with flood tides will have an impact on the turbidity climate of the Western Basin and to a lesser degree on the Narrows. Increased turbidity reduces the light intensity at the seabed, thereby impacting seagrass beds. Seagrass beds in the vicinity of Wiggins Island are not greatly impacted during ebb tides as the dredge material plumes are primarily confined to the deep water channels with elevated velocities; and
- The sediments of the Project Area are predominately of good quality, hence other than increases in turbidity, persistent degradation to other physico-chemical and chemical parameters is not anticipated. However, elutriate analyses indicate manganese and ammonia that can be readily released from the sediments and/or are contained within the pore waters, however ammonia concentrations are compliant to the ANZECC (2000) toxicant guidelines. For TSHD overflow and rehandling activities, elevated levels of ammonia were conservatively estimated to range from a 3-4 fold increase over QWQG (2006) guidelines during low slack tide. However, the impact is likely to be substantially less when a number of physical, chemical and biological processes that would decrease ammonia values in the water column are taken into account and the NAGD (2009) initial dilution over a 4 hour period is applied.

All of these potential impacts on water quality are temporary, and water quality should therefore return to levels similar to the current status in between various capital dredging works stages and at the end of the project. Small changes to the overall water quality may occur because of minor changes to flushing efficiency of certain regions in the Project Area.

In addressing the potential risks to the marine system from the Project proposed mitigation measures were examined, where opportunities to mitigate impacts are available. These were detailed above and, in brief, include:

- Development and implementation of a reactive dredge management plan to mitigate against impacts on water quality from dredging activities;
- Implementation of waste management plans;
- Appropriate design of the Reclamation Area facility to reduce water quality impacts from leaching of material through the bund wall, decant waters and storm-water run-off; and
- Practicable scheduling of TSHD hopper dumps to not occur during some flood tide periods to reduce turbidity and light climate impacts to Western Basin shallow waters.

A number of direct impacts are not able to be mitigated such as modifications to hydrodynamics and flushing efficiency.

10. References

ANZECC (Australian and New Zealand Environment and Conservation Council) and ARMCANZ (Agriculture and Resource Management Council of Australia and New Zealand) (2000). *Australian and New Zealand guidelines for fresh and marine water quality*. National Water Quality Management Strategy. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra.

Australian Government (2009). National Assessment Guidelines for Dredging, Commonwealth of Australia, Canberra.

Bureau of Meteorology. www.bom.gov.au; accessed 9 August 2009.

Curtis Coast Regional Coastal Management Plan (2003). Environment Protection Agency.

Environmental Protection Agency (2006). Queensland Water Quality Guidelines. The State of Queensland, Environmental Protection Agency.

Environmental Resources Management Australia (2009) *Queensland Curtis Pre-Dredging Assessment Plan; Sampling and Analysis Plan*, prepared for Queensland Gas Corporation Ltd (QGC), June 2009.

GHD (2009a). Sediment Quality Report, Appendix L of Western Basin EIS. GHD Pty Ltd, Perth.

GHD (2009b). Western Basin Dredging and Disposal Project, Dredging Works Description. GHD Pty Ltd, Brisbane.

GHD (2009c). Coastal Processes Assessment, Appendix M of Western Basin EIS. GHD Pty Ltd, Brisbane.

GHD (2009d). Marine Ecology Report, Appendix Q of Western Basin EIS. GHD Pty Ltd, Brisbane.

GHD (2009e) Western Basin Dredging and Disposal Project Wombat Dredge Monitoring. GHD, Brisbane.

GHD (2009f). Fisherman's Landing Northern Expansion Environmental Impact Statement. GHD Pty Ltd, Gladstone.

McArthur C., Ferry R. and Proni J. (2004). Development of Guidelines for Dredged Material Disposal Based on Abiotic Determinants of Coral Reef Community Structure. In *"Dredging 2002 - Key Technologies for Global Prosperity"*, 3rd Specialty Conference on Dredging and Dredged Material Disposal. Editor Stephen Garbaciak Jr., May 5-8, 2002, Orlando Florida, USA. Publ. *American Society of Civil Engineers*.

National Health and Medical Research Council (2008) Guidelines for Managing Risks in Recreational Waters, 2009.

Queensland Government, Department of Environment (1998). Draft Guidelines for the Assessment and Management of Contaminated Land in Queensland. DoE, Brisbane.

USACE and US EPA. (2004). Evaluating Environmental Effects Of Dredged Material Management Alternatives -- A Technical Framework (Revised Edition), United States Environmental Protection Agency (US EPA) Office of Water (4504F), Department of The Army U.S. Army Corps of Engineers (USACE) EPA842-B-92-008.

WBM (2009). Gladstone Western Basin EIS – Numerical Modelling Studies, Appendix J of Western Basin EIS. WBM, Brisbane.

Wilson S.P., Andersen L.E. and Melville F. (2008). Port Curtis Seagrass Water Quality, Data Report, December 2007 – April 2008. Centre for Environmental Management, Central Queensland University, Gladstone.

Wilson S.P. and Andersen L.E. (2009) Fisherman's Landing Baseline Turbidity Report June – October 2008, Centre for Environmental Management, CQ University, Gladstone.

Appendix A

Review of Previous Water and Sediment Quality Studies

GHD (2009)

CLIENTS PEOPLE PERFORMANCE

Report for Fisherman's Landing Northern Expansion Environmental Impact Statement

> Review of Previous Water and Sediment Quality Studies

> > May 2009

INFRASTRUCTURE | MINING & INDUSTRY | DEFENCE | PROPERTY & BUILDINGS | ENVIRONMENT

Contents

1.	Intro	oduction	1		
2.	Existing Information on Water Quality in Port Curtis				
	2.1	Introduction	2		
	2.2	Comalco Alumina Project, Gladstone IAS \ EIS (Dames and Moore, 1998)	10		
	2.3	WBM Oceanics Australia [2002] in URS (2003) and URS (2007)	11		
	2.4	CRC Coastal Zone, Estuary and Waterway Management (Apte et al. 2005)	15		
	2.5	Assessing the Effects of Harbour Dredging Using Transplanted Oysters as Biomonitors (Andersen <i>et al.</i> 2002)	15		
	2.6	Capital Dredging of the Fourth Berth at RG Tanna Coal Terminal (GHD 2005)	19		
	2.7	Validation Study for Dredging of Fourth Berth, RG Tanna Coal Terminal (GHD 2006a)	21		
	2.8	RG Tanna Coal Terminal 4 th Berth Dredge Management Plan, An Assessment of the Effects of Harbour Dredging (Andersen <i>et al.</i> 2006)	21		
	2.9	Wiggins Island Coal Terminal EIS (Connell Hatch 2006)	22		
	2.10	Port Curtis Integrated Monitoring Program (PCIMP) Ecosystem Health Report Card (Storey <i>et al.</i> 2007)	23		
	2.11	PCIMP Biomonitoring 2007, North Harbour Zones (Andersen <i>et al.</i> 2008a)	24		
	2.12	Port Curtis Seagrass Water Quality (Wilson et al. 2008)	25		
	2.13	An Assessment of the Effects of Dredging at Fisherman's Landing (Andersen <i>et al.</i> 2008b)	27		
	2.14	Fisherman's Landing Baseline Turbidity Report, June – October 2008 (Wilson and Andersen 2009)	30		
	2.15	WBM Turbidity Data at Fisherman's Landing (2008)	32		
3.	Exis	ting Information on Sediment Quality	34		
	3.1	Introduction	34		
	3.2	Comalco Alumina Project, Gladstone IAS \ EIS (Dames and Moore, 1998)	40		
	3.3	CRC Coastal Zone, Estuary and Waterway Management (2005, 2006)	40		

3.4	Proposed Berth 4 Outloading Conveyor and Dredging Clinton Coal Wharf (Douglas Partners 2005a)	43
3.5	Proposed Dredging Works Existing Shipping Channels (Douglas Partners 2005b)	43
3.6	Wiggins Island Coal Terminal EIS (Connell Hatch 2006)	44
3.7	Sediment Sampling for Maintenance Dredging (1992, 1996, 2000)	45
3.8	Sediment Sampling for Maintenance Dredging (GHD 2006b)	45
Refe	rences	47

Table Index

4.

Table 1	Guidelines for Physicochemical Indicators in Central Queensland Waters	2
Table 2	Trigger Values for Metals and Metalloids in Marine Water for Slightly-Moderately Disturbed Systems (ANZECC 2000)	2
Table 3	Water Quality Studies Undertaken in the Vicinity of the Proposed Project Area	5
Table 4	Physicochemical Results for Water Samples Collected in September 1995	10
Table 5	Metal Concentrations (µg/L) for Water Samples Collected in September 1995	10
Table 6	pH and Turbidity Levels in Water Samples Collected in November 1997	11
Table 7	pH and Turbidity for WBM Oceanics (2002) Sampling Sites	12
Table 8	Concentrations of Metals (μ g/L) in Water Samples Collected by WBM Oceanics (2002) in URS (2007)	14
Table 9	Effects of Harbour Dredging with Transplanted Oysters as Biomonitors	16
Table 10	Metal Concentrations in Seagrass	17
Table 11	Summary Statistics for Water Quality Data collected by GPC at the Clinton Coal Wharf between February 2004 and April 2005	20
Table 12	Summary Statistics for Water Quality Data at the RG Tanna Coal Terminal Dredging and Reclamation Site November 2005	21
Table 13	pH and Turbidity Levels for Water Quality in Vicinity of the Fisherman's Landing Reclamation Project	
	(Connell Hatch 2006)	23

Table 14	Descriptions of Seagrass Beds in the Vicinity of Fisherman's Landing from Wilson <i>et al.</i> (2008)	26
Table 15	Summary Statistics for Turbidity and PAR at Fisherman's Landing Seagrass Bed (24 January – 16 April 2008)	26
Table 16	pH, Turbidity and Euphotic Depth Ranges at Pre- Dredging, Dredging and Dewatering at Fisherman's Landing, 2008	29
Table 17	Turbidity Statistics (NTU) for Fisherman's Landing Berth 5, June – October 2008	31
Table 18	Sediment Quality Guidelines Adopted for Fisherman's Landing	34
Table 19	Sediment Quality Studies Undertaken in the Vicinity of the Proposed Project Area	36
Table 20	Sediment Quality Results for Fisherman's Landing (Dames and Moore 1998)	40
Table 21	Summary of Sediment Types in Material to be Dredged for WICT Project (Connell Hatch 2006)	44

Figure Index

Figure 1	Location of Water Quality Sampling Sites from Previous Studies in Port Curtis	9
Figure 2	Time Series Turbidity Data recorded at RG Tanna Coal Terminal from February 2004 to April 2005	20
Figure 3	Turbidity Data for Fisherman's Landing, June to October 2008	30
Figure 4	Turbidity at Fisherman's Landing Tidal Flats, 15 August to 9 September 2008 (WBM 2008)	32
Figure 5	Tide Level at Fisherman's Landing from 15 August to 9 September 2008 (WBM 2008)	33
Figure 6	Location of Sediment Sampling Sites for Previous Studies in Port Curtis	39
Figure 7	Location of Sediment Samples from CRC Study (Apte et al. 2005)	41

1. Introduction

Numerous studies relating to water and sediment quality in Port Curtis have been undertaken since the 1990's. These studies have been reviewed and are presented in this report to provide baseline information on water and sediment quality in Port Curtis, which will assist in the determination of the potential impacts of the proposed Fisherman's Landing Northern Expansion.

Studies reviewed include the following:

- Baseline water quality data collection during periods where no dredging or reclamation was occurring;
- Data collected on the quality of sediments to be dredged (capital and maintenance);
- Water quality data collected during dredging and reclamation projects, with a focus on inner harbour dredging and onshore disposal; and
- Research projects undertaken by the Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management and Central Queensland University, which include biological as well as physicochemical indicators.

2. Existing Information on Water Quality in Port Curtis

2.1 Introduction

Water quality studies previously undertaken either in the vicinity of the proposed Fisherman's Landing Northern Expansion or for similar dredging and reclamation projects between 1995 and 2009 are summarised in Table 3 with further details of these studies after this summary table. The sampling sites for each study are shown in Figure 1. Results of studies are compared against the relevant guidelines as determined in Chapter 8 of the main EIS document. These are provided in Table 1 and Table 2.

Central Region Water Type	Enclosed coastal (QWQG 2006)	Marine (Tropical Australia - Inshore) (ANZECC 2000)
рН	8.0 - 8.4	8.0 - 8.4
Turbidity (NTU)	6	1 – 20
Secchi depth (m)	1.5	-
Suspended Solids (SS) (mg/L)	15	-
Dissolved Oxygen (% sat)	90 – 100	90
Ammonia as N (mg/L)	8	1 – 10
Oxidised Nitrogen as N (mg/L)	3	-
Organic Nitrogen (mg/L)	180	-
Total Nitrogen (mg/L)	200	100
Filterable Reactive Phosphate (mg/L)	8	5
Total Phosphorus (mg/L)	25	15
Chlorophyll-a (mg/L)	4	0.7 – 1.4

Table 1 Guidelines for Physicochemical Indicators in Central Queensland Waters

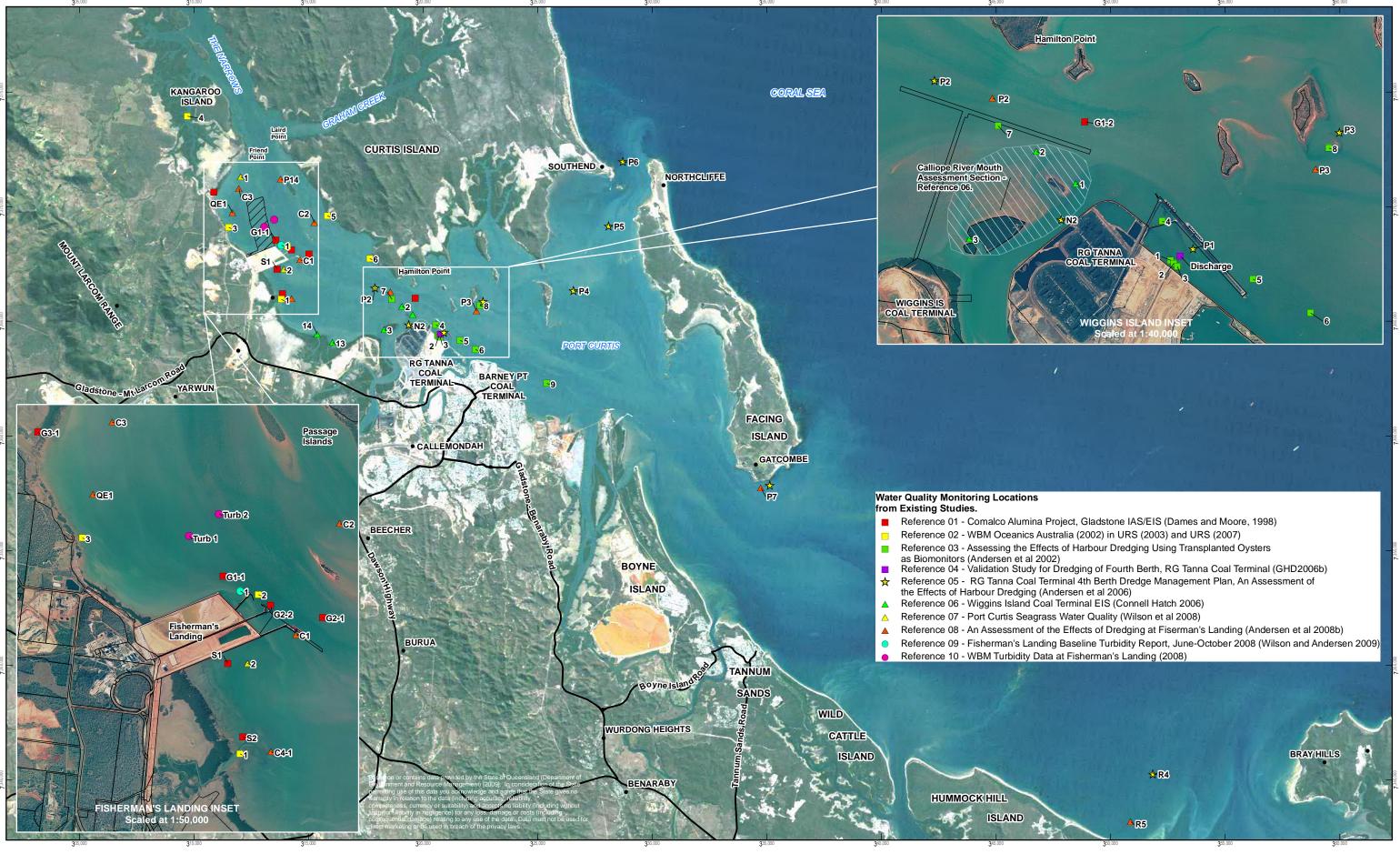
Table 2Trigger Values for Metals and Metalloids in Marine Water for Slightly-Moderately
Disturbed Systems (ANZECC 2000)

Metals and Metalloids	TV for Marine Water	Level of Protection
	(μg/L)	(% species)
Cadmium	0.7	99
Chromium (Cr III)	27.4	95
Chromium (Cr VI)	4.4	95
Cobalt	1	95

Metals and Metalloids	TV for Marine Water (μg/L)	Level of Protection (% species)
Copper	1.3	95
Lead	4.4	95
Mercury (inorganic)	0.1	99
Nickel	7	99
Silver	1.4	95
Tributyltin (as Sn)	0.006	95
Vanadium	100	95
Zinc	15	95

Table 3 Water Quality Studies Undertaken in the Vicinity of the Proposed Project Area

Study/Purpose	Sampling Locations	Sampling Date/s	Parameters Measured
Comalco Alumina Project Gladstone:	1995	September 1995 November 1997	Various combinations of the following at
Impact Assessment Study, Environmental Impact Statement, Vol 1. (Dames and Moore 1998)	Shipping channels near Tide Island and South Passage Island		different sites:Total Suspended Solids (TSS)
	Fisherman's Landing (NE edge of ship turning circle at Fisherman's Wharf) and south of Friend Pt)		 Total Dissolved Solids (TDS) Total Organia Carbon (TOC)
	Targinie Creek (middle reaches and mouth of tributary)		Total Organic Carbon (TOC)Total Nitrogen (TN)
	1997		 Total Phosphorus (TP)
	Lower intertidal mud bank 200 m and 800 m from		▶ pH
	Fisherman's Landing Wharf		Metals (Fe, Al, Mn, As, Cd, Co, Cr, Cu, Hg, Ma Ni, Db, Sa, Sp)
	Boat Creek, Flying Fox Creek, Nutmeg Creek, Calliope River		Mo, Ni, Pb, Se, Sn) • Turbidity
Baseline and background survey	Boat Creek	dissolved oxygen (DO), turbidity, a depth).Trace elements (AI, As, Ba, B, Co	
ndertaken by WBM Oceanics ustralia [2002] in URS (2007; 2003).	Fisherman's Landing		conductivity, salinity, pH, redox potential,
ladstone Nickel Project	Fisherman's Landing Embayment		
Environmental Impact Statement, Vol	Targinie Creek		Trace elements (Al, As, Ba, B, Cd, Cr, Cu,
1. (URS 2007).	Curtis Island		Fe, Pb, Mn, Hg, Ni, Zn, F, Cn)
Chlor Alkali/Ethylene Dichloride Plant Gladstone, Environmental Impact Statement, Vol.1. (URS 2003).			 Nutrients (TN, Total Kjeldahl Nitrogen (TKN), organic-N, ammonia, nitrite, nitrate, TP and Filterable Reactive Phosphate (FRP))
			▶ SS


Study/Purpose	Sampling Locations	Sampling Date/s	Parameters Measured
Cooperative Research Centre (CRC) for Coastal Zone, Estuary and Waterway Management – Technical Report 25: Contaminants in Port Curtis: screening level risk assessment (Apte et al. 2005)	50 sites throughout Port	August – October 2001 (dry season) and February 2002 (wet season)	 Metals (Al, As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Se, Zn) Tributyltin (TBT)
Assessing the Effects of Harbour Dredging using Transplanted Oysters as Biomonitors. (Andersen et al. 2002)	Monitoring undertaken at RG Tanna reclamation decant point	3-4 January 2002 5-6 February 2002 11-15 March 2002 16 April 2002	 Composite samples of 5 whole oyster soft tissues were analysed for metals (Cd, Cr, Ni, Pb Ag, Al, Cu, Fe, Zn, As and Se) Seagrass (<i>Zostera capricorni</i>) were analysed for metals (Cd, Cr, Ni, Pb, Ag, Al, Cu, Fe, Zn, As and Se)
Capital Dredging of the Fourth Berth at RG Tanna Coal Terminal, Protection of the Marine Environment During Dredging and Dewatering. GHD (2005).	RG Tanna Coal Terminal	February 2004 to April 2005	Turbidity (prior to works commencing)
Validation Study for Dredging of Fourth Berth, RG Tanna Coal Terminal (GHD 2006a)	Cell 4 (final reclamation pond) Discharge Point Gladstone Harbour (receiving waters)	21 – 28 November 2005	Turbidity
RG Tanna Coal Terminal 4 th Berth Dredge Management Plan, An Assessment of the Effects of Harbour Dredging (Andersen <i>et al.</i> 2006)	In vicinity of discharged reclamation water, middle and outer harbour sites within Port Curtis and reference sites outside the predicted range for sediment transport from Port Curtis	July/August 2005 (pre-dredge monitoring) 23 November	 Physicochemical water parameters (pH, temperature, dissolved oxygen, turbidity and conductivity) Biomonitors (transplanted oysters and DOTe) to appear water metal.
		2005 – 6 January 2006 (dewatering of the reclamation cells)	DGTs) to assess water metal concentrations (Cu, Zn, Al, Cd, Fe, Ag and Hg)

Study/Purpose	Sampling Locations	Sampling Date/s	Parameters Measured
Wiggins Island Coal Terminal	Intertidal, marine areas adjacent to Wiggins Island and	14 – 15 May 2006 and September 2006	Wet and dry season data:
<i>Environmental Impact Statement,</i> Revision 3. Connell Hatch (2006).	Mud Island		Turbidity
, , , , , , , , , , , , , , , , , , ,	Flying Fox Creek		Chlorophyll-a
	Sandfly Creek		DO (%sat)
			▶ pH
			▶ TSS
Port Curtis Integrated Monitoring Program (PCIMP), Port Curtis Ecosystem Health Report Card (Storey et al. 2007)	Zone 2 Inner Harbour Fisherman's (includes Fisherman's landing Wharf)	2006-2007 data	 Water chemistry, water contaminants, mangrove health, sediment contaminants, and seagrass biomass
<i>Port Curtis Seagrass Water Quality</i> (Wilson <i>et al.</i> 2008)	15 – 20 cm above sediment surface from three seagrass beds in Port Curtis	24 January to 18 April 2008	 Temperature, turbidity and light
<i>PCIMP Biomonitoring 2007, North Harbour Zones</i> (Andersen <i>et al.</i> 2008a)	Estuarine, inner harbour and outer harbour areas of Port Curtis	July and September 2007	 Water quality, including temperature, conductivity, dissolved oxygen, pH and turbidity
			 Metal concentrations in oysters and DGTs
An Assessment of the Effects of	Fisherman's Landing:	Before dredging	In situ parameters (temperature,
Dredging at Fisherman's Landing (Andersen et al. 2008b)	 adjacent to the dredge head 	(18 Feb to 3 Mar 08)	conductivity, TDS, DO, pH, turbidity, redox, light attenuation)
	 northern seagrass meadow 	During dredging (4	 Metals (total and dissolved)
	 reclamation cell 	to 10 Mar 08)	
	 discharge point 	During dewatering (11 Mar to 8 Apr	
	 eight sites in the harbour 	(11 Mar 10 0 Apr 08)	
WBM Turbidity Data from Fisherman's Landing 2008	Two sites: one at Fisherman's Landing tidal flats and one adjacent to tidal flats in deeper water	15 August to 9 September 2008	Turbidity, conductivity, temperature

Study/Purpose	Sampling Locations	Sampling Date/s	Parameters Measured
Fisherman's Landing Baseline Turbidity Report (Wilson and Andersen 2009)	Fisherman's Landing Berth 5	Between June and October 2008	Temperature and turbidity

LEGEND

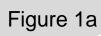
 Major Road Cadastre Proposed Fisherman's Landing Northern Expansion NOTE Water quality sample locations are intended to be as accurate as possible however, the locations were obtained from scanned copies

of reports, not from actual GPS data.

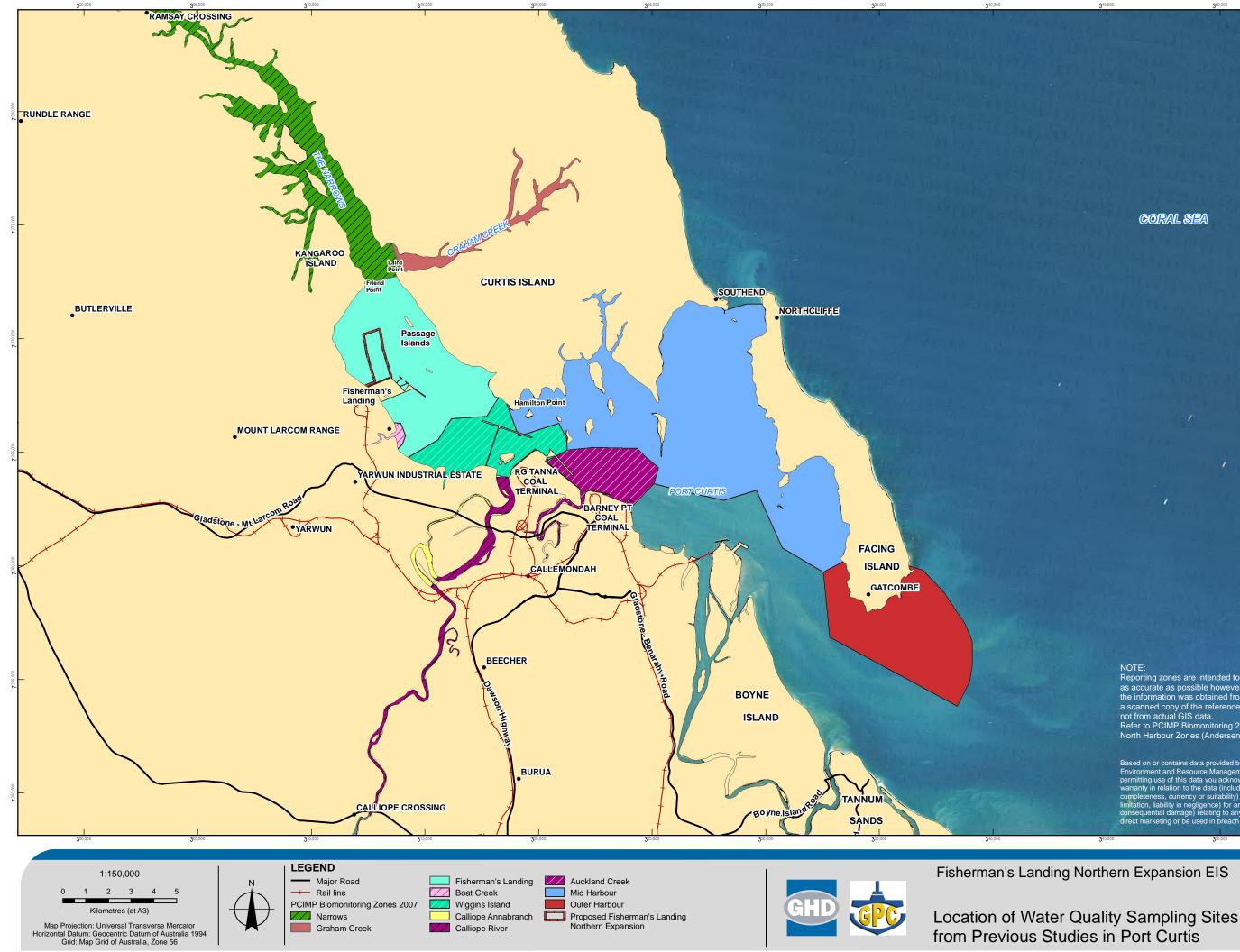
Refer to referenced report from further information.

Map Projection: Universal Transverse Mercator

Horizontal Datum: Geocentric Datum of Australia 1994 Grid: Map Grid of Australia, Zone 56


G:\42.15386\GIS\Projects\FishermansLandingEIS\42-15386_409_rev_a.mxd Copyright: This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was produced. Unauthorised use of this document in any way is prohibited. © 2009. While GHD Pty Ltd, GPC, DERM and GA make no representations or warranties about its accuracy, completeness or suitability for any particular purpose. GHD Pty Ltd, GPC, DERM and GA cannot accept liability of any kind (whether in contract, tort or otherwise) for any veparese, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred as a result of the product being inaccurate, incomplete or unsuitable in any way and for any reason. Data Sources: Reclamation area (2009) - ©The State of QLD (Gladstone Ports Corporation); Landsat (2007), Aerial imagery (2007) ©The State of QLD (Department of Environment and Resource Management); 250K Topo Data (2006) - ©Commonwealth of Aust (Geoscience Australia). Created by: TH.

Fisherman's Landing Northern Expansion EIS


Location of Water Quality Sampling Sites from Previous Studies in Port Curtis

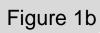
Job Number Revision Date

42-15386 28 May 2009

2 / 100 Goondoon Street Gladstone QLD 4680 Australia T 61 7 4972 6377 F 61 7 4972 6236 E gltmail@ghd.com.au W www.ghd.com.au

Ch4215386/GIS\Projects\FishermansLandingEIS\42-15386_410_rev_a.mxd Copyright: This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was produced. Unauthorised use of this document in any way is prohibited. © 2009. While GHD Pty Ltd, GPC, DERM and GA cannot accept liability of any kind (whether in contract, tort or or therwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred as a result of the product being inaccurate, incomplete or unsuitable in any way and for any reason. Data Sources: Reclamation Area (2009) - @The State of QLD (Gladstone Ports Corporation); Landsat (2007) - @The State of QLD (Department of Environment and Resource Management); 250K Topo Data (2006) - @Commonwealth of Aust (Geoscience Australia). Created by: TH.

CORAL SEA


NOTE: Reporting zones are intended to be as accurate as possible however, the information was obtained from a scanned copy of the referenced report, not from actual GIS data. Refer to PCIMP Biomonitoring 2007, North Harbour Zones (Andersen et al 2008a).

Based on or contains data provided by the State of Queensland (Department of Environment and Resource Management) [2009]. In consideration of the State permitting use of this data you acknowledge and agree that the State gives no warranty in relation to the data (including accuracy, reliability, completeness, currency or suitability) and accepts no liability (including without limitation, liability in negligence) for any loss, damage or costs (including consequential damage) relating to any use of the data. Data must not be used for direct marketing or be used in breach of the privacy laws.

Fisherman's Landing Northern Expansion EIS

Job Number Revision Date

42-15386 А 28 May 2009

2 / 100 Goondoon Street Gladstone QLD 4680 Australia T 61 7 4972 6377 F 61 7 4972 6236 E gltmail@ghd.com.au W www.ghd.com.au

2.2 Comalco Alumina Project, Gladstone IAS \ EIS (Dames and Moore, 1998)

As part of the Comalco Alumina Project EIS (Dames and Moore, 1998), sampling was undertaken at a number of sites in September 1995 and November 1997 to establish baseline data (Figure 1). All water samples were grab samples taken 0.2 m below the water surface. Sites of relevance to the current project were:

- G1.1 Shipping channel near Tide Island;
- G1.2 Shipping channel near South Passage Island;
- G2.1 Fisherman's Landing NE edge of ship turning circle at Fisherman's Wharf;
- G2.2 Fisherman's Landing Corner of the large lower intertidal bank south of Friend Point; and
- G3.1 Mouth of Targinie Creek tributary 2.5 km north of Fisherman's Landing.

Samples were collected and analysed for solids, carbon and nutrient levels (Table 4) as well as a range of metals (Table 5). The laboratory limits of reporting (LOR) are greater than the trigger values (TV) for cadmium, chromium, copper, mercury, nickel and lead. Concentrations of nickel exceeded the TVs at G1.2, G2.1 and G3.1 (cells shaded grey) and were equal to the TVs for cobalt at all sites.

Parameter	G1.1	G1.2	G2.1	G2.3	G3.1
TSS (mg/L)	12	12	13	23	23
TDS (g/L)	40.0	40.6	40.8	40.8	43.5
TOC (mg/L)	1.0	1.5	1.2	3.4	10
TN (mg/L)	<0.2	0.6	0.3	0.3	0.2
TP (mg/L)	0.02	0.01	0.02	0.05	0.02
pH (laboratory)	8.0	8.0	8.1	8.2	7.9

 Table 4
 Physicochemical Results for Water Samples Collected in September 1995

Table 5	Metal Concentrations (µg/L) for Water Samples Collected in September 1995
I able 5	we can concentrations ($\mu g/L$) for water samples conected in September 1995

Parameter	ANZECC (2000) Trigger Values (μg/L)	G1.1	G1.2	G2.1	G2.3	G3.1
Iron		20	40	30	140	60
Aluminium		60	30	50	260	110
Manganese		<10	<10	<10	<10	<10
Arsenic		3	3	3	3	2
Cadmium	0.7	<2	<2	<2	<2	<2

Parameter	ANZECC (2000) Trigger Values (μg/L)	G1.1	G1.2	G2.1	G2.3	G3.1
Cobalt	1	1	1	1	1	1
Chromium	4.4	<10	<10	<10	<10	<10
Copper	1.3	<5	<5	<5	<5	<5
Mercury	0.1	<0.5	<0.5	<0.5	<0.5	<0.5
Molybdenum		15	15	15	15	15
Nickel	7	<10	10	10	<10	10
Lead	4.4	<5	<5	<5	<5	<5
Selenium		<10	<10	<10	<10	<10
Tin		<10	<10	<10	<10	<10

The water quality sampling program undertaken in 1997 included additional parameters and sites, however, the only data of relevance to the current project was pH and turbidity from two sites near Fisherman's Landing Wharf (Table 6). Samples collected from the Fisherman's Landing Wharf sites were not analysed for metals. The sites were located at:

- S1 Lower intertidal mud bank 200 400 m due south of Fisherman's Landing Wharf
- S2 Lower intertidal mud bank 800 m south east of Fisherman's Landing Wharf

Table 6	pH and Turbidity Levels in Water Samples Collected in November 1997
---------	---

Parameter	S1 ^ª	S2 ^b		
рН	7.8	7.8		
Turbidity (NTU)	10	15		
(a) Donth of managurament 0.2 m				

(a) Depth of measurement 0.2 m

(b) Depth of measurement 0.5 m

2.3 WBM Oceanics Australia [2002] in URS (2003) and URS (2007)

WBM Oceanics Australia collected water quality data in Port Curtis between December 1998 and November 2001. The original data were included as Appendix H Modelling of Discharges by URS (2003) as part of the Chlor Alkali/Ethylene Dichloride Plant EIS. This same data was also used by URS (2007) to provide baseline water quality data for the marine environment surrounding the proposed Fisherman's Landing reclamation area in Section 8 of the Gladstone Pacific Nickel Project EIS.

There were six sampling locations in the study that included Boat Creek, Fisherman's Landing, Fisherman's Landing embayment (called 'Gully C' in the URS (2007) report), Targinie Creek and two sites near Curtis Island (Figure 1).

URS (2003; 2007) reported that all samples were collected under high water conditions. Data presented by URS (2007) are percentiles (20th, 50th and 80th percentiles). *In situ* measurements included temperature, conductivity, salinity, pH, redox, DO, turbidity and Secchi depth. Samples were also analysed for metals, cyanide, nutrients and suspended solids.

pH levels complied with the QWQG (2006) enclosed coastal guidelines (pH 8.0 - 8.4) and turbidity levels frequently exceed the adopted guidelines (1 – 20 NTU) (Table 7). URS (2003) reported that the tidal range caused large variations in water quality for Port Curtis and that "near low water, the shallow water along the muddy foreshores is often highly turbid from the entrainment of fine bed sediments by wave action". As these data were collected during high water conditions, the expectation is for increased turbidity during low water in shallow areas.

Trace element concentrations of chromium, lead, mercury and zinc in water samples collected were less than the TVs for all percentile values (Table 8). Copper concentrations exceeded the TVs at Fisherman's Landing and the Curtis Island 1 sampling sites at the 80th percentile only. The LOR for cadmium is greater than the ANZECC (2000) TV and therefore a conclusion cannot be drawn on this element.

Sampling Location		рН	т	Turbidity (NTU)			
		Percentiles		Percentiles			
	20 th	50 th	80 th	20 th	50 th	80 th	
Boat Creek	8.0	8.1	8.1	6.9	14.7	15.2	
Fisherman's Landing	8.0	8.1	8.2	10.9	19.3	32.9	
Fisherman's Landing Embayment (Gully C)	8.0	8.1	8.2	6.2	9.4	27.2	
Targinie Creek	7.8	7.9	8.0	9.3	13.5	30.8	
Curtis Island 1	8.1	8.1	8.0	12.5	24.3	36.7	
Curtis Island 2	8.0	8.1	8.2	11.2	22.9	35.8	

Table 7 pH and Turbidity for WBM Oceanics (2002) Sampling Sites

Metal	al ANZECC (2000) Trigger Values (μg/L)		oat Cre	ek		sherma Landing				Landing Gully C)	Tar	ginie Cı	eek	Cur	tis Islar	nd 1	Cu	rtis Isla	n d 2	
		P	Percentiles			Percentiles Perce		ercentil	tiles Percentiles			Percentiles			Percentiles			Percentiles		es
		20 th	50 th	80 th	20 th	50 th	80 th	20 th	50 th	80 th	20 th	50 th	80 th	20 th	50 th	80 th	20 th	50 th	80 th	
Aluminium		29	47	71	34	87	210	30	70	120	37	66	120	48	80	140	48	63	100	
Arsenic										All sites <	< 1 μg/L									
Barium		9	12	14	8	9	12	9	11	15	9	12	14	7	10	12	7	8	11	
Boron		4200	4500	5000	4200	4540	5100	4100	4600	5000	4100	4500	5100	4100	5000	5000	4200	4500	5100	
Cadmium	0.7									All sites <	< 1 μg/L									
Chromium	4.4									All sites <	< 1 μg/L									
Copper	1.3		< 1 µg/L	_	<1	<1	1.4		< 1 µg/	L	<1	<1	1.2	<1	<1	1.4		< 1 µg/l	_	
Iron		22	46	100	24	76	320	27	51	180	35	87	170	43	110	270	20	67	140	
Lead	4.4									All sites <	< 1 μg/L									
Manganese		4	8	11	4	8	17	4	8	13	7	11	18	3	7	17	3	6	15	
Mercury	0.1									All sites <	0.1 μg/L	-								
Nickel	7	<1	<1	1.3	<1	<1	2	<1	<1	1.4	<1	<1	2	<1	<1	3	<1	<1	2	
Zinc	15	<1	<1	3	<1	1.4	6	<1	<1	3	<1	<1	3	<1	1.1	3	<1	<1	4	

Table 8Concentrations of Metals (µg/L) in Water Samples Collected by WBM Oceanics (2002) in URS (2007)

2.4 CRC Coastal Zone, Estuary and Waterway Management (Apte et al. 2005)

The CRC undertook a screening level risk assessment of water and sediment quality in Port Curtis in 2001/2002. The aim of this study was to identify contaminants of concern in Port Curtis. Selected monitoring parameters were based on the likelihood of inputs from industry and port activities, which included metals, PAHs, cyanide, fluoride and tributyltin (TBT). Surface water samples were collected at 50 sites spread in a grid pattern around Port Curtis from the Narrows to seaward of Facing Island with subsequent analysis for metals and TBT. Results for sediments are reported in Section 3.3.

The concentrations of metals in water samples were below the ANZECC (2000) water quality guidelines for marine waters (Apte *et al.* 2005). Some areas within the harbour showed higher concentrations of metals than others. In particular, the inner harbour had higher concentrations of some metals than the outer, more open waters. Concentrations of copper and nickel were elevated compared to other coastal sites in Australia (Apte *et al.* 2005). TBT was detected at 5 out of 7 samples analysed and exceeded ANZECC (2000) guidelines.

2.5 Assessing the Effects of Harbour Dredging Using Transplanted Oysters as Biomonitors (Andersen *et al.* 2002)

Andersen *et al.* (2002) assessed the effects of dredging with transplanted oysters (*Saccostrea glomerata*) as biomonitors in Port Curtis. Most of the sites monitored were in the vicinity of RG Tanna Coal Terminal where dredging was taking place and two control sites were also included (Figure 1). The site closest to the reclamation discharge point was located approximately 80 m from the outfall. Water quality was also monitored at each oyster site on each sampling occasion and seagrass was monitored at two sites near Wiggins Island and South End.

Oysters in this monitoring program were sourced from a known uncontaminated site in Moreton Bay and deployed one month prior to dredging activity. Oysters were sampled and analysed prior to deployment to determine baseline metal concentrations. After commencement of dredging the study was expanded to include resident oysters from the pylons at RG Tanna Coal Terminal with a comparison of these findings with previous oyster data at the same site from the CRC contaminants project in August 2001. At each site a composite oyster tissue sample of five oysters were analysed for a range of metals including cadmium, chromium, nickel, lead, silver, aluminium, copper, iron, zinc, arsenic and selenium. The transplanted oysters were sampled and analysed before dredging commenced (one month after deployment) as well as one and two months after dredging had commenced (Dredge 1 and Dredge 2 results, respectively). The resident oysters were collected and analysed approximately 3.5 months after dredging had commenced.

Three factors were incorporated into the experimental design:

- Time (before dredging, Dredge 1, Dredge 2);
- Direction from the source (north, east and south); and
- Spatial distance from the source (array) (inner, middle and outer).

The study assumed that oysters were still equilibrating to ambient concentrations when sampling was undertaken four weeks after dredging commenced, so increases may not have resulted from dredging. However, concentrations at two months of dredging were assumed to reflect the effects of dredging activities. Results are provided in Table 9.

Table 9	Effects of Harbour Dredging with Transplanted Oysters as Biomonitors
	Encers of harbour breaging with hansplanted bysters as biomonitors

Study Objectives	Summarised Results
Comparison of baseline to control sites over time	No significant changes in Pb, Fe or Al concentrations for all sampling periods, however significant changes were found for As, Se, Cu, Zn, Cd, Cr, Ni and Ag.
	Cr and Ni were variable and lacked consistency over time.
	Ag declined over time.
	Cd, As, Se, Cu and Zn increased at control locations over time suggesting oysters were still equilibrating to ambient background concentrations.
	Fe, Pb, Al, Cr and Ni concentrations did not demonstrate an obvious increasing concentration trend over time.
Comparison between control sites (South End to Settlement Pt) over time	The only metal to demonstrate a significant spatial difference was As (South End greater than Settlement Pt), however significant temporal differences in seven out of the 11 metals were detected.
	No consistent change in Ag, Al, Fe, Cr, Pb or Ni over time.
	Metal concentrations that increased over time included Cd, As, Cu and Se.
Comparison of individual metals at all sites over time	AI – significant effects for time, direction and array. Al concentration increased over time, concentrations were higher in the east and north than in the south and higher near the dredging activity than in the control locations.
	Ag – similar to AI but no difference detected between direction treatments.
	As – significant array, time and direction effects. Concentrations decreased over time, southern sites higher than northern and eastern sites and control sites higher concentrations than sites around dredging activity.
	Cd – significant array, time and direction effects with time being the major factor in the observed effect of increasing concentrations. No difference in concentrations from control or other sites near dredging activity, therefore it was assumed that oysters were still acclimatising to ambient levels.
	Cr – significant array and direction effects but not affected by time. Concentration increased in oysters in the east over the north and south directions.
	Cu – significant array and time effects and non-significant direction effect.
	Fe – significant array, time and direction effects and all interaction terms except time x direction interaction. That is, higher Fe concentration in oysters after dredging compared with before dredging, but Dredge 1 and Dredge 2 not significantly different. Inner, middle and outer arrays comparable but higher than control sites. East and north of outfall similar Fe concentrations but higher than those to the south.
	Ni – significant array and direction effects but non-significant time effect.

Study Objectives	Summarised Results					
	That is, no change in Ni concentrations over time. Ni concentration increased in oysters in the east more than in the north and south directions. Higher concentration in the oysters from the outer array compared with other arrays and control sites.					
	Pb – no significant main effect or interaction terms in concentration in oysters over time. Majority of Pb concentrations were below limits of reporting.					
	Se – significant array, time and direction effects and all interaction terms. Lower concentration of Se in oysters in Dredge 1 samples compared with before or Dredge 2 samples. Highest concentrations in control locations and lowest at sites closest to dredging activity. However, concentrations at the control sites did not change with time.					
	 Zn – significant array and time effects and non-significant direction effect. Highest concentrations closest to dredging activity. Concentrations increased over time. 					
Comparison of resident oysters (Clinton Coal Wharf) to CRC oysters	AI, As and Fe concentrations were higher in the CRC study oysters (August 2001) compared to the April 2002 study oysters and there were little differences in the other metals investigated.					

It was concluded that increased metal concentrations in oysters at the site closest to the dredging activity were likely from dredging. Not all metals will be taken up or accumulated at the same rates and some metals such as Cu and Zn may have antagonised the uptake of As (Andersen *et al.* 2002).

Seagrass samples were collected at the same time as the oysters and analysed for metal concentrations. Changes to metal concentrations in the seagrasses from Wiggins Island and South End sites are provided in Table 10.

Study Objectives	Summarised Results
Comparison of individual metals at both sites over time	AI – not significantly different from each other but an increasing trend in concentration over time.
	As – Wiggins Island significantly higher than South End and Dredge 2 significantly higher than Dredge 1 but pre-dredging sample had intermediate concentrations.
	Cd – Wiggins Island seagrass concentrations higher than South End at all sample times. Dredge 2 and Dredge 1 samples were higher than pre-dredging sample but not different to each other.
	Cr – not significantly different from each other.
	Cu – Wiggins Island seagrass concentrations higher than South End. Dredge 1 was greater than Dredge 2 and pre-dredging sample but not different from each other.
	Fe - Wiggins Island seagrass concentrations higher than South End and temporal trends were inconsistent.
	Ni – not significantly different between the two sample sites and

Table 10 Metal Concentrations in Seagrass

Study Objectives	Summarised Results					
	temporal trends were inconsistent.					
	Pb - not significantly different between the two sample sites and temporal trends were inconsistent.					
	Se – concentrations from Wiggins Island were significantly higher than at South End but not significantly different over time.					
	Zn – concentrations from Wiggins Island were higher than at South End but not significantly different over time.					
Wiggins Island seagrass compared with CRC data	Significant differences for all metals. Trend for highest mean concentrations in Dredge 2 and pre-dredging samples, and lowest mean values in Dredge 1 and CRC data demonstrating inconsistent trends.					
	Dredge 1 samples were lower than pre-dredging samples with the exceptions of Cd, Cu and Zn which increased from before to Dredge 1 and then stabilised for Cd and Cu and decreased for Zn.					
	There was no difference for AI, As, Cd, Fe and Pb concentrations between CRC data and the pre-dredging 2002 study samples. However, Zn had higher and Cr, Cu, Ni and Se had lower concentrations in the CRC data than pre-dredging samples.					

Concentrations of all metals in seagrass were higher at Wiggins Island than at South End in pre-dredged samples, which indicated that the inner harbour site had naturally higher ambient metal concentrations (Andersen et al. 2002). However, this trend was inconsistent over time with decreased concentrations for Al, As, Cr, Fe, Ni, Pb and Se at the Wiggins Island site for Dredge 1 sampling. Reasons for these inconsistencies were unknown and were potentially attributed to seasonal differences and small rainfall events.

With respect to water quality results, pH, salinity and dissolved oxygen were relatively stable for all sites over the three sampling events except for temperature, which was slightly lower at all sites on the Dredge 2 sampling event. Metal concentrations in the water samples collected were variable. For Ag, As, Cd, Cu, Ni, Pb and Se, no changes were observed in total metal concentrations over the sampling period, but Zn, Cr, Al and Fe levels increased for the Dredge 2 sampling event at some sites. Zn concentrations increased at sites 1 to 6 with the highest level of 0.32 mg/L at Site 1. Cr increased at all sites with a maximum of 0.11 mg/L at Site 1 and Site 6. Al increased at sites 1 to 9 with the highest concentrations of 2.86 and 2.91 mg/L at Site 6 and Site 7, respectively. Fe increased at all sites except Site 10, which decreased.

In summarising the effects of dredging on oysters, seagrass and water quality in the Port Curtis Harbour, Andersen et al. (2002) make the following points:

- Dredging results in the exposure of anoxic sediments to oxygen enabling metals to be released and to enter the dissolved phase or bound to particulate organic matter, thereby remobilising into the water column and becoming bioavailable to aquatic life;
- A decreasing gradient from inner to outer harbour sites for copper and zinc and other metals existed prior to dredging and consequently, oysters in closer proximity to anthropogenic inputs will have naturally elevated metal concentrations;

- Samples collected nearer the reclamation outfall had greater concentrations of aluminium, copper, iron, silver and zinc than other sites, suggesting that the reclamation outfall was a point source for these metals;
- Oysters did not accumulate all metals in the same temporal and spatial patterns. Trends for As and Se contrasted to other metals analysed;
- The concentrations of metals in seagrass were inconsistent and inconclusive; and
- Plumes created by many dredging studies are small, temporary and intermittent and turbidity increases experienced have been similar to that caused by natural runoff events.

2.6 Capital Dredging of the Fourth Berth at RG Tanna Coal Terminal (GHD 2005)

GHD (2005) conducted a review of baseline water quality data in the vicinity of the Clinton Coal Wharf prior to the fourth berth dredging and dewatering program at RG Tanna Coal Terminal at the Port of Gladstone (approximately 9 km south-east of Fisherman's Landing). At Clinton Wharf, natural variation in turbidity was evidenced with the time series data recorded by Gladstone Ports Corporation (GPC) from February 2004 to April 2005 (Figure 2). Though summary statistics indicate most values ranged between 0 - 20 NTU, there were regular elevations between 20 and 40 NTU during February/March 2004 and 2005 and peaks of up to 125 NTU for short periods (Table 11). These peaks were likely from natural resuspension of sediments by tidal currents.

Based on this background data, GHD (2005) proposed during the dredging and reclamation works that the TV for turbidity of the receiving environment be set at 40 NTU and that a validation study be undertaken to allow the relationship between turbidity in the receiving environment and turbidity at the overflow site to be determined.

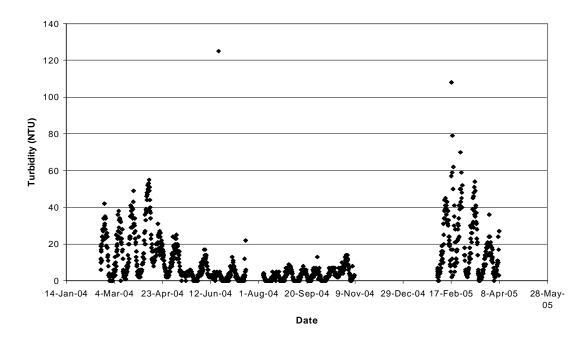


Figure 2 Time Series Turbidity Data recorded at RG Tanna Coal Terminal from February 2004 to April 2005

	between February 2004 and April 200
Statistic	Turbidity (NTU)
Minimum	0.0
Mean	10.3
Median	5.0
80 th percent	tile 17.0
95 th percent	tile 38.0
99 th percent	tile 52.0
Maximum	125.0

Table 11 Summary Statistics for Water Quality Data collected by GPC at the Clinton Coal Wharf

2.7 Validation Study for Dredging of Fourth Berth, RG Tanna Coal Terminal (GHD 2006a)

GHD (2006b) undertook a validation study for the water quality objectives adopted for the reclamation area decant point during dredging of the fourth berth at the RG Tanna Coal Terminal. The study was undertaken over a week in November 2005 with monitoring undertaken on flooding and ebbing tides each day at a number of locations (Figure 1).

Turbidity measurements within the study area showed no evidence of any migration of the discharge plume more than 50 m away from the discharge point. Summary statistics show that Cell 4 (the final reclamation pond) had turbidity ranging from 5.9 - 28.5 NTU, while at the licensed discharge point and receiving waters respectively, turbidity ranged from 5.6 - 43.5 NTU and 3.6 - 40.7 NTU (Table 12). Turbidity in reclamation Cell 4 was less variable in comparison to the discharge point, due to wave and tidal action in the receiving environment as well as scouring of sediments from the decant drain by the discharge waters.

Location		Turbidity (NTU)	
	Minimum	Maximum	Mean
Cell 4 ^a	5.9	28.5	11.8 <u>+</u> 5.5
Discharge Point	5.6	43.5	17.3 <u>+</u> 5.9
Gladstone Harbour	3.6	40.7	10.6 ± 4.9

Table 12Summary Statistics for Water Quality Data at the RG Tanna Coal Terminal Dredging
and Reclamation Site November 2005

a. The last reclamation pond before decanted water was discharged into the harbour

2.8 RG Tanna Coal Terminal 4th Berth Dredge Management Plan, An Assessment of the Effects of Harbour Dredging (Andersen *et al.* 2006)

The effects of harbour dredging were investigated by Andersen *et al.* (2006) during dredging and land reclamation activities for the Fourth Berth at RG Tanna Coal Terminal in 2005. Physicochemical water parameters were measured (pH, temperature, dissolved oxygen, turbidity and conductivity) along with transplanted oysters (*Saccostrea glomerata*) and Diffuse Gradients in Thin Films (DGT) passive sampling devices to assess metal concentrations in water. The DGT technique provides a time-averaged speciation measurement of reactive metals in waters over the period of deployment where soluble metal species diffuse through a known thickness of thin film and irreversibly bind to a layer in a concentration gradient for layer analysis. Monitoring was undertaken prior to dredging (July/August 2005) and during dewatering of the reclamation cells (23 November 2005 to 6 January 2006). Monitoring sites are shown in Figure 1.

Results from this study included:

 There were no changes in water conductivity, dissolved oxygen, pH or total suspended solids between the pre-dredge and dewatering surveys. Water temperature increased between the periods, which was attributed to seasonal differences;

- GPC's licence conditions were not exceeded during the dewatering phases although turbidity increased at inner harbour sites. However, measurements were not significantly different to middle harbour sites at this time;
- No changes in DGT metal concentrations were found at the harbour monitoring sites between the two monitoring periods;
- Some oyster metal concentrations were higher during the pre-dredge monitoring period than during dewatering phase. This was suggested to be a consequence of seasonal variation in oyster growth. A gradient of deceasing metal levels were demonstrated for some metals in oysters from inner to outer harbour sites, which may relate to the increasing distance from potential anthropogenic inputs. This trend was observed prior to dredging commencing. This indicates that dredging was unlikely to be the cause for the elevation of accumulated metals in oysters in the inner harbour area; and
- Turbidity was more closely monitored and controlled during this dredging event in 2005 compared with the 2002 dredging activity (see Section 2.4), and hence there appeared to be little or no impact to harbour monitoring sites from the 2005 dredging. The major differences between the two events to which the reductions in impacts were attributable were increased retention times and controls in place for the release of reclamation discharge waters. Turbidity was closely monitored in each of the reclamation cells and when turbidity increased, the outfalls were sealed to prevent dewatering until turbidity concentrations again decreased.

2.9 Wiggins Island Coal Terminal EIS (Connell Hatch 2006)

The Wiggins Island Coal Terminal EIS contains water quality data from 14 – 15 May 2006 and September 2006 represented wet and dry seasons, respectively (Connell Hatch 2006). It has been assumed that these data consist of single surface grab samples at each site. Connell Hatch (2006) combined different monitoring locations into 'sections' and presented data as medians for each 'section'. Monitoring locations are provided in Figure 1.

Parameters measured included:

- A median value for each of the parameters measured (turbidity, chlorophyll-a, dissolved oxygen, pH and total suspended solids) for 'Section 1' which comprised the monitoring locations identified as the "...intertidal, marine areas adjacent to Wiggins Island and Mud Island". These near shore waters are primarily intertidal, "...with large tracts of exposed substrate during low tides"; and
- Data for Flying Fox Creek and Sandfly Creek which discharge into Port Curtis.

pH was marginally lower than the QWQG (2006) range during the wet and dry seasons in the areas around Wiggins Island and Mud Island (Table 13). However, SS and turbidity levels were elevated around Wiggins Island and Mud Island. Connell Hatch (2006) established that turbidity levels measured during the monitoring program exceeded the water quality objectives set for the Wiggins Island Project and attributed this to natural tidal resuspension of seabed sediments. Data from the sites at Flying Fox Creek and Sandfly Creek demonstrate that these two sites had elevated SS and turbidity levels while pH was marginally lower than the QWQG (2006) range.

		2000)		
Site Location	Suspended Solids (mg/L)	рН	Turbidity (NTU)	
QWQG (2006)	15	8.0 - 8.4	6	
Intertidal, marine	30.5 (wet season)	6.58 (wet season)	7.7 (wet season)	
areas adjacent to Wiggins Island and Mud Island ^a	55 (dry season)	7.77 (dry season)	17 (dry season)	
Flying Fox Creek ^b	57 (Season 2)	7.87 (average of three readings (Season 2)	12 (Season 2)	
Sandfly Creek ^c	44 (Season 2)	7.87 ± 0.02 (duplicate readings) (Season 2)	15 (Season 2)	

Table 13pH and Turbidity Levels for Water Quality in Vicinity of the Fisherman's Landing
Reclamation Project (Connell Hatch 2006)

a. Section 1 in Wiggins Island EIS (Connell Hatch 2006), which is a median value of three sampling sites

- b. Site 14 data from the Connell Hatch Appendix I3
- c. Site 13 data from the Connell Hatch Appendix I3

2.10 Port Curtis Integrated Monitoring Program (PCIMP) Ecosystem Health Report Card (Storey *et al.* 2007)

The PCIMP is a consortium of 15 members from bodies representing industry, government and other stakeholders that developed a collaborative integrated monitoring program for addressing the ecological health of Port Curtis.

Ecosystem health is a measure of the resilience of the ecosystem in the presence of stress. For the Ecosystem Health Report, indicator data are compared against guideline levels to produce a Standardised Score, which represents a departure from the desired ecological health. Indicators are then allocated into "…Performance Categories and an average score for each Performance Category in each zone is calculated". "The combined average score for all Performance Categories in each zone is determined and converted to the final health rating, a grade from A (equivalent to reference) to F (complete fail)." (Storey et al. 2007).

Most of the data utilised in this report was collected during 2005 and 2006. Indicators in the monitoring program included water chemistry, water contaminants, mangrove health, sediment contaminants, and seagrass biomass. The area was sub-divided into nine zones with information on Zone 2, Inner Harbour Fisherman's, presented in this review. Zone 2 encompasses the harbour from the entrance to the Narrows between Fisherman's Landing Wharf and Curtis Island and south to the small estuary of Boat Creek. Industries within the adjacent catchment area include Rio Tinto Aluminium – Yarwun, Cement Australia, Orica, Queensland Energy Resource Ltd. and Transpacific Ltd. The licensed discharge points identified in the report include Rio Tinto Aluminium – Yarwun and the Gladstone Regional Council Trade Waste Outfall. A summary of the findings for Zone 2 include:

- Zone 2 was provided with a B+ rating, which was influenced by some low scores in several
 performance categories; however the average score for each category was A and the lowest score in
 each category was a B;
- The only other zone within the Harbour to record a B+ rating was Inner Harbour, South Trees (Zone 6), with all other areas within the Harbour being rated as A-, through to A+. Therefore, Fisherman's Landing experiences some existing reduction in ecosystem health, but did not score substantially lower than other areas within the Harbour;
- Low scores were mainly attributed to Boat Creek because of low pH, high turbidity and low dissolved oxygen (DO). This was noted to be similar to other mangrove lined estuaries and it was also noted that Boat Creek does not receive point source discharges;
- Elevated total phosphorus was recorded;
- High levels of aluminium, copper, cobalt and manganese recorded were attributed to Boat Creek conditions, with metals being more bioavailable due to low pH and low DO conditions;
- Copper, nickel and zinc uptake in oysters was noted;
- Cobalt, copper and cadmium were elevated compared to background estuarine reference zone although still below recommended guidelines; and
- Sediment PAHs were of a low concentration and scored well.

2.11 PCIMP Biomonitoring 2007, North Harbour Zones (Andersen et al. 2008a)

Andersen *et al.* (2008a) investigated the spatial variability of nutrient and metal concentrations in the estuarine, inner harbour and outer harbour areas of Port Curtis with transplanted oysters (*Saccostrea glomerata*) as biomonitors and DGTs as the tools for the environmental assessment. Transplanted oysters were also used the 2002 and 2005 studies by Andersen *et al.* (2002) as described in Sections 2.4 and 2.8.

There were numerous sites investigated and these were allocated into 20 zones based on disturbance level, previous sampling results, hydrodynamic flows and local knowledge. Reference locations were included for oceanic and estuarine zones.

Physicochemical parameters for water quality, including temperature, conductivity, dissolved oxygen, pH and turbidity, were recorded just below the water surface at the following times:

- During deployment of oysters and DGT (11 to 15 July 2007);
- During retrieval of the DGT devices (17 to 20 July 2007); and
- During retrieval of the oysters (10 to 13 September 2007).

Light attenuation was also measured at biomonitoring sites at 0.25 m or 0.5 m intervals throughout the water column to obtain a minimum of five measurements. Water samples were collected for analysis of nutrients and other parameters of interest at approximately 0.5 m depth when the DGT devices were retrieved (17 to 20 July 2007). Oysters obtained from a commercial lease in Moreton Bay were deployed at approximately 1 m depth for a period of eight weeks (deployed 11 to 15 July and retrieved 10 to 13 September 2007). Composite samples of soft tissue from the oyster shells from each site were analysed for various metal concentrations. Metals data was presented as accumulation rates that were calculated by subtracting the baseline metal concentration from the final metal concentration and then dividing by

the number of days deployed. This method assumes that uptake rates are linear. The DGT devices were deployed at the same time as the oysters (11 to 15 July 2007), however these were retrieved only after six days (retrieved 17 to 20 July 2007).

Results from this study included:

- There were seasonal differences in the physicochemical characteristics of water between the July and September sampling periods with September having higher temperatures, lower conductivity, higher dissolved oxygen and lower pH;
- Euphotic depth was lower in September compared to July (less depth penetration by light);
- Lower pH and higher turbidity in estuarine versus oceanic zones;
- Despite the presence of a licensed discharge point for aluminium at Fisherman's Landing, this site did not contain the highest concentrations of aluminium;
- Total phosphorus ranged from 40 to 60 µg/L for all impact zones and was two to three times above the ANZECC (2000) guidelines;
- Total nitrogen exceeded the ANZECC (2000) guidelines in Boat Creek and Calliope Anabranch at 250 and 260 μg/L respectively;
- Boat Creek consistently exhibited elevated concentrations of manganese and cobalt in DGTs compared to other sites. This site does not receive a licensed discharge and the report concludes that the intrusion of groundwater (resulting in the observed cooler waters and higher conductivity) and low pH may be the cause of these metal concentrations. Inputs from metallic refuse located adjacent to the Boat Creek boat ramp may also influence metal concentrations; and
- The only metal concentration in DGTs that exceeded the ANZECC (2000) guidelines was cobalt where the concentrations ranged from 0.01 to 0.39 µg/L and exceeded the reported 99% species protection guidelines.

2.12 Port Curtis Seagrass Water Quality (Wilson et al. 2008)

A project to assess water quality impacts on seagrass was undertaken as part of a collaborative project between the former Department of Primary Industries and Fisheries (DPI&F) Marine Ecology Group and the Centre for Environmental Management (CEM) as part of the Port Curtis Integrated Monitoring Program (PCIMP) (Wilson *et al.* 2008). Continuous recordings of temperature, turbidity and light at selected seagrass beds in Port Curtis were collected. For the purposes of this EIS, only turbidity and light data at two seagrass beds, identified by Wilson *et al.* (2008) as sites No.5 and 8, are of interest (Figure 1). Descriptions of the seagrass bed locations and sampling sites are provided in Table 14.

Data were collected from these sites from 24 January to 18 April 2008. Loggers were placed on intertidal seagrass beds and became exposed at low spring tides for up to four hours. Data during these exposed periods were omitted from turbidity data analysis. Wilson *et al.* (2008) did not indicate whether these data were excluded for light analysis and stated that "...values greater than 500 micro Einsteins (μE) recorded for up to four hours at these times".

	u. (2000)							
Site ID	Seagrass Bed Location	Sampling Site	Seagrass Community Type	Meadow Cover				
5	West of Wiggins Island	Northern side of bed	Light <i>Z. capricorni</i> with H. <i>ovalis</i>	Aggregated patches				
8	Along shoreline from Fisherman's Landing wharves extending northward to Friend Point	Near Friend Point (north of Fisherman's Landing)	Light <i>Z. capricorni</i> with mixed <i>Halophila</i> species	Aggregated patches				

Table 14Descriptions of Seagrass Beds in the Vicinity of Fisherman's Landing from Wilson et
al. (2008)

Turbidity and light measurements and were logged by JCU Mk9 Nephelometers with data recorded every 10 minutes and the sensor cleaned by wipers every two hours. Both parameters were calculated with calibration constants and plotted for the sites with turbidity units of Nephelometric Turbidity Units (NTU) and for light data as Photosynthetically Active Radiation (PAR) in μ E. Wilson *et al.* (2008) reported that nephelometers were set up 15 – 20 cm above the sediment surface.

Monitoring data for turbidity and light are presented for the Fisherman's Landing site in Table 15. These data demonstrate that the site north of Fisherman's Landing had a large range of turbidity and light levels over the monitoring period. Turbidity was consistently higher at the Fisherman's Landing site versus the other sites (Fisherman's Landing mean = 99 NTU; West Wiggins Island mean = 28 NTU). High turbidity levels at the Fisherman's Landing seagrass beds were attributed to the natural occurrence of sediment runoff during tidal changes, heavy rainfall (February to March) and a series of large flood plumes observed flowing through The Narrows into Port Curtis, possibly from the Fitzroy River system. Light measurements were similar to that of turbidity data corresponded to each other indicating the latter is a strong influencing factor on the former". Other factors affecting light included day and night periods and reduced radiance from cloud cover.

Parameter Turbidity (NTU) PAR (μE) Mean (95% confidence interval) 99.01 (±2.18) 40.37 (±2.22) Range 2.36 – 539.71 0.06 – 623.34 Median 47.93 3.00

505.40

356.67

174.91

16.70

10788

621.24

228.54

17.28

2.16

11812

Table 15Summary Statistics for Turbidity and PAR at Fisherman's Landing Seagrass Bed (24
January – 16 April 2008)

99th Percentile

95th Percentile

80th Percentile

20th Percentile

Number of samples

2.13 An Assessment of the Effects of Dredging at Fisherman's Landing (Andersen *et al.* 2008b)

A water quality monitoring program was conducted by CEM to assess water quality impacts from dredging Berth 1 and decant from the reclamation at Fisherman's Landing (Andersen *et al.* 2008b). Results were compared with relevant guidelines and previous dredging assessments in Port Curtis. Physicochemical parameters and metal concentrations were assessed with different techniques including a before-after-control-impact (BACI) design and by examining "...potentially highly impacted, less impacted and reference sites both before and during the dredge event..." (Andersen *et al.* 2008b).

Physicochemical parameters measured *in situ* included temperature, conductivity, TDS, DO, pH, turbidity and oxidation reduction potential (ORP). Values provided are the mean of three readings. PAR (400 – 700 nm) was measured at 0.5 m depth intervals and at 0.25 m intervals in shallower areas to yield at least 5 samples so that light attenuation could be calculated. Turbidity measurements were measured concurrently with PAR. PAR measurements were plotted versus depth and regression analysis was carried out to estimate vertical attenuation coefficients, and subsequently the euphotic depth in metres.

There were a number of monitoring locations reported by Andersen *et al.* (2008b), including two harbour sites (C1 adjacent to the dredge head and QE1 on the northern seagrass meadow), the reclamation cell (Cell 2), the reclamation cell discharge point plume (the Outfall) and eight additional sites in the harbour (Figure 1). Of particular relevance to this project are the two harbour sites C1 and QE1 as well as Cell 2 and the Outfall. Data for pH, turbidity and euphotic depth at these four sites are presented in Table 7, for different stages of the project (pre-dredging, dredging and dewatering). These data demonstrate that pH values were generally within the QWQG (2006) range. Turbidity exceeded the QWGQ (2006) even prior to commencement of dredging works with no substantial increase at C1 even during dredging. The variable turbidity results were attributed to tidal movement and the shallowness of the area. There are no guidelines to assess euphotic depth, but estimates were variable throughout the different stages of the project.

 Table 16
 pH, Turbidity and Euphotic Depth Ranges at Pre-Dredging, Dredging and Dewatering at Fisherman's Landing,

2008

QWGQ 2006	рН 8.0 – 8.4			Turbidity (NTU)			Euphotic Depth (m)					
Sites	C1	QE1	C2	Outfall	C1	QE1	C2	Outfall	C1	QE1	C2	Outfall
Pre-dredging (18 February – 3 March 2008)	7.7 – 8.2	7.6 – 8.1	n/a	n/a	5.7 – 20.7	2.5 – 14.6	n/a	n/a	1.5 – 4.4	2.2 – 3.9	n/a	n/a
During dredging (4 – 10 March 2008)	8.1 – 8.2	8.0 - 8.1	n/a	n/a	8.7 – 17.9	8.2 – 19.5	n/a	n/a	1.8 – 3.8	2.1 – 3.6	n/a	n/a
During dewatering (11 March – 8 April 2008)	8.0 – 8.1	8.0 – 8.1	7.9 – 8.2	8.0 - 8.2	4.1 – 39.0	4.8 – 19.4	16.0 - 44.9	6.9 – 35.2	1.1 – 5.6	1.9 – 5.8	n/a	n/a

Surface water samples were analysed for total and dissolved metal concentrations and report that only "...aluminium, iron, manganese, molybdenum and zinc were regularly above the laboratory limits of detection" (Andersen et al. 2008b). For C1 and QE1 sites, values for zinc did not exceed the 95% ANZECC values. A comparison of metals concentrations from pre-dredge, dredge and post-dredging revealed few differences. Turbidity recordings in the outfall plume exceeded the ANZECC (2000) guideline of 20 NTU for five of the nineteen days a measurement was recorded. The report noted that dewatering was not occurring during the elevated period.

2.14 Fisherman's Landing Baseline Turbidity Report, June – October 2008 (Wilson and Andersen 2009)

Turbidity monitoring was undertaken at Fisherman's Landing outside of the wet season during a period when dredging was not occurring. Turbidity monitoring was undertaken at Berth 5 (Bulk Liquids Wharf) over a period of five months between 2 June and 29 October 2008 with a Greenspan TS3000 turbidity sensor data logger. Temperature and turbidity data were logged every ten minutes and wipers cleaned the sensors every two hours. Data are plotted in Figure 3. Erroneous data due to sensor fouling were removed from the data set (18 July to 18 August and 18 September to 10 October). Other anomalous values, such as those outside of the instrument range and during periods of extreme low tides when logger was not submerged, were also removed from the data set.

450 400 350 \$ 300 Turbidity (NTU) 250 200 150 100 50 0 9-Jun-08 80-Jun-08 7-Jul-08 4-Jul-08 21-Jul-08 2-Jun-08 6-Jun-08 3-Jun-08 28-Jul-08 4-A ug-08 11-Aug-08 8-Sep-08 22-Sep-08 20-Oct-08 27-Oct-08 18-Aug-08 -Sep-08 5-Sep-08 29-Sep-08 6-Oct-08 3-Oct-08 25-Aug-08 Date

Mean turbidity concentrations for each month demonstrate a seasonal pattern with a general declining trend through to August and then increasing to October (Table 17) (Wilson and Andersen 2009).

Figure 3 Turbidity Data for Fisherman's Landing, June to October 2008

Parameter	Overall	June	July	August	September	October
Mean (95% confidence interval)	13.60 (±0.30)	11.24 (±0.47)	12.63 (±0.82)	6.89 (±0.22)	14.13 (±0.52)	24.04 (±0.93)
Range	1 - 397	1- 397	1 - 388	1 - 121	2 - 158	3 - 321
Median	9	8	8	5	11	16
99 th Percentile	83	41	101	24	56	134
95 th Percentile	36	29	29	15	32	64
80 th Percentile	18	15	17	10	19	31
20 th Percentile	5	6	6	4	8	11
No. of Samples	13769	4043	2530	2661	1767	2768

Table 17 Turbidity Statistics (NTU) for Fisherman's Landing Berth 5, June – October 2008

Overall, Wilson and Andersen (2009) indicated that 80% of the samples were below the ANZECC (2000) guideline of 20 NTU for Tropical Australia - Inshore Marine Waters and that higher turbidity levels recorded (maximums approaching 400 NTU) were mainly attributed to resuspension of sediments by wind induced waves and tidal currents, with the tidal phase (neap and spring) also having an impact. It is also noted that only approximately 20% of the samples were below the QWQG (2006) of 6 NTU.

Turbidity trends reported by Wilson and Andersen (2009), with respect to factors investigated, are as follows:

- Rainfall events: Turbidly levels were not related to rainfall events where there were four periods of moderate rainfall (30-50 mm in 24 h) during the sampling period. It is anticipated that during the wet season, rainfall would be a greater contributing factor in turbidity elevations.
- Tidal influences: Trends in turbidity levels were associated with spring and neap tides with higher means occurring around spring tides (16.0 NTU) compared to neap tides (8.5 NTU). This was attributed to greater bed sediment movements with stronger tidal actions during spring tides.
- Wind direction and speed: Peaks in turbidity were related to prevailing and strong winds in the NE to ESE direction, although "...not all winds from this direction caused elevated turbidity". The rise in turbidly between August and October was attributed to the predominance of easterly wind patterns as well as the wind speed increasing from 16 to 23 km/h (monthly mean) during that time.
- Shipping movements: Were not consistently related to elevations in turbidity readings as high turbidity values (greater than the monthly average) were recorded only during one vessel departure.

2.15 WBM Turbidity Data at Fisherman's Landing (2008)

As part of an ongoing process of calibrating the hydrodynamic model for Port Curtis, WBM undertook turbidity monitoring on the tidal flats at the proposed Fisherman's Landing Northern Reclamation site. Monitoring was undertaken at two sites for approximately 1 month from 15 August to 9 September 2008, covering both neap and spring tidal states. Site 1 was located in the shallow tidal flats and Site 2 was located in deeper waters adjacent to the tidal flats Figure 1.

Data is presented in Figure 4, with tide level shown in Figure 5. Data was collected with an Analite Turbidity Probe with a data range of 0 - 100 NTU. The data show a distinct tidal influence on turbidity, with peaks during flooding and ebbing tides. Turbidity was higher at both sites during spring tides, when there is greater movement of water between high and low tide. Turbidity was higher on the tidal flats than in the adjacent deeper waters during all stages of the tide, with higher and more frequent peaks in turbidity being observed on the tidal flats also. Turbidity is the result of the resuspension of fine sediments from the seabed by tidal currents.

Turbidity regularly exceeded the ANZECC (2000) guideline of 20 NTU and the QWQG (2006) of 6 NTU, and on the tidal flats consistently exceeded these guidelines for substantial periods. This data indicates that the tidal flats and adjacent deeper waters regularly experience elevated turbidity and that the marine flora and fauna present are adapted to these conditions.

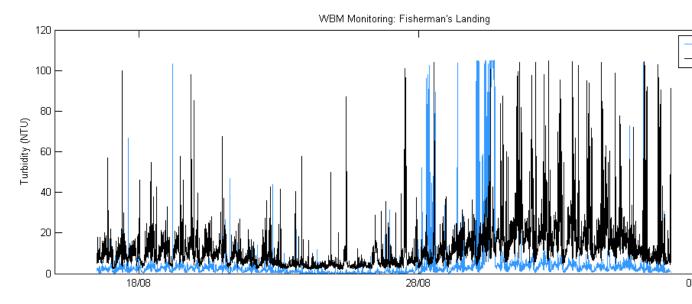
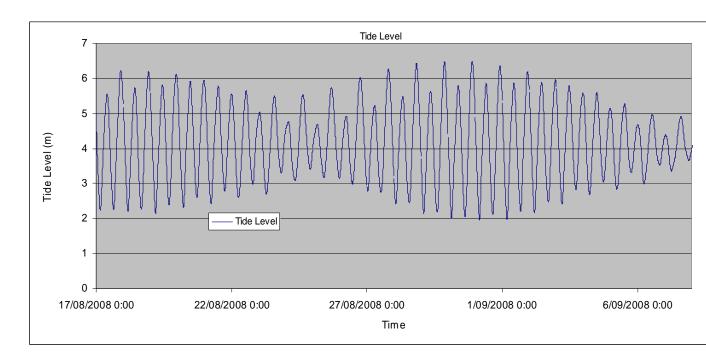



Figure 4 Turbidity at Fisherman's Landing Tidal Flats, 17 August to 6 September 2008. Site 1: 93072; Site 2: 93071 (WBM 2008)

Figure 5 Tide Level at Fisherman's Landing from 17 August to 6 September 2008 (WBM 2008)

3. Existing Information on Sediment Quality

3.1 Introduction

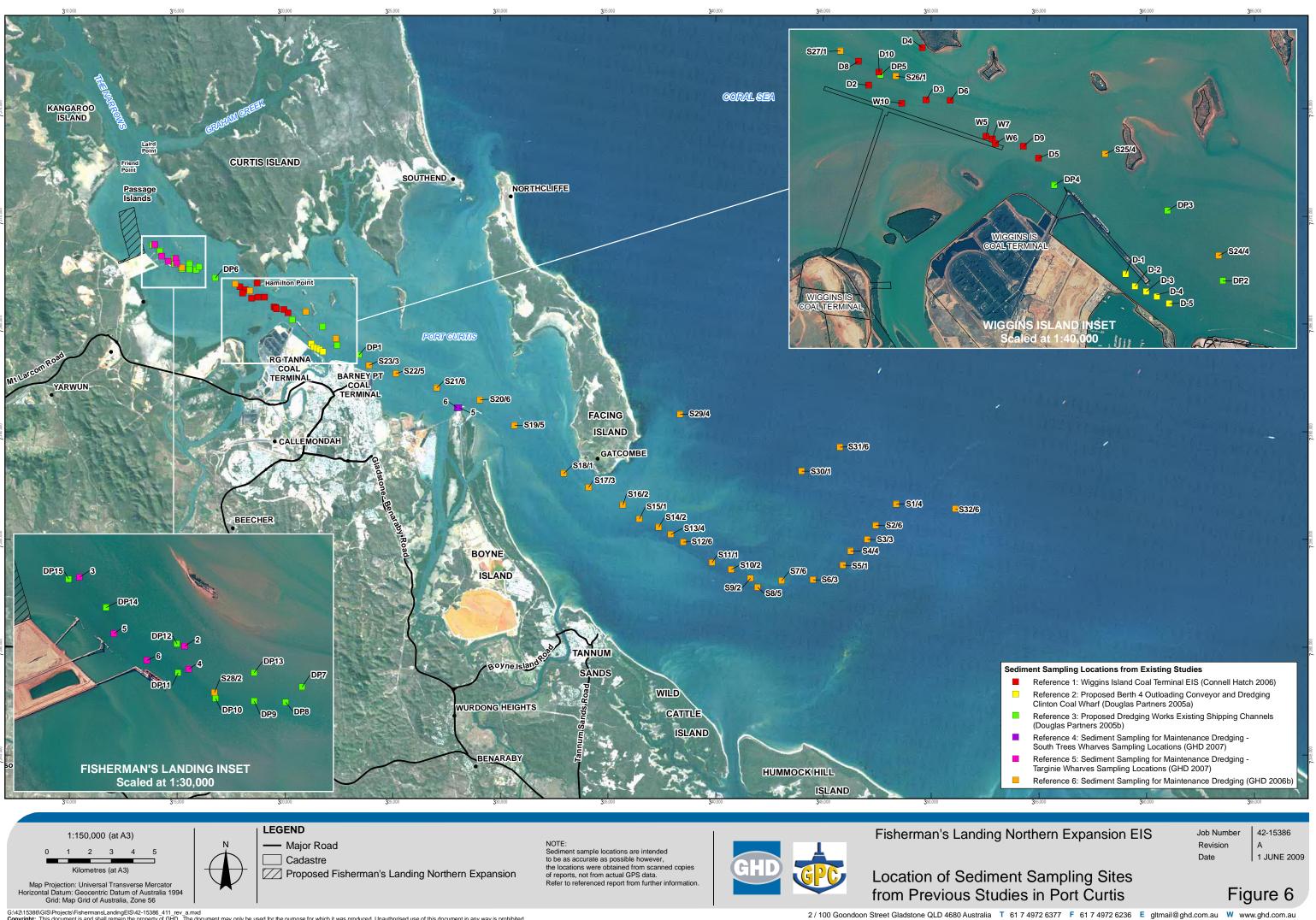
Sediment quality studies previously undertaken in the project area have been reviewed and are provided in Table 19. Further details relating to these studies are presented following the summary table. The sampling sites for each study are shown in Figure 6. Previous studies were undertaken with the sediment quality guidelines specified in the National Ocean Disposal Guidelines for Dredged Material (NODGDM 2002). An update of these guidelines was released in 2009, therefore, these National Assessment Guidelines for Dredging supersede of 2009 the NODGDM (2002). As the sediment quality guidelines do not differ substantially, the results of previous studies have not been checked against the NAGD (2009) and their conclusions are reported against the NODGDM (2002). A summary of the guidelines applied to this EIS as outlined in Chapter 8 of the main document are provided in Table 18.

	-				
Parameter	Draft Contaminated Land Qld (1998) – EIL	NODGDM (2002) – Screening Level	NAGD (2009) – Screening Level	NAGD (2009) – SQG-high	
Metals (mg/kg)					
Arsenic	20	20	20	70	
Antimony	20	20	2	25	
Cadmium	3	1.5	1.5	10	
Chromium (III +IV)		80	80	370	
Copper	60	65	65	270	
Lead	300	50	50	220	
Manganese	500				
Mercury	1	0.15	0.15	1	
Nickel	60	21	21	52	
Silver		1	1	3.7	
Zinc	200	200	200	410	
Total Petroleum Hydrocarbons (mg/kg)					
C 6 – C9 Fraction	100				
C 10 – C14 Fraction	100				
C 15 – C28 Fraction	1000				
C 29 – C36 Fraction	1000				
Total TPHs			550		
Polycyclic Aromatic Hydrocarbons (µg/kg)					

Table 18 Sediment Quality Guidelines Adopted for Fisherman's Landing

Parameter	Draft Contaminated Land Qld (1998) – EIL	NODGDM (2002) – Screening Level	NAGD (2009) – Screening Level	NAGD (2009) – SQG-high
Benz(a)pyrene				
PAHs (Sum of total)		4,000	10,000	50,000
Polychlorinated Biphenyls (µg/kg)				
PCBs (sum of total)	1,000	23	23	
Organochlorine Pesticides (µg/kg)				
4,4-DDE		2.2	2.2	27
Aldrin + Dieldrin	200			
Chlordane		0.5	0.5	6.0
DDD		2.0	2.0	20
DDT		1.6	1.6	46
DDT+DDE+DDD	200			
Dieldrin		0.02	280	270 / 620
Endrin		0.02	10	120 / 220
g-BHC (Lindane)		0.32	0.32	1.0
Organotins (μg Sn/kg)				
Tributyltin		5 µg Sn/kg	9 µg Sn/kg	70 µg Sn/kg

Table 19 Sediment Quality Studies Undertaken in the Vicinity of the Proposed Project Area


Study	Purpose	Parameters	Sample Locations	Sampling Time Period	
Comalco Alumina Project (Dames and Moore, 1998)	Environmental Impact Statement	 Metals (Fe, Al, Mn, As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Se, Sn) 	Fisherman's Landing	September 1995	
		 Total Petroleum Hydrocarbons (TPH) 			
Cooperative Research Centre	Three CRC Research	Technical Report 25:	Throughout Port Curtis	Technical Report 25:	
(CRC) for Coastal Zone, Estuary and Waterway Management (2005, 2006)	Projects	 Metals (Al, As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Se, Zn) 		August – October 2001 (dry season) and February 2002	
,		 Polyaromatic Hydrocarbons (PAH) 		(wet season) Technical Report 73:	
		 Fluoride 		December 2003 and December	
		Cyanide		2004	
		 Tributyltin (TBT) 		Technical Report 83:	
		Contaminants reduced in Technical Report 73 and 83		December 2003 and December 2004	
Douglas Partners (2005a)	Proposed dredging of Berth 4, RG Tanna Coal	 Metals (As, Sb, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn) 	5 environmental bore holes located in Fourth Berth, RG	March and April 2005	
	Terminal	▶ PAHs	Tanna Coal Terminal		
		▶ TBT			
		▶ PCBs			
		Pesticides			
		 Organic carbon 			
		 Acid sulfate soils (ASS) 			

Study	Purpose	Parameters	Sample Locations	Sampling Time Period		
Douglas Partners (2005b)	Proposed dredging at Fisherman's Landing, Targinie Channel and adjacent to RG Tanna Coal Terminal	 Metals (As, Sb, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn) PAHs TBT PCBs Pesticides Organic carbon 	15 bore holes located around existing shipping channels, Fisherman's Landing wharves and RG Tanna Coal Terminal	March and April 2005		
		 Acid sulfate soils (ASS) 				
Wiggins Island Coal Terminal EIS (Connell Hatch 2006)	Dredging and wharf construction at proposed	 Metals (As, Sb, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn) 	Wiggins Island Coal Terminal dredging and	2006		
	at Wiggins Island Coal Terminal	▶ PAHs	wharf footprint			
		 pesticides 				
		PCBs				
		Organic carbon				
		• TBT				
		ASS				
Sediment Sampling for Maintenance Dredging 1992, 1996 and 2000	1992, 1996 and 2000 permits for sea disposal of maintenance dredging material	Various	Main shipping channel			

Study	Purpose	Parameters	Sample Locations	Sampling Time Period		
GHD (2006b, 2007)	2006 application for long term sea disposal permit for maintenance dredging material	 Farameters Total Organic Carbon Particle Size Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn, Ag) Cyanide, Ammonia PAHs Organotins 	28 sites along shipping channel in inner and outer harbour Additional sampling at 5 sites at Fisherman's Landing berths and swing basin and 2 sites at South Trees wharf berths	July 2006 and June 2007		
		BTEX and TPHs				

G:42.15386/GIS\Projects\FishermansLandingEIS\42-15386_411_rev_a.mxd Copyright: This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was produced. Unauthorised use of this document in any way is prohibited. © 2009. While GHD, GPC, DERM, GA and Douglas Partners make no representations or warranties about its accuracy, completeness or suitability for any particular purpose. GHD Pty Ltd, GPC, DERM, GA, Connell Hatch and Douglas Partners cannot accept liability of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred as a result of the product being inaccurate, incomplete or unsuitable in any way and for any reason. Data Sources: Reclamation area (2009) • @The State of OLD (Gladstone Ports Corporation); Landsat (2007), Aerial imagery (2007) @The State of OLD (Department of Environment and Resource Management); 250K Topo Data (2006) • @Commonwealth of Aust (Geoscience Australia), Sediment Samples - OHD Pt Lt (2006-2007); Sediment Samples - Douglas Partners (2005). Sediment Samples - Cornell Hatch (2006). Created by: KD

Copyright: This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was produced. Unauthorised use of this document in any way is prohibited. (c) **2009**.

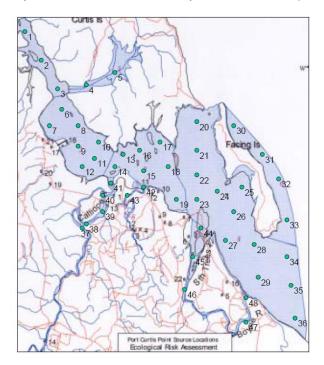
3.2 Comalco Alumina Project, Gladstone IAS \ EIS (Dames and Moore, 1998)

Dames and Moore (1998) conducted baseline sediment quality monitoring for the Port Curtis area for the Comalco Alumina IAS/EIS during 1995. Data for the site adjacent to Fisherman's Landing is presented in Table 20. All parameters examined were compliant with the NODGDM (2000).

Parameter	Concentration (mg/kg)	NODGDM (2000) ISQG (low)				
Iron	21700					
Aluminium	9200					
Manganese	400					
Arsenic	13	20				
Cadmium	<0.1	1.5				
Chromium	9	80				
Cobalt	10					
Copper	52	65				
Lead	42	50				
Mercury	<0.2	0.15				
Molybdenum	1.0					
Nickel	5	21				
Selenium	0.1					
Tin	3.0					
Total Petroleum Hydrocarbons	<0.2					

 Table 20
 Sediment Quality Results for Fisherman's Landing (Dames and Moore 1998)

3.3 CRC Coastal Zone, Estuary and Waterway Management (2005, 2006)


The Cooperative Research Centre (CRC) for Coastal Zone, Estuary and Waterway Management has undertaken a series of research projects into contaminants in sediments and contaminant pathways in Port Curtis. These studies are published in three Technical Reports:

- Technical Report 25: Contaminants in Port Curtis: screening level risk assessment (Apte et al. 2005);
- Technical Report 73: Contaminant pathways in Port Curtis (Apte et al. 2006); and
- Technical Report 83: Metal and polycyclic aromatic hydrocarbon contaminants in benthic sediments in Port Curtis (Vincente-Beckett *et al.* 2006).

3.3.1 Technical Report 25

The CRC undertook a screening level risk assessment of water and sediment quality in Port Curtis in 2001/2002 (water quality is reported in Section 2.4). The aim of this study was to identify contaminants of concern in Port Curtis. Parameters to be monitored were chosen based on likely inputs from industry and port activities and included metals, PAHs, cyanide, fluoride and tributyltin (TBT). Surface sediment grabs were collected at 50 sites throughout the harbour (Figure 7). Seagrass, oysters, mud whelks and crabs were also collected and analysed for contaminant concentrations to determine if bioaccumulation of contaminants was an issue in Port Curtis. Fish were also collected for human health risk assessment. Only metals and TBT were analysed on biota samples.

Figure 7 Location of Sediment Samples from CRC Study (Apte et al. 2005)

Results of sediment sampling are summarised in table 5 of Apte *et al.* (2005) (see below). The following conclusions were drawn from the study:

- Concentrations of arsenic, chromium, nickel and TBT exceeded the ISQG-low guidelines in a number of samples;
- The concentrations of chromium and nickel in the harbour were comparable to control site concentrations, indicating naturally elevated levels of these metals in Port Curtis;
- The concentrations of arsenic were above background;
- The concentrations of PAHs were below limits of reporting, but the LORs were too high to compare to sediment quality guidelines. A previous WBM (2000) study had indicated measurable concentrations of PAHs such as napthalene, pyrene and fluoranthene in sediments in Port Curtis;

- The concentrations of a number of metals were enriched in biota samples within Port Curtis relative to reference sites, however, the study noted that this did not necessarily result in deleterious effects; and
- The concentrations of mercury in fish were of potential concern, but this was noted to be a typical public health concern throughout Australia (Apte *et al.* 2005).

The study concluded that contaminants of concern in Port Curtis sediments were arsenic, TBT and napthalene.

	Guivey Results										
	Sb	As	Cr	Cu	Ni	Pb	Zn	Ag	Cd	TBT ^d	Hg
Mean (S.D.) ^a	0.54 (0.15)	18 (12)	50 (29)	18 (12)	14 (8)	30 (27)	32 (29)	0.11 (0.05)	0.10 (0.01)	0.05 (0.04)	0.01 (0.01)
Median	0.54	16	53	14	13	16	16	<0.10	<0.10	0.03	0.01
Minimum	0.33	6	13	4	4	5	11	<0.10	<0.10	<0.025	0.001
Maximum	0.82	36	85	44	33	18	113	0.50	0.24	0.655	0.055
Trigger Value (low) ^b	2	20	80	65	21	50	200	1	1.5	0.005	0.150
Exceedances(%) ^c	0	28	5	0	22	0	0	0	0	8	0
Trigger value (high) ^b	25	70	370	270	52	220	410	3.7	10	70	1

Table 5. Sediment Contaminant Data (mg kg⁻¹ dry weight) for Port Curtis – Combined Survey Results

^aMean (Standard Deviation). ^bSediment quality guideline trigger values (ANZECC/ARMCANZ, 2000). ^c Number of values exceeding trigger values (n = 100 samples). ^d TBT = Tributyltin tin (n = 56 samples).

3.3.2 Technical Report 73

The CRC undertook a study to attempt to determine the sources of the contaminants of concern in Port Curtis that were identified in the Apte *et al.* (2005) study. The study focused on metals, PAHs and TBT. The following conclusions were made:

- Elevated concentrations of dissolved metals were identified in the waters of Port Curtis. Likely sources of metals were industrial and anthropogenic discharges, unidentified sources in The Narrows and the Fitzroy River plume;
- Elevated concentrations of arsenic, chromium and nickel in Port Curtis sediments were identified as being from natural geology, not anthropogenic sources;
- PAHs were identified around industrial areas of the Port, but concentrations were below ANZECC (2000) guidelines;
- The top 28 cm of sediments were determined to have been deposited since 1958, which marks the beginning of industrialisation in Gladstone; and
- Imposex was identified in mud whelks in the Port, indicating a biological response to TBT exposure.

3.3.3 Technical Study 83

This study contained a more detailed review of the studies relating to sediment metal and PAHs concentrations that were reported in Technical Study 73.

3.4 Proposed Berth 4 Outloading Conveyor and Dredging Clinton Coal Wharf (Douglas Partners 2005a)

Sixteen boreholes were drilled within the proposed capital dredging and wharf construction area for the Fourth Berth at RG Tanna Coal Terminal (Douglas Partners 2005a). Environmental analyses were undertaken on 5 boreholes, with samples collected and analysed at the surface, within the top 6m below seabed and between 6 and 12 m below seabed (Figure 6). Samples from the surface were analysed for a full range of contaminants (metals, PAHs, TBT, PCBs, pesticides, organic carbon, chromium suite for ASS) and the two deeper samples from each core were analysed for metals, napthalene, total PAHs, chromium suite for ASS and organic carbon.

The results were as follows:

- 80% of the material to be dredged comprised sands and clayey sands, with minor proportions of gravel and the remaining 20% of material comprised clays, silty clays and sandy clays, also with minor gravel content;
- The concentrations of PCBs, pesticides, PAHs and TBT were below laboratory limits of reporting, with the exception of TBT in one sample. The concentration of TBT that was above laboratory LORs was below the ISQG-low and EILs;
- The concentrations of all metals were below the ISQG-low and EILs;
- The field pH screening tests that indicate the presence of actual acid sulfate soils (AASS) and potential acid sulfate soils (PASS) did not indicate the presence of either of these in the sediments to be dredged; and
- The action criteria from the chromium suite tests for ASS was not exceeded for any samples, indicating that the risk of oxidation of PASS during dredging and reclamation was below the criteria that require action and management.

3.5 Proposed Dredging Works Existing Shipping Channels (Douglas Partners 2005b)

Sediment sampling was undertaken as part of an investigation into the proposed dredging of shipping channels and swing basins in the Port of Gladstone, along Targinie Channel and adjacent to Fisherman's Landing wharves (Douglas Partners 2005b) (Figure 6). Fifteen boreholes were drilled to derive geotechnical and geochemical characteristics of sediments in existing shipping channels and swing basins in March and April 2005. Samples from the surface were analysed for a full range of contaminants (metals, PAHs, TBT, PCBs, pesticides, organic carbon, chromium suite for ASS) and the one deeper sample from site DP15 was analysed for metals, napthalene, total PAHs, chromium suite for ASS and organic carbon. Most cores were drilled to 4 - 5 m, which is well below the proposed depth of dredging in these areas. DP15 was drilled to 10 m.

The results of the study were:

The top 2 m of material in the Targinie Channel consisted of ~95% silt and clay and ~5% sand with minor gravel and the top 2 m of material in the Targinie Swing Basin (adjacent to existing Fisherman's Landing reclamation) consisted of ~75% silt and clay and ~25% sand with minor gravel;

- The concentrations of metals, PCBs, PAHs, pesticides and TBT were below the ISQG-low, with the exception of arsenic in two samples. The 95% upper confidence limit of the mean for arsenic in all samples was below the ISQG-low; and
- None of the field screening tests indicated the presence of AASS or PASS in the material to be dredged and the action criterion was not exceeded for any of the 16 samples that underwent chromium suite analysis, indicating that the risk of oxidation of PASS during dredging and reclamation was below the criteria that require action and management.

3.6 Wiggins Island Coal Terminal EIS (Connell Hatch 2006)

Environmental and ASS analysis was undertaken on 13 boreholes from the footprint of the proposed Wiggins Island Coal Terminal (WICT) wharf, berths and swing basin (Connell Hatch 2006) (Figure 6). Surface samples (0 - 0.45 and 0.5 - 0.95 m) were analysed for the range of contaminants outlined in the NODGDM (2000). Samples were collected at 1 m intervals below 0.95 m and analysed for a reduced suite, including metals and ASS field screening. The results of the sampling and analysis indicated the following:

- The material to be dredged comprised mostly sands (Table 21);
- The concentrations of PAHs, pesticides, PCBs and TBT were below the NODGDM (2000) ISQG-low screening levels after normalisation to 1% total organic carbon;
- Concentrations of 6 metals exceeded the ISQG-low or EIL in individual samples, however, the 95% upper confidence limit of the mean for each metal was compliant to the guidelines, with the exception of silver, which exceeded the ISQG-high trigger value. The depth of the samples led to the conclusion that these concentrations were natural and not of concern for land based disposal; and
- No acid sulfate soils were identified in the material to be dredged (Connell Hatch 2006).

Area to be Dredged	Sediment Type
Berth Pockets	 sands, clayey sands and minor gravelly sands 66%
	 sandy clays, silty clays and minor gravelly clays 31%
	 dense gravels 3%
Departure/Arrival Channel	 sands, clayey sands and minor gravelly sands 60%
	 sandy clays, silty clays and minor gravelly clays 37%
	 dense gravels 3%
Swing Basin	▶ sands 65%
	 clayey sands 30%
	 gravelly sand and silty clay 5%

Table 21Summary of Sediment Types in Material to be Dredged for WICT Project (Connell
Hatch 2006)

3.7 Sediment Sampling for Maintenance Dredging (1992, 1996, 2000)

GPC provided a summary of previous sediment sampling programs for maintenance dredging in the Port of Gladstone in their Long Term Management Plan for Sea Disposal of Maintenance Dredging Material (GPC 2006), referencing a WBM (2001) report. This summary is provided in this section.

3.7.1 1992 Study Results

None of the sediments sampled were found to contain any trace metal contaminants at concentrations above the then London Dumping Convention criteria. All organic compounds such as organochlorine pesticides, organophosphorus pesticides or petroleum hydrocarbons were found to be at levels equal or less than the limits of detection. The total oils and grease concentrations were also low. Radioactivity levels of all sediments sampled were below the level of detection. The oxygen demand of the channel sediments, particularly those from the outer channel were determined as being relatively high, based upon their high biota concentrations. It was considered that any oxygen demand in the waters within the placement site would be minimal and transient because of the mixing afforded by tidal currents and wave action. Based upon these results, all sediments to be dredged were considered uncontaminated and therefore suitable for placement at sea (WBM, 2001).

3.7.2 1996 Study Results

None of the 1996 sediments sampled were found to contain any trace metal contaminants at concentrations above the respective ANZECC screening level criteria. No organic compounds such as organochlorine pesticides, PCB's or petroleum hydrocarbons were present in any of the sediments at levels exceeding the limits of detection. The organic matter concentration of sediment samples from the outer channel was generally low, whilst those for the inner channel were very low. Based upon this investigation, all sediments to be dredged were considered uncontaminated and therefore suitable for relocation and placement at sea (WBM, 2001).

3.7.3 2000 Study Results

With the exception of slightly elevated concentrations of arsenic at three sampling locations (2 outer channel, 1 inner channel), sediments sampled in 2000 were not found to contain any trace element contaminants at concentrations above the ANZECC screening level criteria. However, all trace elements, including arsenic, were at acceptable levels when the means for the inner and outer channel areas were calculated as prescribed in the ANZECC Interim Ocean Disposal Guidelines. The slight elevation of arsenic was considered a naturally occurring feature of the harbour geology. The incidence of elevated levels of arsenic on the east coast of Australia is noted in the ANZECC guidelines. No organic compounds including organochlorine pesticides, PCB's or PAH's were found at levels exceeding the ANZECC screening level criteria. Based upon these results, all sediments to be dredged were considered uncontaminated and therefore suitable for dredging and placement at sea (WBM, 2001).

3.8 Sediment Sampling for Maintenance Dredging (GHD 2006b)

Sediment sampling within the main shipping channel of the Port of Gladstone was undertaken in accordance with the NODGDM (2002) in support of an application for a new long term maintenance dredging permit (GHD 2006a). Surface samples were collected from 28 sites within the shipping channel

in July 2006 (Figure 6). Samples were analysed for organic carbon, particle size, metals (As, Cd, Cr, Cu, Pg, Hg, Ni, Zn, Ag), cyanide, ammonia, PAHs, organotins, BTEX, TPHs.

The sediments to be dredged were dominated by the sand fraction, which is typical of maintenance dredging material in the Port. The results of the initial sampling identified concentrations of arsenic, PAHs and TBT that required further analysis and risk assessment, including sampling in closer proximity to wharf centres (Figure 6). It was noted that arsenic and PAHs were identified by the previous CRC studies as being of natural origin in Port Curtis. Further sampling and analysis and risk assessment, including further review of background concentrations and previous studies, resulted in the sediments from the shipping channel being assessed as suitable for unconfined ocean disposal (GHD 2007).

4. References

Andersen, L.E., Melville, F., Fabbro, L.D., Storey, A.W. and Teasdale, P.R. (2006). *RG Tanna Coal Terminal* 4th Berth Dredge Management Plan, An Assessment of the Effects of Harbour Dredging, Centre for Environmental Management, Central Queensland University, Gladstone.

Andersen, L.E., Melville, F., Steinberg, A.N. Teasdale, P.R. and Fabbro, L.D. (2008a). *PCIMP Biomonitoring 2007, North Harbour Zones*, Port Curtis Integrated Monitoring Program, Centre for Environmental Management, Central Queensland University, Gladstone.

Andersen, L., Melville, F., Fabbro, L., Wilson, S. and Teasdale, P. (2008b). *An assessment of the effect of dredging on Fisherman's Landing: Stage 2, Draft.* Centre for Environmental Management, Central Queensland University, Gladstone.

Andersen, L.E., Storey, A.W. and Fox, S. (2002). Assessing the Effects of Harbour Dredging Using *Transplanted Oysters as Biomonitors*. Centre for Environmental Management, Central Queensland University, Gladstone.

ANZECC - Australian and New Zealand, Environmental and Conservation Council (2000). Australian and New Zealand Guidelines of Fresh and Marine Water Quality. Environment Australia.

Apte S., Duivenvoorden L., Johnson R., Jones M., Revill A., Simpson S., Stauber J. and Vicente-Beckett V. (2005). *Contaminants in Port Curtis: screening level risk assessment.* Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management. Technical Report No. 25.

Apte S., Andersen L., Andrewartha J., Angel B., Shearer D., Simpson S., Stauber J., Vincente-Beckett V. (2006). *Contaminant Pathways In Port Curtis*. Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management. Technical Report No. 73.

Australian Government (2009). *National Assessment Guidelines for Dredging*. Australian Government, Canberra.

Connell Hatch. (2006). *Wiggins Island Coal Terminal Environmental Impact Statement, Revision 3.* Connell Hatch, Brisbane.

Dames and Moore (1998). Comalco Alumina Project, Gladstone – Impact Assessment Study, Environmental Impact Statement, Volume 1. Dames and Moore, Brisbane.

Department of the Environmental and Heritage (2002). *National Ocean Disposal Guidelines for Dredged Material (NODGDM)*. Commonwealth of Australia, Canberra, ACT.

Douglas Partners (2005a). *Report on Soils Investigation: Proposed Berth 4 Outloading Conveyor and Dredging Clinton Coal Wharf.* Douglas Partners, Brisbane.

Douglas Partners (2005b). *Report on Soils Investigation: Proposed Dredging Works Existing Shipping Channels Gladstone*. Douglas Partners, Brisbane.

Environmental Protection Agency (2006). *Queensland Water Quality Guidelines*. Environmental Protection Agency. Brisbane, Queensland.

GHD (2005). Capital Dredging of the Fourth Berth at RG Tanna Coal Terminal, Protection of the Marine Environment During Dredging and Dewatering. GHD, Gladstone.

GHD (2006a). *Report for Dredging of Fourth Berth, RG Tanna Coal Terminal, Validation Study.* GHD, Gladstone.

GHD (2006b). Report for Sediment Sampling for Sea Disposal of Maintenance Dredging Material, Port of Gladstone. GHD, Gladstone.

GHD (2007). Report for Additional Sediment Sampling for Sea Disposal of Maintenance Dredging Material, Port of Gladstone. GHD, Gladstone.

Gladstone Ports Corporation (2006). Long Term Management Plan for Sea Disposal of Maintenance Dredging Material. GPC, Gladstone.

Storey A, Andersen L., Lynas J. and Melville F. (2007). *Port Curtis Integrated Monitoring Program* (*PCIMP*) – *Port Curtis Ecosystem Health Report Card.* PCIMP, Gladstone.

Vincente Beckett V., Shearer D., Munksgaard N., Hancock G. and Morrison H. (June 2006). *Metal and Polycyclic Aromatic Hydrocarbon Contaminants in Benthic Sediments of Port Curtis.* Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management. Technical Report No. 83.

WBM Oceanics Australia [2002] in URS (2007). *Gladstone Pacific Nickel Project Environmental Impact Statement.* URS, Brisbane.

WBM (2008). Turbidity data collected at proposed Fisherman's Landing Northern Expansion for hydrodynamic model calibration. Data provided as spreadsheets of raw data and graphs.

Wilson S.P. and Andersen L.E. (2009) *Fisherman's Landing Baseline Turbidity Report June – October 2008*, Centre for Environmental Management, CQ University, Gladstone.

Wilson S.P., Andersen L.E. and Melville F. (2008). *Port Curtis Seagrass Water Quality, Data Report, December 2007 – April 2008.* Centre for Environmental Management, Central Queensland University, Gladstone.

GHD

Level 2, 100 Goondoon Street Gladstone 4680 PO Box 373 Gladstone Qld 4680 Australia T: (07) 4973 1600 F: (07) 4972 6236 E: gltmail@ghd.com.au

© GHD 2009

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Document Status

Rev No.	Author	Reviewer		Approved for Issue								
Nev NO. MULIOI	Name	Signature	Name	Signature	Date							
0	J Lee	J Romero	Jul. Am	J Lee	The	19609						
					0							

Fisherman's Landing Northern Expansion Environmental Impact Statement Review of Previous Water and Sediment Quality Studies

Appendix B

Laboratory Analysis and Interpretive Quality Control Certificates for Water Quality Monitoring

GHD				Chain of C	ustody & Analysis R	Reques	st													Page1 of _1
				Chain of Custoc																
				_		SHD														
PROJECT ID:	4215386 41		QUOTE:			LABORA	TORYE	ATCH	I NO	e 11					1 18, 6				5	and the second second second second
PROJECT:	Western Basin	EIS WQ Monito	oring										Ŋa:	F	ORLA	BIUSE	ONLY	ć 🖄		39 3 Strategy and Strategy a
CLIENT:	GHD					COOLER	SEAL:			i subserv Sachsen							mar of	4.4.4		COOLER TEMP:
POSTAL ADDRESS:	PO Box 373, G	adstone 4680	·				Yes	1		÷.	ylo.	a, T.S.								t + H deg.c
CONTACT:	Adrian White						Broke	n is -			mact		1			e die			in là . Là tra	and the second
PHONE: EMAIL:	Jason K For	412035667		07) 49726236		DESPAT	CHED T	0:				oratori			-			-		
INVOICE:	Jason.K.Fo	Jason.K.Fowler@ghd.com.au, Adrian.A.White@ghd.com.au Jason.K.Fowler@ghd.com.au, Adrian.A.White@ghd.com.au								32 SH 3243		ID STE		STAF	FORL		J 405	3		
					·					5240	: 22									
DATA NEEDED BY:							_							A	VALYS	IS REC	UIRE	D		
								Г	T	ГТ	T			-		T -	6.9mm			
REPORT FORMAT:					, <u></u>			1						est	4	l st	à	131		
EMAIL FORMAT:	ESDAT, EXCE	L & PDF		,										[] wo		lowe	Cobw	5		
COMMENTS/SPECIAL Water samples fro (EMAIL ADDRES SAMPL 3-WQ-01	om a marine er SSES PROVIDI	nvironment (E ED ABOVE)			PRESERVATION As Required	X TSS (EA025)	X Chlorophyll a (EP008)	× pH (EA005)	× TDS (EA015)		× TBT (Lowest LOR)	× VOC (1,2,4-Trichlorobenzene, 1,1,2- Trichloroethane (EP074LL)	X Cyanide X Flectro Conductivity	_	★ Ultra Trace Phenoxy Acid Herbicides 202LL	× Mulit Residue Pesticide – EP-209LL (Iowest DL)	× Tebuthluron (DL 10ug/L) - 365	Ultratrace OC/OP Pestilicides (EP130A/EP131A)	H/Phen	Note: If not enough sample to undertake BTEX and VOC analysis forfeit the BTEX analysis. Please store samples for Sydney analysis over weekend then forward on Monday. Outsourced Tebuthiuron analysis is approved. Please forward. SAMPLES LABELED QA04 are QA01
							1				<u> </u>		<u> </u>	<u> </u>	+^	1	Ê	-	Ê	
								┢			\rightarrow		<u> </u>	+-		 	$\left \right $	-		— Enyronmental Divisi
	*7					_	+			┝─┼╴										Brisbane
3-WQ-04	<u>2.</u>	Water	21/05/2009	LOR	As Required	. X	X	X	х	X	X	Х	<u>x x</u>	<u>x</u>	<u>x</u>	X	X	X	X	— / Work Order
G-WQ-05	3.	Water	21/05/2009	LOR	As Required	X	X	X	х	X	х	X	<u>x x</u>	X	X	X	х	Х	X	
																				EB090816 (
G-WQ-08	4	Water	21/05/2009	LOR	As Required	X	X	x	x	x	x	х	хx	x	x	x	x	х	х	
						<u> </u>	1	† <u>~</u>					<u> </u>	1	†^	† î i	Ê	-	~	
G-WQ-10	5	Minter	24/05/2000	100	A. Demined		+ .		ا پ ا			~		+-	+		ل ي ا			
		Water	21/05/2009	LOR	As Required	<u> </u>	X	X	X		X	X	XX	X	X	X	X	X	X	
G-WQ-11	<u> </u>	Water	21/05/2009	LOR	As Required	<u> </u>	X	X	X		x	Х	<u>x x</u>	X	X	X	X	X	X	
G-WQ-12		Water	21/05/2009	LOR	As Required	<u> </u>	X	X	X	X	x	Х	<u>x x</u>	X	X	Х	х	X	X	Telephone : +61-7-3243 722
QA1 (some are la	beled QA4	Water	21/05/2009	LOR	As Required	X	X	X	X	X	х	Х	<u>x x</u>	X	X	X	х	Х	х	<u></u>
· · · · · · ·			RELINQUISHE	D BY:			1			-		i	1		RECE	IVED	BY:	4		
IAME: A White	DATE: 21/05/2009				NAME :	NK	24	K41		1		21.72		D/	ATE:		F	÷	- 5-09	
DF: GHD Gladst						OF:		0	~		1	\$			TI	ME:				8.20
PLEASE EMAIL COMP					Jason.K.Fowler@ghd.com.au, A					· · · · ·										
					droxide Preserved; J = Solvent Washed Ad Glass Bottle; Z = Zinc Acetate Preserved															

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order	: EB09	008160		
Client Contact Address	 GHD SERVICES PTY LTD MR ADRIAN WHITE P O BOX 373 GLADSTONE QLD, AUSTRALIA 4680 		Laboratory Contact Address	 Environmental Division Brisbane Tim Kilmister 32 Shand Street Stafford QLD Australia 4053
E-mail Telephone Facsimile	: adrian. : +61 07	a.white@ghd.com.au 2 49731611 2 4972 6236	E-mail Telephone Facsimile	: Services.Brisbane@alsenviro.com : +61-7-3243 7222 : +61-7-3243 7218
Project	Monitoring		Page	: 1 of 3
Order number C-O-C number Site	:		Quote number	: EM2009GHDSER0392 (EN/005/09)
Sampler	:		QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dates				
Date Samples Received Client Requested Due Date		: 22-MAY-2009 : 05-JUN-2009	Issue Date Scheduled Reportin	22-MAY-2009 15:54 05-JUN-2009
Delivery Deta	ils			
Mode of Delivery No. of coolers/boxes Sercurity Seal		: Carrier : 4 LARGE, 3 MEDIUM : Intact.	Temperature No. of samples rece No. of samples ana	• -

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Sample(s) have been received within recommended holding times.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Tebuthiuron analysis has been subcontracted to SGS (Multilab).
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Maggie Kahi.
- Analytical work for this work order will be conducted at ALS Brisbane.
- Sample Disposal Aqueous (14 days), Solid (90 days) from date of completion of work order.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

Some items descr process neccessan tasks. Packages r the determination tasks, that are includ When date(s) and have been assur purposes. If the information was not p Matrix: WATER Laboratory sample ID	WATER - EA005: pH pH	WATER - EA010P Conductivity (PC)	WATER - EA015 Total Dissolved Solids	WATER - EA025 Suspended Solids	WATER - EK026G Total Cyanide by Discrete Analyser	WATER - EP008 Chlorophyll a	WATER - EP074-LL Ultra-Trace Volatiles by P&T GCMS(SIM)	WATER - EP090S Organotins		
EB0908160-001	21-MAY-2009 15:00	G-WQ-01	√	1	1	1	1	1	✓	1
EB0908160-002	21-MAY-2009 15:00	G-WQ-04	✓	✓	1	1	1	1	✓	1
EB0908160-003	21-MAY-2009 15:00	G-WQ-05	✓	√	√	✓	1	1	✓	1
EB0908160-004	21-MAY-2009 15:00	G-WQ-08	✓	1	1	1	1	1	✓	1
EB0908160-005	21-MAY-2009 15:00	G-WQ-10	✓	1	✓	✓	1	✓	✓	√
EB0908160-006	21-MAY-2009 15:00	G-WQ-11	✓	√	1	1	1	1	✓	✓
EB0908160-007	21-MAY-2009 15:00	G-WQ-12	✓	1	1	✓	1	1	✓	√
EB0908160-008	21-MAY-2009 15:00	QA1 some labelled Q	✓	√	1	1	1	1	✓	✓

ſ

Matrix: WATER Laboratory sample ID	Client sampling date / time	Client sample ID	WATER - EP202LL Phenoxyacetic acids - Iow level	WATER - EP209LL Multiresidue Pesticide Screen (Suite 1) -	비끈 흔 그	WATER - MSC-WAT (Subcontracted) Miscelleneous Subcontracting	WATER - UTO-1W Ultratrace OC / OP Pesticides	WATER - W-04 TPH/BTEX	WATER - W-14A PAH/Phenols (SIM)
EB0908160-001	21-MAY-2009 15:00	G-WQ-01	1	✓	✓	1	1	1	1
EB0908160-002	21-MAY-2009 15:00	G-WQ-04	✓	✓	✓	✓	 ✓ 	✓	✓
EB0908160-003	21-MAY-2009 15:00	G-WQ-05	√	1	✓	1	1	✓	✓
EB0908160-004	21-MAY-2009 15:00	G-WQ-08	✓	1	1	1	1	1	√
EB0908160-005	21-MAY-2009 15:00	G-WQ-10	✓	1	✓	✓	✓	✓	✓
EB0908160-006	21-MAY-2009 15:00	G-WQ-11	✓	1	1	✓	1	1	✓
EB0908160-007	21-MAY-2009 15:00	G-WQ-12	✓	1	✓	✓	✓	✓	✓
EB0908160-008	21-MAY-2009 15:00	QA1 some labelled Q	✓	√	✓	✓	1	✓	✓

Requested Deliverables

MR ADRIAN WHITE

- *AU Certificate of Analysis - NATA (COA)	Email	adrian.a.white@ghd.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	adrian.a.white@ghd.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	adrian.a.white@ghd.com.au
- A4 - AU Sample Receipt Notification - Environmental (SRN)	Email	adrian.a.white@ghd.com.au
- A4 - AU Tax Invoice (INV)	Email	adrian.a.white@ghd.com.au
- Default - Chain of Custody (COC)	Email	adrian.a.white@ghd.com.au
- EDI Format - ENMRG (ENMRG)	Email	adrian.a.white@ghd.com.au
- EDI Format - ESDAT (ESDAT)	Email	adrian.a.white@ghd.com.au
- Trigger - Subcontract Report (SUBCO)	Email	adrian.a.white@ghd.com.au
MR JASON FOWLER		
 *AU Certificate of Analysis - NATA (COA) 	Email	jason.k.fowler@ghd.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	jason.k.fowler@ghd.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	jason.k.fowler@ghd.com.au
- A4 - AU Sample Receipt Notification - Environmental (SRN)	Email	jason.k.fowler@ghd.com.au
- A4 - AU Tax Invoice (INV)	Email	jason.k.fowler@ghd.com.au
- Default - Chain of Custody (COC)	Email	jason.k.fowler@ghd.com.au
- EDI Format - ENMRG (ENMRG)	Email	jason.k.fowler@ghd.com.au
- EDI Format - ESDAT (ESDAT)	Email	jason.k.fowler@ghd.com.au
 Trigger - Subcontract Report (SUBCO) 	Email	jason.k.fowler@ghd.com.au

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order	: EB0908160	Page	: 1 of 14
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Brisbane
Contact	: MR ADRIAN WHITE	Contact	: Tim Kilmister
Address	E P O BOX 373 GLADSTONE QLD, AUSTRALIA 4680	Address	: 32 Shand Street Stafford QLD Australia 4053
E-mail	: adrian.a.white@ghd.com.au	E-mail	: Services.Brisbane@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-7-3243 7222
Facsimile	: +61 07 4972 6236	Facsimile	: +61-7-3243 7218
Project	: 4215386 41 Western Basin EIS WQ Monitoring	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 22-MAY-2009
Sampler	:	Issue Date	: 05-JUN-2009
Site	:		
		No. of samples received	: 8
Quote number	: EN/005/09	No. of samples analysed	: 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Environmental Division Brisbane Part of the ALS Laboratory Group

32 Shand Street Stafford QLD Australia 4053 Tel. +61-7-3243 7222 Fax. +61-7-3243 7218 www.alsglobal.com

A Campbell Brothers Limited Company

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

- EP215: Insufficient sample has been provided for QC analysis.
- TDS by method EA-015 may bias high due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- Ultra-Trace analysis (bar VOC-LL) conducted by ALS Sydney, NATA accreditation no. 825, site no 10911

Sub-Matrix: MARINE WATER		Clie	ent sample ID	G-WQ-01	G-WQ-04	G-WQ-05	G-WQ-08	G-WQ-10
	Cl	ient sampli	ng date / time	21-MAY-2009 15:00				
Compound	CAS Number	LOR	Unit	EB0908160-001	EB0908160-002	EB0908160-003	EB0908160-004	EB0908160-005
EA005: pH								
pH Value		0.01	pH Unit	7.81	8.10	8.05	8.00	8.05
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	47600	51100	48900	49100	49000
EA015: Total Dissolved Solids								
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	47000	44800	44600	45700	44600
EA025: Suspended Solids								
^ Suspended Solids (SS)		1	mg/L	94	90	44	110	104
EK026G: Total Cyanide By Discrete A	Analyser							
Total Cyanide	57-12-5	0.004	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004
EP008: Chlorophyll a								
Chlorophyll a		1	mg/m3	5	5	5	5	5
EP074E: Halogenated Aliphatic Com	nounds		U U					
1.1.1-Trichloroethane	71-55-6	1	µg/L	<1	<1	<1	<1	<1
1.1.2-Trichloroethane	79-00-5	5	μg/L	<5	<5	<5	<5	<5
EP074F: Halogenated Aromatic Com	pounds							
1.2.4-Trichlorobenzene	120-82-1	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
EP075(SIM)A: Phenolic Compounds								
Phenol	108-95-2	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2-Chlorophenol	95-57-8	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2-Methylphenol	95-48-7	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
3- & 4-Methylphenol	1319-77-3	2.0	µg/L	<2.0	<2.0	<2.0	<2.0	<2.0
2-Nitrophenol	88-75-5	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2.4-Dimethylphenol	105-67-9	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2.4-Dichlorophenol	120-83-2	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2.6-Dichlorophenol	87-65-0	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
4-Chloro-3-Methylphenol	59-50-7	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2.4.6-Trichlorophenol	88-06-2	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2.4.5-Trichlorophenol Pentachlorophenol	95-95-4	1.0 4.0	μg/L μg/L	<1.0	<1.0	<1.0 <4.0	<1.0 <4.0	<1.0 <4.0
-	87-86-5	4.0	µy/∟	<u>~4.0</u>	N4.0	~4.0	~4.0	\4.0
EP075(SIM)B: Polynuclear Aromatic I Naphthalene	3	1.0	ug/l	<1.0	<1.0	<1.0	<1.0	<1.0
Acenaphthylene	91-20-3	1.0	μg/L μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Acenaphthyene	208-96-8 83-32-9	1.0	μg/L μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Fluorene	86-73-7	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Phenanthrene	85-01-8	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Anthracene	120-12-7	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Fluoranthene	206-44-0	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
	200 0					1	1	Comphall Brothors Limited Comp

Sub-Matrix: MARINE WATER		Clie	ent sample ID	G-WQ-01	G-WQ-04	G-WQ-05	G-WQ-08	G-WQ-10
	C	lient samplii	ng date / time	21-MAY-2009 15:00				
Compound	CAS Number	LOR	Unit	EB0908160-001	EB0908160-002	EB0908160-003	EB0908160-004	EB0908160-005
EP075(SIM)B: Polynuclear Arom	atic Hydrocarbons - Con	tinued						
Pyrene	129-00-0	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Chrysene	218-01-9	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(b)fluoranthene	205-99-2	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
ndeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EP080/071: Total Petroleum Hyd	rocarbons							
C6 - C9 Fraction		20	µg/L	<20	<20	<20	<20	<20
C10 - C14 Fraction		50	µg/L	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	µg/L	<100	<100	<100	<100	<100
29 - C36 Fraction		50	µg/L	<50	<50	<50	<50	<50
EP080: BTEX								
Benzene	71-43-2	1	µg/L	<1	<1	<1	<1	<1
oluene	108-88-3	2	µg/L	<2	<2	<2	<2	<2
thylbenzene	100-41-4	2	µg/L	<2	<2	<2	<2	<2
neta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2	<2	<2	<2
ortho-Xylene	95-47-6	2	µg/L	<2	<2	<2	<2	<2
EP090: Organotin Compounds (\$	Soluble)							
ributyltin	56573-85-4	2	ngSn/L	<2	<2	<2	<2	<2
EP130A: Organophosphorus Pes	sticides (Ultra-trace)							
Bromophos-ethyl	4824-78-6	0.10	µg/L	<0.10	<0.10	<0.10	<0.10	<0.10
Carbophenothion	786-19-6	0.10	µg/L	<0.10	<0.10	<0.10	<0.10	<0.10
Chlorfenvinphos (Z)	470-90-8	0.10	µg/L	<0.10	<0.10	<0.10	<0.10	<0.10
Chlorpyrifos	2921-88-2	0.050	µg/L	<0.050	<0.050	<0.050	<0.050	<0.050
Chlorpyrifos-methyl	5598-13-0	0.10	µg/L	<0.10	<0.10	<0.10	<0.10	<0.10
Demeton-S-methyl	919-86-8	0.10	µg/L	<0.10	<0.10	<0.10	<0.10	<0.10
Diazinon	333-41-5	0.10	µg/L	<0.10	<0.10	<0.10	<0.10	<0.10
Dichlorvos	62-73-7	0.10	µg/L	<0.10	<0.10	<0.10	<0.10	<0.10
Dimethoate	60-51-5	0.10	µg/L	<0.10	<0.10	<0.10	<0.10	<0.10
Ethion	563-12-2	0.10	µg/L	<0.10	<0.10	<0.10	<0.10	<0.10
Fenamiphos	22224-92-6	0.10	µg/L	<0.10	<0.10	<0.10	<0.10	<0.10
Fenthion	55-38-9	0.10	µg/L	<0.10	<0.10	<0.10	<0.10	<0.10
Malathion	121-75-5	0.10	µg/L	<0.10	<0.10	<0.10	<0.10	<0.10
Azinphos Methyl	86-50-0	0.10	µg/L	<0.10	<0.10	<0.10	<0.10	<0.10
Monocrotophos	6923-22-4	0.10	µg/L	<0.10	<0.10	<0.10	<0.10	<0.10

Sub-Matrix: MARINE WATER		Clie	ent sample ID	G-WQ-01	G-WQ-04	G-WQ-05	G-WQ-08	G-WQ-10
	Ci	ient sampliı	ng date / time	21-MAY-2009 15:00				
Compound	CAS Number	LOR	Unit	EB0908160-001	EB0908160-002	EB0908160-003	EB0908160-004	EB0908160-005
EP130A: Organophosphorus Pestici	des (Ultra-trace) - Co	ntinued						
Parathion	56-38-2	0.10	µg/L	<0.10	<0.10	<0.10	<0.10	<0.10
Parathion-methyl	298-00-0	0.10	µg/L	<0.10	<0.10	<0.10	<0.10	<0.10
Pirimphos-ethyl	23505-41-1	0.10	µg/L	<0.10	<0.10	<0.10	<0.10	<0.10
Prothiofos	34643-46-4	0.10	µg/L	<0.10	<0.10	<0.10	<0.10	<0.10
EP131A: Organochlorine Pesticides								
Aldrin	309-00-2	0.010	μg/L	<0.010	<0.010	<0.010	<0.010	<0.010
alpha-BHC	319-84-6	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
beta-BHC	319-85-7	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
delta-BHC	319-86-8	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
4.4`-DDD	72-54-8	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
4.4`-DDE	72-55-9	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
4.4`-DDT	50-29-3	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
^ DDT (total)		0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Dieldrin	60-57-1	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
alpha-Endosulfan	959-98-8	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
beta-Endosulfan	33213-65-9	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Endosulfan sulfate	1031-07-8	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Endosulfan (sum)	115-29-7	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Endrin	72-20-8	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Endrin aldehyde	7421-93-4	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Endrin ketone	53494-70-5	0.010	μg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Heptachlor	76-44-8	0.005	μg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor epoxide	1024-57-3	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Hexachlorobenzene (HCB)	118-74-1	0.010	μg/L	<0.010	<0.010	<0.010	<0.010	<0.010
gamma-BHC	58-89-9	0.010	μg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Methoxychlor	72-43-5	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
cis-Chlordane	5103-71-9	0.010	μg/L	<0.010	<0.010	<0.010	<0.010	<0.010
trans-Chlordane	5103-74-2	0.010	μg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Total Chlordane (sum)		0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
EP202A: Phenoxyacetic Acid Herbic	ides by LCMS							
4-Chlorophenoxy acetic acid	122-88-3	0.01	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
2.4-DB	94-82-6	0.01	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Dicamba	1918-00-9	0.01	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Месоргор	93-65-2	0.01	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
МСРА	94-74-6	0.01	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
2.4-DP	120-36-5	0.01	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
2.4-D	94-75-7	0.01	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Triclopyr	55335-06-3	0.01	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01

Sub-Matrix: MARINE WATER		Clie	ent sample ID	G-WQ-01	G-WQ-04	G-WQ-05	G-WQ-08	G-WQ-10
	C	lient samplir	ng date / time	21-MAY-2009 15:00				
Compound	CAS Number	LOR	Unit	EB0908160-001	EB0908160-002	EB0908160-003	EB0908160-004	EB0908160-005
EP202A: Phenoxyacetic Acid Herb	icides by LCMS - Conti	inued						
2.4.5-TP (Silvex)	93-72-1	0.01	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
2.4.5-T	93-76-5	0.01	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
МСРВ	94-81-5	0.01	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Picloram	1918-02-1	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Clopyralid	1702-17-6	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Fluroxypyr	69377-81-7	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
2.6-D	575-90-6	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
2.4.6-Т	575-89-3	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
EP209: Multiresidue Pesticide Resi	idue Screen (Suite 1)							
Atrazine	1912-24-9	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Chlorpyrifos	2921-88-2	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Hexazinone	51235-04-2	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Molinate	2212-67-1	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Propiconazole	60207-90-1	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Temephos	3383-96-8	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
EP215: Multiresidue Pesticide Res	idue Screen (Suite 2)							
Simazine	122-34-9	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Diuron	330-54-1	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Atrazine	1912-24-9	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Molinate	2212-67-1	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Metolachlor	51218-45-2	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Malathion	121-75-5	0.002	µg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Diazinon	333-41-5	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Thiobencarb	28249-77-6	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Chlorpyrifos	2921-88-2	0.005	µg/L	0.012	0.008	0.012	0.016	0.020
Trifluralin	1582-09-8	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
EP074S: VOC Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.1	%	95.3	100	99.3	97.9	105
1.2-Dichloroethane-D4	17060-07-0	0.1	%	118	114	109	111	110
Toluene-D8	2037-26-5	0.1	%	96.1	100	98.4	99.6	97.3
Toluene-D8	2037-26-5	0.1	%	101	98.0	92.5	94.8	97.8
4-Bromofluorobenzene	460-00-4	0.1	%	98.1	103	102	101	99.9
4-Bromofluorobenzene	460-00-4	0.1	%	102	99.6	96.1	95.0	97.1
EP075(SIM)S: Phenolic Compound	Surrogates							
Phenol-d6	13127-88-3	0.1	%	34.6	35.6	35.8	35.5	33.1
2-Chlorophenol-D4	93951-73-6	0.1	%	75.0	74.2	77.9	77.7	72.8
2.4.6-Tribromophenol	118-79-6	0.1	%	76.7	78.4	80.9	79.5	74.3

Sub-Matrix: MARINE WATER		Cli	ent sample ID	G-WQ-01	G-WQ-04	G-WQ-05	G-WQ-08	G-WQ-10
	Cl	ient sampli	ng date / time	21-MAY-2009 15:00				
Compound	CAS Number	LOR	Unit	EB0908160-001	EB0908160-002	EB0908160-003	EB0908160-004	EB0908160-005
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.1	%	80.5	83.4	83.6	83.3	78.4
Anthracene-d10	1719-06-8	0.1	%	88.8	91.1	92.6	91.7	85.6
4-Terphenyl-d14	1718-51-0	0.1	%	97.2	101	102	99.2	94.6
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.1	%	101	107	107	117	117
Toluene-D8	2037-26-5	0.1	%	97.2	99.5	97.0	95.3	96.4
4-Bromofluorobenzene	460-00-4	0.1	%	91.1	92.6	94.4	95.6	93.7
EP090S: Organotin Surrogate								
Tripropyltin		0.1	%	88.7	93.6	90.7	91.4	70.8
EP130S: Organophosphorus Pestici	de Surrogate							
DEF	78-48-8	0.1	%	77.0	79.4	92.5	68.9	72.8
EP131S: OC Pesticide Surrogate								
Dibromo-DDE	21655-73-2	0.1	%	75.5	79.2	81.8	63.3	70.7
EP202S: Phenoxyacetic Acid Herbici	ide Surrogate							
2.4-Dichlorophenyl Acetic Acid	19719-28-9	0.1	%	92.2	123	121	119	125

Sub-Matrix: MARINE WATER		Cli	ent sample ID	G-WQ-11	G-WQ-12	QA1	
						some labelled QA4	
	Cli	ent sampli	ing date / time	21-MAY-2009 15:00	21-MAY-2009 15:00	21-MAY-2009 15:00	
Compound	CAS Number	LOR	Unit	EB0908160-006	EB0908160-007	EB0908160-008	
EA005: pH							
pH Value		0.01	pH Unit	8.08	8.09	8.14	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	µS/cm	49400	50500	50600	
EA015: Total Dissolved Solids							
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	45400	43200	45300	
EA025: Suspended Solids							
^ Suspended Solids (SS)		1	mg/L	75	94	78	
EK026G: Total Cyanide By Discrete An	nalyser						
Total Cyanide	57-12-5	0.004	mg/L	<0.004	<0.004	<0.004	
EP008: Chlorophyll a							
Chlorophyll a		1	mg/m3	3	5	4	
EP074E: Halogenated Aliphatic Compo			U				
1.1.1-Trichloroethane	71-55-6	1	µg/L	<1	<1	<1	
1.1.2-Trichloroethane	79-00-5	5	μg/L	<5	<5	<5	
EP074F: Halogenated Aromatic Compo							
1.2.4-Trichlorobenzene	120-82-1	0.5	µg/L	<0.5	<0.5	<0.5	
EP075(SIM)A: Phenolic Compounds							
Phenol	108-95-2	1.0	µg/L	<1.0	<1.0	<1.0	
2-Chlorophenol	95-57-8	1.0	μg/L	<1.0	<1.0	<1.0	
2-Methylphenol	95-48-7	1.0	µg/L	<1.0	<1.0	<1.0	
3- & 4-Methylphenol	1319-77-3	2.0	µg/L	<2.0	<2.0	<2.0	
2-Nitrophenol	88-75-5	1.0	µg/L	<1.0	<1.0	<1.0	
2.4-Dimethylphenol	105-67-9	1.0	µg/L	<1.0	<1.0	<1.0	
2.4-Dichlorophenol	120-83-2	1.0	μg/L	<1.0	<1.0	<1.0	
2.6-Dichlorophenol	87-65-0	1.0	µg/L	<1.0	<1.0	<1.0	
4-Chloro-3-Methylphenol	59-50-7	1.0	µg/L	<1.0	<1.0	<1.0	
2.4.6-Trichlorophenol	88-06-2	1.0	µg/L	<1.0	<1.0	<1.0	
2.4.5-Trichlorophenol	95-95-4	1.0	µg/L	<1.0	<1.0	<1.0	
Pentachlorophenol	87-86-5	4.0	µg/L	<4.0	<4.0	<4.0	
EP075(SIM)B: Polynuclear Aromatic Hy							
Naphthalene	91-20-3	1.0	µg/L	<1.0	<1.0	<1.0	
Acenaphthylene	208-96-8	1.0	µg/L	<1.0	<1.0	<1.0	
Acenaphthene	83-32-9	1.0	µg/L	<1.0	<1.0	<1.0 <1.0	
Fluorene Phenanthrene	86-73-7	1.0	µg/L	<1.0	<1.0	<1.0	
Anthracene	85-01-8 120-12-7	1.0	μg/L μg/L	<1.0	<1.0	<1.0	
	120-12-7	1.0	µy/∟	0.17	0.17	\$1.0	Campbell Brothers Limited Compan

Sub-Matrix: MARINE WATER		Clie	ent sample ID	G-WQ-11	G-WQ-12	QA1 some labelled QA4	
	Ci	ient sampli	ng date / time	21-MAY-2009 15:00	21-MAY-2009 15:00	21-MAY-2009 15:00	
Compound	CAS Number	LOR	Unit	EB0908160-006	EB0908160-007	EB0908160-008	
EP075(SIM)B: Polynuclear Arom	atic Hydrocarbons - Con	tinued					
Fluoranthene	206-44-0	1.0	µg/L	<1.0	<1.0	<1.0	
Pyrene	129-00-0	1.0	µg/L	<1.0	<1.0	<1.0	
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	<1.0	<1.0	
Chrysene	218-01-9	1.0	µg/L	<1.0	<1.0	<1.0	
Benzo(b)fluoranthene	205-99-2	1.0	µg/L	<1.0	<1.0	<1.0	
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	<1.0	<1.0	
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	<0.5	<0.5	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0	<1.0	<1.0	
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	<1.0	<1.0	
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	<1.0	<1.0	
EP080/071: Total Petroleum Hyd	rocarbons						
C6 - C9 Fraction		20	µg/L	<20	<20	<20	
C10 - C14 Fraction		50	µg/L	<50	<50	<50	
C15 - C28 Fraction		100	µg/L	<100	<100	<100	
C29 - C36 Fraction		50	µg/L	<50	<50	<50	
EP080: BTEX							
Benzene	71-43-2	1	µg/L	<1	<1	<1	
Toluene	108-88-3	2	μg/L	<2	<2	<2	
Ethylbenzene	100-41-4	2	µg/L	<2	<2	<2	
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2	<2	
ortho-Xylene	95-47-6	2	µg/L	<2	<2	<2	
EP090: Organotin Compounds (S	Soluble)						
Tributyltin	56573-85-4	2	ngSn/L	<2	<2	<2	
EP130A: Organophosphorus Pes							
Bromophos-ethyl	4824-78-6	0.10	µg/L	<0.10	<0.10	<0.10	
Carbophenothion	786-19-6	0.10	μg/L	<0.10	<0.10	<0.10	
Chlorfenvinphos (Z)	470-90-8	0.10	μg/L	<0.10	<0.10	<0.10	
Chlorpyrifos	2921-88-2	0.050	μg/L	<0.050	<0.050	<0.050	
Chlorpyrifos-methyl	5598-13-0	0.10	μg/L	<0.10	<0.10	<0.10	
Demeton-S-methyl	919-86-8	0.10	μg/L	<0.10	<0.10	<0.10	
Diazinon	333-41-5	0.10	μg/L	<0.10	<0.10	<0.10	
Dichlorvos	62-73-7	0.10	μg/L	<0.10	<0.10	<0.10	
Dimethoate	60-51-5	0.10	μg/L	<0.10	<0.10	<0.10	
Ethion	563-12-2	0.10	µg/L	<0.10	<0.10	<0.10	
Fenamiphos	22224-92-6	0.10	µg/L	<0.10	<0.10	<0.10	
Fenthion	55-38-9	0.10	µg/L	<0.10	<0.10	<0.10	
Malathion	121-75-5	0.10	µg/L	<0.10	<0.10	<0.10	
					1	1	Compall Prothers Limited Company

					G-WQ-12	some labelled QA4	
	Cli	ent samplin	g date / time	21-MAY-2009 15:00	21-MAY-2009 15:00	21-MAY-2009 15:00	
Compound	CAS Number	LOR	Unit	EB0908160-006	EB0908160-007	EB0908160-008	
EP130A: Organophosphorus Pesticides (U	lltra-trace) - Co	ntinued					
Azinphos Methyl	86-50-0	0.10	µg/L	<0.10	<0.10	<0.10	
Monocrotophos	6923-22-4	0.10	µg/L	<0.10	<0.10	<0.10	
Parathion	56-38-2	0.10	µg/L	<0.10	<0.10	<0.10	
Parathion-methyl	298-00-0	0.10	µg/L	<0.10	<0.10	<0.10	
Pirimphos-ethyl	23505-41-1	0.10	µg/L	<0.10	<0.10	<0.10	
Prothiofos	34643-46-4	0.10	µg/L	<0.10	<0.10	<0.10	
EP131A: Organochlorine Pesticides							
Aldrin	309-00-2	0.010	µg/L	<0.010	<0.010	<0.010	
alpha-BHC	319-84-6	0.010	µg/L	<0.010	<0.010	<0.010	
beta-BHC	319-85-7	0.010	µg/L	<0.010	<0.010	<0.010	
delta-BHC	319-86-8	0.010	µg/L	<0.010	<0.010	<0.010	
4.4`-DDD	72-54-8	0.010	µg/L	<0.010	<0.010	<0.010	
4.4`-DDE	72-55-9	0.010	µg/L	<0.010	<0.010	<0.010	
4.4`-DDT	50-29-3	0.010	µg/L	<0.010	<0.010	<0.010	
^ DDT (total)		0.010	µg/L	<0.010	<0.010	<0.010	
Dieldrin	60-57-1	0.010	µg/L	<0.010	<0.010	<0.010	
alpha-Endosulfan	959-98-8	0.010	µg/L	<0.010	<0.010	<0.010	
beta-Endosulfan	33213-65-9	0.010	µg/L	<0.010	<0.010	<0.010	
Endosulfan sulfate	1031-07-8	0.010	µg/L	<0.010	<0.010	<0.010	
Endosulfan (sum)	115-29-7	0.010	µg/L	<0.010	<0.010	<0.010	
Endrin	72-20-8	0.010	µg/L	<0.010	<0.010	<0.010	
Endrin aldehyde	7421-93-4	0.010	µg/L	<0.010	<0.010	<0.010	
Endrin ketone	53494-70-5	0.010	µg/L	<0.010	<0.010	<0.010	
Heptachlor	76-44-8	0.005	µg/L	<0.005	<0.005	<0.005	
Heptachlor epoxide	1024-57-3	0.010	µg/L	<0.010	<0.010	<0.010	
Hexachlorobenzene (HCB)	118-74-1	0.010	µg/L	<0.010	<0.010	<0.010	
gamma-BHC	58-89-9	0.010	µg/L	<0.010	<0.010	<0.010	
Methoxychlor	72-43-5	0.010	µg/L	<0.010	<0.010	<0.010	
cis-Chlordane	5103-71-9	0.010	µg/L	<0.010	<0.010	<0.010	
trans-Chlordane	5103-74-2	0.010	µg/L	<0.010	<0.010	<0.010	
Total Chlordane (sum)		0.010	µg/L	<0.010	<0.010	<0.010	
EP202A: Phenoxyacetic Acid Herbicides by	y LCMS						
4-Chlorophenoxy acetic acid	122-88-3	0.01	µg/L	<0.01	<0.01	<0.01	
2.4-DB	94-82-6	0.01	µg/L	<0.01	<0.01	<0.01	
Dicamba	1918-00-9	0.01	µg/L	<0.01	<0.01	<0.01	
Месоргор	93-65-2	0.01	µg/L	<0.01	<0.01	<0.01	
МСРА	94-74-6	0.01	µg/L	<0.01	<0.01	<0.01	

Sub-Matrix: MARINE WATER		Clie	ent sample ID	G-WQ-11	G-WQ-12	QA1 some labelled QA4		
	Client sampling date / time		21-MAY-2009 15:00	21-MAY-2009 15:00	21-MAY-2009 15:00			
Compound	CAS Number	LOR	Unit	EB0908160-006	EB0908160-007	EB0908160-008		
EP202A: Phenoxyacetic Acid Herbicides by LCMS - Continued								
2.4-DP	120-36-5	0.01	µg/L	<0.01	<0.01	<0.01		
2.4-D	94-75-7	0.01	µg/L	<0.01	<0.01	<0.01		
Triclopyr	55335-06-3	0.01	µg/L	<0.01	<0.01	<0.01		
2.4.5-TP (Silvex)	93-72-1	0.01	µg/L	<0.01	<0.01	<0.01		
2.4.5-T	93-76-5	0.01	µg/L	<0.01	<0.01	<0.01		
МСРВ	94-81-5	0.01	µg/L	<0.01	<0.01	<0.01		
Picloram	1918-02-1	0.05	µg/L	<0.05	<0.05	<0.05		
Clopyralid	1702-17-6	0.05	µg/L	<0.05	<0.05	<0.05		
Fluroxypyr	69377-81-7	0.05	µg/L	<0.05	<0.05	<0.05		
2.6-D	575-90-6	0.1	µg/L	<0.1	<0.1	<0.1		
2.4.6-T	575-89-3	0.1	µg/L	<0.1	<0.1	<0.1		
EP209: Multiresidue Pesticide Res	idue Screen (Suite 1)							
Atrazine	1912-24-9	0.010	µg/L	<0.010	<0.010	<0.010		
Chlorpyrifos	2921-88-2	0.010	µg/L	<0.010	<0.010	<0.010		
Hexazinone	51235-04-2	0.010	µg/L	<0.010	<0.010	<0.010		
Molinate	2212-67-1	0.010	µg/L	<0.010	<0.010	<0.010		
Propiconazole	60207-90-1	0.010	µg/L	<0.010	<0.010	<0.010		
Temephos	3383-96-8	0.010	µg/L	<0.010	<0.010	<0.010		
EP215: Multiresidue Pesticide Res	idue Screen (Suite 2)							
Simazine	122-34-9	0.005	µg/L	<0.005	<0.005	<0.005		
Diuron	330-54-1	0.005	µg/L	<0.005	<0.005	<0.005		
Atrazine	1912-24-9	0.005	µg/L	<0.005	<0.005	<0.005		
Molinate	2212-67-1	0.005	µg/L	<0.005	<0.005	<0.005		
Metolachlor	51218-45-2	0.005	µg/L	<0.005	<0.005	<0.005		
Malathion	121-75-5	0.002	µg/L	<0.002	<0.002	<0.002		
Diazinon	333-41-5	0.005	µg/L	<0.005	<0.005	<0.005		
Thiobencarb	28249-77-6	0.005	µg/L	<0.005	<0.005	<0.005		
Chlorpyrifos	2921-88-2	0.005	µg/L	<0.005	<0.005	0.015		
Trifluralin	1582-09-8	0.005	µg/L	<0.005	<0.005	<0.005		
EP074S: VOC Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.1	%	108	98.3	107		
1.2-Dichloroethane-D4	17060-07-0	0.1	%	119	105	115		
Toluene-D8	2037-26-5	0.1	%	97.5	97.0	97.4		
Toluene-D8	2037-26-5	0.1	%	103	94.9	98.1		
4-Bromofluorobenzene	460-00-4	0.1	%	101	99.6	100		
4-Bromofluorobenzene	460-00-4	0.1	%	104	93.4	99.7		
EP075(SIM)S: Phenolic Compound	Surrogates							

Analytical Results

Sub-Matrix: MARINE WATER		Cli	ent sample ID	G-WQ-11	G-WQ-12	QA1	
Cli		Client sampling date / time		21-MAY-2009 15:00	21-MAY-2009 15:00	some labelled QA4 21-MAY-2009 15:00	
					EB0908160-007	EB0908160-008	
Compound	CAS Number	LOR	Unit	EB0300100-000	EB0300100-007	EB0308100-008	
EP075(SIM)S: Phenolic Compound Sur	rogates - Continued						 -
Phenol-d6	13127-88-3	0.1	%	33.3	36.8	34.9	
2-Chlorophenol-D4	93951-73-6	0.1	%	73.3	79.2	74.8	
2.4.6-Tribromophenol	118-79-6	0.1	%	74.0	83.3	79.3	
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	0.1	%	76.8	83.7	77.2	
Anthracene-d10	1719-06-8	0.1	%	89.4	92.9	88.0	
4-Terphenyl-d14	1718-51-0	0.1	%	93.1	102	96.2	
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	0.1	%	99.4	98.4	101	
Toluene-D8	2037-26-5	0.1	%	99.8	99.2	97.7	
4-Bromofluorobenzene	460-00-4	0.1	%	94.3	93.6	92.6	
EP090S: Organotin Surrogate							
Tripropyltin		0.1	%	67.0	88.1	87.9	
EP130S: Organophosphorus Pesticide	Surrogate						
DEF	78-48-8	0.1	%	95.1	86.9	93.6	
EP131S: OC Pesticide Surrogate							
Dibromo-DDE	21655-73-2	0.1	%	78.3	78.3	81.6	
EP202S: Phenoxyacetic Acid Herbicide	Surrogate						
2.4-Dichlorophenyl Acetic Acid	19719-28-9	0.1	%	124	123	90.7	

Surrogate Control Limits

Sub-Matrix: MARINE WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP074S: VOC Surrogates			
1.2-Dichloroethane-D4	17060-07-0	80	120
Toluene-D8	2037-26-5	88	110
4-Bromofluorobenzene	460-00-4	86	115
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	10	94
2-Chlorophenol-D4	93951-73-6	23	134
2.4.6-Tribromophenol	118-79-6	10	123
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	43	116
Anthracene-d10	1719-06-8	27	133
4-Terphenyl-d14	1718-51-0	33	141
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	80	120
Toluene-D8	2037-26-5	88	110
4-Bromofluorobenzene	460-00-4	86	115
EP090S: Organotin Surrogate			
Tripropyltin		10	108
EP130S: Organophosphorus Pesticide Surrogate			
DEF	78-48-8	32	136.4
EP131S: OC Pesticide Surrogate			
Dibromo-DDE	21655-73-2	10	136
EP202S: Phenoxyacetic Acid Herbicide Surrogate			
2.4-Dichlorophenyl Acetic Acid	19719-28-9	37.8	142

CERTIFICATE OF ANALYSIS

4 June 2009

ALS QLD

32 Shand St Stafford QLD 4053

Attention: Tim Kilmister

Your Reference: EB0908160 Report Number: ME100781

SAMPLE TYPE: SAMPLES RECEIVED: PRELIMINARY REPORT EMAILED: 8 water samples 26/05/2009 Not Issued

These samples were analysed in accordance with your written instructions. A copy of the instructions is attached with the analytical report.

For and on Behalf of: SGS AUSTRALIA PTY LTD

Client Services: Site Manager: Alexandra Stenta Dr Aaron D. Stott Alexandra.Stenta@sgs.com Aaron.Stott@sgs.com

This report has been authorised by the undersigned:

A.

Anthony Pellegrini LC Team Leader

Page 1 of 4

Tebuthiuron							
Our Reference:	LOR	UNITS	ME100781-1	ME100781-2	ME100781-3	ME100781-4	ME100781-5
Your Reference			G-WQ-01	G-WQ-04	G-WQ-05	G-WQ-08	G-WQ-10
Container Type			500mL amber glass bottle				
Sample Type Date Sampled			Water 21/05/2009	Water 21/05/2009	Water 21/05/2009	Water 21/05/2009	Water 21/05/2009
Date Extracted			3/06/2009	3/06/2009	3/06/2009	3/06/2009	3/06/2009
Date Analysed			3/06/2009	3/06/2009	3/06/2009	3/06/2009	3/06/2009
Tebuthiuron*	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01

Tebuthiuron					
Our Reference:	LOR	UNITS	ME100781-6	ME100781-7	ME100781-8
Your Reference			G-WQ-11	G-WQ-12	QA1 (same are labelled QA4)
Container Type			500mL amber glass bottle	500mL amber glass bottle	500mL amber glass bottle
Sample Type			Water	Water	Water
Date Sampled			21/05/2009	21/05/2009	21/05/2009
Date Extracted			3/06/2009	3/06/2009	3/06/2009
Date Analysed			3/06/2009	3/06/2009	3/06/2009
Tebuthiuron*	0.01	mg/L	<0.01	<0.01	<0.01

Method ID	Methodology Summary
SGSMC258	An in-house method for the determination of Organochlorines, Organophosphates and Synthetic Pyrethoids in Water by dual analysis using Gas Chromatography with Mass Spectrometry and Flame Photometric Detection (GC/MS/FPD) and LC/MS/MS.

PROJECT: EB0908160

Result Codes

[INS]	:	Insufficient Sample for this test	[RPD] : Relative Percentage Difference
[NR]	:	Not Requested	* : Not part of NATA Accreditation
[NT]	:	Not tested	[N/A] : Not Applicable

Report Comments

NATA Corporate Accreditation No. 2562, Site No 2076

Note: Test results are not corrected for recovery (excluding Dioxins/Furans* and PAH in XAD and PUF). This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

Quality Control Protocol

Method Blank: An analyte free matrix to which all reagents are added in the same volume or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. A method blank is prepared every 20 samples.

Duplicate: A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.

Surrogate Spike: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are added to samples before extraction to monitor extraction efficiency and percent recovery in each sample.

Internal Standard: Added to all samples requiring analysis for organics (where relevant) or metals by ICP after the extraction/digestion process; the compounds/elements serve to give a standard of retention time and/or response, which is invariant from run-to-run with the instruments.

Laboratory Control Sample: A known matrix spiked with compound(s) representative of the target analytes. It is used to document laboratory performance. When the results of the matrix spike analysis indicates a potential problem due to the sample matrix itself, the LCS results are used to verify that the laboratory can perform the analysis in a clean matrix.

Matrix Spike: An aliquot of sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

Quality Acceptance Criteria

Unless otherwise specified in the test method, the following general acceptance criteria apply:

Method Blanks:	<lor< th=""></lor<>
Duplicates:	<5 x LOR: No RPD criteria applied.
	>5 x LOR: 0-30% RPD is accepted.
LCS's:	Determined by Control Charts.
	Where control charts have not been developed, the Matrix Spikes criteria apply.
Matrix Spikes:	70-130% recovery is accepted for metals / inorganics.
	60-140% is accepted for organics.
Surrogates:	60-130% recovery is accepted for BTEX.
	70-130% recovery is accepted for other organics.

Environmental Division

QUALITY CONTROL REPORT

Work Order	: EB0908160	Page	: 1 of 13
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Brisbane
Contact	: MR ADRIAN WHITE	Contact	: Tim Kilmister
Address	: P O BOX 373	Address	: 32 Shand Street Stafford QLD Australia 4053
	GLADSTONE QLD, AUSTRALIA 4680		
E-mail	: adrian.a.white@ghd.com.au	E-mail	: Services.Brisbane@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-7-3243 7222
Facsimile	: +61 07 4972 6236	Facsimile	: +61-7-3243 7218
Project	: 4215386 41 Western Basin EIS WQ Monitoring	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 22-MAY-2009
Sampler	:	Issue Date	: 05-JUN-2009
Order number	:		
		No. of samples received	: 8
Quote number	: EN/005/09	No. of samples analysed	: 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

	NATA Accredited Laboratory 825			es indicated below. Electronic signing has been
NATA	This document is issued in	carried out in compliance with p	rocedures specified in 21 CFR Part 11.	
	accordance with NATA	Signatories	Position	Accreditation Category
	accreditation requirements.			Organics
	Accredited for compliance with	Alex Rossi	Organic Chemist	Organics
WORLD RECOGNISED ACCREDITATION	ISO/IEC 17025.	Kim McCabe	Senior Inorganic Chemist	Inorganics
	130/120 17023.	Lana Nguyen	Organic Chemist	Organics
		Matthew Goodwin	Senior Organic Chemist	Organics
		Sarah Ashworth	Organic Chemist	Organics
		Stephen Hislop	Senior Inorganic Chemist	Inorganics

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA005: pH (QC Lot	: 987011)								
EB0908140-001	Anonymous	EA005: pH Value		0.01	pH Unit	6.86	6.86	0.0	0% - 20%
EB0908160-002	G-WQ-04	EA005: pH Value		0.01	pH Unit	8.10	8.10	0.0	0% - 20%
EA010P: Conductiv	vity by PC Titrator (QC Lot	t: 987537)							
EB0908072-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	294	302	2.7	0% - 20%
EB0908160-008	QA1 some labelled QA4	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	50600	50000	1.2	0% - 20%
EA015: Total Disso	lved Solids (QC Lot: 9889	160)							
EB0908000-003	Anonymous	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	8980	8820	1.8	0% - 20%
EB0908160-004	G-WQ-08	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	45700	46200	1.0	0% - 20%
EA025: Suspended	Solids (QC Lot: 991166)								
EB0908099-002	Anonymous	EA025: Suspended Solids (SS)		1	mg/L	8	8	0.0	No Limit
EB0908143-005	Anonymous	EA025: Suspended Solids (SS)		1	mg/L	59	60	1.7	0% - 20%
EA025: Suspended	Solids (QC Lot: 991172)								
EB0908121-001	Anonymous	EA025: Suspended Solids (SS)		1	mg/L	13	12	8.0	0% - 50%
EB0908190-002	Anonymous	EA025: Suspended Solids (SS)		1	mg/L	176	170	3.5	0% - 20%
EK026G: Total Cya	nide By Discrete Analyser	(QC Lot: 994867)							
EB0908160-001	G-WQ-01	EK026G: Total Cyanide	57-12-5	0.004	mg/L	<0.004	<0.004	0.0	No Limit
EP008: Chlorophyll	a (QC Lot: 986693)								
EB0908160-001	G-WQ-01	EP008: Chlorophyll a		1	mg/m3	5	4	40.1	No Limit
EP074E: Halogenat	ed Aliphatic Compounds	(QC Lot: 989356)							
EB0908160-001	G-WQ-01	EP074-LL: 1.1.1-Trichloroethane	71-55-6	1	µg/L	<1	<1	0.0	No Limit
EM0904622-005	Anonymous	EP074-LL: 1.1.1-Trichloroethane	71-55-6	1	µg/L	<1	<1	0.0	No Limit
EP074E: Halogenat	ed Aliphatic Compounds	(QC Lot: 992081)							
EB0908063-001	Anonymous	EP074: 1.1.2-Trichloroethane	79-00-5	5	µg/L	<5	<5	0.0	No Limit
EB0908160-007	G-WQ-12	EP074: 1.1.2-Trichloroethane	79-00-5	5	µg/L	<5	<5	0.0	No Limit
EP074F: Halogenat	ed Aromatic Compounds	(QC Lot: 989356)							
EB0908160-001	G-WQ-01	EP074-LL: 1.2.4-Trichlorobenzene	120-82-1	0.5	µg/L	<0.5	<0.5	0.0	No Limit
EM0904622-005	Anonymous	EP074-LL: 1.2.4-Trichlorobenzene	120-82-1	0.5	µg/L	<0.5	<0.5	0.0	No Limit
EP075(SIM)A: Phen	olic Compounds (QC Lot	: 987140)							
EB0908139-001	Anonymous	EP075(SIM): Phenol	108-95-2	1.0	µg/L	6.6	8.3	24.1	No Limit
		EP075(SIM): 2-Chlorophenol	95-57-8	1.0	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): 2-Methylphenol	95-48-7	1.0	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): 2-Nitrophenol	88-75-5	1.0	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): 2.4-Dimethylphenol	105-67-9	1.0	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): 2.4-Dichlorophenol	120-83-2	1.0	µg/L	<1.0	<1.0	0.0	No Limit

Page	: 4 of 13
Work Order	: EB0908160
Client	: GHD SERVICES PTY LTD
Project	: 4215386 41 Western Basin EIS WQ Monitoring

Sub-Matrix: WATER	o-Matrix: WATER					Laboratory	Duplicate (DUP) Report	t		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EP075(SIM)A: Pheno	lic Compounds (QC Lot:	987140) - continued								
EB0908139-001	Anonymous	EP075(SIM): 2.6-Dichlorophenol	87-65-0	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
		EP075(SIM): 4-Chloro-3-Methylphenol	59-50-7	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
		EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
		EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
		EP075(SIM): 3- & 4-Methylphenol	1319-77-3	2.0	µg/L	<2.0	<2.0	0.0	No Limit	
		EP075(SIM): Pentachlorophenol	87-86-5	2.0	µg/L	<2.0	<2.0	0.0	No Limit	
EP075(SIM)B: Polyni	uclear Aromatic Hydrocar	bons (QC Lot: 987140)								
EB0908139-001	Anonymous	EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Naphthalene	91-20-3	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
		EP075(SIM): Acenaphthylene	208-96-8	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
		EP075(SIM): Acenaphthene	83-32-9	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
		EP075(SIM): Fluorene	86-73-7	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
		EP075(SIM): Phenanthrene	85-01-8	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
		EP075(SIM): Anthracene	120-12-7	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
		EP075(SIM): Fluoranthene	206-44-0	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
		EP075(SIM): Pyrene	129-00-0	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
		EP075(SIM): Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
		EP075(SIM): Chrysene	218-01-9	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
		EP075(SIM): Benzo(b)fluoranthene	205-99-2	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
EP080/071: Total Pet	roleum Hydrocarbons (C									
EB0908139-001	Anonymous	EP071: C15 - C28 Fraction		100	µg/L	100	100	0.0	No Limit	
		EP071: C10 - C14 Fraction		50	µg/L	70	90	31.7	No Limit	
		EP071: C29 - C36 Fraction		50	µg/L	<50	<50	0.0	No Limit	
EP080/071: Total Pet	roleum Hydrocarbons (C	(C Lot: 987565)								
EB0908139-001	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.0	No Limit	
EB0908160-001	G-WQ-01	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit	
EP080/071: Total Pet	roleum Hydrocarbons(C									
EB0908160-006	G-WQ-11	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit	
EP080: BTEX (QC L										
EB0908139-001	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit	
	,	EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit	
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit	
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit	
			106-42-3							
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.0	No Limit	

Page	5 of 13
Work Order	: EB0908160
Client	: GHD SERVICES PTY LTD
Project	: 4215386 41 Western Basin EIS WQ Monitoring

Sub-Matrix: WATER			[Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080: BTEX (QC L	.ot: 987565) - continue	d							
EB0908160-001	G-WQ-01	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.0	No Limit
EP080: BTEX (QC L	ot: 987671)								
EB0908160-006	G-WQ-11	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.0	No Limit
			106-42-3		-				
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.0	No Limit
EP090: Organotin C	ompounds (Soluble)(QC Lot: 987660)							
EB0907895-001	Anonymous	EP090S: Tributyltin	56573-85-4	2	ngSn/L	<2	<2	0.0	No Limit
EB0908160-005	G-WQ-10	EP090S: TributyItin	56573-85-4	2	ngSn/L	<2	<2	0.0	No Limit
=P202A: Phenoxyac	cetic Acid Herbicides b	y LCMS (QC Lot: 990327)			_				
ES0907538-001	Anonymous	EP202-LL: 4-Chlorophenoxy acetic acid	122-88-3	0.01	µg/L	<0.01	<0.01	0.0	No Limit
	- ,	EP202-LL: 2.4-DB	94-82-6	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP202-LL: Dicamba	1918-00-9	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP202-LL: Mecoprop	93-65-2	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP202-LL: MCPA	94-74-6	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP202-LL: 2.4-DP	120-36-5	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP202-LL: 2.4-D	94-75-7	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP202-LL: Triclopyr	55335-06-3	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP202-LL: 2.4.5-TP (Silvex)	93-72-1	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP202-LL: 2.4.5-T	93-76-5	0.01	µg/L	<0.01	<0.01	0.0	No Limit
		EP202-LL: MCPB	94-81-5	0.01	µg/L	<0.01	<0.01	0.0	No Limit
		EP202-LL: Picloram	1918-02-1	0.05	μg/L	< 0.05	<0.05	0.0	No Limit
		EP202-LL: Clopyralid	1702-17-6	0.05	µg/L	< 0.05	<0.05	0.0	No Limit
		EP202-LL: Fluroxypyr	69377-81-7	0.05	μg/L	< 0.05	<0.05	0.0	No Limit
		EP202-LL: 2.6-D	575-90-6	0.1	μg/L	<0.1	<0.1	0.0	No Limit
		EP202-LL: 2.4.6-T	575-89-3	0.1	μg/L	<0.1	<0.1	0.0	No Limit
ES0907545-002	Anonymous	EP202-LL: 4-Chlorophenoxy acetic acid	122-88-3	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP202-LL: 2.4-DB	94-82-6	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP202-LL: Dicamba	1918-00-9	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP202-LL: Mecoprop	93-65-2	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP202-LL: MCPA	94-74-6	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP202-LL: 2.4-DP	120-36-5	0.01	μg/L	<0.01	<0.01	0.0	No Limit

Page	: 6 of 13
Work Order	: EB0908160
Client	: GHD SERVICES PTY LTD
Project	: 4215386 41 Western Basin EIS WQ Monitoring

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EP202A: Phenoxya	cetic Acid Herbicides b	y LCMS (QC Lot: 990327) - continued									
ES0907545-002	Anonymous	EP202-LL: 2.4-D	94-75-7	0.01	µg/L	<0.01	<0.01	0.0	No Limit		
		EP202-LL: Triclopyr	55335-06-3	0.01	µg/L	<0.01	<0.01	0.0	No Limit		
	EP202-LL: 2.4.5-TP (Silvex)	93-72-1	0.01	µg/L	<0.01	<0.01	0.0	No Limit			
		EP202-LL: 2.4.5-T	93-76-5	0.01	µg/L	<0.01	<0.01	0.0	No Limit		
		EP202-LL: MCPB	94-81-5	0.01	µg/L	<0.01	<0.01	0.0	No Limit		
		EP202-LL: Picloram	1918-02-1	0.05	µg/L	<0.05	<0.05	0.0	No Limit		
		EP202-LL: Clopyralid	1702-17-6	0.05	µg/L	<0.05	<0.05	0.0	No Limit		
		EP202-LL: Fluroxypyr	69377-81-7	0.05	µg/L	<0.05	<0.05	0.0	No Limit		
		EP202-LL: 2.6-D	575-90-6	0.1	µg/L	<0.1	<0.1	0.0	No Limit		
		EP202-LL: 2.4.6-T	575-89-3	0.1	µg/L	<0.1	<0.1	0.0	No Limit		
EP209: Multiresidue	Pesticide Residue Sci	reen (Suite 1) (QC Lot: 990326)									
ES0907538-001	Anonymous	EP209-LL: Atrazine	1912-24-9	0.010	µg/L	<0.010	<0.010	0.0	No Limit		
		EP209-LL: Hexazinone	51235-04-2	0.010	µg/L	<0.010	<0.010	0.0	No Limit		
		EP209-LL: Molinate	2212-67-1	0.010	µg/L	<0.010	<0.010	0.0	No Limit		
		EP209-LL: Propiconazole	60207-90-1	0.010	µg/L	<0.010	<0.010	0.0	No Limit		
		EP209-LL: Chlorpyrifos	2921-88-2	0.050	µg/L	<0.050	<0.050	0.0	No Limit		
		EP209-LL: Temephos	3383-96-8	0.050	µg/L	<0.050	<0.050	0.0	No Limit		
ES0907545-002	Anonymous	EP209-LL: Atrazine	1912-24-9	0.010	µg/L	<0.010	<0.010	0.0	No Limit		
		EP209-LL: Hexazinone	51235-04-2	0.010	µg/L	<0.010	<0.010	0.0	No Limit		
		EP209-LL: Molinate	2212-67-1	0.010	µg/L	<0.010	<0.010	0.0	No Limit		
		EP209-LL: Propiconazole	60207-90-1	0.010	µg/L	<0.010	<0.010	0.0	No Limit		
		EP209-LL: Chlorpyrifos	2921-88-2	0.050	µg/L	<0.050	<0.050	0.0	No Limit		
		EP209-LL: Temephos	3383-96-8	0.050	μg/L	<0.050	<0.050	0.0	No Limit		

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS			
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA005: pH (QCLot: 987011)									
EA005: pH Value		0.01	pH Unit		7.00 pH Unit	100	82	118	
EA010P: Conductivity by PC Titrator (QCLot: 987537)									
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	1412 µS/cm	100	90.3	108	
EA015: Total Dissolved Solids (QCLot: 988960)									
EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	<1	2000 mg/L	99.0	86	106	
EA025: Suspended Solids (QCLot: 991166)									
EA025: Suspended Solids (SS)		1	mg/L	<1	150 mg/L	107	86	108	
EA025: Suspended Solids (QCLot: 991172)									
EA025: Suspended Solids (SS)		1	mg/L	<1	150 mg/L	107	86	108	
EK026G: Total Cyanide By Discrete Analyser (QCLot: 99486	7)								
EK026G: Total Cyanide	57-12-5	0.004	mg/L	<0.004	0.5 mg/L	96.0	70	130	
EP008: Chlorophyll a (QCLot: 986693)									
EP008: Chlorophyll a		5	mg/m3	<5	2000 mg/m3	94.8	70.7	119	
EP074E: Halogenated Aliphatic Compounds (QCLot: 989356)								
EP074-LL: 1.1.1-Trichloroethane	71-55-6	1	μg/L	<1	1 µg/L	101	68.4	135	
EP074E: Halogenated Aliphatic Compounds (QCLot: 992081)								
EP074: 1.1.2-Trichloroethane	79-00-5	5	μg/L	<5	10 µg/L	103	69.2	133	
EP074F: Halogenated Aromatic Compounds (QCLot: 989356)								
EP074-LL: 1.2.4-Trichlorobenzene	120-82-1	0.5	μg/L	<0.5	1 µg/L	103	68.3	128	
EP075(SIM)A: Phenolic Compounds (QCLot: 987140)									
EP075(SIM): Phenol	108-95-2	1	μg/L	<1.0	5 µg/L	25.6	24	70	
EP075(SIM): 2-Chlorophenol	95-57-8	1	μg/L	<1.0	5 µg/L	64.0	57	105	
EP075(SIM): 2-Methylphenol	95-48-7	1	μg/L	<1.0	5 µg/L	60.4	51	96	
EP075(SIM): 3- & 4-Methylphenol	1319-77-3	2	μg/L	<2.0	10 µg/L	53.2	45	94	
EP075(SIM): 2-Nitrophenol	88-75-5	1	µg/L	<1.0	5 µg/L	69.2	48	132	
EP075(SIM): 2.4-Dimethylphenol	105-67-9	1	µg/L	<1.0	5 µg/L	60.4	44	112	
EP075(SIM): 2.4-Dichlorophenol	120-83-2	1	µg/L	<1.0	5 µg/L	86.0	60	114	
EP075(SIM): 2.6-Dichlorophenol	87-65-0	1	μg/L	<1.0	5 µg/L	59.6	59	115	
EP075(SIM): 4-Chloro-3-Methylphenol	59-50-7	1	μg/L	<1.0	5 µg/L	66.8	60	117	
EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	1	µg/L	<1.0	5 µg/L	67.9	59	123	
EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	1	µg/L	<1.0	5 µg/L	63.6	59	123	
EP075(SIM): Pentachlorophenol	87-86-5	2	µg/L	<2.0	10 µg/L	# 138	22.1	130	

Page	: 8 of 13
Work Order	: EB0908160
Client	: GHD SERVICES PTY LTD
Project	: 4215386 41 Western Basin EIS WQ Monitoring

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbon	s (QCLot: 987140) - conti	nued							
EP075(SIM): Naphthalene	91-20-3	1	µg/L	<1.0	5 µg/L	68.6	46	111	
EP075(SIM): Acenaphthylene	208-96-8	1	µg/L	<1.0	5 µg/L	66.4	51	114	
EP075(SIM): Acenaphthene	83-32-9	1	µg/L	<1.0	5 µg/L	69.2	50	114	
EP075(SIM): Fluorene	86-73-7	1	µg/L	<1.0	5 µg/L	66.1	55	118	
EP075(SIM): Phenanthrene	85-01-8	1	μg/L	<1.0	5 µg/L	82.9	54	110	
EP075(SIM): Anthracene	120-12-7	1	µg/L	<1.0	5 µg/L	80.1	49	117	
EP075(SIM): Fluoranthene	206-44-0	1	µg/L	<1.0	5 µg/L	79.2	51	117	
EP075(SIM): Pyrene	129-00-0	1	µg/L	<1.0	5 µg/L	78.2	51	117	
EP075(SIM): Benz(a)anthracene	56-55-3	1	µg/L	<1.0	5 µg/L	81.9	53	120	
EP075(SIM): Chrysene	218-01-9	1	µg/L	<1.0	5 µg/L	67.9	48	114	
EP075(SIM): Benzo(b)fluoranthene	205-99-2	1	µg/L	<1.0	5 µg/L	78.2	48	130	
EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	µg/L	<1.0	5 µg/L	64.8	43	126	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	5 µg/L	62.9	44	120	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	µg/L	<1.0	5 µg/L	55.2	45	129	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	µg/L	<1.0	5 µg/L	59.8	47	131	
P075(SIM): Benzo(g.h.i)perylene	191-24-2	1	µg/L	<1.0	5 µg/L	60.5	42	126	
EP080/071: Total Petroleum Hydrocarbons (QCLo	ot: 987141)								
EP071: C10 - C14 Fraction		50	μg/L	<50	600 µg/L	88.8	49	110	
P071: C15 - C28 Fraction		100	µg/L	<100	1020 µg/L	92.1	58	130	
EP071: C29 - C36 Fraction		50	µg/L	<50					
P080/071: Total Petroleum Hydrocarbons (QCLc	ot: 987565)								
EP080: C6 - C9 Fraction		20	μg/L	<20	160 µg/L	104	73	135	
EP080/071: Total Petroleum Hydrocarbons (QCLc	at: 097674)		r S						
EP080: C6 - C9 Fraction		20	µg/L	<20	160 µg/L	96.2	73	135	
		20	µ9/L	~20	100 µg/L	30.2	75	100	
EP080: BTEX (QCLot: 987565)	74.40.0	<u>.</u>			10 "	101		100	
EP080: Benzene	71-43-2	1	µg/L	<1	10 µg/L	104	77.6	122	
EP080: Toluene	108-88-3	2	µg/L	<2	10 µg/L	102	74	122	
EP080: Ethylbenzene	100-41-4	2	µg/L	<2	10 µg/L	102	73	126	
EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	20 µg/L	101	70.4	129	
	106-42-3	2		<2	10	101	74.3	100	
EP080: ortho-Xylene	95-47-6	2	µg/L	<2	10 µg/L	101	74.3	126	
EP080: BTEX (QCLot: 987671)									
P080: Benzene	71-43-2	1	µg/L	<1	10 µg/L	101	77.6	122	
EP080: Toluene	108-88-3	2	µg/L	<2	10 µg/L	99.2	74	122	
EP080: Ethylbenzene	100-41-4	2	μg/L	<2	10 µg/L	99.4	73	126	
EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	20 µg/L	98.7	70.4	129	
	106-42-3								
EP080: ortho-Xylene	95-47-6	2	µg/L	<2	10 µg/L	101	74.3	126	

Page	: 9 of 13
Work Order	: EB0908160
Client	: GHD SERVICES PTY LTD
Project	: 4215386 41 Western Basin EIS WQ Monitoring

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
P090: Organotin Compounds (Soluble) (QCLot: 987660)									
P090S: Tributyltin	56573-85-4	2	ngSn/L		1470 ngSn/L	43.4	29	100	
····				<2					
EP130A: Organophosphorus Pesticides (Ultra-trace) (QCL	ot: 991052)								
P130: Bromophos-ethyl	4824-78-6	0.10	μg/L	<0.10	1.0 µg/L	108	35.4	143	
P130: Carbophenothion	786-19-6	0.10	µg/L	<0.10	1.0 µg/L	72.8	5.13	171	
P130: Chlorfenvinphos (Z)	470-90-8	0.10	µg/L	<0.10	1.0 µg/L	99.7	44.6	155	
EP130: Chlorpyrifos	2921-88-2	0.05	μg/L	<0.050	1.0 µg/L	90.8	38.5	145	
EP130: Chlorpyrifos-methyl	5598-13-0	0.10	μg/L	<0.10	1.0 µg/L	87.8	40.3	135	
EP130: Demeton-S-methyl	919-86-8	0.10	µg/L	<0.10	1.0 µg/L	105	20.7	178	
EP130: Diazinon	333-41-5	0.10	μg/L	<0.10	1.0 µg/L	88.5	38.7	146	
EP130: Dichlorvos	62-73-7	0.10	μg/L	<0.10	1.0 µg/L	87.6	18.4	151	
EP130: Dimethoate	60-51-5	0.10	μg/L	<0.10	1.0 µg/L	94.2	27.4	131	
EP130: Ethion	563-12-2	0.10	μg/L	<0.10	1.0 µg/L	128	36.1	147	
P130: Fenamiphos	22224-92-6	0.10	μg/L	<0.10	1.0 µg/L	97.2	4.43	168	
EP130: Fenthion	55-38-9	0.10	μg/L	<0.10	1.0 µg/L	104	23.2	145	
P130: Malathion	121-75-5	0.10	μg/L	<0.10	1.0 µg/L	114	40.7	136	
P130: Azinphos Methyl	86-50-0	0.10	μg/L	<0.10	1.0 µg/L	128	1.35	163	
P130: Monocrotophos	6923-22-4	0.10	μg/L	<0.10	1.0 µg/L	46.5	10	86.3	
P130: Parathion	56-38-2	0.10	μg/L	<0.10	1.0 µg/L	104	35.5	141	
P130: Parathion-methyl	298-00-0	0.10	μg/L	<0.10	1.0 µg/L	114	31.1	144	
EP130: Pirimphos-ethyl	23505-41-1	0.10	μg/L	<0.10	1.0 µg/L	91.5	38.9	142	
EP130: Prothiofos	34643-46-4	0.10	μg/L	<0.10	1.0 µg/L	122	40	138	
P131A: Organochlorine Pesticides (QCLot: 991051)					10				
P131A: Aldrin	309-00-2	0.001	µg/L		0.1 µg/L	63.8	35.8	139	
	000 00 2	0.01	μg/L	<0.010					
P131A: alpha-BHC	319-84-6	0.001	μg/L		0.1 µg/L	47.3	19.7	153	
		0.01	μg/L	<0.010					
P131A: beta-BHC	319-85-7	0.001	μg/L		0.1 µg/L	66.2	43.8	136	
		0.01	μg/L	<0.010					
P131A: delta-BHC	319-86-8	0.001	μg/L		0.1 µg/L	72.1	37.4	144	
		0.01	μg/L	<0.010					
P131A: 4.4`-DDD	72-54-8	0.001	μg/L		0.1 µg/L	87.2	37.5	145	
		0.01	μg/L	<0.010					
P131A: 4.4`-DDE	72-55-9	0.001	μg/L		0.1 µg/L	78.5	30.5	146	
		0.01	μg/L	<0.010					
P131A: 4.4`-DDT	50-29-3	0.001	μg/L		0.1 µg/L	92.4	31	151	
		0.01	μg/L	<0.010					
P131A: DDT (total)		0.01	μg/L	<0.010					

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP131A: Organochlorine Pesticides (QCLot: 99	91051) - continued							
EP131A: Dieldrin	60-57-1	0.001	µg/L		0.1 µg/L	84.4	34.4	145
		0.01	µg/L	<0.010				
EP131A: alpha-Endosulfan	959-98-8	0.001	µg/L		0.1 µg/L	73.2	30.2	141
		0.01	µg/L	<0.010				
EP131A: beta-Endosulfan	33213-65-9	0.001	µg/L		0.1 µg/L	89.6	30.3	148
		0.01	µg/L	<0.010				
EP131A: Endosulfan sulfate	1031-07-8	0.001	µg/L		0.1 µg/L	88.6	19.1	150
		0.01	µg/L	<0.010				
EP131A: Endosulfan (sum)	115-29-7	0.01	µg/L	<0.010				
EP131A: Endrin	72-20-8	0.001	µg/L		0.1 µg/L	111	13	165
		0.01	µg/L	<0.010				
EP131A: Endrin aldehyde	7421-93-4	0.001	µg/L		0.1 µg/L	53.2	28.3	134
		0.01	µg/L	<0.010				
EP131A: Endrin ketone	53494-70-5	0.001	µg/L		0.1 µg/L	84.3	15.1	146
		0.01	µg/L	<0.010				
EP131A: Heptachlor	76-44-8	0.001	µg/L		0.1 µg/L	72.1	33.2	148
		0.005	µg/L	<0.005				
EP131A: Heptachlor epoxide	1024-57-3	0.001	µg/L		0.1 µg/L	72.2	36	143
		0.01	µg/L	<0.010				
EP131A: Hexachlorobenzene (HCB)	118-74-1	0.001	µg/L		0.1 µg/L	44.0	14	146
		0.01	µg/L	<0.010				
EP131A: gamma-BHC	58-89-9	0.001	µg/L		0.1 µg/L	53.6	27.2	147
		0.01	μg/L	<0.010				
EP131A: Methoxychlor	72-43-5	0.001	µg/L		0.1 µg/L	105	34.4	150
		0.01	μg/L	<0.010				
EP131A: cis-Chlordane	5103-71-9	0.001	µg/L		0.1 µg/L	77.5	15.4	152
		0.01	μg/L	<0.010				
EP131A: trans-Chlordane	5103-74-2	0.001	µg/L		0.1 µg/L	60.4	45.1	140
		0.01	μg/L	<0.010				
EP131A: Total Chlordane (sum)		0.01	µg/L	<0.010				
EP202A: Phenoxyacetic Acid Herbicides by LC	MS (OCL at: 990327)							1
EP202A. Phenoxyacetic Acta Herbicides by ECI EP202-LL: 4-Chlorophenoxy acetic acid	122-88-3	0.01	μg/L	<0.01	0.1 µg/L	92.6	20.1	106
EP202-LL: 4-Chlorophenoxy acetic acid	94-82-6	0.01	µg/L	<0.01	0.1 µg/L	123	24	142
EP202-LL: 2.4-DB EP202-LL: Dicamba	1918-00-9	0.01	μg/L	<0.01	0.1 μg/L	81.5	21	139
	93-65-2	0.01	μg/L	<0.01	0.1 μg/L	128	42.6	139
EP202-LL: Mecoprop EP202-LL: MCPA	93-03-2	0.01	μg/L	<0.01	0.1 μg/L	120	33.9	147
	120-36-5	0.01		<0.01		122	39.2	144
EP202-LL: 2.4-DP	94-75-7	0.01	µg/L	<0.01	0.1 μg/L 0.1 μg/L	125	39.2	144
EP202-LL: 2.4-D		0.01	µg/L	<0.01		-		-
EP202-LL: Triclopyr	55335-06-3		µg/L		0.1 µg/L	118	34.5	145
EP202-LL: 2.4.5-TP (Silvex)	93-72-1	0.01	µg/L	<0.01	0.1 µg/L	125	34.3	144

A Campbell Brothers Limited Company

Page	: 11 of 13
Work Order	: EB0908160
Client	: GHD SERVICES PTY LTD
Project	: 4215386 41 Western Basin EIS WQ Monitoring

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP202A: Phenoxyacetic Acid Herbicides I	by LCMS(QCLot: 990327)- cont	inued						
EP202-LL: 2.4.5-T	93-76-5	0.01	μg/L	<0.01	0.1 µg/L	125	26.3	146
EP202-LL: MCPB	94-81-5	0.01	µg/L	<0.01	0.1 µg/L	120	24.3	141
EP202-LL: Picloram	1918-02-1	0.05	µg/L	<0.05	0.1 µg/L	62.1	21.3	142
EP202-LL: Clopyralid	1702-17-6	0.05	µg/L	<0.05	0.1 µg/L	67.2	7.18	150
EP202-LL: Fluroxypyr	69377-81-7	0.05	µg/L	<0.05	0.1 µg/L	108	25.1	136
EP202-LL: 2.6-D	575-90-6	0.1	µg/L	<0.1	0.1 µg/L	118	37.3	140
EP202-LL: 2.4.6-T	575-89-3	0.1	µg/L	<0.1	0.1 µg/L	123	39	134
EP209: Multiresidue Pesticide Residue Sc	creen (Suite 1) (QCLot: 990326)							
EP209-LL: Atrazine	1912-24-9	0.01	µg/L	<0.010	0.05 µg/L	79.0	68.1	142
EP209-LL: Chlorpyrifos	2921-88-2	0.01	µg/L	<0.010	0.05 µg/L	96.3	58	134
EP209-LL: Hexazinone	51235-04-2	0.01	µg/L	<0.010	0.05 µg/L	94.9	75.5	142
EP209-LL: Molinate	2212-67-1	0.01	µg/L	<0.010	0.05 µg/L	70.4	54	138
EP209-LL: Propiconazole	60207-90-1	0.01	µg/L	<0.010	0.05 µg/L	80.2	64	130
EP209-LL: Temephos	3383-96-8	0.01	µg/L	<0.010	0.05 µg/L	70.5	59	129
EP215: Multiresidue Pesticide Residue Sc	creen (Suite 2) (QCLot: 990329)							
EP215-LL: Simazine	122-34-9	0.005	µg/L	<0.005	0.025 µg/L	100	65	130
EP215-LL: Diuron	330-54-1	0.005	µg/L	<0.005	0.025 µg/L	104	65	130
EP215-LL: Atrazine	1912-24-9	0.005	µg/L	<0.005	0.025 µg/L	93.8	65	130
EP215-LL: Molinate	2212-67-1	0.005	µg/L	<0.005	0.025 µg/L	66.4	65	130
EP215-LL: Metolachlor	51218-45-2	0.005	µg/L	<0.005	0.025 µg/L	79.5	65	130
EP215-LL: Malathion	121-75-5	0.002	μg/L	<0.002	0.025 µg/L	93.0	65	130
EP215-LL: Diazinon	333-41-5	0.005	µg/L	<0.005	0.025 µg/L	78.0	65	130
EP215-LL: Thiobencarb	28249-77-6	0.005	μg/L	<0.005	0.025 µg/L	80.0	65	130
EP215-LL: Chlorpyrifos	2921-88-2	0.005	μg/L	<0.005	0.025 µg/L	94.2	65	130
EP215-LL: Trifluralin	1582-09-8	0.005	μg/L	<0.005	0.025 µg/L	79.0	65	130

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: WATER					Matrix Spike (MS) Report				
				Spike	Spike Recovery (%)	Recovery	Limits (%)		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	Hig		
K026G: Total Cyar	nide By Discrete Analyser (QCLot:	994867)							
EB0908160-002	G-WQ-04	EK026G: Total Cyanide	57-12-5	0.2 mg/L	104	70	130		
EP080/071: Total Pe	etroleum Hydrocarbons (QCLot: 98	7141)							
EB0908139-002	Anonymous	EP071: C10 - C14 Fraction		600 µg/L	101	70	130		
		EP071: C15 - C28 Fraction		1020 µg/L	127	70	130		
EP080/071: Total Pe	etroleum Hydrocarbons (QCLot: 98	7565)							
EB0908139-002	Anonymous	EP080: C6 - C9 Fraction		140 µg/L	82.0	70	130		
=P080/071: Total Pe	etroleum Hydrocarbons (QCLot: 98								
EB0908160-007	G-WQ-12	EP080: C6 - C9 Fraction		140 µg/L	70.8	70	130		
EP080: BTEX (QCL									
EB0908139-002	Anonymous	EP080: Benzene	71-43-2	10 µg/L	98.7	70	130		
LD0900109-002		EP080: Benzene EP080: Toluene	108-88-3	10 µg/L	93.9	70	130		
		EP080. Toluene	100-00-3	io pg/L	30.5	10	150		
EP080: BTEX (QCL			74,40,0	10	01.0	70	100		
		EP080: Benzene	71-43-2 108-88-3	10 µg/L	91.3 85.0	70 70	130		
		EP080: Toluene	100-00-3	10 µg/L	0.00	70	130		
	Compounds (Soluble) (QCLot: 9876								
EB0907895-002	Anonymous	EP090S: TributyItin	56573-85-4	1470 ngSn/L	61.0	20	130		
	cetic Acid Herbicides by LCMS (QC	CLot: 990327)							
ES0907545-001	Anonymous	EP202-LL: 4-Chlorophenoxy acetic acid	122-88-3	0.1 µg/L	89.3	33.8	106		
		EP202-LL: 2.4-DB	94-82-6	0.1 µg/L	85.8	22.5	142		
		EP202-LL: Dicamba	1918-00-9	0.1 µg/L	96.8	20.3	138		
		EP202-LL: Mecoprop	93-65-2	0.1 µg/L	115	44.6	137		
		EP202-LL: MCPA	94-74-6	0.1 µg/L	121	36.4	142		
		EP202-LL: 2.4-DP	120-36-5	0.1 µg/L	124	39.0	146		
		EP202-LL: 2.4-D	94-75-7	0.1 µg/L	122	41.8	138		
		EP202-LL: Triclopyr	55335-06-3	0.1 µg/L	127	41.4	139		
		EP202-LL: 2.4.5-TP (Silvex)	93-72-1	0.1 µg/L	123	37.0	120		
		EP202-LL: 2.4.5-T	93-76-5	0.1 µg/L	118	31.1	135		
		EP202-LL: MCPB	94-81-5	0.1 µg/L	89.9	22.8	130		
		EP202-LL: Picloram	1918-02-1	0.1 µg/L	71.9	20.6	124		
		EP202-LL: Clopyralid	1702-17-6	0.1 µg/L	80.3	15.3	118		
		EP202-LL: Fluroxypyr	69377-81-7	0.1 µg/L	89.7	37.3	11		
		EP202-LL: 2.6-D EP202-LL: 2.4.6-T	575-90-6 575-89-3	0.1 μg/L 0.1 μg/L	102 # 124	34.4 43.2	140		

Page	: 13 of 13
Work Order	: EB0908160
Client	: GHD SERVICES PTY LTD
Project	: 4215386 41 Western Basin EIS WQ Monitoring

Sub-Matrix: WATER			Matrix Spike (MS) Report						
				Spike	Spike Recovery (%)	Recovery	Limits (%)		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
EP209: Multiresidue	Pesticide Residue Screen (Suite 1) (QCI								
ES0907545-001 Anonymous	EP209-LL: Atrazine	1912-24-9	0.05 µg/L	80.5	70	130			
		EP209-LL: Chlorpyrifos	2921-88-2	0.05 μg/L	91.9	70	130		
		EP209-LL: Hexazinone	51235-04-2	0.05 µg/L	94.9	70	130		
	EP209-LL: Molinate	2212-67-1	0.05 µg/L	85.0	70	130			
		EP209-LL: Propiconazole	60207-90-1	0.05 µg/L	80.9	70	130		
		EP209-LL: Temephos	3383-96-8	0.05 µg/L	94.8	70	130		

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order	: EB0908160	Page	: 1 of 11
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Brisbane
Contact	: MR ADRIAN WHITE	Contact	: Tim Kilmister
Address	: P O BOX 373	Address	: 32 Shand Street Stafford QLD Australia 4053
	GLADSTONE QLD, AUSTRALIA 4680		
E-mail	: adrian.a.white@ghd.com.au	E-mail	: Services.Brisbane@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-7-3243 7222
Facsimile	: +61 07 4972 6236	Facsimile	: +61-7-3243 7218
Project	: 4215386 41 Western Basin EIS WQ Monitoring	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 22-MAY-2009
Sampler	:	Issue Date	: 05-JUN-2009
Order number	:		
		No. of samples received	: 8
Quote number	: EN/005/09	No. of samples analysed	: 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Environmental Division Brisbane Part of the ALS Laboratory Group

32 Shand Street Stafford QLD Australia 4053 Tel. +61-7-3243 7222 Fax. +61-7-3243 7218 www.alsglobal.com

A Campbell Brothers Limited Company

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: WATER			-		Evaluation	: × = Holding time	breach ; 🗸 = Within	n holding tim
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005: pH								
Clear Plastic Bottle - Natural								
G-WQ-01,	G-WQ-04,	21-MAY-2009				22-MAY-2009	21-MAY-2009	×
G-WQ-05,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA1 - some labelled QA4							
EA010P: Conductivity by PC Titrator								
Clear Plastic Bottle - Natural								
G-WQ-01,	G-WQ-04,	21-MAY-2009				25-MAY-2009	18-JUN-2009	 ✓
G-WQ-05,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA1 - some labelled QA4							
EA015: Total Dissolved Solids								
Clear Plastic Bottle - Natural								
G-WQ-01,	G-WQ-04,	21-MAY-2009				26-MAY-2009	28-MAY-2009	 ✓
G-WQ-05,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA1 - some labelled QA4							
EA025: Suspended Solids								
Clear Plastic Bottle - Natural								
G-WQ-01,	G-WQ-04,	21-MAY-2009				27-MAY-2009	28-MAY-2009	 ✓
G-WQ-05,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA1 - some labelled QA4							
EK026G: Total Cyanide By Discrete Analyser								
White Plastic Bottle - NaOH/Cadmium Nitrate								
G-WQ-01,	G-WQ-04,	21-MAY-2009	01-JUN-2009	04-JUN-2009	✓	01-JUN-2009	04-JUN-2009	 ✓
G-WQ-05,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA1 - some labelled QA4							

Matrix: WATER					Evaluation	: × = Holding time	breach ; 🗸 = Within	n holding tim
Method		Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP008: Chlorophyll a								
White Plastic Bottle - Unpreserved								
G-WQ-01,	G-WQ-04,	21-MAY-2009				22-MAY-2009	23-MAY-2009	✓
G-WQ-05,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA1 - some labelled QA4							
EP074E: Halogenated Aliphatic Compounds								
Amber VOC Vial - HCI or NaHSO4								
G-WQ-01,	G-WQ-04,	21-MAY-2009				28-MAY-2009	04-JUN-2009	✓
G-WQ-05,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA1 - some labelled QA4							
Amber VOC Vial - HCI or NaHSO4								
G-WQ-01,	G-WQ-04,	21-MAY-2009				26-MAY-2009	04-JUN-2009	✓
G-WQ-05,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA1 - some labelled QA4							
EP074F: Halogenated Aromatic Compounds						-		
Amber VOC Vial - HCI or NaHSO4								
G-WQ-01,	G-WQ-04,	21-MAY-2009				26-MAY-2009	04-JUN-2009	 ✓
G-WQ-05,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA1 - some labelled QA4							
EP075(SIM)A: Phenolic Compounds								
Amber Glass Bottle - Unpreserved								
G-WQ-01,	G-WQ-04,	21-MAY-2009	25-MAY-2009	28-MAY-2009	✓	26-MAY-2009	04-JUL-2009	✓
G-WQ-05,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA1 - some labelled QA4							
EP075(SIM)B: Polynuclear Aromatic Hydroca	rbons							
Amber Glass Bottle - Unpreserved								
G-WQ-01,	G-WQ-04,	21-MAY-2009	25-MAY-2009	28-MAY-2009	✓	26-MAY-2009	04-JUL-2009	 ✓
G-WQ-05,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA1 - some labelled QA4							

Matrix: WATER					Evaluation	: × = Holding time	breach ; 🗸 = Within	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydrocarbons								
Amber Glass Bottle - Unpreserved								
G-WQ-01,	G-WQ-04,	21-MAY-2009	25-MAY-2009	28-MAY-2009	✓	26-MAY-2009	04-JUL-2009	 ✓
G-WQ-05,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA1 - some labelled QA4							
Amber VOC Vial - HCl or NaHSO4								
G-WQ-01,	G-WQ-04,	21-MAY-2009				25-MAY-2009	04-JUN-2009	✓
G-WQ-05,	G-WQ-08,							ŗ
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA1 - some labelled QA4							
EP080: BTEX								
Amber VOC Vial - HCl or NaHSO4								
G-WQ-01,	G-WQ-04,	21-MAY-2009				25-MAY-2009	04-JUN-2009	1
G-WQ-01, G-WQ-05,	G-WQ-04, G-WQ-08,	21-WA1-2003				25-WAT-2009	04-3011-2009	v
· · · ·								
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA1 - some labelled QA4							
EP090: Organotin Compounds (Soluble)			1	1		1		
Amber Glass Bottle - Unpreserved								
G-WQ-01,	G-WQ-04,	21-MAY-2009	25-MAY-2009	28-MAY-2009	✓	26-MAY-2009	04-JUL-2009	✓
G-WQ-05,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA1 - some labelled QA4							
EP130A: Organophosphorus Pesticides (Ult	ra-trace)							
Amber Glass Bottle - Unpreserved								
G-WQ-01,	G-WQ-04,	21-MAY-2009	27-MAY-2009	28-MAY-2009	✓	29-MAY-2009	06-JUL-2009	✓
G-WQ-05,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA1 - some labelled QA4							
EP131A: Organochlorine Pesticides								
Amber Glass Bottle - Unpreserved								
G-WQ-01,	G-WQ-04,	21-MAY-2009	27-MAY-2009	28-MAY-2009	✓	29-MAY-2009	06-JUL-2009	✓
G-WQ-05,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA1 - some labelled QA4							
EP202A: Phenoxyacetic Acid Herbicides by								
Amber Glass Bottle - Unpreserved								
G-WQ-01,	G-WQ-04,	21-MAY-2009				28-MAY-2009	28-MAY-2009	1
G-WQ-05,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
	- ··· · · · ·			1		1		1

Page	5 of 11
Work Order	: EB0908160
Client	: GHD SERVICES PTY LTD
Project	: 4215386 41 Western Basin EIS WQ Monitoring

Matrix: WATER					Evaluation:	× = Holding time	breach ; ✓ = Withir	n holding time.
Method		Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP209: Multiresidue Pesticide Residue Screen (Suite	1)							
Amber Glass Bottle - Unpreserved								
G-WQ-01,	G-WQ-04,	21-MAY-2009				28-MAY-2009	28-MAY-2009	✓
G-WQ-05,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA1 - some labelled QA4							
EP215: Multiresidue Pesticide Residue Screen (Suite	2)							
Amber Glass Bottle - Unpreserved								
G-WQ-01,	G-WQ-04,	21-MAY-2009	27-MAY-2009	28-MAY-2009	✓	02-JUN-2009	12-JUL-2009	✓
G-WQ-05,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA1 - some labelled QA4							

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER Quality Control Sample Type			a				ot within specification ; Quality Control frequency within specification 		
Analytical Methods	Method	0 00	ount Regular	Antical	Rate (%)	Evaluation	Quality Control Specification		
	Method	QC	Redular	Actual	Expected	Lvaluation			
Laboratory Duplicates (DUP)		4	0	40.5	10.0		NERM 1000 Cabadula B(2) and ALC OCC2 as subservent		
Chlorophyll a	EP008	1	8	12.5	10.0	<u> </u>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Conductivity by PC Titrator	EA010-P	2	20	10.0	10.0	∕	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Multiresidue Pesticide Screen (N0. 1) - Low Level	EP209-LL	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Organotin Compounds (Soluble)	EP090S	2	14	14.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	14	7.1	10.0	x	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
pH	EA005	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Phenoxyacetic Acid Herbicides (LCMS - Low DL)	EP202-LL	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Suspended Solids	EA025	4	40	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Cyanide By Discrete Analyser	EK026G	1	10	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Dissolved Solids	EA015	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
TPH - Semivolatile Fraction	EP071	1	16	6.3	10.0	x	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
TPH Volatiles/BTEX	EP080	3	29	10.3	10.0	\checkmark	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Ultra-trace Volatile Organic Compounds	EP074-LL	2	17	11.8	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
/olatile Organic Compounds	EP074	2	12	16.7	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
aboratory Control Samples (LCS)									
Chlorophyll a	EP008	1	8	12.5	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Conductivity by PC Titrator	EA010-P	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Aultiresidue Pesticide Screen (N0. 1) - Low Level	EP209-LL	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Aultiresidue Pesticide Screen (No. 2)	EP215-LL	1	11	9.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Drganochlorine Pesticides (Ultra-trace)	EP131A	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Organophosphorus Pesticides (Ultra-trace)	EP130	1	10	10.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Drganotin Compounds (Soluble)	EP090S	1	14	7.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	14	7.1	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Н	EA005	2	20	10.0	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Phenoxyacetic Acid Herbicides (LCMS - Low DL)	EP202-LL	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Suspended Solids	EA025	2	40	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
otal Cyanide By Discrete Analyser	EK026G	1	10	10.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
otal Dissolved Solids	EA015	1	20	5.0	5.0	✓ ✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
PH - Semivolatile Fraction	EP071	1	16	6.3	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
PH Volatiles/BTEX	EP080	2	29	6.9	5.0	<u> </u>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Iltra-trace Volatile Organic Compounds	EP074-LL	1	17	5.9	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
/olatile Organic Compounds	EP074	1	12	8.3	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Method Blanks (MB)						-			
Chlorophyll a	EP008	1	8	12.5	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Conductivity by PC Titrator	EA010-P	1	20	5.0	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement		

Matrix: WATER				Evaluation	n: × = Quality Co	ntrol frequency r	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Multiresidue Pesticide Screen (N0. 1) - Low Level	EP209-LL	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Multiresidue Pesticide Screen (No. 2)	EP215-LL	1	11	9.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Organochlorine Pesticides (Ultra-trace)	EP131A	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Organophosphorus Pesticides (Ultra-trace)	EP130	1	10	10.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Organotin Compounds (Soluble)	EP090S	1	14	7.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	14	7.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Phenoxyacetic Acid Herbicides (LCMS - Low DL)	EP202-LL	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Suspended Solids	EA025	2	40	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Cyanide By Discrete Analyser	EK026G	1	10	10.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids	EA015	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	16	6.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	2	29	6.9	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Ultra-trace Volatile Organic Compounds	EP074-LL	1	17	5.9	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Volatile Organic Compounds	EP074	1	12	8.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Multiresidue Pesticide Screen (N0. 1) - Low Level	EP209-LL	1	20	5.0	5.0	✓	ALS QCS3 requirement
Organotin Compounds (Soluble)	EP090S	1	14	7.1	5.0	✓	ALS QCS3 requirement
Phenoxyacetic Acid Herbicides (LCMS - Low DL)	EP202-LL	1	20	5.0	5.0	✓	ALS QCS3 requirement
Total Cyanide By Discrete Analyser	EK026G	1	10	10.0	5.0	✓	ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	16	6.3	5.0	✓	ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	2	29	6.9	5.0	1	ALS QCS3 requirement
Ultra-trace Volatile Organic Compounds	EP074-LL	1	17	5.9	5.0	✓	ALS QCS3 requirement
Volatile Organic Compounds	EP074	1	12	8.3	5.0	1	ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
рН	EA005	WATER	APHA 21st ed. 4500 H+ B. pH of water samples is determined by ISE either manually or by automated pH meter. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Conductivity by PC Titrator	EA010-P	WATER	APHA 21st ed., 2510 B This procedure determines conductivity by automated ISE. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Dissolved Solids	EA015	WATER	APHA 21st ed., 2540C A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+5C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Suspended Solids	EA025	WATER	APHA 21st ed., 2540D A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Cyanide By Discrete Analyser	EK026G	WATER	APHA 21st ed., 4500-CN-C & N Total Cyanide is determined from aqueous solutions after distillation with sulphuric acid. The resultant distillate is then captured in a caustic absorber solution followed by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Chlorophyll a	EP008	WATER	In-house (APHA 21st ed., 10200 H mod.) The pigments are extracted into aqueous acetone. The optical density of the extract before and after acidification at both 664 nm and 665 nm is determined spectrometrically.
TPH - Semivolatile Fraction	EP071	WATER	USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Volatile Organic Compounds	EP074	WATER	USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ultra-trace Volatile Organic Compounds	EP074-LL	WATER	(USEPA SW 846 - 8260B, ALS QWI-ORG/EP074) Water samples are directly purged (ALSQWI-ORG/16) prior to analysis by Capillary GC/MS in Selected Ion Monitoring mode. Quantitation is achieved using internal standardisation against a multi-point calibration curve.
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
TPH Volatiles/BTEX	EP080	WATER	USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Organotin Compounds (Soluble)	EP090S	WATER	USEPA SW 846 - 8270D Sample extracts are analysed by GC/MS coupled with high volume injection and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Organophosphorus Pesticides (Ultra-trace)	EP130	WATER	USEPA Method 3640 (GPC cleanup), 8141 (GC/FPD - Capillary Column) This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Analytical Methods	Method	Matrix	Method Descriptions
Organochlorine Pesticides (Ultra-trace)	EP131A	WATER	USEPA Method 3640 (GPC cleanup),3620 (Florisil), 8081/8082 (GC/uECD/uECD). This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Phenoxyacetic Acid Herbicides (LCMS - Low DL)	EP202-LL	WATER	In-House, LCMS (Electrospray). Residues of acid herbicides in water samples are extracted with dichloromethane under acidic conditions. The organic phase is evaporated to dryness and made up the HPLC mobile phase for MS determination.
Multiresidue Pesticide Screen (N0. 1) - Low Level	EP209-LL	WATER	In-house, LCMS (APCI in positive mode). The compounds are extracted from water samples using dichloromethane. The organic phase is evaporated to dryness and reconstituted in a mixture of methanol and water for reverse phase HPLC analysis.
Multiresidue Pesticide Screen (No. 2)	EP215-LL	WATER	In-house, LCMS (APCI in positive mode). The compounds are extracted from water samples using dichloromethane. The organic phase is evaporated to dryness and reconstituted in a mixture of acetonitrile and water for reverse phase HPLC analysis.
Preparation Methods	Method	Matrix	Method Descriptions
Total Cyanide	EK026-PR	WATER	APHA 21st ed., 4500 CN- C&N. The sample is distilled with H2SO4 releasing all bound cyanides as HCN. The CN is trapped in a caustic solution, and quanitified by colourimetry on FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Separatory funnel extraction for LCMS herbicides.	* EP215-PR	WATER	In-house. A 1 L sample is extracted three times with 60 mL of methylene chloride, reduced to dryness and made up in HPLC mobile phase.
Separatory Funnel Extraction of Liquids	ORG14	WATER	USEPA SW 846 - 3510B 500 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using 60mL DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2). ALS default excludes sediment which may be resident in the container.
Sep. Funnel Extraction of Liquids (Ultra-trace pesticides.)	ORG14-UTP	WATER	USEPA 3510 Samples are extracted into dichloromethane, concentrated and exchanged into an apporpriate solvent for GPC and florisil cleanup as required. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2). ALS default excludes sediment which may be resident in the container.
Organotin Sample Preparation	ORG34	WATER	In-house. A specified volume of sample is spiked with surrogate, acidified and vacuum filtered. Reagents and solvent are added and the mixture tumbled. The butyltin compounds is derivitisated, extracted and the subtitution reaction completed. The extract is transferred to a separatory funnel and further extracted two times with petroleum ether. The resultant extracts are combined and concentrated for analysis.

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Laboratory Control Spike (LCS) Recoveries							
EP075(SIM)A: Phenolic Compounds	1131007-002		Pentachlorophenol	87-86-5	138 %	22.1-130%	Recovery greater than upper control
							limit
Matrix Spike (MS) Recoveries							
EP202A: Phenoxyacetic Acid Herbicides by LCMS	ES0907545-001	Anonymous	2.4.6-T	575-89-3	124 %	43.2-123%	Recovery greater than upper control
							limit

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Matrix: WATER

Method		Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days	
				overdue			overdue	
EA005: pH								
Clear Plastic Bottle - Natural								
G-WQ-01,	G-WQ-04,				22-MAY-2009	21-MAY-2009	1	
G-WQ-05,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA1 - some labelled QA4							

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

Matrix: WATER					
Quality Control Sample Type	Co	unt	Rate	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
PAH/Phenols (GC/MS - SIM)	1	14	7.1	10.0	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	1	16	6.3	10.0	NEPM 1999 Schedule B(3) and ALS QCS3 requirement

A Campbell Brothers Limited Company

Page	: 11 of 11
Work Order	: EB0908160
Client	: GHD SERVICES PTY LTD
Project	: 4215386 41 Western Basin EIS WQ Monitoring

Matrix: WATER

Quality Control Sample Type	Co	unt	Rate	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	

			Chain of Custor		<u></u>													
·					GHD				-									
PROJECT ID:	4215386 41	QUOTE:		· · · · ·	LABORAT	ORY BA	TCH	10.:										
PROJECT:	Western Basin EIS	WQ Monitoring	1.										FOR	LAB	JSE ON	LY		- Incorrection
CLIENT:	GHD				COOLER	SEAL:												COOLER TEMP:
POSTAL ADDRESS:	PO Box 373, Glads	tone 4680			_	Yes			No		••••	••						····· deg.C
CONTACT:	Adrian White	•				Broken			Int	NAME OF TAXABLE PARTY OF TAXABLE PARTY		<u>.,</u>						
PHONE:	614120	35667 FAX:	07) 49726236		DESPATO	HED TO	:	A		aborat	OTIES	T ST	AFEC		QLD 4	153		
EMAIL:	Jason.K.Fowle	@ghd.com.au, Adr	ian.A.White@ghd.co	m.au					243-7									- Environmental Division
INVOICE:	Jason.K.Fowle	r@ghd.com.au, Adr	ian.A.White@ghd.co	m.au														- Brisbane
					T								ANA	YSIS	REQUI	RED		- M Work Order
DATA NEEDED BY:										Т			E		2	Ŷ		
REPORT FORMAT:			·	· · · · · · · · · · · · · · · · · · ·									-EP-215LL (lowest DL)	4	EP-209LL (lowest DL)	(EP131		⁷ EB0908368
EMAIL FORMAT:	ESDAT, EXCEL &	PDF			-					ų,				ldes		A0610	(080	
		onment (Backgroun	nd sampling)		TSS (EA025)	Chlorophyll a (EP008)	pH (EA005)	TDS (EA015)		UDI (Lowest LON) VOC (1,2,4-Trichlorobenzene, 1,1,2-	Trichloroethane (EP074LL) Cvanide	Electro Conductivity	ti Residue Pesticides	a Trace Phenoxy Acid LL	e Pesticide -	l eputriuron (UL I vug/L) Uttratrace OC/OP Pesiticides (EP130A/EP131A)	PAH/Phenois & TPH (S-14A / EP080)	Telephone : + 61-7-3243 7222
SAMPLE			DETECTION LIMIT	PRESERVATION	12S	Chi	표	Ĩ	BTEX	<u> </u>	<u>ž š</u>	` <u></u>	Ň	25 E	ž i	Ē	A	approved. Please forward ultratrace to Sydney L
			LOR	As Required	x	X	x	x	x :	x >	(X	(x	x	x	X	x x	X	
G-WQ-02	Wa				X	x	x	x	x 1	x >		x	x	x	X	x x	x	
G-WQ-03	Wa		LOR	As Required		x	x			x)	_		x	x	x	x x	X	
G-WQ-06	Wa	ter 26/05/2009	LOR	As Required	<u> </u>		1			_			x	x		x x	_	
G-WQ-07	Wa	ter 26/05/2009	LOR	As Required	X	X	X		_	x / 2								
G-WQ-09	Wa	ter 26/05/2009	LOR	As Required	<u>x</u>	X	<u>x</u>		<u>X </u>	<u>x </u>		_	X	X		<u>x x</u>		
QA2	Wa	ter 26/05/2009	LOR	As Required	X	X	X	X	X	X I	x)	<u>(x</u>	X	X	X	x x	(<u>x</u>	
			1				Δ	.										
		RELING			ه؛	64		7					1	RECE	VED BY			
		DATE: 26/05	5/2009 X1		NAME :	×q								DATE		<u> </u>		
NAME · A White		DATE: 20/03																
NAME : A White		DATE: 28/05 TIME: 15		Jason.K.Fowler@ghd.com.au,	OF:		<u> </u>							TIME:		84	-0	

. .

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order	: EB0	908368		
Client Contact Address	: MR AI : P O B	SERVICES PTY LTD DRIAN WHITE OX 373 STONE QLD, AUSTRALIA 4680	Laboratory Contact Address	 Environmental Division Brisbane Tim Kilmister 32 Shand Street Stafford QLD Australia 4053
E-mail Telephone Facsimile	: +61 0	.a.white@ghd.com.au 7 49731611 7 4972 6236	E-mail Telephone Facsimile	: Services.Brisbane@alsenviro.com : +61-7-3243 7222 : +61-7-3243 7218
Project	: 42153 Monito	8641 Western Basin EIS WQ oring	Page	: 1 of 3
Order number	:			
C-O-C number	:		Quote number	: EM2009GHDSER0392 (EN/005/09)
Site	:			
Sampler	:		QC Level	: NEPM 1999 Schedule B(3) and AL QCS3 requirement
Dates				
Date Samples Rec	eived	: 27-MAY-2009	Issue Date	27-MAY-2009 14:26
Client Requested I	Due Date	: 03-JUN-2009	Scheduled Reportir	ng Date : 10-JUN-2009
Delivery Det	ails			
Mode of Delivery		: Carrier	Temperature	: 0.6,2.8,1.4,4.2,9.2, - Ice present
No. of coolers/boxe	es	: 6x Medium	No. of samples reco	eived : 6
Sercurity Seal		: Intact.	No. of samples ana	lysed : 6

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Sample(s) have been received within recommended holding times.
- Tebuthiuron analysis has been subcontracted to SGS (Multilab).
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Maggie Kahi.
- Analytical work for this work order will be conducted at ALS Brisbane.
- Sample Disposal Aqueous (14 days), Solid (90 days) from date of completion of work order.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

Information was not Matrix: WATER Laboratory sample	provided by client. Client sampling date / time	Client sample ID	WATER - EA005: PH	WATER - EA010P Conductivity (PC)	WATER - EA015 Total Dissolved Solids	WATER - EA025 Suspended Solids	WATER - EK026G Total Cyanide by Discrete	WATER - EP008 Chlorophyll a	WATER - EP074-LL	WATER - EP090S Organotins
							✓			
EB0908368-001	26-MAY-2009 15:30	G-WQ-02	✓	✓	✓	•	•		•	•
	26-MAY-2009 15:30 26-MAY-2009 15:30	G-WQ-02 G-WQ-03	√ √	✓ ✓	✓ ✓	 ✓ 	· ·	· ·	 ✓ 	· ✓
EB0908368-001								✓ ✓		
EB0908368-001 EB0908368-002	26-MAY-2009 15:30	G-WQ-03	✓	✓	 ✓ 	 ✓ 	 ✓ 		✓	· ·
EB0908368-001 EB0908368-002 EB0908368-003	26-MAY-2009 15:30 26-MAY-2009 15:30	G-WQ-03 G-WQ-06	√	✓ ✓	√ √	✓ ✓	✓ ✓	✓	✓ ✓	· ✓ ✓

Matrix: WATER Laboratory sample ID	Client sampling date / time	Client sample ID	WATER - EP202LL Phenoxyacetic acids - low level	WATER - EP209LL Multitresidue Pesticide Screen (Suite 1) - Low Level	WATER - EP215LL Multiresidue Pesticide Screen (Suite 2) -	WATER - MSC-WAT (Subcontracted) Miscelleneous Subcontracting	WATER - UTO-1W Ultratrace OC / OP Pesticides	WATER - W-04 TPH/BTEX	WATER - W-14A PAH/Phenols (SIM)
EB0908368-001	26-MAY-2009 15:30	G-WQ-02	√	✓	✓	√	✓	✓	✓
EB0908368-002	26-MAY-2009 15:30	G-WQ-03	✓	✓	1	1	1	1	✓
EB0908368-003	26-MAY-2009 15:30	G-WQ-06	✓	✓	✓	✓	✓	✓	✓
EB0908368-004	26-MAY-2009 15:30	G-WQ-07	1	✓	✓	✓	1	✓	✓
EB0908368-005	26-MAY-2009 15:30	G-WQ-09	1	✓	✓	✓	1	✓	✓
EB0908368-006	26-MAY-2009 15:30	QA2	✓	✓	1	✓	✓	✓	✓

Requested Deliverables

MR ADRIAN WHITE

- *AU Certificate of Analysis - NATA (COA)	Email	adrian.a.white@ghd.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	adrian.a.white@ghd.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	adrian.a.white@ghd.com.au
- A4 - AU Sample Receipt Notification - Environmental (SRN)	Email	adrian.a.white@ghd.com.au
- A4 - AU Tax Invoice (INV)	Email	adrian.a.white@ghd.com.au
- Default - Chain of Custody (COC)	Email	adrian.a.white@ghd.com.au
- EDI Format - ENMRG (ENMRG)	Email	adrian.a.white@ghd.com.au
- EDI Format - ESDAT (ESDAT)	Email	adrian.a.white@ghd.com.au
- Trigger - Subcontract Report (SUBCO)	Email	adrian.a.white@ghd.com.au
MR JASON FOWLER		
 *AU Certificate of Analysis - NATA (COA) 	Email	jason.k.fowler@ghd.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	jason.k.fowler@ghd.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	jason.k.fowler@ghd.com.au
- A4 - AU Sample Receipt Notification - Environmental (SRN)	Email	jason.k.fowler@ghd.com.au
- A4 - AU Tax Invoice (INV)	Email	jason.k.fowler@ghd.com.au
- Default - Chain of Custody (COC)	Email	jason.k.fowler@ghd.com.au
- EDI Format - ENMRG (ENMRG)	Email	jason.k.fowler@ghd.com.au
- EDI Format - ESDAT (ESDAT)	Email	jason.k.fowler@ghd.com.au
 Trigger - Subcontract Report (SUBCO) 	Email	jason.k.fowler@ghd.com.au

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order	: EB0908368	Page	: 1 of 14
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Brisbane
Contact	: MR ADRIAN WHITE	Contact	: Tim Kilmister
Address	: P O BOX 373 GLADSTONE QLD, AUSTRALIA 4680	Address	: 32 Shand Street Stafford QLD Australia 4053
E-mail	: adrian.a.white@ghd.com.au	E-mail	: Services.Brisbane@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-7-3243 7222
Facsimile	: +61 07 4972 6236	Facsimile	: +61-7-3243 7218
Project	: 421538641 Western Basin EIS WQ Monitoring	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Order number	;		
C-O-C number	:	Date Samples Received	: 27-MAY-2009
Sampler	:	Issue Date	: 10-JUN-2009
Site	:		
		No. of samples received	: 6
Quote number	: EN/005/09	No. of samples analysed	: 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

General Comments

- Analytical Results
- Surrogate Control Limits

	NATA Accredited Laboratory 825			ndicated below. Electronic signing has been
WORLD RECOGNISED ACCREDITATION	This document is issued in accordance with NATA accreditation requirements.	carried out in compliance with procedures specified in 21 CFR Part 11.		
		Signatories	Position	Accreditation Category
		Alex Rossi	Organic Chemist	Organics
	Accredited for compliance with ISO/IEC 17025.	Kim McCabe	Senior Inorganic Chemist	Inorganics
		Lana Nguyen	Organic Chemist	Organics
		Matthew Goodwin	Senior Organic Chemist	Organics
		Sarah Ashworth	Organic Chemist	Organics
		Stephen Hislop	Senior Inorganic Chemist	Inorganics

Environmental Division Brisbane Part of the ALS Laboratory Group

32 Shand Street Stafford QLD Australia 4053 Tel. +61-7-3243 7222 Fax. +61-7-3243 7218 www.alsglobal.com

A Campbell Brothers Limited Company

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

• TBT: High failing LCS deemed acceptable as all associated analyte results are less than LOR.

Sub-Matrix: WATER		Cli	ent sample ID	G-WQ-02	G-WQ-03	G-WQ-06	G-WQ-07	G-WQ-09
	Cli	ient sampli	ng date / time	26-MAY-2009 15:30	26-MAY-2009 15:30	26-MAY-2009 15:30	26-MAY-2009 15:30	26-MAY-2009 15:30
Compound	CAS Number	LOR	Unit	EB0908368-001	EB0908368-002	EB0908368-003	EB0908368-004	EB0908368-005
EA005: pH								
pH Value		0.01	pH Unit	8.03	8.05	8.04	8.04	8.11
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	55700	54900	55100	56000	54700
EA015: Total Dissolved Solids								
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	38500	47600	48600	49400	49000
EA025: Suspended Solids								
^ Suspended Solids (SS)		1	mg/L	53	52	27	29	25
EK026G: Total Cyanide By Discrete A	nalvser		, i i i i i i i i i i i i i i i i i i i					
Total Cyanide	57-12-5	0.004	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004
EP008: Chlorophyll a	020		, , , , , , , , , , , , , , , , , , ,					
Chlorophyll a		1	mg/m3	1	<1	6	<1	<1
EP074E: Halogenated Aliphatic Comp								1
1.1.2-Trichloroethane	79-00-5	5	µg/L	<5	<5	<5	<5	<5
EP074F: Halogenated Aromatic Com			P3 =	<u> </u>		, and the second		,
1.2.4-Trichlorobenzene	120-82-1	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
EP075(SIM)A: Phenolic Compounds	120-02-1	0.0	P3-			0.0	0.0	0.0
Phenol	108-95-2	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2-Chlorophenol	95-57-8	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2-Methylphenol	95-48-7	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
3- & 4-Methylphenol	1319-77-3	2.0	µg/L	<2.0	<2.0	<2.0	<2.0	<2.0
2-Nitrophenol	88-75-5	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2.4-Dimethylphenol	105-67-9	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2.4-Dichlorophenol	120-83-2	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2.6-Dichlorophenol	87-65-0	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
4-Chloro-3-Methylphenol	59-50-7	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2.4.6-Trichlorophenol	88-06-2	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2.4.5-Trichlorophenol	95-95-4	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Pentachlorophenol	87-86-5	4.0	µg/L	<4.0	<4.0	<4.0	<4.0	<4.0
EP075(SIM)B: Polynuclear Aromatic I								
Naphthalene	91-20-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Acenaphthylene	208-96-8	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Acenaphthene	83-32-9	1.0	µg/L	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
Fluorene	86-73-7	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Phenanthrene Anthracene	85-01-8	1.0	μg/L μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Fluoranthene	120-12-7 206-44-0	1.0	μg/L μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Pyrene	206-44-0	1.0	μg/L μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
	129-00-0		ry, ⊏	1.V	1.0			Campbell Brothers Limited Corr

Sub-Matrix: WATER		Clie	ent sample ID	G-WQ-02	G-WQ-03	G-WQ-06	G-WQ-07	G-WQ-09
	Cl	lient samplii	ng date / time	26-MAY-2009 15:30				
Compound	CAS Number	LOR	Unit	EB0908368-001	EB0908368-002	EB0908368-003	EB0908368-004	EB0908368-005
EP075(SIM)B: Polynuclear Aro	matic Hydrocarbons - Com	tinued						
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Chrysene	218-01-9	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(b)fluoranthene	205-99-2	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EP080/071: Total Petroleum Hy	ydrocarbons							
C6 - C9 Fraction		20	µg/L	<20	<20	<20	<20	<20
C10 - C14 Fraction		50	µg/L	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	µg/L	<100	<100	<100	<100	<100
C29 - C36 Fraction		50	µg/L	<50	<50	<50	<50	<50
EP080: BTEX								
Benzene	71-43-2	1	µg/L	<1	<1	<1	<1	<1
Toluene	108-88-3	2	µg/L	<2	<2	<2	<2	<2
Ethylbenzene	100-41-4	2	µg/L	<2	<2	<2	<2	<2
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2	<2	<2	<2
ortho-Xylene	95-47-6	2	µg/L	<2	<2	<2	<2	<2
EP090: Organotin Compounds	s (Soluble)							
Tributyltin	56573-85-4	2	ngSn/L	<2	<2	<2	<2	<2
EP130A: Organophosphorus F	Pesticides (Ultra-trace)							
Bromophos-ethyl	4824-78-6	0.10	µg/L	<0.12	<0.12	<0.12	<0.12	<0.12
Carbophenothion	786-19-6	0.10	µg/L	<0.12	<0.12	<0.12	<0.12	<0.12
Chlorfenvinphos (Z)	470-90-8	0.10	µg/L	<0.12	<0.12	<0.12	<0.12	<0.12
Chlorpyrifos	2921-88-2	0.050	µg/L	<0.050	<0.050	<0.050	<0.050	<0.050
Chlorpyrifos-methyl	5598-13-0	0.10	µg/L	<0.12	<0.12	<0.12	<0.12	<0.12
Demeton-S-methyl	919-86-8	0.10	µg/L	<0.12	<0.12	<0.12	<0.12	<0.12
Diazinon	333-41-5	0.10	µg/L	<0.12	<0.12	<0.12	<0.12	<0.12
Dichlorvos	62-73-7	0.10	µg/L	<0.12	<0.12	<0.12	<0.12	<0.12
Dimethoate	60-51-5	0.10	µg/L	<0.12	<0.12	<0.12	<0.12	<0.12
Ethion	563-12-2	0.10	µg/L	<0.12	<0.12	<0.12	<0.12	<0.12
Fenamiphos	22224-92-6	0.10	µg/L	<0.12	<0.12	<0.12	<0.12	<0.12
Fenthion	55-38-9	0.10	µg/L	<0.12	<0.12	<0.12	<0.12	<0.12
Malathion	121-75-5	0.10	µg/L	<0.12	<0.12	<0.12	<0.12	<0.12
Azinphos Methyl	86-50-0	0.10	µg/L	<0.12	<0.12	<0.12	<0.12	<0.12
Monocrotophos	6923-22-4	0.10	µg/L	<0.12	<0.12	<0.12	<0.12	<0.12
Parathion	56-38-2	0.10	µg/L	<0.12	<0.12	<0.12	<0.12	<0.12

Sub-Matrix: WATER		Clie	ent sample ID	G-WQ-02	G-WQ-03	G-WQ-06	G-WQ-07	G-WQ-09
	Cl	ient samplir	ng date / time	26-MAY-2009 15:30				
Compound	CAS Number	LOR	Unit	EB0908368-001	EB0908368-002	EB0908368-003	EB0908368-004	EB0908368-005
EP130A: Organophosphorus Pestic	cides (Ultra-trace) - Co	ntinued						
Parathion-methyl	298-00-0	0.10	μg/L	<0.12	<0.12	<0.12	<0.12	<0.12
Pirimphos-ethyl	23505-41-1	0.10	µg/L	<0.12	<0.12	<0.12	<0.12	<0.12
Prothiofos	34643-46-4	0.10	µg/L	<0.12	<0.12	<0.12	<0.12	<0.12
EP131A: Organochlorine Pesticides	s							
Aldrin	309-00-2	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
alpha-BHC	319-84-6	0.010	μg/L	<0.010	<0.010	<0.010	<0.010	<0.010
beta-BHC	319-85-7	0.010	μg/L	<0.010	<0.010	<0.010	<0.010	<0.010
delta-BHC	319-86-8	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
4.4`-DDD	72-54-8	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
4.4`-DDE	72-55-9	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
4.4`-DDT	50-29-3	0.010	μg/L	<0.010	<0.010	<0.010	<0.010	<0.010
^ DDT (total)		0.010	μg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Dieldrin	60-57-1	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
alpha-Endosulfan	959-98-8	0.010	μg/L	<0.010	<0.010	<0.010	<0.010	<0.010
beta-Endosulfan	33213-65-9	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Endosulfan sulfate	1031-07-8	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Endosulfan (sum)	115-29-7	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Endrin	72-20-8	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Endrin aldehyde	7421-93-4	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Endrin ketone	53494-70-5	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Heptachlor	76-44-8	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor epoxide	1024-57-3	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Hexachlorobenzene (HCB)	118-74-1	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
gamma-BHC	58-89-9	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Methoxychlor	72-43-5	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
cis-Chlordane	5103-71-9	0.010	μg/L	<0.010	<0.010	<0.010	<0.010	<0.010
trans-Chlordane	5103-74-2	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Total Chlordane (sum)		0.010	μg/L	<0.010	<0.010	<0.010	<0.010	<0.010
EP202A: Phenoxyacetic Acid Herbi	cides by LCMS							
4-Chlorophenoxy acetic acid	122-88-3	0.01	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
2.4-DB	94-82-6	0.01	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Dicamba	1918-00-9	0.01	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Месоргор	93-65-2	0.01	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
МСРА	94-74-6	0.01	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
2.4-DP	120-36-5	0.01	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
2.4-D	94-75-7	0.01	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Triclopyr	55335-06-3	0.01	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
2.4.5-TP (Silvex)	93-72-1	0.01	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01

Sub-Matrix: WATER		Clie	ent sample ID	G-WQ-02	G-WQ-03	G-WQ-06	G-WQ-07	G-WQ-09
	Cl	ient samplii	ng date / time	26-MAY-2009 15:30				
Compound	CAS Number	LOR	Unit	EB0908368-001	EB0908368-002	EB0908368-003	EB0908368-004	EB0908368-005
EP202A: Phenoxyacetic Acid He	rbicides by LCMS - Conti	nued						
2.4.5-T	93-76-5	0.01	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
МСРВ	94-81-5	0.01	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Picloram	1918-02-1	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Clopyralid	1702-17-6	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Fluroxypyr	69377-81-7	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
2.6-D	575-90-6	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
2.4.6-T	575-89-3	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
EP209: Multiresidue Pesticide R	esidue Screen (Suite 1)							
Atrazine	1912-24-9	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Chlorpyrifos	2921-88-2	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Hexazinone	51235-04-2	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Molinate	2212-67-1	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Propiconazole	60207-90-1	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
lemephos	3383-96-8	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
EP215: Multiresidue Pesticide R	esidue Screen (Suite 2)							
Simazine	122-34-9	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Diuron	330-54-1	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Atrazine	1912-24-9	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Volinate	2212-67-1	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Metolachlor	51218-45-2	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Malathion	121-75-5	0.002	µg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Diazinon	333-41-5	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Thiobencarb	28249-77-6	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Chlorpyrifos	2921-88-2	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Frifluralin	1582-09-8	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
EP074S: VOC Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.1	%	105	99.9	103	105	108
1.2-Dichloroethane-D4	17060-07-0	0.1	%	108	105	107	111	116
Toluene-D8	2037-26-5	0.1	%	99.0	100	96.6	99.2	99.9
Foluene-D8	2037-26-5	0.1	%	96.4	94.8	93.5	94.8	99.1
I-Bromofluorobenzene	460-00-4	0.1	%	104	106	99.2	104	105
I-Bromofluorobenzene	460-00-4	0.1	%	94.9	92.4	92.0	93.3	98.6
EP075(SIM)S: Phenolic Compou	nd Surrogates							
Phenol-d6	13127-88-3	0.1	%	29.2	37.8	27.0	31.9	34.8
2-Chlorophenol-D4	93951-73-6	0.1	%	61.1	80.1	60.9	66.9	73.9
2.4.6-Tribromophenol	118-79-6	0.1	%	62.2	81.8	62.8	69.1	77.0

Sub-Matrix: WATER		Clie	ent sample ID	G-WQ-02	G-WQ-03	G-WQ-06	G-WQ-07	G-WQ-09
	Cl	ient sampli	ng date / time	26-MAY-2009 15:30				
Compound	CAS Number	LOR	Unit	EB0908368-001	EB0908368-002	EB0908368-003	EB0908368-004	EB0908368-005
EP075(SIM)T: PAH Surrogates - Co	ontinued							
2-Fluorobiphenyl	321-60-8	0.1	%	74.0	90.9	71.4	77.8	86.6
Anthracene-d10	1719-06-8	0.1	%	72.2	108	74.8	79.3	85.3
4-Terphenyl-d14	1718-51-0	0.1	%	83.0	96.4	78.2	83.1	94.1
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.1	%	109	105	107	112	118
Toluene-D8	2037-26-5	0.1	%	95.7	94.5	92.1	93.6	98.1
4-Bromofluorobenzene	460-00-4	0.1	%	96.1	94.4	93.1	94.5	99.8
EP090S: Organotin Surrogate								
Tripropyltin		0.1	%	91.8	94.2	110	93.8	69.0
EP130S: Organophosphorus Pesti	icide Surrogate							
DEF	78-48-8	0.1	%	67.9	66.6	63.8	60.3	60.0
EP131S: OC Pesticide Surrogate								
Dibromo-DDE	21655-73-2	0.1	%	96.4	97.2	78.7	73.7	83.2
EP202S: Phenoxyacetic Acid Herb	oicide Surrogate							
2.4-Dichlorophenyl Acetic Acid	19719-28-9	0.1	%	129	129	106	117	109

		Cli	ent sample ID	QA2			Î
Sub-Matrix: WATER							
		ent sampli	ng date / time	26-MAY-2009 15:30		 	
Compound	CAS Number	LOR	Unit	EB0908368-006		 	
EA005: pH							
pH Value		0.01	pH Unit	8.07		 	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	µS/cm	54500		 	
EA015: Total Dissolved Solids							
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	49700		 	
EA025: Suspended Solids							
^ Suspended Solids (SS)		1	mg/L	44		 	
EK026G: Total Cyanide By Discrete Ana	lvser						
Total Cyanide	57-12-5	0.004	mg/L	<0.004		 	
EP008: Chlorophyll a							
Chlorophyll a		1	mg/m3	2		 	
EP074E: Halogenated Aliphatic Compou			-				
1.1.2-Trichloroethane	79-00-5	5	µg/L	<5		 	
EP074F: Halogenated Aromatic Compou			10				
1.2.4-Trichlorobenzene	120-82-1	0.5	µg/L	<0.5		 	
EP075(SIM)A: Phenolic Compounds			10				
Phenol	108-95-2	1.0	µg/L	<1.0		 	
2-Chlorophenol	95-57-8	1.0	μg/L	<1.0		 	
2-Methylphenol	95-48-7	1.0	µg/L	<1.0		 	
3- & 4-Methylphenol	1319-77-3	2.0	µg/L	<2.0		 	
2-Nitrophenol	88-75-5	1.0	µg/L	<1.0		 	
2.4-Dimethylphenol	105-67-9	1.0	µg/L	<1.0		 	
2.4-Dichlorophenol	120-83-2	1.0	µg/L	<1.0		 	
2.6-Dichlorophenol	87-65-0	1.0	µg/L	<1.0		 	
4-Chloro-3-Methylphenol	59-50-7	1.0	µg/L	<1.0		 	
2.4.6-Trichlorophenol	88-06-2	1.0	µg/L	<1.0		 	
2.4.5-Trichlorophenol	95-95-4	1.0	μg/L	<1.0		 	
Pentachlorophenol	87-86-5	4.0	µg/L	<4.0		 	
EP075(SIM)B: Polynuclear Aromatic Hyd		4.0					
Naphthalene	91-20-3	1.0	µg/L	<1.0		 	
Acenaphthylene	208-96-8	1.0	µg/L	<1.0 <1.0		 	
Acenaphthene Fluorene	83-32-9	1.0	µg/L			 	
Phenanthrene	86-73-7	1.0	μg/L μg/L	<1.0 <1.0		 	
Anthracene	85-01-8 120-12-7	1.0	μg/L μg/L	<1.0		 	
Fluoranthene	206-44-0	1.0	μg/L	<1.0		 	
Pyrene	129-00-0	1.0	μg/L	<1.0		 	
- ,	120-00-0		F:3' =		1	1	Comphell Brothers Limited Company

Sub-Matrix: WATER		Clie	ent sample ID	QA2	 	
	Cl	ient samplii	ng date / time	26-MAY-2009 15:30	 	
Compound	CAS Number	LOR	Unit	EB0908368-006	 	
EP075(SIM)B: Polynuclear Aroma	tic Hydrocarbons - Con	tinued				
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	 	
Chrysene	218-01-9	1.0	µg/L	<1.0	 	
Benzo(b)fluoranthene	205-99-2	1.0	µg/L	<1.0	 	
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	 	
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0	 	
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	 	
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	 	
EP080/071: Total Petroleum Hydro	ocarbons					
C6 - C9 Fraction		20	µg/L	<20	 	
C10 - C14 Fraction		50	µg/L	<50	 	
C15 - C28 Fraction		100	µg/L	<100	 	
C29 - C36 Fraction		50	µg/L	<50	 	
EP080: BTEX						
Benzene	71-43-2	1	µg/L	<1	 	
Toluene	108-88-3	2	μg/L	<2	 	
Ethylbenzene	100-41-4	2	μg/L	<2	 	
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	 	
ortho-Xylene	95-47-6	2	µg/L	<2	 	
EP090: Organotin Compounds (S	oluble)					
Tributyltin	56573-85-4	2	ngSn/L	<2	 	
EP130A: Organophosphorus Pest			U U			
Bromophos-ethyl	4824-78-6	0.10	µg/L	<0.12	 	
Carbophenothion	786-19-6	0.10	µg/L	<0.12	 	
Chlorfenvinphos (Z)	470-90-8	0.10	μg/L	<0.12	 	
Chlorpyrifos	2921-88-2	0.050	µg/L	<0.050	 	
Chlorpyrifos-methyl	5598-13-0	0.10	µg/L	<0.12	 	
Demeton-S-methyl	919-86-8	0.10	µg/L	<0.12	 	
Diazinon	333-41-5	0.10	µg/L	<0.12	 	
Dichlorvos	62-73-7	0.10	µg/L	<0.12	 	
Dimethoate	60-51-5	0.10	µg/L	<0.12	 	
Ethion	563-12-2	0.10	µg/L	<0.12	 	
Fenamiphos	22224-92-6	0.10	µg/L	<0.12	 	
Fenthion	55-38-9	0.10	µg/L	<0.12	 	
Malathion	121-75-5	0.10	µg/L	<0.12	 	
Azinphos Methyl	86-50-0	0.10	µg/L	<0.12	 	
Monocrotophos	6923-22-4	0.10	µg/L	<0.12	 	
Parathion	56-38-2	0.10	µg/L	<0.12	 	
				1		Campboll Brothors Limited Company

Sub-Matrix: WATER		Clie	ent sample ID	QA2	 	
	C	lient sampli	ng date / time	26-MAY-2009 15:30	 	
Compound	CAS Number	LOR	Unit	EB0908368-006	 	
EP130A: Organophosphorus Pestic		ntinued				
Parathion-methyl	298-00-0	0.10	µg/L	<0.12	 	
Pirimphos-ethyl	23505-41-1	0.10	μg/L	<0.12	 	
Prothiofos	34643-46-4	0.10	μg/L	<0.12	 	
EP131A: Organochlorine Pesticides			15			
Aldrin	309-00-2	0.010	µg/L	<0.010	 	
alpha-BHC	319-84-6	0.010	μg/L	<0.010	 	
beta-BHC	319-85-7	0.010	μg/L	<0.010	 	
delta-BHC	319-86-8	0.010	μg/L	<0.010	 	
4.4`-DDD	72-54-8	0.010	μg/L	<0.010	 	
4.4`-DDE	72-55-9	0.010	μg/L	<0.010	 	
4.4`-DDT	50-29-3	0.010	μg/L	<0.010	 	
^ DDT (total)		0.010	μg/L	<0.010	 	
Dieldrin	60-57-1	0.010	μg/L	<0.010	 	
alpha-Endosulfan	959-98-8	0.010	μg/L	<0.010	 	
beta-Endosulfan	33213-65-9	0.010	μg/L	<0.010	 	
Endosulfan sulfate	1031-07-8	0.010	μg/L	<0.010	 	
Endosulfan (sum)	115-29-7	0.010	μg/L	<0.010	 	
Endrin	72-20-8	0.010	μg/L	<0.010	 	
Endrin aldehyde	7421-93-4	0.010	μg/L	<0.010	 	
Endrin ketone	53494-70-5	0.010	μg/L	<0.010	 	
Heptachlor	76-44-8	0.005	µg/L	<0.005	 	
Heptachlor epoxide	1024-57-3	0.010	µg/L	<0.010	 	
Hexachlorobenzene (HCB)	118-74-1	0.010	µg/L	<0.010	 	
gamma-BHC	58-89-9	0.010	µg/L	<0.010	 	
Methoxychlor	72-43-5	0.010	µg/L	<0.010	 	
cis-Chlordane	5103-71-9	0.010	µg/L	<0.010	 	
trans-Chlordane	5103-74-2	0.010	µg/L	<0.010	 	
Total Chlordane (sum)		0.010	µg/L	<0.010	 	
EP202A: Phenoxyacetic Acid Herbi	cides by LCMS					
4-Chlorophenoxy acetic acid	122-88-3	0.01	µg/L	<0.01	 	
2.4-DB	94-82-6	0.01	µg/L	<0.01	 	
Dicamba	1918-00-9	0.01	µg/L	<0.01	 	
Месоргор	93-65-2	0.01	µg/L	<0.01	 	
МСРА	94-74-6	0.01	µg/L	<0.01	 	
2.4-DP	120-36-5	0.01	µg/L	<0.01	 	
2.4-D	94-75-7	0.01	µg/L	<0.01	 	
Triclopyr	55335-06-3	0.01	µg/L	<0.01	 	
2.4.5-TP (Silvex)	93-72-1	0.01	µg/L	<0.01	 	
				·		

Sub-Matrix: WATER		Clie	ent sample ID	QA2	 	
Sub-Matrix. WATER			ng date / time	26-MAY-2009 15:30	 	
	Ci	ient sampili	ng date / time		 	
Compound	CAS Number	LOR	Unit	EB0908368-006	 	
EP202A: Phenoxyacetic Acid H	erbicides by LCMS - Conti	nued				
2.4.5-T	93-76-5	0.01	µg/L	<0.01	 	
МСРВ	94-81-5	0.01	µg/L	<0.01	 	
Picloram	1918-02-1	0.05	µg/L	<0.05	 	
Clopyralid	1702-17-6	0.05	µg/L	<0.05	 	
Fluroxypyr	69377-81-7	0.05	µg/L	<0.05	 	
2.6-D	575-90-6	0.1	µg/L	<0.1	 	
2.4.6-T	575-89-3	0.1	µg/L	<0.1	 	
EP209: Multiresidue Pesticide F	Residue Screen (Suite 1)					
Atrazine	1912-24-9	0.010	µg/L	<0.010	 	
Chlorpyrifos	2921-88-2	0.010	µg/L	<0.010	 	
Hexazinone	51235-04-2	0.010	µg/L	<0.010	 	
Molinate	2212-67-1	0.010	µg/L	<0.010	 	
Propiconazole	60207-90-1	0.010	µg/L	<0.010	 	
Temephos	3383-96-8	0.010	µg/L	<0.010	 	
EP215: Multiresidue Pesticide F	Residue Screen (Suite 2)					
Simazine	122-34-9	0.005	µg/L	<0.005	 	
Diuron	330-54-1	0.005	µg/L	<0.005	 	
Atrazine	1912-24-9	0.005	µg/L	<0.005	 	
Molinate	2212-67-1	0.005	µg/L	<0.005	 	
Metolachlor	51218-45-2	0.005	µg/L	<0.005	 	
Malathion	121-75-5	0.002	µg/L	<0.002	 	
Diazinon	333-41-5	0.005	µg/L	<0.005	 	
Thiobencarb	28249-77-6	0.005	µg/L	<0.005	 	
Chlorpyrifos	2921-88-2	0.005	µg/L	<0.005	 	
Trifluralin	1582-09-8	0.005	µg/L	<0.005	 	
EP074S: VOC Surrogates						
1.2-Dichloroethane-D4	17060-07-0	0.1	%	106	 	
1.2-Dichloroethane-D4	17060-07-0	0.1	%	112	 	
Toluene-D8	2037-26-5	0.1	%	97.9	 	
Toluene-D8	2037-26-5	0.1	%	95.0	 	
4-Bromofluorobenzene	460-00-4	0.1	%	103	 	
4-Bromofluorobenzene	460-00-4	0.1	%	94.4	 	
EP075(SIM)S: Phenolic Compo	und Surrogates					
Phenol-d6	13127-88-3	0.1	%	33.9	 	
2-Chlorophenol-D4	93951-73-6	0.1	%	72.5	 	
2.4.6-Tribromophenol	118-79-6	0.1	%	74.1	 	
EP075(SIM)T: PAH Surrogates						

Sub-Matrix: WATER		Clie	ent sample ID	QA2	 	
	Cl	ient sampli	ng date / time	26-MAY-2009 15:30	 	
Compound	CAS Number	LOR	Unit	EB0908368-006	 	
EP075(SIM)T: PAH Surrogates - Conti	nued					
2-Fluorobiphenyl	321-60-8	0.1	%	79.1	 	
Anthracene-d10	1719-06-8	0.1	%	83.9	 	
4-Terphenyl-d14	1718-51-0	0.1	%	91.6	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	0.1	%	112	 	
Toluene-D8	2037-26-5	0.1	%	94.0	 	
4-Bromofluorobenzene	460-00-4	0.1	%	95.6	 	
EP090S: Organotin Surrogate						
Tripropyltin		0.1	%	89.2	 	
EP130S: Organophosphorus Pesticio	de Surrogate					
DEF	78-48-8	0.1	%	67.3	 	
EP131S: OC Pesticide Surrogate						
Dibromo-DDE	21655-73-2	0.1	%	98.5	 	
EP202S: Phenoxyacetic Acid Herbici	de Surrogate					
2.4-Dichlorophenyl Acetic Acid	19719-28-9	0.1	%	117	 	

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP074S: VOC Surrogates			
1.2-Dichloroethane-D4	17060-07-0	80	120
Toluene-D8	2037-26-5	88	110
4-Bromofluorobenzene	460-00-4	86	115
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	10	94
2-Chlorophenol-D4	93951-73-6	23	134
2.4.6-Tribromophenol	118-79-6	10	123
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	43	116
Anthracene-d10	1719-06-8	27	133
4-Terphenyl-d14	1718-51-0	33	141
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	80	120
Toluene-D8	2037-26-5	88	110
4-Bromofluorobenzene	460-00-4	86	115
EP090S: Organotin Surrogate			
Tripropyltin		10	108
EP130S: Organophosphorus Pesticide Surrogate			
DEF	78-48-8	32	136.4
EP131S: OC Pesticide Surrogate			
Dibromo-DDE	21655-73-2	10	136
EP202S: Phenoxyacetic Acid Herbicide Surrogate			
2.4-Dichlorophenyl Acetic Acid	19719-28-9	37.8	142

CERTIFICATE OF ANALYSIS

4 June 2009

ALS Brisbane

32 Shand St STAFFORD QLD 4053

Attention: Tim Kilmister

Your Reference:EB0908368.001 to .006Report Number:ME100796

SAMPLE TYPE: SAMPLES RECEIVED: PRELIMINARY REPORT EMAILED: 6x 500 mL Amber Glass Bottles- Water 28/05/2009 Not Issued

These samples were analysed in accordance with your written instructions. A copy of the instructions is attached with the analytical report.

For and on Behalf of: SGS AUSTRALIA PTY LTD

Client Services: Site Manager: Alexandra Stenta Dr Aaron D. Stott Alexandra.Stenta@sgs.com Aaron.Stott@sgs.com

This report has been authorised by the undersigned:

A.

Anthony Pellegrini LC Team Leader

Page 1 of 4

PROJECT: EB0908368.001 to .006

Sample Analysis							
Our Reference:	LOR	UNITS	ME100796-1	ME100796-2	ME100796-3	ME100796-4	ME100796-5
Your Reference			G-WQ-02	G-WQ-03	G-WQ-06	G-WQ-07	G-WQ-09
Container Type			500mL Amber Glass Bottle				
Sample Type Date Sampled			Water 26/05/2009	Water 26/05/2009	Water 26/05/2009	Water 26/05/2009	Water 26/05/2009
Date Extracted			3/06/2009	3/06/2009	3/06/2009	3/06/2009	3/06/2009
Date Analysed			3/06/2009	3/06/2009	3/06/2009	3/06/2009	3/06/2009
Tebuthiuron*	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01

Sample Analysis			
Our Reference:	LOR	UNITS	ME100796-6
Your Reference			QA2
Container Type			500mL Amber
			Glass Bottle
Sample Type			Water
Date Sampled			26/05/2009
Date Extracted			3/06/2009
Date Analysed			3/06/2009
Tebuthiuron*	0.01	mg/L	<0.01

Method ID	Methodology Summary
SGSMC258	An in-house method for the determination of Organochlorines, Organophosphates and Synthetic Pyrethoids in Water by dual analysis using Gas Chromatography with Mass Spectrometry and Flame Photometric Detection (GC/MS/FPD) and LC/MS/MS.

PROJECT: EB0908368.001 to .006

Result Codes

[INS]	:	Insufficient Sample for this test
[NR]	:	Not Requested
[NT]	:	Not tested

[RPD] : Relative Percentage Difference
 * : Not part of NATA Accreditation
 [N/A] : Not Applicable

Report Comments

NATA Corporate Accreditation No. 2562, Site No 2076

Note: Test results are not corrected for recovery (excluding Dioxins/Furans* and PAH in XAD and PUF). This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

Quality Control Protocol

Method Blank: An analyte free matrix to which all reagents are added in the same volume or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. A method blank is prepared every 20 samples.

Duplicate: A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.

Surrogate Spike: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are added to samples before extraction to monitor extraction efficiency and percent recovery in each sample.

Internal Standard: Added to all samples requiring analysis for organics (where relevant) or metals by ICP after the extraction/digestion process; the compounds/elements serve to give a standard of retention time and/or response, which is invariant from run-to-run with the instruments.

Laboratory Control Sample: A known matrix spiked with compound(s) representative of the target analytes. It is used to document laboratory performance. When the results of the matrix spike analysis indicates a potential problem due to the sample matrix itself, the LCS results are used to verify that the laboratory can perform the analysis in a clean matrix.

Matrix Spike: An aliquot of sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

Quality Acceptance Criteria

Unless otherwise specified in the test method, the following general acceptance criteria apply:

Method Blanks:	<lor< th=""></lor<>
Duplicates:	<5 x LOR: No RPD criteria applied.
	>5 x LOR: 0-30% RPD is accepted.
LCS's:	Determined by Control Charts.
	Where control charts have not been developed, the Matrix Spikes criteria apply.
Matrix Spikes:	70-130% recovery is accepted for metals / inorganics.
	60-140% is accepted for organics.
Surrogates:	60-130% recovery is accepted for BTEX.
	70-130% recovery is accepted for other organics.

Environmental Division

QUALITY CONTROL REPORT

Work Order	EB0908368	Page	: 1 of 15
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Brisbane
Contact	: MR ADRIAN WHITE	Contact	: Tim Kilmister
Address	: P O BOX 373	Address	: 32 Shand Street Stafford QLD Australia 4053
	GLADSTONE QLD, AUSTRALIA 4680		
E-mail	: adrian.a.white@ghd.com.au	E-mail	: Services.Brisbane@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-7-3243 7222
Facsimile	: +61 07 4972 6236	Facsimile	: +61-7-3243 7218
Project	: 421538641 Western Basin EIS WQ Monitoring	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 27-MAY-2009
Sampler	:	Issue Date	: 10-JUN-2009
Order number	:		
		No. of samples received	: 6
Quote number	: EN/005/09	No. of samples analysed	: 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: WATER	ib-Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EA005: pH (QC Lot	: 991611)									
EB0908355-001	Anonymous	EA005: pH Value		0.01	pH Unit	7.86	7.86	0.0	0% - 20%	
EB0908368-005	G-WQ-09	EA005: pH Value		0.01	pH Unit	8.11	8.10	0.1	0% - 20%	
EA010P: Conductiv	ity by PC Titrator (QC L	ot: 991841)								
EB0908368-001	G-WQ-02	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	55700	56100	0.7	0% - 20%	
EB0908379-004	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	33500	33400	0.3	0% - 20%	
EA015: Total Dissol	lved Solids (QC Lot: 992									
EB0908279-002	Anonymous	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	132	116	12.9	0% - 20%	
EB0908400-005	Anonymous	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	990	988	0.2	0% - 20%	
EA025: Suspended	Solids (QC Lot: 992575)								
EB0908279-002	Anonymous	EA025: Suspended Solids (SS)		1	mg/L	4	4	0.0	No Limit	
EB0908368-005	G-WQ-09	EA025: Suspended Solids (SS)		1	mg/L	25	25	0.0	0% - 20%	
EK026G: Total Cvar	nide By Discrete Analyse	er (QC Lot: 998730)								
EB0908368-001	G-WQ-02	EK026G: Total Cyanide	57-12-5	0.004	mg/L	<0.004	<0.004	0.0	No Limit	
EB0908718-007	Anonymous	EK026G: Total Cyanide	57-12-5	0.004	mg/L	<0.004	<0.004	0.0	No Limit	
EP008: Chlorophyll	a (QC Lot: 991910)									
EB0908368-001	G-WQ-02	EP008: Chlorophyll a		1	mg/m3	1	1	0.0	No Limit	
EB0908371-006	Anonymous	EP008: Chlorophyll a		1	mg/m3	1	<1	0.0	No Limit	
EP074E: Halogenat	ed Aliphatic Compounds	s (QC Lot: 991825)								
EB0908355-001	Anonymous	EP074: 1.1.2-Trichloroethane	79-00-5	5	µg/L	<5	<5	0.0	No Limit	
EP074F: Halogenate	ed Aromatic Compounds	s (QC Lot: 993406)								
EB0908279-001	Anonymous	EP074-LL: 1.2.4-Trichlorobenzene	120-82-1	0.5	µg/L	<0.5	<0.5	0.0	No Limit	
EM0904717-002	Anonymous	EP074-LL: 1.2.4-Trichlorobenzene	120-82-1	0.5	µg/L	<0.5	<0.5	0.0	No Limit	
EP075(SIM)A: Phen	olic Compounds (QC Lo	ot: 992273)								
EB0908450-001	Anonymous	EP075(SIM): Phenol	108-95-2	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
		EP075(SIM): 2-Chlorophenol	95-57-8	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
		EP075(SIM): 2-Methylphenol	95-48-7	1.0	µg/L	1.1	<1.0	13.2	No Limit	
		EP075(SIM): 2-Nitrophenol	88-75-5	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
		EP075(SIM): 2.4-Dimethylphenol	105-67-9	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
		EP075(SIM): 2.4-Dichlorophenol	120-83-2	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
		EP075(SIM): 2.6-Dichlorophenol	87-65-0	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
		EP075(SIM): 4-Chloro-3-Methylphenol	59-50-7	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
		EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
		EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	1.0	µg/L	<1.0	<1.0	0.0	No Limit	
		EP075(SIM): 3- & 4-Methylphenol	1319-77-3	2.0	µg/L	<2.0	<2.0	0.0	No Limit	

Page	: 4 of 15
Work Order	: EB0908368
Client	: GHD SERVICES PTY LTD
Project	: 421538641 Western Basin EIS WQ Monitoring

Sub-Matrix: WATER						-	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
· /	nolic Compounds (QC	Lot: 992273) - continued							
EB0908450-001	Anonymous	EP075(SIM): Pentachlorophenol	87-86-5	2.0	μg/L	<2.0	<2.0	0.0	No Limit
P075(SIM)B: Poly	nuclear Aromatic Hydro	ocarbons (QC Lot: 992273)							
EB0908450-001	Anonymous	EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Naphthalene	91-20-3	1.0	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	1.0	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	1.0	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	1.0	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	1.0	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	1.0	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	1.0	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	1.0	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	1.0	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): Benzo(b)fluoranthene	205-99-2	1.0	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	<1.0	0.0	No Limit
EP080/071: Total P	etroleum Hydrocarbons	s (QC Lot: 991826)							
EB0908355-001	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.0	No Limit
EB0908407-004	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.0	No Limit
P080/071: Total P	etroleum Hydrocarbons								
EB0908450-001	Anonymous	EP071: C15 - C28 Fraction		100	µg/L	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	µg/L	<50	<50	0.0	No Limit
		EP071: C29 - C36 Fraction		50	µg/L	<50	<50	0.0	No Limit
P080: BTEX (QC	L at: 991826)				10				
EB0908355-001	Anonymous	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.0	No Limit
	, anonymous	EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
			106-42-3	2	μ <u>θ</u> , μ	12	<u>۲</u> ۲	0.0	
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.0	No Limit
EB0908407-004	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
			106-42-3	-	49° –	-	-	0.0	
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.0	No Limit
		Jltra-trace) (QC Lot: 993051)	00 11 0	-	P3, -			0.0	

Page	5 of 15
Work Order	: EB0908368
Client	: GHD SERVICES PTY LTD
Project	: 421538641 Western Basin EIS WQ Monitoring

ub-Matrix: WATER						-	Duplicate (DUP) Report		
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
		ra-trace) (QC Lot: 993051) - continued							
B0908368-006	QA2	EP130: Chlorpyrifos	2921-88-2	0.050	µg/L	<0.050	<0.050	0.0	No Limit
		EP130: Bromophos-ethyl	4824-78-6	0.10	µg/L	<0.12	<0.12	0.0	No Limit
		EP130: Carbophenothion	786-19-6	0.10	µg/L	<0.12	<0.12	0.0	No Limit
		EP130: Chlorfenvinphos (Z)	470-90-8	0.10	µg/L	<0.12	<0.12	0.0	No Limit
		EP130: Chlorpyrifos-methyl	5598-13-0	0.10	µg/L	<0.12	<0.12	0.0	No Limit
		EP130: Demeton-S-methyl	919-86-8	0.10	µg/L	<0.12	<0.12	0.0	No Limit
		EP130: Diazinon	333-41-5	0.10	µg/L	<0.12	<0.12	0.0	No Limit
		EP130: Dichlorvos	62-73-7	0.10	µg/L	<0.12	<0.12	0.0	No Limit
		EP130: Dimethoate	60-51-5	0.10	µg/L	<0.12	<0.12	0.0	No Limit
		EP130: Ethion	563-12-2	0.10	µg/L	<0.12	<0.12	0.0	No Limit
		EP130: Fenamiphos	22224-92-6	0.10	µg/L	<0.12	<0.12	0.0	No Limit
		EP130: Fenthion	55-38-9	0.10	µg/L	<0.12	<0.12	0.0	No Limit
		EP130: Malathion	121-75-5	0.10	µg/L	<0.12	<0.12	0.0	No Limit
		EP130: Azinphos Methyl	86-50-0	0.10	µg/L	<0.12	<0.12	0.0	No Limit
		EP130: Monocrotophos	6923-22-4	0.10	µg/L	<0.12	<0.12	0.0	No Limit
		EP130: Parathion	56-38-2	0.10	µg/L	<0.12	<0.12	0.0	No Limit
		EP130: Parathion-methyl	298-00-0	0.10	µg/L	<0.12	<0.12	0.0	No Limit
		EP130: Pirimphos-ethyl	23505-41-1	0.10	µg/L	<0.12	<0.12	0.0	No Limit
		EP130: Prothiofos	34643-46-4	0.10	µg/L	<0.12	<0.12	0.0	No Limit
P131A: Organochio	orine Pesticides (QC Lo								
30908368-006	QA2	EP131A: Heptachlor	76-44-8	0.005	μg/L	<0.005	< 0.005	0.0	No Limit
		EP131A: Aldrin	309-00-2	0.010	μg/L	<0.010	<0.010	0.0	No Limit
		EP131A: alpha-BHC	319-84-6	0.010	μg/L	<0.010	<0.010	0.0	No Limit
		EP131A: beta-BHC	319-85-7	0.010	μg/L	<0.010	<0.010	0.0	No Limit
		EP131A: delta-BHC	319-86-8	0.010	μg/L	<0.010	<0.010	0.0	No Limit
		EP131A: 4.4`-DDD	72-54-8	0.010	μg/L	<0.010	<0.010	0.0	No Limit
		EP131A: 4.4`-DDE	72-55-9	0.010	µg/L	<0.010	<0.010	0.0	No Limit
		EP131A: 4.4`-DDT	50-29-3	0.010	μg/L	<0.010	<0.010	0.0	No Limit
		EP131A: DDT (total)		0.010	μg/L	<0.010	<0.010	0.0	No Limit
		EP131A: Dieldrin	60-57-1	0.010	μg/L	<0.010	<0.010	0.0	No Limit
			959-98-8	0.010	μg/L	<0.010	<0.010	0.0	No Limit
		EP131A: alpha-Endosulfan	33213-65-9	0.010	μg/L	<0.010	<0.010	0.0	No Limit
		EP131A: beta-Endosulfan	1031-07-8	0.010		<0.010	<0.010	0.0	No Limit
		EP131A: Endosulfan sulfate	115-29-7	0.010	µg/L	<0.010	<0.010	0.0	No Limit
		EP131A: Endosulfan (sum)	72-20-8	0.010	μg/L μg/L	<0.010	<0.010	0.0	No Limit
		EP131A: Endrin	72-20-8	0.010		<0.010	<0.010	0.0	
		EP131A: Endrin aldehyde			µg/L				No Limit
		EP131A: Endrin ketone	53494-70-5	0.010	µg/L	<0.010	<0.010	0.0	No Limit
		EP131A: Heptachlor epoxide	1024-57-3	0.010	µg/L	<0.010	< 0.010	0.0	No Limit
		EP131A: Hexachlorobenzene (HCB)	118-74-1	0.010	µg/L	<0.010	<0.010	0.0	No Limit

Page	: 6 of 15
Work Order	: EB0908368
Client	: GHD SERVICES PTY LTD
Project	: 421538641 Western Basin EIS WQ Monitoring

ub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%	
P131A: Organochic	orine Pesticides (QC L	ot: 993050) - continued								
EB0908368-006	QA2	EP131A: gamma-BHC	58-89-9	0.010	µg/L	<0.010	<0.010	0.0	No Limit	
		EP131A: Methoxychlor	72-43-5	0.010	µg/L	<0.010	<0.010	0.0	No Limit	
		EP131A: cis-Chlordane	5103-71-9	0.010	µg/L	<0.010	<0.010	0.0	No Limit	
		EP131A: trans-Chlordane	5103-74-2	0.010	µg/L	<0.010	<0.010	0.0	No Limit	
		EP131A: Total Chlordane (sum)		0.010	µg/L	<0.010	<0.010	0.0	No Limit	
P202A: Phenoxyac	etic Acid Herbicides by	/ LCMS (QC Lot: 990327)								
S0907538-001	Anonymous	EP202-LL: 4-Chlorophenoxy acetic acid	122-88-3	0.01	μg/L	<0.01	<0.01	0.0	No Limit	
		EP202-LL: 2.4-DB	94-82-6	0.01	µg/L	<0.01	<0.01	0.0	No Limit	
		EP202-LL: Dicamba	1918-00-9	0.01	µg/L	<0.01	<0.01	0.0	No Limit	
		EP202-LL: Mecoprop	93-65-2	0.01	µg/L	<0.01	<0.01	0.0	No Limit	
		EP202-LL: MCPA	94-74-6	0.01	µg/L	<0.01	<0.01	0.0	No Limit	
		EP202-LL: 2.4-DP	120-36-5	0.01	μg/L	<0.01	<0.01	0.0	No Limit	
		EP202-LL: 2.4-D	94-75-7	0.01	μg/L	<0.01	<0.01	0.0	No Limit	
		EP202-LL: Triclopyr	55335-06-3	0.01	µg/L	<0.01	<0.01	0.0	No Limit	
		EP202-LL: 2.4.5-TP (Silvex)	93-72-1	0.01	µg/L	<0.01	<0.01	0.0	No Limit	
		EP202-LL: 2.4.5-T	93-76-5	0.01	μg/L	<0.01	<0.01	0.0	No Limit	
		EP202-LL: MCPB	94-81-5	0.01	μg/L	<0.01	<0.01	0.0	No Limit	
		EP202-LL: Picloram	1918-02-1	0.05	μg/L	< 0.05	<0.05	0.0	No Limit	
		EP202-LL: Clopyralid	1702-17-6	0.05	μg/L	< 0.05	<0.05	0.0	No Limit	
		EP202-LL: Fluroxypyr	69377-81-7	0.05	μg/L	< 0.05	<0.05	0.0	No Limit	
		EP202-LL: 2.6-D	575-90-6	0.1	µg/L	<0.1	<0.1	0.0	No Limit	
		EP202-LL: 2.4.6-T	575-89-3	0.1	µg/L	<0.1	<0.1	0.0	No Limit	
S0907545-002	Anonymous	EP202-LL: 4-Chlorophenoxy acetic acid	122-88-3	0.01	µg/L	<0.01	<0.01	0.0	No Limit	
		EP202-LL: 2.4-DB	94-82-6	0.01	µg/L	<0.01	<0.01	0.0	No Limit	
		EP202-LL: Dicamba	1918-00-9	0.01	µg/L	<0.01	<0.01	0.0	No Limit	
		EP202-LL: Mecoprop	93-65-2	0.01	µg/L	<0.01	<0.01	0.0	No Limit	
		EP202-LL: MCPA	94-74-6	0.01	µg/L	<0.01	<0.01	0.0	No Limit	
		EP202-LL: 2.4-DP	120-36-5	0.01	μg/L	<0.01	<0.01	0.0	No Limit	
		EP202-LL: 2.4-D	94-75-7	0.01	μg/L	<0.01	<0.01	0.0	No Limit	
		EP202-LL: Triclopyr	55335-06-3	0.01	µg/L	<0.01	< 0.01	0.0	No Limit	
		EP202-LL: 2.4.5-TP (Silvex)	93-72-1	0.01	µg/L	<0.01	<0.01	0.0	No Limit	
		EP202-LL: 2.4.5-T	93-76-5	0.01	µg/L	<0.01	<0.01	0.0	No Limit	
		EP202-LL: MCPB	94-81-5	0.01	μg/L	<0.01	<0.01	0.0	No Limit	
		EP202-LL: Picloram	1918-02-1	0.05	µg/L	< 0.05	< 0.05	0.0	No Limit	
		EP202-LL: Clopyralid	1702-17-6	0.05	µg/L	< 0.05	< 0.05	0.0	No Limit	
		EP202-LL: Fluroxypyr	69377-81-7	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP202-LL: 2.6-D	575-90-6	0.1	μg/L	<0.1	<0.1	0.0	No Limit	
		EP202-LL: 2.4.6-T	575-89-3	0.1	μg/L	<0.1	<0.1	0.0	No Limit	

Page	: 7 of 15
Work Order	: EB0908368
Client	: GHD SERVICES PTY LTD
Project	: 421538641 Western Basin EIS WQ Monitoring

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP202A: Phenoxyac	cetic Acid Herbicides b	y LCMS (QC Lot: 993089) - continued							
ES0907726-001	Anonymous	EP202-LL: 4-Chlorophenoxy acetic acid	122-88-3	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP202-LL: 2.4-DB	94-82-6	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP202-LL: Dicamba	1918-00-9	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP202-LL: Mecoprop	93-65-2	0.01	µg/L	<0.01	<0.01	0.0	No Limit
	EP202-LL: MCPA	94-74-6	0.01	µg/L	<0.01	<0.01	0.0	No Limit	
	EP202-LL: 2.4-DP	120-36-5	0.01	µg/L	<0.01	<0.01	0.0	No Limit	
		EP202-LL: 2.4-D	94-75-7	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP202-LL: Triclopyr	55335-06-3	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP202-LL: 2.4.5-TP (Silvex)	93-72-1	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP202-LL: 2.4.5-T	93-76-5	0.01	µg/L	<0.01	<0.01	0.0	No Limit
		EP202-LL: MCPB	94-81-5	0.01	µg/L	<0.01	<0.01	0.0	No Limit
		EP202-LL: Picloram	1918-02-1	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP202-LL: Clopyralid	1702-17-6	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP202-LL: Fluroxypyr	69377-81-7	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP202-LL: 2.6-D	575-90-6	0.1	μg/L	<0.1	<0.1	0.0	No Limit
		EP202-LL: 2.4.6-T	575-89-3	0.1	μg/L	<0.1	<0.1	0.0	No Limit
EP209: Multiresidue	Pesticide Residue Sci	reen (Suite 1) (QC Lot: 990326)							
ES0907538-001	Anonymous	EP209-LL: Atrazine	1912-24-9	0.010	μg/L	<0.010	<0.010	0.0	No Limit
		EP209-LL: Hexazinone	51235-04-2	0.010	µg/L	<0.010	<0.010	0.0	No Limit
		EP209-LL: Molinate	2212-67-1	0.010	µg/L	<0.010	<0.010	0.0	No Limit
		EP209-LL: Propiconazole	60207-90-1	0.010	µg/L	<0.010	<0.010	0.0	No Limit
		EP209-LL: Chlorpyrifos	2921-88-2	0.050	µg/L	<0.050	<0.050	0.0	No Limit
		EP209-LL: Temephos	3383-96-8	0.050	µg/L	<0.050	<0.050	0.0	No Limit
ES0907545-002	Anonymous	EP209-LL: Atrazine	1912-24-9	0.010	µg/L	<0.010	<0.010	0.0	No Limit
		EP209-LL: Hexazinone	51235-04-2	0.010	µg/L	<0.010	<0.010	0.0	No Limit
		EP209-LL: Molinate	2212-67-1	0.010	µg/L	<0.010	<0.010	0.0	No Limit
		EP209-LL: Propiconazole	60207-90-1	0.010	µg/L	<0.010	<0.010	0.0	No Limit
		EP209-LL: Chlorpyrifos	2921-88-2	0.050	µg/L	<0.050	<0.050	0.0	No Limit
		EP209-LL: Temephos	3383-96-8	0.050	μg/L	<0.050	<0.050	0.0	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound C	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA005: pH (QCLot: 991611)								
EA005: pH Value		0.01	pH Unit		7.00 pH Unit	100	82	118
EA010P: Conductivity by PC Titrator (QCLot: 991841)								
EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	<1	1412 µS/cm	100	90.3	108
EA015: Total Dissolved Solids (QCLot: 992565)								
	S-210-010	1	mg/L	<1	2000 mg/L	94.8	86	106
EA025: Suspended Solids (QCLot: 992575)								
EA025: Suspended Solids (SS)		1	mg/L	<1	150 mg/L	93.3	86	108
EK026G: Total Cyanide By Discrete Analyser (QCLot: 998730)					_			
EK026G: Total Cyanide	57-12-5	0.004	mg/L	<0.004	0.5 mg/L	97.4	70	130
EP008: Chlorophyll a (QCLot: 991910)								
EP008: Chlorophyll a		5	mg/m3	<5	2000 mg/m3	76.0	70.7	119
EP074E: Halogenated Aliphatic Compounds (QCLot: 991825)		-						
EP074: 1.1.2-Trichloroethane	79-00-5	5	μg/L	<5	10 µg/L	91.7	69.2	133
EP074F: Halogenated Aromatic Compounds (QCLot: 993406)	10 00 0	Ū	P9' -		10 µ9/2		00.2	
EP074F. Halogenated Aromatic Compounds (QCLOL 993406) EP074-LL: 1.2.4-Trichlorobenzene	120-82-1	0.5	μg/L	<0.5	1 µg/L	115	68.3	128
	120 02 1	0.0	µ9/L	.0.0	1 49,5	110	00.0	120
EP075(SIM)A: Phenolic Compounds (QCLot: 992273) EP075(SIM): Phenol	108-95-2	1	μg/L	<1.0	5 µg/L	25.5	24	70
EP075(SIM): 2-Chlorophenol	95-57-8	1	μg/L	<1.0	5 μg/L	64.4	57	105
EP075(SIM): 2-Onlorophenol	95-48-7	1	μg/L	<1.0	5 μg/L	62.3	51	96
	1319-77-3	2	µg/L	<2.0	10 µg/L	52.0	45	94
EP075(SIM): 2-Nitrophenol	88-75-5	1	µg/L	<1.0	5 µg/L	74.5	48	132
EP075(SIM): 2.4-Dimethylphenol	105-67-9	1	μg/L	<1.0	5 µg/L	70.0	44	112
EP075(SIM): 2.4-Dichlorophenol	120-83-2	1	μg/L	<1.0	5 μg/L	91.0	60	114
EP075(SIM): 2.6-Dichlorophenol	87-65-0	1	µg/L	<1.0	5 µg/L	66.4	59	115
EP075(SIM): 4-Chloro-3-Methylphenol	59-50-7	1	µg/L	<1.0	5 µg/L	79.6	60	117
EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	1	µg/L	<1.0	5 µg/L	86.9	59	123
EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	1	µg/L	<1.0	5 µg/L	78.2	59	123
EP075(SIM): Pentachlorophenol	87-86-5	2	µg/L	<2.0	10 µg/L	49.4	22.1	130
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 99	92273)							
EP075(SIM): Naphthalene	91-20-3	1	µg/L	<1.0	5 µg/L	65.7	46	111
EP075(SIM): Acenaphthylene	208-96-8	1	µg/L	<1.0	5 µg/L	89.3	51	114
EP075(SIM): Acenaphthene	83-32-9	1	µg/L	<1.0	5 µg/L	64.6	50	114
EP075(SIM): Fluorene	86-73-7	1	µg/L	<1.0	5 µg/L	70.2	55	118

Page	: 9 of 15
Work Order	: EB0908368
Client	: GHD SERVICES PTY LTD
Project	: 421538641 Western Basin EIS WQ Monitoring

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
P075(SIM)B: Polynuclear Aromatic Hydrocarbons (QC	_ot: 992273) - con	tinued						
P075(SIM): Phenanthrene	85-01-8	1	μg/L	<1.0	5 µg/L	67.7	54	110
P075(SIM): Anthracene	120-12-7	1	µg/L	<1.0	5 µg/L	66.4	49	117
P075(SIM): Fluoranthene	206-44-0	1	µg/L	<1.0	5 µg/L	72.1	51	117
P075(SIM): Pyrene	129-00-0	1	µg/L	<1.0	5 µg/L	69.8	51	117
P075(SIM): Benz(a)anthracene	56-55-3	1	µg/L	<1.0	5 µg/L	70.4	53	120
P075(SIM): Chrysene	218-01-9	1	µg/L	<1.0	5 µg/L	65.0	48	114
P075(SIM): Benzo(b)fluoranthene	205-99-2	1	µg/L	<1.0	5 µg/L	65.7	48	130
P075(SIM): Benzo(k)fluoranthene	207-08-9	1	µg/L	<1.0	5 µg/L	66.8	43	126
P075(SIM): Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	5 µg/L	64.6	44	120
P075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	µg/L	<1.0	5 µg/L	74.1	45	129
P075(SIM): Dibenz(a.h)anthracene	53-70-3	1	µg/L	<1.0	5 µg/L	74.9	47	131
P075(SIM): Benzo(g.h.i)perylene	191-24-2	1	µg/L	<1.0	5 µg/L	70.2	42	126
P080/071: Total Petroleum Hydrocarbons (QCLot: 9918	326)							
P080: C6 - C9 Fraction		20	μg/L	<20	160 µg/L	98.2	73	135
P080/071: Total Petroleum Hydrocarbons (QCLot: 9922	272)							
P071: C10 - C14 Fraction		50	μg/L	<50	600 µg/L	68.5	49	110
P071: C15 - C28 Fraction		100	µg/L	<100	1020 µg/L	75.0	58	130
P071: C29 - C36 Fraction		50	µg/L	<50				
P080: BTEX (QCLot: 991826)						· · · · · · · · · · · · · · · · · · ·		
P080: Benzene	71-43-2	1	µg/L	<1	10 µg/L	97.2	77.6	122
P080: Toluene	108-88-3	2	µg/L	<2	10 µg/L	102	74	122
P080: Ethylbenzene	100-41-4	2	µg/L	<2	10 µg/L	98.9	73	126
P080: meta- & para-Xylene	108-38-3	2	µg/L	<2	20 µg/L	96.8	70.4	129
	106-42-3							
P080: ortho-Xylene	95-47-6	2	µg/L	<2	10 µg/L	100	74.3	126
P090: Organotin Compounds (Soluble) (QCLot: 993117	7)							
P090S: Tributyltin	56573-85-4	2	ngSn/L	<2	1470 ngSn/L	# 122	29	100
P130A: Organophosphorus Pesticides (Ultra-trace) (Q	CLot: 993051)							
P130: Bromophos-ethyl	4824-78-6	0.10	µg/L	<0.12	1.0 µg/L	114	35.4	143
P130: Carbophenothion	786-19-6	0.10	μg/L	<0.12	1.0 µg/L	102	5.13	171
P130: Chlorfenvinphos (Z)	470-90-8	0.10	μg/L	<0.12	1.0 µg/L	110	44.6	155
P130: Chlorpyrifos	2921-88-2	0.05	μg/L	<0.050	1.0 µg/L	110	38.5	145
P130: Chlorpyrifos-methyl	5598-13-0	0.10	μg/L	<0.12	1.0 µg/L	104	40.3	135
P130: Demeton-S-methyl	919-86-8	0.10	μg/L	<0.12	1.0 µg/L	116	20.7	178
P130: Diazinon	333-41-5	0.10	μg/L	<0.12	1.0 µg/L	103	38.7	146
P130: Dichlorvos	62-73-7	0.10	μg/L	<0.12	1.0 µg/L	76.0	18.4	151
P130: Dimethoate	60-51-5	0.10	μg/L	<0.12	1.0 µg/L	103	27.4	131
P130: Ethion	563-12-2	0.10	µg/L	<0.12	1.0 µg/L	116	36.1	147

Page	: 10 of 15
Work Order	: EB0908368
Client	: GHD SERVICES PTY LTD
Project	: 421538641 Western Basin EIS WQ Monitoring

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
P130A: Organophosphorus Pesticides (Ultra-trace) (QCL	ot: 993051) - co	ontinued						
EP130: Fenamiphos	22224-92-6	0.10	µg/L	<0.12	1.0 µg/L	126	4.43	168
EP130: Fenthion	55-38-9	0.10	µg/L	<0.12	1.0 µg/L	101	23.2	145
EP130: Malathion	121-75-5	0.10	µg/L	<0.12	1.0 µg/L	107	40.7	136
EP130: Azinphos Methyl	86-50-0	0.10	µg/L	<0.12	1.0 µg/L	20.5	1.35	163
P130: Monocrotophos	6923-22-4	0.10	µg/L	<0.12	1.0 µg/L	38.6	10	86.3
P130: Parathion	56-38-2	0.10	µg/L	<0.12	1.0 µg/L	115	35.5	141
P130: Parathion-methyl	298-00-0	0.10	µg/L	<0.12	1.0 µg/L	106	31.1	144
EP130: Pirimphos-ethyl	23505-41-1	0.10	µg/L	<0.12	1.0 µg/L	108	38.9	142
P130: Prothiofos	34643-46-4	0.10	µg/L	<0.12	1.0 µg/L	116	40	138
P131A: Organochlorine Pesticides (QCLot: 993050)								
EP131A: Aldrin	309-00-2	0.001	µg/L		0.1 µg/L	53.4	35.8	139
		0.01	μg/L	<0.010				
P131A: alpha-BHC	319-84-6	0.001	μg/L		0.1 µg/L	32.3	19.7	153
		0.01	μg/L	<0.010				
P131A: beta-BHC	319-85-7	0.001	μg/L		0.1 µg/L	69.8	43.8	136
		0.01	μg/L	<0.010				
P131A: delta-BHC	319-86-8	0.001	μg/L		0.1 µg/L	76.1	37.4	144
		0.01	μg/L	<0.010				
P131A: 4.4`-DDD	72-54-8	0.001	μg/L		0.1 µg/L	107	37.5	145
		0.01	µg/L	<0.010				
P131A: 4.4`-DDE	72-55-9	0.001	µg/L		0.1 µg/L	70.0	30.5	146
		0.01	µg/L	<0.010				
EP131A: 4.4`-DDT	50-29-3	0.001	µg/L		0.1 µg/L	113	31	151
		0.01	µg/L	<0.010				
P131A: DDT (total)		0.01	µg/L	<0.010				
P131A: Dieldrin	60-57-1	0.001	µg/L		0.1 µg/L	105	34.4	145
		0.01	µg/L	<0.010				
P131A: alpha-Endosulfan	959-98-8	0.001	µg/L		0.1 µg/L	87.6	30.2	141
		0.01	µg/L	<0.010				
P131A: beta-Endosulfan	33213-65-9	0.001	µg/L		0.1 µg/L	105	30.3	148
		0.01	µg/L	<0.010				
P131A: Endosulfan sulfate	1031-07-8	0.001	µg/L		0.1 µg/L	109	19.1	150
		0.01	µg/L	<0.010				
P131A: Endosulfan (sum)	115-29-7	0.01	µg/L	<0.010				
P131A: Endrin	72-20-8	0.001	µg/L		0.1 µg/L	99.5	13	165
		0.01	µg/L	<0.010				
P131A: Endrin aldehyde	7421-93-4	0.001	µg/L		0.1 µg/L	80.4	28.3	134
		0.01	μg/L	<0.010				
P131A: Endrin ketone	53494-70-5	0.001	µg/L		0.1 µg/L	101	15.1	146
		0.01	μg/L	<0.010				

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP131A: Organochlorine Pesticides (QCLot: 9930	50) - continued							
EP131A: Heptachlor	76-44-8	0.001	µg/L		0.1 µg/L	44.3	33.2	148
·		0.005	μg/L	<0.005				
EP131A: Heptachlor epoxide	1024-57-3	0.001	μg/L		0.1 µg/L	78.6	36	143
		0.01	µg/L	<0.010				
EP131A: Hexachlorobenzene (HCB)	118-74-1	0.001	µg/L		0.1 μg/L	39.2	14	146
		0.01	µg/L	<0.010				
EP131A: gamma-BHC	58-89-9	0.001	µg/L		0.1 µg/L	37.2	27.2	147
		0.01	µg/L	<0.010				
EP131A: Methoxychlor	72-43-5	0.001	µg/L		0.1 µg/L	103	34.4	150
		0.01	µg/L	<0.010				
EP131A: cis-Chlordane	5103-71-9	0.001	μg/L		0.1 µg/L	91.6	15.4	152
		0.01	μg/L	<0.010				
EP131A: trans-Chlordane	5103-74-2	0.001	µg/L		0.1 µg/L	79.9	45.1	140
		0.01	µg/L	<0.010				
EP131A: Total Chlordane (sum)		0.01	µg/L	<0.010				
P202A: Phenoxyacetic Acid Herbicides by LCMS	(QCLot: 990327)							
P202-LL: 4-Chlorophenoxy acetic acid	122-88-3	0.01	µg/L	<0.01	0.1 µg/L	92.6	20.1	106
EP202-LL: 2.4-DB	94-82-6	0.01	µg/L	<0.01	0.1 µg/L	123	24	142
EP202-LL: Dicamba	1918-00-9	0.01	µg/L	<0.01	0.1 µg/L	81.5	21	139
EP202-LL: Mecoprop	93-65-2	0.01	µg/L	<0.01	0.1 µg/L	128	42.6	147
EP202-LL: MCPA	94-74-6	0.01	μg/L	<0.01	0.1 μg/L	122	33.9	144
EP202-LL: 2.4-DP	120-36-5	0.01	µg/L	<0.01	0.1 µg/L	125	39.2	144
EP202-LL: 2.4-D	94-75-7	0.01	µg/L	<0.01	0.1 µg/L	102	39.3	149
EP202-LL: Triclopyr	55335-06-3	0.01	µg/L	<0.01	0.1 μg/L	118	34.5	145
EP202-LL: 2.4.5-TP (Silvex)	93-72-1	0.01	µg/L	<0.01	0.1 µg/L	125	34.3	144
EP202-LL: 2.4.5-T	93-76-5	0.01	µg/L	<0.01	0.1 µg/L	125	26.3	146
EP202-LL: MCPB	94-81-5	0.01	µg/L	<0.01	0.1 µg/L	120	24.3	141
P202-LL: Picloram	1918-02-1	0.05	μg/L	<0.05	0.1 µg/L	62.1	21.3	142
EP202-LL: Clopyralid	1702-17-6	0.05	µg/L	<0.05	0.1 µg/L	67.2	7.18	150
EP202-LL: Fluroxypyr	69377-81-7	0.05	µg/L	<0.05	0.1 µg/L	108	25.1	136
EP202-LL: 2.6-D	575-90-6	0.1	µg/L	<0.1	0.1 µg/L	118	37.3	140
EP202-LL: 2.4.6-T	575-89-3	0.1	μg/L	<0.1	0.1 µg/L	123	39	134
P202A: Phenoxyacetic Acid Herbicides by LCMS	(QCLot: 993089)							
P202-LL: 4-Chlorophenoxy acetic acid	122-88-3	0.01	μg/L	<0.01	0.1 µg/L	95.6	20.1	106
EP202-LL: 2.4-DB	94-82-6	0.01	μg/L	<0.01	0.1 µg/L	120	24	142
P202-LL: Dicamba	1918-00-9	0.01	μg/L	<0.01	0.1 µg/L	75.4	21	139
EP202-LL: Mecoprop	93-65-2	0.01	μg/L	<0.01	0.1 µg/L	115	42.6	147
EP202-LL: MCPA	94-74-6	0.01	μg/L	<0.01	0.1 µg/L	118	33.9	144
EP202-LL: 2.4-DP	120-36-5	0.01	µg/L	<0.01	0.1 µg/L	116	39.2	144

Page	: 12 of 15
Work Order	: EB0908368
Client	: GHD SERVICES PTY LTD
Project	: 421538641 Western Basin EIS WQ Monitoring

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP202A: Phenoxyacetic Acid Herbicides b	y LCMS (QCLot: 993089) - conti	inued						
EP202-LL: 2.4-D	94-75-7	0.01	μg/L	<0.01	0.1 µg/L	103	39.3	149
EP202-LL: Triclopyr	55335-06-3	0.01	µg/L	<0.01	0.1 µg/L	124	34.5	145
EP202-LL: 2.4.5-TP (Silvex)	93-72-1	0.01	μg/L	<0.01	0.1 µg/L	123	34.3	144
EP202-LL: 2.4.5-T	93-76-5	0.01	μg/L	<0.01	0.1 µg/L	118	26.3	146
EP202-LL: MCPB	94-81-5	0.01	μg/L	<0.01	0.1 µg/L	119	24.3	141
EP202-LL: Picloram	1918-02-1	0.05	μg/L	<0.05	0.1 µg/L	46.4	21.3	142
EP202-LL: Clopyralid	1702-17-6	0.05	μg/L	<0.05	0.1 µg/L	76.3	7.18	150
EP202-LL: Fluroxypyr	69377-81-7	0.05	μg/L	<0.05	0.1 µg/L	90.7	25.1	136
EP202-LL: 2.6-D	575-90-6	0.1	μg/L	<0.1	0.1 µg/L	116	37.3	140
EP202-LL: 2.4.6-T	575-89-3	0.1	µg/L	<0.1	0.1 µg/L	123	39	134
EP209: Multiresidue Pesticide Residue Sci	reen (Suite 1) (QCLot: 990326)							
EP209-LL: Atrazine	1912-24-9	0.01	μg/L	<0.010	0.05 µg/L	79.0	68.1	142
EP209-LL: Chlorpyrifos	2921-88-2	0.01	μg/L	<0.010	0.05 µg/L	96.3	58	134
EP209-LL: Hexazinone	51235-04-2	0.01	μg/L	<0.010	0.05 µg/L	94.9	75.5	142
EP209-LL: Molinate	2212-67-1	0.01	μg/L	<0.010	0.05 µg/L	70.4	54	138
EP209-LL: Propiconazole	60207-90-1	0.01	μg/L	<0.010	0.05 µg/L	80.2	64	130
EP209-LL: Temephos	3383-96-8	0.01	μg/L	<0.010	0.05 µg/L	70.5	59	129
EP215: Multiresidue Pesticide Residue Sci	reen (Suite 2) (QCLot: 994750)							
EP215-LL: Simazine	122-34-9	0.005	μg/L	<0.005	0.0125 µg/L	75.4	65	130
EP215-LL: Diuron	330-54-1	0.005	μg/L	<0.005	0.0125 µg/L	93.0	65	130
EP215-LL: Atrazine	1912-24-9	0.005	μg/L	<0.005	0.0125 µg/L	76.8	65	130
EP215-LL: Molinate	2212-67-1	0.005	μg/L	<0.005	0.0125 µg/L	72.4	65	130
EP215-LL: Metolachlor	51218-45-2	0.005	μg/L	<0.005	0.0125 µg/L	97.3	65	130
EP215-LL: Malathion	121-75-5	0.002	μg/L	<0.002	0.0125 µg/L	106	65	130
EP215-LL: Diazinon	333-41-5	0.005	μg/L	<0.005	0.0125 µg/L	70.1	65	130
EP215-LL: Thiobencarb	28249-77-6	0.005	μg/L	<0.005	0.0125 µg/L	68.9	65	130
EP215-LL: Chlorpyrifos	2921-88-2	0.005	μg/L	<0.005	0.0125 µg/L	78.6	65	130
EP215-LL: Trifluralin	1582-09-8	0.005	μg/L	<0.005	0.0125 µg/L	65.2	65	130

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: WATER					Matrix Spike (MS) Repo	ort	
				Spike	Spike Recovery (%)	Recovery	Limits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	Higl
K026G: Total Cyan	nide By Discrete Analyser(QCL	.ot: 998730)					
EB0908368-002	G-WQ-03	EK026G: Total Cyanide	57-12-5	0.2 mg/L	85.5	70	130
EP075(SIM)A: Pheno	olic Compounds (QCLot: 9922)	73)					
EB0908450-003	Anonymous	EP075(SIM): Phenol	108-95-2	5.0 µg/L	# Not Determined	20	130
		EP075(SIM): 2-Chlorophenol	95-57-8	5.0 µg/L	79.8	70	130
		EP075(SIM): 2-Nitrophenol	88-75-5	5.0 µg/L	98.2	70	130
		EP075(SIM): 4-Chloro-3-Methylphenol	59-50-7	5.0 µg/L	84.2	70	13
		EP075(SIM): Pentachlorophenol	87-86-5	5.0 μg/L	96.5	70	13
EP075(SIM)B: Polyn	uclear Aromatic Hydrocarbons	(QCLot: 992273)					
EB0908450-003	Anonymous	EP075(SIM): Acenaphthene	83-32-9	5.0 µg/L	84.2	70	130
		EP075(SIM): Pyrene	129-00-0	5.0 µg/L	84.0	70	13
EP080/071: Total Pe	troleum Hydrocarbons (QCLot	: 991826)					
EB0908368-001	G-WQ-02	EP080: C6 - C9 Fraction		140 µg/L	77.9	70	13
-P080/071: Total Pe	troleum Hydrocarbons (QCLot						1
EB0908450-002	Anonymous	EP071: C10 - C14 Fraction		600 µg/L	82.9	70	13
	, , , , , , , , , , , , , , , , , , ,	EP071: C15 - C28 Fraction		1020 µg/L	80.0	70	13
EP080: BTEX (QCL	ot: 991826)						1
EB0908368-001	G-WQ-02	EP080: Benzene	71-43-2	10 µg/L	94.8	70	13
		EP080: Toluene	108-88-3	10 µg/L	88.6	70	13
	osphorus Pesticides (Ultra-trac						
EB0908368-006	QA2		4824-78-6	1.0 µg/L	76.2	35.4	14
LD0900300-000	Qnz	EP130: Bromophos-ethyl EP130: Carbophenothion	786-19-6	1.0 μg/L	67.8	5.13	14
		EP130: Chlorfenvinphos (Z)	470-90-8	1.0 µg/L	73.0	44.6	15
		EP130: Chlorpyrifos	2921-88-2	1.0 µg/L	71.0	38.5	10
		EP130: Chlorpyrifos-methyl	5598-13-0	1.0 µg/L	64.7	40.3	13
		EP130: Demeton-S-methyl	919-86-8	1.0 µg/L	70.6	20.7	17
		EP130: Diazinon	333-41-5	1.0 µg/L	64.0	38.7	14
		EP130: Dichlorvos	62-73-7	1.0 µg/L	41.5	18.4	15
		EP130: Dimethoate	60-51-5	1.0 µg/L	67.8	27.4	13
		EP130: Ethion	563-12-2	1.0 µg/L	75.4	36.1	14
		EP130: Fenamiphos	22224-92-6	1.0 µg/L	83.9	4.43	16
		EP130: Fenthion	55-38-9	1.0 µg/L	70.1	23.2	14
		EP130: Malathion	121-75-5	1.0 µg/L	70.3	40.7	13
		EP130: Azinphos Methyl	86-50-0	1.0 µg/L	15.2	1.35	16
		EP130: Monocrotophos	6923-22-4	1.0 µg/L	39.3	10	86.

ub-Matrix: WATER					Matrix Spike (MS) Rep		
				Spike	Spike Recovery (%)	Recovery	Limits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
130A: Organopho	osphorus Pesticides (Ultra-trace)	(QCLot: 993051) - continued					
B0908368-006	QA2	EP130: Parathion	56-38-2	1.0 µg/L	74.7	35.5	141
		EP130: Parathion-methyl	298-00-0	1.0 µg/L	68.5	31.1	144
		EP130: Pirimphos-ethyl	23505-41-1	1.0 µg/L	73.6	38.9	142
		EP130: Prothiofos	34643-46-4	1.0 µg/L	75.7	40	138
P131A: Organochio	orine Pesticides (QCLot: 993050						
B0908368-006	QA2	EP131A: Aldrin	309-00-2	0.1 µg/L	39.4	35.8	139
		EP131A: alpha-BHC	319-84-6	0.1 µg/L	23.8	19.7	153
		EP131A: beta-BHC	319-85-7	0.1 µg/L	# 34.8	43.8	136
		EP131A: delta-BHC	319-86-8	0.1 µg/L	49.9	37.4	144
		EP131A: 4.4`-DDD	72-54-8	0.1 µg/L	83.9	37.5	145
		EP131A: 4.4`-DDE	72-55-9	0.1 µg/L	56.8	30.5	146
		EP131A: 4.4`-DDT	50-29-3	0.1 µg/L	82.4	31	151
		EP131A: Dieldrin	60-57-1	0.1 µg/L	78.7	34.4	145
		EP131A: alpha-Endosulfan	959-98-8	0.1 µg/L	66.9	30.2	141
		EP131A: beta-Endosulfan	33213-65-9	0.1 µg/L	83.8	30.3	148
		EP131A: Endosulfan sulfate	1031-07-8	0.1 µg/L	81.8	19.1	150
		EP131A: Endrin	72-20-8	0.1 µg/L	89.5	13	165
		EP131A: Endrin aldehyde	7421-93-4	0.1 µg/L	63.6	28.3	134
		EP131A: Endrin ketone	53494-70-5	0.1 µg/L	77.4	15.1	146
		EP131A: Heptachlor	76-44-8	0.1 µg/L	# 30.3	33.2	148
		EP131A: Heptachlor epoxide	1024-57-3	0.1 µg/L	55.0	36	143
		EP131A: Hexachlorobenzene (HCB)	118-74-1	0.1 µg/L	27.6	14	146
		EP131A: gamma-BHC	58-89-9	0.1 µg/L	# 26.1	27.2	147
		EP131A: Methoxychlor	72-43-5	0.1 µg/L	85.3	34.4	150
		EP131A: cis-Chlordane	5103-71-9	0.1 µg/L	68.1	15.4	152
		EP131A: trans-Chlordane	5103-74-2	0.1 µg/L	59.0	45.1	140
	etic Acid Herbicides by LCMS(· r.o			
S0907545-001	Anonymous		122-88-3	0.1 µg/L	89.3	33.8	106
30907545-001	Anonymous	EP202-LL: 4-Chlorophenoxy acetic acid	94-82-6	0.1 µg/L	85.8	22.5	100
		EP202-LL: 2.4-DB	1918-00-9	0.1 µg/L	96.8	22.3	142
		EP202-LL: Dicamba	93-65-2		115	44.6	130
		EP202-LL: Mecoprop	93-65-2	0.1 μg/L 0.1 μg/L	115	44.6 36.4	137
		EP202-LL: MCPA	120-36-5		121	36.4	142
		EP202-LL: 2.4-DP	94-75-7	0.1 µg/L	124	39.0 41.8	146
		EP202-LL: 2.4-D	94-75-7 55335-06-3	0.1 µg/L	122	41.8	138
		EP202-LL: Triclopyr		0.1 µg/L			
		EP202-LL: 2.4.5-TP (Silvex)	93-72-1	0.1 µg/L	123	37.0	126
		EP202-LL: 2.4.5-T	93-76-5	0.1 µg/L	118	31.1	135
		EP202-LL: MCPB	94-81-5	0.1 µg/L	89.9	22.8	136

Sub-Matrix: WATER			Matrix Spike (MS) Report					
				Spike	Spike Recovery (%)	Recovery	Limits (%)	
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
P202A: Phenoxyac	cetic Acid Herbicides by LCMS	(QCLot: 990327) - continued						
ES0907545-001	Anonymous	EP202-LL: Picloram	1918-02-1	0.1 µg/L	71.9	20.6	124	
		EP202-LL: Clopyralid	1702-17-6	0.1 µg/L	80.3	15.3	118	
		EP202-LL: Fluroxypyr	69377-81-7	0.1 µg/L	89.7	37.3	115	
		EP202-LL: 2.6-D	575-90-6	0.1 µg/L	102	34.4	146	
		EP202-LL: 2.4.6-T	575-89-3	0.1 µg/L	# 124	43.2	123	
P202A: Phenoxyac	cetic Acid Herbicides by LCMS	(QCLot: 993089)						
ES0907726-002	Anonymous	EP202-LL: 4-Chlorophenoxy acetic acid	122-88-3	0.1 µg/L	94.8	33.8	106	
		EP202-LL: 2.4-DB	94-82-6	0.1 µg/L	81.0	22.5	142	
		EP202-LL: Dicamba	1918-00-9	0.1 µg/L	116	20.3	138	
		EP202-LL: Mecoprop	93-65-2	0.1 µg/L	123	44.6	137	
		EP202-LL: MCPA	94-74-6	0.1 µg/L	110	36.4	142	
		EP202-LL: 2.4-DP	120-36-5	0.1 µg/L	123	39.0	146	
		EP202-LL: 2.4-D	94-75-7	0.1 µg/L	110	41.8	138	
		EP202-LL: Triclopyr	55335-06-3	0.1 µg/L	115	41.4	139	
		EP202-LL: 2.4.5-TP (Silvex)	93-72-1	0.1 µg/L	118	37.0	126	
		EP202-LL: 2.4.5-T	93-76-5	0.1 µg/L	117	31.1	135	
		EP202-LL: MCPB	94-81-5	0.1 µg/L	83.9	22.8	136	
		EP202-LL: Picloram	1918-02-1	0.1 µg/L	68.8	20.6	124	
		EP202-LL: Clopyralid	1702-17-6	0.1 µg/L	89.3	15.3	118	
		EP202-LL: Fluroxypyr	69377-81-7	0.1 µg/L	98.4	37.3	115	
		EP202-LL: 2.6-D	575-90-6	0.1 µg/L	96.6	34.4	146	
		EP202-LL: 2.4.6-T	575-89-3	0.1 µg/L	116	43.2	123	
P209: Multiresidue	Pesticide Residue Screen (Su	ite 1) (QCLot: 990326)						
ES0907545-001	Anonymous	EP209-LL: Atrazine	1912-24-9	0.05 µg/L	80.5	70	130	
		EP209-LL: Chlorpyrifos	2921-88-2	0.05 µg/L	91.9	70	130	
		EP209-LL: Hexazinone	51235-04-2	0.05 µg/L	94.9	70	130	
		EP209-LL: Molinate	2212-67-1	0.05 µg/L	85.0	70	130	
		EP209-LL: Propiconazole	60207-90-1	0.05 µg/L	80.9	70	130	
		EP209-LL: Temephos	3383-96-8	0.05 µg/L	94.8	70	130	

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order	: EB0908368	Page	: 1 of 10
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Brisbane
Contact	: MR ADRIAN WHITE	Contact	: Tim Kilmister
Address	: P O BOX 373 GLADSTONE QLD, AUSTRALIA 4680	Address	: 32 Shand Street Stafford QLD Australia 4053
E-mail	: adrian.a.white@ghd.com.au	E-mail	: Services.Brisbane@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-7-3243 7222
Facsimile	: +61 07 4972 6236	Facsimile	: +61-7-3243 7218
Project	: 421538641 Western Basin EIS WQ Monitoring	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 27-MAY-2009
Sampler	:	Issue Date	: 10-JUN-2009
Order number	:		
		No. of samples received	: 6
Quote number	: EN/005/09	No. of samples analysed	: 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Environmental Division Brisbane Part of the ALS Laboratory Group

32 Shand Street Stafford QLD Australia 4053 Tel. +61-7-3243 7222 Fax. +61-7-3243 7218 www.alsglobal.com

A Campbell Brothers Limited Company

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withir	n holding time
Method		Sample Date	Extraction / Preparation				Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005: pH								
Clear Plastic Bottle - Natural								
G-WQ-02,	G-WQ-03,	26-MAY-2009				27-MAY-2009	26-MAY-2009	*
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA2							
EA010P: Conductivity by PC Titrator								
Clear Plastic Bottle - Natural								
G-WQ-02,	G-WQ-03,	26-MAY-2009				28-MAY-2009	23-JUN-2009	 ✓
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA2							
EA015: Total Dissolved Solids								
Clear Plastic Bottle - Natural								
G-WQ-02,	G-WQ-03,	26-MAY-2009				28-MAY-2009	02-JUN-2009	 ✓
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA2							
EA025: Suspended Solids								
Clear Plastic Bottle - Natural								
G-WQ-02,	G-WQ-03,	26-MAY-2009				28-MAY-2009	02-JUN-2009	 ✓
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA2							
EK026G: Total Cyanide By Discrete Ana	lyser							
White Plastic Bottle - NaOH/Cadmium N	litrate							
G-WQ-02,	G-WQ-03,	26-MAY-2009	04-JUN-2009	09-JUN-2009	✓	04-JUN-2009	09-JUN-2009	✓
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA2							
EP008: Chlorophyll a								
White Plastic Bottle - Unpreserved								
G-WQ-02,	G-WQ-03,	26-MAY-2009				28-MAY-2009	28-MAY-2009	✓
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA2							

Matrix: WATER					Evaluation	× = Holding time	breach ; ✓ = Withir	holding time.
Method		Sample Date	Extraction / Preparation					
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP074E: Halogenated Aliphatic Compounds								
Amber VOC Vial - HCI or NaHSO4								
G-WQ-02,	G-WQ-03,	26-MAY-2009				28-MAY-2009	09-JUN-2009	✓
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA2							
EP074F: Halogenated Aromatic Compounds								
Amber VOC Vial - HCI or NaHSO4								
G-WQ-02,	G-WQ-03,	26-MAY-2009				29-MAY-2009	09-JUN-2009	✓
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA2							
EP075(SIM)A: Phenolic Compounds								
Amber Glass Bottle - Unpreserved								
G-WQ-02,	G-WQ-03,	26-MAY-2009	29-MAY-2009	02-JUN-2009	✓	29-MAY-2009	08-JUL-2009	✓
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA2							
EP075(SIM)B: Polynuclear Aromatic Hydrocarbo	ons							
Amber Glass Bottle - Unpreserved								
G-WQ-02,	G-WQ-03,	26-MAY-2009	29-MAY-2009	02-JUN-2009	✓	29-MAY-2009	08-JUL-2009	✓
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA2							
EP080/071: Total Petroleum Hydrocarbons								
Amber Glass Bottle - Unpreserved								
G-WQ-02,	G-WQ-03,	26-MAY-2009	29-MAY-2009	02-JUN-2009	✓	29-MAY-2009	08-JUL-2009	✓
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA2							
Amber VOC Vial - HCI or NaHSO4								
G-WQ-02,	G-WQ-03,	26-MAY-2009				28-MAY-2009	09-JUN-2009	✓
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA2							
EP080: BTEX								
Amber VOC Vial - HCI or NaHSO4								
G-WQ-02,	G-WQ-03,	26-MAY-2009				28-MAY-2009	09-JUN-2009	✓
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA2							
EP090: Organotin Compounds (Soluble)								
Amber Glass Bottle - Unpreserved								
G-WQ-02,	G-WQ-03,	26-MAY-2009	01-JUN-2009	02-JUN-2009	✓	01-JUN-2009	11-JUL-2009	1
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA2							

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Within	n holding time	
Method		Sample Date	E	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP130A: Organophosphorus Pesticides (Ul	tra-trace)								
Amber Glass Bottle - Unpreserved									
G-WQ-02,	G-WQ-03,	26-MAY-200	29-MAY-2009	02-JUN-2009	 ✓ 	02-JUN-2009	08-JUL-2009	✓	
G-WQ-06,	G-WQ-07,								
G-WQ-09,	QA2								
EP131A: Organochlorine Pesticides									
Amber Glass Bottle - Unpreserved									
G-WQ-02,	G-WQ-03,	26-MAY-200	29-MAY-2009	02-JUN-2009	✓	02-JUN-2009	08-JUL-2009	 ✓ 	
G-WQ-06,	G-WQ-07,								
G-WQ-09,	QA2								
EP202A: Phenoxyacetic Acid Herbicides by	LCMS								
Amber Glass Bottle - Unpreserved									
G-WQ-02,	G-WQ-03,	26-MAY-200				01-JUN-2009	02-JUN-2009	 ✓ 	
G-WQ-06,	G-WQ-07,								
G-WQ-09,	QA2								
EP209: Multiresidue Pesticide Residue Scre	een (Suite 1)								
Amber Glass Bottle - Unpreserved									
G-WQ-02,	G-WQ-03,	26-MAY-200				02-JUN-2009	02-JUN-2009	 ✓ 	
G-WQ-06,	G-WQ-07,								
G-WQ-09,	QA2								
EP215: Multiresidue Pesticide Residue Scre	een (Suite 2)								
Amber Glass Bottle - Unpreserved									
G-WQ-02,	G-WQ-03,	26-MAY-200	01-JUN-2009	02-JUN-2009	 ✓ 	04-JUN-2009	11-JUL-2009	✓	
G-WQ-06,	G-WQ-07,								
G-WQ-09,	QA2								

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluation	: × = Quality Cor	ntrol frequency r	not within specification ; \checkmark = Quality Control frequency within specification		
Quality Control Sample Type		Co	ount	Rate (%)			Quality Control Specification		
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation			
Laboratory Duplicates (DUP)									
Chlorophyll a	EP008	2	18	11.1	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Conductivity by PC Titrator	EA010-P	2	11	18.2	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Multiresidue Pesticide Screen (N0. 1) - Low Level	EP209-LL	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Organochlorine Pesticides (Ultra-trace)	EP131A	1	6	16.7	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Organophosphorus Pesticides (Ultra-trace)	EP130	1	6	16.7	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	9	11.1	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
рН	EA005	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Phenoxyacetic Acid Herbicides (LCMS - Low DL)	EP202-LL	3	26	11.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Suspended Solids	EA025	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Cyanide By Discrete Analyser	EK026G	2	15	13.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Dissolved Solids	EA015	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
TPH - Semivolatile Fraction	EP071	1	17	5.9	10.0	×	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
TPH Volatiles/BTEX	EP080	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Ultra-trace Volatile Organic Compounds	EP074-LL	2	11	18.2	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Volatile Organic Compounds	EP074	1	7	14.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Laboratory Control Samples (LCS)									
Chlorophyll a	EP008	1	18	5.6	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Conductivity by PC Titrator	EA010-P	1	11	9.1	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Multiresidue Pesticide Screen (N0. 1) - Low Level	EP209-LL	1	20	5.0	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Multiresidue Pesticide Screen (No. 2)	EP215-LL	1	6	16.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Organochlorine Pesticides (Ultra-trace)	EP131A	1	6	16.7	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Organophosphorus Pesticides (Ultra-trace)	EP130	1	6	16.7	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Organotin Compounds (Soluble)	EP090S	1	7	14.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	9	11.1	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
рН	EA005	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Phenoxyacetic Acid Herbicides (LCMS - Low DL)	EP202-LL	2	26	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Suspended Solids	EA025	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Cyanide By Discrete Analyser	EK026G	1	15	6.7	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Dissolved Solids	EA015	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
TPH - Semivolatile Fraction	EP071	1	17	5.9	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
TPH Volatiles/BTEX	EP080	1	13	7.7	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Ultra-trace Volatile Organic Compounds	EP074-LL	1	11	9.1	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Volatile Organic Compounds	EP074	1	7	14.3	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Method Blanks (MB)									
Chlorophyll a	EP008	1	18	5.6	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
	2.000		1			-			

Matrix: WATER				Evaluation	n: × = Quality Co	ntrol frequency r	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Conductivity by PC Titrator	EA010-P	1	11	9.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Multiresidue Pesticide Screen (N0. 1) - Low Level	EP209-LL	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Multiresidue Pesticide Screen (No. 2)	EP215-LL	1	6	16.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Organochlorine Pesticides (Ultra-trace)	EP131A	1	6	16.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Organophosphorus Pesticides (Ultra-trace)	EP130	1	6	16.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Organotin Compounds (Soluble)	EP090S	1	7	14.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	9	11.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Phenoxyacetic Acid Herbicides (LCMS - Low DL)	EP202-LL	2	26	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Suspended Solids	EA025	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Cyanide By Discrete Analyser	EK026G	1	15	6.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids	EA015	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	17	5.9	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Ultra-trace Volatile Organic Compounds	EP074-LL	1	11	9.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Volatile Organic Compounds	EP074	1	7	14.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Multiresidue Pesticide Screen (N0. 1) - Low Level	EP209-LL	1	20	5.0	5.0	✓	ALS QCS3 requirement
Organochlorine Pesticides (Ultra-trace)	EP131A	1	6	16.7	5.0	✓	ALS QCS3 requirement
Organophosphorus Pesticides (Ultra-trace)	EP130	1	6	16.7	5.0	✓	ALS QCS3 requirement
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	9	11.1	5.0	✓	ALS QCS3 requirement
Phenoxyacetic Acid Herbicides (LCMS - Low DL)	EP202-LL	2	26	7.7	5.0	1	ALS QCS3 requirement
Total Cyanide By Discrete Analyser	EK026G	1	15	6.7	5.0	✓	ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	17	5.9	5.0	✓	ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	13	7.7	5.0	1	ALS QCS3 requirement
Ultra-trace Volatile Organic Compounds	EP074-LL	1	11	9.1	5.0	✓	ALS QCS3 requirement
Volatile Organic Compounds	EP074	1	7	14.3	5.0	✓	ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
рН	EA005	WATER	APHA 21st ed. 4500 H+ B. pH of water samples is determined by ISE either manually or by automated pH meter. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Conductivity by PC Titrator	EA010-P	WATER	APHA 21st ed., 2510 B This procedure determines conductivity by automated ISE. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Dissolved Solids	EA015	WATER	APHA 21st ed., 2540C A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+5C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Suspended Solids	EA025	WATER	APHA 21st ed., 2540D A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Cyanide By Discrete Analyser	EK026G	WATER	APHA 21st ed., 4500-CN-C & N Total Cyanide is determined from aqueous solutions after distillation with sulphuric acid. The resultant distillate is then captured in a caustic absorber solution followed by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Chlorophyll a	EP008	WATER	In-house (APHA 21st ed., 10200 H mod.) The pigments are extracted into aqueous acetone. The optical density of the extract before and after acidification at both 664 nm and 665 nm is determined spectrometrically.
TPH - Semivolatile Fraction	EP071	WATER	USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Volatile Organic Compounds	EP074	WATER	USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ultra-trace Volatile Organic Compounds	EP074-LL	WATER	(USEPA SW 846 - 8260B, ALS QWI-ORG/EP074) Water samples are directly purged (ALSQWI-ORG/16) prior to analysis by Capillary GC/MS in Selected Ion Monitoring mode. Quantitation is achieved using internal standardisation against a multi-point calibration curve.
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
TPH Volatiles/BTEX	EP080	WATER	USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Organotin Compounds (Soluble)	EP090S	WATER	USEPA SW 846 - 8270D Sample extracts are analysed by GC/MS coupled with high volume injection and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Organophosphorus Pesticides (Ultra-trace)	EP130	WATER	USEPA Method 3640 (GPC cleanup), 8141 (GC/FPD - Capillary Column) This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Analytical Methods	Method	Matrix	Method Descriptions
Organochlorine Pesticides (Ultra-trace)	EP131A	WATER	USEPA Method 3640 (GPC cleanup),3620 (Florisil), 8081/8082 (GC/uECD/uECD). This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Phenoxyacetic Acid Herbicides (LCMS - Low DL)	EP202-LL	WATER	In-House, LCMS (Electrospray). Residues of acid herbicides in water samples are extracted with dichloromethane under acidic conditions. The organic phase is evaporated to dryness and made up the HPLC mobile phase for MS determination.
Multiresidue Pesticide Screen (N0. 1) - Low Level	EP209-LL	WATER	In-house, LCMS (APCI in positive mode). The compounds are extracted from water samples using dichloromethane. The organic phase is evaporated to dryness and reconstituted in a mixture of methanol and water for reverse phase HPLC analysis.
Multiresidue Pesticide Screen (No. 2)	EP215-LL	WATER	In-house, LCMS (APCI in positive mode). The compounds are extracted from water samples using dichloromethane. The organic phase is evaporated to dryness and reconstituted in a mixture of acetonitrile and water for reverse phase HPLC analysis.
Preparation Methods	Method	Matrix	Method Descriptions
Total Cyanide	EK026-PR	WATER	APHA 21st ed., 4500 CN- C&N. The sample is distilled with H2SO4 releasing all bound cyanides as HCN. The CN is trapped in a caustic solution, and quanitified by colourimetry on FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Separatory funnel extraction for LCMS herbicides.	* EP215-PR	WATER	In-house. A 1 L sample is extracted three times with 60 mL of methylene chloride, reduced to dryness and made up in HPLC mobile phase.
Separatory Funnel Extraction of Liquids	ORG14	WATER	USEPA SW 846 - 3510B 500 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using 60mL DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2). ALS default excludes sediment which may be resident in the container.
Sep. Funnel Extraction of Liquids (Ultra-trace pesticides.)	ORG14-UTP	WATER	USEPA 3510 Samples are extracted into dichloromethane, concentrated and exchanged into an apporpriate solvent for GPC and florisil cleanup as required. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2). ALS default excludes sediment which may be resident in the container.
Organotin Sample Preparation	ORG34	WATER	In-house. A specified volume of sample is spiked with surrogate, acidified and vacuum filtered. Reagents and solvent are added and the mixture tumbled. The butyltin compounds is derivitisated, extracted and the subtitution reaction completed. The extract is transferred to a separatory funnel and further extracted two times with petroleum ether. The resultant extracts are combined and concentrated for analysis.

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Laboratory Control Spike (LCS) Recoveries							
EP090: Organotin Compounds (Soluble)	1138115-002		Tributyltin	56573-85-4	122 %	29-100%	Recovery greater than upper control
							limit
Matrix Spike (MS) Recoveries							
EP075(SIM)A: Phenolic Compounds	EB0908450-003	Anonymous	Phenol	108-95-2	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EP131A: Organochlorine Pesticides	EB0908368-006	QA2	beta-BHC	319-85-7	34.8 %	43.8-136%	Recovery less than lower data quality
							objective
EP131A: Organochlorine Pesticides	EB0908368-006	QA2	Heptachlor	76-44-8	30.3 %	33.2-148%	Recovery less than lower data quality
							objective
EP131A: Organochlorine Pesticides	EB0908368-006	QA2	gamma-BHC	58-89-9	26.1 %	27.2-147%	Recovery less than lower data quality
							objective
EP202A: Phenoxyacetic Acid Herbicides by LCMS	ES0907545-001	Anonymous	2.4.6-T	575-89-3	124 %	43.2-123%	Recovery greater than upper control
							limit

• For all matrices, no Method Blank value outliers occur.

• For all matrices, no Duplicate outliers occur.

Regular Sample Surrogates

Sub-Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Samples Submitted							
EP090S: Organotin Surrogate	EB0908368-003	G-WQ-06	Tripropyltin		110 %	10-108 %	Recovery greater than upper data
							quality objective

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Matriv.	WATER	
IVICILITA.		

Method	E	xtraction / Preparation		Analysis			
Container / Client Sample ID(s)	Date extracted	Date extracted Due for extraction		Date analysed	Due for analysis	Days	
			overdue			overdue	
EA005: pH							

Matrix: WATER

Method	E	xtraction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA005: pH - Analysis Holding Time Co	mpliance						
Clear Plastic Bottle - Natural							
G-WQ-02,	G-WQ-03,				27-MAY-2009	26-MAY-2009	1
G-WQ-06,	G-WQ-07,						
G-WQ-09,	QA2						

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

Matrix: WATER					
Quality Control Sample Type	Co	ount	Rat	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
TPH - Semivolatile Fraction	1	17	5.9	10.0	NEPM 1999 Schedule B(3) and ALS QCS3 requirement

												1							
an			Chain of C	ustody & Analysis F	Reques	t						\$							Page _1_ of _1_
			Chain of Custo	ly Number:															
secold a secold of a	· · · · · · · · · · · · · · · · · · ·				GHD														
	4215386 41	QUOTE:	1		LABORA	IORY P	АТСН	NO						(j. Snie	1.5.				× Antonio de la
PROJECT ID: PROJECT:	Western Basin EIS W				270-2								FOR LA	BUSE	ONEY				
CLIENT:	GHD	a monitoring			COOLER	SEAL	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.											COOLER	TEMP
POSTAL ADDRESS:	PO Box 373, Gladstone	- 4680				Yes				No.									deg(C
CONTACT:	Adrian White		· · · · · · · · · · · · · · · · · · ·			Broké	Π.			Intact								an a	
PHONE:	41203566	67 FAX:	07) 49726236		DESPATO	CHED T	0:				atories								
EMAIL:			ian.A.White@ghd.co								STREE	T STA	FORD	QLD	4053			· · · · · · · · · · · · · · · · · · ·	
INVOICE:	Jason.K.Fowler@c	ahd.com.au, Adri	ian.A.White@ghd.cc	m.au				-	3243	3-7222									
											·								
DATA NEEDED BY:					_		_						ANALYS	IS REC	JUIKEI				
REPORT FORMAT:														En	viror	mer	ntal D	vision	
																	bane		
EMAIL FORMAT:	ESDAT, EXCEL & PDF	=																r b	
									â										
COMMENTS/SPECIAL	L HANDLING/STORAGE	OR DISPOSAL:							Electrical Conductivity (EA010)					E	:B	09	09	974	
									Щ́,				4						
Water samples fro	om a marine environn	nent (Backgroun	d sampling)			808			tivit										
						Ē			quc	e:									
-					25)	a l	6	35	ຮັ	IATE									
(EMAIL ADDRES	SSES PROVIDED AE	BOVE)			TSS (EA025)	Chlorophyll a (EP008)	pH (EA005)	TDS (EA015)	ical	PSD on WATER									
				n an aite agus an	ss (lo Lo	Щ,) SC	ectr	g				Telep	hone	: +6	1-7-32	43 7222	
SAMPLE II	D MATRIX	DATE	DETECTION LIMIT	PRESERVATION		-		1				_	1					·	
G-WQ-02	Water	6/23/2009	LOR	As Required	<u> </u>	X	X	X	X	<u>x</u>			+				-		
G-WQ-03	Water	6/23/2009	LOR	As Required	X	X	X	X	Х	X									·····
3 G-WQ-04	Water	6/23/2009	LOR	As Required	x	x	x	x	x	x								ONLY do PSD testir	ng if there is enough volum
G-WQ-08	Water	6/23/2009	LOR	As Required	x	x	x	x	x	x									
G-WQ-10	Water	6/23/2009	LOR	As Required	x	x	x	x	x	x									
		6																	ng if there is enough volum
6 G-WQ-11	Water	6/23/2009	LOR	As Required	X	<u> </u>	×	X	X	X			+			+		UNLI du PSD lesta	ig ir there is enough volum
f G-WQ-12	Water	6/23/2009	LOR	As Required	<u> </u>	x	X	X	X	X						ļ		ONLY do PSD testi	ng if there is enough volum
QA-03	Water	6/23/2009	LOR	As Required	X	x	X	X	X	X									
				· · · · · · · · · · · · · · · · · · ·				_											
		RELINQUI	ISHED BY:						0	the	6-			EIVED		777	<u> </u>	<u>AG</u>	
NAME : J Fowler	· · · · · · · · · · · · · · · · · · ·	DATE: 23	3/06/2009	·····	NAME :	MC	<u>19</u> 0	112	<u></u> ^	KO	m		DA		· 0	24	<u> </u>	,.09	· · · · · · · · · · · · · · · · · · ·
OF: GHD Glads	tone	TIME: 1	530		OF:		20		H	65			TIN	E:			11.	. 30	
PLEASE EMAIL COM	PLETED ANALYSIS REQ	UEST TO:		Jason.K.Fowler@ghd.com.au,	Adrian.A.W	<u>'hite@</u>	ghd.c	com.a	au										

÷

*Container Type and Preservative Codes: P = Neutral Plastic; N = Nitric Acid Preserved; C = Sodium Hydroxide Preserved; J = Solvent Washed Acid Rinced Jar; S = Solvent Washed Acid Rinced Glass Bottle;

VC = Hydrochloric Acid Preserved Vial; VS = Sulfuric Acid Preserved Vial; BS = Sulfuric Acid Preserved Glass Bottle; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle; O = Other.

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order	: EB09	009974								
Client Contact Address	: GHD SERVICES PTY LTD : MR ADRIAN WHITE : P O BOX 373 GLADSTONE QLD, AUSTRALIA 4680 : adrian a white@gdd.com au		Laboratory Contact Address	 Environmental Division Brisbane Tim Kilmister 32 Shand Street Stafford QLD Australia 4053 						
E-mail Telephone Facsimile	: +61 07	a.white@ghd.com.au 249731611 24972 6236	E-mail Telephone Facsimile	: Services.Brisbane@alsenviro.com : +61-7-3243 7222 : +61-7-3243 7218						
Project	: 421538641 Western Basin EIS WQ Monitoring		Page	: 1 of 2						
Order number C-O-C number Site	:		Quote number	: EM2009GHDSER0392 (EN/005/09)						
Sampler	:		QC Level	NEPM 1999 Schedule B(3) and ALS QCS3 requirement						
Dates										
Date Samples Received Client Requested Due Date		: 24-JUN-2009 : 02-JUL-2009	Issue Date Scheduled Reportin	25-JUN-2009 08:28						
Delivery Deta	ils									
Mode of Delivery No. of coolers/boxes Sercurity Seal		: Carrier : 1 LARGE, 1 MEDIUM : Intact.	Temperature No. of samples rec No. of samples ana							

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Breaches in recommended extraction / analysis holding times may occur.
- pH holding time is six hours after sampling.
- Particle Sizing by laser light scattering has been subcontracted to "Microns to Measure".
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Maggie Kahi.
- Analytical work for this work order will be conducted at ALS Brisbane.
- Sample Disposal Aqueous (14 days), Solid (90 days) from date of completion of work order.

SA-WAT (Subcontracted)

red Solids

A015

Email

Fmail

Email

Email

Email

Email

Email

Email

Email

Email

Solids

2008

025

Analysis (Water)

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process neccessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing Hd purposes. If the sampling time is displayed as 0:00 the **A010P** (PC) information was not provided by client. A005 Matrix: WATER

Matrix: WATER <i>Laboratory sample ID</i>	Client sampling date / time	Client sample ID	WATER - E/ pH	WATER - E/ Conductivity	WATER - E/ Total Dissolv	WATER - E/ Suspended	WATER - EF Chlorophyll 8	WATER - P8 Particle Size
EB0909974-001	23-JUN-2009 15:30	G-WQ-02	√	✓	✓	✓	✓	✓
EB0909974-002	23-JUN-2009 15:30	G-WQ-03	1	✓	✓	✓	1	✓
EB0909974-003	23-JUN-2009 15:30	G-WQ-04	✓	✓	✓	✓	✓	✓
EB0909974-004	23-JUN-2009 15:30	G-WQ-08	1	✓	✓	✓	1	✓
EB0909974-005	23-JUN-2009 15:30	G-WQ-10	√	✓	✓	✓	✓	✓
EB0909974-006	23-JUN-2009 15:30	G-WQ-11	✓	✓	✓	✓	1	✓
EB0909974-007	23-JUN-2009 15:30	G-WQ-12	√	✓	✓	✓	✓	✓
EB0909974-008	23-JUN-2009 15:30	QA-03	✓	✓	✓	✓	✓	✓

Requested Deliverables

MR ADRIAN WHITE

- *AU Certificate of Analysis NATA (COA)
- *AU Interpretive QC Report DEFAULT (Anon QCI Rep) (QCI)
- *AU QC Report DEFAULT (Anon QC Rep) NATA (QC)
- A4 AU Sample Receipt Notification Environmental (SRN)
- A4 AU Tax Invoice (INV)
- Default Chain of Custody (COC)
- EDI Format ENMRG (ENMRG)
- EDI Format ESDAT (ESDAT)
- EDI Format XTab (XTAB)
- Trigger Subcontract Report (SUBCO)

MR JASON FOWLER

- *AU Certificate of Analysis NATA (COA)
- *AU Interpretive QC Report DEFAULT (Anon QCI Rep) (QCI)
- *AU QC Report DEFAULT (Anon QC Rep) NATA (QC)
- A4 AU Sample Receipt Notification Environmental (SRN)
- A4 AU Tax Invoice (INV)
- Default Chain of Custody (COC)
- EDI Format ENMRG (ENMRG)
- EDI Format ESDAT (ESDAT)
- EDI Format XTab (XTAB)
- Trigger Subcontract Report (SUBCO)

adrian.a.white@ghd.com.au adrian.a.white@ghd.com.au adrian.a.white@ghd.com.au adrian.a.white@ghd.com.au adrian.a.white@ghd.com.au adrian.a.white@ghd.com.au adrian.a.white@ghd.com.au adrian.a.white@ghd.com.au adrian.a.white@ghd.com.au jason.k.fowler@ghd.com.au jason.k.fowler@ghd.com.au jason.k.fowler@ghd.com.au

jason.k.fowler@ghd.com.au jason.k.fowler@ghd.com.au jason.k.fowler@ghd.com.au jason.k.fowler@ghd.com.au jason.k.fowler@ghd.com.au jason.k.fowler@ghd.com.au

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order	EB0909974	Page	: 1 of 4
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Brisbane
Contact	: MR ADRIAN WHITE	Contact	: Tim Kilmister
Address	: P O BOX 373 GLADSTONE QLD, AUSTRALIA 4680	Address	: 32 Shand Street Stafford QLD Australia 4053
E-mail	: adrian.a.white@ghd.com.au	E-mail	: Services.Brisbane@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-7-3243 7222
Facsimile	: +61 07 4972 6236	Facsimile	: +61-7-3243 7218
Project	: 421538641 Western Basin EIS WQ Monitoring	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 24-JUN-2009
Sampler	:	Issue Date	: 02-JUL-2009
Site	:		
		No. of samples received	: 8
Quote number	: EN/005/09	No. of samples analysed	: 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Environmental Division Brisbane Part of the ALS Laboratory Group 32 Shand Street Stafford QLD Australia 4053 Tel. +61-7-3243 7222 Fax. +61-7-3243 7218 www.alsglobal.com

A Commente III Protherer Limited Commenter

A Campbell Brothers Limited Company

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Analytical Results

Sub-Matrix: MARINE WATER		Clie	ent sample ID	G-WQ-02	G-WQ-03	G-WQ-04	G-WQ-08	G-WQ-10
	Cl	ient samplii	ng date / time	23-JUN-2009 15:30				
Compound	CAS Number	LOR	Unit	EB0909974-001	EB0909974-002	EB0909974-003	EB0909974-004	EB0909974-005
EA005: pH								
pH Value		0.01	pH Unit	8.00	8.01	8.17	7.97	8.02
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	72000	72100	69600	72100	72400
EA015: Total Dissolved Solids								
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	38800	40000	39600	40400	40600
EA025: Suspended Solids								
^ Suspended Solids (SS)		1	mg/L	18	20	10	20	12
EP008: Chlorophyll a								
Chlorophyll a		1	mg/m3	<1	<1	<1	<1	<1

Analytical Results

Sub-Matrix: MARINE WATER		Clie	ent sample ID	G-WQ-11	G-WQ-12	QA-03	
	Cl	ient sampli	ng date / time	23-JUN-2009 15:30	23-JUN-2009 15:30	23-JUN-2009 15:30	
Compound	CAS Number	LOR	Unit	EB0909974-006	EB0909974-007	EB0909974-008	
EA005: pH							
pH Value		0.01	pH Unit	8.09	8.10	8.02	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	µS/cm	71900	70300	72200	
EA015: Total Dissolved Solids							
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	40000	40300	42200	
EA025: Suspended Solids							
^ Suspended Solids (SS)		1	mg/L	18	28	26	
EP008: Chlorophyll a							
Chlorophyll a		1	mg/m3	1	<1	1	

MICRONS TO MEASURE

42 Ramsden Street, Clifton Hill

Post: PO Box 335 Clifton Hill, Victoria 3068, Australia

Phone & Fax: 03-9481 3451 International: +61-3-9481 3451 Mobile: 0419 396 049

E-mail: pcresswe@bigpond.net.au www.micronstomeasure.com.au

B167

Job No:

(PEARSON CRESSWELL & ASSOCIATES P/L ABN 70 057 197 047)

ANALYSIS REPORT

Report No: 1177

ALS Environmental 32 Shand Street STAFFORD QLD 4053

Report Date: 6 July 2009 Samples Submitted: 25 June 2009

Sample ID: EB0909974

Report:

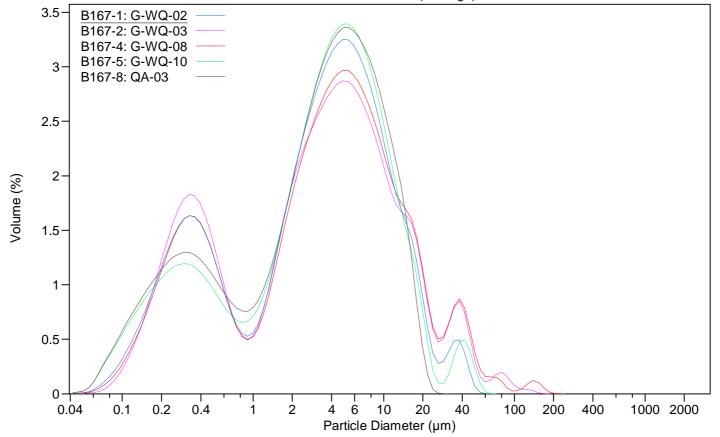
Our ID	Your ID	Mean Median		Maxima		
		microns	microns	approx		
B167-1	001: G-WQ-02	5.6	3.5	0.3, 5		
B167-2	002: G-WQ-03	7.3	3.5	0.3, 5		
B167-3	003: G-WQ-04#	Insufficient Sample				
B167-4	004: G-WQ-08	7.8	3.8	0.3, 5		
B167-5	005: G-WQ-10	5.6	3.6	0.3, 5		
B167-6	006: G-WQ-11#	Insufficient Sample				
B167-7	007: G-WQ-12#	Insufficient Sample				
B167-8	008: QA-03	4.6	3.3	0.3, 5		

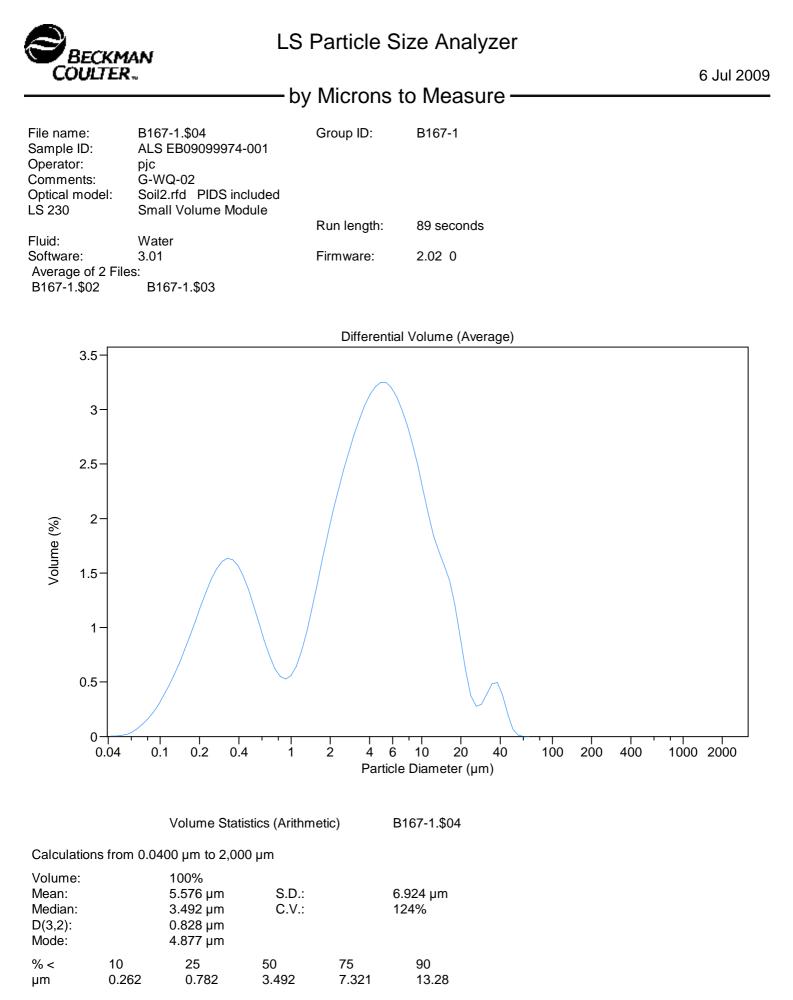
These samples contained insufficient particulates to dertermine a distribution (all were 500ml volume only).

The results for all samples are very similar. The variation is attributable to differences in the concentration of particulates in the samples; large particles are present in small numbers and are more likely to be detected when the concentration of particulates is higher. Detailed reports for each sample are attached.

Cresni D.

Dr Pearson Cresswell

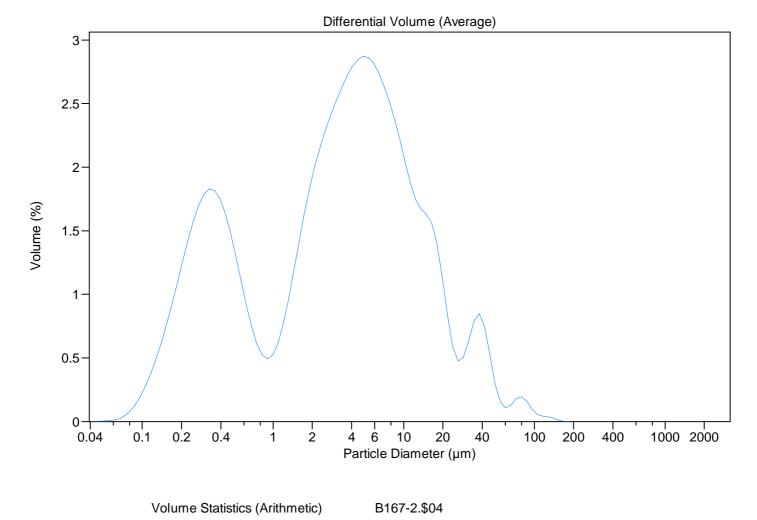

Notes: The measurements were made using a Coulter LS230 instrument. The sample was dispersed in water using sonication to aid dispersion. The distribution was calculated using a Mie Theory optical model (RI 1.55/0.1).



LS Particle Size Analyzer

by Microns to Measure

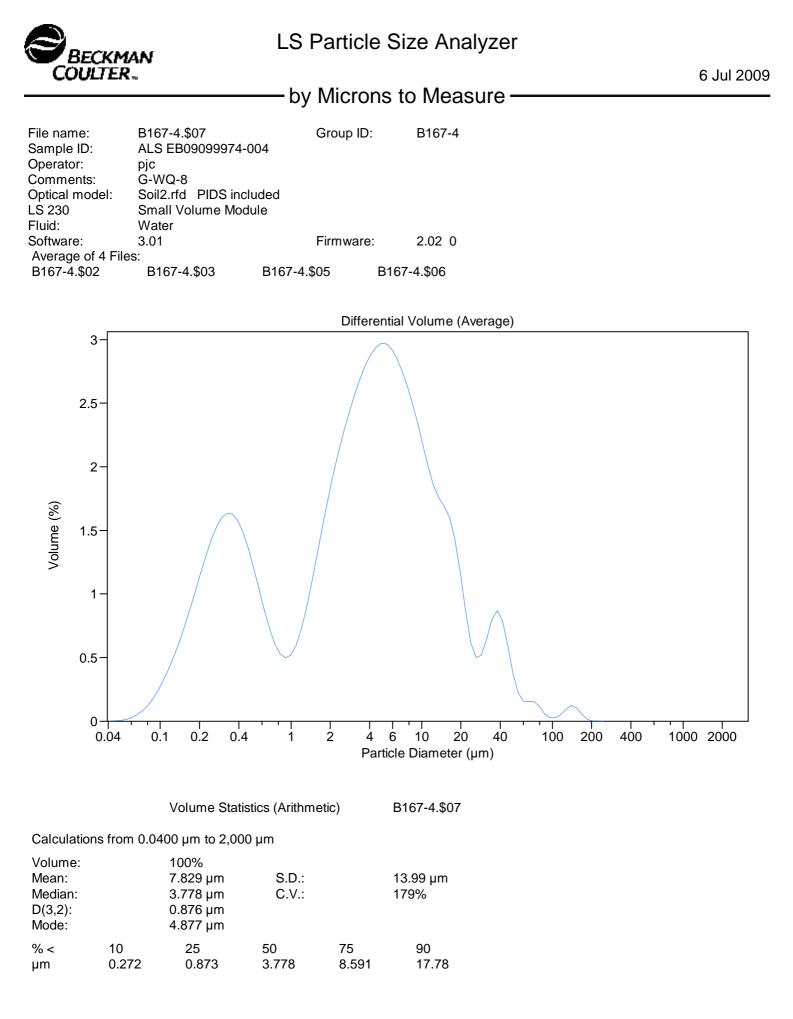
Differential Volume (Average)



- by Microns to Measure –

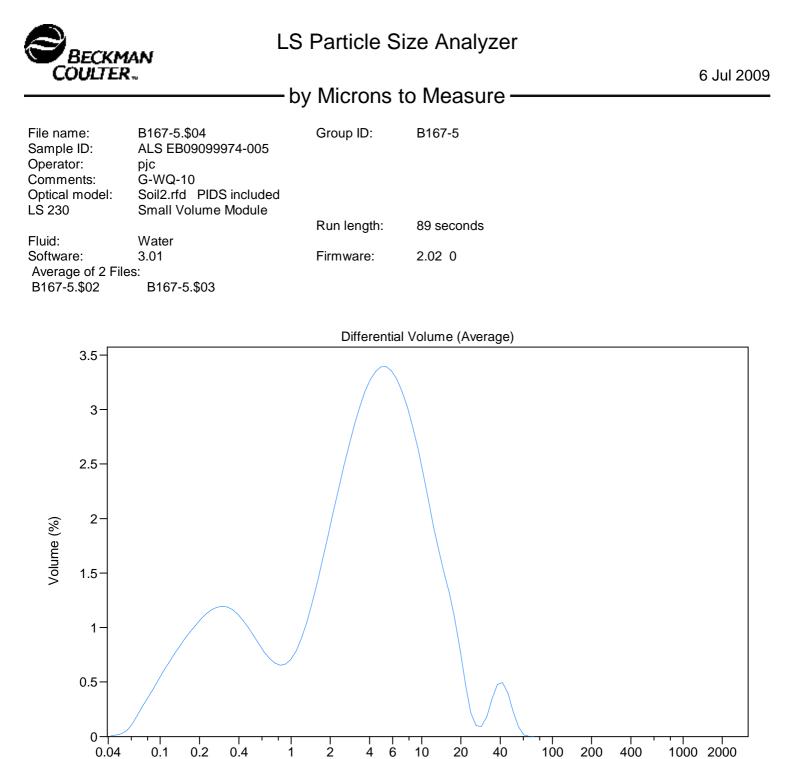
B167-1.\$04					
Channel	Diff.	Cum. <	Channel	Diff.	Cum. <
Diameter	Volume	Volume	Diameter	Volume	Volume
(Lower)	00	%	(Lower)	%	00
μm			μm		
0.040	0.0031	0	11.83	1.84	87.8
0.044	0.0050	0.0031	12.99	1.69	89.6
0.048	0.0094	0.0081	14.26	1.57	91.3
0.053 0.058	0.020 0.040	0.018 0.037	15.65 17.18	1.43 1.21	92.9 94.3
0.064	0.073	0.078	18.86	0.91	95.5
0.070	0.11	0.15	20.71	0.60	96.4
0.077	0.16	0.26	22.73	0.38	97.0
0.084 0.093	0.22 0.29	0.42 0.64	24.95 27.39	0.28 0.30	97.4 97.7
0.102	0.38	0.94	30.07	0.39	98.0
0.112	0.47	1.31	33.01	0.48	98.4
0.122 0.134	0.57 0.68	1.78 2.35	36.24 39.78	0.49 0.38	98.9 99.3
0.134	0.80	3.03	43.67	0.20	99.7
0.162	0.93	3.83	47.94	0.063	99.9
0.178	1.07	4.76	52.62	0.0095	99.99
0.195 0.214	1.20 1.33	5.82 7.02	57.77 63.41	0.00037 0	100 100
0.235	1.45	8.35	69.61	0	100
0.258	1.54	9.80	76.42	0	100
0.284 0.311	1.61 1.63	11.3 12.9	83.89 92.09	0 0	100 100
0.342	1.62	14.6	101.1	0	100
0.375	1.57	16.2	111.0	0	100
0.412 0.452	1.48 1.35	17.8 19.2	121.8 133.7	0 0	100 100
0.496	1.20	20.6	146.8	0	100
0.545	1.04	21.8	161.2	0	100
0.598	0.88 0.74	22.8 23.7	176.9	0 0	100
0.656 0.721	0.62	23.7	194.2 213.2	0	100 100
0.791	0.55	25.1	234.0	0	100
0.868	0.53	25.6	256.9	0	100
0.953 1.047	0.56 0.64	26.2 26.7	282.1 309.6	0 0	100 100
1.149	0.78	27.4	339.9	0	100
1.261	0.96	28.1	373.1	0	100
1.384 1.520	1.17 1.40	29.1 30.3	409.6 449.7	0 0	100 100
1.668	1.64	31.7	493.6	0	100
1.832	1.86	33.3	541.9	0	100
2.011 2.207	2.07 2.27	35.2 37.2	594.8 653.0	0 0	100 100
2.207	2.27	39.5	716.8	0	100
2.660	2.62	41.9	786.9	0	100
2.920	2.77	44.6	863.9	0	100
3.205 3.519	2.92 3.04	47.3 50.3	948.3 1,041	0 0	100 100
3.863	3.14	53.3	1,143	0 0	100
4.240	3.21	56.4	1,255	0	100
4.655 5.110	3.25 3.25	59.6 62.9	1,377 1,512	0 0	100 100
5.610	3.20	66.1	1,660	0	100
6.158	3.12	69.3	1,822	0	100
6.760 7.421	3.00 2.85	72.5 75.5	2,000		100
8.147	2.65	78.3			
8.943	2.48	81.0			
9.818	2.26	83.5			
10.78	2.03	85.7			

BECKMAN		S Particle S	ize Analyzer	
COULTER	2	oy Microns	to Measure ———	6 Jul 2009
File name: Sample ID: Operator: Comments: Optical model: LS 230	B167-2.\$04 ALS EB09099974-002 pjc G-WQ-03 Soil2.rfd PIDS included Small Volume Module	Group ID:	B167-2	
Fluid:	Water	Run length:	90 seconds	
Software: Average of 2 File B167-2.\$02	3.01	Firmware:	2.02 0	


Calculations from 0.0400 µm to 2,000 µm

Volume: Mean: Median: D(3,2): Mode:		100% 7.270 μm 3.504 μm 0.857 μm 4.877 μm	S.D.: C.V.:		11.99 μm 165%
% <	10	25	50	75	90
µm	0.268	0.682	3.504	8.171	17.14

- by Microns to Measure –


B167-2.\$04					
Channel	Diff.	Cum. <	Channel	Diff.	Cum. <
Diameter	Volume	Volume	Diameter	Volume	Volume
(Lower)	00	00	(Lower)	010	00
μm			μm		
0.040	0.00036	0	11.83	1.74	83.4
0.044	0.0011	0.00036	12.99	1.67	85.2
0.048	0.0029	0.0014	14.26	1.63	86.9
0.053 0.058	0.0061 0.012	0.0043 0.010	15.65 17.18	1.56 1.40	88.5 90.0
0.064	0.022	0.022	18.86	1.14	91.4
0.070	0.043	0.044	20.71	0.83	92.6
0.077 0.084	0.079 0.13	0.087 0.17	22.73 24.95	0.59 0.48	93.4 94.0
0.093	0.20	0.30	27.39	0.48	94.5
0.102	0.28	0.49	30.07	0.64	95.0
0.112	0.39	0.78	33.01	0.79	95.6
0.122 0.134	0.50 0.63	1.16 1.66	36.24 39.78	0.85 0.75	96.4 97.3
0.148	0.77	2.29	43.67	0.52	98.0
0.162	0.93	3.06	47.94	0.29	98.5
0.178 0.195	1.10 1.27	3.99 5.09	52.62 57.77	0.15 0.11	98.8 99.0
0.214	1.43	6.35	63.41	0.13	99.0 99.1
0.235	1.58	7.78	69.61	0.18	99.2
0.258	1.70	9.36	76.42	0.20	99.4
0.284 0.311	1.79 1.83	11.1 12.9	83.89 92.09	0.16 0.095	99.6 99.7
0.342	1.82	14.7	101.1	0.055	99.8
0.375	1.75	16.5	111.0	0.041	99.9
0.412 0.452	1.64 1.49	18.2 19.9	121.8 133.7	0.037 0.027	99.9 99.96
0.496	1.30	21.4	146.8	0.0087	99.99
0.545	1.11	22.7	161.2	0.0012	99.999
0.598 0.656	0.92 0.75	23.8 24.7	176.9 194.2	0 0	100 100
0.721	0.61	25.5	213.2	0	100
0.791	0.52	26.1	234.0	0	100
0.868 0.953	0.49 0.53	26.6 27.1	256.9 282.1	0 0	100 100
1.047	0.62	27.1	309.6	0	100
1.149	0.77	28.2	339.9	0	100
1.261 1.384	0.97	29.0	373.1	0	100
1.520	1.19 1.42	30.0 31.2	409.6 449.7	0 0	100 100
1.668	1.65	32.6	493.6	0	100
1.832	1.85	34.2	541.9	0	100
2.011 2.207	2.02 2.17	36.1 38.1	594.8 653.0	0 0	100 100
2.423	2.30	40.3	716.8	0	100
2.660	2.41	42.6	786.9	0	100
2.920 3.205	2.52 2.62	45.0 47.5	863.9 948.3	0 0	100 100
3.519	2.02	50.1	1,041	0	100
3.863	2.79	52.8	1,143	0	100
4.240	2.84	55.6	1,255	0	100
4.655 5.110	2.87 2.86	58.5 61.3	1,377 1,512	0 0	100 100
5.610	2.82	64.2	1,660	0	100
6.158	2.74	67.0	1,822	0	100
6.760 7.421	2.64 2.52	69.8 72.4	2,000		100
8.147	2.32	74.9			
8.943	2.22	77.3			
9.818 10.78	2.04 1.87	79.5 81.6			
10./0	1.0/	01.0			

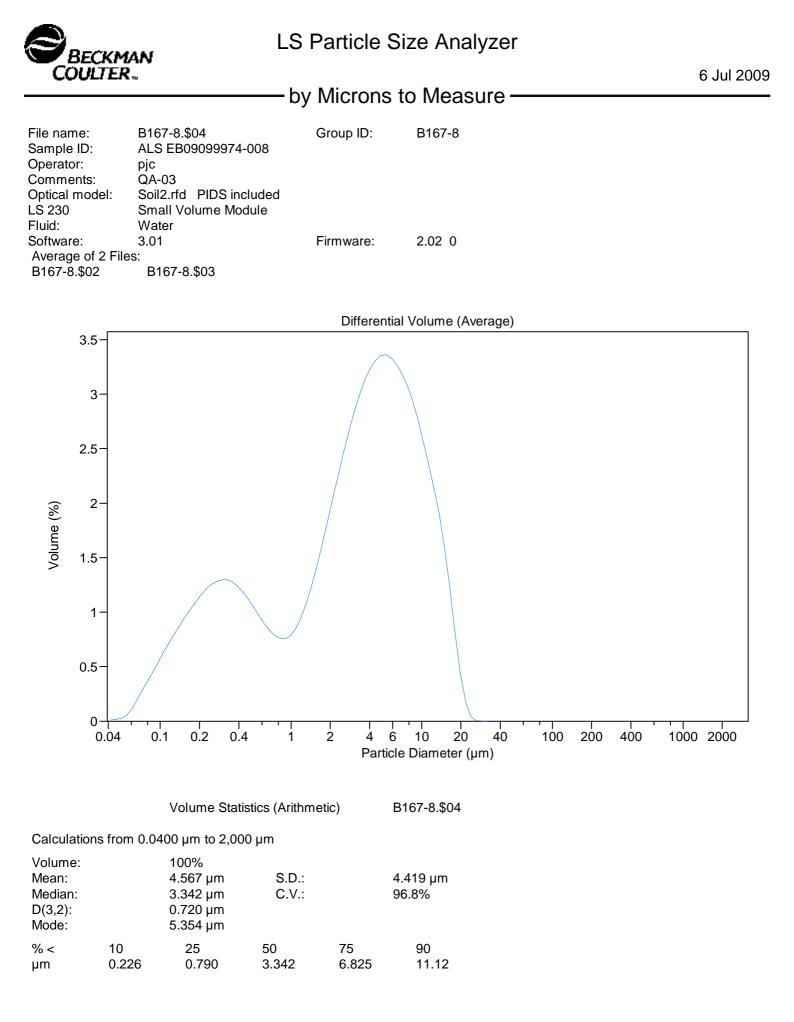
- by Microns to Measure –

B167-4.\$07					
Channel	Diff.	Cum. <	Channel	Diff.	Cum. <
Diameter	Volume	Volume	Diameter	Volume	Volume
(Lower)	00	00	(Lower)	00	00
μm			μm		
0.040	0.0021	0	11.83	1.85	82.6
0.044	0.0034	0.0021	12.99	1.75	84.4
0.048	0.0066	0.0055	14.26	1.69	86.2
0.053	0.014	0.012	15.65 17.18	1.60	87.9
0.058 0.064	0.028 0.051	0.026 0.055	18.86	1.43 1.17	89.5 90.9
0.070	0.083	0.11	20.71	0.86	92.1
0.077	0.12	0.19	22.73	0.62	93.0
0.084	0.18	0.31	24.95	0.50	93.6
0.093 0.102	0.24 0.33	0.49 0.73	27.39 30.07	0.52 0.65	94.1 94.6
0.112	0.42	1.06	33.01	0.80	95.2
0.122	0.52	1.48	36.24	0.87	96.0
0.134	0.63	1.99	39.78	0.79	96.9
0.148 0.162	0.75 0.89	2.62 3.37	43.67 47.94	0.59 0.37	97.7 98.3
0.178	1.03	4.26	52.62	0.22	98.7
0.195	1.17	5.29	57.77	0.16	98.9
0.214	1.30	6.46	63.41	0.15	99.0
0.235 0.258	1.43 1.53	7.76 9.19	69.61 76.42	0.15 0.12	99.2 99.3
0.238	1.60	10.7	83.89	0.054	99.4
0.311	1.64	12.3	92.09	0.026	99.5
0.342	1.63	14.0	101.1	0.027	99.5
0.375 0.412	1.58 1.48	15.6 17.2	111.0 121.8	0.053 0.095	99.6 99.6
0.412	1.35	18.6	133.7	0.12	99.7
0.496	1.20	20.0	146.8	0.10	99.8
0.545	1.04	21.2	161.2	0.054	99.9
0.598 0.656	0.87 0.73	22.2 23.1	176.9 194.2	0.015 0.0019	99.98 99.998
0.030	0.61	23.8	213.2	0.000037	100
0.791	0.53	24.4	234.0	0	100
0.868	0.50	25.0	256.9	0	100
0.953 1.047	0.52 0.60	25.5 26.0	282.1 309.6	0 0	100 100
1.149	0.73	26.6	339.9	0	100
1.261	0.90	27.3	373.1	0	100
1.384	1.10	28.2	409.6	0	100
1.520 1.668	1.32	29.3 30.6	449.7 493.6	0 0	100 100
1.832	1.54 1.74	32.2	541.9	0	100
2.011	1.94	33.9	594.8	0	100
2.207	2.11	35.8	653.0	0	100
2.423 2.660	2.27 2.42	38.0 40.2	716.8 786.9	0 0	100 100
2.920	2.42	40.2	863.9	0	100
3.205	2.68	45.2	948.3	0	100
3.519	2.79	47.9	1,041	0	100
3.863	2.88	50.7	1,143	0	100
4.240 4.655	2.94 2.97	53.6 56.5	1,255 1,377	0 0	100 100
5.110	2.97	59.5	1,512	0	100
5.610	2.93	62.4	1,660	0	100
6.158	2.86	65.4	1,822	0	100
6.760 7.421	2.76 2.64	68.2 71.0	2,000		100
8.147	2.50	73.6			
8.943	2.34	76.1			
9.818	2.16	78.4			
10.78	1.99	80.6			

Volume Statistics (Arithmetic)

B167-5.\$04

Particle Diameter (µm)


Calculations from 0.0400 µm to 2,000 µm

Volume:		100%			
Mean:		5.626 µm	S.D.:		7.216 µm
Median:		3.611 µm	C.V.:		128%
D(3,2):		0.765 µm			
Mode:		5.354 µm			
% <	10	25	50	75	90
μm	0.236	1.049	3.611	7.313	12.66

- by Microns to Measure –

B167-5.\$04					
Channel	Diff.	Cum. <	Channel	Diff.	Cum. <
Diameter	Volume	Volume	Diameter	Volume	Volume
(Lower)	%	90	(Lower)	olo	00
μm			μm		
0.040	0.010	0	11.83	1.92	88.6
0.044	0.015	0.010	12.99	1.69	90.5
0.048 0.053	0.025 0.053	0.025 0.050	14.26 15.65	1.50 1.30	92.2 93.7
0.058	0.11	0.10	17.18	1.08	95.0
0.064	0.19	0.21	18.86	0.79	96.1
0.070	0.28	0.41	20.71	0.47	96.9
0.077 0.084	0.36 0.43	0.68 1.04	22.73 24.95	0.22 0.098	97.4 97.6
0.093	0.52	1.47	27.39	0.091	97.7
0.102	0.60	1.99	30.07	0.18	97.8
0.112	0.68	2.60	33.01	0.34	98.0
0.122 0.134	0.75 0.83	3.28 4.04	36.24 39.78	0.48 0.50	98.3 98.8
0.148	0.90	4.86	43.67	0.40	99.3
0.162	0.96	5.76	47.94	0.23	99.7
0.178 0.195	1.02 1.08	6.72 7.74	52.62 57.77	0.088 0.017	99.9 99.98
0.214	1.13	8.82	63.41	0.0012	99.999
0.235	1.16	9.94	69.61	0	100
0.258	1.19	11.1	76.42	0	100
0.284 0.311	1.20 1.19	12.3 13.5	83.89 92.09	0 0	100 100
0.342	1.16	14.7	101.1	0	100
0.375	1.12	15.8	111.0	0	100
0.412 0.452	1.06 1.00	17.0 18.0	121.8 133.7	0 0	100 100
0.496	0.92	19.0	146.8	0	100
0.545	0.85	19.9	161.2	0	100
0.598 0.656	0.77 0.72	20.8 21.6	176.9 194.2	0 0	100 100
0.030	0.67	22.3	213.2	0	100
0.791	0.65	23.0	234.0	0	100
0.868 0.953	0.66 0.71	23.6	256.9	0 0	100
1.047	0.71	24.3 25.0	282.1 309.6	0	100 100
1.149	0.90	25.8	339.9	0	100
1.261	1.05	26.7	373.1	0	100
1.384 1.520	1.22 1.41	27.7 28.9	409.6 449.7	0 0	100 100
1.668	1.62	30.3	493.6	0	100
1.832	1.84	32.0	541.9	0	100
2.011 2.207	2.05 2.27	33.8 35.9	594.8 653.0	0 0	100
2.207	2.27 2.47	38.1	716.8	0	100 100
2.660	2.67	40.6	786.9	0	100
2.920	2.85	43.3	863.9	0	100
3.205 3.519	3.02 3.16	46.1 49.1	948.3 1,041	0 0	100 100
3.863	3.27	52.3	1,143	0	100
4.240	3.35	55.6	1,255	0	100
4.655	3.39	58.9	1,377	0	100
5.110 5.610	3.39 3.36	62.3 65.7	1,512 1,660	0 0	100 100
6.158	3.28	69.1	1,822	0	100
6.760	3.17	72.4	2,000		100
7.421 8.147	3.02 2.85	75.5 78.5			
8.943	2.65	81.4			
9.818	2.42	84.0			
10.78	2.17	86.5			

- by Microns to Measure –

B167-8.\$04					
Channel	Diff.	Cum. <	Channel	Diff.	Cum. <
Diameter	Volume	Volume	Diameter	Volume	Volume
(Lower)	00	00	(Lower)	00	00
μm			μm		
0.040	0.011	0	11.83	2.15	91.6
0.044	0.015	0.011	12.99	1.91	93.7
0.048 0.053	0.026 0.055	0.026 0.052	14.26 15.65	1.61 1.24	95.7 97.3
0.058	0.11	0.11	17.18	0.83	98.5
0.064	0.20	0.22	18.86	0.44	99.3
0.070 0.077	0.29 0.37	0.42 0.71	20.71 22.73	0.17 0.043	99.8 99.95
0.084	0.45	1.09	24.95	0.0054	99.99
0.093	0.55	1.54	27.39	0.00024	100
0.102	0.64	2.08	30.07	0	100
0.112 0.122	0.72 0.80	2.72 3.44	33.01 36.24	0 0	100 100
0.134	0.88	4.24	39.78	0	100
0.148	0.95	5.11	43.67	0	100
0.162 0.178	1.02 1.09	6.06 7.09	47.94 52.62	0 0	100 100
0.195	1.16	8.18	57.77	0	100
0.214	1.21	9.33	63.41	0	100
0.235 0.258	1.25 1.28	10.5 11.8	69.61 76.42	0 0	100 100
0.238	1.30	13.1	83.89	0	100
0.311	1.30	14.4	92.09	0	100
0.342	1.28	15.7 17.0	101.1	0 0	100
0.375 0.412	1.24 1.18	18.2	111.0 121.8	0	100 100
0.452	1.12	19.4	133.7	0	100
0.496	1.05	20.5	146.8	0	100
0.545 0.598	0.97 0.89	21.5 22.5	161.2 176.9	0 0	100 100
0.656	0.83	23.4	194.2	0	100
0.721	0.78	24.2	213.2	0	100
0.791 0.868	0.76 0.76	25.0 25.8	234.0 256.9	0 0	100 100
0.953	0.79	26.5	282.1	0	100
1.047	0.86	27.3	309.6	0	100
1.149 1.261	0.96 1.09	28.2 29.1	339.9 373.1	0 0	100 100
1.384	1.25	30.2	409.6	0	100
1.520	1.44	31.5	449.7	0	100
1.668 1.832	1.64 1.84	32.9 34.6	493.6 541.9	0 0	100 100
2.011	2.06	36.4	594.8	0	100
2.207	2.27	38.5	653.0	0	100
2.423 2.660	2.47 2.66	40.7 43.2	716.8 786.9	0 0	100 100
2.920	2.84	45.2	863.9	0	100
3.205	3.00	48.7	948.3	0	100
3.519	3.13 3.24	51.7 54.8	1,041	0 0	100 100
3.863 4.240	3.31	58.1	1,143 1,255	0	100
4.655	3.35	61.4	1,377	0	100
5.110	3.36	64.7	1,512	0 0	100
5.610 6.158	3.33 3.27	68.1 71.4	1,660 1,822	0	100 100
6.760	3.19	74.7	2,000		100
7.421	3.08	77.9			
8.147 8.943	2.94 2.77	81.0 83.9			
9.818	2.57	86.7			
10.78	2.36	89.2			

Environmental Division

QUALITY CONTROL REPORT

Work Order	: EB0909974	Page	: 1 of 5
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Brisbane
Contact	: MR ADRIAN WHITE	Contact	: Tim Kilmister
Address	: P O BOX 373	Address	: 32 Shand Street Stafford QLD Australia 4053
	GLADSTONE QLD, AUSTRALIA 4680		
E-mail	: adrian.a.white@ghd.com.au	E-mail	: Services.Brisbane@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-7-3243 7222
Facsimile	: +61 07 4972 6236	Facsimile	: +61-7-3243 7218
Project	: 421538641 Western Basin EIS WQ Monitoring	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 24-JUN-2009
Sampler	:	Issue Date	: 02-JUL-2009
Order number	:		
		No. of samples received	: 8
Quote number	: EN/005/09	No. of samples analysed	: 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

ΝΑΤΑ	NATA Accredited Laboratory 825	Signatories This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.												
NAIA	accordance with NATA	Signatories	Position	Accreditation Category										
	accreditation requirements.	Kim McCabe	Senior Inorganic Chemist	Inorganics										
WORLD RECOGNISED	Accredited for compliance with													
ACCREDITATION	ISO/IEC 17025.													
		Environmental Divi	sion Brisbane											
		Part of the ALS Labo	ratory Group											
	32 Shand Street Stafford QLD Australia 4053 Tel. +61-7-3243 7222 Fax. +61-7-3243 7218 www.alsglobal.com													

A Campbell Brothers Limited Company

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: WATER			Γ			Laboratory D	ouplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA005: pH (QC Lot:	: 1020679)								
EB0909974-001	G-WQ-02	EA005: pH Value		0.01	pH Unit	8.00	8.00	0.0	0% - 20%
EA010P: Conductivi	ty by PC Titrator (QC Lo	ot: 1020941)							
EB0909851-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	175	175	0.0	0% - 20%
EB0909974-003	G-WQ-04	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	69600	70000	0.6	0% - 20%
EA015: Total Dissol	ved Solids (QC Lot: 102	4578)							
EB0909903-001	Anonymous	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	679	695	2.3	0% - 20%
EB0910003-001	Anonymous	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	320	332	3.7	0% - 20%
EA025: Suspended	Solids (QC Lot: 1024583	3)							
EB0909934-007	Anonymous	EA025: Suspended Solids (SS)		1	mg/L	1280	1220	4.8	0% - 20%
EB0909968-002	Anonymous	EA025: Suspended Solids (SS)		1	mg/L	236	248	5.0	0% - 20%
EP008: Chlorophyll	a (QC Lot: 1021829)								
EB0909974-001	G-WQ-02	EP008: Chlorophyll a		1	mg/m3	<1	<1	0.0	No Limit
EB0909996-004	Anonymous	EP008: Chlorophyll a		1	mg/m3	<1	<1	0.0	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report							
				Report	Spike	Spike Recovery (%)	Recovery Limits (%)					
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High				
EA005: pH (QCLot: 1020679)												
EA005: pH Value		0.01	pH Unit		7.00 pH Unit	100	85	115				
EA010P: Conductivity by PC Titrator (QCLot: 10209	41)											
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	1412 µS/cm	99.3	97	103				
EA015: Total Dissolved Solids (QCLot: 1024578)												
EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	<1	2000 mg/L	94.2	85	109				
EA025: Suspended Solids (QCLot: 1024583)												
EA025: Suspended Solids (SS)		1	mg/L	<1	150 mg/L	101	82	120				
EP008: Chlorophyll a (QCLot: 1021829)												
EP008: Chlorophyll a		5	mg/m3	<5	2000 mg/m3	86.0	70.7	118				

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) Results are required to be reported.

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order	: EB0909974	Page	: 1 of 5						
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Brisbane						
Contact	: MR ADRIAN WHITE	Contact	: Tim Kilmister						
Address		Address	: 32 Shand Street Stafford QLD Australia 4053						
	GLADSTONE QLD, AUSTRALIA 4680								
E-mail	: adrian.a.white@ghd.com.au	E-mail	: Services.Brisbane@alsenviro.com						
Telephone	: +61 07 49731611	Telephone	: +61-7-3243 7222						
Facsimile	: +61 07 4972 6236	Facsimile	: +61-7-3243 7218						
Project	: 421538641 Western Basin EIS WQ Monitoring	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement						
Site	:								
C-O-C number	:	Date Samples Received	: 24-JUN-2009						
Sampler	:	Issue Date	: 02-JUL-2009						
Order number	:								
		No. of samples received	: 8						
Quote number	: EN/005/09	No. of samples analysed	: 8						

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Environmental Division Brisbane Part of the ALS Laboratory Group

32 Shand Street Stafford QLD Australia 4053 Tel. +61-7-3243 7222 Fax. +61-7-3243 7218 www.alsglobal.com

A Campbell Brothers Limited Company

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: WATER					Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005: pH								
Clear Plastic Bottle - Natural								
G-WQ-02,	G-WQ-03,	23-JUN-2009				24-JUN-2009	23-JUN-2009	*
G-WQ-04,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA-03							
EA010P: Conductivity by PC Titrator								
Clear Plastic Bottle - Natural								
G-WQ-02,	G-WQ-03,	23-JUN-2009				25-JUN-2009	21-JUL-2009	 ✓
G-WQ-04,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA-03							
EA015: Total Dissolved Solids								
Clear Plastic Bottle - Natural								
G-WQ-02,	G-WQ-03,	23-JUN-2009				30-JUN-2009	30-JUN-2009	 ✓
G-WQ-04,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA-03							
EA025: Suspended Solids								
Clear Plastic Bottle - Natural								
G-WQ-02,	G-WQ-03,	23-JUN-2009				30-JUN-2009	30-JUN-2009	 ✓
G-WQ-04,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA-03							
EP008: Chlorophyll a								
White Plastic Bottle - Unpreserved								
G-WQ-02,	G-WQ-03,	23-JUN-2009				25-JUN-2009	25-JUN-2009	✓
G-WQ-04,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA-03							

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluation	: × = Quality Co	ntrol frequency n	not within specification ; \checkmark = Quality Control frequency within specific
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Chlorophyll a	EP008	2	15	13.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	2	16	12.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
ЭН	EA005	1	8	12.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Suspended Solids	EA025	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fotal Dissolved Solids	EA015	2	20	10.0	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
Chlorophyll a	EP008	1	15	6.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	1	16	6.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
рН	EA005	2	8	25.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Suspended Solids	EA025	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids	EA015	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Chlorophyll a	EP008	1	15	6.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	1	16	6.3	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Suspended Solids	EA025	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids	EA015	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
рН	EA005	WATER	APHA 21st ed. 4500 H+ B. pH of water samples is determined by ISE either manually or by automated pH
			meter. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Conductivity by PC Titrator	EA010-P	WATER	APHA 21st ed., 2510 B This procedure determines conductivity by automated ISE. This method is compliant with
			NEPM (1999) Schedule B(3) (Appdx. 2)
Total Dissolved Solids	EA015	WATER	APHA 21st ed., 2540C A gravimetric procedure that determines the amount of `filterable` residue in an aqueous
			sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness
			and dried to constant weight at 180+5C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Suspended Solids	EA025	WATER	APHA 21st ed., 2540D A gravimetric procedure employed to determine the amount of `non-filterable` residue in a
			aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed
			prior to analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Chlorophyll a	EP008	WATER	In-house (APHA 21st ed., 10200 H mod.) The pigments are extracted into aqueous acetone. The optical density
			of the extract before and after acidification at both 664 nm and 665 nm is determined spectrometrically.
Particle Size Analysis (Water)	PSA-WAT	WATER	Particle Size Analysis of water matrices conducted by Subcontracting Laboratory

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Matrix: WATER

Method		E	traction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days	
				overdue			overdue	
EA005: pH								
Clear Plastic Bottle - Natural								
G-WQ-02,	G-WQ-03,				24-JUN-2009	23-JUN-2009	1	
G-WQ-04,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA-03							

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

ľ	(5 19)	
		1

Chain of Custody & Analysis Request

Page _1_ of _1_

Chain of Custody Number:

			· · · · · · · · · · · · · · · · · · ·		GHD)											
PROJECT ID:	4215386 41	QUOTE:			LABORA	And Good at							6 18 C. 18		1. 10 to 1		
PROJECT:	Western Basin EIS W				LABUKA	<u>si GRAJ</u>	SAILC	HNU.							ÖNÉY		
CLIENT:	GHD				GOOLER		1.97. . 91. dia	in tere		1997 - 19			EOR IE	ABUSE	ONLY		
POSTAL ADDRESS:	PO Box 373, Gladstone	+ 4680			COULER	COLEAL.											COOLER TEMP:
CONTACT:	Adrian White				- Alexandre	e tes				No				a dre des San San			deg(C
PHONE:	41203566	FAX:	07) 49726236		DESPAT	Broke		2) ·	Accession and an and		atories	S. Ar	ferender af	1412		S all and	
EMAIL:	Jason.K.Fowler@c	hd.com.au, Adr	ian.A.White@ghd.co	m.au	DESFAI	CHEDI	0.				STREE	STAR	FOP		4053		
INVOICE:	Jason.K.Fowler@c	hd.com.au, Adr	ian.A.White@ghd.co	m.au						3-7222	UTILL	0171			4000		
DATA NEEDED BY:													ANALY	SIS RE	QUIRED)	
REPORT FORMAT:																Ĩ	
EMAIL FORMAT:	ESDAT, EXCEL & PDF																
COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: Water samples from a marine environment (Background sampling)					()			ty (EA010)									
	SES PROVIDED AB		u samping)		TSS (EA025)	Chlorophyll a (EP008)	pH (EA005)	TDS (EA015)	Electrical Conductivity (EA010)	on WATER							
SAMPLE ID	MATRIX	DATE	DETECTION LIMIT	PRESERVATION	SS (Chlor	<u>U</u> <u>T</u>) sa	ilectr	PSD c							
G-WQ-01	Water	24/06/2009	LOR	As Required	 X	x x	x	x	×	X						+ +	
G-WQ-05	Water	24/06/2009	LOR	As Required	x	x	x	x	Ŷ	x				-+-			
G-WQ-06	Water	24/06/2009	LOR	As Required	x	x	^ x	x	^ X	×		_	_		+	╉╼┨	· · · · · · · · · · · · · · · · · · ·
G-WQ-07	Water	24/06/2009	LOR	As Required	x	T x	x	x	x	x					-	+	 Environmental Division
G-WQ-09	Water	24/06/2009	LOR	As Required	x	x	x	x	x	x		-				╁╶╂	_ 🕅 Brisbane _
QA-04	Water	24/06/2009	LOR	As Required	x	x	Îx	x	Ŷ	x				-+-		┝──┼	– ^C Work Order .
		•		pio rioquioù	^	1 ^	<u> </u>			_^_							- EB0909996
	RELINQUISHED BY:												REC	EIVED	BY:		
NAME: J Fowler		DATE: 24/06/2009						NAME : DATE:									
OF: GHD Gladstor			30		OF:						1.		TiM				
	ETED ANALYSIS REQU			Jason.K.Fowler@ghd.com.au,	Adrian.A.WI	nite@c	hd.c	om.a	u								
*Container Type and Pre	servative Codes: P = Neu	ıtral Plastic; N = Nitr	ic Acid Preserved; C = Sc	dium Hydroxide Preserved; J = Solvent	t Washed Acid	Rinced	lar: S	= Solv	ent W	ashed A	cid Rinced	Glass B	ottle:				—
VC = Hydrochloric Acid F	Preserved Vial; VS = Sulfu	ric Acid Preserved	Vial; BS = Sulfuric Acid P	reserved Glass Bottle; Z = Zinc Acetate	e Preserved Bo	ttle; E =	EDTA	Pres	erved	Bottles;	ST = Sterile	Bottle:					Telephone: +61-7-3243 7222
O = Other.									-	-,	- 19/14						·

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order	: EB09	09996		
Client Contact Address	: MR AD : P O BC	ERVICES PTY LTD RIAN WHITE DX 373 STONE QLD, AUSTRALIA 4680	Laboratory Contact Address	 Environmental Division Brisbane Tim Kilmister 32 Shand Street Stafford QLD Australia 4053
E-mail Telephone Facsimile	: +61 07	a.white@ghd.com.au 49731611 4972 6236	E-mail Telephone Facsimile	: Services.Brisbane@alsenviro.com : +61-7-3243 7222 : +61-7-3243 7218
Project Order number	Monitoring		Page	: 1 of 2
C-O-C number Site	:		Quote number	: EM2009GHDSER0392 (EN/005/09)
Sampler	:		QC Level	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dates				
Date Samples Recei Client Requested Du		: 25-JUN-2009 : 02-JUL-2009	Issue Date Scheduled Reporti	25-JUN-2009 16:58 ng Date : 02-JUL-2009
Delivery Deta	ils			
Mode of Delivery No. of coolers/boxes		: Carrier	Temperature	:
No. of coolers/boxes Sercurity Seal		: : Intact.	No. of samples rec No. of samples and	

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Breaches in recommended extraction / analysis holding times may occur.
- pH holding time is six hours after sampling.
- Particle Sizing by laser light scattering has been subcontracted to "Microns to Measure".
- Please be advised tha sample G-WQ-A9 was labelled as G-WQ-09.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Maggie Kahi.
- Analytical work for this work order will be conducted at ALS Brisbane.
- Sample Disposal Aqueous (14 days), Solid (90 days) from date of completion of work order.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process neccessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. When date(s) and/or time(s) are shown bracketed, these

have been assumed by the laboratory for processing Hd purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

VATER - PSA-WAT (Subcontracted) Particle Size Analysis (Water) otal Dissolved Solids VATER - EA010P Suspended Solids **VATER - EA015** Conductivity (PC) **VATER - EA005 VATER - EA025 VATER - EP008** Chlorophyll a Matrix: WATER Client sample ID Laboratory sample Client sampling חו date / time H EB0909996-001 [24-JUN-2009] G-WQ-01 ~ ~ ~ ~ ~ 1 ~ ✓ ✓ √ √ ✓ EB0909996-002 G-WQ-05 [24-JUN-2009] ✓ EB0909996-003 G-WQ-06 1 1 ~ 1 1 [24-JUN-2009] √ ✓ √ √ √ √ EB0909996-004 [24-JUN-2009] G-WQ-07 EB0909996-005 ✓ ~ ✓ G-WQ-19 1 1 1 [24-JUN-2009] 1 ✓ √ ~ ✓ 1 EB0909996-006 [24-JUN-2009] QA-04

Requested Deliverables

MR ADRIAN WHITE

 *AU Certificate of Analysis - NATA (COA) 	Email	adrian.a.white@ghd.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	adrian.a.white@ghd.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	adrian.a.white@ghd.com.au
- A4 - AU Sample Receipt Notification - Environmental (SRN)	Email	adrian.a.white@ghd.com.au
- A4 - AU Tax Invoice (INV)	Email	adrian.a.white@ghd.com.au
- Default - Chain of Custody (COC)	Email	adrian.a.white@ghd.com.au
- EDI Format - ENMRG (ENMRG)	Email	adrian.a.white@ghd.com.au
- EDI Format - ESDAT (ESDAT)	Email	adrian.a.white@ghd.com.au
 Trigger - Subcontract Report (SUBCO) 	Email	adrian.a.white@ghd.com.au
MR JASON FOWLER		
 *AU Certificate of Analysis - NATA (COA) 	Email	jason.k.fowler@ghd.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	jason.k.fowler@ghd.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	jason.k.fowler@ghd.com.au
- A4 - AU Sample Receipt Notification - Environmental (SRN)	Email	jason.k.fowler@ghd.com.au
- Default - Chain of Custody (COC)	Email	jason.k.fowler@ghd.com.au
- EDI Format - ENMRG (ENMRG)	Email	jason.k.fowler@ghd.com.au
- EDI Format - ESDAT (ESDAT)	Email	jason.k.fowler@ghd.com.au
- Trigger - Subcontract Report (SUBCO)	Email	jason.k.fowler@ghd.com.au

MICRONS TO MEASURE

42 Ramsden Street, Clifton Hill

Post: PO Box 335 Clifton Hill, Victoria 3068, Australia

Phone & Fax: 03-9481 3451 International: +61-3-9481 3451 Mobile: 0419 396 049

E-mail: pcresswe@bigpond.net.au www.micronstomeasure.com.au

B168

Job No:

(PEARSON CRESSWELL & ASSOCIATES P/L ABN 70 057 197 047)

ANALYSIS REPORT

Report No: 1178

ALS Environmental 32 Shand Street STAFFORD QLD 4053

Report Date: 6 July 2009 Samples Submitted: 26 June 2009

Sample ID: EB0909996

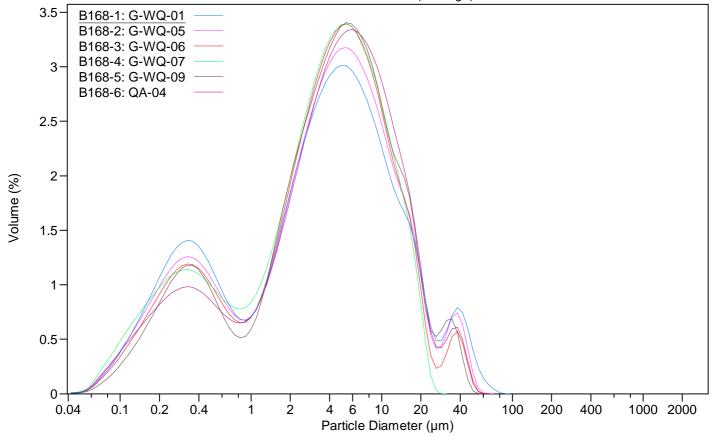
Report:

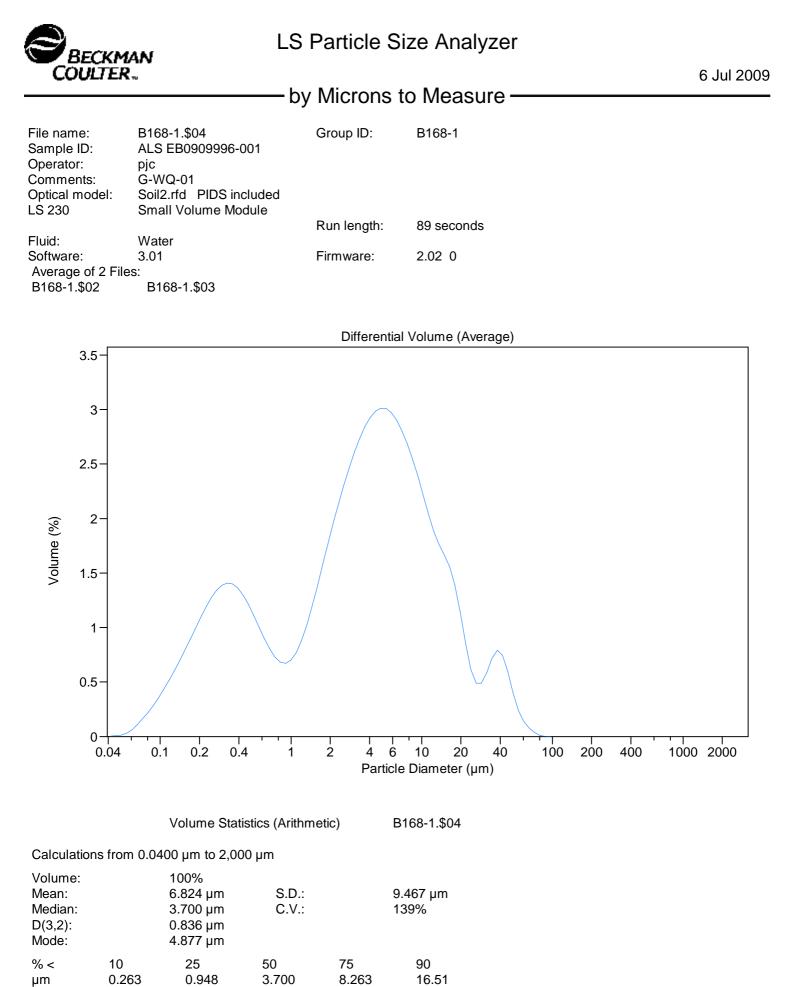
Our ID	Your ID	Mean	Median	Maxima
		microns	microns	approx
B168-1	001: G-WQ-01	6.8	3.7	0.3, 5
B168-2	002: G-WQ-05	6.5	3.9	0.3, 5
B168-3	003: G-WQ-06	6.0	3.9	0.3, 5
B168-4	004: G-WQ-07	4.9	3.6	0.3, 5
B168-5	005: G-WQ-09	6.4	4.2	0.3, 5
B168-6	008: QA-04	6.6	4.3	0.3, 5

The results for all samples are very similar. The variation is attributable to differences in the concentration of particulates in the samples; large particles are present in small numbers and are more likely to be detected when the concentration of particulates is higher. Detailed reports for each sample are attached.

Cresnic Q.

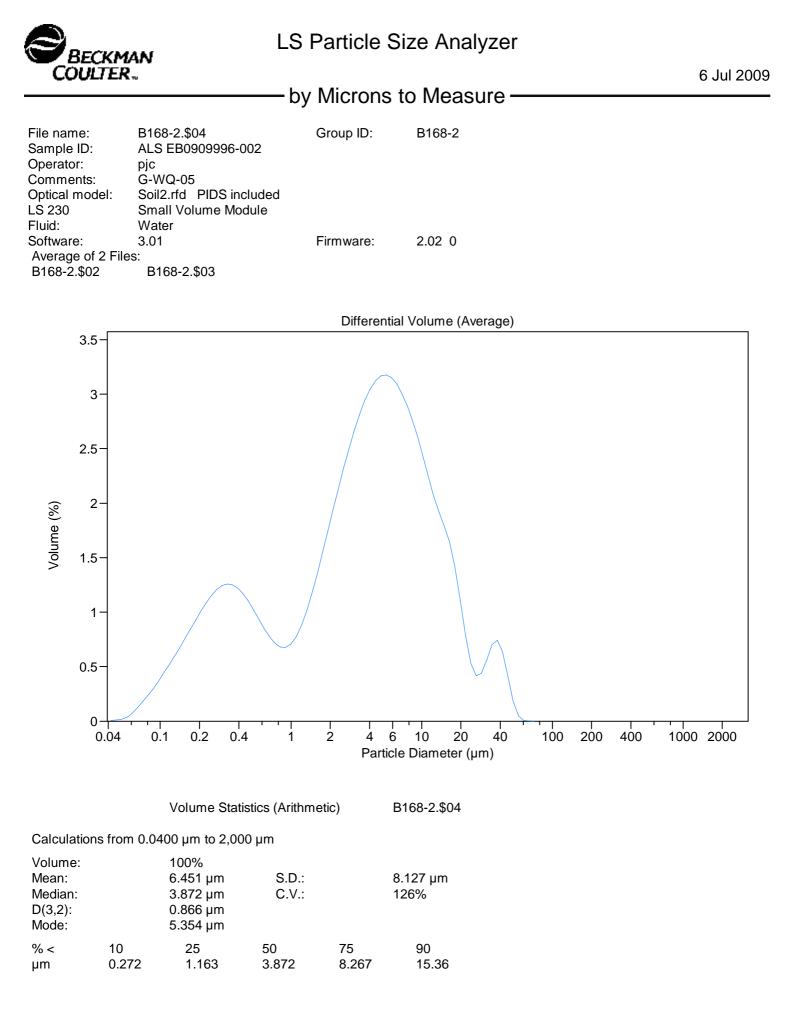
Dr Pearson Cresswell

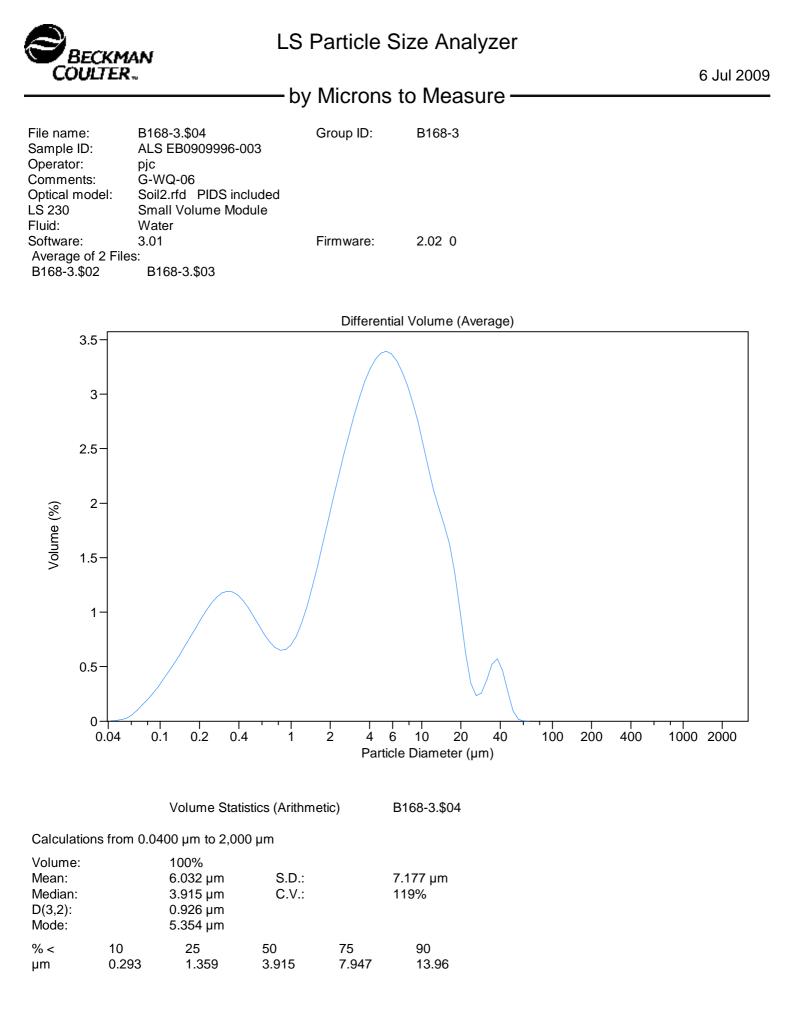

Notes: The measurements were made using a Coulter LS230 instrument. The sample was dispersed in water using sonication to aid dispersion. The distribution was calculated using a Mie Theory optical model (RI 1.55/0.1).



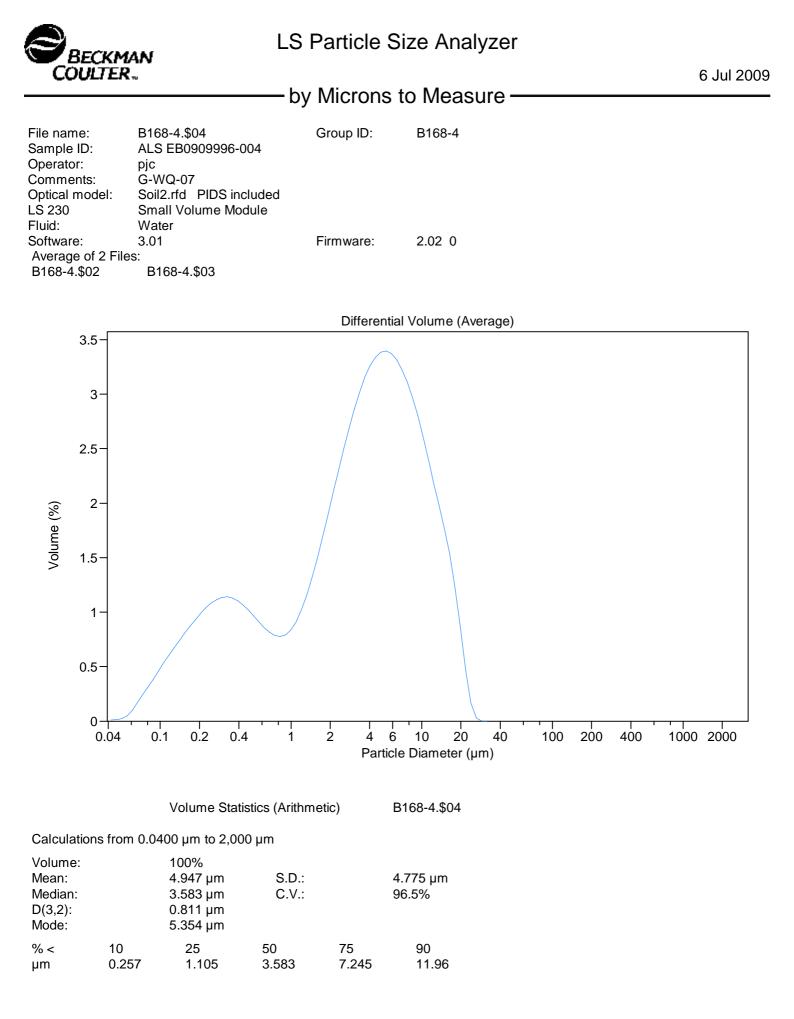
LS Particle Size Analyzer

by Microns to Measure —

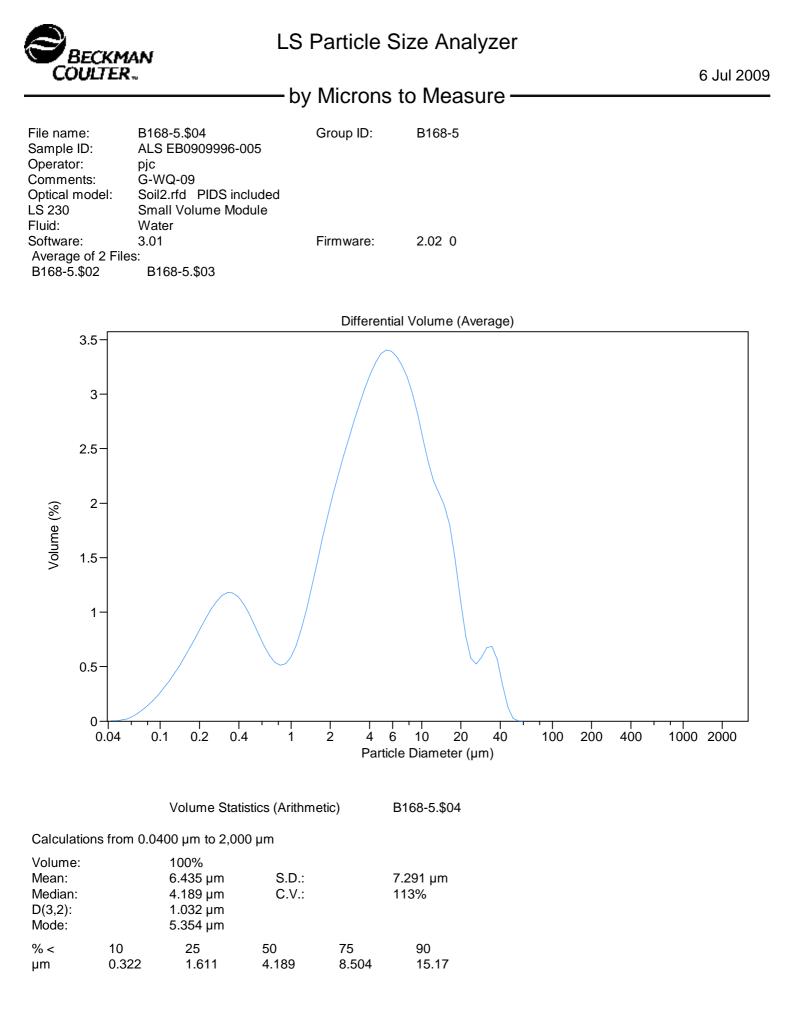

Differential Volume (Average)



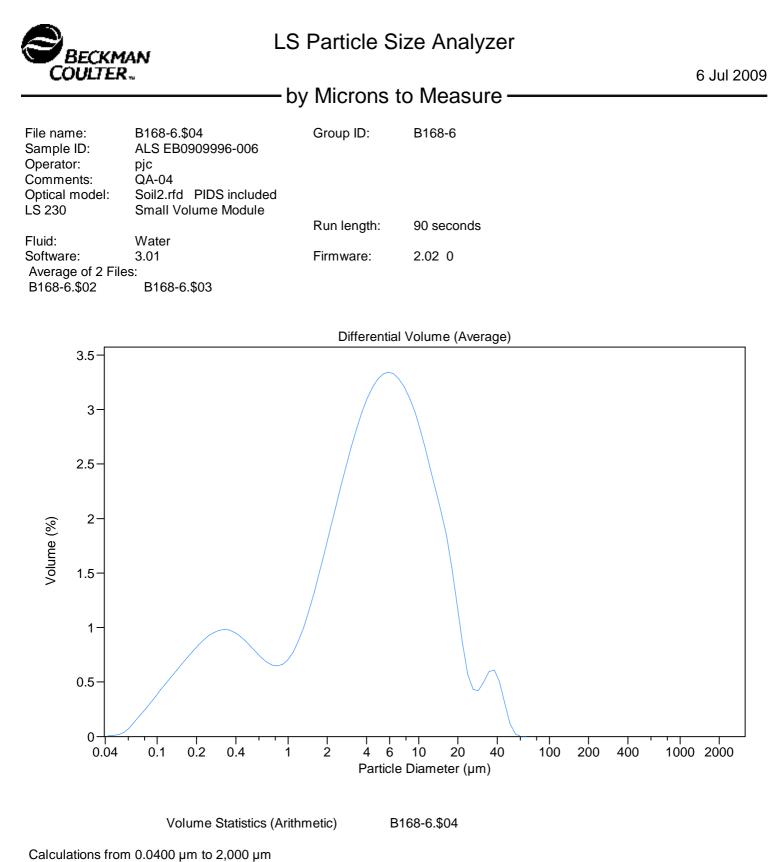
B168-1.\$04					
Channel	Diff.	Cum. <	Channel	Diff.	Cum. <
Diameter	Volume	Volume	Diameter	Volume	Volume
(Lower)	00	00	(Lower)	010	00
μm			μm		
0.040	0.0053	0	11.83	1.88	83.8
0.044	0.0080	0.0053	12.99	1.76	85.7
0.048	0.014	0.013	14.26	1.67	87.5
0.053 0.058	0.030 0.062	0.028 0.058	15.65 17.18	1.56 1.39	89.1 90.7
0.064	0.11	0.12	18.86	1.14	92.1
0.070	0.16	0.23	20.71	0.85	93.2
0.077 0.084	0.22 0.28	0.39 0.61	22.73 24.95	0.61 0.49	94.1 94.7
0.093	0.35	0.89	27.39	0.49	95.2
0.102	0.43	1.25	30.07	0.59	95.7
0.112	0.52	1.68	33.01	0.72	96.3
0.122 0.134	0.60 0.69	2.20 2.80	36.24 39.78	0.79 0.74	97.0 97.8
0.148	0.79	3.49	43.67	0.59	98.5
0.162	0.89	4.28	47.94	0.40	99.1
0.178 0.195	0.99 1.09	5.18 6.17	52.62 57.77	0.24 0.14	99.5 99.7
0.214	1.19	7.27	63.41	0.078	99.9
0.235	1.27	8.46	69.61	0.039	99.9
0.258	1.34	9.73	76.42	0.0099	99.99
0.284 0.311	1.39 1.41	11.1 12.5	83.89 92.09	0.0012	99.999 100
0.342	1.40	13.9	101.1	0	100
0.375	1.36	15.3	111.0	0	100
0.412 0.452	1.30 1.21	16.6 17.9	121.8 133.7	0 0	100 100
0.496	1.11	19.1	146.8	0	100
0.545	1.00	20.3	161.2	0	100
0.598 0.656	0.90 0.81	21.3 22.2	176.9 194.2	0 0	100 100
0.721	0.73	23.0	213.2	0	100
0.791	0.68	23.7	234.0	0	100
0.868	0.67	24.4	256.9	0 0	100
0.953 1.047	0.70 0.77	25.0 25.7	282.1 309.6	0	100 100
1.149	0.88	26.5	339.9	0	100
1.261	1.02	27.4	373.1	0	100
1.384 1.520	1.19 1.38	28.4 29.6	409.6 449.7	0 0	100 100
1.668	1.57	31.0	493.6	0	100
1.832	1.77	32.6	541.9	0	100
2.011 2.207	1.95 2.13	34.3 36.3	594.8 653.0	0 0	100 100
2.207	2.15	38.4	716.8	0	100
2.660	2.46	40.7	786.9	0	100
2.920 3.205	2.60 2.73	43.2 45.8	863.9	0 0	100 100
3.519	2.73	45.8	948.3 1,041	0	100
3.863	2.93	51.3	1,143	0	100
4.240	2.98	54.3	1,255	0	100
4.655 5.110	3.01 3.01	57.3 60.3	1,377 1,512	0 0	100 100
5.610	2.97	63.3	1,660	0	100
6.158	2.90	66.2	1,822	0	100
6.760 7.421	2.80 2.68	69.1 71.9	2,000		100
8.147	2.54	74.6			
8.943	2.39	77.2			
9.818 10.78	2.22 2.04	79.6 81.8			
	2.01	01.0			



B168-2.\$04					
Channel	Diff.	Cum. <	Channel	Diff.	Cum. <
Diameter	Volume	Volume	Diameter	Volume	Volume
(Lower)	%	00	(Lower)	00	00
μm			μm		
0.040	0.0061	0	11.83	2.06	84.6
0.044	0.0089	0.0061	12.99	1.92	86.7
0.048	0.016	0.015	14.26	1.79	88.6
0.053 0.058	0.033 0.068	0.031 0.064	15.65 17.18	1.64 1.42	90.4 92.0
0.064	0.12	0.13	18.86	1.11	93.4
0.070	0.18	0.25	20.71	0.78	94.5
0.077 0.084	0.24 0.30	0.43 0.67	22.73 24.95	0.53 0.41	95.3 95.9
0.093	0.37	0.96	27.39	0.44	96.3
0.102	0.44	1.33	30.07	0.56	96.7
0.112	0.52	1.77	33.01	0.70	97.3
0.122 0.134	0.59 0.67	2.29 2.88	36.24 39.78	0.74 0.63	98.0 98.7
0.148	0.76	3.55	43.67	0.41	99.4
0.162	0.84	4.31	47.94	0.18	99.8
0.178 0.195	0.93 1.01	5.15 6.08	52.62 57.77	0.047 0.0060	99.9 99.99
0.214	1.09	7.08	63.41	0.00021	100
0.235	1.15	8.17	69.61	0	100
0.258	1.21 1.24	9.32	76.42	0	100
0.284 0.311	1.24	10.5 11.8	83.89 92.09	0 0	100 100
0.342	1.25	13.0	101.1	0	100
0.375	1.22	14.3	111.0	0	100
0.412 0.452	1.17 1.10	15.5 16.7	121.8 133.7	0 0	100 100
0.496	1.02	17.8	146.8	0	100
0.545	0.93	18.8	161.2	0	100
0.598 0.656	0.85 0.77	19.7 20.6	176.9 194.2	0 0	100 100
0.721	0.72	21.3	213.2	0	100
0.791	0.68	22.1	234.0	0	100
0.868 0.953	0.68 0.71	22.7 23.4	256.9 282.1	0 0	100 100
1.047	0.77	24.1	309.6	0	100
1.149	0.88	24.9	339.9	0	100
1.261 1.384	1.01 1.17	25.8 26.8	373.1 409.6	0 0	100 100
1.520	1.35	28.0	449.7	0	100
1.668	1.55	29.3	493.6	0	100
1.832 2.011	1.75 1.94	30.9 32.6	541.9 594.8	0 0	100 100
2.207	2.14	34.5	653.0	0	100
2.423	2.32	36.7	716.8	0	100
2.660 2.920	2.50 2.67	39.0 41.5	786.9 863.9	0 0	100 100
3.205	2.82	44.2	948.3	0	100
3.519	2.94	47.0	1,041	0	100
3.863	3.05	49.9	1,143	0	100
4.240 4.655	3.12 3.17	53.0 56.1	1,255 1,377	0 0	100 100
5.110	3.18	59.3	1,512	0	100
5.610	3.15	62.4	1,660	0	100
6.158 6.760	3.09 3.00	65.6 68.7	1,822 2,000	0	100 100
7.421	2.89	71.7	_,		±00
8.147	2.76	74.6			
8.943 9.818	2.60 2.42	77.3 79.9			
10.78	2.24	82.4			



B168-3.\$04					
Channel	Diff.	Cum. <	Channel	Diff.	Cum. <
Diameter	Volume	Volume	Diameter	Volume	Volume
(Lower)	00	00	(Lower)	00	00
μm			μm		
0.040	0.0051	0	11.83	2.12	86.4
0.044	0.0075	0.0051	12.99	1.95	88.5
0.048	0.013	0.013	14.26	1.80	90.5
0.053 0.058	0.028 0.058	0.026 0.054	15.65 17.18	1.62 1.36	92.3 93.9
0.064	0.10	0.11	18.86	1.00	95.2
0.070	0.15	0.21	20.71	0.62	96.2
0.077 0.084	0.20 0.26	0.37 0.57	22.73 24.95	0.35 0.23	96.9 97.2
0.093	0.32	0.82	27.39	0.25	97.2
0.102	0.39	1.14	30.07	0.38	97.7
0.112	0.46	1.53	33.01	0.52	98.1
0.122 0.134	0.53 0.61	1.99 2.52	36.24 39.78	0.57 0.47	98.6 99.2
0.148	0.69	3.13	43.67	0.27	99.6
0.162	0.77	3.82	47.94	0.093	99.9
0.178 0.195	0.85 0.94	4.59	52.62 57.77	0.016 0.00090	99.98 99.999
0.195	1.01	5.44 6.38	63.41	0.00090	100
0.235	1.08	7.39	69.61	0	100
0.258	1.14	8.47	76.42	0	100
0.284 0.311	1.17 1.19	9.61 10.8	83.89 92.09	0 0	100 100
0.342	1.19	12.0	101.1	0	100
0.375	1.16	13.2	111.0	0	100
0.412 0.452	1.11 1.04	14.3 15.4	121.8 133.7	0 0	100 100
0.496	0.96	16.5	146.8	0	100
0.545	0.88	17.4	161.2	0	100
0.598 0.656	0.80 0.73	18.3 19.1	176.9 194.2	0 0	100 100
0.721	0.68	19.8	213.2	0	100
0.791	0.65	20.5	234.0	0	100
0.868 0.953	0.66 0.70	21.2 21.8	256.9 282.1	0 0	100 100
1.047	0.78	22.5	309.6	0	100
1.149	0.89	23.3	339.9	0	100
1.261	1.04	24.2	373.1	0	100
1.384 1.520	1.22 1.41	25.2 26.4	409.6 449.7	0 0	100 100
1.668	1.62	27.9	493.6	0	100
1.832	1.83	29.5	541.9	0	100
2.011 2.207	2.04 2.24	31.3 33.3	594.8 653.0	0 0	100 100
2.207	2.24 2.44	35.6	716.8	0	100
2.660	2.63	38.0	786.9	0	100
2.920	2.81	40.7	863.9	0	100
3.205 3.519	2.97 3.12	43.5 46.4	948.3 1,041	0 0	100 100
3.863	3.23	49.6	1,143	0	100
4.240	3.32	52.8	1,255	0	100
4.655 5.110	3.38 3.39	56.1 59.5	1,377 1,512	0 0	100 100
5.610	3.39	62.9	1,660	0	100
6.158	3.31	66.3	1,822	0	100
6.760	3.21	69.6 72.8	2,000		100
7.421 8.147	3.08 2.93	72.8 75.8			
8.943	2.75	78.8			
9.818	2.54	81.5			
10.78	2.32	84.1			



B168-4.\$04					
Channel	Diff.	Cum. <	Channel	Diff.	Cum. <
Diameter	Volume	Volume	Diameter	Volume	Volume
(Lower)	00	00	(Lower)	00	00
μm			μm		
0.040	0.0089	0	11.83	2.18	89.7
0.044	0.013	0.0089	12.99	1.98	91.9
0.048	0.022	0.021	14.26	1.77	93.9
0.053 0.058	0.046 0.095	0.043 0.090	15.65 17.18	1.54 1.24	95.7 97.2
0.064	0.17	0.18	18.86	0.87	98.5
0.070	0.24	0.35	20.71	0.47	99.3
0.077 0.084	0.31 0.38	0.60 0.91	22.73 24.95	0.17 0.031	99.8 99.97
0.093	0.38	1.29	27.39	0.0022	99.998
0.102	0.53	1.75	30.07	0	100
0.112	0.61	2.28	33.01	0	100
0.122 0.134	0.67 0.74	2.89 3.56	36.24 39.78	0 0	100 100
0.148	0.81	4.30	43.67	0	100
0.162	0.87	5.11	47.94	0	100
0.178 0.195	0.93 0.99	5.99 6.92	52.62 57.77	0 0	100 100
0.214	1.04	7.91	63.41	0	100
0.235	1.09	8.95	69.61	0	100
0.258	1.12	10.0	76.42	0	100
0.284 0.311	1.13 1.14	11.2 12.3	83.89 92.09	0 0	100 100
0.342	1.13	13.4	101.1	0	100
0.375	1.10	14.6	111.0	0	100
0.412 0.452	1.07 1.02	15.7 16.7	121.8 133.7	0 0	100 100
0.496	0.96	17.7	146.8	0	100
0.545	0.91	18.7	161.2	0	100
0.598 0.656	0.86 0.81	19.6 20.5	176.9 194.2	0 0	100 100
0.721	0.79	21.3	213.2	0	100
0.791	0.78	22.1	234.0	0	100
0.868 0.953	0.79 0.84	22.9 23.6	256.9 282.1	0 0	100 100
1.047	0.91	24.5	309.6	0	100
1.149	1.02	25.4	339.9	0	100
1.261 1.384	1.16 1.32	26.4 27.6	373.1 409.6	0 0	100 100
1.520	1.49	28.9	409.0	0	100
1.668	1.69	30.4	493.6	0	100
1.832	1.89	32.1	541.9	0	100
2.011 2.207	2.09 2.30	34.0 36.1	594.8 653.0	0 0	100 100
2.423	2.50	38.3	716.8	0	100
2.660	2.68	40.8	786.9	0	100
2.920 3.205	2.86 3.02	43.5 46.4	863.9 948.3	0 0	100 100
3.519	3.15	49.4	1,041	0	100
3.863	3.26	52.6	1,143	0	100
4.240	3.34 3.39	55.8	1,255	0 0	100
4.655 5.110	3.40	59.2 62.6	1,377 1,512	0	100 100
5.610	3.37	66.0	1,660	0	100
6.158	3.31	69.3 72.6	1,822	0	100
6.760 7.421	3.22 3.11	72.6 75.9	2,000		100
8.147	2.97	79.0			
8.943	2.80	81.9			
9.818 10.78	2.61 2.40	84.7 87.3			
10.70	2.10	07.5			

B168-5.\$04					
Channel	Diff.	Cum. <	Channel	Diff.	Cum. <
Diameter	Volume	Volume	Diameter	Volume	Volume
(Lower)	00	0	(Lower)	00	00
μm			μm		
0.040	0.0033	0	11.83	2.20	84.4
0.044	0.0050	0.0033	12.99	2.09	86.6
0.048	0.0090	0.0083	14.26	1.98	88.7
0.053 0.058	0.019 0.039	0.017 0.037	15.65 17.18	1.80 1.50	90.7 92.5
0.064	0.070	0.076	18.86	1.13	94.0
0.070	0.11	0.15	20.71	0.79	95.1
0.077 0.084	0.14 0.19	0.25 0.40	22.73 24.95	0.58 0.52	95.9 96.5
0.093	0.24	0.58	27.39	0.52	97.0
0.102	0.30	0.83	30.07	0.67	97.6
0.112	0.37	1.13	33.01	0.69	98.3
0.122 0.134	0.44 0.51	1.50 1.93	36.24 39.78	0.56 0.33	99.0 99.5
0.148	0.59	2.44	43.67	0.13	99.8
0.162	0.68	3.03	47.94	0.024	99.97
0.178	0.77 0.86	3.71 4.48	52.62	0.0017	99.998
0.195 0.214	0.88	5.34	57.77 63.41	0 0	100 100
0.235	1.03	6.29	69.61	0	100
0.258	1.10	7.32	76.42	0	100
0.284 0.311	1.15 1.18	8.42 9.57	83.89 92.09	0 0	100 100
0.342	1.18	10.8	101.1	0	100
0.375	1.14	11.9	111.0	0	100
0.412 0.452	1.08 1.00	13.1 14.2	121.8 133.7	0 0	100 100
0.496	0.90	15.2	146.8	0	100
0.545	0.79	16.0	161.2	0	100
0.598 0.656	0.69 0.60	16.8 17.5	176.9 194.2	0 0	100 100
0.030	0.54	18.1	213.2	0	100
0.791	0.51	18.7	234.0	0	100
0.868	0.53	19.2	256.9	0	100
0.953 1.047	0.59 0.70	19.7 20.3	282.1 309.6	0 0	100 100
1.149	0.85	21.0	339.9	0	100
1.261	1.03	21.8	373.1	0	100
1.384 1.520	1.24 1.46	22.9 24.1	409.6 449.7	0 0	100 100
1.668	1.68	25.6	493.6	0	100
1.832	1.89	27.2	541.9	0	100
2.011 2.207	2.08 2.27	29.1 31.2	594.8 653.0	0 0	100 100
2.207	2.27 2.44	33.5	716.8	0	100
2.660	2.60	35.9	786.9	0	100
2.920	2.76	38.5	863.9	0	100
3.205 3.519	2.91 3.05	41.3 44.2	948.3 1,041	0 0	100 100
3.863	3.18	47.2	1,143	0	100
4.240	3.29	50.4	1,255	0	100
4.655 5.110	3.37 3.40	53.7 57.1	1,377 1,512	0 0	100 100
5.610	3.39	60.5	1,660	0	100
6.158	3.35	63.9	1,822	0	100
6.760	3.26	67.2	2,000		100
7.421 8.147	3.15 3.00	70.5 73.7			
8.943	2.81	76.7			
9.818	2.58	79.5			
10.78	2.37	82.0			

Volume: 100% Mean: S.D.: 6.639 µm 7.628 µm Median: 4.339 µm C.V.: 115% D(3,2): 0.958 µm Mode: 5.878 µm % < 10 25 75 50 90 8.864 μm 0.306 1.589 4.339 15.31

B168-6.\$04					
Channel	Diff.	Cum. <	Channel	Diff.	Cum. <
Diameter	Volume	Volume	Diameter	Volume	Volume
(Lower)	80	00	(Lower)	010	%
μm			μm		
0.040	0.0069	0	11.83	2.44	83.7
0.044	0.0099	0.0069	12.99	2.25	86.2
0.048	0.017	0.017	14.26	2.06	88.4
0.053 0.058	0.036 0.075	0.034 0.070	15.65 17.18	1.84 1.55	90.5 92.3
0.064	0.13	0.14	18.86	1.20	93.9
0.070	0.19	0.28	20.71	0.85	95.1
0.077 0.084	0.25 0.30	0.47 0.71	22.73 24.95	0.57	95.9 96.5
0.093	0.30	1.02	27.39	0.43 0.42	96.9
0.102	0.43	1.38	30.07	0.50	97.4
0.112	0.49	1.81	33.01	0.60	97.9
0.122 0.134	0.55 0.61	2.30 2.85	36.24 39.78	0.61 0.50	98.5 99.1
0.148	0.67	3.46	43.67	0.30	99.6
0.162	0.72	4.13	47.94	0.12	99.9
0.178 0.195	0.78 0.83	4.85 5.63	52.62 57.77	0.022 0.0016	99.98 99.998
0.214	0.88	6.46	63.41	0.0010	100
0.235	0.92	7.34	69.61	0	100
0.258	0.95	8.26	76.42	0	100
0.284 0.311	0.97 0.98	9.22 10.2	83.89 92.09	0 0	100 100
0.342	0.98	11.2	101.1	0	100
0.375	0.95	12.1	111.0	0	100
0.412 0.452	0.92 0.88	13.1 14.0	121.8 133.7	0 0	100 100
0.496	0.83	14.9	146.8	0	100
0.545	0.77	15.7	161.2	0	100
0.598 0.656	0.72 0.68	16.5 17.2	176.9 194.2	0 0	100 100
0.721	0.66	17.9	213.2	0	100
0.791	0.65	18.6	234.0	0	100
0.868 0.953	0.66 0.70	19.2 19.9	256.9 282.1	0 0	100 100
1.047	0.77	20.6	309.6	0	100
1.149	0.88	21.3	339.9	0	100
1.261 1.384	1.00 1.16	22.2 23.2	373.1 409.6	0 0	100 100
1.520	1.33	24.4	449.7	0	100
1.668	1.51	25.7	493.6	0	100
1.832 2.011	1.70 1.90	27.2 28.9	541.9 594.8	0 0	100 100
2.207	2.10	30.8	653.0	0	100
2.423	2.29	32.9	716.8	0	100
2.660 2.920	2.48 2.66	35.2 37.7	786.9 863.9	0 0	100 100
3.205	2.82	40.3	948.3	0	100
3.519	2.97	43.2	1,041	0	100
3.863	3.10 3.20	46.1	1,143	0	100
4.240 4.655	3.20	49.2 52.4	1,255 1,377	0 0	100 100
5.110	3.33	55.7	1,512	0	100
5.610	3.34	59.0	1,660	0	100
6.158 6.760	3.33 3.28	62.4 65.7	1,822 2,000	0	100 100
7.421	3.21	69.0	-,		
8.147	3.11	72.2			
8.943 9.818	2.98 2.82	75.3 78.3			
10.78	2.64	81.1			

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order	EB0909996	Page	: 1 of 4
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Brisbane
Contact	: MR ADRIAN WHITE	Contact	: Tim Kilmister
Address	: P O BOX 373 GLADSTONE QLD, AUSTRALIA 4680	Address	: 32 Shand Street Stafford QLD Australia 4053
E-mail	: adrian.a.white@ghd.com.au	E-mail	: Services.Brisbane@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-7-3243 7222
Facsimile	: +61 07 4972 6236	Facsimile	: +61-7-3243 7218
Project	: 421538641 Western Basin EIS WQ Monitoring	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 25-JUN-2009
Sampler	:	Issue Date	: 02-JUL-2009
Site	:		
		No. of samples received	: 6
Quote number	: EN/005/09	No. of samples analysed	: 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Environmental Division Brisbane Part of the ALS Laboratory Group 32 Shand Street Stafford QLD Australia 4053 Tel. +61-7-3243 7222 Fax. +61-7-3243 7218 www.alsglobal.com

A Campbell Brothers Limited Company

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Analytical Results

Sub-Matrix: WATER		Clie	ent sample ID	G-WQ-01	G-WQ-05	G-WQ-06	G-WQ-07	G-WQ-09
	Cl	ient samplii	ng date / time	[24-JUN-2009]	[24-JUN-2009]	[24-JUN-2009]	[24-JUN-2009]	[24-JUN-2009]
Compound	CAS Number	LOR	Unit	EB0909996-001	EB0909996-002	EB0909996-003	EB0909996-004	EB0909996-005
EA005: pH								
pH Value		0.01	pH Unit	7.64	7.71	7.77	7.77	7.88
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	68200	67200	63900	59500	58600
EA015: Total Dissolved Solids								
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	37100	39200	38800	39600	40200
EA025: Suspended Solids								
^ Suspended Solids (SS)		1	mg/L	21	21	17	15	12
EP008: Chlorophyll a								
Chlorophyll a		1	mg/m3	<1	<1	2	<1	<1

Analytical Results

Sub-Matrix: WATER		Clie	ent sample ID	QA-04	 	
	Cl	ient sampli	ng date / time	[24-JUN-2009]	 	
Compound	CAS Number	LOR	Unit	EB0909996-006	 	
EA005: pH						
pH Value		0.01	pH Unit	7.76	 	
EA010P: Conductivity by PC Titrator						
Electrical Conductivity @ 25°C		1	µS/cm	61900	 	
EA015: Total Dissolved Solids						
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	37600	 	
EA025: Suspended Solids						
^ Suspended Solids (SS)		1	mg/L	40	 	
EP008: Chlorophyll a						
Chlorophyll a		1	mg/m3	1	 	

Environmental Division

QUALITY CONTROL REPORT

Work Order	: EB0909996	Page	: 1 of 5
Client		Laboratory	: Environmental Division Brisbane
Contact	: MR ADRIAN WHITE	Contact	: Tim Kilmister
Address	: P O BOX 373	Address	: 32 Shand Street Stafford QLD Australia 4053
	GLADSTONE QLD, AUSTRALIA 4680		
E-mail	: adrian.a.white@ghd.com.au	E-mail	: Services.Brisbane@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-7-3243 7222
Facsimile	: +61 07 4972 6236	Facsimile	: +61-7-3243 7218
Project	: 421538641 Western Basin EIS WQ Monitoring	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 25-JUN-2009
Sampler	:	Issue Date	: 02-JUL-2009
Order number	:		
		No. of samples received	: 6
Quote number	: EN/005/09	No. of samples analysed	: 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

ΝΑΤΑ	NATA Accredited Laboratory 825	Signatories This document has been electronically carried out in compliance with procedures sp	· · · · · · · · · · · · · · · · · · ·	indicated below. Electronic signing has been
NAIA	accordance with NATA	Signatories	Position	Accreditation Category
	accreditation requirements.	Kim McCabe	Senior Inorganic Chemist	Inorganics
WORLD RECOGNISED	Accredited for compliance with			
ACCREDITATION	ISO/IEC 17025.			
		Environmental Div Part of the ALS Labo		
		32 Shand Street Stafford Tel. +61-7-3243 7222 Fax. +61-7-32		

A Campbell Brothers Limited Company

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA005: pH (QC Lot:	1021577)								
EB0909996-001	G-WQ-01	EA005: pH Value		0.01	pH Unit	7.64	7.64	0.0	0% - 20%
EB0910033-001	Anonymous	EA005: pH Value		0.01	pH Unit	7.27	7.30	0.4	0% - 20%
EA010P: Conductivi	ty by PC Titrator (QC Lot	: 1021885)							
EB0909993-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	249	253	1.6	0% - 20%
EB0910027-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	2560	2520	1.6	0% - 20%
EA015: Total Dissolv	ved Solids (QC Lot: 1026	743)							
EB0909996-001	G-WQ-01	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	37100	38400	3.3	0% - 20%
EB0910092-003	Anonymous	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	740	770	4.0	0% - 20%
EA025: Suspended	Solids (QC Lot: 1026044)								
EB0909897-006	Anonymous	EA025: Suspended Solids (SS)		1	mg/L	80	88	10.1	0% - 20%
EB0910026-005	Anonymous	EA025: Suspended Solids (SS)		1	mg/L	22	19	14.6	0% - 50%
EP008: Chlorophyll	a (QC Lot: 1021829)								
EB0909974-001	Anonymous	EP008: Chlorophyll a		1	mg/m3	<1	<1	0.0	No Limit
EB0909996-004	G-WQ-07	EP008: Chlorophyll a		1	mg/m3	<1	<1	0.0	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Recovery Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA005: pH (QCLot: 1021577)								
EA005: pH Value		0.01	pH Unit		7.00 pH Unit	100	85	115
EA010P: Conductivity by PC Titrator (QCLot: 102	1885)							
EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	<1	1412 µS/cm	100	97	103
EA015: Total Dissolved Solids (QCLot: 1026743)								
EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	<1	2000 mg/L	91.2	85	109
EA025: Suspended Solids (QCLot: 1026044)								
EA025: Suspended Solids (SS)		1	mg/L	<1	150 mg/L	93.3	82	120
EP008: Chlorophyll a (QCLot: 1021829)								
EP008: Chlorophyll a		5	mg/m3	<5	2000 mg/m3	86.0	70.7	118

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) Results are required to be reported.

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order	: EB0909996	Page	: 1 of 5
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Brisbane
Contact	: MR ADRIAN WHITE	Contact	: Tim Kilmister
Address	: P O BOX 373	Address	: 32 Shand Street Stafford QLD Australia 4053
	GLADSTONE QLD, AUSTRALIA 4680		
E-mail	: adrian.a.white@ghd.com.au	E-mail	: Services.Brisbane@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-7-3243 7222
Facsimile	: +61 07 4972 6236	Facsimile	: +61-7-3243 7218
Project	: 421538641 Western Basin EIS WQ Monitoring	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 25-JUN-2009
Sampler	:	Issue Date	: 02-JUL-2009
Order number	:		
		No. of samples received	: 6
Quote number	: EN/005/09	No. of samples analysed	: 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Environmental Division Brisbane Part of the ALS Laboratory Group

32 Shand Street Stafford QLD Australia 4053 Tel. +61-7-3243 7222 Fax. +61-7-3243 7218 www.alsglobal.com

A Campbell Brothers Limited Company

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Within	n holding time
Method		Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005: pH								
Clear Plastic Bottle - Natural								
G-WQ-01,	G-WQ-05,	24-JUN-2009				25-JUN-2009	24-JUN-2009	x
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA-04							
EA010P: Conductivity by PC Titrator								
Clear Plastic Bottle - Natural								
G-WQ-01,	G-WQ-05,	24-JUN-2009				26-JUN-2009	22-JUL-2009	✓
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA-04							
EA015: Total Dissolved Solids								
Clear Plastic Bottle - Natural								
G-WQ-01,	G-WQ-05,	24-JUN-2009				01-JUL-2009	01-JUL-2009	✓
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA-04							
EA025: Suspended Solids								
Clear Plastic Bottle - Natural								
G-WQ-01,	G-WQ-05,	24-JUN-2009				01-JUL-2009	01-JUL-2009	✓
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA-04							
EP008: Chlorophyll a								
White Plastic Bottle - Unpreserved								
G-WQ-01,	G-WQ-05,	24-JUN-2009				26-JUN-2009	26-JUN-2009	✓
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA-04							

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluation	n: × = Quality Co	ntrol frequency n	not within specification ; \checkmark = Quality Control frequency within specifical
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Chlorophyll a	EP008	2	15	13.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
рН	EA005	2	20	10.0	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Suspended Solids	EA025	2	18	11.1	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fotal Dissolved Solids	EA015	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
aboratory Control Samples (LCS)							
Chlorophyll a	EP008	1	15	6.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
ЪН	EA005	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Suspended Solids	EA025	1	18	5.6	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fotal Dissolved Solids	EA015	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Aethod Blanks (MB)							
Chlorophyll a	EP008	1	15	6.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Suspended Solids	EA025	1	18	5.6	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fotal Dissolved Solids	EA015	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
рН	EA005	WATER	APHA 21st ed. 4500 H+ B. pH of water samples is determined by ISE either manually or by automated pH
			meter. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Conductivity by PC Titrator	EA010-P	WATER	APHA 21st ed., 2510 B This procedure determines conductivity by automated ISE. This method is compliant with
			NEPM (1999) Schedule B(3) (Appdx. 2)
Total Dissolved Solids	EA015	WATER	APHA 21st ed., 2540C A gravimetric procedure that determines the amount of `filterable` residue in an aqueous
			sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness
			and dried to constant weight at 180+5C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Suspended Solids	EA025	WATER	APHA 21st ed., 2540D A gravimetric procedure employed to determine the amount of `non-filterable` residue in a
			aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed
			prior to analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Chlorophyll a	EP008	WATER	In-house (APHA 21st ed., 10200 H mod.) The pigments are extracted into aqueous acetone. The optical density
			of the extract before and after acidification at both 664 nm and 665 nm is determined spectrometrically.
Particle Size Analysis (Water)	PSA-WAT	WATER	Particle Size Analysis of water matrices conducted by Subcontracting Laboratory

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Matrix: WATER Method Container / Client Sample ID(s) EA005: pH

EA005. pri						
Clear Plastic	Bottle - Natural					
G-WQ-01,	G-V	NQ-05,	 	 25-JUN-2009	24-JUN-2009	1
G-WQ-06,	G-V	NQ-07,				
G-WQ-09,	QA-	-04				

Extraction / Preparation

Due for extraction

Date extracted

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

Analysis

Due for analysis

Days

overdue

Date analysed

Days

overdue

Chain of Custody & Analysis Request

Page __1__ of _1__

Chain of Custody Number:

						GHD			-		n na haran an a
PROJECT ID:	4215386	41	QUOTE:			LABORATO	BY BATC	HNO:			
PROJECT:	Western	Basin EIS WQ	Monitoring								FOR LAB USE ONLY
CLIENT:	GHD					COOLER S	EAL:				COOLER TEMP:
POSTAL ADDRESS:	PO Box 3	73, Gladstone 4	4680			_	Yes			No	
CONTACT:	Adrian W	hite					Broken			Intact	0090
PHONE:		412035667		07) 49726236		DESPATCH	*********		ALS I	Environm	
EMAIL:				an.A.White@ghd.co							dpark Road
INVOICE:	Jason.K	(.Fowler@gr	hd.com.au, Adria	an.A.White@ghd.co	<u>m.au</u>					field NSV	
DATA NEEDED BY:							· · ·		02.87	84 8555	ANALYSIS REQUIRED
REPORT FORMAT:		· · · · · · · · · · · · · · · · · · ·				3F)	, NH3,				San de TD QA4
EMAIL FORMAT:	ESDAT, E	EXCEL & PDF				(EG09 1, Ni, PI	04) (TP, RP,				Sample It will
COMMENTS/SPECIAL				eampling)		C - dissolved metals (EG093F) c. Cd, Co, Cr, Cu, Mn, Ni, Pb, V,	nutrients (UTN - 04) (1 TKN, TN)				15 QAPL. Plese Charle
(EMAIL ADDRES				4		a trace ORC , As, Ba, Be, Fe, Al, Ag)	trace NO3,				
SAMPLE ID)	MATRIX	DATE	DETECTION LIMIT	PRESERVATION	Ultra (Sb, Hg, F	Ultra NO2,		_		
G-WQ-01 ($\left(\right)$	Water	21/05/2009	LOR	As Required	x	x				Environmental Division
						x	X				Sydney
						X	X				Work Order
G-WQ-04	7)	Water	21/05/2009	LOR	As Required	x	x				
G-WQ-05	3)	Water	21/05/2009	LOR	As Required	X	X				ES0907382
						x	X				
						X	x				
	6			Lon							-+
G-WQ-08	<u>×</u>	Water	21/05/2009	LOR	As Required	X	X				XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F					X	X				
G-WQ-10	5	Water	21/05/2009	LOR	As Required	<u> </u>	X				Telephone: + 61-2-8784 8555
G-WQ-11	<u>R</u>	Water	21/05/2009	LOR	As Required	<u> </u>	x				
G-WQ-12	<u>R</u>	Water	21/05/2009	LOR	As Required	X	X				
QA1	Б)	Water	21/05/2009	LOR	As Required	X	X				
						X	х				

	RELINQUISHED BY:				RECEIVED BY:				
NAME	A White	DATE: 21/05/2009		NAME :	ba	DATE:	215		
OF:	GHD Gladstone	TIME: 1530		OF:		TIME:	930L		
PLEAS	PLEASE EMAIL COMPLETED ANALYSIS REQUEST TO: Jason.K.Fowler@ghd.com.au, Ac			rian.A.White	@ghd.com.au				
*Contai	ner Type and Preservative	Codes: P = Neutral Plastic; N = Nitric Acid Preserved;	C = Sodium Hydroxide Preserved; J = Solvent Wash	ned Acid Rinced	Jar; S = Solvent Washed Acid Rind	ced Glass Bottle;			
VC = H	/C = Hydrochloric Acid Preserved Vial; VS = Sulfuric Acid Preserved Vial; BS = Sulfuric Acid Preserved Gass Bottle; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ST = Sterile Bottle;								
0=0) = Other.								

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order	: ES0907382				
Client Contact Address	: GHD SERVICES PTY LTD : MR ADRIAN WHITE : P O BOX 373 GLADSTONE QLD, AUSTRALIA 4680	Contact : C Address : 27	nvironmental Division Sydney harlie Pierce 77-289 Woodpark Road Smithfield SW Australia 2164		
E-mail Telephone Facsimile	: adrian.a.white@ghd.com.au : +61 07 49731611 : +61 07 4972 6236	Telephone : +6	narlie.pierce@alsenviro.com 61-2-8784 8555 61-2-8784 8500		
Project Order number	421538641-WATER BASIN EIS WQ MONITORING	Page : 1	of 3		
C-O-C number	·	Quote number : El	M2009GHDSER0392 (EN/005/09)		
Site	:				
Sampler	:		EPM 1999 Schedule B(3) and ALS CS3 requirement		
Dates					
Date Samples Receive	ed : 22-MAY-2009	Issue Date	22-MAY-2009 12:15		
Client Requested Due	Date : 29-MAY-2009	Scheduled Reporting Date	29-MAY-2009		
Delivery Detail	's				
Mode of Delivery : Carrier		Temperature	: 3.4'C - Ice present		
No. of coolers/boxes : 1 HARD		No. of samples received	: 8		
Sercurity Seal : Intact.		No. of samples analysed 8			

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Requested Deliverables
- Sample containers do not comply to pretreatment / preservation standards (AS, APHA, USEPA). Please refer to the Sample Container(s)/Preservation Non-Compliance Log at the end of this report for details.
- Sample(s) have been received within recommended holding times.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Nanthini Coilparampil
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (90 days) from date of completion of work order.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Method Client sample ID	Sample Container Received	Preferred Sample Container for Analysis
EG093A-F : Dissolved Metals in Sa	line Water -Suite A by ORC-ICPMS	
G-WQ-01	 Clear Plastic Bottle - Filtered; Lab-acidified 	- Clear Plastic Bottle - UHP Nitric Acid Pres./Filt
G-WQ-04	- Clear Plastic Bottle - Filtered; Lab-acidified	- Clear Plastic Bottle - UHP Nitric Acid Pres./Filt
G-WQ-05	 Clear Plastic Bottle - Filtered; Lab-acidified 	- Clear Plastic Bottle - UHP Nitric Acid Pres./Filt
G-WQ-08	- Clear Plastic Bottle - Filtered; Lab-acidified	- Clear Plastic Bottle - UHP Nitric Acid Pres./Filt
G-WQ-10	 Clear Plastic Bottle - Filtered; Lab-acidified 	- Clear Plastic Bottle - UHP Nitric Acid Pres./Filt
G-WQ-11	- Clear Plastic Bottle - Filtered; Lab-acidified	- Clear Plastic Bottle - UHP Nitric Acid Pres./Filt
G-WQ-12	- Clear Plastic Bottle - Filtered; Lab-acidified	- Clear Plastic Bottle - UHP Nitric Acid Pres./Filt
QA1	- Clear Plastic Bottle - Filtered; Lab-acidified	- Clear Plastic Bottle - UHP Nitric Acid Pres./Filt
G093B-F : Dissolved Metals in Sa	line Water -Suite B by ORC-ICPMS	
G-WQ-01	- Clear Plastic Bottle - Filtered; Lab-acidified	- Clear Plastic Bottle - UHP Nitric Acid Pres./Filt
G-WQ-04	- Clear Plastic Bottle - Filtered; Lab-acidified	- Clear Plastic Bottle - UHP Nitric Acid Pres./Filt
G-WQ-05	- Clear Plastic Bottle - Filtered; Lab-acidified	- Clear Plastic Bottle - UHP Nitric Acid Pres./Filt
G-WQ-08	- Clear Plastic Bottle - Filtered; Lab-acidified	- Clear Plastic Bottle - UHP Nitric Acid Pres./Filt
G-WQ-10	- Clear Plastic Bottle - Filtered; Lab-acidified	- Clear Plastic Bottle - UHP Nitric Acid Pres./Filt
G-WQ-11	- Clear Plastic Bottle - Filtered; Lab-acidified	- Clear Plastic Bottle - UHP Nitric Acid Pres./Filt
G-WQ-12	- Clear Plastic Bottle - Filtered; Lab-acidified	- Clear Plastic Bottle - UHP Nitric Acid Pres./Filt
QA1	- Clear Plastic Bottle - Filtered; Lab-acidified	- Clear Plastic Bottle - UHP Nitric Acid Pres./Filt

Summary of Sample(s) and Requested Analysis

Some items descriptocess neccessary tasks. Packages in the determination tasks, that are include When date(s) and have been assur purposes. If the information was not p Matrix: WATER Laboratory sample	y for the execution may contain additiona of moisture cont ed in the package. d/or time(s) are sho med by the labor sampling time is o	al analyses, such as	WATER - EG035F Dissolved Mercury by FIMS	WATER - EG093A-F Dissolved metals in saline water by ORC-ICPMS	WATER - EG0938-F Dissolved Metals in Saline Water Suite B by ORC-ICPMS	WATER - EK255A-SW Ammonia as N (Ultra-trace in Saline Waters by Flow Injection Analysis)	WATER - EK257A-SW Nitrite as N (Ultra-trace in Saline Waters by Flow Iniection Analvsis)	ATER - EK258, rate as N by di d NO2 (Ultra-tr	WATER - EK261PA-SW TKN by calculated difference between Total N and NOx. (Ultra-trace in Saline	WATER - EK262PA-SW Total Nitrogen by Persulfate Digestion (Ultra-trace in Saline Waters by Flow
ES0907382-001	21-MAY-2009 15:00	G-WQ-01	≤ □	≤ □ 0	<u>≤ ∩ ò</u>	<u> </u>	<u>szo</u> √	<u>≤ Z (0</u>	<u>>⊢⊢</u> ✓	
ES0907382-002	21-MAY-2009 15:00	G-WQ-04	√	√	✓	✓	✓	1	✓	✓
ES0907382-003	21-MAY-2009 15:00	G-WQ-05	1	√	✓	✓	✓	✓	✓	✓
ES0907382-004	21-MAY-2009 15:00	G-WQ-08	√	√	✓	✓	✓	✓	✓	✓
ES0907382-005	21-MAY-2009 15:00	G-WQ-10	1	✓	1	✓	1	✓	✓	✓
ES0907382-006	21-MAY-2009 15:00	G-WQ-11	1	√	✓	✓	√	1	✓	✓
ES0907382-007	21-MAY-2009 15:00	G-WQ-12	1	1	✓	✓	1	1	✓	✓
ES0907382-008	21-MAY-2009 15:00	QA1	✓	✓	✓	✓	✓	✓	✓	✓

	EK267PA-SW	sphorus by Persulfate Digestion	ce in Saline Waters by Flow	EK271A-SW	Phosphorus (Ultra-trace in
--	------------	---------------------------------	-----------------------------	-----------	----------------------------

Email

ters by Flow Injection

Matrix: WATER

Laboratory sample ID	Client sampling date / time	Client sample ID	WATER - Total Phos (Ultra-trac	WATER - Reactive F Saline Wa
ES0907382-001	21-MAY-2009 15:00	G-WQ-01	✓	✓
ES0907382-002	21-MAY-2009 15:00	G-WQ-04	✓	✓
ES0907382-003	21-MAY-2009 15:00	G-WQ-05	✓	✓
ES0907382-004	21-MAY-2009 15:00	G-WQ-08	✓	✓
ES0907382-005	21-MAY-2009 15:00	G-WQ-10	✓	✓
ES0907382-006	21-MAY-2009 15:00	G-WQ-11	✓	✓
ES0907382-007	21-MAY-2009 15:00	G-WQ-12	✓	1
ES0907382-008	21-MAY-2009 15:00	QA1	1	1

Requested Deliverables

MR ADRIAN WHITE

- *AU Certificate of Analysis NATA (COA)
- *AU Interpretive QC Report DEFAULT (Anon QCI Rep) (QCI)
- *AU QC Report DEFAULT (Anon QC Rep) NATA (QC)
- A4 AU Sample Receipt Notification Environmental (SRN)
- A4 AU Tax Invoice (INV)
- Default Chain of Custody (COC)
- EDI Format ENMRG (ENMRG)
- EDI Format ESDAT (ESDAT)

MR JASON FOWLER

- *AU Certificate of Analysis NATA (COA)
- *AU Interpretive QC Report DEFAULT (Anon QCI Rep) (QCI)
- *AU QC Report DEFAULT (Anon QC Rep) NATA (QC)
- A4 AU Sample Receipt Notification Environmental (SRN)
- A4 AU Tax Invoice (INV)
- Default Chain of Custody (COC)
- EDI Format ENMRG (ENMRG)
- EDI Format ESDAT (ESDAT)

adrian.a.white@ghd.com.au adrian.a.white@ghd.com.au adrian.a.white@ghd.com.au adrian.a.white@ghd.com.au adrian.a.white@ghd.com.au adrian.a.white@ghd.com.au adrian.a.white@ghd.com.au

jason.k.fowler@ghd.com.au jason.k.fowler@ghd.com.au jason.k.fowler@ghd.com.au jason.k.fowler@ghd.com.au jason.k.fowler@ghd.com.au jason.k.fowler@ghd.com.au jason.k.fowler@ghd.com.au

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order	: ES0907382	Page	: 1 of 4
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR ADRIAN WHITE	Contact	: Charlie Pierce
Address	: P O BOX 373	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	GLADSTONE QLD, AUSTRALIA 4680		
E-mail	: adrian.a.white@ghd.com.au	E-mail	: charlie.pierce@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-2-8784 8555
Facsimile	: +61 07 4972 6236	Facsimile	: +61-2-8784 8500
Project	: 421538641-WATER BASIN EIS WQ MONITORING	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 22-MAY-2009
Sampler	:	Issue Date	: 29-MAY-2009
Site	:		
		No. of samples received	: 8
Quote number	: EN/005/09	No. of samples analysed	: 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825 This document is issued in accordance with NATA accreditation requirements.	,	Signatories This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.						
	Signatories	Accreditation Category						
	accreditation requirements.	Celine Conceicao	Spectroscopist	Inorganics				
	Accredited for compliance with	Hoa Nguyen	Inorganic Chemist	Inorganics				
	ISO/IEC 17025.	Sarah Millington	Senior Inorganic Chemist	Inorganics				
	100/120 17020.	Wisam Abou-Maraseh	Spectroscopist	Inorganics				
		Fouropmontal	Juision Sudney					

Environmental Division Sydney Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

• EG093F: LCS recovery for various elements falls outside ALS Dynamic Control Limit. However, it is within the acceptance criteria based on ALS DQO. No further action is required.

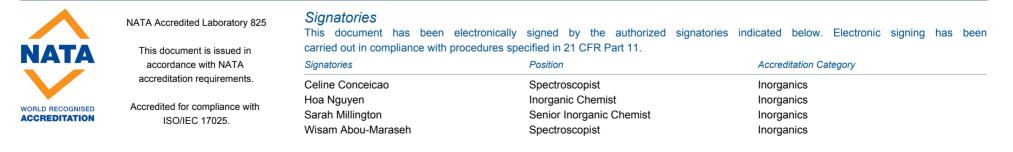
Analytical Results

Sub-Matrix: WATER		Clie	ent sample ID	G-WQ-01	G-WQ-04	G-WQ-05	G-WQ-08	G-WQ-10
	Client sampling date / time		21-MAY-2009 15:00					
Compound	CAS Number	LOR	Unit	ES0907382-001	ES0907382-002	ES0907382-003	ES0907382-004	ES0907382-005
EG035F: Dissolved Mercury by FIM	IS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EG093F: Dissolved Metals in Saline	e Water by ORC-ICPM	s						
Aluminium	7429-90-5	10	µg/L	<10	<10	<10	<10	<10
Antimony	7440-36-0	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Iron	7439-89-6	5	µg/L	6	6	6	<5	<5
Arsenic	7440-38-2	0.5	µg/L	1.0	1.7	1.5	1.6	1.7
Barium	7440-39-3	1	µg/L	13	8	12	12	12
Beryllium	7440-41-7	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Chromium	7440-47-3	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Cobalt	7440-48-4	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Copper	7440-50-8	1	µg/L	<1	1	1	1	1
Lead	7439-92-1	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Manganese	7439-96-5	0.5	µg/L	11.0	3.4	8.5	7.5	6.8
Nickel	7440-02-0	0.5	µg/L	0.6	<0.5	0.7	0.7	0.6
Silver	7440-22-4	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Vanadium	7440-62-2	0.5	µg/L	1.9	1.8	2.3	2.2	2.7
Ultra-Trace Nutrients								
Ammonia as N	7664-41-7	0.005	mg/L	0.006	<0.005	<0.005	0.006	<0.005
Nitrite as N		0.002	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Nitrate as N	14797-55-8	0.002	mg/L	0.004	0.003	0.003	0.005	0.003
Nitrite + Nitrate as N		0.002	mg/L	0.004	0.003	0.003	0.005	0.003
Total Kjeldahl Nitrogen as N		0.05	mg/L	0.15	0.12	0.13	0.14	0.12
Total Nitrogen as N		0.05	mg/L	0.15	0.12	0.13	0.14	0.12
Reactive Phosphorus as P		0.001	mg/L	0.002	<0.001	0.002	0.002	<0.001
Total Phosphorus as P		0.005	mg/L	<0.005	<0.005	<0.005	0.006	<0.005

Analytical Results

Sub-Matrix: WATER		Clie	ent sample ID	G-WQ-11	G-WQ-12	QA1	
	C	lient samplii	ng date / time	21-MAY-2009 15:00	21-MAY-2009 15:00	21-MAY-2009 15:00	
Compound	CAS Number	LOR	Unit	ES0907382-006	ES0907382-007	ES0907382-008	
EG035F: Dissolved Mercury by FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	
EG093F: Dissolved Metals in Saline	Water by ORC-ICPM	s					
Aluminium	7429-90-5	10	µg/L	<10	<10	<10	
Antimony	7440-36-0	0.5	µg/L	<0.5	<0.5	<0.5	
Iron	7439-89-6	5	µg/L	5	6	6	
Arsenic	7440-38-2	0.5	µg/L	1.8	1.9	2.0	
Barium	7440-39-3	1	µg/L	10	10	8	
Beryllium	7440-41-7	0.1	µg/L	<0.1	<0.1	<0.1	
Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	<0.2	
Chromium	7440-47-3	0.5	µg/L	<0.5	<0.5	<0.5	
Cobalt	7440-48-4	0.2	µg/L	<0.2	<0.2 <0.2		
Copper	7440-50-8	1	µg/L	1	<1	1	
Lead	7439-92-1	0.2	µg/L	<0.2	<0.2	<0.2	
Manganese	7439-96-5	0.5	µg/L	3.0	2.2	3.3	
Nickel	7440-02-0	0.5	µg/L	0.5	<0.5	<0.5	
Silver	7440-22-4	0.1	µg/L	<0.1	<0.1	<0.1	
Vanadium	7440-62-2	0.5	µg/L	2.9	2.3	2.2	
Ultra-Trace Nutrients							
Ammonia as N	7664-41-7	0.005	mg/L	0.006	0.006	<0.005	
Nitrite as N		0.002	mg/L	<0.002	<0.002	<0.002	
Nitrate as N	14797-55-8	0.002	mg/L	0.006	0.007	0.003	
Nitrite + Nitrate as N		0.002	mg/L	0.006	0.007	0.003	
Total Kjeldahl Nitrogen as N		0.05	mg/L	0.10	0.24	0.12	
Total Nitrogen as N		0.05	mg/L	0.11	0.25	0.12	
Reactive Phosphorus as P		0.001	mg/L	0.002	0.002	<0.001	
Total Phosphorus as P		0.005	mg/L	<0.005	<0.005	<0.005	

Environmental Division


QUALITY CONTROL REPORT

Work Order	: ES0907382	Page	: 1 of 5
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR ADRIAN WHITE	Contact	: Charlie Pierce
Address	: P O BOX 373	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	GLADSTONE QLD, AUSTRALIA 4680		
E-mail	: adrian.a.white@ghd.com.au	E-mail	: charlie.pierce@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-2-8784 8555
Facsimile	: +61 07 4972 6236	Facsimile	: +61-2-8784 8500
Project	: 421538641-WATER BASIN EIS WQ MONITORING	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 22-MAY-2009
Sampler	:	Issue Date	: 29-MAY-2009
Order number	:		
		No. of samples received	: 8
Quote number	: EN/005/09	No. of samples analysed	: 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)			
G035F: Dissolved	Mercury by FIMS (QC L	Lot: 986832)										
ES0907327-001	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit			
ES0907382-006	G-WQ-11	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit			
EG093F: Dissolved	Metals in Saline Water	by ORC-ICPMS (QC Lot: 992229)										
ES0907382-001	G-WQ-01	EG093A-F: Beryllium	7440-41-7	0.1	µg/L	<0.1	<0.1	0.0	No Limit			
		EG093A-F: Silver	7440-22-4	0.1	µg/L	<0.1	<0.1	0.0	No Limit			
		EG093A-F: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	0.0	No Limit			
		EG093A-F: Cobalt	7440-48-4	0.2	µg/L	<0.2	<0.2	0.0	No Limit			
		EG093A-F: Lead	7439-92-1	0.2	µg/L	<0.2	<0.2	0.0	No Limit			
		EG093A-F: Antimony	7440-36-0	0.5	µg/L	<0.5	<0.5	0.0	No Limit			
		EG093A-F: Arsenic	7440-38-2	0.5	µg/L	1.0	1.3	21.3	No Limit			
		EG093A-F: Chromium	7440-47-3	0.5	µg/L	<0.5	<0.5	0.0	No Limit			
		EG093A-F: Manganese	7439-96-5	0.5	µg/L	11.0	11.2	1.7	0% - 20%			
		EG093A-F: Nickel	7440-02-0	0.5	µg/L	0.6	0.9	34.3	No Limit			
		EG093A-F: Vanadium	7440-62-2	0.5	µg/L	1.9	2.2	15.6	No Limit			
		EG093A-F: Barium	7440-39-3	1	µg/L	13	13	0.0	0% - 50%			
		EG093A-F: Copper	7440-50-8	1	µg/L	<1	<1	0.0	No Limit			
		EG093A-F: Aluminium	7429-90-5	10	µg/L	<10	<10	0.0	No Limit			
G093F: Dissolved	Metals in Saline Water	by ORC-ICPMS (QC Lot: 992230)										
ES0907382-001	G-WQ-01	EG093B-F: Iron	7439-89-6	5	µg/L	6	6	0.0	No Limit			
Iltra-Trace Nutrient	ts (QC Lot: 986705)						1					
ES0907382-001	G-WQ-01	EK257A-SW: Nitrite as N		0.002	mg/L	<0.002	<0.002	0.0	No Limit			
Iltra-Trace Nutrient	ts (QC Lot: 986706)				0		1					
ES0907382-001	G-WQ-01	EK255A-SW: Ammonia as N	7664-41-7	0.005	mg/L	0.006	0.005	0.0	No Limit			
	ts (QC Lot: 986707)			0.000		0.000	0.000	0.0				
S0907382-001	G-WQ-01	EK271A-SW: Reactive Phosphorus as P		0.001	mg/L	0.002	0.002	0.0	No Limit			
		EK27TA-SW. Reactive Phosphorus as P		0.001	ing/L	0.002	0.002	0.0				
	ts (QC Lot: 986989)			0.05		0.45	0.40	0.0	Nie Linsit			
ES0907382-001	G-WQ-01	EK262PA-SW: Total Nitrogen as N		0.05	mg/L	0.15	0.16	0.0	No Limit			
	ts (QC Lot: 986990)											
ES0907382-001	G-WQ-01	EK267PA-SW: Total Phosphorus as P		0.005	mg/L	<0.005	<0.005	0.0	No Limit			
	ts (QC Lot: 988516)											
ES0907327-001	Anonymous	EK259A-SW: Nitrite + Nitrate as N		0.002	mg/L	0.058	0.060	2.2	0% - 20%			
ES0907382-001	G-WQ-01	EK259A-SW: Nitrite + Nitrate as N		0.002	mg/L	0.004	0.004	0.0	No Limit			

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG035F: Dissolved Mercury by FIMS (QCLot: 986832	:)							
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.010 mg/L	113	86	116
EG093F: Dissolved Metals in Saline Water by ORC-IC	PMS (QCLot: 992229)						
G093A-F: Aluminium	7429-90-5	10	μg/L	<10	50 µg/L	125	80	128
G093A-F: Antimony	7440-36-0	0.5	μg/L	<0.5				
G093A-F: Arsenic	7440-38-2	0.5	μg/L	<0.5	10 µg/L	124	85	125
G093A-F: Barium	7440-39-3	1	μg/L	<1	10 µg/L	115	81	129
G093A-F: Beryllium	7440-41-7	0.1	μg/L	<0.1	10 µg/L	120	80	122
G093A-F: Cadmium	7440-43-9	0.2	μg/L	<0.2	10 µg/L	114	78	116
G093A-F: Chromium	7440-47-3	0.5	µg/L	<0.5	10 µg/L	121	86	128
G093A-F: Cobalt	7440-48-4	0.2	μg/L	<0.2	10 µg/L	121	87	127
G093A-F: Copper	7440-50-8	1	μg/L	<1	10 µg/L	# 129	86	124
G093A-F: Lead	7439-92-1	0.2	μg/L	<0.2	10 µg/L	118	87	123
G093A-F: Manganese	7439-96-5	0.5	μg/L	<0.5	10 µg/L	121	90	122
G093A-F: Nickel	7440-02-0	0.5	μg/L	<0.5	10 µg/L	122	84	124
G093A-F: Silver	7440-22-4	0.1	μg/L	<0.1				
G093A-F: Vanadium	7440-62-2	0.5	μg/L	<0.5	10 µg/L	121	85	123
G093F: Dissolved Metals in Saline Water by ORC-IC	PMS (QCLot: 992230)						
G093B-F: Iron	7439-89-6	5	μg/L	<5	50 µg/L	# 126	89	119
Itra-Trace Nutrients (QCLot: 986705)								
K257A-SW: Nitrite as N		0.002	mg/L	<0.002	1.0 mg/L	98.5	70	130
Itra-Trace Nutrients (QCLot: 986706)								
K255A-SW: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.1 mg/L	98.3	70	130
Iltra-Trace Nutrients (QCLot: 986707)								
K271A-SW: Reactive Phosphorus as P		0.001	mg/L	<0.001	0.1 mg/L	88.8	70	130
Iltra-Trace Nutrients (QCLot: 986989)								1
K262PA-SW: Total Nitrogen as N		0.05	mg/L	<0.05	1.0 mg/L	97.5	70	130
Itra-Trace Nutrients (QCLot: 986990)			5					
K267PA-SW: Total Phosphorus as P		0.005	mg/L	<0.005	0.44 mg/L	95.4	70	130
		0.000		-0.000	o. r r mg/L			100
Iltra-Trace Nutrients (QCLot: 988516)	1	0.002	mall	<0.002	0.1 ma/l	109	70	130
K259A-SW: Nitrite + Nitrate as N		0.002	mg/L	<0.002	0.1 mg/L	108	70	130

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: WATER			Matrix Spike (MS) Report					
				Spike	Spike Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
G035F: Dissolved	Mercury by FIMS (QCLot: 9868	32)						
ES0907327-001	Anonymous	EG035F: Mercury	7439-97-6	0.0100 mg/L	85.4	70	130	
EG093F: Dissolved	Metals in Saline Water by ORC-	ICPMS (QCLot: 992229)						
ES0907382-001	G-WQ-01	EG093A-F: Arsenic	7440-38-2	50 µg/L	74.7	70	130	
		EG093A-F: Barium	7440-39-3	50 µg/L	75.7	70	130	
		EG093A-F: Beryllium	7440-41-7	50 µg/L	70.2	70	130	
		EG093A-F: Cadmium	7440-43-9	12.5 µg/L	72.6	70	130	
		EG093A-F: Chromium	7440-47-3	50 µg/L	73.7	70	130	
		EG093A-F: Cobalt	7440-48-4	50 µg/L	78.2	70	130	
		EG093A-F: Copper	7440-50-8	50 µg/L	76.4	70	130	
		EG093A-F: Lead	7439-92-1	50 µg/L	77.2	70	130	
		EG093A-F: Manganese	7439-96-5	50 µg/L	71.2	70	130	
		EG093A-F: Nickel	7440-02-0	50 µg/L	74.5	70	130	
		EG093A-F: Vanadium	7440-62-2	50 μg/L	74.9	70	130	
Jltra-Trace Nutrient	ts (QCLot: 986705)							
ES0907382-002	G-WQ-04	EK257A-SW: Nitrite as N		0.1 mg/L	71.9	70	130	
Jltra-Trace Nutrient	ts (QCLot: 986706)							
ES0907382-002	G-WQ-04	EK255A-SW: Ammonia as N	7664-41-7	0.1 mg/L	102	70.	130	
Jltra-Trace Nutrient	rs (QCI of: 986707)							
ES0907382-002	G-WQ-04	EK271A-SW: Reactive Phosphorus as P		0.1 mg/L	123	70	130	
Jltra-Trace Nutrient								
ES0907382-001	G-WQ-01			0.5 mg/L	97.7	70	130	
		EK262PA-SW: Total Nitrogen as N		0.5 mg/L	51.1	70	150	
Jltra-Trace Nutrient								
ES0907382-001	G-WQ-01	EK267PA-SW: Total Phosphorus as P		0.5 mg/L	111	70	130	
Jltra-Trace Nutrient	ts (QCLot: 988516)							
ES0907327-001	Anonymous	EK259A-SW: Nitrite + Nitrate as N		0.1 mg/L	74.6	70	130	

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order	: ES0907382	Page	: 1 of 7
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR ADRIAN WHITE	Contact	: Charlie Pierce
Address	: P O BOX 373 GLADSTONE QLD, AUSTRALIA 4680	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: adrian.a.white@ghd.com.au	E-mail	: charlie.pierce@alsenviro.com
Telephone	+61 07 49731611	Telephone	: +61-2-8784 8555
Facsimile	: +61 07 4972 6236	Facsimile	: +61-2-8784 8500
Project	: 421538641-WATER BASIN EIS WQ MONITORING	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 22-MAY-2009
Sampler	:	Issue Date	: 29-MAY-2009
Order number	:		
		No. of samples received	: 8
Quote number	: EN/005/09	No. of samples analysed	: 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Environmental Division Sydney Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Within	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted Due for extraction		Evaluation	Date analysed	Due for analysis	Evaluation
EG035F: Dissolved Mercury by FIMS								
Clear HDPE (U-T ORC) - Filtered; La	b-acidified							
G-WQ-01,	G-WQ-04,	21-MAY-2009				25-MAY-2009	18-JUN-2009	✓
G-WQ-05,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA1							
EG093F: Dissolved Metals in Saline	Water by ORC-ICPMS							
Clear HDPE (U-T ORC) - Filtered; La	b-acidified							
G-WQ-01,	G-WQ-04,	21-MAY-2009	28-MAY-2009	17-NOV-2009	✓	28-MAY-2009	17-NOV-2009	✓
G-WQ-05,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA1							
Ultra-Trace Nutrients								
Clear Plastic Bottle - Filtered (AS)								
G-WQ-01,	G-WQ-04,	21-MAY-2009				22-MAY-2009	22-MAY-2009	✓
G-WQ-05,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA1							
Clear Plastic Bottle - Natural (AS)								
G-WQ-01,	G-WQ-04,	21-MAY-2009	22-MAY-2009	22-MAY-2009	✓	22-MAY-2009	22-MAY-2009	✓
G-WQ-05,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA1							

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		C	Count		Rate (%)		Quality Control Specification	
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation		
aboratory Duplicates (DUP)								
mmonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	8	12.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
issolved Mercury by FIMS	EG035F	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
issolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	1	8	12.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
issolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	1	8	12.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
itrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	2	12	16.7	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
itrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	8	12.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
eactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	8	12.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
otal Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	8	12.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
otal Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	8	12.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
aboratory Control Samples (LCS)								
mmonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	8	12.5	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
issolved Mercury by FIMS	EG035F	1	13	7.7	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
issolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	1	8	12.5	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
ssolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	1	8	12.5	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
trite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	1	12	8.3	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
trite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	8	12.5	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
eactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	8	12.5	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
otal Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	8	12.5	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
otal Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	8	12.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
ethod Blanks (MB)								
mmonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	8	12.5	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
issolved Mercury by FIMS	EG035F	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
issolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	1	8	12.5	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
issolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	1	8	12.5	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
itrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	1	12	8.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
itrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	8	12.5	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
eactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	8	12.5	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
otal Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	8	12.5	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
otal Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	8	12.5	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
atrix Spikes (MS)								
mmonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	8	12.5	5.0	✓	ALS QCS3 requirement	
issolved Mercury by FIMS	EG035F	1	13	7.7	5.0	✓	ALS QCS3 requirement	
issolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	1	8	12.5	5.0	✓	ALS QCS3 requirement	
litrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	1	12	8.3	5.0	✓	ALS QCS3 requirement	
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	8	12.5	5.0	1	ALS QCS3 requirement	

Page	: 4 of 7
Work Order	: ES0907382
Client	: GHD SERVICES PTY LTD
Project	: 421538641-WATER BASIN EIS WQ MONITORING

Matrix: WATER				Evaluation	n: × = Quality Co	ntrol frequency no	ot within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Matrix Spikes (MS) - Continued							
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	8	12.5	5.0	✓	ALS QCS3 requirement
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	8	12.5	5.0	✓	ALS QCS3 requirement
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	8	12.5	5.0	✓	ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Mercury by FIMS	EG035F	WATER	AS 3550, APHA 21st ed. 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	WATER	APHA 21st ed., 3125; USEPA SW846 - 6020 Samples are 0.45 um filtered prior to analysis. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	WATER	APHA 21st ed., 3125; USEPA SW846 - 6020 Samples are 0.45 um filtered prior to analysis. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	WATER	APHA 21st ed., 4500-NH3 H Ammonia is determined by direct colorimetry by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	WATER	APHA 21st ed., 4500-NO2- B. Nitrite is determined by direct colourimetry by FIA.
Nitrate as N - Ultra-Trace in Saline Waters	EK258A-SW	WATER	APHA 21st ed., 4500-NO3- I Nitrate is reduced to nitrite by way of a cadmium reduction column followed by quantification by FIA. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results.
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	WATER	APHA 21st ed., 4500-NO3- I. Combined oxidised Nitrogen (NO2+NO3) is determined by Cadmium Reduction and direct colourimetry by FIA.
TKN (Total N - NOx-N). (FIA - UT) in Saline Waters	EK261PA-SW	WATER	APHA 21st ed., 4500-P J. & 4500-NO3- I. Calculated by difference from total Nitrogen and NOx. Contributing method parameters are determined by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	WATER	APHA 21st ed., 4500-P J. Persulfate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus. As sample is digested with persulfate under alkaline conditions yielding orthophosphate and nitrate. Following digestion, analytes are determined by flow injection analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	WATER	APHA 21st ed., 4500-P J. Persulfate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus. As sample is digested with persulfate under alkaline conditions yielding orthophosphate and nitrate. Following digestion, analytes are determined by flow injection analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Analytical Methods	Method	Matrix	Method Descriptions
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	WATER	APHA 21st ed., 4500-P E Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Preparation Methods	Method	Matrix	Method Descriptions
Persulfate Digestion for UT TN and TP for FIA/Saline	EK262/267PA-SW	WATER	APHA 21st ed., 4500 P - J. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Laboratory Control Spike (LCS) Recoveries							
EG093F: Dissolved Metals in Saline Water by ORC-	CP 1137045-003		Copper	7440-50-8	129 %	86-124%	Recovery greater than upper control
							limit
EG093F: Dissolved Metals in Saline Water by ORC-	CP 1137045-003		Iron	7439-89-6	126 %	89-119%	Recovery greater than upper control
							limit

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

CHD			Chain of Cu	ustody & Analysis Re	equest			· ·		F	Page1 of _1
		·			GHD	*					
	[-1									
PROJECT ID:	4215386 41	QUOTE:			LABORATO	RY BATCI	INO.:				
PROJECT:	Western Basin EIS W	Q Monitoring								FOR LAB USE ONLY	
CLIENT:	GHD				COOLER SI	EAL:				COOLER T	EMP:
POSTAL ADDRESS:	PO Box 373, Gladstone	e 4680		·····	_	Yes		No			leg.C
CONTACT:	Adrian White		1			Broken		intac			
PHONE:	41203566		07) 49726236 an.A.White@ghd.co		DESPATCH	ED TO:	·	ALS Envir			
INVOICE:			an.A.White@ghd.co		277-289 Woodpark Road Smithfield NSW 2164						
		na.com.ud, / din						02 8784 8		+	
DATA NEEDED BY:			····							ANALYSIS REQUIRED	
						Η ³	1				
REPORT FORMAT:					- <u>5</u>	Ż					
EMAIL EODMAT.		-			II, P	(TP, RP, NH3					
EMAIL FORMAT: ESDAT, EXCEL & PDF COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: Water samples from a marine environment (Background sampling) (EMAIL ADDRESSES PROVIDED ABOVE)		Ultra trace ORC - dissolved metals (EG093F) (Sb, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Ni, Pb, V, Hg, Fe, Al, Ag)	trace nutrients (UTN - 04) NO3, TKN, TN)				Environmental Division Sydney Work Order ES0907660				
SAMPLE ID	MATRIX	DATE	DETECTION LIMIT	PRESERVATION	Ha (Sb	Ultra NO2,					
G-WQ-02	Water	26/05/2009	LOR	As Required	X	x					
G-WQ-03 2	Water	26/05/2009	LOR	As Required	x	x					
G-WQ-06 کې	Water	26/05/2009	LOR	As Required	x	x				Telephone : + 61-2-8784 8555	· · · · · · · · · · · · · · · · · · ·
G-WQ-07 4	Water	26/05/2009	LOR	As Required	x	X					
G-WQ-09 5	Water	26/05/2009	LOR	As Required	X	x					
QA2 6	Water	26/05/2009	LOR		x	x					
diriz v	vvaler	20/05/2009		As Regardired	<u> </u>						
		RELINQUIS			1						
NAME : A White		DATE: 26/05/	/		NAME :	SU7	Ster	2		RECEIVED BY: DATE: 27/5/9 18-8-	
OF: GHD Gladston	e	TIME: 15			OF:	30	ory				
PLEASE EMAIL COMPL				Jason.K.Fowler@ghd.com.au, Ac		<u>A</u>	<u>.</u>			TIME: 12-45	
*Container Type and Pres	servative Codes: P = Ne	utral Plastic; N = Nitri		Joason, K. Ower e graconnau, Ac odium Hydroxide Preserved; J = Solvent W reserved Glass Bottle; Z = Zinc Acetate Pr	ashed Acid Riz	nced Jar; S	= Solvent V			iotile;	

1. 1.

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order	: ES0	907660					
Client Contact Address	: MR AI : P O B	SERVICES PTY LTD DRIAN WHITE OX 373 STONE QLD, AUSTRALIA 4680	Laboratory Contact Address	 Environmental Division Sydney Charlie Pierce 277-289 Woodpark Road Smithfield NSW Australia 2164 	۶ld		
E-mail Telephone Facsimile	: +61 0	.a.white@ghd.com.au 7 49731611 7 4972 6236	E-mail Telephone Facsimile	: charlie.pierce@alsenviro.com : +61-2-8784 8555 : +61-2-8784 8500			
Project		ERN BASIN EIS WQ TORING 4215386 41	Page	: 1 of 3			
Order number C-O-C number	:		Quote number				
Site	:		Quote number	:			
Sampler	:		QC Level	NEPM 1999 Schedule B(3) and QCS3 requirement	ALS		
Dates							
Date Samples Rec Client Requested E		: 27-MAY-2009 : 03-JUN-2009	Issue Date Scheduled Reporti	27-MAY-2009 15:26 03-JUN-2009			
Delivery Deta	ails						
Mode of Delivery		: Carrier	Temperature	: 1.8'C - Ice present			
No. of coolers/boxe	es : 1 HARD		No. of samples rec	eived : 6			
Sercurity Seal		: Intact.	No. of samples and	lysed : 6			

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Sample(s) have been received within recommended holding times.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Nanthini Coilparampil
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (90 days) from date of completion of work order.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

the determination tasks, that are include When date(s) and have been assur	y for the execution nay contain addition of moisture cont ed in the package. I/or time(s) are sh med by the labou sampling time is	of client requested al analyses, such as	EG035F Mercury by FIMS	- EG093A-F :d metals in saline water by PMS	.TER - EG093B-F solved Metals in Saline Water Suite B ORC-ICPMS	- EK255A-SW a as N (Ultra-trace in Saline ov Flow Iniection Analvsis)	- EK257A-SW N (Ultra-trace in niection Analysis	- EK258, s N by di (Ultra-tr	- EK261PA-SM alculated differ and NOx. (Ultra	WATER - EK262PA-SW Total Nitrogen by Persulfate Digestion (Ultra-trace in Saline Waters by Flow
Laboratory sample ID	Client sampling date / time	Client sample ID	WATER - Dissolved	WATER - EC Dissolved m ORC-ICPMS	WATER - Dissolved bv ORC-I0	WATER - Ammonia Waters bv	WATER - Nitrite as by Flow I	WATER Nitrate as and NO2	WATER TKN by Total N	WATER - E Total Nitrog (Ultra-trace
ES0907660-001	26-MAY-2009 15:00	G-WQ-02	√	✓	√	√	1	1	✓	✓
ES0907660-002	26-MAY-2009 15:00	G-WQ-03	4	✓	✓	✓	1	1	✓	✓
ES0907660-003	26-MAY-2009 15:00	G-WQ-06	✓	✓	✓	1	1	1	✓	✓
ES0907660-004	26-MAY-2009 15:00	G-WQ-07	4	✓	✓	✓	1	1	✓	✓
ES0907660-005	26-MAY-2009 15:00	G-WQ-09	✓	✓	✓	✓	1	✓	✓	✓
ES0907660-006	26-MAY-2009 15:00	QA2	1	1	1	1	1	1	✓	1

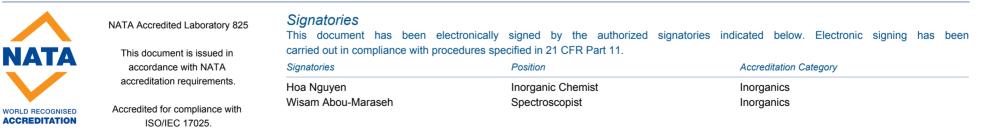
Matrix: WATER Laboratory sample ID	Client sampling date / time	Client sample ID	WATER - EK267PA-SW Total Phosphorus by Persulfate Digestion (Ultra-trace in Saline Waters by Flow	
ES0907660-001	26-MAY-2009 15:00	G-WQ-02	✓	1
ES0907660-002	26-MAY-2009 15:00	G-WQ-03	✓	✓
ES0907660-003	26-MAY-2009 15:00	G-WQ-06	✓	✓
ES0907660-004	26-MAY-2009 15:00	G-WQ-07	√	1
ES0907660-005	26-MAY-2009 15:00	G-WQ-09	✓	✓
ES0907660-006	26-MAY-2009 15:00	QA2	✓	✓

Requested Deliverables

MR ADRIAN WHITE

 *AU Certificate of Analysis - NATA (COA) 	Email	adrian.a.white@ghd.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	adrian.a.white@ghd.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	adrian.a.white@ghd.com.au
- A4 - AU Sample Receipt Notification - Environmental (SRN)	Email	adrian.a.white@ghd.com.au
- A4 - AU Tax Invoice (INV)	Email	adrian.a.white@ghd.com.au
- Default - Chain of Custody (COC)	Email	adrian.a.white@ghd.com.au
- EDI Format - ENMRG (ENMRG)	Email	adrian.a.white@ghd.com.au
- EDI Format - ESDAT (ESDAT)	Email	adrian.a.white@ghd.com.au
MR JASON FOWLER		
 *AU Certificate of Analysis - NATA (COA) 	Email	jason.k.fowler@ghd.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	jason.k.fowler@ghd.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	jason.k.fowler@ghd.com.au
- A4 - AU Sample Receipt Notification - Environmental (SRN)	Email	jason.k.fowler@ghd.com.au
- A4 - AU Tax Invoice (INV)	Email	jason.k.fowler@ghd.com.au
 Default - Chain of Custody (COC) 	Email	jason.k.fowler@ghd.com.au
- EDI Format - ENMRG (ENMRG)	Email	jason.k.fowler@ghd.com.au
- EDI Format - ESDAT (ESDAT)	Email	jason.k.fowler@ghd.com.au

Environmental Division


CERTIFICATE OF ANALYSIS

Work Order	ES0907660	Page	: 1 of 4
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR ADRIAN WHITE	Contact	: Charlie Pierce
Address	: P O BOX 373 GLADSTONE QLD, AUSTRALIA 4680	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: adrian.a.white@ghd.com.au	E-mail	: charlie.pierce@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-2-8784 8555
Facsimile	: +61 07 4972 6236	Facsimile	: +61-2-8784 8500
Project	: WESTERN BASIN EIS WQ MONITORING 4215386 41	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 27-MAY-2009
Sampler	:	Issue Date	: 03-JUN-2009
Site	:		
		No. of samples received	: 6
Quote number	: EN/005/09	No. of samples analysed	: 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Environmental Division Sydney Part of the ALS Laboratory Group 277-289 Woodpark Road Smithfield NSW Australia 2164 Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

- EG093:LCS recovery for various elemets falls outside ALS Dynamic Control Limit. However, it is within the acceptance criteria based on ALS DQO. No further action is required.
- EK262PA: The TN/TKN result for sample ID' G-WQ-09' has been confirmed by re-analysis.

Analytical Results

Sub-Matrix: WATER		Clie	ent sample ID	G-WQ-02	G-WQ-03	G-WQ-06	G-WQ-07	G-WQ-09
	C	ient samplii	ng date / time	26-MAY-2009 15:00				
Compound	CAS Number	LOR	Unit	ES0907660-001	ES0907660-002	ES0907660-003	ES0907660-004	ES0907660-005
EG035F: Dissolved Mercury by FIN	IS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EG093F: Dissolved Metals in Salin	e Water by ORC-ICPM	S						
Aluminium	7429-90-5	10	µg/L	<10	<10	<10	<10	<10
Antimony	7440-36-0	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Iron	7439-89-6	5	µg/L	<5	<5	<5	<5	<5
Arsenic	7440-38-2	0.5	µg/L	1.4	1.3	1.2	1.3	1.2
Barium	7440-39-3	1	µg/L	9	10	10	10	8
Beryllium	7440-41-7	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	2.7	<0.2	1.7
Chromium	7440-47-3	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Cobalt	7440-48-4	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Copper	7440-50-8	1	µg/L	1	<1	1	<1	<1
Lead	7439-92-1	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Manganese	7439-96-5	0.5	µg/L	<0.5	<0.5	0.8	0.8	<0.5
Nickel	7440-02-0	0.5	µg/L	0.5	0.6	1.2	0.9	0.8
Silver	7440-22-4	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Vanadium	7440-62-2	0.5	µg/L	1.4	1.4	1.5	1.5	1.4
Ultra-Trace Nutrients								
Ammonia as N	7664-41-7	0.005	mg/L	<0.005	<0.005	0.007	<0.005	0.006
Nitrite as N		0.002	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002
^ Nitrate as N	14797-55-8	0.002	mg/L	<0.002	0.005	0.003	0.002	0.004
Total Kjeldahl Nitrogen as N		0.05	mg/L	0.14	0.12	0.15	0.13	1.88
Total Nitrogen as N		0.05	mg/L	0.14	0.13	0.15	0.13	1.88
Reactive Phosphorus as P		0.001	mg/L	0.003	0.004	0.004	0.003	0.004
Total Phosphorus as P		0.005	mg/L	<0.005	<0.005	0.011	<0.005	<0.005

Analytical Results

Sub-Matrix: WATER		Clie	ent sample ID	QA2	 	
	Cl	ient samplii	ng date / time	26-MAY-2009 15:00	 	
Compound	CAS Number	LOR	Unit	ES0907660-006	 	
EG035F: Dissolved Mercury by FIMS						
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	
EG093F: Dissolved Metals in Saline Wat	ter by ORC-ICPM	s				
Aluminium	7429-90-5	10	µg/L	<10	 	
Antimony	7440-36-0	0.5	μg/L	<0.5	 	
Iron	7439-89-6	5	µg/L	<5	 	
Arsenic	7440-38-2	0.5	µg/L	1.2	 	
Barium	7440-39-3	1	µg/L	9	 	
Beryllium	7440-41-7	0.1	µg/L	<0.1	 	
Cadmium	7440-43-9	0.2	µg/L	<0.2	 	
Chromium	7440-47-3	0.5	µg/L	<0.5	 	
Cobalt	7440-48-4	0.2	µg/L	<0.2	 	
Copper	7440-50-8	1	µg/L	<1	 	
Lead	7439-92-1	0.2	µg/L	<0.2	 	
Manganese	7439-96-5	0.5	µg/L	<0.5	 	
Nickel	7440-02-0	0.5	µg/L	0.5	 	
Silver	7440-22-4	0.1	µg/L	<0.1	 	
Vanadium	7440-62-2	0.5	µg/L	1.5	 	
Ultra-Trace Nutrients						
Ammonia as N	7664-41-7	0.005	mg/L	<0.005	 	
Nitrite as N		0.002	mg/L	<0.002	 	
^ Nitrate as N	14797-55-8	0.002	mg/L	0.003	 	
Total Kjeldahl Nitrogen as N		0.05	mg/L	0.11	 	
Total Nitrogen as N		0.05	mg/L	0.11	 	
Reactive Phosphorus as P		0.001	mg/L	0.004	 	
Total Phosphorus as P		0.005	mg/L	<0.005	 	

Environmental Division

QUALITY CONTROL REPORT

Work Order	: ES0907660	Page	÷ 1 of 5
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR ADRIAN WHITE	Contact	: Charlie Pierce
Address	: P O BOX 373	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	GLADSTONE QLD, AUSTRALIA 4680		
E-mail	: adrian.a.white@ghd.com.au	E-mail	: charlie.pierce@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-2-8784 8555
Facsimile	: +61 07 4972 6236	Facsimile	: +61-2-8784 8500
Project	: WESTERN BASIN EIS WQ MONITORING 4215386 41	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 27-MAY-2009
Sampler	:	Issue Date	: 03-JUN-2009
Order number	:		
		No. of samples received	: 6
Quote number	: EN/005/09	No. of samples analysed	: 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

ΝΑΤΑ	NATA Accredited Laboratory 825 This document is issued in	Signatories This document has been electronicall carried out in compliance with procedures s	y signed by the authorized signatories pecified in 21 CFR Part 11.	s indicated below. Electronic signing	g has been					
	accordance with NATA accreditation requirements.	Signatories	Accreditation Category							
WORLD RECOGNISED	D Accredited for compliance with	Hoa Nguyen Wisam Abou-Maraseh	Inorganic Chemist Spectroscopist	Inorganics Inorganics						
	Environmental Division Sydney									

Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

ub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
G035F: Dissolved	Mercury by FIMS (QC I	Lot: 991122)								
ES0907660-001	G-WQ-02	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit	
EG093F: Dissolved	Metals in Saline Water	by ORC-ICPMS (QC Lot: 995006)								
EM0904803-001	Anonymous	EG093A-F: Beryllium	7440-41-7	0.1	µg/L	<0.1	<0.1	0.0	No Limit	
		EG093A-F: Silver	7440-22-4	0.1	μg/L	0.1	<0.1	0.0	No Limit	
		EG093A-F: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	0.0	No Limit	
		EG093A-F: Cobalt	7440-48-4	0.2	µg/L	<0.2	<0.2	0.0	No Limit	
		EG093A-F: Lead	7439-92-1	0.2	µg/L	<0.2	<0.2	0.0	No Limit	
		EG093A-F: Antimony	7440-36-0	0.5	µg/L	<0.5	<0.5	0.0	No Limit	
		EG093A-F: Arsenic	7440-38-2	0.5	µg/L	2.1	1.7	16.6	No Limit	
		EG093A-F: Chromium	7440-47-3	0.5	µg/L	<0.5	<0.5	0.0	No Limit	
		EG093A-F: Manganese	7439-96-5	0.5	µg/L	<0.5	<0.5	0.0	No Limit	
		EG093A-F: Nickel	7440-02-0	0.5	µg/L	0.5	<0.5	0.0	No Limit	
		EG093A-F: Vanadium	7440-62-2	0.5	µg/L	1.6	1.6	0.0	No Limit	
		EG093A-F: Barium	7440-39-3	1	µg/L	6	6	0.0	No Limit	
		EG093A-F: Copper	7440-50-8	1	µg/L	<1	<1	0.0	No Limit	
		EG093A-F: Aluminium	7429-90-5	10	μg/L	<10	<10	0.0	No Limit	
G093F: Dissolved	Metals in Saline Water	by ORC-ICPMS (QC Lot: 995007)								
M0904803-001	Anonymous	EG093B-F: Iron	7439-89-6	5	μg/L	<5	<5	0.0	No Limit	
Itra-Trace Nutrient	ts (QC Lot: 991316)									
S0907660-001	G-WQ-02	EK257A-SW: Nitrite as N		0.002	mg/L	<0.002	<0.002	0.0	No Limit	
Iltra-Trace Nutrient	ts (QC Lot: 991317)									
S0907660-001	G-WQ-02	EK255A-SW: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	<0.005	0.0	No Limit	
Iltra-Trace Nutrient	ts (QC Lot: 991319)						1			
S0907660-001	G-WQ-02	EK271A-SW: Reactive Phosphorus as P		0.001	mg/L	0.003	0.004	31.6	No Limit	
Itra-Trace Nutrient	ts (QC Lot: 991321)									
S0907660-001	G-WQ-02	EK262PA-SW: Total Nitrogen as N		0.05	mg/L	0.14	0.13	0.0	No Limit	
	ts (QC Lot: 991322)					0	0.1.0	0.0		
S0907660-001	G-WQ-02	EK267PA-SW: Total Phosphorus as P		0.005	mg/L	<0.005	< 0.005	0.0	No Limit	
.00307000-001	0-110-02	ENZO/PA-SW. TOtal Phosphorus as P		0.000	mg/L	-0.005	-0.000	0.0	NO LIITIIL	

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

ub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
G035F: Dissolved Mercury by FIMS (QCLot: 991	122)									
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.010 mg/L	107	86	116		
G093F: Dissolved Metals in Saline Water by OR	C-ICPMS (QCLot: 995006)								
G093A-F: Aluminium	7429-90-5	10	μg/L	<10	50 μg/L	92.2	80	128		
G093A-F: Antimony	7440-36-0	0.5	µg/L	<0.5						
G093A-F: Arsenic	7440-38-2	0.5	µg/L	<0.5	10 µg/L	99.8	85	125		
G093A-F: Barium	7440-39-3	1	μg/L	<1	10 µg/L	110	81	129		
G093A-F: Beryllium	7440-41-7	0.1	µg/L	<0.1	10 µg/L	90.6	80	122		
G093A-F: Cadmium	7440-43-9	0.2	µg/L	<0.2	10 µg/L	113	78	116		
G093A-F: Chromium	7440-47-3	0.5	μg/L	<0.5	10 µg/L	102	86	128		
G093A-F: Cobalt	7440-48-4	0.2	µg/L	<0.2	10 µg/L	109	87	127		
G093A-F: Copper	7440-50-8	1	µg/L	<1	10 µg/L	108	86	124		
G093A-F: Lead	7439-92-1	0.2	μg/L	<0.2	10 µg/L	98.4	87	123		
G093A-F: Manganese	7439-96-5	0.5	µg/L	<0.5	10 µg/L	112	90	122		
G093A-F: Nickel	7440-02-0	0.5	µg/L	<0.5	10 µg/L	101	84	124		
G093A-F: Silver	7440-22-4	0.1	µg/L	<0.1						
G093A-F: Vanadium	7440-62-2	0.5	μg/L	<0.5	10 µg/L	96.7	85	123		
G093F: Dissolved Metals in Saline Water by OR	C-ICPMS (QCLot: 995007)								
G093B-F: Iron	7439-89-6	5	μg/L	<5	50 µg/L	101	89	119		
Itra-Trace Nutrients (QCLot: 991316)										
K257A-SW: Nitrite as N		0.002	mg/L	<0.002	0.1 mg/L	102	70	130		
Itra-Trace Nutrients (QCLot: 991317)										
K255A-SW: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.1 mg/L	101	70	130		
Itra-Trace Nutrients (QCLot: 991319)										
K271A-SW: Reactive Phosphorus as P		0.001	mg/L	<0.001	0.1 mg/L	101	70	130		
Itra-Trace Nutrients (QCLot: 991321)										
K262PA-SW: Total Nitrogen as N		0.05	mg/L	<0.05	1.0 mg/L	89.8	70	130		
Itra-Trace Nutrients (QCLot: 991322)										
K267PA-SW: Total Phosphorus as P		0.005	mg/L	<0.005	0.44 mg/L	85.2	70	130		

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Matrix Spike (MS) Report							
				Spike	Spike Recovery (%)	Recovery	Limits (%)				
Laboratory sample ID	ID Client sample ID Method: Compound CAS Number			Concentration	MS	Low	High				
G035F: Dissolved	Mercury by FIMS (QCLot: 9911	122)									
ES0907660-001	G-WQ-02	EG035F: Mercury	7439-97-6	0.0100 mg/L	81.6	70	130				
EG093F: Dissolved	Metals in Saline Water by ORC	-ICPMS (QCLot: 995006)									
EB0908379-002	Anonymous	EG093A-F: Arsenic	7440-38-2	50 µg/L	70.2	70	130				
		EG093A-F: Barium	7440-39-3	50 µg/L	72.0	70	130				
		EG093A-F: Beryllium	7440-41-7	50 µg/L	78.3	70	130				
		EG093A-F: Cadmium	7440-43-9	12.5 µg/L	71.0	70	130				
		EG093A-F: Chromium	7440-47-3	50 µg/L	76.6	70	130				
		EG093A-F: Cobalt	7440-48-4	50 µg/L	76.1	70	130				
		EG093A-F: Copper	7440-50-8	50 µg/L	85.9	70	130				
		EG093A-F: Lead	7439-92-1	50 µg/L	73.5	70	130				
		EG093A-F: Manganese	7439-96-5	50 µg/L	97.0	70	130				
		EG093A-F: Nickel	7440-02-0	50 µg/L	70.6	70	130				
		EG093A-F: Vanadium	7440-62-2	50 µg/L	77.7	70	130				
Jltra-Trace Nutrient	ts (QCLot: 991316)										
ES0907660-001	G-WQ-02	EK257A-SW: Nitrite as N		0.1 mg/L	121	70	130				
JItra-Trace Nutrient	ts (QCLot: 991317)										
ES0907660-001	G-WQ-02	EK255A-SW: Ammonia as N	7664-41-7	0.1 mg/L	94.1	70.	130				
Ultra-Trace Nutrient	(QCLot: 991319)										
ES0907660-001	G-WQ-02	EK271A-SW: Reactive Phosphorus as P		0.1 mg/L	77.5	70	130				
Jltra-Trace Nutrient											
ES0907660-001	G-WQ-02	EK262PA-SW: Total Nitrogen as N		0.5 mg/L	73.7	70	130				
		LIZUZE A-SW. TUTAL MILLOYET AS IN		0.0 mg/L	10.1		.00				
Ultra-Trace Nutrient				0.5 mm/l	00.7	70	400				
ES0907660-001	G-WQ-02	EK267PA-SW: Total Phosphorus as P		0.5 mg/L	80.7	70	130				

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order	: ES0907660	Page	: 1 of 6
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR ADRIAN WHITE	Contact	: Charlie Pierce
Address	: P O BOX 373 GLADSTONE QLD, AUSTRALIA 4680	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: adrian.a.white@ghd.com.au	E-mail	: charlie.pierce@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-2-8784 8555
Facsimile	: +61 07 4972 6236	Facsimile	: +61-2-8784 8500
Project	: WESTERN BASIN EIS WQ MONITORING 4215386 41	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 27-MAY-2009
Sampler	:	Issue Date	: 03-JUN-2009
Order number	:		
		No. of samples received	: 6
Quote number	: EN/005/09	No. of samples analysed	: 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Environmental Division Sydney Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Within	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EG035F: Dissolved Mercury by FIMS								
Clear HDPE (U-T ORC) - Filtered; La	ıb-acidified							
G-WQ-02,	G-WQ-03,	26-MAY-2009				29-MAY-2009	23-JUN-2009	✓
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA2							
EG093F: Dissolved Metals in Saline	Water by ORC-ICPMS							
Clear HDPE (U-T ORC) - Filtered; La	ıb-acidified							
G-WQ-02,	G-WQ-03,	26-MAY-2009	01-JUN-2009			01-JUN-2009	22-NOV-2009	 ✓
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA2							
Ultra-Trace Nutrients								
Clear Plastic Bottle - Filtered (AS)								
G-WQ-02,	G-WQ-03,	26-MAY-2009				27-MAY-2009	27-MAY-2009	✓
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA2							
Clear Plastic Bottle - Natural								
G-WQ-02,	G-WQ-03,	26-MAY-2009	27-MAY-2009	27-MAY-2009	 ✓ 	27-MAY-2009	27-MAY-2009	✓
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA2							

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type			count	Rate (%)			Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
aboratory Duplicates (DUP)							
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	6	16.7	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	6	16.7	10.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	1	9	11.1	10.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	1	7	14.3	10.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	6	16.7	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	6	16.7	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	6	16.7	10.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fotal Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	6	16.7	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	6	16.7	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	6	16.7	5.0	 ✓ 	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	1	9	11.1	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	1	7	14.3	5.0	 ✓ 	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	6	16.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	6	16.7	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	6	16.7	10.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	6	16.7	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	6	16.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	6	16.7	5.0	<u> </u>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	1	9	11.1	5.0	 ✓ 	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	1	7	14.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	6	16.7	5.0	✓ ✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	6	16.7	5.0	 ✓ 	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	6	16.7	5.0	 ✓ 	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	6	16.7	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	6	16.7	5.0	1	ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	6	16.7	5.0	 ✓ 	ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	1	9	11.1	5.0		ALS QCS3 requirement
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	6	16.7	5.0		ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	6	16.7	5.0	 ✓ 	ALS QCS3 requirement
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	6	16.7	5.0	<u> </u>	ALS QCS3 requirement
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	6	16.7	5.0		ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Mercury by FIMS	EG035F	WATER	AS 3550, APHA 21st ed. 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	WATER	APHA 21st ed., 3125; USEPA SW846 - 6020 Samples are 0.45 um filtered prior to analysis. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	WATER	APHA 21st ed., 3125; USEPA SW846 - 6020 Samples are 0.45 um filtered prior to analysis. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	WATER	APHA 21st ed., 4500-NH3 H Ammonia is determined by direct colorimetry by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	WATER	APHA 21st ed., 4500-NO2- B. Nitrite is determined by direct colourimetry by FIA.
Nitrate as N - Ultra-Trace in Saline Waters	EK258A-SW	WATER	APHA 21st ed., 4500-NO3- I Nitrate is reduced to nitrite by way of a cadmium reduction column followed by quantification by FIA. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results.
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	WATER	APHA 21st ed., 4500-NO3- I. Combined oxidised Nitrogen (NO2+NO3) is determined by Cadmium Reduction and direct colourimetry by FIA.
TKN (Total N - NOx-N). (FIA - UT) in Saline Waters	EK261PA-SW	WATER	APHA 21st ed., 4500-P J. & 4500-NO3- I. Calculated by difference from total Nitrogen and NOx. Contributing method parameters are determined by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	WATER	APHA 21st ed., 4500-P J. Persulfate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus. As sample is digested with persulfate under alkaline conditions yielding orthophosphate and nitrate. Following digestion, analytes are determined by flow injection analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	WATER	APHA 21st ed., 4500-P J. Persulfate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus. As sample is digested with persulfate under alkaline conditions yielding orthophosphate and nitrate. Following digestion, analytes are determined by flow injection analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Analytical Methods	Method	Matrix	Method Descriptions
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	WATER	APHA 21st ed., 4500-P E Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Preparation Methods	Method	Matrix	Method Descriptions
Persulfate Digestion for UT TN and TP for FIA/Saline	EK262/267PA-SW	WATER	APHA 21st ed., 4500 P - J. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

Chain of Custody & Analysis Request

Page __1__ of _1__

						GHD)												·			
PROJECT ID:	421538	36 41	QUOTE:			LABORAT	ORYBA	TCH NC).:													
PROJECT:	Weste	Western Basin EIS WQ Monitoring					FOR LAB USE ONLY															
CLIENT:	GHD					COOLER SEAL:								B TEMP								
POSTAL ADDRESS	S: PO Bo	PO Box 373, Gladstone 4680						Yes No														
CONTACT:	Adrian	White		Broker	1		Intact										X					
PHONE:		412035667 FAX: 07) 49726236						ESPATCHED TO: ALS Environmental									100000000000000000000000000000000000000		<u></u>	<u>1111/1911</u>		
EMAIL:				an.A.White@ghd.cc						277-289 Wo	odpa	k Road									<u> </u>	
INVOICE:	Jasor	n.K.Fowler@g	hd.com.au, Adri	an.A.White@ghd.cc	<u>om.au</u>					Smithfield N		164									~	
										02 8784 855	55					_						
DATA NEEDED BY	:											ANA	LYSIS	REQUIR	ED		Envir	onme	ental D	tivisio	ภ	
REPORT FORMAT							Ξ											Syc	dney		••	
ALFORTTONMAT.	·					- dissolved metals (EG093F) cd, Co, Cr, Cu, Mn, Ni, Pb, V,	(UTN - 04) (TP, RP, NH3	-EP-215LL (lowest										-	Orde			
EMAIL FORMAT:	ESDA	T, EXCEL & PDF				ki, F	Ē	<u>]</u>														
	200/1				······································		۱ <u>۴</u>	그									- ES	<i>SO9</i>	092	216	1 1	
						u, N	<u></u>	12											~~~		,	
COMMENTS/SPEC	IAL HANDLI	NG/STORAGE O	R DISPOSAL:			1 E O	Ē	μ.								1010	U U U U U U U U U U U U U U U U U U U	i II III inne	i i de la cor			
						<u>, c k</u>	IÉ .	s									() () (() ((
Water samples t	from a mai	rine environme	ent (Background	sampling)		S S	s (- B								<u>III I</u> II						
			-			<u>5</u> 5	TN	esti													11 11	
1						Ag)	e nutrients (TKN, TN)	e b													11 14	
(EMAIL ADDR	ESSES P					AI, A	12 1	lidu								I	elepho	ne:+6	61-2-87	84 855!	5	
(======================================			<u>, , , , , , , , , , , , , , , , , , , </u>			ê, Ås,	trace NO3,	l se														
SAMPLE	E ID	MATRIX	DATE	DETECTION LIMIT	PRESERVATION	Ultra (Sb, J Hg, F	Ultra NO2,	Multi Residue Pesticides	3													
G-WQ-01	(Water	24/06/2009	LOR	As Required	x	x	x	_			1114	na -	trace	> ^/	tric	th:	Hlo<	In	780	in	
G-WQ-05	2	Water	24/06/2009	LOR	As Required	X	x	x			_	Th		field		USin		1	ice			
G-WQ-06	3	Water	24/06/2009	LOR	As Required	x	x	x						Thee	\rightarrow	<u>050 (</u>	y 	77	105			
G-WQ-07	4	Water	24/06/2009	LOR	As Required	x	X	x				-										
G-WQ-09	5	Water	24/06/2009	LOR	As Required	x	x	x	_													
QA-04	6	Water	24/06/2009	LOR	As Required	X	x	x	_													
					200			^														
			RELINQUIS		- 1 CH I F																	
NAME: J For	wler		DATE:	24/06/2009	. A.	NAME :	1	ante	s					ED BY:								
	Here have					OF:			925				TE:	25-1								
PLEASE EMAIL CO		ANALYSIS REQU		1000	Jason.K.Fowler@ghd.com.au,		ite@ah			·			IME:		120	an_						
*Container Type and	d Preservativ	e Codes: P = Neu	tral Plastic; N = Nitri	c Acid Preserved; C = S	odium Hydroxide Preserved; J = Solven					Washed Acid Pine	ed Glor	e Bottlo:										
VC = Hydrochloric A	cid Preserve	d Vial: VS = Sulfu	ric Acid Preserved	/ial: BS - Sulfuric Acid I	Preserved Glass Bottle; Z = Zinc Acetat	a Preserved Bett					eu Gias	s dottie,										
			and Adia i reactived	viai, DO = Ouliunic Aciu i	Teserved Glass Bottle, $\Sigma = \Sigma HC Acetat$	e Preserved Bott	:ie; E = El	DIA Pre	eserve	d Bottles; ST = Ste	erile Bot	tle;										
O = Other.																						

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order	: ES09	09216		
Client Contact Address	: MR AD : P O BC	E RVICES PTY LTD RIAN WHITE IX 373 TONE QLD, AUSTRALIA 4680	Laboratory Contact Address	 Environmental Division Sydney Charlie Pierce 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail Telephone Facsimile	: +61 07	a.white@ghd.com.au 49731611 4972 6236	E-mail Telephone Facsimile	: charlie.pierce@alsenviro.com : +61-2-8784 8555 : +61-2-8784 8500
Project	: 421538 MONIT	641 WESTERN BASIN EIS WQ ORING	Page	: 1 of 2
Order number C-O-C number Site	:		Quote number	: EM2009GHDSER0392 (EN/005/09)
Sampler	:		QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dates				
Date Samples Received Client Requested Due Date		: 25-JUN-2009 : 06-JUL-2009	Issue Date Scheduled Reportir	25-JUN-2009 13:50 19 Date : 06-JUL-2009
Delivery Detai	ils			
Mode of Delivery			Temperature	: 14.8'C - Ice present
No. of coolers/boxes : 2 HARD Sercurity Seal : Intact.		No. of samples rece No. of samples ana	•	

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Sample(s) have been received within recommended holding times.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Nanthini Coilparampil
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (90 days) from date of completion of work order.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process neccessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

When date(s) and/or time(s) are shown bracketed, these have been assumed by laboratory for processing the purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

issolved metals in saline water **Dissolved Mercury by FIMS** issolved Metals in Saline **Aultiresidue Pesticide** VATER - EG093A-F VATER - EG093B-VATER - EG035F VATER - EP215L **VATER - UTN-4 ORC-ICPMS DRC-ICPMS** Matrix: WATER ow Level Client sample ID Laboratory sample Client sampling ID date / time ES0909216-001 24-JUN-2009 15:00 G-WQ-01 ~ ~ 1 ~ ~ ✓ √ ES0909216-002 ~ 24-JUN-2009 15:00 G-WQ-05 ES0909216-003 1 1 1 1 24-JUN-2009 15:00 G-WQ-06 1 √ √ ES0909216-004 24-JUN-2009 15:00 G-WQ-07 ~ 1 1 1 1 ES0909216-005 24-JUN-2009 15:00 G-WQ-09 1 1 ./ 1 ES0909216-006 24-JUN-2009 15:00 QA-04

Requested Deliverables

MR ADRIAN WHITE

- *AU Certificate of Analysis NATA (COA)
- *AU Interpretive QC Report DEFAULT (Anon QCI Rep) (QCI)
- *AU QC Report DEFAULT (Anon QC Rep) NATA (QC)
- A4 AU Sample Receipt Notification Environmental (SRN)
- A4 AU Tax Invoice (INV)
- Default Chain of Custody (COC)
- EDI Format ENMRG (ENMRG)
- EDI Format ESDAT (ESDAT)

MR JASON FOWLER

- *AU Certificate of Analysis NATA (COA)
- *AU Interpretive QC Report DEFAULT (Anon QCI Rep) (QCI)
- *AU QC Report DEFAULT (Anon QC Rep) NATA (QC)
- A4 AU Sample Receipt Notification Environmental (SRN)
- A4 AU Tax Invoice (INV)
- Default Chain of Custody (COC)
- EDI Format ENMRG (ENMRG)
- EDI Format ESDAT (ESDAT)

adrian.a.white@ghd.com.au
adrian.a.white@ghd.com.au
jason.k.fowler@ghd.com.au

ш

Suite

Water

à

Email

Email

Email

Email

Email

Fmail

Fmail

Email

Email

Email

Email

Email

Email

Email

Email

Email

â

Screen (Suite

²hosphorus, TKN, Reactive Phosphorus

Iltratrace NO2, NO3, NH3, Nitrogen,

~

~

~

~

7

~

jason.k.fowler@ghd.com.au jason.k.fowler@ghd.com.au jason.k.fowler@ghd.com.au jason.k.fowler@ghd.com.au jason.k.fowler@ghd.com.au jason.k.fowler@ghd.com.au jason.k.fowler@ghd.com.au

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order	: ES0909216	Page	: 1 of 4
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR ADRIAN WHITE	Contact	: Charlie Pierce
Address	: P O BOX 373 GLADSTONE QLD, AUSTRALIA 4680	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	adrian.a.white@ghd.com.au	E-mail	: charlie.pierce@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-2-8784 8555
Facsimile	: +61 07 4972 6236	Facsimile	: +61-2-8784 8500
Project	: 421538641 WESTERN BASIN EIS WQ MONITORING	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 25-JUN-2009
Sampler	:	Issue Date	: 07-JUL-2009
Site	:		
		No. of samples received	: 6
Quote number	: BN/314/09	No. of samples analysed	: 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

WORLD RECOGNISED ACCREDITATION	NATA Accredited Laboratory 825 This document is issued in accordance with NATA accreditation requirements.	Signatories This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.		
		Signatories	Position	Accreditation Category
		Celine Conceicao	Spectroscopist	Inorganics
	Accredited for compliance with ISO/IEC 17025.	Hoa Nguyen	Inorganic Chemist	Inorganics
		Lana Nguyen	LCMS Chemist	Organics

Environmental Division Sydney Part of the ALS Laboratory Group 277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

- EG093: LCS recovery for various elements falls outside ALS Dynamic Control Limit. However, it is within the acceptance criteria based on ALS DQO. No further action is required.
- EK271A & EK255A: Spike failed for Reactive Phosphorus and Ammonia due to matrix interference (confirmed by re-analysis).

Analytical Results

Sub-Matrix: WATER		Clie	ent sample ID	G-WQ-01	G-WQ-05	G-WQ-06	G-WQ-07	G-WQ-09
	Ci	lient sampli	ng date / time	24-JUN-2009 15:00				
Compound	CAS Number	LOR	Unit	ES0909216-001	ES0909216-002	ES0909216-003	ES0909216-004	ES0909216-005
EG035F: Dissolved Mercury by F	FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EG093F: Dissolved Metals in Sal	line Water by ORC-ICPM	s						
Aluminium	7429-90-5	10	µg/L	<10	<10	<10	<10	<10
Antimony	7440-36-0	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Iron	7439-89-6	5	µg/L	<5	<5	<5	<5	<5
Arsenic	7440-38-2	0.5	µg/L	0.6	0.7	0.7	0.7	0.6
Barium	7440-39-3	1	µg/L	7	7	8	8	6
Beryllium	7440-41-7	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Chromium	7440-47-3	0.5	µg/L	<0.5	<0.5	2.9	<0.5	<0.5
Cobalt	7440-48-4	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Copper	7440-50-8	1	µg/L	<1	<1	<1	<1	<1
Lead	7439-92-1	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Manganese	7439-96-5	0.5	µg/L	1.2	0.6	1.6	0.7	<0.5
Nickel	7440-02-0	0.5	µg/L	<0.5	<0.5	0.7	<0.5	<0.5
Silver	7440-22-4	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Vanadium	7440-62-2	0.5	µg/L	1.1	1.3	1.5	1.1	1.3
EP215: Multiresidue Pesticide R	esidue Screen (Suite 2)							
Simazine	122-34-9	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Diuron	330-54-1	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Atrazine	1912-24-9	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Molinate	2212-67-1	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Metolachlor	51218-45-2	0.005	µg/L	0.013	<0.005	0.099	0.030	0.027
Malathion	121-75-5	0.002	µg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Diazinon	333-41-5	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Thiobencarb	28249-77-6	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Chlorpyrifos	2921-88-2	0.005	µg/L	0.024	<0.005	<0.005	<0.005	<0.005
Trifluralin	1582-09-8	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Ultra-Trace Nutrients								
Ammonia as N	7664-41-7	0.005	mg/L	0.005	0.006	0.006	0.006	<0.005
Nitrite as N		0.002	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002
^ Nitrate as N	14797-55-8	0.002	mg/L	0.005	0.006	0.006	0.009	0.007
Nitrite + Nitrate as N		0.002	mg/L	0.005	0.006	0.006	0.009	0.007
Total Kjeldahl Nitrogen as N		0.05	mg/L	0.14	0.11	0.14	0.11	0.11
Total Nitrogen as N		0.05	mg/L	0.15	0.12	0.15	0.12	0.12
Reactive Phosphorus as P		0.001	mg/L	0.002	0.002	0.002	0.002	0.001
Total Phosphorus as P		0.005	mg/L	0.009	0.006	0.006	<0.005	<0.005

Analytical Results

Sub-Matrix: WATER		Clie	ent sample ID	QA-04	 	
	Cli		ng date / time	24-JUN-2009 15:00	 	
				ES0909216-006	 	
Compound	CAS Number	LOR	Unit	E30909216-006	 	
EG035F: Dissolved Mercury by FIMS						
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	
EG093F: Dissolved Metals in Saline W	ater by ORC-ICPMS	5				
Aluminium	7429-90-5	10	µg/L	<10	 	
Antimony	7440-36-0	0.5	µg/L	<0.5	 	
Iron	7439-89-6	5	µg/L	<5	 	
Arsenic	7440-38-2	0.5	µg/L	0.6	 	
Barium	7440-39-3	1	µg/L	8	 	
Beryllium	7440-41-7	0.1	µg/L	<0.1	 	
Cadmium	7440-43-9	0.2	µg/L	<0.2	 	
Chromium	7440-47-3	0.5	µg/L	<0.5	 	
Cobalt	7440-48-4	0.2	µg/L	<0.2	 	
Copper	7440-50-8	1	µg/L	<1	 	
Lead	7439-92-1	0.2	µg/L	<0.2	 	
Manganese	7439-96-5	0.5	µg/L	0.8	 	
Nickel	7440-02-0	0.5	µg/L	<0.5	 	
Silver	7440-22-4	0.1	µg/L	<0.1	 	
Vanadium	7440-62-2	0.5	µg/L	1.4	 	
EP215: Multiresidue Pesticide Residue	e Screen (Suite 2)					
Simazine	122-34-9	0.005	µg/L	<0.005	 	
Diuron	330-54-1	0.005	µg/L	<0.005	 	
Atrazine	1912-24-9	0.005	µg/L	<0.005	 	
Molinate	2212-67-1	0.005	µg/L	<0.005	 	
Metolachlor	51218-45-2	0.005	µg/L	<0.005	 	
Malathion	121-75-5	0.002	µg/L	<0.002	 	
Diazinon	333-41-5	0.005	µg/L	<0.005	 	
Thiobencarb	28249-77-6	0.005	µg/L	<0.005	 	
Chlorpyrifos	2921-88-2	0.005	µg/L	<0.005	 	
Trifluralin	1582-09-8	0.005	µg/L	<0.005	 	
Ultra-Trace Nutrients						
Ammonia as N	7664-41-7	0.005	mg/L	0.007	 	
Nitrite as N		0.002	mg/L	<0.002	 	
^ Nitrate as N	14797-55-8	0.002	mg/L	0.008	 	
Nitrite + Nitrate as N		0.002	mg/L	0.008	 	
Total Kjeldahl Nitrogen as N		0.05	mg/L	0.11	 	
Total Nitrogen as N		0.05	mg/L	0.12	 	
Reactive Phosphorus as P		0.001	mg/L	0.002	 	
Total Phosphorus as P		0.005	mg/L	<0.005	 	

Environmental Division

QUALITY CONTROL REPORT

Work Order	ES0909216	Page	: 1 of 7
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR ADRIAN WHITE	Contact	: Charlie Pierce
Address	: P O BOX 373	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	GLADSTONE QLD, AUSTRALIA 4680		
E-mail	: adrian.a.white@ghd.com.au	E-mail	: charlie.pierce@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-2-8784 8555
Facsimile	: +61 07 4972 6236	Facsimile	: +61-2-8784 8500
Project	: 421538641 WESTERN BASIN EIS WQ MONITORING	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 25-JUN-2009
Sampler	:	Issue Date	: 07-JUL-2009
Order number	:		
		No. of samples received	: 6
Quote number	: BN/314/09	No. of samples analysed	: 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

ΝΑΤΑ	NATA Accredited Laboratory 825	Signatories This document has been electronically carried out in compliance with procedures sp		indicated below. Electronic signing has been				
NAIA	accordance with NATA	Signatories	Position	Accreditation Category				
	accreditation requirements.	Celine Conceicao	Spectroscopist	Inorganics				
WORLD RECOGNISED	Accredited for compliance with	Hoa Nguyen	Inorganic Chemist	Inorganics				
ACCREDITATION	ISO/IEC 17025.	Lana Nguyen	LCMS Chemist	Organics				
Environmental Division Sydney								

Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

ub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
G035F: Dissolved	Mercury by FIMS (QC L	.ot: 1026556)							
ES0909216-001	G-WQ-01	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
S0909220-005	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
G093F: Dissolved	Metals in Saline Water I	by ORC-ICPMS (QC Lot: 1025314)							
B0909527-002	Anonymous	EG093A-F: Beryllium	7440-41-7	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EG093A-F: Silver	7440-22-4	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EG093A-F: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Cobalt	7440-48-4	0.2	µg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Lead	7439-92-1	0.2	µg/L	2.0	1.9	0.0	No Limit
		EG093A-F: Antimony	7440-36-0	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Arsenic	7440-38-2	0.5	µg/L	0.7	0.9	24.5	No Limit
		EG093A-F: Chromium	7440-47-3	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Manganese	7439-96-5	0.5	µg/L	17.7	17.3	2.2	0% - 20%
	EG093A-F: Nickel	7440-02-0	0.5	µg/L	<0.5	0.6	0.0	No Limit	
	EG093A-F: Vanadium	7440-62-2	0.5	µg/L	1.6	1.8	11.5	No Limit	
	EG093A-F: Barium	7440-39-3	1	μg/L	21	20	0.0	0% - 20%	
		EG093A-F: Copper	7440-50-8	1	μg/L	<1	<1	0.0	No Limit
		EG093A-F: Aluminium	7429-90-5	10	μg/L	<10	<10	0.0	No Limit
S0909073-001	Anonymous	EG093A-F: Beryllium	7440-41-7	0.1	μg/L	<0.1	<0.1	0.0	No Limit
		EG093A-F: Silver	7440-22-4	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EG093A-F: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Cobalt	7440-48-4	0.2	µg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Lead	7439-92-1	0.2	µg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Antimony	7440-36-0	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Arsenic	7440-38-2	0.5	μg/L	0.8	0.7	0.0	No Limit
		EG093A-F: Chromium	7440-47-3	0.5	μg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Manganese	7439-96-5	0.5	μg/L	0.6	0.5	0.0	No Limit
		EG093A-F: Nickel	7440-02-0	0.5	μg/L	0.7	<0.5	32.6	No Limit
		EG093A-F: Vanadium	7440-62-2	0.5	µg/L	1.2	1.2	0.0	No Limit
		EG093A-F: Barium	7440-39-3	1	µg/L	9	8	0.0	No Limit
		EG093A-F: Copper	7440-50-8	1	µg/L	<1	<1	0.0	No Limit
		EG093A-F: Aluminium	7429-90-5	10	µg/L	<10	<10	0.0	No Limit
G093F: Disso <u>lved</u>	Metals in Saline Water I	by ORC-ICPMS (QC Lot: 1025315)							
S0909073-001	Anonymous	EG093B-F: Iron	7439-89-6	5	µg/L	<5	<5	0.0	No Limit
S0909220-001	Anonymous	EG093B-F: Iron	7439-89-6	5	µg/L	<5	<5	0.0	No Limit

Page	: 4 of 7
Work Order	: ES0909216
Client	: GHD SERVICES PTY LTD
Project	: 421538641 WESTERN BASIN EIS WQ MONITORING

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
EP215: Multiresidue	Pesticide Residue Sci	reen (Suite 2) (QC Lot: 1019161) - continued							
ES0909216-005	G-WQ-09	EP215-LL: Malathion	121-75-5	0.002	μg/L	<0.002	<0.002	0.0	No Limit
		EP215-LL: Simazine	122-34-9	0.005	µg/L	<0.005	<0.005	0.0	No Limit
		EP215-LL: Diuron	330-54-1	0.005	µg/L	<0.005	<0.005	0.0	No Limit
		EP215-LL: Atrazine	1912-24-9	0.005	µg/L	<0.005	<0.005	0.0	No Limit
		EP215-LL: Molinate	2212-67-1	0.005	µg/L	<0.005	<0.005	0.0	No Limit
		EP215-LL: Metolachlor	51218-45-2	0.005	µg/L	0.027	0.028	3.6	No Limit
		EP215-LL: Diazinon	333-41-5	0.005	µg/L	<0.005	<0.005	0.0	No Limit
		EP215-LL: Thiobencarb	28249-77-6	0.005	µg/L	<0.005	<0.005	0.0	No Limit
		EP215-LL: Chlorpyrifos	2921-88-2	0.005	µg/L	<0.005	<0.005	0.0	No Limit
		EP215-LL: Trifluralin	1582-09-8	0.005	µg/L	<0.005	<0.005	0.0	No Limit
Ultra-Trace Nutrient	s (QC Lot: 1030874)								
ES0909216-001	G-WQ-01	EK257A-SW: Nitrite as N		0.002	mg/L	<0.002	<0.002	0.0	No Limit
ES0909220-004	Anonymous	EK257A-SW: Nitrite as N		0.002	mg/L	<0.002	<0.002	0.0	No Limit
Ultra-Trace Nutrient	s (QC Lot: 1030875)								
ES0909216-001	G-WQ-01	EK255A-SW: Ammonia as N	7664-41-7	0.005	mg/L	0.005	0.008	44.3	No Limit
ES0909220-004	Anonymous	EK255A-SW: Ammonia as N	7664-41-7	0.005	mg/L	0.005	<0.005	0.0	No Limit
Ultra-Trace Nutrient	s (QC Lot: 1030876)								
ES0909216-001	G-WQ-01	EK259A-SW: Nitrite + Nitrate as N		0.002	mg/L	0.005	0.005	0.0	No Limit
ES0909220-004	Anonymous	EK259A-SW: Nitrite + Nitrate as N		0.002	mg/L	0.004	0.004	0.0	No Limit
Ultra-Trace Nutrient	s (QC Lot: 1030877)								
ES0909216-001	G-WQ-01	EK271A-SW: Reactive Phosphorus as P		0.001	mg/L	0.002	0.002	0.0	No Limit
ES0909220-004	Anonymous	EK271A-SW: Reactive Phosphorus as P		0.001	mg/L	0.002	0.002	0.0	No Limit
Ultra-Trace Nutrient	s (QC Lot: 1030886)				_				
ES0909216-001	G-WQ-01	EK262PA-SW: Total Nitrogen as N		0.05	mg/L	0.15	0.14	0.0	No Limit
ES0909220-005	Anonymous	EK262PA-SW: Total Nitrogen as N		0.05	mg/L	0.12	0.12	0.0	No Limit
Ultra-Trace Nutrient	s (QC Lot: 1030887)								
ES0909216-001	G-WQ-01	EK267PA-SW: Total Phosphorus as P		0.005	mg/L	0.009	0.008	16.5	No Limit
ES0909220-005	Anonymous	EK267PA-SW: Total Phosphorus as P		0.005	mg/L	< 0.005	<0.005	0.0	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

ub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
G035F: Dissolved Mercury by FIMS (QCLot: 10	26556)							
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.010 mg/L	108	86	116
EG093F: Dissolved Metals in Saline Water by OR	C-ICPMS (QCLot: 102531	4)						
EG093A-F: Aluminium	7429-90-5	10	µg/L	<10	50 µg/L	80.8	80	128
G093A-F: Antimony	7440-36-0	0.5	μg/L	<0.5				
G093A-F: Arsenic	7440-38-2	0.5	µg/L	<0.5	10 µg/L	# 79.1	85	125
EG093A-F: Barium	7440-39-3	1	μg/L	<1	10 µg/L	87.1	81	129
G093A-F: Beryllium	7440-41-7	0.1	µg/L	<0.1	10 µg/L	82.8	80	122
G093A-F: Cadmium	7440-43-9	0.2	µg/L	<0.2	10 µg/L	104	78	116
G093A-F: Chromium	7440-47-3	0.5	μg/L	<0.5	10 µg/L	91.1	86	128
G093A-F: Cobalt	7440-48-4	0.2	μg/L	<0.2	10 µg/L	# 80.3	87	127
G093A-F: Copper	7440-50-8	1	µg/L	<1	10 µg/L	# 76.8	86	124
G093A-F: Lead	7439-92-1	0.2	µg/L	<0.2	10 µg/L	87.3	87	123
G093A-F: Manganese	7439-96-5	0.5	μg/L	<0.5	10 µg/L	# 88.9	90	122
G093A-F: Nickel	7440-02-0	0.5	µg/L	<0.5	10 µg/L	# 82.2	84	124
G093A-F: Silver	7440-22-4	0.1	µg/L	<0.1	1 µg/L	70.3	70	130
G093A-F: Vanadium	7440-62-2	0.5	μg/L	<0.5	10 µg/L	# 82.5	85	123
G093F: Dissolved Metals in Saline Water by OR	C-ICPMS (QCLot: 102531	5)						
G093B-F: Iron	7439-89-6	5	μg/L	<5	50 µg/L	94.6	89	119
P215: Multiresidue Pesticide Residue Screen (S	Guite 2) (QCLot: 1019161)							
P215-LL: Simazine	122-34-9	0.005	μg/L	<0.005	0.025 µg/L	112	65	130
P215-LL: Diuron	330-54-1	0.005	μg/L	<0.005	0.025 µg/L	114	65	130
P215-LL: Atrazine	1912-24-9	0.005	µg/L	<0.005	0.025 µg/L	104	65	130
P215-LL: Molinate	2212-67-1	0.005	μg/L	<0.005	0.025 µg/L	88.6	65	130
P215-LL: Metolachlor	51218-45-2	0.005	µg/L	<0.005	0.025 µg/L	104	65	130
P215-LL: Malathion	121-75-5	0.002	µg/L	<0.002	0.025 µg/L	95.0	65	130
P215-LL: Diazinon	333-41-5	0.005	μg/L	<0.005	0.025 µg/L	86.5	65	130
P215-LL: Thiobencarb	28249-77-6	0.005	μg/L	<0.005	0.025 µg/L	67.4	65	130
P215-LL: Chlorpyrifos	2921-88-2	0.005	μg/L	<0.005	0.025 µg/L	92.7	65	130
P215-LL: Trifluralin	1582-09-8	0.005	µg/L	<0.005	0.1 µg/L	86.8	65	130
Iltra-Trace Nutrients (QCLot: 1030874)								
K257A-SW: Nitrite as N		0.002	mg/L	<0.002	1.0 mg/L	105	70	130
Iltra-Trace Nutrients (QCLot: 1030875)						· · · ·		
		0.005		<0.005	0.1 mg/L	91.8	70	130

Page	: 6 of 7
Work Order	: ES0909216
Client	: GHD SERVICES PTY LTD
Project	: 421538641 WESTERN BASIN EIS WQ MONITORING

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
Ultra-Trace Nutrients (QCLot: 1030876) - continued								
EK259A-SW: Nitrite + Nitrate as N		0.002	mg/L	<0.002	0.1 mg/L	107	70	130
Ultra-Trace Nutrients (QCLot: 1030877)								
EK271A-SW: Reactive Phosphorus as P		0.001	mg/L	<0.001	0.1 mg/L	102	70	130
Ultra-Trace Nutrients (QCLot: 1030886)								
EK262PA-SW: Total Nitrogen as N		0.05	mg/L	<0.05	1.0 mg/L	91.0	70	130
Ultra-Trace Nutrients (QCLot: 1030887)								
EK267PA-SW: Total Phosphorus as P		0.005	mg/L	<0.005	0.44 mg/L	73.2	70	130

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: WATER					Matrix Spike (MS) Repo	ort	
				Spike	Spike Recovery (%)	Recovery	Limits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G035F: Dissolved	Mercury by FIMS (QCLot: 1026	556)					
ES0909216-001	G-WQ-01	EG035F: Mercury	7439-97-6	0.0100 mg/L	93.7	70	130
EG093F: Dissolved	Metals in Saline Water by ORC-	ICPMS (QCLot: 1025314)					
EB0909527-002	Anonymous	EG093A-F: Arsenic	7440-38-2	50 µg/L	94.4	70	130
	EG093A-F: Barium	7440-39-3	50 µg/L	93.1	70	130	
		EG093A-F: Beryllium	7440-41-7	50 µg/L	91.9	70	130
		EG093A-F: Cadmium	7440-43-9	12.5 µg/L	111	70	130
		EG093A-F: Chromium	7440-47-3	50 µg/L	112	70	130
		EG093A-F: Cobalt	7440-48-4	50 µg/L	97.8	70	130
		EG093A-F: Copper	7440-50-8	50 µg/L	93.0	70	130
	EG093A-F: Lead	7439-92-1	50 µg/L	90.8	70	130	
	EG093A-F: Manganese	7439-96-5	50 µg/L	111	70	130	
		EG093A-F: Nickel	7440-02-0	50 μg/L	98.4	70	130
		EG093A-F: Vanadium	7440-62-2	50 μg/L	97.2	70	130
Iltra-Trace Nutrient	ts (QCLot: 1030874)						
ES0909216-001	G-WQ-01	EK257A-SW: Nitrite as N		0.1 mg/L	120	70	130
Iltra-Trace Nutrient	ts (QCLot: 1030875)						
ES0909216-001	G-WQ-01	EK255A-SW: Ammonia as N	7664-41-7	0.1 mg/L	# 57.4	70.	130
Iltra-Trace Nutrient	ts (QCLot: 1030876)						
ES0909216-001	G-WQ-01	EK259A-SW: Nitrite + Nitrate as N		0.1 mg/L	102	70	130
Iltra-Trace Nutrient	ts (QCLot: 1030877)						
ES0909216-001	G-WQ-01	EK271A-SW: Reactive Phosphorus as P		0.1 mg/L	# 48.6	70	130
Iltra-Trace Nutrient	ts (QCLot: 1030886)			-			
ES0909216-001	G-WQ-01	EK262PA-SW: Total Nitrogen as N		0.5 mg/L	91.0	70	130
Iltra-Trace Nutrient	ts (QCLot: 1030887)						
ES0909216-001	G-WQ-01	EK267PA-SW: Total Phosphorus as P		0.5 mg/L	81.0	70	130
-00303210-001	0-110-01	EN207PA-SW: Total Phosphorus as P		0.5 mg/L	01.0	10	130

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order	: ES0909216	Page	: 1 of 7
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR ADRIAN WHITE	Contact	: Charlie Pierce
Address	: P O BOX 373	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	GLADSTONE QLD, AUSTRALIA 4680		
E-mail	: adrian.a.white@ghd.com.au	E-mail	: charlie.pierce@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-2-8784 8555
Facsimile	: +61 07 4972 6236	Facsimile	: +61-2-8784 8500
Project	: 421538641 WESTERN BASIN EIS WQ MONITORING	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 25-JUN-2009
Sampler	:	Issue Date	: 07-JUL-2009
Order number	:		
		No. of samples received	: 6
Quote number	: BN/314/09	No. of samples analysed	: 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Environmental Division Sydney Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: WATER					Evaluation	× = Holding time	breach ; ✓ = Within	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG035F: Dissolved Mercury by FIMS								
Clear HDPE (U-T ORC) - UHP Nitric A	cid; Filtered							
G-WQ-01,	G-WQ-05,	24-JUN-2009				02-JUL-2009	22-JUL-2009	 ✓
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA-04							
EG093F: Dissolved Metals in Saline W	/ater by ORC-ICPMS							
Clear HDPE (U-T ORC) - UHP Nitric A	cid; Filtered							
G-WQ-01,	G-WQ-05,	24-JUN-2009	01-JUL-2009	21-DEC-2009	✓	01-JUL-2009	21-DEC-2009	✓
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA-04							
EP215: Multiresidue Pesticide Residue	e Screen (Suite 2)							
Amber Glass Bottle - Unpreserved								
G-WQ-01,	G-WQ-05,	24-JUN-2009	26-JUN-2009	01-JUL-2009	✓	26-JUN-2009	05-AUG-2009	✓
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA-04							
Ultra-Trace Nutrients								
Clear Plastic Bottle - Filtered and Fro	zen (AS)							
G-WQ-01,	G-WQ-05,	24-JUN-2009				25-JUN-2009	26-JUN-2009	✓
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA-04							
Clear Plastic Bottle - Frozen (AS)								
G-WQ-01,	G-WQ-05,	24-JUN-2009	25-JUN-2009	22-JUL-2009	✓	25-JUN-2009	22-JUL-2009	✓
G-WQ-06,	G-WQ-07,							
G-WQ-09,	QA-04							

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	0 0 0	Reaular	Actual	Expected	Evaluation	
_aboratory Duplicates (DUP)		-					
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Ammonia as N - Ultra-Trace for Catchment Monitoring	EK255A-CM	2	6	33.3	10.0	<u> </u>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	2	15	13.3	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	2	19	10.5	10.0	<u> </u>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	2	18	11.1	10.0	<u> </u>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Multiresidue Pesticide Screen (No. 2)	EP215-LL	1	20	5.0	10.0	*	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	2	20	10.0	10.0	<u> </u>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) - Ultra-Trace for Catchment	EK259A-CM	2	6	33.3	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
litrite as N - Ultra-Trace in Saline Waters	EK257A-SW	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace for Catchment M	EK271A-CM	2	6	33.3	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	2	20	10.0	10.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fotal Nitrogen as N (Persulfate digestion)-Ultra-Trace - CM	EK262PA-CM	2	6	33.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Phosphorus(Persulfate Digestion) - Ultra-Trace for	EK267PA-CM	2	6	33.3	10.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
aboratory Control Samples (LCS)							
mmonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
mmonia as N - Ultra-Trace for Catchment Monitoring	EK255A-CM	1	6	16.7	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	15	6.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	1	18	5.6	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Aultiresidue Pesticide Screen (No. 2)	EP215-LL	1	20	5.0	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Vitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
litrite and Nitrate as N (NOx) - Ultra-Trace for Catchment	EK259A-CM	1	6	16.7	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
litrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
eactive Phosphorus as P - Ultra-Trace for Catchment M	EK271A-CM	1	6	16.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
eactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Nitrogen as N (Persulfate digestion)-Ultra-Trace - CM	EK262PA-CM	1	6	16.7	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	20	5.0	10.0	×	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Phosphorus(Persulfate Digestion) - Ultra-Trace for	EK267PA-CM	1	6	16.7	10.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	20	5.0	10.0	*	NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
/lethod Blanks (MB)							
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Ammonia as N - Ultra-Trace for Catchment Monitoring	EK255A-CM	1	6	16.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	15	6.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	1	18	5.6	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Aultiresidue Pesticide Screen (No. 2)	EP215-LL	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
litrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
litrite and Nitrate as N (NOx) - Ultra-Trace for Catchment	EK259A-CM	1	6	16.7	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
litrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace for Catchment M	EK271A-CM	1	6	16.7	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	20	5.0	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Nitrogen as N (Persulfate digestion)-Ultra-Trace - CM	EK262PA-CM	1	6	16.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Phosphorus(Persulfate Digestion) - Ultra-Trace for CM	EK267PA-CM	1	6	16.7	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
latrix Spikes (MS)							
mmonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	20	5.0	5.0	✓	ALS QCS3 requirement
mmonia as N - Ultra-Trace for Catchment Monitoring	EK255A-CM	1	6	16.7	5.0	~	ALS QCS3 requirement
issolved Mercury by FIMS	EG035F	1	15	6.7	5.0	~	ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	1	19	5.3	5.0	✓	ALS QCS3 requirement
litrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	1	20	5.0	5.0	1	ALS QCS3 requirement
litrite and Nitrate as N (NOx) - Ultra-Trace for Catchment	EK259A-CM	1	6	16.7	5.0	~	ALS QCS3 requirement
litrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	20	5.0	5.0	✓	ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace for Catchment M	EK271A-CM	1	6	16.7	5.0	1	ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	20	5.0	5.0	~	ALS QCS3 requirement
otal Nitrogen as N (Persulfate digestion)-Ultra-Trace - CM	EK262PA-CM	1	6	16.7	5.0	✓	ALS QCS3 requirement
otal Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	20	5.0	5.0	~	ALS QCS3 requirement
otal Phosphorus(Persulfate Digestion) - Ultra-Trace for	EK267PA-CM	1	6	16.7	5.0	~	ALS QCS3 requirement
otal Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	20	5.0	5.0	1	ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Mercury by FIMS	EG035F	WATER	AS 3550, APHA 21st ed. 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	WATER	APHA 21st ed., 3125; USEPA SW846 - 6020 Samples are 0.45 um filtered prior to analysis. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	WATER	APHA 21st ed., 3125; USEPA SW846 - 6020 Samples are 0.45 um filtered prior to analysis. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ammonia as N - Ultra-Trace for Catchment Monitoring	EK255A-CM	WATER	APHA 21st ed., 4500-NH3 H Ammonia is determined by direct colorimetry by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	WATER	APHA 21st ed., 4500-NH3 H Ammonia is determined by direct colorimetry by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite as N - Ultra-Trace for Catchment Monitoring	EK257A-CM	WATER	APHA 21st ed., 4500-NO2- B. Nitrite is determined by direct colourimetry by FIA.
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	WATER	APHA 21st ed., 4500-NO2- B. Nitrite is determined by direct colourimetry by FIA.
Nitrate as N - Ultra-Trace for Catchment Monitoring	EK258A-CM	WATER	APHA 21st ed., 4500-NO3- I Nitrate is reduced to nitrite by way of a cadmium reduction column followed by quantification by FIA. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results.
Nitrate as N - Ultra-Trace in Saline Waters	EK258A-SW	WATER	APHA 21st ed., 4500-NO3- I Nitrate is reduced to nitrite by way of a cadmium reduction column followed by quantification by FIA. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results.
Nitrite and Nitrate as N (NOx) - Ultra-Trace for Catchment M	EK259A-CM	WATER	APHA 21st ed., 4500-NO3- I. Combined oxidised Nitrogen (NO2+NO3) is determined by Cadmium Reduction and direct colourimetry by FIA.
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	WATER	APHA 21st ed., 4500-NO3- I. Combined oxidised Nitrogen (NO2+NO3) is determined by Cadmium Reduction and direct colourimetry by FIA.
TKN (Total N - NOx-N). (FIA - UT) for Catchment Monitoring	EK261PA-CM	WATER	APHA 21st ed., 4500-P J. & 4500-NO3- I . Calculated by difference from total Nitrogen and NOx. Contributing method parameters are determined by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Analytical Methods	Method	Matrix	Method Descriptions
TKN (Total N - NOx-N). (FIA - UT) in Saline Waters	EK261PA-SW	WATER	APHA 21st ed., 4500-P J. & 4500-NO3- I. Calculated by difference from total Nitrogen and NOx. Contributing method parameters are determined by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Nitrogen as N (Persulfate digestion)-Ultra-Trace - CM	EK262PA-CM	WATER	APHA 21st ed., 4500-P J. Persulfate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus. As sample is digested with persulfate under alkaline conditions yielding orthophosphate and nitrate. Following digestion, analytes are determined by flow injection analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	WATER	APHA 21st ed., 4500-P J. Persulfate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus. As sample is digested with persulfate under alkaline conditions yielding orthophosphate and nitrate. Following digestion, analytes are determined by flow injection analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Phosphorus(Persulfate Digestion) - Ultra-Trace for CM	EK267PA-CM	WATER	APHA 21st ed., 4500-P J. Persulfate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus. As sample is digested with persulfate under alkaline conditions yielding orthophosphate and nitrate. Following digestion, analytes are determined by flow injection analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	WATER	APHA 21st ed., 4500-P J. Persulfate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus. As sample is digested with persulfate under alkaline conditions yielding orthophosphate and nitrate. Following digestion, analytes are determined by flow injection analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Reactive Phosphorus as P - Ultra-Trace for Catchment M	EK271A-CM	WATER	APHA 21st ed., 4500-P E Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	WATER	APHA 21st ed., 4500-P E Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Multiresidue Pesticide Screen (No. 2)	EP215-LL	WATER	In-house, LCMS (APCI in positive mode). The compounds are extracted from water samples using dichloromethane. The organic phase is evaporated to dryness and reconstituted in a mixture of acetonitrile and water for reverse phase HPLC analysis.
Preparation Methods	Method	Matrix	Method Descriptions
Persulfate Digestion for UT TN and TP for FIA finish.	EK262/267-PA	WATER	APHA 21st ed., 4500 P - J. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Persulfate Digestion for UT TN and TP for FIA/Saline	EK262/267PA-SW	WATER	APHA 21st ed., 4500 P - J. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Separatory funnel extraction for LCMS herbicides.	* EP215-PR	WATER	In-house. A 1 L sample is extracted three times with 60 mL of methylene chloride, reduced to dryness and made up in HPLC mobile phase.

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Laboratory Control Spike (LCS) Recoveries							
EG093F: Dissolved Metals in Saline Water by ORC-ICP	1176715-003		Arsenic	7440-38-2	79.1 %	85-125%	Recovery less than lower control limit
EG093F: Dissolved Metals in Saline Water by ORC-ICP	1176715-003		Cobalt	7440-48-4	80.3 %	87-127%	Recovery less than lower control limit
EG093F: Dissolved Metals in Saline Water by ORC-ICP	1176715-003		Copper	7440-50-8	76.8 %	86-124%	Recovery less than lower control limit
EG093F: Dissolved Metals in Saline Water by ORC-ICP	1176715-003		Manganese	7439-96-5	88.9 %	90-122%	Recovery less than lower control limit
EG093F: Dissolved Metals in Saline Water by ORC-ICP	1176715-003		Nickel	7440-02-0	82.2 %	84-124%	Recovery less than lower control limit
EG093F: Dissolved Metals in Saline Water by ORC-ICP	1176715-003		Vanadium	7440-62-2	82.5 %	85-123%	Recovery less than lower control limit
Matrix Spike (MS) Recoveries							
Ultra-Trace Nutrients	ES0909216-001	G-WQ-01	Ammonia as N	7664-41-7	57.4 %	70130%	Recovery less than lower data quality objective
Ultra-Trace Nutrients	ES0909216-001	G-WQ-01	Reactive Phosphorus as P		48.6 %	70-130%	Recovery less than lower data quality
							objective

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

Matrix: WATER

Quality Control Sample Type		unt	Rate	e (%)	Quality Control Specification
Method	QC	Regular	Actual Expected		
Laboratory Duplicates (DUP)					
Multiresidue Pesticide Screen (No. 2)	1	20	5.0	10.0	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)					
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	1	20	5.0	10.0	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	1	20	5.0	10.0	NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Chain of Custody & Analysis Request

Page _1_ of _1_

Chain of Custody Number:

	J					CUD						
				r		GHD						
PROJECT ID:	4215386 41		QUOTE:			LABORAT	ORY BAT	CH NO.	Second			
PROJECT:	Western Basin	EIS WQ I	Monitoring				and date of					FOR LABUSE ONLY
CLIENT:	GHD					COOLER S	EAL:					COOLER TEMP:
POSTAL ADDRESS:	PO Box 373, Gla	adstone 4	680				Yes			No		deg.C
CONTACT:	Adrian White						Broken				ict	
PHONE:		2035667		07) 49726236		DESPATCH	HED TO:		1	C. C	ironment	
EMAIL:				an.A.White@ghd.co					2	277-289	Woodpa	rk Road
INVOICE:	Jason.K.Fow	ler@gh	d.com.au, Adria	an.A.White@ghd.co	n.au						d NSW 2	164
				· ·,					(02 8784	8555	
DATA NEEDED BY:	_				· · · · · · · · · · · · · · · · · · ·			_				ANALYSIS REQUIRED
REPORT FORMAT:						د <u>م</u>	04) (TP, RP, NH3,		I T			
							a.	-EP-215LL (lowest				
EMAIL FORMAT:	ESDAT, EXCEL	& PDF				Ni, EG	м М	e.				
						Mn,	E	2				
						u, 1	8	-21		ŗ		Environmental Division
COMMENTS/SPECIAL	HANDLING/STOR	RAGEOR	DISPOSAL:			Cr, O	ż					Sydney
14/-1 I P						ssolv Co, (5	des				Monte
Water samples fror	n a marine envi	ironmer	nt (Background	sampling)		- diss Cd, C	f z	tici				Work Order
						105	N, T	Pes				Sydney Work Order ES0909220
						Ag Be	e nutrients (UTN - TKN, TN)	que				=00003220
(EMAIL ADDRES	SES PROVIDE	D ABO	VE)			A, B, ace	trace NO3,	Multi Residue Pesticides DL)				HI III IIII IIIIIIIIIIIIIIIIIIIIIIIIII
		A				Ultra tr (Sb, As Hg, Fe,	2, N t	E R				
SAMPLE ID	MA	TRIX	DATE	DETECTION LIMIT	PRESERVATION	Ultra (Sb, Hg,	Ultra NO2,	ΔU				
G-WQ-02	W	ater	23/06/2009	LOR	As Required	x	x	x				
G-WQ-03	W	ater	23/06/2009	LOR	As Required	x	X	X				Telephone: +61-2-8784 8555
G-WQ-04	w	ater	23/06/2009	LOR	As Required	x	x	x				
G-WQ-08	w	ater	23/06/2009	LOR	As Required	x	X	x				
G-WQ-10	W	ater	23/06/2009	LOR	As Required	X	x	x				
G-WQ-11	W	ater	23/06/2009	LOR	As Required	x	x	X				
G-WQ-12	W	ater	23/06/2009	LOR	As Required	x	x	x				
QA-03	W	ater	23/06/2009	LOR	As Required	x	x	x				

	RELINQUISHED BY:		RECEIVED BY:						
NAME : J Fowler	DATE: 23/06/2009	NAME: Frank	DATE: 25-6-9						
OF: GHD Gladstone	TIME: 1530	OF: ALS	TIME: 9:30am						
PLEASE EMAIL COMPLETED ANALYSIS	REQUEST TO:	Jason.K.Fowler@ghd.com.au, Adrian.A.White@ghd.com.au							
*Container Type and Preservative Codes: P = Neutral Plastic; N = Nitric Acid Preserved; C = Sodium Hydroxide Preserved; J = Solvent Washed Acid Rinced Jar; S = Solvent Washed Acid Rinced Glass Bottle;									
VC = Hydrochloric Acid Preserved Vial; VS = Sulfuric Acid Preserved Vial; BS = Sulfuric Acid Preserved Glass Bottle; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle;									

O = Other.

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order	: ES09	009220				
Client Contact Address	: GHD SERVICES PTY LTD : MR ADRIAN WHITE : P O BOX 373 GLADSTONE QLD, AUSTRALIA 4680		Laboratory Contact Address	 Environmental Division Sydney Charlie Pierce 277-289 Woodpark Road Smithfield NSW Australia 2164 		
E-mail Telephone Facsimile	: adrian.a.white@ghd.com.au : +61 07 49731611 : +61 07 4972 6236		E-mail Telephone Facsimile	: charlie.pierce@alsenviro.com : +61-2-8784 8555 : +61-2-8784 8500		
Project Order number	: 421538641		Page	: 1 of 2		
C-O-C number Site	:		Quote number	: EM2009GHDSER0392 (EN/005/09)		
Sampler	:		QC Level	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Dates						
Date Samples Received : 25-JUN-2009 Client Requested Due Date : 06-JUL-2009		Issue Date Scheduled Reporti	25-JUN-2009 13:38 ng Date : 06-JUL-2009			
Delivery Deta	nils					
Mode of Delivery No. of coolers/boxes Sercurity Seal	6	: Carrier : 2 HARD : Intact.	Temperature No. of samples rec No. of samples and			

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Requested Deliverables
 - Samples received in appropriately pretreated and preserved containers.
- Sample(s) have been received within recommended holding times.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Nanthini Coilparampil
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (90 days) from date of completion of work order.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process neccessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. When date(s) and/or time(s) are shown bracketed, these

been assumed by laboratory for processing have the purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

²hosphorus, TKN, Reactive Phosphorus Iltratrace NO2, NO3, NH3, Nitrogen, issolved metals in saline water **Dissolved Mercury by FIMS** issolved Metals in Saline **Aultiresidue Pesticide** VATER - EG093A-F VATER - EG093B-VATER - EG035F VATER - EP215L VATER - UTN-4 **ORC-ICPMS DRC-ICPMS** Matrix: WATER ow Level Client sample ID Laboratory sample Client sampling ID date / time ES0909220-001 23-JUN-2009 15:00 G-WQ-02 ~ ~ ~ 1 1 1 √ ~ ES0909220-002 ~ 23-JUN-2009 15:00 G-WQ-03 ES0909220-003 1 1 1 1 ~ 23-JUN-2009 15:00 G-WQ-04 1 √ √ ~ ES0909220-004 23-JUN-2009 15:00 G-WQ-08 ~ 1 1 1 1 1 ES0909220-005 23-JUN-2009 15:00 G-WQ-10 ✓ ~ 1 1 1 ES0909220-006 23-JUN-2009 15:00 G-WQ-11 1 ~ ~ ~ ~ ES0909220-007 23-JUN-2009 15:00 G-WQ-12 1 ~ ~ ES0909220-008 23-JUN-2009 15:00 QA-03 1 1

Requested Deliverables

MR ADRIAN WHITE

- *AU Certificate of Analysis NATA (COA)
- *AU Interpretive QC Report DEFAULT (Anon QCI Rep) (QCI)
- *AU QC Report DEFAULT (Anon QC Rep) NATA (QC)
- A4 AU Sample Receipt Notification Environmental (SRN)
- A4 AU Tax Invoice (INV)
- Default Chain of Custody (COC)
- EDI Format ENMRG (ENMRG)
- EDI Format ESDAT (ESDAT)

MR JASON FOWLER

- *AU Certificate of Analysis NATA (COA)
- *AU Interpretive QC Report DEFAULT (Anon QCI Rep) (QCI)
- *AU QC Report DEFAULT (Anon QC Rep) NATA (QC)
- A4 AU Sample Receipt Notification Environmental (SRN)
- A4 AU Tax Invoice (INV)
- Default Chain of Custody (COC)
- EDI Format ENMRG (ENMRG)
- EDI Format ESDAT (ESDAT)

adrian.a.white@ghd.com.au adrian.a.white@ghd.com.au adrian.a.white@ghd.com.au adrian.a.white@ghd.com.au adrian.a.white@ghd.com.au adrian.a.white@ghd.com.au adrian.a.white@ghd.com.au adrian.a.white@ghd.com.au jason.k.fowler@ghd.com.au

ш

Suite

Water

à

Email

Email

Email

Email

Email

Fmail

Email

â

Screen (Suite

jason.k.fowler@ghd.com.au jason.k.fowler@ghd.com.au jason.k.fowler@ghd.com.au jason.k.fowler@ghd.com.au jason.k.fowler@ghd.com.au jason.k.fowler@ghd.com.au jason.k.fowler@ghd.com.au

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order	: ES0909220	Page	: 1 of 4
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR ADRIAN WHITE	Contact	: Charlie Pierce
Address	E P O BOX 373 GLADSTONE QLD, AUSTRALIA 4680	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: adrian.a.white@ghd.com.au	E-mail	: charlie.pierce@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-2-8784 8555
Facsimile	: +61 07 4972 6236	Facsimile	: +61-2-8784 8500
Project	: 421538641	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 25-JUN-2009
Sampler	:	Issue Date	: 07-JUL-2009
Site	:		
		No. of samples received	: 8
Quote number	: EN/005/09	No. of samples analysed	: 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

ΝΑΤΑ	NATA Accredited Laboratory 825 This document is issued in	Signatories This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.							
	accordance with NATA	Signatories	Position	Accreditation Category					
	accreditation requirements.	Celine Conceicao	Spectroscopist	Inorganics					
WORLD RECOGNISED	Accredited for compliance with	Hoa Nguyen	Inorganic Chemist	Inorganics					
ACCREDITATION	ISO/IEC 17025.	Lana Nguyen	LCMS Chemist	Organics					

Environmental Division Sydney Part of the ALS Laboratory Group 277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

- EG093: LCS recovery for various elements falls outside ALS Dynamic Control Limit. However, it is within the acceptance criteria based on ALS DQO. No further action is required.
- EK271A & EK255A: Spike failed for Reactive Phosphorus and Ammonia due to matrix interference (confirmed by re-analysis).

Analytical Results

Sub-Matrix: WATER		Clie	ent sample ID	G-WQ-02	G-WQ-03	G-WQ-04	G-WQ-08	G-WQ-10
	Cl	ient sampli	ng date / time	23-JUN-2009 15:00				
Compound	CAS Number	LOR	Unit	ES0909220-001	ES0909220-002	ES0909220-003	ES0909220-004	ES0909220-005
EG035F: Dissolved Mercury by FI	MS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EG093F: Dissolved Metals in Salin	e Water by ORC-ICPM	s						
Aluminium	7429-90-5	10	µg/L	<10	<10	<10	<10	<10
Antimony	7440-36-0	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Iron	7439-89-6	5	µg/L	<5	<5	<5	<5	<5
Arsenic	7440-38-2	0.5	µg/L	0.6	0.8	0.6	0.6	0.8
Barium	7440-39-3	1	µg/L	7	7	3	7	8
Beryllium	7440-41-7	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Chromium	7440-47-3	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Cobalt	7440-48-4	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Copper	7440-50-8	1	µg/L	<1	<1	<1	<1	<1
Lead	7439-92-1	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Manganese	7439-96-5	0.5	µg/L	0.8	2.3	<0.5	1.1	1.5
Nickel	7440-02-0	0.5	µg/L	<0.5	<0.5	<0.5	0.5	0.5
Silver	7440-22-4	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Vanadium	7440-62-2	0.5	µg/L	1.1	1.1	0.9	1.3	1.3
EP215: Multiresidue Pesticide Res	idue Screen (Suite 2)							
Simazine	122-34-9	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Diuron	330-54-1	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Atrazine	1912-24-9	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Molinate	2212-67-1	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Metolachlor	51218-45-2	0.005	µg/L	0.009	<0.005	<0.005	0.273	<0.005
Malathion	121-75-5	0.002	µg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Diazinon	333-41-5	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Thiobencarb	28249-77-6	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Chlorpyrifos	2921-88-2	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Trifluralin	1582-09-8	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Ultra-Trace Nutrients								
Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.006	<0.005	0.005	<0.005
Nitrite as N		0.002	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002
^ Nitrate as N	14797-55-8	0.002	mg/L	0.006	0.014	0.003	0.004	0.004
Nitrite + Nitrate as N		0.002	mg/L	0.006	0.014	0.003	0.004	0.004
Total Kjeldahl Nitrogen as N		0.05	mg/L	0.15	0.16	0.08	0.16	0.12
Total Nitrogen as N		0.05	mg/L	0.16	0.17	0.08	0.16	0.12
Reactive Phosphorus as P		0.001	mg/L	0.002	0.002	<0.001	0.002	0.002
Total Phosphorus as P		0.005	mg/L	<0.005	0.007	<0.005	0.007	<0.005

Analytical Results

Sub-Matrix: WATER		Clie	ent sample ID	G-WQ-11	G-WQ-12	QA-03	
	CI		ng date / time	23-JUN-2009 15:00	23-JUN-2009 15:00	23-JUN-2009 15:00	
	01						
Compound	CAS Number	LOR	Unit	ES0909220-006	ES0909220-007	ES0909220-008	
EG035F: Dissolved Mercury by FIMS	5						
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	
EG093F: Dissolved Metals in Saline	Water by ORC-ICPM	S					
Aluminium	7429-90-5	10	µg/L	<10	<10	<10	
Antimony	7440-36-0	0.5	µg/L	<0.5	<0.5	<0.5	
Iron	7439-89-6	5	µg/L	<5	<5	<5	
Arsenic	7440-38-2	0.5	µg/L	0.9	0.8	0.7	
Barium	7440-39-3	1	µg/L	6	6	6	
Beryllium	7440-41-7	0.1	µg/L	<0.1	<0.1	<0.1	
Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	<0.2	
Chromium	7440-47-3	0.5	µg/L	<0.5	<0.5	<0.5	
Cobalt	7440-48-4	0.2	µg/L	<0.2	<0.2	<0.2	
Copper	7440-50-8	1	µg/L	<1	<1	<1	
Lead	7439-92-1	0.2	µg/L	<0.2	<0.2	<0.2	
Manganese	7439-96-5	0.5	µg/L	<0.5	<0.5	1.0	
Nickel	7440-02-0	0.5	µg/L	<0.5	<0.5	<0.5	
Silver	7440-22-4	0.1	µg/L	<0.1	0.1	<0.1	
Vanadium	7440-62-2	0.5	µg/L	1.4	1.5	1.2	
EP215: Multiresidue Pesticide Resid	ue Screen (Suite 2)						
Simazine	122-34-9	0.005	µg/L	<0.005	<0.005	<0.005	
Diuron	330-54-1	0.005	µg/L	<0.005	<0.005	<0.005	
Atrazine	1912-24-9	0.005	µg/L	<0.005	<0.005	<0.005	
Molinate	2212-67-1	0.005	µg/L	<0.005	<0.005	<0.005	
Metolachlor	51218-45-2	0.005	µg/L	<0.005	0.075	<0.005	
Malathion	121-75-5	0.002	µg/L	<0.002	<0.002	<0.002	
Diazinon	333-41-5	0.005	µg/L	<0.005	<0.005	<0.005	
Thiobencarb	28249-77-6	0.005	µg/L	<0.005	<0.005	<0.005	
Chlorpyrifos	2921-88-2	0.005	µg/L	<0.005	<0.005	<0.005	
Trifluralin	1582-09-8	0.005	µg/L	<0.005	<0.005	<0.005	
Ultra-Trace Nutrients							
Ammonia as N	7664-41-7	0.005	mg/L	0.006	0.008	<0.005	
Nitrite as N		0.002	mg/L	<0.002	<0.002	<0.002	
^ Nitrate as N	14797-55-8	0.002	mg/L	0.004	0.004	0.006	
Nitrite + Nitrate as N		0.002	mg/L	0.004	0.004	0.006	
Total Kjeldahl Nitrogen as N		0.05	mg/L	0.10	0.11	0.12	
Total Nitrogen as N		0.05	mg/L	0.10	0.11	0.13	
Reactive Phosphorus as P		0.001	mg/L	<0.001	0.002	0.002	
Total Phosphorus as P		0.005	mg/L	<0.005	<0.005	0.007	

Environmental Division

QUALITY CONTROL REPORT

Work Order	ES0909220	Page	: 1 of 9
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR ADRIAN WHITE	Contact	: Charlie Pierce
Address	: P O BOX 373	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	GLADSTONE QLD, AUSTRALIA 4680		
E-mail	: adrian.a.white@ghd.com.au	E-mail	: charlie.pierce@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-2-8784 8555
Facsimile	: +61 07 4972 6236	Facsimile	: +61-2-8784 8500
Project	: 421538641	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 25-JUN-2009
Sampler	:	Issue Date	: 07-JUL-2009
Order number	:		
		No. of samples received	: 8
Quote number	: EN/005/09	No. of samples analysed	: 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

ΝΑΤΑ	NATA Accredited Laboratory 825	Signatories This document has been electronically carried out in compliance with procedures sp	с , , , , , , , , , , , , , , , , , , ,	indicated below. Electronic signing has been			
NAIA	accordance with NATA	Signatories	Position	Accreditation Category			
	accreditation requirements.	Celine Conceicao	Spectroscopist	Inorganics			
	Accredited for compliance with	Hoa Nguyen	Inorganic Chemist	Inorganics			
WORLD RECOGNISED	ISO/IEC 17025.	Lana Nguyen	LCMS Chemist	Organics			
		Environmental Div	vision Sydney				

Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference

= Indicates failed QC

Page	: 3 of 9
Work Order	: ES0909220
Client	: GHD SERVICES PTY LTD
Project	: 421538641

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

ub-Matrix: WATER					1		Duplicate (DUP) Report		
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
G035F: Dissolved	Mercury by FIMS (QC L	_ot: 1026556)							
S0909216-001	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
S0909220-005	G-WQ-10	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
G093F: Dissolved	Metals in Saline Water	by ORC-ICPMS (QC Lot: 1025314)							
EB0909527-002	Anonymous	EG093A-F: Beryllium	7440-41-7	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EG093A-F: Silver	7440-22-4	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EG093A-F: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Cobalt	7440-48-4	0.2	µg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Lead	7439-92-1	0.2	µg/L	2.0	1.9	0.0	No Limit
		EG093A-F: Antimony	7440-36-0	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Arsenic	7440-38-2	0.5	µg/L	0.7	0.9	24.5	No Limit
		EG093A-F: Chromium	7440-47-3	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Manganese	7439-96-5	0.5	µg/L	17.7	17.3	2.2	0% - 20%
	EG093A-F: Nickel	7440-02-0	0.5	µg/L	<0.5	0.6	0.0	No Limit	
	EG093A-F: Vanadium	7440-62-2	0.5	µg/L	1.6	1.8	11.5	No Limit	
		EG093A-F: Barium	7440-39-3	1	µg/L	21	20	0.0	0% - 20%
		EG093A-F: Copper	7440-50-8	1	µg/L	<1	<1	0.0	No Limit
		EG093A-F: Aluminium	7429-90-5	10	µg/L	<10	<10	0.0	No Limit
ES0909073-001	Anonymous	EG093A-F: Beryllium	7440-41-7	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EG093A-F: Silver	7440-22-4	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EG093A-F: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Cobalt	7440-48-4	0.2	µg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Lead	7439-92-1	0.2	µg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Antimony	7440-36-0	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Arsenic	7440-38-2	0.5	µg/L	0.8	0.7	0.0	No Limit
		EG093A-F: Chromium	7440-47-3	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Manganese	7439-96-5	0.5	µg/L	0.6	0.5	0.0	No Limit
		EG093A-F: Nickel	7440-02-0	0.5	µg/L	0.7	<0.5	32.6	No Limit
		EG093A-F: Vanadium	7440-62-2	0.5	µg/L	1.2	1.2	0.0	No Limit
		EG093A-F: Barium	7440-39-3	1	μg/L	9	8	0.0	No Limit
		EG093A-F: Copper	7440-50-8	1	μg/L	<1	<1	0.0	No Limit
		EG093A-F: Aluminium	7429-90-5	10	μg/L	<10	<10	0.0	No Limit
G093F: Dissolved	Metals in Saline Water	by ORC-ICPMS (QC Lot: 1025315)							
S0909073-001	Anonymous	EG093B-F: Iron	7439-89-6	5	µg/L	<5	<5	0.0	No Limit
S0909220-001	G-WQ-02	EG093B-F: Iron	7439-89-6	5	µg/L	<5	<5	0.0	No Limit

Page	: 4 of 9
Work Order	: ES0909220
Client	: GHD SERVICES PTY LTD
Project	: 421538641

Sub-Matrix: WATER			Γ			Laboratory I	Duplicate (DUP) Report	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG093F: Dissolved M	Aetals in Saline Water by Ol	RC-ICPMS (QC Lot: 1025316) - continued							
ES0909220-007	G-WQ-12	EG093A-F: Beryllium	7440-41-7	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EG093A-F: Silver	7440-22-4	0.1	µg/L	0.1	<0.1	0.0	No Limit
		EG093A-F: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Cobalt	7440-48-4	0.2	µg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Lead	7439-92-1	0.2	µg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Antimony	7440-36-0	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Arsenic	7440-38-2	0.5	µg/L	0.8	0.8	0.0	No Limit
		EG093A-F: Chromium	7440-47-3	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Manganese	7439-96-5	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Nickel	7440-02-0	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Vanadium	7440-62-2	0.5	µg/L	1.5	0.9	47.9	No Limit
		EG093A-F: Barium	7440-39-3	1	µg/L	6	5	0.0	No Limit
		EG093A-F: Copper	7440-50-8	1	µg/L	<1	<1	0.0	No Limit
		EG093A-F: Aluminium	7429-90-5	10	µg/L	<10	<10	0.0	No Limit
EP215: Multiresidue	Pesticide Residue Screen (Suite 2) (QC Lot: 1019161)							
ES0909216-005	Anonymous	EP215-LL: Malathion	121-75-5	0.002	µg/L	<0.002	<0.002	0.0	No Limit
		EP215-LL: Simazine	122-34-9	0.005	µg/L	< 0.005	<0.005	0.0	No Limit
		EP215-LL: Diuron	330-54-1	0.005	µg/L	< 0.005	<0.005	0.0	No Limit
		EP215-LL: Atrazine	1912-24-9	0.005	μg/L	< 0.005	< 0.005	0.0	No Limit
		EP215-LL: Molinate	2212-67-1	0.005	µg/L	< 0.005	<0.005	0.0	No Limit
		EP215-LL: Metolachlor	51218-45-2	0.005	µg/L	0.027	0.028	3.6	No Limit
		EP215-LL: Diazinon	333-41-5	0.005	µg/L	<0.005	<0.005	0.0	No Limit
		EP215-LL: Thiobencarb	28249-77-6	0.005	µg/L	<0.005	<0.005	0.0	No Limit
		EP215-LL: Chlorpyrifos	2921-88-2	0.005	µg/L	<0.005	<0.005	0.0	No Limit
		EP215-LL: Trifluralin	1582-09-8	0.005	µg/L	<0.005	<0.005	0.0	No Limit
Ultra-Trace Nutrients	(QC Lot: 1030874)								
ES0909216-001	Anonymous	EK257A-SW: Nitrite as N		0.002	mg/L	<0.002	<0.002	0.0	No Limit
ES0909220-004	G-WQ-08	EK257A-SW: Nitrite as N		0.002	mg/L	<0.002	<0.002	0.0	No Limit
Ultra-Trace Nutrients	(OC Lot: 1030875)								
ES0909216-001	Anonymous	EK255A-SW: Ammonia as N	7664-41-7	0.005	mg/L	0.005	0.008	44.3	No Limit
ES0909220-004	G-WQ-08	EK255A-SW: Ammonia as N	7664-41-7	0.005	mg/L	0.005	< 0.005	0.0	No Limit
Ultra-Trace Nutrients				0.000		0.000	0.000	0.0	
ES0909216-001	Anonymous	EK259A-SW: Nitrite + Nitrate as N		0.002	mg/L	0.005	0.005	0.0	No Limit
ES0909210-001	G-WQ-08	EK259A-SW: Nitrite + Nitrate as N EK259A-SW: Nitrite + Nitrate as N		0.002	mg/L	0.003	0.003	0.0	No Limit
				0.002	iiig/L	0.004	0.004	0.0	
Ultra-Trace Nutrients				0.001		0.002	0.002	0.0	No Limit
ES0909216-001 ES0909220-004	Anonymous G-WQ-08	EK271A-SW: Reactive Phosphorus as P		0.001	mg/L	0.002	0.002	0.0	No Limit
		EK271A-SW: Reactive Phosphorus as P		0.001	mg/L	0.002	0.002	0.0	No Limit
Ultra-Trace Nutrients				0.67	<u>.</u>	0.17	0.11	0.5	
ES0909216-001	Anonymous	EK262PA-SW: Total Nitrogen as N		0.05	mg/L	0.15	0.14	0.0	No Limit

Page	5 of 9
Work Order	: ES0909220
Client	: GHD SERVICES PTY LTD
Project	: 421538641

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
Ultra-Trace Nutrients (QC Lot: 1030886) - continued									
ES0909220-005	G-WQ-10	EK262PA-SW: Total Nitrogen as N		0.05	mg/L	0.12	0.12	0.0	No Limit
Ultra-Trace Nutrients	(QC Lot: 1030887)								
ES0909216-001	Anonymous	EK267PA-SW: Total Phosphorus as P		0.005	mg/L	0.009	0.008	16.5	No Limit
ES0909220-005	G-WQ-10	EK267PA-SW: Total Phosphorus as P		0.005	mg/L	<0.005	<0.005	0.0	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG035F: Dissolved Mercury by FIMS (QCLot: ²	1026556)							
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.010 mg/L	108	86	116
EG093F: Dissolved Metals in Saline Water by C	ORC-ICPMS (QCLot: 1025314	-)						
EG093A-F: Aluminium	7429-90-5	10	μg/L	<10	50 µg/L	80.8	80	128
EG093A-F: Antimony	7440-36-0	0.5	µg/L	<0.5				
EG093A-F: Arsenic	7440-38-2	0.5	µg/L	<0.5	10 µg/L	# 79.1	85	125
EG093A-F: Barium	7440-39-3	1	µg/L	<1	10 µg/L	87.1	81	129
EG093A-F: Beryllium	7440-41-7	0.1	µg/L	<0.1	10 µg/L	82.8	80	122
EG093A-F: Cadmium	7440-43-9	0.2	µg/L	<0.2	10 µg/L	104	78	116
EG093A-F: Chromium	7440-47-3	0.5	µg/L	<0.5	10 µg/L	91.1	86	128
EG093A-F: Cobalt	7440-48-4	0.2	µg/L	<0.2	10 µg/L	# 80.3	87	127
EG093A-F: Copper	7440-50-8	1	µg/L	<1	10 µg/L	# 76.8	86	124
EG093A-F: Lead	7439-92-1	0.2	µg/L	<0.2	10 µg/L	87.3	87	123
EG093A-F: Manganese	7439-96-5	0.5	µg/L	<0.5	10 µg/L	# 88.9	90	122
EG093A-F: Nickel	7440-02-0	0.5	µg/L	<0.5	10 µg/L	# 82.2	84	124
EG093A-F: Silver	7440-22-4	0.1	µg/L	<0.1	1 µg/L	70.3	70	130
EG093A-F: Vanadium	7440-62-2	0.5	μg/L	<0.5	10 µg/L	# 82.5	85	123
EG093F: Dissolved Metals in Saline Water by C	ORC-ICPMS (QCLot: 102531	5)						
EG093B-F: Iron	7439-89-6	5	µg/L	<5	50 µg/L	94.6	89	119
EG093F: Dissolved Metals in Saline Water by C	RC-ICPMS (QCLot: 1025316	5)						
EG093A-F: Aluminium	7429-90-5	10	µg/L	<10	50 µg/L	102	80	128
EG093A-F: Antimony	7440-36-0	0.5	µg/L	<0.5				
EG093A-F: Arsenic	7440-38-2	0.5	µg/L	<0.5	10 µg/L	# 82.6	85	125
EG093A-F: Barium	7440-39-3	1	µg/L	<1	10 µg/L	85.0	81	129
EG093A-F: Beryllium	7440-41-7	0.1	µg/L	<0.1	10 µg/L	84.8	80	122
EG093A-F: Cadmium	7440-43-9	0.2	µg/L	<0.2	10 µg/L	106	78	116
EG093A-F: Chromium	7440-47-3	0.5	µg/L	<0.5	10 µg/L	94.3	86	128
EG093A-F: Cobalt	7440-48-4	0.2	μg/L	<0.2	10 µg/L	# 83.4	87	127
EG093A-F: Copper	7440-50-8	1	μg/L	<1	10 µg/L	# 83.2	86	124
EG093A-F: Lead	7439-92-1	0.2	μg/L	<0.2	10 µg/L	# 85.6	87	123
EG093A-F: Manganese	7439-96-5	0.5	μg/L	<0.5	10 µg/L	95.2	90	122
EG093A-F: Nickel	7440-02-0	0.5	μg/L	<0.5	10 µg/L	# 78.5	84	124
EG093A-F: Silver	7440-22-4	0.1	μg/L	<0.1	1 µg/L	82.0	70	130
EG093A-F: Vanadium	7440-62-2	0.5	µg/L	<0.5	10 µg/L	# 81.2	85	123

Page	: 7 of 9
Work Order	: ES0909220
Client	: GHD SERVICES PTY LTD
Project	: 421538641

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%) Recovery		Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP215: Multiresidue Pesticide Residue Screen (Su	ite 2) (QCLot: 1019161) - continued							
EP215-LL: Simazine	122-34-9	0.005	μg/L	<0.005	0.025 µg/L	112	65	130	
EP215-LL: Diuron	330-54-1	0.005	μg/L	<0.005	0.025 µg/L	114	65	130	
EP215-LL: Atrazine	1912-24-9	0.005	μg/L	<0.005	0.025 µg/L	104	65	130	
EP215-LL: Molinate	2212-67-1	0.005	µg/L	<0.005	0.025 µg/L	88.6	65	130	
EP215-LL: Metolachlor	51218-45-2	0.005	μg/L	<0.005	0.025 µg/L	104	65	130	
EP215-LL: Malathion	121-75-5	0.002	µg/L	<0.002	0.025 µg/L	95.0	65	130	
EP215-LL: Diazinon	333-41-5	0.005	µg/L	<0.005	0.025 µg/L	86.5	65	130	
EP215-LL: Thiobencarb	28249-77-6	0.005	μg/L	<0.005	0.025 µg/L	67.4	65	130	
EP215-LL: Chlorpyrifos	2921-88-2	0.005	μg/L	<0.005	0.025 µg/L	92.7	65	130	
EP215-LL: Trifluralin	1582-09-8	0.005	µg/L	<0.005	0.1 µg/L	86.8	65	130	
Ultra-Trace Nutrients (QCLot: 1030874)									
EK257A-SW: Nitrite as N		0.002	mg/L	<0.002	1.0 mg/L	105	70	130	
Jltra-Trace Nutrients (QCLot: 1030875)									
EK255A-SW: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.1 mg/L	91.8	70	130	
Ultra-Trace Nutrients (QCLot: 1030876)									
EK259A-SW: Nitrite + Nitrate as N		0.002	mg/L	<0.002	0.1 mg/L	107	70	130	
Jltra-Trace Nutrients (QCLot: 1030877)									
EK271A-SW: Reactive Phosphorus as P		0.001	mg/L	<0.001	0.1 mg/L	102	70	130	
Jltra-Trace Nutrients (QCLot: 1030886)									
EK262PA-SW: Total Nitrogen as N		0.05	mg/L	<0.05	1.0 mg/L	91.0	70	130	
Jltra-Trace Nutrients (QCLot: 1030887)									
EK267PA-SW: Total Phosphorus as P		0.005	mg/L	<0.005	0.44 mg/L	73.2	70	130	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER		Matrix Spike (MS) Report					
			Spike	Spike Recovery (%)	Recovery	.imits (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G035F: Dissolved I	Mercury by FIMS (QCLot: 10265	556)					
ES0909216-001	Anonymous	EG035F: Mercury	7439-97-6	0.0100 mg/L	93.7	70	130
EG093F: Dissolved I	Metals in Saline Water by ORC-I	CPMS (QCLot: 1025314)					
EB0909527-002	Anonymous	EG093A-F: Arsenic	7440-38-2	50 µg/L	94.4	70	130
		EG093A-F: Barium	7440-39-3	50 µg/L	93.1	70	130
		EG093A-F: Beryllium	7440-41-7	50 µg/L	91.9	70	130
		EG093A-F: Cadmium	7440-43-9	12.5 µg/L	111	70	130
		EG093A-F: Chromium	7440-47-3	50 µg/L	112	70	130
		EG093A-F: Cobalt	7440-48-4	50 µg/L	97.8	70	130
		EG093A-F: Copper	7440-50-8	50 µg/L	93.0	70	130
		EG093A-F: Lead	7439-92-1	50 µg/L	90.8	70	130
		EG093A-F: Manganese	7439-96-5	50 µg/L	111	70	130
		EG093A-F: Nickel	7440-02-0	50 µg/L	98.4	70	130
		EG093A-F: Vanadium	7440-62-2	50 µg/L	97.2	70	130
EG093F: Dissolved I	Metals in Saline Water by ORC-I	CPMS (QCLot: 1025316)					
ES0909220-007 G-WQ-12	G-WQ-12	EG093A-F: Arsenic	7440-38-2	50 µg/L	99.0	70	130
		EG093A-F: Barium	7440-39-3	50 µg/L	96.2	70	130
		EG093A-F: Beryllium	7440-41-7	50 µg/L	90.8	70	130
		EG093A-F: Cadmium	7440-43-9	12.5 µg/L	114	70	130
		EG093A-F: Chromium	7440-47-3	50 µg/L	112	70	130
		EG093A-F: Cobalt	7440-48-4	50 µg/L	99.3	70	130
		EG093A-F: Copper	7440-50-8	50 µg/L	94.4	70	130
		EG093A-F: Lead	7439-92-1	50 µg/L	89.6	70	130
		EG093A-F: Manganese	7439-96-5	50 µg/L	110	70	130
		EG093A-F: Nickel	7440-02-0	50 µg/L	98.9	70	130
		EG093A-F: Vanadium	7440-62-2	50 µg/L	97.0	70	130
JItra-Trace Nutrients	s (QCLot: 1030874)						
ES0909216-001	Anonymous	EK257A-SW: Nitrite as N		0.1 mg/L	120	70	130
Ultra-Trace Nutrient	s (QCLot: 1030875)						
ES0909216-001	Anonymous	EK255A-SW: Ammonia as N	7664-41-7	0.1 mg/L	# 57.4	70.	130
Ultra-Trace Nutrients	s (QCLot: 1030876)						
ES0909216-001	Anonymous	EK259A-SW: Nitrite + Nitrate as N		0.1 mg/L	102	70	130
Ultra-Trace Nutrients	s (QCLot: 1030877)						
ES0909216-001	Anonymous	EK271A-SW: Reactive Phosphorus as P		0.1 mg/L	# 48.6	70	130
	s (QCLot: 1030886)						

Page	: 9 of 9
Work Order	: ES0909220
Client	: GHD SERVICES PTY LTD
Project	: 421538641

Sub-Matrix: WATER			Matrix Spike (MS) Report				
			Spike	Spike Recovery (%)	Recovery Limits (%)		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
Ultra-Trace Nutrients	(QCLot: 1030886) - continued						
ES0909216-001	Anonymous	EK262PA-SW: Total Nitrogen as N		0.5 mg/L	91.0	70	130
Ultra-Trace Nutrients	(QCLot: 1030887)						
ES0909216-001	Anonymous	EK267PA-SW: Total Phosphorus as P		0.5 mg/L	81.0	70	130

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order	ES0909220	Page	: 1 of 8
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR ADRIAN WHITE	Contact	: Charlie Pierce
Address	: P O BOX 373 GLADSTONE QLD, AUSTRALIA 4680	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: adrian.a.white@ghd.com.au	E-mail	: charlie.pierce@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-2-8784 8555
Facsimile	: +61 07 4972 6236	Facsimile	: +61-2-8784 8500
Project	: 421538641	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 25-JUN-2009
Sampler		Issue Date	: 07-JUL-2009
Order number			
		No. of samples received	: 8
Quote number	: EN/005/09	No. of samples analysed	: 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Environmental Division Sydney Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: WATER					Evaluation	× = Holding time	breach ; ✓ = Withir	holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG035F: Dissolved Mercury by FIMS								
Clear HDPE (U-T ORC) - UHP Nitric Acid;	Filtered							
G-WQ-02,	G-WQ-03,	23-JUN-2009				02-JUL-2009	21-JUL-2009	✓
G-WQ-04,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA-03							
EG093F: Dissolved Metals in Saline Water	by ORC-ICPMS							
Clear HDPE (U-T ORC) - UHP Nitric Acid;	Filtered							
G-WQ-02,	G-WQ-03,	23-JUN-2009	01-JUL-2009	20-DEC-2009	✓	01-JUL-2009	20-DEC-2009	✓
G-WQ-04,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA-03							
EP215: Multiresidue Pesticide Residue Scr	reen (Suite 2)							
Amber Glass Bottle - Unpreserved								
G-WQ-02,	G-WQ-03,	23-JUN-2009	26-JUN-2009	30-JUN-2009	✓	26-JUN-2009	05-AUG-2009	✓
G-WQ-04,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA-03							
Ultra-Trace Nutrients								
Clear Plastic Bottle - Filtered (AS)								
G-WQ-02,	G-WQ-03,	23-JUN-2009				25-JUN-2009	24-JUN-2009	×
G-WQ-04,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA-03							
Clear Plastic Bottle - Natural (AS)								
G-WQ-02,	G-WQ-03,	23-JUN-2009	25-JUN-2009			25-JUN-2009	24-JUN-2009	x
G-WQ-04,	G-WQ-08,							
G-WQ-10,	G-WQ-11,							
G-WQ-12,	QA-03							

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		0	ount		n: × = Quality Cor Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
	mounou	00	Redular	Actual	Expected		
aboratory Duplicates (DUP) mmonia as N - Ultra-Trace in Saline Waters	EK255A-SW	2	20	10.0	10.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Ammonia as N - Ultra-Trace for Catchment Monitoring	EK255A-CM	2	6	33.3	10.0	 	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	2	15	13.3	10.0	 	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS		3	21	14.3	10.0	 ✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	2	18	14.3	10.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Multiresidue Pesticide Screen (No. 2)	EG093B-F	1	20	5.0	10.0	∕	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Vitrite and Nitrate as N - Ultra-Trace in Saline Waters	EP215-LL	2	20	10.0	10.0	*	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
	EK259A-SW	2	6			∕	
litrite and Nitrate as N (NOx) - Ultra-Trace for Catchment	EK259A-CM		0	33.3	10.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
litrite as N - Ultra-Trace in Saline Waters	EK257A-SW	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace for Catchment M	EK271A-CM	2	6	33.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Nitrogen as N (Persulfate digestion)-Ultra-Trace - CM	EK262PA-CM	2	6	33.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Phosphorus(Persulfate Digestion) - Ultra-Trace for	EK267PA-CM	2	6	33.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
aboratory Control Samples (LCS)							
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Ammonia as N - Ultra-Trace for Catchment Monitoring	EK255A-CM	1	6	16.7	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	15	6.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	2	21	9.5	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	1	18	5.6	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Multiresidue Pesticide Screen (No. 2)	EP215-LL	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
litrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	1	20	5.0	5.0	✓ ✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) - Ultra-Trace for Catchment	EK259A-CM	1	6	16.7	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
litrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace for Catchment M	EK271A-CM	1	6	16.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	20	5.0	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Nitrogen as N (Persulfate digestion)-Ultra-Trace - CM	EK262PA-CM	1	6	16.7	10.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	20	5.0	10.0	×	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Phosphorus(Persulfate Digestion) - Ultra-Trace for	EK267PA-CM	1	6	16.7	10.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	20	5.0	10.0	*	NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Page	: 4 of 8
Work Order	: ES0909220
Client	: GHD SERVICES PTY LTD
Project	: 421538641

Matrix: WATER				Evaluation	n: × = Quality Cor	ntrol frequency r	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB)							
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Ammonia as N - Ultra-Trace for Catchment Monitoring	EK255A-CM	1	6	16.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	15	6.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	2	21	9.5	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	1	18	5.6	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Multiresidue Pesticide Screen (No. 2)	EP215-LL	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) - Ultra-Trace for Catchment	EK259A-CM	1	6	16.7	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace for Catchment M	EK271A-CM	1	6	16.7	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	20	5.0	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Nitrogen as N (Persulfate digestion)-Ultra-Trace - CM	EK262PA-CM	1	6	16.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	20	5.0	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus(Persulfate Digestion) - Ultra-Trace for CM	EK267PA-CM	1	6	16.7	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	20	5.0	5.0	✓	ALS QCS3 requirement
Ammonia as N - Ultra-Trace for Catchment Monitoring	EK255A-CM	1	6	16.7	5.0	✓	ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	15	6.7	5.0	✓	ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	2	21	9.5	5.0	✓	ALS QCS3 requirement
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	1	20	5.0	5.0	✓	ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) - Ultra-Trace for Catchment	EK259A-CM	1	6	16.7	5.0	~	ALS QCS3 requirement
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	20	5.0	5.0	✓	ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace for Catchment M	EK271A-CM	1	6	16.7	5.0	✓	ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	20	5.0	5.0	✓	ALS QCS3 requirement
Total Nitrogen as N (Persulfate digestion)-Ultra-Trace - CM	EK262PA-CM	1	6	16.7	5.0	✓	ALS QCS3 requirement
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	20	5.0	5.0	✓	ALS QCS3 requirement
Total Phosphorus(Persulfate Digestion) - Ultra-Trace for CM	EK267PA-CM	1	6	16.7	5.0	~	ALS QCS3 requirement
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	20	5.0	5.0	~	ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Mercury by FIMS	EG035F	WATER	AS 3550, APHA 21st ed. 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	WATER	APHA 21st ed., 3125; USEPA SW846 - 6020 Samples are 0.45 um filtered prior to analysis. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	WATER	APHA 21st ed., 3125; USEPA SW846 - 6020 Samples are 0.45 um filtered prior to analysis. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ammonia as N - Ultra-Trace for Catchment Monitoring	EK255A-CM	WATER	APHA 21st ed., 4500-NH3 H Ammonia is determined by direct colorimetry by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	WATER	APHA 21st ed., 4500-NH3 H Ammonia is determined by direct colorimetry by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite as N - Ultra-Trace for Catchment Monitoring	EK257A-CM	WATER	APHA 21st ed., 4500-NO2- B. Nitrite is determined by direct colourimetry by FIA.
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	WATER	APHA 21st ed., 4500-NO2- B. Nitrite is determined by direct colourimetry by FIA.
Nitrate as N - Ultra-Trace for Catchment Monitoring	EK258A-CM	WATER	APHA 21st ed., 4500-NO3- I Nitrate is reduced to nitrite by way of a cadmium reduction column followed by quantification by FIA. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results.
Nitrate as N - Ultra-Trace in Saline Waters	EK258A-SW	WATER	APHA 21st ed., 4500-NO3- I Nitrate is reduced to nitrite by way of a cadmium reduction column followed by quantification by FIA. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results.
Nitrite and Nitrate as N (NOx) - Ultra-Trace for Catchment M	EK259A-CM	WATER	APHA 21st ed., 4500-NO3- I. Combined oxidised Nitrogen (NO2+NO3) is determined by Cadmium Reduction and direct colourimetry by FIA.
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	WATER	APHA 21st ed., 4500-NO3- I. Combined oxidised Nitrogen (NO2+NO3) is determined by Cadmium Reduction and direct colourimetry by FIA.
TKN (Total N - NOx-N). (FIA - UT) for Catchment Monitoring	EK261PA-CM	WATER	APHA 21st ed., 4500-P J. & 4500-NO3- I . Calculated by difference from total Nitrogen and NOx. Contributing method parameters are determined by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Analytical Methods	Method	Matrix	Method Descriptions
TKN (Total N - NOx-N). (FIA - UT) in Saline Waters	EK261PA-SW	WATER	APHA 21st ed., 4500-P J. & 4500-NO3- I. Calculated by difference from total Nitrogen and NOx. Contributing method parameters are determined by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Nitrogen as N (Persulfate digestion)-Ultra-Trace - CM	EK262PA-CM	WATER	APHA 21st ed., 4500-P J. Persulfate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus. As sample is digested with persulfate under alkaline conditions yielding orthophosphate and nitrate. Following digestion, analytes are determined by flow injection analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	WATER	APHA 21st ed., 4500-P J. Persulfate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus. As sample is digested with persulfate under alkaline conditions yielding orthophosphate and nitrate. Following digestion, analytes are determined by flow injection analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Phosphorus(Persulfate Digestion) - Ultra-Trace for CM	EK267PA-CM	WATER	APHA 21st ed., 4500-P J. Persulfate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus. As sample is digested with persulfate under alkaline conditions yielding orthophosphate and nitrate. Following digestion, analytes are determined by flow injection analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	WATER	APHA 21st ed., 4500-P J. Persulfate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus. As sample is digested with persulfate under alkaline conditions yielding orthophosphate and nitrate. Following digestion, analytes are determined by flow injection analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Reactive Phosphorus as P - Ultra-Trace for Catchment M	EK271A-CM	WATER	APHA 21st ed., 4500-P E Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	WATER	APHA 21st ed., 4500-P E Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Multiresidue Pesticide Screen (No. 2)	EP215-LL	WATER	In-house, LCMS (APCI in positive mode). The compounds are extracted from water samples using dichloromethane. The organic phase is evaporated to dryness and reconstituted in a mixture of acetonitrile and water for reverse phase HPLC analysis.
Preparation Methods	Method	Matrix	Method Descriptions
Persulfate Digestion for UT TN and TP for FIA finish.	EK262/267-PA	WATER	APHA 21st ed., 4500 P - J. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Persulfate Digestion for UT TN and TP for FIA/Saline	EK262/267PA-SW	WATER	APHA 21st ed., 4500 P - J. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Separatory funnel extraction for LCMS herbicides.	* EP215-PR	WATER	In-house. A 1 L sample is extracted three times with 60 mL of methylene chloride, reduced to dryness and made up in HPLC mobile phase.

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
aboratory Control Spike (LCS) Recoveries							
EG093F: Dissolved Metals in Saline Water by ORC	C-ICP 1176715-037		Arsenic	7440-38-2	82.6 %	85-125%	Recovery less than lower control limit
EG093F: Dissolved Metals in Saline Water by ORC	C-ICP 1176715-003		Arsenic	7440-38-2	79.1 %	85-125%	Recovery less than lower control limit
EG093F: Dissolved Metals in Saline Water by ORC	C-ICP 1176715-003		Cobalt	7440-48-4	80.3 %	87-127%	Recovery less than lower control limit
EG093F: Dissolved Metals in Saline Water by ORC	C-ICP 1176715-037		Cobalt	7440-48-4	83.4 %	87-127%	Recovery less than lower control limit
EG093F: Dissolved Metals in Saline Water by ORC	C-ICP 1176715-003		Copper	7440-50-8	76.8 %	86-124%	Recovery less than lower control limit
EG093F: Dissolved Metals in Saline Water by ORC	C-ICP 1176715-037		Copper	7440-50-8	83.2 %	86-124%	Recovery less than lower control limit
EG093F: Dissolved Metals in Saline Water by ORC	C-ICP 1176715-037		Lead	7439-92-1	85.6 %	87-123%	Recovery less than lower control limit
EG093F: Dissolved Metals in Saline Water by ORC	C-ICP 1176715-003		Manganese	7439-96-5	88.9 %	90-122%	Recovery less than lower control limit
EG093F: Dissolved Metals in Saline Water by ORC	C-ICP 1176715-003		Nickel	7440-02-0	82.2 %	84-124%	Recovery less than lower control limit
EG093F: Dissolved Metals in Saline Water by ORC	C-ICP 1176715-037		Nickel	7440-02-0	78.5 %	84-124%	Recovery less than lower control limit
EG093F: Dissolved Metals in Saline Water by ORC	C-ICP 1176715-037		Vanadium	7440-62-2	81.2 %	85-123%	Recovery less than lower control limit
EG093F: Dissolved Metals in Saline Water by ORC	C-ICP 1176715-003		Vanadium	7440-62-2	82.5 %	85-123%	Recovery less than lower control limit
Matrix Spike (MS) Recoveries							
Ultra-Trace Nutrients	ES0909216-001	Anonymous	Ammonia as N	7664-41-7	57.4 %	70130%	Recovery less than lower data quality objective
Ultra-Trace Nutrients	ES0909216-001	Anonymous	Reactive Phosphorus as P		48.6 %	70-130%	Recovery less than lower data quality
		,			/-		objective

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Matrix: WATER

Method	E	traction / Preparation		Analysis			
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days	
			overdue			overdue	

Page	: 8 of 8
Work Order	: ES0909220
Client	: GHD SERVICES PTY LTD
Project	: 421538641

Matrix: WATER

Method		Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days	
				overdue			overdue
Ultra-Trace Nutrients - Analysis Hold	ing Time Compliance						
Clear Plastic Bottle - Filtered (AS)							
G-WQ-02,	G-WQ-03,				25-JUN-2009	24-JUN-2009	1
G-WQ-04,	G-WQ-08,						
G-WQ-10,	G-WQ-11,						
G-WQ-12,	QA-03						
Clear Plastic Bottle - Natural (AS)							
G-WQ-02,	G-WQ-03,				25-JUN-2009	24-JUN-2009	1
G-WQ-04,	G-WQ-08,						
G-WQ-10,	G-WQ-11,						
G-WQ-12,	QA-03						

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

Matrix: WATER

Quality Control Sample Type		ount	Rate	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
Multiresidue Pesticide Screen (No. 2)	1	20	5.0	10.0	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)					
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	1	20	5.0	10.0	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	1	20	5.0	10.0	NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Mul. lagent & Forder: Bip: Contraw, Adrian A White Bip: Contraw 277-289 Woodputk Read Wood: Jason & Forder: Bip: Contraw, Adrian A White Bip: Contraw Smitheling NW Y04 OC 3744 8555 Contraw Contraw Contraw Contraw Wid: Wid: Wid: Wid: Wid: Wid: Wid: Wid: Wid: Wid: Wid: Wid: Wid: Wid: Wid: Wid: Wid: Wid: Wid: Wid: Wid: Wid: Wid: Wid: Wid: Wid: Wid: Wid: Wid: Wid: Wid:	(ATD)			Chain of C	ustody & Analysis R	equest								Page1 of	
CHD CHD Control (integrated) Control (integrated) Control (integrated) Control (integrated) Control (integrated) Control (integrated) Control (integrated) <th contr<="" th=""><th></th><th></th><th></th><th>Chain of Custo</th><th>dy Number:</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	<th></th> <th></th> <th></th> <th>Chain of Custo</th> <th>dy Number:</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>				Chain of Custo	dy Number:									
Description Control of the set				·····		GHD)								
InderCT Weater Ball 28 Weater Ball 2		4045000.44	QUETT												
Line Ord Ord Ord Ord Note Ord SPLA LODGES Dip Da 37.0 Active dry dom and a logic 2010 and a			· · · · · · · · · · · · · · · · · · ·			LABORAT	HI BAIL	H NU.:		I			EOR LAR IN	CE DAIL V	
STAL ALONDESS: D Que 2.1, Control 400 STAL Con			amonitoring			0001585							FOR DAD US		
Bits ATT: View Used			e 4680								No				
cisete extension bit Advisor			04000			-								······ uego	
Jason K. Fowlar Sphil com au Smithlink NW 2164 D2 3724 4555 D2 3724 4555 An A REGED BY: D2 3724 4555 Brithlink NW 2164 D3 3724 4555 Brithli	PHONE:		67 FAX:	07) 49726236		DESPATCH						nment	al		
ANALYEBS BEOLINESS ANALYEBS REQUIRED ANALYEBS REQUIRED ANALYES REQUIRED ANA	MAIL:														
AT A RECEIP DY: AT A RECEIP DY: Receiver Provides Resources Add. Formats: Receiver Provides Resources Receiver Support Contact on Support Con	NVOICE:	Jason.K.Fowler@	ghd.com.au,	Adrian.A.White@ghd.co	<u>m.au</u>								164		
Bit Point TomMAT: ESANT, EXCEL & POF MAIL FORMAT: ESANT, EXCEL & POF MAIL ADDRESSES PROVIDED AGOVE) Image: Status SAMPLE ID MATRIX DATE DETECTION LIMIT PRESERVATION MARGEL ID MATRIX DATE DETECTION LIMIT PRESERVATION MARGEL ID MATRIX MARGEL ID MARGEL ID MARGEL			····	· · · · · · · · · · · · · · · · · · ·	x	1				02 87	84 85	55			
MARE FORMAT: BOAT E ACCEL & PDF Original Propriet OriginaPropriet <thoriginal propriet<="" th=""> Original</thoriginal>	DATA NEEDED BY:						1.5	1 I					ANALYSIS R	REQUIRED	
Atter samples from a marine environment (Background sampling)	REPORT FORMAT:				· · · · · · · · · · · · · · · · · · ·	. Hg.	3, NO2								
Atter samples from a marine environment (Background sampling)	THAN FORMAT.		-			6, <	ΪN								
Atter samples from a marine environment (Background sampling)		LEODAT, EAUEL & PU				Ni, P	RР,								
Atter samples from a marine environment (Background sampling)						19 (E	É.								
Atter samples from a marine environment (Background sampling)	COMMENTS/SPECIAL HA	NDLING/STORAGE OR I	ISPOSAL:			Cu, 1	04)								
SAMPLE ID MATRIX DATE DETECTION LIMIT PRESERVATION Image: Big						ace ORC - dissol , Ba, Be, Cd, Co, Ag)	ace nutrients (U [.] (N, TN)	1025) 	hyll a (EP008))05)	4015)	Conductivity	S	AMPLES FROM MARINE	
HWQ-03 Water LOR As Required X <th></th> <th></th> <th>1</th> <th></th> <th></th> <th>Itra tra 8b. As, 9, Al, <i>p</i></th> <th>ltra tra 03, TK</th> <th>SS (EA</th> <th>hlorop</th> <th>H (EAO</th> <th>DS (EA</th> <th>lectro (</th> <th></th> <th></th>			1			Itra tra 8b. As, 9, Al, <i>p</i>	ltra tra 03, TK	SS (EA	hlorop	H (EAO	DS (EA	lectro (
WQ-04 Water LOR As Required X <th>SAMPLEID</th> <th>MATRIX</th> <th>DATE</th> <th></th> <th>PRESERVATION</th> <th>5 U L</th> <th>⊃z</th> <th>Ë I</th> <th>ပ</th> <th>ā</th> <th>F</th> <th></th> <th></th> <th></th>	SAMPLEID	MATRIX	DATE		PRESERVATION	5 U L	⊃z	Ë I	ပ	ā	F				
WQ-04 Water LOR As Required X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>~</td> <td></td> <td></td> <td></td> <td></td> <td></td>									~						
WQ-04 Water LOR As Required X <td>0.1110.00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>N N</td> <td>v</td> <td></td> <td></td> <td></td> <td>Y</td> <td></td> <td></td>	0.1110.00						N N	v				Y			
Sydney Work Order ESO911097 Water LOR As Required Work Order ESO911097 Water LOR As Required Water LOR As Required Water LOR As Required Water LOR As Required Water LOR As Required Water LOR As Required X X X X X X X X X The phone : +61-2.8784 8555 Telephone : +61-2.8784 8555 Telephone : +61-2.8784 8555 Telephone : +61-2.8784 8555 The start of the gold com.au LEASE EMAIL COMPLEX FILLED ANALYSIS REQUEST TO: LEASE EMAIL COMPLEX FILLED ANALYSIS REQUES					1	_						-		Environmental D:	
WQ-07 Water LOR As Required X	ä-WQ-04	Water		LOR	As Required	<u> </u>	X	<u> </u>	X	X	Χ.	X	-	Sydney	
E-WQ-07 Water LOR As Required X <td></td>															
HWQ-10 Water LOR As Required X <td></td> <td>1</td> <td></td>													1		
HWQ-10 Water LOR As Required X <td>G-WQ-07</td> <td>Water</td> <td></td> <td>LOR</td> <td>As Required</td> <td>X</td> <td>X</td> <td>X</td> <td>х</td> <td>X</td> <td>X</td> <td>x</td> <td>2</td> <td> FS0011007</td>	G-WQ-07	Water		LOR	As Required	X	X	X	х	X	X	x	2	FS0011007	
HWQ-11 Water LOR As Required X <td></td> <td>L3031109/</td>														L3031109/	
HWQ-11 Water LOR As Required X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>										_					
HWQ-11 Water LOR As Required X <td>G-WO-10</td> <td>Water</td> <td></td> <td>LOR</td> <td>As Poguirad</td> <td>Y</td> <td>x</td> <td>Y</td> <td>Y</td> <td>Y</td> <td>Ý</td> <td>x</td> <td></td> <td></td>	G-WO-10	Water		LOR	As Poguirad	Y	x	Y	Y	Y	Ý	x			
HWQ-12 Water LOR As Required X <td>1</td> <td></td>	1														
Image: Ame: Ame: Ame: Ame: Ame: Ame: Ame: Am								1 1							
RECEIVED BY: RECEIVED BY: AME : Life State	G-WQ-12	Water		LOR	As Required	X	X	X	X	X	X	X			
RECEIVED BY: RECEIVED BY: AME : Life State				Lon	no nequired								'	i elephone : +61-2-8784 8555	
AME: Hi Kommer AME: H			<u> </u>												
AME: Hi Kommer AME: H			-A									-		3. E. S. M. Hanney, a compary formation of the second sec second second sec	
F: GHD diadstone TIME: S = 3.0 LEASE EMAIL COMPLETED ANALYSIS REQUEST TO: Jason.K.Fowler@ghd.com.au, Adrian.A.White@ghd.com.au Time: S = 3.0 Lease EMAIL COMPLETED ANALYSIS REQUEST TO: Jason.K.Fowler@ghd.com.au, Adrian.A.White@ghd.com.au Time: S = 3.0 Container Type and Preservative Codes: P = Neutral Plastic; N = Nitric Acid Preserved; C = Sodium Hydroxide Preserved; J = Solvent Washed Acid Rinced Jar; S = Solvent Washed Acid Rinced Glass Bottle; C = Hydrochloric Acid Preserved Vial; VS = Sulfuric Acid Preserved Glass Bottle; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; S = Sterile Bottle; C = Hydrochloric Acid Preserved Bottle; E = EDTA Preserved Bottle; S = Sterile Bottle;		14-		UISVED BY:	•		101			-		-			
LEASE EMAIL COMPLETED ANALYSIS REQUEST TO: Jason. K. Fowler@ghd.com.au. Adrian. A. White@ghd.com.au Container Type and Preservative Codes: P = Neutral Plastic; N = Nitric Acid Preserved; C = Sodium Hydroxide Preserved; J = Solvent Washed Acid Rinced Jar; S = Solvent Washed Acid Rinced Glass Bottle; C = Hydrochloric Acid Preserved Vial; VS = Sulfuric Acid Preserved Vial; BS~ Sulfuric Acid Preserved Glass Bottle; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ST = Sterile Bottle;		vhM,		Z UFIA			Hil	3					DATE:		
Container Type and Preservative Codes: P = Neutral Plastic; N = Nitric Acid Preserved; C = Sodium Hydroxide Preserved; J = Solvent Washed Acid Rinced Jar; S = Solvent Washed Acid Rinced Glass Bottle; C = Hydrochloric Acid Preserved Vial; VS = Sulfuric Acid Preserved Vial; BS Sulfuric Acid Preserved Glass Bottle; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ST = Sterile Bottle;				15:20-11									TIME:	8=30	
C = Hydrochloric Acid Preserved Vial; VS = Suffuric Acid Preserved Vial; BS Suffuric Acid Preserved Glass Bottle; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ST = Sterile Bottle;	the second s					*									
													;		
	C = Hydrochloric Acid Pre D = Other.	served Vial; VS = Sulfurio	Acid Preserved	/ial; BS Sulfuric Acid Prese	rved Glass Bottle; Z = Zinc Acetate Preserv	red Bottle; E =	EDTA Pre	served Bo	ottles; S	ST = Ste	rile Bo		an a state of		

2.

Ŀ

· · · · ·

1

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order	: ES09	011097							
Client Contact Address	: MR AE : P O BO	ERVICES PTY LTD DRIAN WHITE DX 373 STONE QLD, AUSTRALIA 4680	Laboratory Contact Address	 Environmental Division Sydney Charlie Pierce 277-289 Woodpark Road Smithfield NSW Australia 2164 					
E-mail Telephone Facsimile	: adrian.a.white@ghd.com.au : +61 07 49731611 : +61 07 4972 6236		E-mail Telephone Facsimile	: charlie.pierce@alsenviro.com : +61-2-8784 8555 : +61-2-8784 8500					
Project	: 4215386 41 WASTERN BASIN EIS WQ MONITORING		Page	: 1 of 3					
Order number C-O-C number Site	:		Quote number	: EB2009GHDSER0401 (BN/314/09)					
Sampler	: AW		QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement					
Dates									
•		: 29-JUL-2009 : 05-AUG-2009	Issue Date Scheduled Reportir	29-JUL-2009 13:17 19 Date : 05-AUG-2009					
Delivery Deta	ils								
Mode of Delivery		: Carrier	Temperature	: 7.8'C - Ice present					
No. of coolers/boxes Sercurity Seal	\$: 1 HARD : Intact.	No. of samples rece No. of samples ana						

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Breaches in recommended extraction / analysis holding times may occur. Please contact ALS for further information (Nanthini Coilparampil).
- pH analysis should be conducted within 6 hours of sampling.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Nanthini Coilparampil
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (90 days) from date of completion of work order.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

the determination tasks, that are include When date(s) and have been assur	y for the execution hay contain additional of moisture cont ed in the package. I/or time(s) are sho ned by the labor sampling time is o	of client requested al analyses, such as	WATER - EA005: pH pH	WATER - EA010P Conductivity (PC)	WATER - EA015 Total Dissolved Solids	WATER - EA025H Suspended Solids (High Level)	WATER - EG035F Dissolved Mercury by FIMS	MATER - EG093A-F Dissolved metals in saline water by ORC-ICPMS	WATER - EG093B-F Dissolved Metals in Saline Water Suite B oy ORC-ICPMS	ATER
ES0911097-001	27-JUL-2009 15:00	GQ-WQ-03	1	1	1	1	1	1	1	1
ES0911097-002	27-JUL-2009 15:00	GQ-WQ-04	✓	✓	✓	✓	1	1	✓	✓
ES0911097-003	27-JUL-2009 15:00	GQ-WQ-07	✓	✓	✓	1	✓	1	✓	1
ES0911097-004	27-JUL-2009 15:00	GQ-WQ-10	✓	✓	1	1	1	1	✓	1
ES0911097-005	27-JUL-2009 15:00	GQ-WQ-11	✓	✓	✓	1	1	√	1	✓
ES0911097-006	27-JUL-2009 15:00	GQ-WQ-12	✓	✓	1	1	1	1	✓	1

Client sampling date / time	Client sample ID	WATER - UTN-4 SW Ultratrace NO2, NO3, NH3, Nitrogen, Phosphorus, TKN, Reactive Phosphorus
27-JUL-2009 15:00	GQ-WQ-03	✓
27-JUL-2009 15:00	GQ-WQ-04	✓
27-JUL-2009 15:00	GQ-WQ-07	✓
27-JUL-2009 15:00	GQ-WQ-10	✓
27-JUL-2009 15:00 27-JUL-2009 15:00	GQ-WQ-10 GQ-WQ-11	✓ ✓

Matrix: WATER

Laboratory sample ID	Client sampling date / time	Client sample ID	WATER - Ultratrace
ES0911097-001	27-JUL-2009 15:00	GQ-WQ-03	✓
ES0911097-002	27-JUL-2009 15:00	GQ-WQ-04	1
ES0911097-003	27-JUL-2009 15:00	GQ-WQ-07	✓
ES0911097-004	27-JUL-2009 15:00	GQ-WQ-10	1
ES0911097-005	27-JUL-2009 15:00	GQ-WQ-11	✓
ES0911097-006	27-JUL-2009 15:00	GQ-WQ-12	✓

Requested Deliverables

MR ADRIAN WHITE

 *AU Certificate of Analysis - NATA (COA) 	Email	adrian.a.white@ghd.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	adrian.a.white@ghd.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	adrian.a.white@ghd.com.au
- A4 - AU Sample Receipt Notification - Environmental (SRN)	Email	adrian.a.white@ghd.com.au
- A4 - AU Tax Invoice (INV)	Email	adrian.a.white@ghd.com.au
- Default - Chain of Custody (COC)	Email	adrian.a.white@ghd.com.au
- EDI Format - ENMRG (ENMRG)	Email	adrian.a.white@ghd.com.au
- EDI Format - ESDAT (ESDAT)	Email	adrian.a.white@ghd.com.au
MR JASON FOWLER		
 *AU Certificate of Analysis - NATA (COA) 	Email	jason.k.fowler@ghd.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	jason.k.fowler@ghd.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	jason.k.fowler@ghd.com.au
- A4 - AU Sample Receipt Notification - Environmental (SRN)	Email	jason.k.fowler@ghd.com.au
- A4 - AU Tax Invoice (INV)	Email	jason.k.fowler@ghd.com.au
 Default - Chain of Custody (COC) 	Email	jason.k.fowler@ghd.com.au
- EDI Format - ENMRG (ENMRG)	Email	jason.k.fowler@ghd.com.au
- EDI Format - ESDAT (ESDAT)	Email	jason.k.fowler@ghd.com.au

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order	: ES0911097	Page	: 1 of 6
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR ADRIAN WHITE	Contact	: Charlie Pierce
Address	: P O BOX 373 GLADSTONE QLD, AUSTRALIA 4680	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: adrian.a.white@ghd.com.au	E-mail	: charlie.pierce@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-2-8784 8555
Facsimile	: +61 07 4972 6236	Facsimile	: +61-2-8784 8500
Project	: 4215386 41 WASTERN BASIN EIS WQ MONITORING	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 29-JUL-2009
Sampler	: AW	Issue Date	: 03-AUG-2009
Site	:		
		No. of samples received	: 6
Quote number	: BN/314/09	No. of samples analysed	: 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Environmental Division Sydney Part of the ALS Laboratory Group 277-289 Woodpark Road Smithfield NSW Australia 2164 Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Sub-Matrix: MARINE WATER		Clie	ent sample ID	GQ-WQ-03	GQ-WQ-04	GQ-WQ-07	GQ-WQ-10	GQ-WQ-11
	Cl	Client sampling date / time		27-JUL-2009 15:00				
Compound	CAS Number	LOR	Unit	ES0911097-001	ES0911097-002	ES0911097-003	ES0911097-004	ES0911097-005
EA005: pH								
pH Value		0.01	pH Unit	8.16	8.27	8.17	8.18	8.04
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	μS/cm	48700	49200	50500	50800	50500
EA015: Total Dissolved Solids								
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	43700	42200	43600	46200	42800
EA025: Suspended Solids			Ū					
Suspended Solids (SS)		5	mg/L	14	16	<5	8	12
EG035F: Dissolved Mercury by FIMS		-				-	-	
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EG093F: Dissolved Metals in Saline Wa			g , _		0.0001	0.0001	0.0001	0.0001
Aluminium	7429-90-5	5 10	µg/L	<10	<10	<10	<10	<10
Antimony	7429-90-5	0.5	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Iron	7439-89-6	5	μg/L μg/L	<5	<5	<5	<5	<5
Arsenic	7439-89-8	0.5	μg/L	1.2	1.3	1.2	1.0	1.3
Barium	7440-38-2	1	μg/L	8	6	9	8	7
Beryllium	7440-39-3	0.1	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Cadmium	7440-43-9	0.2	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Chromium	7440-47-3	0.5	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Cobalt	7440-48-4	0.2	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Copper	7440-50-8	1	μg/L	<1	<1	<1	<1	<1
Lead	7439-92-1	0.2	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Manganese	7439-96-5	0.5	μg/L	0.7	1.4	2.2	2.8	0.7
Nickel	7440-02-0	0.5	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Silver	7440-22-4	0.1	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Vanadium	7440-62-2	0.5	µg/L	1.2	1.1	1.0	1.1	0.8
EP008: Chlorophyll a								
Chlorophyll a		1	mg/m3	1	<1	2	5	<1
Volume		0.01	L	1	1	1	1	1
Volume Extract		0.01	mL	10	10	10	10	10
Ultra-Trace Nutrients								
Ammonia as N	7664-41-7	0.005	mg/L	0.011	0.007	0.010	0.008	0.010
Nitrite as N		0.002	mg/L	0.002	<0.002	<0.002	<0.002	<0.002
^ Nitrate as N	14797-55-8	0.002	mg/L	0.008	0.006	0.004	0.004	0.005
Nitrite + Nitrate as N		0.002	mg/L	0.010	0.006	0.004	0.004	0.005
^ Total Kjeldahl Nitrogen as N		0.05	mg/L	0.14	0.15	0.18	0.15	0.13
Total Nitrogen as N		0.05	mg/L	0.14	0.15	0.19	0.15	0.14
Reactive Phosphorus as P		0.001	mg/L	0.006	0.004	0.005	0.005	0.005

Sub-Matrix: MARINE WATER Client sample ID		GQ-WQ-03	GQ-WQ-04	GQ-WQ-07	GQ-WQ-10	GQ-WQ-11		
Client sampling date /		ng date / time	27-JUL-2009 15:00					
Compound	CAS Number	LOR	Unit	ES0911097-001	ES0911097-002	ES0911097-003	ES0911097-004	ES0911097-005
Ultra-Trace Nutrients - Continued								
Total Phosphorus as P		0.005	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005

Sub-Matrix: MARINE WATER		Clin	ent sample ID	GQ-WQ-12			
Sub-Matrix: MARINE WATER							
	CII	ent sampli	ng date / time	27-JUL-2009 15:00			
Compound	CAS Number	LOR	Unit	ES0911097-006			
EA005: pH							
pH Value		0.01	pH Unit	8.20			
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	µS/cm	49400			
EA015: Total Dissolved Solids							
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	44100			
EA025: Suspended Solids							
^ Suspended Solids (SS)		5	mg/L	10			
EG035F: Dissolved Mercury by FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001			
EG093F: Dissolved Metals in Saline Water	r by ORC-ICPM	6					
Aluminium	7429-90-5	10	µg/L	<10			
Antimony	7440-36-0	0.5	μg/L	<0.5			
Iron	7439-89-6	5	µg/L	<5			
Arsenic	7440-38-2	0.5	µg/L	1.4			
Barium	7440-39-3	1	µg/L	8			
Beryllium	7440-41-7	0.1	µg/L	<0.1			
Cadmium	7440-43-9	0.2	µg/L	<0.2			
Chromium	7440-47-3	0.5	µg/L	<0.5			
Cobalt	7440-48-4	0.2	µg/L	<0.2			
Copper	7440-50-8	1	µg/L	<1			
Lead	7439-92-1	0.2	µg/L	<0.2			
Manganese	7439-96-5	0.5	µg/L	0.7			
Nickel	7440-02-0	0.5	µg/L	<0.5			
Silver Vanadium	7440-22-4 7440-62-2	0.1	μg/L μg/L	<0.1 1.3			
	7440-62-2	0.5	µg/L	1.3			
EP008: Chlorophyll a		4					
Chlorophyll a		1 0.01	mg/m3 L	1			
Volume Volume Extract		0.01	mL	10			
		0.01		10			 -
Ultra-Trace Nutrients Ammonia as N	7604 44 7	0.005	mc/l	0.012			
Nitrite as N	7664-41-7	0.005	mg/L mg/L	<0.002			
^ Nitrate as N	 14797-55-8	0.002	mg/L	0.002			
Nitrite + Nitrate as N	14797-55-6	0.002	mg/L	0.005			
A Total Kjeldahl Nitrogen as N		0.05	mg/L	0.13			
Total Nitrogen as N		0.05	mg/L	0.14			
Reactive Phosphorus as P		0.001	mg/L	0.004			
					1	I	

Sub-Matrix: MARINE WATER Client sample ID			GQ-WQ-12	 	 	
Client sampling date / time			27-JUL-2009 15:00	 	 	
Compound	CAS Number	LOR	Unit	ES0911097-006	 	
Ultra-Trace Nutrients - Continued						
Total Phosphorus as P		0.005	mg/L	<0.005	 	

Environmental Division

QUALITY CONTROL REPORT

Work Order	: ES0911097	Page	: 1 of 7
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR ADRIAN WHITE	Contact	: Charlie Pierce
Address	: P O BOX 373	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	GLADSTONE QLD, AUSTRALIA 4680		
E-mail	: adrian.a.white@ghd.com.au	E-mail	: charlie.pierce@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-2-8784 8555
Facsimile	: +61 07 4972 6236	Facsimile	: +61-2-8784 8500
Project	: 4215386 41 WASTERN BASIN EIS WQ MONITORING	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 29-JUL-2009
Sampler	: AW	Issue Date	: 03-AUG-2009
Order number	:		
		No. of samples received	: 6
Quote number	: BN/314/09	No. of samples analysed	: 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

ΝΑΤΑ	NATA Accredited Laboratory 825	Signatories This document has been electronical carried out in compliance with procedures s	y signed by the authorized signatorie specified in 21 CFR Part 11.	es indicated below. Electronic signir	ng has been
NAIA	accordance with NATA	Signatories	Position	Accreditation Category	
	accreditation requirements.	Hoa Nguyen	Inorganic Chemist	Inorganics	
WORLD RECOGNISED	Accredited for compliance with ISO/IEC 17025.	Wisam Abou-Maraseh	Spectroscopist	Inorganics	
		Environmental Di	vision Sydney		

Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
A005: pH (QC Lot:	: 1053599)								
ES0911039-001	Anonymous	EA005: pH Value		0.01	pH Unit	9.08	9.10	0.2	0% - 20%
ES0911097-005	GQ-WQ-11	EA005: pH Value		0.01	pH Unit	8.04	8.06	0.2	0% - 20%
A010P: Conductivi	ity by PC Titrator (QC	Lot: 1053615)							
ES0911085-002	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	691	694	0.4	0% - 20%
ES0911097-002	GQ-WQ-04	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	49200	49300	0.2	0% - 20%
A010P: Conductivi	ity by PC Titrator (QC	Lot: 1054445)							
ES0911097-003	GQ-WQ-07	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	50500	50700	0.4	0% - 20%
ES0911109-003	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	51200	51300	0.2	0% - 20%
A015: Total Dissol	ved Solids (QC Lot: 10)53601)							
ES0911029-003	Anonymous	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	42800	45600	6.4	0% - 20%
ES0911062-001	Anonymous	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	45	50	10.5	0% - 20%
A025: Suspended	Solids (QC Lot: 10549)	89)							
ES0910906-001	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	296	304	2.7	0% - 20%
G035F: Dissolved	Mercury by FIMS (QC				_				
ES0911043-032	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
ES0911109-004	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
G093F: Dissolved	Metals in Saline Water	by ORC-ICPMS (QC Lot: 1055711)			_				
ES0911097-001	GQ-WQ-03	EG093A-F: Beryllium	7440-41-7	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EG093A-F: Silver	7440-22-4	0.1	μg/L	<0.1	<0.1	0.0	No Limit
		EG093A-F: Cadmium	7440-43-9	0.2	μg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Cobalt	7440-48-4	0.2	µg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Lead	7439-92-1	0.2	µg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Antimony	7440-36-0	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Arsenic	7440-38-2	0.5	µg/L	1.2	1.1	9.1	No Limit
		EG093A-F: Chromium	7440-47-3	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Manganese	7439-96-5	0.5	µg/L	0.7	0.6	15.0	No Limit
		EG093A-F: Nickel	7440-02-0	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Vanadium	7440-62-2	0.5	µg/L	1.2	0.8	31.7	No Limit
		EG093A-F: Barium	7440-39-3	1	µg/L	8	8	0.0	No Limit
		EG093A-F: Copper	7440-50-8	1	µg/L	<1	<1	0.0	No Limit
		EG093A-F: Aluminium	7429-90-5	10	µg/L	<10	<10	0.0	No Limit
S0911109-005	Anonymous	EG093A-F: Beryllium	7440-41-7	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EG093A-F: Silver	7440-22-4	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EG093A-F: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	0.0	No Limit

Sub-Matrix: WATER			Γ	Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG093F: Dissolved	Metals in Saline Water b	y ORC-ICPMS (QC Lot: 1055711) - continued							
ES0911109-005	Anonymous	EG093A-F: Cobalt	7440-48-4	0.2	µg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Lead	7439-92-1	0.2	µg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Antimony	7440-36-0	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Arsenic	7440-38-2	0.5	µg/L	1.0	1.0	0.0	No Limit
		EG093A-F: Chromium	7440-47-3	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Manganese	7439-96-5	0.5	µg/L	1.0	1.1	11.0	No Limit
		EG093A-F: Nickel	7440-02-0	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Vanadium	7440-62-2	0.5	µg/L	0.9	1.0	0.0	No Limit
		EG093A-F: Barium	7440-39-3	1	µg/L	9	8	0.0	No Limit
		EG093A-F: Copper	7440-50-8	1	µg/L	<1	<1	0.0	No Limit
		EG093A-F: Aluminium	7429-90-5	10	µg/L	<10	<10	0.0	No Limit
EG093F: Dissolved	Metals in Saline Water b	y ORC-ICPMS (QC Lot: 1055712)							
ES0911097-001	GQ-WQ-03	EG093B-F: Iron	7439-89-6	5	μg/L	<5	<5	0.0	No Limit
ES0911109-005	Anonymous	EG093B-F: Iron	7439-89-6	5	μg/L	<5	<5	0.0	No Limit
Ultra-Trace Nutrien	ts (QC Lot: 1054041)								
ES0911097-001	GQ-WQ-03	EK257A-SW: Nitrite as N		0.002	mg/L	0.002	0.002	0.0	No Limit
ES0911109-005	Anonymous	EK257A-SW: Nitrite as N		0.002	mg/L	<0.002	<0.002	0.0	No Limit
JItra-Trace Nutrien	ts (QC Lot: 1054042)								
ES0911097-001	GQ-WQ-03	EK255A-SW: Ammonia as N	7664-41-7	0.005	mg/L	0.011	0.012	13.2	No Limit
ES0911109-005	Anonymous	EK255A-SW: Ammonia as N	7664-41-7	0.005	mg/L	0.011	0.007	41.8	No Limit
JItra-Trace Nutrien	ts (QC Lot: 1054043)								
ES0911097-001	GQ-WQ-03	EK259A-SW: Nitrite + Nitrate as N		0.002	mg/L	0.010	0.010	0.0	No Limit
ES0911109-005	Anonymous	EK259A-SW: Nitrite + Nitrate as N		0.002	mg/L	0.005	0.005	0.0	No Limit
Ultra-Trace Nutrien	ts (QC Lot: 1054044)								
ES0911097-001	GQ-WQ-03	EK271A-SW: Reactive Phosphorus as P		0.001	mg/L	0.006	0.006	0.0	No Limit
ES0911109-005	Anonymous	EK271A-SW: Reactive Phosphorus as P		0.001	mg/L	0.006	0.006	0.0	No Limit
Ultra-Trace Nutrien	ts (QC Lot: 1054092)								
ES0911097-001	GQ-WQ-03	EK262PA-SW: Total Nitrogen as N		0.05	mg/L	0.14	0.16	8.2	No Limit
ES0911109-005	Anonymous	EK262PA-SW: Total Nitrogen as N		0.05	mg/L	0.15	0.14	0.0	No Limit
Ultra-Trace Nutrien	ts (QC Lot: 1054093)				-				
ES0911097-001	GQ-WQ-03	EK267PA-SW: Total Phosphorus as P		0.005	mg/L	<0.005	<0.005	0.0	No Limit
ES0911109-005	Anonymous	EK267PA-SW: Total Phosphorus as P		0.005	mg/L	< 0.005	<0.005	0.0	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA010P: Conductivity by PC Titrator (QCLot: 10	53615)							
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	2000 µS/cm	100	86.3	112
EA010P: Conductivity by PC Titrator (QCLot: 10	54445)							
EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	<1	2000 µS/cm	100	86.3	112
EA015: Total Dissolved Solids (QCLot: 1053601)								
EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	<1	293 mg/L	100	77.9	122
EA025: Suspended Solids (QCLot: 1054989)						1		
EA025H: Suspended Solids (SS)		5	mg/L	<5	150 mg/L	104	30	150
EG035F: Dissolved Mercury by FIMS (QCLot: 10	54513)							
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.010 mg/L	102	86	116
EG093F: Dissolved Metals in Saline Water by OR	C-ICPMS (QCI of: 105571)	0				I		1
EG093A-F: Aluminium	7429-90-5	10	μg/L	<10	50 μg/L	97.8	80	128
EG093A-F: Antimony	7440-36-0	0.5	μg/L	<0.5				
G093A-F: Arsenic	7440-38-2	0.5	μg/L	<0.5	10 µg/L	100	85	125
G093A-F: Barium	7440-39-3	1	µg/L	<1	10 µg/L	106	81	129
EG093A-F: Beryllium	7440-41-7	0.1	µg/L	<0.1	10 µg/L	104	80	122
EG093A-F: Cadmium	7440-43-9	0.2	µg/L	<0.2	10 µg/L	95.9	78	116
EG093A-F: Chromium	7440-47-3	0.5	µg/L	<0.5	10 µg/L	104	86	128
EG093A-F: Cobalt	7440-48-4	0.2	µg/L	<0.2	10 µg/L	105	87	127
EG093A-F: Copper	7440-50-8	1	µg/L	<1	10 µg/L	103	86	124
EG093A-F: Lead	7439-92-1	0.2	µg/L	<0.2	10 µg/L	102	87	123
EG093A-F: Manganese	7439-96-5	0.5	µg/L	<0.5	10 µg/L	102	90	122
EG093A-F: Nickel	7440-02-0	0.5	µg/L	<0.5	10 µg/L	102	84	124
EG093A-F: Silver	7440-22-4	0.1	µg/L	<0.1	1 µg/L	78.1	70	130
EG093A-F: Vanadium	7440-62-2	0.5	µg/L	<0.5	10 µg/L	104	85	123
G093F: Dissolved Metals in Saline Water by OR		,						
EG093B-F: Iron	7439-89-6	5	µg/L	<5	50 µg/L	101	89	119
EP008: Chlorophyll a (QCLot: 1053883)								
EP008: Chlorophyll a		1	mg/m3		20 mg/m3	95.0	60.3	134
		1	mg/m³	<1				
EP008: Volume		0.01	L	0		1		
EP008: Volume Extract		0.01	mL	0		10		
Ultra-Trace Nutrients (QCLot: 1054041)								
EK257A-SW: Nitrite as N		0.002	mg/L	<0.002	1.0 mg/L	87.0	70	130

Page	: 6 of 7
Work Order	: ES0911097
Client	: GHD SERVICES PTY LTD
Project	: 4215386 41 WASTERN BASIN EIS WQ MONITORING

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
Ultra-Trace Nutrients (QCLot: 1054042)								
EK255A-SW: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.1 mg/L	104	70	130
Ultra-Trace Nutrients (QCLot: 1054043)								
EK259A-SW: Nitrite + Nitrate as N		0.002	mg/L	<0.002	0.1 mg/L	112	70	130
Ultra-Trace Nutrients (QCLot: 1054044)								
EK271A-SW: Reactive Phosphorus as P		0.001	mg/L	<0.001	0.1 mg/L	103	70	130
Ultra-Trace Nutrients (QCLot: 1054092)								
EK262PA-SW: Total Nitrogen as N		0.05	mg/L	<0.05	1.0 mg/L	94.9	70	130
Ultra-Trace Nutrients (QCLot: 1054093)								
EK267PA-SW: Total Phosphorus as P		0.005	mg/L	<0.005	0.44 mg/L	87.3	70	130

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: WATER					Matrix Spike (MS) Repo	rt	
				Spike	Spike Recovery (%)	Recovery	Limits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG035F: Dissolved	Mercury by FIMS (QCLot: 1054	513)					
ES0911043-032	Anonymous	EG035F: Mercury	7439-97-6	0.0100 mg/L	108	70	130
EG093F: Dissolved	Metals in Saline Water by ORC-	ICPMS (QCLot: 1055711)					
ES0911097-001	GQ-WQ-03	EG093A-F: Arsenic	7440-38-2	50 µg/L	119	70	130
		EG093A-F: Barium	7440-39-3	50 µg/L	118	70	130
		EG093A-F: Beryllium	7440-41-7	50 µg/L	110	70	130
		EG093A-F: Cadmium	7440-43-9	12.5 µg/L	107	70	130
		EG093A-F: Chromium	7440-47-3	50 µg/L	120	70	130
		EG093A-F: Cobalt	7440-48-4	50 µg/L	121	70	130
		EG093A-F: Copper	7440-50-8	50 µg/L	121	70	130
		EG093A-F: Lead	7439-92-1	50 µg/L	109	70	130
		EG093A-F: Manganese	7439-96-5	50 µg/L	116	70	130
		EG093A-F: Nickel	7440-02-0	50 µg/L	121	70	130
		EG093A-F: Vanadium	7440-62-2	50 µg/L	118	70	130
Iltra-Trace Nutrient	ts (QCLot: 1054041)						
ES0911097-001	GQ-WQ-03	EK257A-SW: Nitrite as N		0.1 mg/L	72.7	70	130
Iltra-Trace Nutrient	ts (QCLot: 1054042)						
ES0911097-001	GQ-WQ-03	EK255A-SW: Ammonia as N	7664-41-7	0.1 mg/L	71.3	70.	130
Iltra-Trace Nutrient	ts (QCLot: 1054043)		·		1		
ES0911097-001	GQ-WQ-03	EK259A-SW: Nitrite + Nitrate as N		0.1 mg/L	71.6	70	130
Iltra-Trace Nutrient	ts (QCLot: 1054044)						
ES0911097-001	GQ-WQ-03	EK271A-SW: Reactive Phosphorus as P		0.1 mg/L	73.4	70	130
Iltra-Trace Nutrient	ts (QCLot: 1054092)						
ES0911097-001	GQ-WQ-03	EK262PA-SW: Total Nitrogen as N		0.5 mg/L	101	70	130
				0.0			.50
ES0911097-001	ts (QCLot: 1054093)			0.5 mg/l	90.1	70	130
200911097-001	GQ-WQ-03	EK267PA-SW: Total Phosphorus as P		0.5 mg/L	90.1	70	130

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order	: ES0911097	Page	: 1 of 9
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR ADRIAN WHITE	Contact	: Charlie Pierce
Address	: P O BOX 373 GLADSTONE QLD, AUSTRALIA 4680	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	adrian.a.white@ghd.com.au	E-mail	: charlie.pierce@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-2-8784 8555
Facsimile	: +61 07 4972 6236	Facsimile	: +61-2-8784 8500
Project	: 4215386 41 WASTERN BASIN EIS WQ MONITORING	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 29-JUL-2009
Sampler	: AW	Issue Date	: 03-AUG-2009
Order number	:		
		No. of samples received	: 6
Quote number	: BN/314/09	No. of samples analysed	: 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Environmental Division Sydney Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: WATER					Evaluation:	× = Holding time	breach ; ✓ = Withir	holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005: pH								
Clear Plastic Bottle - Natural								
GQ-WQ-03,	GQ-WQ-04,	27-JUL-2009				29-JUL-2009	27-JUL-2009	s
GQ-WQ-07,	GQ-WQ-10,							
GQ-WQ-11,	GQ-WQ-12							
EA010P: Conductivity by PC Titrator								
Clear Plastic Bottle - Natural								
GQ-WQ-03,	GQ-WQ-04	27-JUL-2009				29-JUL-2009	24-AUG-2009	✓
Clear Plastic Bottle - Natural								
GQ-WQ-07,	GQ-WQ-10,	27-JUL-2009				30-JUL-2009	24-AUG-2009	✓
GQ-WQ-11,	GQ-WQ-12							
EA015: Total Dissolved Solids								
Clear Plastic Bottle - Natural								
GQ-WQ-03,	GQ-WQ-04,	27-JUL-2009				29-JUL-2009	03-AUG-2009	✓
GQ-WQ-07,	GQ-WQ-10,							
GQ-WQ-11,	GQ-WQ-12							
EA025: Suspended Solids						-		
Clear Plastic Bottle - Natural								
GQ-WQ-03,	GQ-WQ-04,	27-JUL-2009				30-JUL-2009	03-AUG-2009	✓
GQ-WQ-07,	GQ-WQ-10,							
GQ-WQ-11,	GQ-WQ-12							
EG035F: Dissolved Mercury by FIMS								
Clear HDPE (U-T ORC) - Filtered; Lab-	acidified							
GQ-WQ-03,	GQ-WQ-04,	27-JUL-2009				31-JUL-2009	24-AUG-2009	✓
GQ-WQ-07,	GQ-WQ-10,							
GQ-WQ-11,	GQ-WQ-12							
EG093F: Dissolved Metals in Saline Wa	ter by ORC-ICPMS							
Clear HDPE (U-T ORC) - Filtered; Lab-	acidified							
GQ-WQ-03,	GQ-WQ-04,	27-JUL-2009	31-JUL-2009	23-JAN-2010	✓	31-JUL-2009	23-JAN-2010	✓
GQ-WQ-07,	GQ-WQ-10,							
GQ-WQ-11,	GQ-WQ-12							

A Campbell Brothers Limited Company

Page	: 3 of 9
Work Order	: ES0911097
Client	: GHD SERVICES PTY LTD
Project	: 4215386 41 WASTERN BASIN EIS WQ MONITORING

Matrix: WATER Evaluation: \mathbf{x} = Holding time breach ; \mathbf{v} = Within holding time. Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Date analysed Due for analysis Evaluation EP008: Chlorophyll a White Plastic Bottle - Unpreserved GQ-WQ-03, GQ-WQ-04, 27-JUL-2009 -----29-JUL-2009 29-JUL-2009 \checkmark --------GQ-WQ-07, GQ-WQ-10, GQ-WQ-11, GQ-WQ-12 Ultra-Trace Nutrients Clear Plastic Bottle - Filtered (AS) GQ-WQ-03, GQ-WQ-04, 27-JUL-2009 29-JUL-2009 28-JUL-2009 ---x -------GQ-WQ-07. GQ-WQ-10, GQ-WQ-11, GQ-WQ-12 Clear Plastic Bottle - Natural (AS) GQ-WQ-03, GQ-WQ-04, 27-JUL-2009 29-JUL-2009 28-JUL-2009 29-JUL-2009 28-JUL-2009 × × GQ-WQ-07, GQ-WQ-10, GQ-WQ-11, GQ-WQ-12

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
_aboratory Duplicates (DUP)							
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	4	24	16.7	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	2	14	14.3	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
рН	EA005	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Suspended Solids (High Level)	EA025H	1	10	10.0	9.5	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids	EA015	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
_aboratory Control Samples (LCS)							
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	13	7.7	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chlorophyll a	EP008	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	2	24	8.3	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	14	7.1	5.0	 ✓ 	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	1	13	7.7	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	1	13	7.7	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	13	7.7	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	13	7.7	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Suspended Solids (High Level)	EA025H	1	10	10.0	4.8	 ✓ 	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids	EA015	1	20	5.0	5.0	 ✓ 	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	13	7.7	10.0	x	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	13	7.7	10.0	x	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	13	7.7	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chlorophyll a	EP008	1	13	7.7	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	2	24	8.3	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	14	7.1	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	1	13	7.7	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	1	13	7.7	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	1	13	7.7	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Matrix: WATER				Evaluation	n: × = Quality Co	ntrol frequency r	not within specification ; \checkmark = Quality Control frequency within specifica
Quality Control Sample Type		С	Count		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Suspended Solids (High Level)	EA025H	1	10	10.0	4.8	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids	EA015	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	13	7.7	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	13	7.7	5.0	✓	ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	14	7.1	5.0	1	ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	1	13	7.7	5.0	✓	ALS QCS3 requirement
Vitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	1	13	7.7	5.0	✓	ALS QCS3 requirement
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	13	7.7	5.0	1	ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	13	7.7	5.0	✓	ALS QCS3 requirement
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	13	7.7	5.0	✓	ALS QCS3 requirement
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	13	7.7	5.0	1	ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
рН	EA005	WATER	APHA 21st ed. 4500 H+ B. pH of water samples is determined by ISE either manually or by automated pH meter. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Conductivity by PC Titrator	EA010-P	WATER	APHA 21st ed., 2510 B This procedure determines conductivity by automated ISE. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Dissolved Solids	EA015	WATER	APHA 21st ed., 2540C A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Suspended Solids (High Level)	EA025H	WATER	APHA 21st ed., 2540D A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Mercury by FIMS	EG035F	WATER	AS 3550, APHA 21st ed. 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	WATER	APHA 21st ed., 3125; USEPA SW846 - 6020 Samples are 0.45 um filtered prior to analysis. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	WATER	APHA 21st ed., 3125; USEPA SW846 - 6020 Samples are 0.45 um filtered prior to analysis. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	WATER	APHA 21st ed., 4500-NH3 H Ammonia is determined by direct colorimetry by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	WATER	APHA 21st ed., 4500-NO2- B. Nitrite is determined by direct colourimetry by FIA.
Nitrate as N - Ultra-Trace in Saline Waters	EK258A-SW	WATER	APHA 21st ed., 4500-NO3- I Nitrate is reduced to nitrite by way of a cadmium reduction column followed by quantification by FIA. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results.
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	WATER	APHA 21st ed., 4500-NO3- I. Combined oxidised Nitrogen (NO2+NO3) is determined by Cadmium Reduction and direct colourimetry by FIA.

Analytical Methods	Method	Matrix	Method Descriptions
TKN (Total N - NOx-N). (FIA - UT) in Saline Waters	EK261PA-SW	WATER	APHA 21st ed., 4500-P J. & 4500-NO3- I. Calculated by difference from total Nitrogen and NOx. Contributing method parameters are determined by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	WATER	APHA 21st ed., 4500-P J. Persulfate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus. As sample is digested with persulfate under alkaline conditions yielding orthophosphate and nitrate. Following digestion, analytes are determined by flow injection analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	WATER	APHA 21st ed., 4500-P J. Persulfate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus. As sample is digested with persulfate under alkaline conditions yielding orthophosphate and nitrate. Following digestion, analytes are determined by flow injection analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	WATER	APHA 21st ed., 4500-P E Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Chlorophyll a	EP008	WATER	In-house (APHA 21st ed., 10200 H mod.) The pigments are extracted into aqueous acetone. The optical density of the extract before and after acidification at both 664 nm and 665 nm is determined spectrometrically.
Preparation Methods	Method	Matrix	Method Descriptions
Persulfate Digestion for UT TN and TP for FIA/Saline	EK262/267PA-SW	WATER	APHA 21st ed., 4500 P - J. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Matrix: WATER

Method			Extraction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA005: pH							
Clear Plastic Bottle - Natural							
GQ-WQ-03,	GQ-WQ-04,				29-JUL-2009	27-JUL-2009	2
GQ-WQ-07,	GQ-WQ-10,						
GQ-WQ-11,	GQ-WQ-12						
Ultra-Trace Nutrients							
Clear Plastic Bottle - Filtered (AS)							
GQ-WQ-03,	GQ-WQ-04,				29-JUL-2009	28-JUL-2009	1
GQ-WQ-07,	GQ-WQ-10,						
GQ-WQ-11,	GQ-WQ-12						
Clear Plastic Bottle - Natural (AS)							
GQ-WQ-03,	GQ-WQ-04,	29-JUL-2009	28-JUL-2009	1	29-JUL-2009	28-JUL-2009	1
GQ-WQ-07,	GQ-WQ-10,						
GQ-WQ-11,	GQ-WQ-12						

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

Matrix: WATER							
Quality Control Sample Type	Count	Rate (%)	Quality Control Specification				
Method	QC Regular	Actual Expected					
Laboratory Control Samples (LCS)							

Page	: 9 of 9
Work Order	: ES0911097
Client	: GHD SERVICES PTY LTD
Project	: 4215386 41 WASTERN BASIN EIS WQ MONITORING

Matrix: WATER

Quality Control Sample Type		Count		e (%)	Quality Control Specification
Method	QC	Regular	Actual Expected		
Laboratory Control Samples (LCS) - Continued					
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	1	13	7.7	10.0	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	1	13	7.7	10.0	NEPM 1999 Schedule B(3) and ALS QCS3 requirement

GHD				Chain of Cu	istody & Analysis F	Request								Page1 of _1
			<u> </u>			GHD								
PROJECT ID:	4215386 41	QU	JOTE:			LABORATOP	Y BATCH	INO.:						FOR LAB USE ONLY
PROJECT:	Western Basin I	EIS WQ Mon	nitoring											COOLER TEMP:
CLIENT:	GHD					COOLER SE								
POSTAL ADDRESS:	PO Box 373, Gla	adstone 4680)			_	Yes				ю		••	
CONTACT:	Adrian White						Broken				ntact	mental	•••	
PHONE:	41	2035667 FA	x: 0	7) 49726236		DESPATCHE	D 10:					odpark		ad
EMAIL:	Jason.K.Fow	/ler@ghd.c	com.au, Adrian	A.White@ghd.co	<u>m.au</u>							ISW 21		
INVOICE:	Jason.K.Fow	ler@ghd.c	com.au, Adrian	.A.White@ghd.co	m.au				(2 878	4 855	55		
														ANALYSIS REQUIRED
DATA NEEDED BY:							2						•	
						ਝੁੰ	N02,							
REPORT FORMAT:						ِ ج	CH3			1				
CHAIL FORMAT	ESDAT, EXCEL	& PDF				(EG093F) 1, Ni, Pb, V, Hg,	RP, NH3,		· 1					
EMAIL FORMAT:	ESDAT, EAGED					L Si Si	а ^т			1				
COMMENTS/SPECIAL HA				sampling)		metals Cu, Mr	(UTN - 04) (TP,		()					
(EMAIL ADDRESS						ce ORC - dissolv Ba, Be, Cd, Co, (g)	e nutrients (UTN - , TN)	25)	Chlorophyll a (EP008)	5)	15)	Electro Conductivity		SAMPLES FROM MARINE
(EMAIL ADDRESS	ESPROVIDED	ADOTE)					IKN	A0	Hd .	A00	EAO	2		
		<u> </u>				Ultra tr (Sb, At Fe, Ai,	Ultra trace I NO3, TKN, ¹	TSS (EA025)	10 L	pH (EA005)	TDS (EA015)	ectr		ENVIRONMENT
SAMPLEID			DATE	DETECTION LIMIT	PRESERVATION	<u> 58</u>	Ξž							
		Water	7917	LOR	As Required	<u> </u>	X	X	X	X	X	X		
G-WQ-01			ing -	LOR	As Required	X	X	X	X	X	X	X		
G-WQ-02		Water								0.000		فسيدا وشيع ويدن		
										-		Sec. 1		Environmental Division
								x	X	x	X	x		Sydney
G-WQ-05		Water		LOR	As Required	<u> </u>	X			~	Â	Â		Work Order
	11												-	
		Water		LOR	As Required	X	X	X	X	X	X	X	_	ES0911109
G-WQ-07		Water		LOR	As Required	X	X	х	X	Х	X	X		
G-WQ-08		Water				X	X	X	X	X	x	x		
G-WQ-09	/_	Water		LOR	As Required		1							
			1								A			
							_							KI
5 m 8				LOP	As Required	X	X	X	Х	X	X	X		Telephone : + 61-2-8784 8555
QAO		Water	¥	LOR	pierequiree								Ţ	
				· · · · · · · · · · · · · · · · · · ·			l							
			$\downarrow \frown$			- <u> </u>								RECEIVED BY:
1 . 1			RELINQUIS	IED BY: ()	1-0		4	212	~					DATE: 29/07/09
NAME: H.W	like	V	DATE		1 10 [°])	NAME :		Ne						TIME: 3:30
OF: GHD Gladsto	one	XI.	1 ATAC 19		/(OF:	ito @ ~ h				·		•	
		equest 1	¥:••• (*	5:00	Jason.K.Fowler@ghd.com.a	u, Adrian.A.WI	niewdr	u.com	.au	Aoid Di-	cod C	ace Bottle	<u></u>	
				d Preserved; C = Sodi	um Hydroxide Preserved; J = Solvent Wa	shed Acid Rinced	Jar; S = S	olvent V	vasried /		iveu ul	ass Duille	-,	
WC - Hydrophloric Acid I	Preserved Vial: VS	= Sulfuric Ac	id Preserved Vial;	3S = Sulfuric Acid Pre	served Glass Bottle; Z = Zinc Acetate Pr	eserved Bottle; E	EDTA P	eserved	Bottles;	;51=5	iterile t	solue;		

O = Other.														and a second

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order	: ES0911109		
Client Contact Address	: GHD SERVICES PTY LTD : MR ADRIAN WHITE : P O BOX 373 GLADSTONE QLD, AUSTRALIA 4	Contact: CAddress: 23	nvironmental Division Sydney harlie Pierce 77-289 Woodpark Road Smithfield SW Australia 2164
E-mail Telephone Facsimile	: adrian.a.white@ghd.com.au : +61 07 49731611 : +61 07 4972 6236	Telephone : +(harlie.pierce@alsenviro.com 61-2-8784 8555 61-2-8784 8500
Project	: 4215386 41 WESTERN BASIN EI MONITORING	S WQ Page : 1	of 3
Order number C-O-C number Site	: : 	Quote number : E	M2009GHDSER0392 (EN/005/09)
Sampler	AW		EPM 1999 Schedule B(3) and ALS CS3 requirement
Dates			
Date Samples Recei Client Requested Du		Issue Date Scheduled Reporting Date	29-JUL-2009 13:58 5 -AUG-2009
Delivery Deta	ils		
Mode of Delivery No. of coolers/boxes Sercurity Seal	: Carrier	Temperature No. of samples received No. of samples analysed	: 7.2'C - Ice present : 7 : 7

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Breaches in recommended extraction / analysis holding times may occur. Please contact ALS for further information (Nanthini Coilparampil).
- pH analysis should be conducted within 6 hours of sampling.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Nanthini Coilparampil
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (90 days) from date of completion of work order.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

the determination tasks, that are includ	y for the execution may contain additiona of moisture cont ed in the package. d/or time(s) are sho med by the labor sampling time is o	al analyses, such as	WATER - EA005: pH pH	WATER - EA010P Conductivity (PC)	WATER - EA015 Total Dissolved Solids	WATER - EA025H Suspended Solids (High Level)	WATER - EG035F Dissolved Mercury by FIMS	WATER - EG093A-F Dissolved metals in saline water by ORC-ICPMS	WATER - EG093B-F Dissolved Metals in Saline Water Suite B ov ORC-ICPMS	ATER
ES0911109-001	28-JUL-2009 13:00	G-WQ-01	✓	✓	✓	✓	✓	✓	✓	✓
ES0911109-002	28-JUL-2009 13:00	G-WQ-02	✓	✓	✓	✓	1	✓	✓	1
ES0911109-003	28-JUL-2009 13:00	G-WQ-05	✓	✓	1	1	✓	1	✓	✓
ES0911109-004	28-JUL-2009 13:00	G-WQ-06	√	✓	1	1	✓	✓	1	1
ES0911109-005	28-JUL-2009 13:00	G-WQ-08	√	✓	1	✓	✓	✓	√	√
ES0911109-006	28-JUL-2009 13:00	G-WQ-09	√	1	1	1	1	1	✓	√
ES0911109-007	28-JUL-2009 13:00	QA01	1	1	✓	1	1	✓	✓	1

Matrix: WATER Laboratory sample ID	Client sampling date / time	Client sample ID	WATER - UTN-4 SW Ultratrace NO2, NO3, NH3, Nitrogen, Phosphorus, TKN, Reactive Phosphorus
ES0911109-001	28-JUL-2009 13:00	G-WQ-01	✓
ES0911109-002	28-JUL-2009 13:00	G-WQ-02	✓
ES0911109-003	28-JUL-2009 13:00	G-WQ-05	✓
ES0911109-004	28-JUL-2009 13:00	G-WQ-06	✓
ES0911109-005	28-JUL-2009 13:00	G-WQ-08	✓
ES0911109-006	28-JUL-2009 13:00	G-WQ-09	✓
ES0911109-007	28-JUL-2009 13:00	QA01	1

Requested Deliverables

MR ADRIAN WHITE

 *AU Certificate of Analysis - NATA (COA) 	Email	adrian.a.white@ghd.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	adrian.a.white@ghd.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	adrian.a.white@ghd.com.au
- A4 - AU Sample Receipt Notification - Environmental (SRN)	Email	adrian.a.white@ghd.com.au
- A4 - AU Tax Invoice (INV)	Email	adrian.a.white@ghd.com.au
- Default - Chain of Custody (COC)	Email	adrian.a.white@ghd.com.au
- EDI Format - ENMRG (ENMRG)	Email	adrian.a.white@ghd.com.au
- EDI Format - ESDAT (ESDAT)	Email	adrian.a.white@ghd.com.au
MR JASON FOWLER		
 *AU Certificate of Analysis - NATA (COA) 	Email	jason.k.fowler@ghd.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	jason.k.fowler@ghd.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	jason.k.fowler@ghd.com.au
- A4 - AU Sample Receipt Notification - Environmental (SRN)	Email	jason.k.fowler@ghd.com.au
- A4 - AU Tax Invoice (INV)	Email	jason.k.fowler@ghd.com.au
 Default - Chain of Custody (COC) 	Email	jason.k.fowler@ghd.com.au
- EDI Format - ENMRG (ENMRG)	Email	jason.k.fowler@ghd.com.au
- EDI Format - ESDAT (ESDAT)	Email	jason.k.fowler@ghd.com.au

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order	: ES0911109	Page	: 1 of 6
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR ADRIAN WHITE	Contact	: Charlie Pierce
Address	: P O BOX 373 GLADSTONE QLD, AUSTRALIA 4680	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: adrian.a.white@ghd.com.au	E-mail	: charlie.pierce@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-2-8784 8555
Facsimile	: +61 07 4972 6236	Facsimile	: +61-2-8784 8500
Project	: 4215386 41 WESTERN BASIN EIS WQ MONITORING	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 29-JUL-2009
Sampler	: AW	Issue Date	: 05-AUG-2009
Site	:		
		No. of samples received	: 7
Quote number	: BN/314/09	No. of samples analysed	: 7

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

ΝΑΤΑ	NATA Accredited Laboratory 825 This document is issued in	Signatories This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.						
WORLD RECOGNISED ACCREDITATION	accordance with NATA accreditation requirements.	Signatories	Accreditation Category					
		Celine Conceicao	Spectroscopist	Inorganics				
	Accredited for compliance with	Hoa Nguyen	Inorganic Chemist	Inorganics				
	ISO/IEC 17025.	Nanthini Coilparampil	Senior Inorganic Chemist	Inorganics				
		Wisam Abou-Maraseh	Spectroscopist	Inorganics				
Environmental Division Sudney								

Environmental Division Sydney Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

• EK267PA-SW, It has been noted that RP is greater than TP for various samples , however this difference is within the limits of experimental variation.

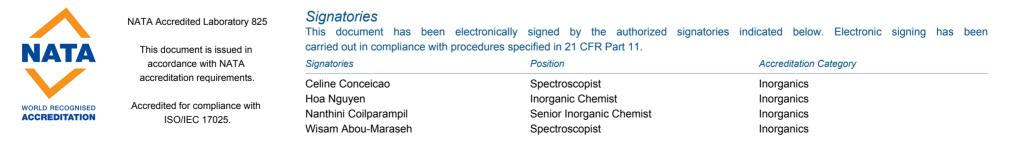
Sub-Matrix: MARINE WATER		Clie	ent sample ID	G-WQ-01	G-WQ-02	G-WQ-05	G-WQ-06	G-WQ-08
	Cl	ient sampli	ng date / time	28-JUL-2009 13:00				
Compound	CAS Number	LOR	Unit	ES0911109-001	ES0911109-002	ES0911109-003	ES0911109-004	ES0911109-005
EA005: pH								
pH Value		0.01	pH Unit	8.06	8.17	8.11	8.16	8.15
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	μS/cm	50400	52100	51200	51100	50000
EA015: Total Dissolved Solids								
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	43000	42700	44200	42300	43700
EA025: Suspended Solids								
^ Suspended Solids (SS)		5	mg/L	17	10	14	5	7
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EG093F: Dissolved Metals in Saline Wa								
Aluminium	7429-90-5	10	µg/L	<10	<10	<10	<10	<10
Antimony	7440-36-0	0.5	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Iron	7439-89-6	5	μg/L	<5	<5	<5	<5	<5
Arsenic	7440-38-2	0.5	μg/L	1.0	1.0	1.1	1.0	1.0
Barium	7440-39-3	1	µg/L	9	8	10	8	9
Beryllium	7440-41-7	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Chromium	7440-47-3	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Cobalt	7440-48-4	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Copper	7440-50-8	1	µg/L	<1	<1	<1	<1	<1
Lead	7439-92-1	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Manganese	7439-96-5	0.5	µg/L	3.0	1.0	2.1	1.8	1.0
Nickel	7440-02-0	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Silver	7440-22-4	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Vanadium	7440-62-2	0.5	µg/L	0.9	1.1	1.1	1.1	0.9
EP008: Chlorophyll a								
Chlorophyll a		1	mg/m3	3	1	<1	<1	<1
Volume		0.01	L	1	1	1	1	1
Volume Extract		0.01	mL	10	10	10	10	10
Ultra-Trace Nutrients								
Ammonia as N	7664-41-7	0.005	mg/L	0.007	0.009	0.008	0.007	0.011
Nitrite as N		0.002	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002
^ Nitrate as N	14797-55-8	0.002	mg/L	0.004	0.006	0.004	0.005	0.005
Nitrite + Nitrate as N		0.002	mg/L	0.004	0.006	0.004	0.005	0.005
^ Total Kjeldahl Nitrogen as N		0.05	mg/L	0.17	0.17	0.14	0.14	0.14
Total Nitrogen as N		0.05	mg/L	0.17	0.17	0.14	0.15	0.15
Reactive Phosphorus as P		0.001	mg/L	0.005	0.005	0.006	0.005	0.006

Sub-Matrix: MARINE WATER	Client sample ID Client sampling date / time CAS Number LOR Unit	ent sample ID	G-WQ-01	G-WQ-02	G-WQ-05	G-WQ-06	G-WQ-08	
	Cl	ient samplii	ng date / time	28-JUL-2009 13:00				
Compound	CAS Number	LOR	Unit	ES0911109-001	ES0911109-002	ES0911109-003	ES0911109-004	ES0911109-005
Ultra-Trace Nutrients - Continued								
Total Phosphorus as P		0.005	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005

Clear samplerZebull-2009 13:00ComeoundCAS JumbeLORUnitE89911199-007E89911199-007EAOS: pit0.01pit UnitE80911199-007E89911199-007pit Value0.01pit Unit8.218.18EAOT :EAOT :EAOT :EAOT :EAOT :	Sub-Matrix: MARINE WATER		Clie	ent sample ID	G-WQ-09	QA01	 	
CARDANDARYLORLORES9911109-007EA005- pHPH Value0.01pH Unit8.218.18EA016- Canductivity DP CTruatorELOTCASEA016- Canductivity DP CTruatorElottasi Consolutionity 23.271g/Son50000509000.50900EA015- Stabilise StationEA015- Stabilise StationAssended Solide StationEO25- Closelved Metrory Dy FMSEO35- Closelved Metrory Dy FMSEO35- Closelved Metrory Dy FMSEO35- Closelved Metrory Dy FMSEO35- Closelved Metrory Dy FMS		Cl						
Concernment Control Control Control Control Control Control pH Value 0.01 pH Value 6.18 0 0 0 pH Value 0.01 pH Value 6.18 0								
ph Valoropt Valor0,14 Unit8.210,8100,4100,4100,4100,410BADAPE- conductivity 0,25C110,5105500000,4100,42000,42000,410 </th <th></th> <th>CAS Number</th> <th>LOR</th> <th>Unit</th> <th>230311103-000</th> <th>200311103-007</th> <th> </th> <th></th>		CAS Number	LOR	Unit	230311103-000	200311103-007	 	
EAXOP: Conductivity by PC Titrator Bits Solid Solid Solid Solid Solid Solid Solid Electrical Conductivity (§ 25°C 1 pSion Solid Solid Solid EAXIS: Total Disolved Solids (80°C GiS 210,010 1 mgL 42100 42100 Solid Solid Solid Assessmed Solids (83) 5 mgL 12 7 Solid Solid Solid E0035F: Dissolved Marcury by FMS 5 mgL 40001 E0035F: Dissolved Marcury by FMS E0035F: Dissolved Marcury by FMS <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
Bench conductiving 2s °CIIVIVSolutionIV			0.01	pH Unit	8.21	8.18	 	
EA(15): Total Dissolved Solids mg/L 42100 42400 A Total Dissolved Solids (8) 5 mg/L 12 7	EA010P: Conductivity by PC Titrator							
^ hole Solved Solids (Sing Control1mg/L4210042400	Electrical Conductivity @ 25°C		1	µS/cm	50100	50900	 	
EA25: Suppended Solids S mg/L 12 7	EA015: Total Dissolved Solids							
^* Augended Solids (Sol)<	^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	42100	42400	 	
^* Augended Solids (Sol)<	EA025: Suspended Solids							
EG0357: Disolved Marcury by FIMS Unit of the solution			5	mg/L	12	7	 	
MercyY439900.001mpl.<								
Ed033F: Dissolved Metals in Saline Water by ORC-ICPMS Auminum 7429-90.5 10 µg/L <10		7439-97-6	0.0001	mg/L	<0.0001	<0.0001	 	
Auminum7420-90.510μp/L<10	EG093F: Dissolved Metals in Saline Water		s					
Antimory740-90- 7430-90-0.5519/L-0.55-0.55-0.5- <t< th=""><th></th><td>-</td><td></td><td>µg/L</td><td><10</td><td><10</td><td> </td><td></td></t<>		-		µg/L	<10	<10	 	
iron743.98-965µg/L4.5.5Arsenic7440.38-20.5µg/L1.31.1								
Arsenic7440-38-20.5µg/L1.31.1Barium7440-37-30.4µg/L0.610.610000Cadmium7440-47-70.4µg/L0.020.020000Chomium7440-47-30.5µg/L0.020.020000Chomium7440-48-40.2µg/L0.020.020000Cobat7440-48-40.2µg/L0.020.020000Cobat7440-48-40.2µg/L0.020.020000Maganese7430-96-50.5µg/L0.020.020000Nikel7440-240.5µg/L0.081.10000Silver7440-240.5µg/L0.020.020000Nikel7440-240.5µg/L0.081.140000Silver7440-240.5µg/L0.081.140000Nikel7440-240.10.140.1400000Silver7440-240.11.01.000000Value <th>-</th> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td>	-						 	
Barium 740-03-9 1 µg/L 8 8 Berylinm 740-41-7 /0 µg/L <0.01 <0.01 <	Arsenic		0.5		1.3	1.1	 	
Beryllium7404.170.11/g/L(~0.10.01Cadnium7404.370.01/g/L0.020.020.020.0.00.0.00.0.0Chromlum7404.780.01/g/L0.020.020.0.00.0.00.0.00.0.0Cobalt7404.080.01/g/L0.020.020.0.00.0.00.0.00.0.0Coper740.0811/g/L0.020.020.0.00.0.00.0.00.0.0Lead739.920.01/g/L0.081.00.0.00.0.00.0.00.0.0Nickel740.020.51/g/L0.0.10.0.10.0.00.0.00.0.00.0.0Silver740.020.51/g/L0.0.10.0.10.0.00.0.00.0.00.0.0Vandum740.620.51/g/L0.0.10.0.10.0.00.0.00.0.00.0.0Vandum740.620.51/g/L0.0.10.0.00.0.00.0.00.0.00.0.0Vandum740.620.51/g/L1.0.00.0.00.0.00.0.00.0.00.0.00.0.0Chorophylia740.020.011.01.0.00.0.00.0.00.0.00.0.00.0.00.0.00.0.0Volume Extract0.011.01.00.0.00.0.00.0.00.0.00.0.00.0.00.0.00.0.0Volume Extract0.005 <th>Barium</th> <th></th> <th>1</th> <th></th> <th></th> <th>8</th> <th> </th> <th></th>	Barium		1			8	 	
Cadmium 7440-33 0.2 μg/L <0.2	Beryllium		0.1		<0.1	<0.1	 	
Cobalt 740-484 0.2 µg/L <0.2	Cadmium		0.2	μg/L	<0.2	<0.2	 	
Copper 7440-50-8 1 µg/L <1	Chromium	7440-47-3	0.5	µg/L	<0.5	<0.5	 	
Lead 7439-92-1 0.2 µg/L <0.2	Cobalt	7440-48-4	0.2		<0.2	<0.2	 	
Maganese 7439.96-5 0.5 µµ/L 0.8 1.1 Nickel 7440.02-0 0.5 µµ/L 0.9 1.0 <th>Copper</th> <th>7440-50-8</th> <th></th> <th></th> <th></th> <th></th> <th> </th> <th></th>	Copper	7440-50-8					 	
Nickel 7440-02 0.5 µg/L 0.9 1.0	Lead	7439-92-1	0.2		<0.2	<0.2	 	
Silver 7440-224 0.1 µg/L <0.1	Manganese	7439-96-5			0.8	1.1	 	
Vanadium 7440-62-2 0.5 μg/L 1.0 1.1							 	
EP008: Chlorophyll a Chlorophyll a 1 mg/m3 1 <1 Volume 0.01 L 1 1 Volume Extract 0.01 mL 10 10 Ultra-Trace Nutrients Nitrite as N 7664-41-7 0.005 mg/L 0.002 <0.002 < Nitrite as N 14797-55-8 0.002 mg/L 0.006 0.006 Nitrite + Nitrate as N 0.002 mg/L 0.006 0.006 Nitrite + Nitrate as N 0.005 mg/L 0.006 0.006 ^ Total Kjeldahl Nitrogen as N 0.05 mg/L 0.15 0.18							 	
Chlorophylla … 1 mg/m3 1 <1	Vanadium	7440-62-2	0.5	µg/L	1.0	1.1	 	
Volume 0.01 L 1 1	EP008: Chlorophyll a							
Volume Extract0.01mL1010Ultra-Trace NutrientsAmmonia as N7664-41-70.005mg/L0.0090.009Nitrite as N0.002mg/L<0.002<0.002^ Nitrate as N14797-5580.002mg/L0.006Nitrite + Nitrate as N0.002mg/L0.0060.006^ Total Kjeldahl Nitrogen as N0.05mg/L0.140.17Total Nitrogen as N0.05mg/L0.150.18	Chlorophyll a			mg/m3	1	<1	 	
Ultra-Trace Nutrients Ultra-Trace Nutrients Ammonia as N 7664-41-7 0.005 mg/L 0.009 0.009							 	
Ammonia as N 7664-47 0.005 mg/L 0.009 <	Volume Extract		0.01	mL	10	10	 	
Nitrite as N 0.002 mg/L <0.002	Ultra-Trace Nutrients							
^ Nitrate as N 14797-55-8 0.002 mg/L 0.006 0.006 Nitrite + Nitrate as N 0.002 mg/L 0.006 0.006 ^ Total Kjeldahl Nitrogen as N 0.05 mg/L 0.14 0.17 Total Nitrogen as N 0.05 mg/L 0.15 0.18	Ammonia as N	7664-41-7		-			 	
Nitrite + Nitrate as N 0.002 mg/L 0.006 0.006 <t< th=""><th></th><th></th><th></th><th>-</th><th></th><th></th><th> </th><th></th></t<>				-			 	
^ Total Kjeldahl Nitrogen as N 0.05 mg/L 0.14 0.17		14797-55-8		-			 	
Total Nitrogen as N 0.05 mg/L 0.15 0.18				-			 	
				-			 	
Reactive Phosphorus as P 0.001 mg/L 0.005 0.006				-				
	Reactive Phosphorus as P		0.001	mg/L	0.005	0.006	 	

Sub-Matrix: MARINE WATER	Client sample ID		G-WQ-09	QA01	 		
	Client sampling date / time			28-JUL-2009 13:00	28-JUL-2009 13:00	 	
Compound	CAS Number	LOR	Unit	ES0911109-006	ES0911109-007	 	
Ultra-Trace Nutrients - Continued							
Total Phosphorus as P		0.005	mg/L	<0.005	<0.005	 	

Environmental Division


QUALITY CONTROL REPORT

Work Order	: ES0911109	Page	: 1 of 7
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR ADRIAN WHITE	Contact	: Charlie Pierce
Address	: P O BOX 373	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	GLADSTONE QLD, AUSTRALIA 4680		
E-mail	: adrian.a.white@ghd.com.au	E-mail	: charlie.pierce@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-2-8784 8555
Facsimile	: +61 07 4972 6236	Facsimile	: +61-2-8784 8500
Project	: 4215386 41 WESTERN BASIN EIS WQ MONITORING	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 29-JUL-2009
Sampler	: AW	Issue Date	: 05-AUG-2009
Order number	:		
		No. of samples received	: 7
Quote number	: BN/314/09	No. of samples analysed	: 7

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
EA005: pH (QC Lot:	: 1053674)								
ES0911109-001	G-WQ-01	EA005: pH Value		0.01	pH Unit	8.06	8.07	0.1	0% - 20%
ES0911113-001	Anonymous	EA005: pH Value		0.01	pH Unit	12.9	13.0	0.2	0% - 20%
EA010P: Conductivi	ity by PC Titrator (QC I	Lot: 1054445)							
ES0911097-003	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	50500	50700	0.4	0% - 20%
ES0911109-003	G-WQ-05	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	51200	51300	0.2	0% - 20%
EA015: Total Dissol	ved Solids (QC Lot: 10)54826)							
ES0911085-001	Anonymous	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	372	316	16.3	0% - 20%
ES0911109-004	G-WQ-06	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	42300	43200	2.2	0% - 20%
A025: Suspended	Solids (QC Lot: 10572				_				
ES0911049-001	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	280	280	0.0	0% - 20%
ES0911132-001	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	372	360	3.3	0% - 20%
G035E: Dissolved	Mercury by FIMS (QC I				Ū				
ES0911043-032	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
ES0911109-004	G-WQ-06	EG035F: Mercury	7439-97-6	0.0001	mg/L	< 0.0001	< 0.0001	0.0	No Limit
		by ORC-ICPMS (QC Lot: 1055711)							
ES0911097-001	Anonymous	EG093A-F: Beryllium	7440-41-7	0.1	µg/L	<0.1	<0.1	0.0	No Limit
	, alony mode	EG093A-F: Silver	7440-22-4	0.1	μg/L	<0.1	<0.1	0.0	No Limit
		EG093A-F: Cadmium	7440-43-9	0.2	μg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Cobalt	7440-48-4	0.2	μg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Lead	7439-92-1	0.2	µg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Antimony	7440-36-0	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Arsenic	7440-38-2	0.5	µg/L	1.2	1.1	9.1	No Limit
		EG093A-F: Chromium	7440-47-3	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Manganese	7439-96-5	0.5	μg/L	0.7	0.6	15.0	No Limit
		EG093A-F: Nickel	7440-02-0	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Vanadium	7440-62-2	0.5	μg/L	1.2	0.8	31.7	No Limit
		EG093A-F: Barium	7440-39-3	1	μg/L	8	8	0.0	No Limit
		EG093A-F: Copper	7440-50-8	1	µg/L	<1	<1	0.0	No Limit
		EG093A-F: Aluminium	7429-90-5	10	µg/L	<10	<10	0.0	No Limit
ES0911109-005	G-WQ-08	EG093A-F: Beryllium	7440-41-7	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EG093A-F: Silver	7440-22-4	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EG093A-F: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Cobalt	7440-48-4	0.2	µg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Lead	7439-92-1	0.2	µg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Antimony	7440-36-0	0.5	µg/L	<0.5	<0.5	0.0	No Limit

Page	: 4 of 7
Work Order	: ES0911109
Client	: GHD SERVICES PTY LTD
Project	2 4215386 41 WESTERN BASIN EIS WQ MONITORING

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG093F: Dissolved	Metals in Saline Water b	oy ORC-ICPMS (QC Lot: 1055711) - continued							
ES0911109-005	G-WQ-08	EG093A-F: Arsenic	7440-38-2	0.5	µg/L	1.0	1.0	0.0	No Limit
		EG093A-F: Chromium	7440-47-3	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Manganese	7439-96-5	0.5	μg/L	1.0	1.1	11.0	No Limit
		EG093A-F: Nickel	7440-02-0	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Vanadium	7440-62-2	0.5	µg/L	0.9	1.0	0.0	No Limit
		EG093A-F: Barium	7440-39-3	1	µg/L	9	8	0.0	No Limit
		EG093A-F: Copper	7440-50-8	1	µg/L	<1	<1	0.0	No Limit
		EG093A-F: Aluminium	7429-90-5	10	µg/L	<10	<10	0.0	No Limit
EG093F: Dissolved	Metals in Saline Water b	oy ORC-ICPMS (QC Lot: 1055712)							
ES0911097-001	Anonymous	EG093B-F: Iron	7439-89-6	5	µg/L	<5	<5	0.0	No Limit
ES0911109-005	G-WQ-08	EG093B-F: Iron	7439-89-6	5	µg/L	<5	<5	0.0	No Limit
Ultra-Trace Nutrient	s (QC Lot: 1054041)								
ES0911097-001	Anonymous	EK257A-SW: Nitrite as N		0.002	mg/L	0.002	0.002	0.0	No Limit
ES0911109-005	G-WQ-08	EK257A-SW: Nitrite as N		0.002	mg/L	<0.002	<0.002	0.0	No Limit
Ultra-Trace Nutrient	s (QC Lot: 1054042)								
ES0911097-001	Anonymous	EK255A-SW: Ammonia as N	7664-41-7	0.005	mg/L	0.011	0.012	13.2	No Limit
ES0911109-005	G-WQ-08	EK255A-SW: Ammonia as N	7664-41-7	0.005	mg/L	0.011	0.007	41.8	No Limit
Ultra-Trace Nutrient	s (QC Lot: 1054043)								
ES0911097-001	Anonymous	EK259A-SW: Nitrite + Nitrate as N		0.002	mg/L	0.010	0.010	0.0	No Limit
ES0911109-005	G-WQ-08	EK259A-SW: Nitrite + Nitrate as N		0.002	mg/L	0.005	0.005	0.0	No Limit
Ultra-Trace Nutrient	s (QC Lot: 1054044)								
ES0911097-001	Anonymous	EK271A-SW: Reactive Phosphorus as P		0.001	mg/L	0.006	0.006	0.0	No Limit
ES0911109-005	G-WQ-08	EK271A-SW: Reactive Phosphorus as P		0.001	mg/L	0.006	0.006	0.0	No Limit
Ultra-Trace Nutrient	s (QC Lot: 1054092)								
ES0911097-001	Anonymous	EK262PA-SW: Total Nitrogen as N		0.05	mg/L	0.14	0.16	8.2	No Limit
ES0911109-005	G-WQ-08	EK262PA-SW: Total Nitrogen as N		0.05	mg/L	0.15	0.14	0.0	No Limit
Ultra-Trace Nutrient	s (QC Lot: 1054093)								
ES0911097-001	Anonymous	EK267PA-SW: Total Phosphorus as P		0.005	mg/L	<0.005	<0.005	0.0	No Limit
ES0911109-005	G-WQ-08	EK267PA-SW: Total Phosphorus as P		0.005	mg/L	< 0.005	<0.005	0.0	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA010P: Conductivity by PC Titrator(QCLot: 1054	1445)							
EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	<1	2000 µS/cm	100	86.3	112
EA015: Total Dissolved Solids (QCLot: 1054826)								
EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	<1	293 mg/L	99.6	77.9	122
EA025: Suspended Solids (QCLot: 1057260)								
EA025H: Suspended Solids (SS)		5	mg/L	<5	150 mg/L	104	30	150
EG035F: Dissolved Mercury by FIMS (QCLot: 105	4513)		_		_			
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.010 mg/L	102	86	116
EG093F: Dissolved Metals in Saline Water by ORC	CPMS (OCL of: 105571	1)			-			1
EG093A-F: Aluminium	7429-90-5	10	µg/L	<10	50 µg/L	97.8	80	128
EG093A-F: Antimony	7440-36-0	0.5	μg/L	<0.5				
EG093A-F: Arsenic	7440-38-2	0.5	μg/L	<0.5	10 µg/L	100	85	125
EG093A-F: Barium	7440-39-3	1	µg/L	<1	10 µg/L	106	81	129
G093A-F: Beryllium	7440-41-7	0.1	µg/L	<0.1	10 µg/L	104	80	122
G093A-F: Cadmium	7440-43-9	0.2	µg/L	<0.2	10 µg/L	95.9	78	116
G093A-F: Chromium	7440-47-3	0.5	µg/L	<0.5	10 µg/L	104	86	128
EG093A-F: Cobalt	7440-48-4	0.2	µg/L	<0.2	10 µg/L	105	87	127
EG093A-F: Copper	7440-50-8	1	µg/L	<1	10 µg/L	103	86	124
G093A-F: Lead	7439-92-1	0.2	µg/L	<0.2	10 µg/L	102	87	123
G093A-F: Manganese	7439-96-5	0.5	µg/L	<0.5	10 µg/L	102	90	122
G093A-F: Nickel	7440-02-0	0.5	µg/L	<0.5	10 µg/L	102	84	124
EG093A-F: Silver	7440-22-4	0.1	µg/L	<0.1	1 µg/L	78.1	70	130
G093A-F: Vanadium	7440-62-2	0.5	µg/L	<0.5	10 µg/L	104	85	123
EG093F: Dissolved Metals in Saline Water by ORC	-ICPMS (QCLot: 105571	2)						
G093B-F: Iron	7439-89-6	5	µg/L	<5	50 µg/L	101	89	119
EP008: Chlorophyll a (QCLot: 1053883)								
P008: Chlorophyll a		1	mg/m3		20 mg/m3	95.0	60.3	134
		1	mg/m³	<1				
P008: Volume		0.01	L	0		1		
P008: Volume Extract		0.01	mL	0		10		
Jltra-Trace Nutrients (QCLot: 1054041)								
EK257A-SW: Nitrite as N		0.002	mg/L	<0.002	1.0 mg/L	87.0	70	130
Jltra-Trace Nutrients (QCLot: 1054042)								
K255A-SW: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.1 mg/L	104	70	130

Page	: 6 of 7
Work Order	: ES0911109
Client	: GHD SERVICES PTY LTD
Project	: 4215386 41 WESTERN BASIN EIS WQ MONITORING

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
Ultra-Trace Nutrients (QCLot: 1054043)								
EK259A-SW: Nitrite + Nitrate as N		0.002	mg/L	<0.002	0.1 mg/L	112	70	130
Ultra-Trace Nutrients (QCLot: 1054044)								
EK271A-SW: Reactive Phosphorus as P		0.001	mg/L	<0.001	0.1 mg/L	103	70	130
Ultra-Trace Nutrients (QCLot: 1054092)								
EK262PA-SW: Total Nitrogen as N		0.05	mg/L	<0.05	1.0 mg/L	94.9	70	130
Ultra-Trace Nutrients (QCLot: 1054093)								
EK267PA-SW: Total Phosphorus as P		0.005	mg/L	<0.005	0.44 mg/L	87.3	70	130

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: WATER					Matrix Spike (MS) Repo	ort	
			-	Spike	Spike Recovery (%)	Recovery	Limits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G035F: Dissolved	Mercury by FIMS (QCLot: 1054	513)					
ES0911043-032	Anonymous	EG035F: Mercury	7439-97-6	0.0100 mg/L	108	70	130
EG093F: Dissolved	Metals in Saline Water by ORC-	ICPMS (QCLot: 1055711)					
ES0911097-001	Anonymous	EG093A-F: Arsenic	7440-38-2	50 μg/L	119	70	130
		EG093A-F: Barium	7440-39-3	50 µg/L	118	70	130
		EG093A-F: Beryllium	7440-41-7	50 µg/L	110	70	130
		EG093A-F: Cadmium	7440-43-9	12.5 µg/L	107	70	130
		EG093A-F: Chromium	7440-47-3	50 µg/L	120	70	130
		EG093A-F: Cobalt	7440-48-4	50 µg/L	121	70	130
		EG093A-F: Copper	7440-50-8	50 µg/L	121	70	130
		EG093A-F: Lead	7439-92-1	50 µg/L	109	70	130
		EG093A-F: Manganese	7439-96-5	50 µg/L	116	70	130
		EG093A-F: Nickel	7440-02-0	50 µg/L	121	70	130
		EG093A-F: Vanadium	7440-62-2	50 μg/L	118	70	130
Iltra-Trace Nutrient	ts (QCLot: 1054041)						
ES0911097-001	Anonymous	EK257A-SW: Nitrite as N		0.1 mg/L	72.7	70	130
Itra-Trace Nutrient	ts (QCLot: 1054042)				· · · · · · · · · · · · · · · · · · ·		
ES0911097-001	Anonymous	EK255A-SW: Ammonia as N	7664-41-7	0.1 mg/L	71.3	70.	130
Iltra-Trace Nutrient	ts (QCLot: 1054043)						
ES0911097-001	Anonymous	EK259A-SW: Nitrite + Nitrate as N		0.1 mg/L	71.6	70	130
Iltra-Trace Nutrient	ts (QCLot: 1054044)						
ES0911097-001	Anonymous	EK271A-SW: Reactive Phosphorus as P		0.1 mg/L	73.4	70	130
Iltra-Trace Nutrient	ts (QCLot: 1054092)						
ES0911097-001	Anonymous	EK262PA-SW: Total Nitrogen as N		0.5 mg/L	101	70	130
Itra-Trace Nutrient	ts (QCLot: 1054093)						
ES0911097-001	Anonymous	EK267PA-SW: Total Phosphorus as P		0.5 mg/L	90.1	70	130
			I	-			/

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order	ES0911109	Page	: 1 of 8
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR ADRIAN WHITE	Contact	: Charlie Pierce
Address	: P O BOX 373	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	GLADSTONE QLD, AUSTRALIA 4680		
E-mail	: adrian.a.white@ghd.com.au	E-mail	: charlie.pierce@alsenviro.com
Telephone	: +61 07 49731611	Telephone	: +61-2-8784 8555
Facsimile	: +61 07 4972 6236	Facsimile	: +61-2-8784 8500
Project	: 4215386 41 WESTERN BASIN EIS WQ MONITORING	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 29-JUL-2009
Sampler	: AW	Issue Date	: 05-AUG-2009
Order number	:		
		No. of samples received	: 7
Quote number	: BN/314/09	No. of samples analysed	: 7

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Environmental Division Sydney Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: WATER					Evaluation	× = Holding time	breach ; ✓ = Withir	holding time.
Method		Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005: pH								
Clear Plastic Bottle - Natural								
G-WQ-01,	G-WQ-02,	28-JUL-2009				29-JUL-2009	28-JUL-2009	5
G-WQ-05,	G-WQ-06,							
G-WQ-08,	G-WQ-09,							
QA01								
EA010P: Conductivity by PC Titrator								
Clear Plastic Bottle - Natural								
G-WQ-01,	G-WQ-02,	28-JUL-2009				30-JUL-2009	25-AUG-2009	✓
G-WQ-05,	G-WQ-06,							
G-WQ-08,	G-WQ-09,							
QA01								
EA015: Total Dissolved Solids								
Clear Plastic Bottle - Natural								
G-WQ-01,	G-WQ-02,	28-JUL-2009				30-JUL-2009	04-AUG-2009	 ✓
G-WQ-05,	G-WQ-06,							
G-WQ-08,	G-WQ-09,							
QA01								
EA025: Suspended Solids								
Clear Plastic Bottle - Natural								
G-WQ-01,	G-WQ-02,	28-JUL-2009				03-AUG-2009	04-AUG-2009	 ✓
G-WQ-05,	G-WQ-06,							
G-WQ-08,	G-WQ-09,							
QA01								
EG035F: Dissolved Mercury by FIMS								
Clear HDPE (U-T ORC) - Filtered; Lab-acidified								
G-WQ-01,	G-WQ-02,	28-JUL-2009				31-JUL-2009	25-AUG-2009	✓
G-WQ-05,	G-WQ-06,							
G-WQ-08,	G-WQ-09,							
QA01								

Page	: 3 of 8
Work Order	: ES0911109
Client	: GHD SERVICES PTY LTD
Project	: 4215386 41 WESTERN BASIN EIS WQ MONITORING

Matrix: WATER					Evaluation	× = Holding time	breach ; 🗸 = Withir	holding time
Method		Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted Due for extraction		Evaluation	Date analysed	Due for analysis	Evaluation
EG093F: Dissolved Metals in Saline Wate	r by ORC-ICPMS							
Clear HDPE (U-T ORC) - Filtered; Lab-ac	idified							
G-WQ-01,	G-WQ-02,	28-JUL-2009	31-JUL-2009	24-JAN-2010	✓	31-JUL-2009	24-JAN-2010	✓
G-WQ-05,	G-WQ-06,							
G-WQ-08,	G-WQ-09,							
QA01								
EP008: Chlorophyll a								
White Plastic Bottle - Unpreserved								
G-WQ-01,	G-WQ-02,	28-JUL-2009				29-JUL-2009	30-JUL-2009	✓
G-WQ-05,	G-WQ-06,							
G-WQ-08,	G-WQ-09,							
QA01								
Ultra-Trace Nutrients								
Clear Plastic Bottle - Filtered (AS)								
G-WQ-01,	G-WQ-02,	28-JUL-2009				29-JUL-2009	29-JUL-2009	✓
G-WQ-05,	G-WQ-06,							
G-WQ-08,	G-WQ-09,							
QA01								
Clear Plastic Bottle - Natural (AS)								
G-WQ-01,	G-WQ-02,	28-JUL-2009	29-JUL-2009	29-JUL-2009	✓	29-JUL-2009	29-JUL-2009	1
G-WQ-05,	G-WQ-06,							
G-WQ-08,	G-WQ-09,							
QA01								

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		Count			Rate (%)		Quality Control Specification	
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation		
_aboratory Duplicates (DUP)								
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Conductivity by PC Titrator	EA010-P	2	15	13.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Dissolved Mercury by FIMS	EG035F	2	14	14.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
ЪН	EA005	2	14	14.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Suspended Solids (High Level)	EA025H	2	17	11.8	9.5	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Dissolved Solids	EA015	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
_aboratory Control Samples (LCS)								
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	13	7.7	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Chlorophyll a	EP008	1	13	7.7	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Conductivity by PC Titrator	EA010-P	1	15	6.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Dissolved Mercury by FIMS	EG035F	1	14	7.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Suspended Solids (High Level)	EA025H	1	17	5.9	4.8	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Dissolved Solids	EA015	1	20	5.0	5.0	 ✓ 	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	13	7.7	10.0	x	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	13	7.7	10.0	×	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Method Blanks (MB)								
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	13	7.7	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Chlorophyll a	EP008	1	13	7.7	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Conductivity by PC Titrator	EA010-P	1	15	6.7	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Dissolved Mercury by FIMS	EG035F	1	14	7.1	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	1	13	7.7	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	1	13	7.7	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	1	13	7.7	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement	

Matrix: WATER				Evaluation	n: × = Quality Co	ntrol frequency r	not within specification ; \checkmark = Quality Control frequency within specifica
Quality Control Sample Type			Count		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC Reaular		Actual	Actual Expected		
Method Blanks (MB) - Continued							
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Suspended Solids (High Level)	EA025H	1	17	5.9	4.8	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids	EA015	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	13	7.7	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	13	7.7	5.0	✓	ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	14	7.1	5.0	✓	ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	1	13	7.7	5.0	✓	ALS QCS3 requirement
Vitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	1	13	7.7	5.0	✓	ALS QCS3 requirement
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	13	7.7	5.0	✓	ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	13	7.7	5.0	✓	ALS QCS3 requirement
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	13	7.7	5.0	✓	ALS QCS3 requirement
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	13	7.7	5.0	1	ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
рН	EA005	WATER	APHA 21st ed. 4500 H+ B. pH of water samples is determined by ISE either manually or by automated pH meter. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Conductivity by PC Titrator	EA010-P	WATER	APHA 21st ed., 2510 B This procedure determines conductivity by automated ISE. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Dissolved Solids	EA015	WATER	APHA 21st ed., 2540C A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Suspended Solids (High Level)	EA025H	WATER	APHA 21st ed., 2540D A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Mercury by FIMS	EG035F	WATER	AS 3550, APHA 21st ed. 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	WATER	APHA 21st ed., 3125; USEPA SW846 - 6020 Samples are 0.45 um filtered prior to analysis. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	WATER	APHA 21st ed., 3125; USEPA SW846 - 6020 Samples are 0.45 um filtered prior to analysis. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	WATER	APHA 21st ed., 4500-NH3 H Ammonia is determined by direct colorimetry by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	WATER	APHA 21st ed., 4500-NO2- B. Nitrite is determined by direct colourimetry by FIA.
Nitrate as N - Ultra-Trace in Saline Waters	EK258A-SW	WATER	APHA 21st ed., 4500-NO3- I Nitrate is reduced to nitrite by way of a cadmium reduction column followed by quantification by FIA. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results.
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	WATER	APHA 21st ed., 4500-NO3- I. Combined oxidised Nitrogen (NO2+NO3) is determined by Cadmium Reduction and direct colourimetry by FIA.

Analytical Methods	Method	Matrix	Method Descriptions
TKN (Total N - NOx-N). (FIA - UT) in Saline Waters	EK261PA-SW	WATER	APHA 21st ed., 4500-P J. & 4500-NO3- I. Calculated by difference from total Nitrogen and NOx. Contributing method parameters are determined by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	WATER	APHA 21st ed., 4500-P J. Persulfate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus. As sample is digested with persulfate under alkaline conditions yielding orthophosphate and nitrate. Following digestion, analytes are determined by flow injection analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	WATER	APHA 21st ed., 4500-P J. Persulfate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus. As sample is digested with persulfate under alkaline conditions yielding orthophosphate and nitrate. Following digestion, analytes are determined by flow injection analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	WATER	APHA 21st ed., 4500-P E Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Chlorophyll a	EP008	WATER	In-house (APHA 21st ed., 10200 H mod.) The pigments are extracted into aqueous acetone. The optical density of the extract before and after acidification at both 664 nm and 665 nm is determined spectrometrically.
Preparation Methods	Method	Matrix	Method Descriptions
Persulfate Digestion for UT TN and TP for FIA/Saline	EK262/267PA-SW	WATER	APHA 21st ed., 4500 P - J. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Matrix: WATER

Method	Ex	traction / Preparation		Analysis				
Container / Client Sample ID(s)			Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
					overdue			overdue
EA005: pH								
Clear Plastic Bottle - Natural								
G-WQ-01,	G-WQ-02,					29-JUL-2009	28-JUL-2009	1
G-WQ-05,	G-WQ-06,							
G-WQ-08,	G-WQ-09,							
QA01								

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

Matrix: WATER

Quality Control Sample Type		Count		e (%)	Quality Control Specification
Method	QC	QC Regular Actual Expected		Expected	
Laboratory Control Samples (LCS)					
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	1	13	7.7	10.0	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	1	13	7.7	10.0	NEPM 1999 Schedule B(3) and ALS QCS3 requirement

			Chain of Custoc	ly Number:									
					GHD								
PROJECT ID:	4215386 41	QUOTE:			LABORATO		CHNO						
PROJECT:	Western Basin EIS W		L	· · · ·						*			FOR LAB USE ONLY
LIENT:	GHD		-		COOLER SE	EAL:							COOLER TEMP:
OSTAL ADDRESS:	PO Box 373, Gladstone	9 4680			_	Yes				No			deg.C
ONTACT:	Adrian White					Broken				Intac	21		
HONE:	41203566		07) 49726236		DESPATCH	ED TO:					ronme		
MAIL:			an.A.White@ghd.co									park Ro	ad
NVOICE:	Jason.K.rowier@(gnu.com.au, Auna	an.A.White@ghd.co	m.au					02 8			/ 2164	······································
DATA NEEDED BY:									02.0	7040	5555		
ALA NEEVED DI.		· · · · · · · · · · · · · · · · · · ·				di.	1	T		1			ANALYSIS REQUIRED
REPORT FORMAT:					Ę	- 04) (TP, RP, NH3, NO2	1					E	
					à. A	Ę						est	
EMAIL FORMAT:	ESDAT, EXCEL & PDF				<u>≓</u> 00	ë.						(low	
					metals (EG093F) Cu, Mn, Ni, Pb, V, H	e,						2FF (
COMMENTS/SPECIAL HA	NDLING/STORAGE OR	DISPOSAL:			netal 'u, N	(- F	
						0 -						[
Water samples from	a marine environm	ent (Background	sampling)		0,0	5						des	
					dissolved , Cd, Co, Cr,	nts (800			Ę	Pesticides	
					2 g	itrier		۱ <u>۳</u>			fcti		
(EMAIL ADDRESSE	S PROVIDED ABOV	/E)			trace ORC - As, Ba, Be, I, Ag)	E T	25)	yl a	2	15)	puo	Residue	SAMPLES FROM MARINE
					trace As, Ba	TKA	EAO	d	A00	EAC	U 2	Res	
SAMPLE ID	MATRIX	DATE	DETECTION LIMIT	PRESERVATION	Ultra tr Ultra tr (Sb, As Fe, Al,	Ultra trace nutrients (UTN NO3, TKN, TN)	TSS (EA025)	Chlorophyll a (EP008)	pH (EA005)	TDS (EA015)	Electro Conductivity	Multi	ENVIRONMENT
	WATNA	DAIL	DETECTION LIMIT	FREGERVATION	<u></u>	32		10	<u>⊢</u> °		<u> </u>	2	
G-WQ-01	Water	17/08/2009	LOR	As Required	x	x	x	x	x	x	x	x	NOTE: Two glass amber bottle collected at G-WQ-05, for lab
		11/00/2003	2011	As nequired	^	<u> </u>	<u>⊢</u> ^	<u>†</u> ^−		<u></u>	<u> </u>		
G-WQ-02	241-1	17/00/0000	105										 NO - Configuration Note and Bodgle as soft for the standard line in the second standard second s
	Water	17/08/2009	LOR	As Required	<u> </u>	X	X	X	X				(applied for the field
G-WQ-05	Water	17/08/2009	LOR	As Required	X	X	X	X	X	X	X	<u>x</u>	
G-WQ-08	Water	17/08/2009	LOR	As Required	X	X	X	×	X	X	X	X	Environmental Divisio
G-WQ-09	Water	17/08/2009	LOR	As Required	<u> </u>	X	X	X	X	X	X	X	Sydney
G-WQ-10	Water	17/08/2009	LOR	As Required	X	X	x	x	x	X	x	X	Work Order
G-WQ-11	Water	17/08/2009	LOR	As Required	x	Х	x	X	x	х	x	X	ES0912210
G-WQ-12	Water	17/08/2009	LOR	As Required	x	X	x	x	x	x	x	x	
QA 01	Water	17/08/2009	LOR	As Required	X	X	X			X	-	X	
	Trailel	1			<u> </u>		<u>†</u> ^	<u>†</u> ^	†^	+^	⊢^	†	
	1			1	I	L		L	1		L	.L	
		RELINQUISH											RECEIVED BY:
		DATE: 17/			NAME :	Frant	V						DATE. ICICICION
NAME LEowle					OF:		ALS					····	TIME: 9:30am Telephone : + 61-2-8784 855
NAME : J Fowle OF: GHD Gladstone		TIME:											

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order	: ES09	912210							
Client Contact Address	: MR AI : G P O	SERVICES PTY LTD DRIAN WHITE BOX 668 BANE QLD, AUSTRALIA 4001	Laboratory Contact Address	 Environmental Division Sydney Charlie Pierce 277-289 Woodpark Road Smithfield NSW Australia 2164 					
E-mail Telephone Facsimile	: +61 07	.a.white@ghd.com.au 7 3316 3000 7 3316 3333	E-mail Telephone Facsimile	: charlie.pierce@alsenviro.com : +61-2-8784 8555 : +61-2-8784 8500					
Project		86 41 WESTERN BASIN EIS WQ TORING	Page	: 1 of 3					
Order number	:								
C-O-C number	:		Quote number	: EB2009GHDSER0401 (BN/314/09)					
Site	:								
Sampler	:		QC Level	NEPM 1999 Schedule B(3) and ALS QCS3 requirement					
Dates									
Date Samples Rece	ived	: 18-AUG-2009	Issue Date	25-AUG-2009 08:33					
Client Requested Due Date : C		: 01-SEP-2009	Scheduled Reportin	ig Date 31-AUG-2009					
Delivery Deta	ils								
Mode of Delivery	ode of Delivery : Carrier		Temperature	: 2.4'c - Ice present					
No. of coolers/boxes	ooxes : 2 HARD		No. of samples rece	eived : 9					
Sercurity Seal		: Intact.	No. of samples ana	lysed : 9					

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Breaches in recommended extraction / analysis holding times may occur. Please contact ALS for further information (Nanthini Coilparampil).
- pH analysis should be conducted within 6 hours of sampling.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Nanthini Coilparampil
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (90 days) from date of completion of work order.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process neccessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client. Matrix: WATER			WATER - ЕА005: рН рН	WATER - EA010P Conductivity (PC)	WATER - EA015 Total Dissolved Solids	WATER - EA025H Suspended Solids (High Level)	WATER - EG035F Dissolved Mercury by FIMS	WATER - EG093A-F Dissolved metals in saline water by ORC-ICPMS	WATER - EG093B-F Dissolved Metals in Saline Water Suite B by ORC-ICPMS	WATER - EP008 Chlorophyll a
ID	date / time									
ES0912210-001	[17-AUG-2009]	G-WQ-01	✓	✓	✓	✓	✓	✓	✓	✓
ES0912210-002	[17-AUG-2009]	G-WQ-02	✓	1	✓	✓	1	✓	✓	✓
ES0912210-003	[17-AUG-2009]	G-WQ-05	1	1	1	1	1	✓	1	1
ES0912210-004	[17-AUG-2009]	G-WQ-08	✓	✓	✓	✓	✓	✓	✓	✓
ES0912210-005	[17-AUG-2009]	G-WQ-09	✓	✓	✓	1	✓	✓	✓	✓
ES0912210-006	[17-AUG-2009]	G-WQ-10	√	✓	✓	1	1	1	1	✓
ES0912210-007	[17-AUG-2009]	G-WQ-11	√	✓	✓	1	1	✓	1	✓
ES0912210-008	[17-AUG-2009]	G-WQ-12	√	1	✓	1	1	✓	1	✓
ES0912210-009	[17-AUG-2009]	QA01	1	1	1	1	1	✓	1	1

Matrix: WATER Laboratory sample ID	Client sampling date / time	Client sample ID	WATER - EP215LL Multiresidue Pesticide Screen (Suite 2) - Low Level	WATER - UTN-4 SW Ultratrace NO2, NO3, NH3, Nitrogen, Phosphorus, TKN, Reactive Phosphorus
ES0912210-001	[17-AUG-2009]	G-WQ-01		✓ ✓
ES0912210-002	[17-AUG-2009]	G-WQ-02	✓	✓
ES0912210-003	[17-AUG-2009]	G-WQ-05	✓	1
ES0912210-004	[17-AUG-2009]	G-WQ-08	1	✓
ES0912210-005	[17-AUG-2009]	G-WQ-09	✓	✓
ES0912210-006	[17-AUG-2009]	G-WQ-10	1	✓
ES0912210-007	[17-AUG-2009]	G-WQ-11	✓	✓
ES0912210-008	[17-AUG-2009]	G-WQ-12	1	✓
ES0912210-009	[17-AUG-2009]	QA01	✓	✓

Requested Deliverables

MR ADRIAN WHITE

- *AU Certificate of Analysis - NATA (COA)	Email	adrian.a.white@ghd.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	adrian.a.white@ghd.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	adrian.a.white@ghd.com.au
- A4 - AU Sample Receipt Notification - Environmental (SRN)	Email	adrian.a.white@ghd.com.au
- A4 - AU Tax Invoice (INV)	Email	adrian.a.white@ghd.com.au
- Default - Chain of Custody (COC)	Email	adrian.a.white@ghd.com.au
- EDI Format - ENMRG (ENMRG)	Email	adrian.a.white@ghd.com.au
- EDI Format - ESDAT (ESDAT)	Email	adrian.a.white@ghd.com.au
MR JASON FOWLER		
 *AU Certificate of Analysis - NATA (COA) 	Email	jason.k.fowler@ghd.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	jason.k.fowler@ghd.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	jason.k.fowler@ghd.com.au
- A4 - AU Sample Receipt Notification - Environmental (SRN)	Email	jason.k.fowler@ghd.com.au
- A4 - AU Tax Invoice (INV)	Email	jason.k.fowler@ghd.com.au
- Default - Chain of Custody (COC)	Email	jason.k.fowler@ghd.com.au
- EDI Format - ENMRG (ENMRG)	Email	jason.k.fowler@ghd.com.au
- EDI Format - ESDAT (ESDAT)	Email	jason.k.fowler@ghd.com.au

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order	: ES0912210	Page	: 1 of 6
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR ADRIAN WHITE	Contact	: Charlie Pierce
Address	E P O BOX 373 GLADSTONE QLD, AUSTRALIA 4680	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: adrian.a.white@ghd.com.au	E-mail	: charlie.pierce@alsenviro.com
Telephone	: +61 07 4972 6377	Telephone	: +61-2-8784 8555
Facsimile	: +61 07 4972 6236	Facsimile	: +61-2-8784 8500
Project	: 4215386 41 WESTERN BASIN EIS WQ MONITORING	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 18-AUG-2009
Sampler	:	Issue Date	: 27-AUG-2009
Site	:		
		No. of samples received	: 9
Quote number	: BN/314/09	No. of samples analysed	: 9

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

ΝΑΤΑ	NATA Accredited Laboratory 825	<i>Signatories</i> This document has been electronically carried out in compliance with procedures s	с , , , , , , , , , , , , , , , , , , ,	indicated below. Electronic signing has been				
NAIA	accordance with NATA	Signatories	Accreditation Category					
	accreditation requirements.	Celine Conceicao	Spectroscopist	Inorganics				
	Accredited for compliance with	Hoa Nguyen	Inorganic Chemist	Inorganics				
ACCREDITATION ACCREDITATION ISO/IEC 17025.	Lana Nguyen	LCMS Chemist	Organics					
		Nanthini Coilparampil	Senior Inorganic Chemist	Inorganics				
Equirenment of Division Sudaou								

Environmental Division Sydney Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

- EG093: LCS recovery for various elements falls outside ALS Dynamic Control Limit. However, it is within the acceptance criteria based on ALS DQO. No further action is required.
- EK255A: Spike failed for Ammonia due to matrix interference. Confirmed by re-analysis.

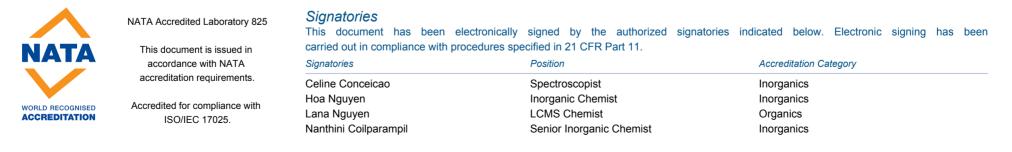
Sub-Matrix: WATER		Clie	ent sample ID	G-WQ-01	G-WQ-02	G-WQ-05	G-WQ-08	G-WQ-09
	CI	ient sampli	ng date / time	[17-AUG-2009]	[17-AUG-2009]	[17-AUG-2009]	[17-AUG-2009]	[17-AUG-2009]
Compound	CAS Number	LOR	Unit	ES0912210-001	ES0912210-002	ES0912210-003	ES0912210-004	ES0912210-005
EA005: pH								
pH Value		0.01	pH Unit	7.93	8.00	8.01	8.00	8.04
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	50000	50000	50100	50400	50000
EA015: Total Dissolved Solids								
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	39700	40100	42800	38700	40800
EA025: Suspended Solids			3					
^ Suspended Solids (SS)		5	mg/L	6	16	8	7	6
EG035F: Dissolved Mercury by FIMS		<u> </u>	<u>9</u> , _	-			•	-
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
-			g/∟	-0.0001	-0.0001	-0.0001	-0.0001	-0.0001
EG093F: Dissolved Metals in Saline V	_	5 10	μg/L	20	E0	<10	<10	140
Aluminium Antimony	7429-90-5	0.5	μg/L μg/L	30 <0.5	50 <0.5	<10	<0.5	140 <0.5
Iron	7440-36-0	5	μg/L μg/L	<5	<5	12	<5	<0.5
Arsenic	7439-89-6	0.5	μg/L	0.8	0.9	0.8	0.8	0.8
Barium	7440-38-2	1	μg/L	8	8	8	8	8
Beryllium	7440-39-3 7440-41-7	0.1	μg/L μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Cadmium	7440-41-7	0.1	μg/L	<0.1	<0.2	<0.2	0.4	<0.1
Chromium	7440-43-9	0.5	μg/L	<0.5	<0.5	<0.2	<0.5	<0.5
Cobalt	7440-47-3	0.2	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Copper	7440-48-4	1	μg/L	<1	<1	<1	<1	<1
Lead	7439-92-1	0.2	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Manganese	7439-96-5	0.5	μg/L	4.5	2.0	3.0	3.0	2.9
Nickel	7440-02-0	0.5	μg/L	0.5	< 0.5	0.7	<0.5	<0.5
Silver	7440-22-4	0.1	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Vanadium	7440-62-2	0.5	μg/L	<0.5	<0.5	<0.5	<0.5	0.6
EP008: Chlorophyll a								
Chlorophyll a		1	mg/m3	1	<1	<1	<1	2
EP215: Multiresidue Pesticide Residu	e Screen (Suite 2)							
Simazine	122-34-9	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Diuron	330-54-1	0.005	μg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Atrazine	1912-24-9	0.005	μg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Molinate	2212-67-1	0.005	μg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Metolachlor	51218-45-2	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Malathion	121-75-5	0.002	µg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Diazinon	333-41-5	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Thiobencarb	28249-77-6	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Chlorpyrifos	2921-88-2	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005

Sub-Matrix: WATER		Clie	ent sample ID	G-WQ-01	G-WQ-02	G-WQ-05	G-WQ-08	G-WQ-09
	Cl	ient sampli	ng date / time	[17-AUG-2009]	[17-AUG-2009]	[17-AUG-2009]	[17-AUG-2009]	[17-AUG-2009]
Compound	CAS Number	LOR	Unit	ES0912210-001	ES0912210-002	ES0912210-003	ES0912210-004	ES0912210-005
EP215: Multiresidue Pesticide Residu	ue Screen (Suite 2) -	Continued						
Trifluralin	1582-09-8	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Ultra-Trace Nutrients								
Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.014	<0.005	<0.005	<0.005
Nitrite as N		0.002	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002
^ Nitrate as N	14797-55-8	0.002	mg/L	<0.002	0.003	0.003	<0.002	0.003
Nitrite + Nitrate as N		0.002	mg/L	<0.002	0.003	0.003	<0.002	0.003
^ Total Kjeldahl Nitrogen as N		0.05	mg/L	0.06	0.06	0.09	<0.05	<0.05
Total Nitrogen as N		0.05	mg/L	0.06	0.06	0.09	<0.05	<0.05
Reactive Phosphorus as P		0.001	mg/L	<0.001	<0.001	0.001	<0.001	<0.001
Total Phosphorus as P		0.005	mg/L	0.010	0.008	0.010	0.010	0.010

Sub-Matrix: WATER		Clie	ent sample ID	G-WQ-10	G-WQ-11	G-WQ-12	QA01	
	Cl		ng date / time	[17-AUG-2009]	[17-AUG-2009]	[17-AUG-2009]	[17-AUG-2009]	
		LOR	Unit	ES0912210-006	ES0912210-007	ES0912210-008	ES0912210-009	
Compound	CAS Number	LOR	Unit	200312210-000	200312210-001	200312210-000	200312210-003	
EA005: pH								
pH Value		0.01	pH Unit	8.08	8.13	8.15	8.07	
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	51000	50400	50000	50900	
EA015: Total Dissolved Solids								
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	38600	39000	40000	39500	
EA025: Suspended Solids								
^ Suspended Solids (SS)		5	mg/L	32	7	8	14	
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	
EG093F: Dissolved Metals in Saline Wat								
Aluminium	7429-90-5	10	µg/L	<10	10	80	70	
Antimony	7440-36-0	0.5	μg/L	<0.5	<0.5	<0.5	<0.5	
Iron	7439-89-6	5	μg/L	<5	<5	<5	<5	
Arsenic	7440-38-2	0.5	µg/L	1.1	0.9	0.8	0.9	
Barium	7440-39-3	1	µg/L	8	7	7	9	
Beryllium	7440-41-7	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	
Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	
Chromium	7440-47-3	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	
Cobalt	7440-48-4	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	
Copper	7440-50-8	1	µg/L	<1	<1	<1	<1	
Lead	7439-92-1	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	
Manganese	7439-96-5	0.5	µg/L	8.2	1.7	1.5	4.6	
Nickel	7440-02-0	0.5	µg/L	<0.5	<0.5	<0.5	0.5	
Silver	7440-22-4	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	
Vanadium	7440-62-2	0.5	µg/L	0.6	0.8	1.0	0.6	
EP008: Chlorophyll a								
Chlorophyll a		1	mg/m3	1	1	<1	2	
EP215: Multiresidue Pesticide Residue S	Screen (Suite 2)							
Simazine	122-34-9	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	
Diuron	330-54-1	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	
Atrazine	1912-24-9	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	
Molinate	2212-67-1	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	
Metolachlor	51218-45-2	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	
Malathion	121-75-5	0.002	µg/L	<0.002	<0.002	<0.002	<0.002	
Diazinon	333-41-5	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	
Thiobencarb	28249-77-6	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	
Chlorpyrifos	2921-88-2	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	

Sub-Matrix: WATER		Clie	ent sample ID	G-WQ-10	G-WQ-11	G-WQ-12	QA01	
	Cl	ient samplii	ng date / time	[17-AUG-2009]	[17-AUG-2009]	[17-AUG-2009]	[17-AUG-2009]	
Compound	CAS Number	LOR	Unit	ES0912210-006	ES0912210-007	ES0912210-008	ES0912210-009	
EP215: Multiresidue Pesticide Residu	e Screen (Suite 2) -	Continued						
Trifluralin	1582-09-8	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	
Ultra-Trace Nutrients								
Ammonia as N	7664-41-7	0.005	mg/L	<0.005	<0.005	<0.005	0.009	
Nitrite as N		0.002	mg/L	<0.002	<0.002	<0.002	<0.002	
^ Nitrate as N	14797-55-8	0.002	mg/L	<0.002	0.005	<0.002	<0.002	
Nitrite + Nitrate as N		0.002	mg/L	<0.002	0.005	<0.002	<0.002	
^ Total Kjeldahl Nitrogen as N		0.05	mg/L	0.05	<0.05	<0.05	0.05	
Total Nitrogen as N		0.05	mg/L	0.05	<0.05	<0.05	0.05	
Reactive Phosphorus as P		0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Total Phosphorus as P		0.005	mg/L	0.014	0.009	0.010	0.012	

Environmental Division


QUALITY CONTROL REPORT

Work Order	ES0912210	Page	: 1 of 8
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR ADRIAN WHITE	Contact	: Charlie Pierce
Address	: P O BOX 373	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	GLADSTONE QLD, AUSTRALIA 4680		
E-mail	: adrian.a.white@ghd.com.au	E-mail	: charlie.pierce@alsenviro.com
Telephone	: +61 07 4972 6377	Telephone	: +61-2-8784 8555
Facsimile	: +61 07 4972 6236	Facsimile	: +61-2-8784 8500
Project	: 4215386 41 WESTERN BASIN EIS WQ MONITORING	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 18-AUG-2009
Sampler	:	Issue Date	: 27-AUG-2009
Order number	:		
		No. of samples received	: 9
Quote number	: BN/314/09	No. of samples analysed	: 9

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

ub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
A005: pH (QC Lot	: 1072214)								
ES0912210-001	G-WQ-01	EA005: pH Value		0.01	pH Unit	7.93	7.92	0.1	0% - 20%
S0912222-001	Anonymous	EA005: pH Value		0.01	pH Unit	8.46	8.47	0.1	0% - 20%
A010P: Conductivi	ity by PC Titrator (QC I	Lot: 1073141)							
ES0912069-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	4780	4790	0.2	0% - 20%
S0912210-005	G-WQ-09	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	50000	50000	0.02	0% - 20%
A015: Total Dissol	ved Solids (QC Lot: 10)75531)							
ES0912210-001	G-WQ-01	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	39700	39800	0.1	0% - 20%
S0912215-001	Anonymous	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	1790	1750	2.3	0% - 20%
A025: Suspended	Solids (QC Lot: 10737)	07)							
ES0912031-001	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	480	468	2.5	0% - 20%
ES0912210-002	G-WQ-02	EA025H: Suspended Solids (SS)		5	mg/L	16	<5	102	No Limit
G035E: Dissolved	Mercury by FIMS (QC				0				
S0912210-003	G-WQ-05	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
G092E: Dissolved		by ORC-ICPMS (QC Lot: 1077326)							
M0907702-001	Anonymous	EG093A-F: Beryllium	7440-41-7	0.1	µg/L	<0.1	<0.1	0.0	No Limit
	7 thonymous	EG093A-F: Silver	7440-22-4	0.1	μg/L	<0.1	<0.1	0.0	No Limit
		EG093A-F: Silver EG093A-F: Cadmium	7440-43-9	0.1	μg/L	1.0	1.0	0.0	No Limit
		EG093A-F: Cobalt	7440-48-4	0.2	μg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Cobait EG093A-F: Lead	7439-92-1	0.2	μg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Antimony	7440-36-0	0.5	μg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Antimony EG093A-F: Arsenic	7440-38-2	0.5	μg/L	1.3	1.3	0.0	No Limit
		EG093A-F: Chromium	7440-47-3	0.5	μg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Manganese	7439-96-5	0.5	µg/L	1.4	1.5	0.0	No Limit
		EG093A-F: Nickel	7440-02-0	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Vanadium	7440-62-2	0.5	µg/L	1.3	0.8	50.6	No Limit
		EG093A-F: Barium	7440-39-3	1	µg/L	11	11	0.0	0% - 50%
		EG093A-F: Copper	7440-50-8	1	µg/L	<1	<1	0.0	No Limit
		EG093A-F: Aluminium	7429-90-5	10	µg/L	30	30	0.0	No Limit
S0912210-006	G-WQ-10	EG093A-F: Beryllium	7440-41-7	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EG093A-F: Silver	7440-22-4	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EG093A-F: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Cobalt	7440-48-4	0.2	µg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Lead	7439-92-1	0.2	µg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Antimony	7440-36-0	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Arsenic	7440-38-2	0.5	µg/L	1.1	0.9	17.8	No Limit

Page	: 4 of 8
Work Order	: ES0912210
Client	: GHD SERVICES PTY LTD
Project	2 4215386 41 WESTERN BASIN EIS WQ MONITORING

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EG093F: Dissolved	Metals in Saline Water	by ORC-ICPMS (QC Lot: 1077326) - continued								
ES0912210-006	G-WQ-10	EG093A-F: Chromium	7440-47-3	0.5	µg/L	<0.5	<0.5	0.0	No Limit	
		EG093A-F: Manganese	7439-96-5	0.5	µg/L	8.2	8.3	2.1	0% - 50%	
		EG093A-F: Nickel	7440-02-0	0.5	µg/L	<0.5	<0.5	0.0	No Limit	
		EG093A-F: Vanadium	7440-62-2	0.5	µg/L	0.6	0.6	0.0	No Limit	
		EG093A-F: Barium	7440-39-3	1	µg/L	8	8	0.0	No Limit	
		EG093A-F: Copper	7440-50-8	1	µg/L	<1	<1	0.0	No Limit	
		EG093A-F: Aluminium	7429-90-5	10	μg/L	<10	<10	0.0	No Limit	
EG093F: Dissolved	Metals in Saline Water	by ORC-ICPMS (QC Lot: 1077327)								
EM0907702-001	Anonymous	EG093B-F: Iron	7439-89-6	5	µg/L	<5	<5	0.0	No Limit	
ES0912210-006	G-WQ-10	EG093B-F: Iron	7439-89-6	5	μg/L	<5	<5	0.0	No Limit	
EP215: Multiresidue	e Pesticide Residue Sci	reen (Suite 2) (QC Lot: 1077505)								
ES0912396-002	Anonymous	EP215-LL: Malathion	121-75-5	0.002	µg/L	<0.002	<0.002	0.0	No Limit	
		EP215-LL: Simazine	122-34-9	0.005	µg/L	<0.005	<0.005	0.0	No Limit	
		EP215-LL: Diuron	330-54-1	0.005	µg/L	<0.005	<0.005	0.0	No Limit	
		EP215-LL: Atrazine	1912-24-9	0.005	μg/L	<0.005	<0.005	0.0	No Limit	
		EP215-LL: Molinate	2212-67-1	0.005	μg/L	<0.005	<0.005	0.0	No Limit	
		EP215-LL: Metolachlor	51218-45-2	0.005	μg/L	<0.005	<0.005	0.0	No Limit	
		EP215-LL: Diazinon	333-41-5	0.005	µg/L	<0.005	<0.005	0.0	No Limit	
		EP215-LL: Thiobencarb	28249-77-6	0.005	µg/L	<0.005	<0.005	0.0	No Limit	
		EP215-LL: Chlorpyrifos	2921-88-2	0.005	µg/L	<0.005	<0.005	0.0	No Limit	
		EP215-LL: Trifluralin	1582-09-8	0.005	μg/L	<0.005	<0.005	0.0	No Limit	
Ultra-Trace Nutrient	ts (QC Lot: 1072152)									
ES0912210-005	G-WQ-09	EK257A-SW: Nitrite as N		0.002	mg/L	<0.002	<0.002	0.0	No Limit	
Ultra-Trace Nutrient	ts (QC Lot: 1072153)									
ES0912210-005	G-WQ-09	EK255A-SW: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	<0.005	0.0	No Limit	
Ultra-Trace Nutrient	ts (QC Lot: 1072154)									
ES0912210-005	G-WQ-09	EK259A-SW: Nitrite + Nitrate as N		0.002	mg/L	0.003	0.003	0.0	No Limit	
Ultra-Trace Nutrient	ts (QC Lot: 1072155)									
ES0912210-005	G-WQ-09	EK271A-SW: Reactive Phosphorus as P		0.001	mg/L	<0.001	<0.001	0.0	No Limit	
Ultra-Trace Nutrient	ts (QC Lot: 1072694)				_					
ES0912210-001	G-WQ-01	EK262PA-SW: Total Nitrogen as N		0.05	mg/L	0.06	<0.05	0.0	No Limit	
Illtra-Trace Nutrient	ts (QC Lot: 1072695)				<u> </u>					
ES0912210-001	G-WQ-01	EK267PA-SW: Total Phosphorus as P		0.005	mg/L	0.010	0.010	0.0	No Limit	
200012210 001		LIZO/FA-SVV. TOTAL FILOSPHOLUS AS P		0.000	iiig/L	0.010	0.010	0.0		

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
A010P: Conductivity by PC Titrator (QCLot: 10)73141)								
A010-P: Electrical Conductivity @ 25°C		1	µS/cm	<1	2000 µS/cm	99.7	86.3	112	
A015: Total Dissolved Solids (QCLot: 1075531)								
A015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	<1	293 mg/L	101	77.9	122	
A025: Suspended Solids (QCLot: 1073707)									
A025H: Suspended Solids (SS)		5	mg/L	<5	150 mg/L	103	30	150	
G035F: Dissolved Mercury by FIMS (QCLot: 10)72146)							I	
G035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.010 mg/L	105	86	116	
G093F: Dissolved Metals in Saline Water by OF	RCJCPMS (OCL of: 107732)	3)						1	
G093A-F: Aluminium	7429-90-5	5) 10	µg/L	<10	50 µg/L	116	80	128	
G093A-F: Antimony	7440-36-0	0.5	μg/L	<0.5					
G093A-F: Arsenic	7440-38-2	0.5	μg/L	<0.5	10 µg/L	86.0	85	125	
G093A-F: Barium	7440-39-3	1	μg/L	<1	10 µg/L	86.3	81	129	
G093A-F: Beryllium	7440-41-7	0.1	µg/L	<0.1	10 µg/L	84.0	80	122	
G093A-F: Cadmium	7440-43-9	0.2	µg/L	<0.2	10 µg/L	79.4	78	116	
G093A-F: Chromium	7440-47-3	0.5	µg/L	<0.5	10 µg/L	# 85.9	86	128	
G093A-F: Cobalt	7440-48-4	0.2	µg/L	<0.2	10 µg/L	# 84.4	87	127	
G093A-F: Copper	7440-50-8	1	µg/L	<1	10 µg/L	# 83.4	86	124	
G093A-F: Lead	7439-92-1	0.2	µg/L	<0.2	10 µg/L	# 82.7	87	123	
G093A-F: Manganese	7439-96-5	0.5	µg/L	<0.5	10 µg/L	# 87.6	90	122	
G093A-F: Nickel	7440-02-0	0.5	µg/L	<0.5	10 µg/L	# 82.4	84	124	
G093A-F: Silver	7440-22-4	0.1	µg/L	<0.1					
G093A-F: Vanadium	7440-62-2	0.5	µg/L	<0.5	10 µg/L	# 81.3	85	123	
G093F: Dissolved Metals in Saline Water by OF	RC-ICPMS (QCLot: 107732)	7)							
G093B-F: Iron	7439-89-6	5	µg/L	<5	50 μg/L	# 79.5	89	119	
P008: Chlorophyll a (QCLot: 1072297)									
P008: Chlorophyll a		1	mg/m3		20 mg/m3	100	60.3	134	
		1	mg/m³	<1					
P215: Multiresidue Pesticide Residue Screen (Suite 2) (QCLot: 107 <u>7505)</u>								
P215-LL: Simazine	122-34-9	0.005	µg/L	<0.005	0.0125 µg/L	92.4	65	130	
P215-LL: Diuron	330-54-1	0.005	µg/L	<0.005	0.0125 µg/L	91.8	65	130	
P215-LL: Atrazine	1912-24-9	0.005	µg/L	<0.005	0.0125 µg/L	87.2	65	130	
P215-LL: Molinate	2212-67-1	0.005	µg/L	<0.005	0.0125 µg/L	76.7	65	130	
P215-LL: Metolachlor	51218-45-2	0.005	µg/L	<0.005	0.0125 µg/L	75.2	65	130	

Page	: 6 of 8
Work Order	: ES0912210
Client	: GHD SERVICES PTY LTD
Project	: 4215386 41 WESTERN BASIN EIS WQ MONITORING

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
	Report	Spike	Spike Recovery (%)	Recovery Limits (%)				
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP215: Multiresidue Pesticide Residue Screen (Su	ite 2) (QCLot: 1077505)	- continued						
EP215-LL: Malathion	121-75-5	0.002	µg/L	<0.002	0.0125 µg/L	73.9	65	130
EP215-LL: Diazinon	333-41-5	0.005	µg/L	<0.005	0.0125 µg/L	72.2	65	130
EP215-LL: Thiobencarb	28249-77-6	0.005	µg/L	<0.005	0.0125 µg/L	86.5	65	130
EP215-LL: Chlorpyrifos	2921-88-2	0.005	μg/L	<0.005	0.0125 µg/L	75.1	65	130
EP215-LL: Trifluralin	1582-09-8	0.005	μg/L	<0.005	0.0125 µg/L	82.9	65	130
Ultra-Trace Nutrients (QCLot: 1072152)								
EK257A-SW: Nitrite as N		0.002	mg/L	<0.002	1.0 mg/L	94.3	70	130
Ultra-Trace Nutrients (QCLot: 1072153)								
EK255A-SW: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.1 mg/L	104	74	118
Ultra-Trace Nutrients (QCLot: 1072154)								
EK259A-SW: Nitrite + Nitrate as N		0.002	mg/L	<0.002	0.1 mg/L	113	76	130
Ultra-Trace Nutrients (QCLot: 1072155)								
EK271A-SW: Reactive Phosphorus as P		0.001	mg/L	<0.001	0.1 mg/L	99.2	70	121
Ultra-Trace Nutrients (QCLot: 1072694)								
EK262PA-SW: Total Nitrogen as N		0.05	mg/L	<0.05	1.0 mg/L	89.1	70	110
Ultra-Trace Nutrients (QCLot: 1072695)								
EK267PA-SW: Total Phosphorus as P		0.005	mg/L	<0.005	0.44 mg/L	106	72	122

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: WATER				Matrix Spike (MS) Report						
				Spike	Spike Recovery (%)	Recovery	Limits (%)			
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
EG035F: Dissolved	Mercury by FIMS (QCLot: 1072	146)								
ES0912210-001	G-WQ-01	EG035F: Mercury	7439-97-6	0.0100 mg/L	92.4	70	130			
EG093F: Dissolved	Metals in Saline Water by ORC			-						
EB0912789-002	Anonymous	EG093A-F: Arsenic	7440-38-2	50 μg/L	93.9	70	130			
		EG093A-F: Barium	7440-39-3	50 µg/L	77.4	70	130			
		EG093A-F: Beryllium	7440-41-7	50 µg/L	91.8	70	130			
		EG093A-F: Cadmium	7440-43-9	12.5 µg/L	92.8	70	130			
		EG093A-F: Chromium	7440-47-3	50 µg/L	98.6	70	130			
		EG093A-F: Cobalt	7440-48-4	50 µg/L	98.0	70	130			
	Imple IDClient sample IDMssolved Mercury by FIMS (QCLot: 1072146)E001G-WQ-01Essolved Metals in Saline Water by ORC-ICPMS (QCLot:E002AnonymousE02AnonymousEEENutrients(QCLot: 1072153)005G-WQ-09ENutrients<(QCLot: 1072154)	EG093A-F: Copper	7440-50-8	50 µg/L	92.9	70	130			
		EG093A-F: Lead	7439-92-1	50 µg/L	92.1	70	130			
		EG093A-F: Manganese	7439-96-5	50 µg/L	# Not Determined	70	130			
		EG093A-F: Nickel	7440-02-0	50 µg/L	98.8	70	130			
		EG093A-F: Vanadium	7440-62-2	50 µg/L	93.6	70	130			
EP215: Multiresidue	Pesticide Residue Screen (Sui	ite 2) (QCLot: 1077505)								
ES0912210-003	S0912210-003 G-WQ-05	EP215-LL: Simazine	122-34-9	0.0125 µg/L	83.9	65	130			
		EP215-LL: Diuron	330-54-1	0.0125 µg/L	108	65	130			
		EP215-LL: Atrazine	1912-24-9	0.0125 µg/L	93.7	65	130			
		EP215-LL: Molinate	2212-67-1	0.0125 μg/L	75.8	65	130			
		EP215-LL: Metolachlor	51218-45-2	0.0125 µg/L	108	65	130			
		EP215-LL: Malathion	121-75-5	0.0125 µg/L	78.9	65	130			
		EP215-LL: Diazinon	333-41-5	0.0125 μg/L	87.3	65	130			
		EP215-LL: Thiobencarb	28249-77-6	0.0125 μg/L	72.7	65	130			
		EP215-LL: Chlorpyrifos	2921-88-2	0.0125 μg/L	90.6	65	130			
		EP215-LL: Trifluralin	1582-09-8	0.0125 μg/L	72.9	65	130			
Ultra-Trace Nutrient	s (QCLot: 1072152)									
ES0912210-005		EK257A-SW: Nitrite as N		0.1 mg/L	77.3	70	130			
Ultra-Trace Nutrient	s (QCLot: 1072153)									
ES0912210-005		EK255A-SW: Ammonia as N	7664-41-7	0.1 mg/L	# 65.8	70.	130			
Ultra-Trace Nutrient	s (QCLot: 1072154)									
ES0912210-005		EK259A-SW: Nitrite + Nitrate as N		0.1 mg/L	73.5	70	130			
Illtra Trace Nutrient						-				
ES0912210-005	s (QCLot: 1072155) G-WQ-09			0.1 mg/L	70.7	70	130			
		EK271A-SW: Reactive Phosphorus as P		0.1 mg/∟	10.1	70	130			
	rs (QCLot: 1072694)									
ES0912210-001	G-WQ-01	EK262PA-SW: Total Nitrogen as N		0.5 mg/L	88.4	70	130			

Page	: 8 of 8
Work Order	: ES0912210
Client	: GHD SERVICES PTY LTD
Project	: 4215386 41 WESTERN BASIN EIS WQ MONITORING

Sub-Matrix: WATER					Matrix Spike (MS) Repo	ort	
				Spike	Spike Recovery (%)	Recovery	Limits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
Ultra-Trace Nutrients	G (QCLot: 1072695)						
ES0912210-001	G-WQ-01	EK267PA-SW: Total Phosphorus as P		0.5 mg/L	102	70	130

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order	: ES0912210	Page	: 1 of 9
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR ADRIAN WHITE	Contact	: Charlie Pierce
Address	: P O BOX 373 GLADSTONE QLD, AUSTRALIA 4680	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: adrian.a.white@ghd.com.au	E-mail	: charlie.pierce@alsenviro.com
Telephone	: +61 07 4972 6377	Telephone	: +61-2-8784 8555
Facsimile	: +61 07 4972 6236	Facsimile	: +61-2-8784 8500
Project	: 4215386 41 WESTERN BASIN EIS WQ MONITORING	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 18-AUG-2009
Sampler	:	Issue Date	: 27-AUG-2009
Order number	:		
		No. of samples received	: 9
Quote number	: BN/314/09	No. of samples analysed	: 9

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Environmental Division Sydney Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: WATER					Evaluation	× = Holding time	breach ; ✓ = Withir	holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005: pH								
Clear Plastic Bottle - Natural								
G-WQ-01,	G-WQ-02,	17-AUG-2009				18-AUG-2009	17-AUG-2009	
G-WQ-05,	G-WQ-08,							
G-WQ-09,	G-WQ-10,							
G-WQ-11,	G-WQ-12,							
QA01								
EA010P: Conductivity by PC Titrator								
Clear Plastic Bottle - Natural								
G-WQ-01,	G-WQ-02,	17-AUG-2009				19-AUG-2009	14-SEP-2009	✓
G-WQ-05,	G-WQ-08,							
G-WQ-09,	G-WQ-10,							
G-WQ-11,	G-WQ-12,							
QA01								
EA015: Total Dissolved Solids								
Clear Plastic Bottle - Natural								
G-WQ-01,	G-WQ-02,	17-AUG-2009				21-AUG-2009	24-AUG-2009	✓
G-WQ-05,	G-WQ-08,							
G-WQ-09,	G-WQ-10,							
G-WQ-11,	G-WQ-12,							
QA01								
EA025: Suspended Solids								
Clear Plastic Bottle - Natural								
G-WQ-01,	G-WQ-02,	17-AUG-2009				19-AUG-2009	24-AUG-2009	\checkmark
G-WQ-05,	G-WQ-08,							
G-WQ-09,	G-WQ-10,							
G-WQ-11,	G-WQ-12,							
QA01								

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Within	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG035F: Dissolved Mercury by FIMS								
Clear HDPE (U-T ORC) - UHP Nitric								
G-WQ-01,	G-WQ-02,	17-AUG-2009				19-AUG-2009	14-SEP-2009	 ✓
G-WQ-05,	G-WQ-08,							
G-WQ-09,	G-WQ-10,							
G-WQ-11,	G-WQ-12,							
QA01								
EG093F: Dissolved Metals in Saline V	Nater by ORC-ICPMS							
Clear HDPE (U-T ORC) - UHP Nitric								
G-WQ-01,	G-WQ-02,	17-AUG-2009	24-AUG-2009	13-FEB-2010	1	24-AUG-2009	13-FEB-2010	✓
G-WQ-05,	G-WQ-08,				-			
G-WQ-09,	G-WQ-10,							
G-WQ-11,	G-WQ-12,							
QA01	,							
EP008: Chlorophyll a								
White Plastic Bottle - Unpreserved								
G-WQ-01,	G-WQ-02,	17-AUG-2009				18-AUG-2009	19-AUG-2009	✓
G-WQ-05,	G-WQ-08,							
G-WQ-09,	G-WQ-10,							
G-WQ-11,	G-WQ-12,							
QA01								
EP215: Multiresidue Pesticide Residu	ue Screen (Suite 2)							
Amber Glass Bottle - Unpreserved								
G-WQ-01,	G-WQ-02,	17-AUG-2009	19-AUG-2009	24-AUG-2009	1	19-AUG-2009	28-SEP-2009	 ✓
G-WQ-05,	G-WQ-08,							
G-WQ-09,	G-WQ-10,							
G-WQ-11,	G-WQ-12,							
QA01								
Ultra-Trace Nutrients								
Clear Plastic - Natural - for UT Nut.								
G-WQ-01,	G-WQ-02,	17-AUG-2009				18-AUG-2009	18-AUG-2009	1
G-WQ-05,	G-WQ-08,							
G-WQ-09,	G-WQ-10,							
G-WQ-11,	G-WQ-12,							
QA01	·· ,							
Clear Plastic Bottle - Natural								
G-WQ-01,	G-WQ-02,	17-AUG-2009	18-AUG-2009	18-AUG-2009	✓	18-AUG-2009	18-AUG-2009	 ✓
G-WQ-05,	G-WQ-08,				, i i i i i i i i i i i i i i i i i i i			
G-WQ-09,	G-WQ-10,							
G-WQ-11,	G-WQ-12,							
QA01								

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		Count		Rate (%)			Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	9	11.1	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	2	15	13.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	9	11.1	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	2	14	14.3	10.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	2	12	16.7	10.0	 ✓ 	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Multiresidue Pesticide Screen (No. 2)	EP215-LL	1	20	5.0	10.0	×	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	1	9	11.1	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Vitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	9	11.1	10.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Н	EA005	2	20	10.0	10.0	 ✓ 	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	9	11.1	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Suspended Solids (High Level)	EA025H	2	21	9.5	9.5	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids	EA015	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	9	11.1	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	9	11.1	10.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
_aboratory Control Samples (LCS)							
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	9	11.1	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chlorophyll a	EP008	1	9	11.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	1	15	6.7	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	9	11.1	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	1	14	7.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	1	12	8.3	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Multiresidue Pesticide Screen (No. 2)	EP215-LL	1	20	5.0	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	1	9	11.1	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	9	11.1	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	9	11.1	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Suspended Solids (High Level)	EA025H	1	21	4.8	4.8	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fotal Dissolved Solids	EA015	1	20	5.0	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	9	11.1	10.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	9	11.1	10.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	9	11.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chlorophyll a	EP008	1	9	11.1	5.0	✓ ✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	1	15	6.7	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	9	11.1	5.0	 ✓ 	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	1	14	7.1	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Matrix: WATER				Evaluation	n: × = Quality Cor	ntrol frequency r	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Count			Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	1	12	8.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Multiresidue Pesticide Screen (No. 2)	EP215-LL	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	1	9	11.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	9	11.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	9	11.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Suspended Solids (High Level)	EA025H	1	21	4.8	4.8	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids	EA015	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	9	11.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	9	11.1	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	9	11.1	5.0	✓	ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	9	11.1	5.0	1	ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	1	14	7.1	5.0	✓	ALS QCS3 requirement
Multiresidue Pesticide Screen (No. 2)	EP215-LL	1	20	5.0	5.0	✓	ALS QCS3 requirement
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	1	9	11.1	5.0	1	ALS QCS3 requirement
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	9	11.1	5.0	✓	ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	9	11.1	5.0	✓	ALS QCS3 requirement
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	9	11.1	5.0	1	ALS QCS3 requirement
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	9	11.1	5.0	✓	ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH	EA005	WATER	APHA 21st ed. 4500 H+ B. pH of water samples is determined by ISE either manually or by automated pH meter. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Conductivity by PC Titrator	EA010-P	WATER	APHA 21st ed., 2510 B This procedure determines conductivity by automated ISE. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Dissolved Solids	EA015	WATER	APHA 21st ed., 2540C A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Suspended Solids (High Level)	EA025H	WATER	APHA 21st ed., 2540D A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Mercury by FIMS	EG035F	WATER	AS 3550, APHA 21st ed. 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45 um filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	WATER	APHA 21st ed., 3125; USEPA SW846 - 6020 Samples are 0.45 um filtered prior to analysis. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	WATER	APHA 21st ed., 3125; USEPA SW846 - 6020 Samples are 0.45 um filtered prior to analysis. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	WATER	APHA 21st ed., 4500-NH3 H Ammonia is determined by direct colorimetry by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	WATER	APHA 21st ed., 4500-NO2- B. Nitrite is determined by direct colourimetry by FIA.
Nitrate as N - Ultra-Trace in Saline Waters	EK258A-SW	WATER	APHA 21st ed., 4500-NO3- I Nitrate is reduced to nitrite by way of a cadmium reduction column followed by quantification by FIA. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results.
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	WATER	APHA 21st ed., 4500-NO3- I. Combined oxidised Nitrogen (NO2+NO3) is determined by Cadmium Reduction and direct colourimetry by FIA.

Analytical Methods	Method	Matrix	Method Descriptions
TKN (Total N - NOx-N). (FIA - UT) in Saline Waters	EK261PA-SW	WATER	APHA 21st ed., 4500-P J. & 4500-NO3- I. Calculated by difference from total Nitrogen and NOx. Contributing method parameters are determined by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	WATER	APHA 21st ed., 4500-P J. Persulfate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus. As sample is digested with persulfate under alkaline conditions yielding orthophosphate and nitrate. Following digestion, analytes are determined by flow injection analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	WATER	APHA 21st ed., 4500-P J. Persulfate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus. As sample is digested with persulfate under alkaline conditions yielding orthophosphate and nitrate. Following digestion, analytes are determined by flow injection analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	WATER	APHA 21st ed., 4500-P E Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Chlorophyll a	EP008	WATER	In-house (APHA 21st ed., 10200 H mod.) The pigments are extracted into aqueous acetone. The optical density of the extract before and after acidification at both 664 nm and 665 nm is determined spectrometrically.
Multiresidue Pesticide Screen (No. 2)	EP215-LL	WATER	In-house, LCMS (APCI in positive mode). The compounds are extracted from water samples using dichloromethane. The organic phase is evaporated to dryness and reconstituted in a mixture of acetonitrile and water for reverse phase HPLC analysis.
Preparation Methods	Method	Matrix	Method Descriptions
Persulfate Digestion for UT TN and TP for FIA/Saline	EK262/267PA-SW	WATER	APHA 21st ed., 4500 P - J. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Separatory funnel extraction for LCMS herbicides.	* EP215-PR	WATER	In-house. A 1 L sample is extracted three times with 60 mL of methylene chloride, reduced to dryness and made up in HPLC mobile phase.

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name La	boratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
aboratory Control Spike (LCS) Recoveries							
EG093F: Dissolved Metals in Saline Water by ORC-ICP 12	239602-003		Chromium	7440-47-3	85.9 %	86-128%	Recovery less than lower control limit
EG093F: Dissolved Metals in Saline Water by ORC-ICP 12	239602-003		Cobalt	7440-48-4	84.4 %	87-127%	Recovery less than lower control limit
EG093F: Dissolved Metals in Saline Water by ORC-ICP 12	239602-003		Copper	7440-50-8	83.4 %	86-124%	Recovery less than lower control limit
EG093F: Dissolved Metals in Saline Water by ORC-ICP 12	239602-003		Lead	7439-92-1	82.7 %	87-123%	Recovery less than lower control limit
EG093F: Dissolved Metals in Saline Water by ORC-ICP 12	239602-003		Manganese	7439-96-5	87.6 %	90-122%	Recovery less than lower control limit
EG093F: Dissolved Metals in Saline Water by ORC-ICP 12	239602-003		Nickel	7440-02-0	82.4 %	84-124%	Recovery less than lower control limit
EG093F: Dissolved Metals in Saline Water by ORC-ICP 12	239602-003		Vanadium	7440-62-2	81.3 %	85-123%	Recovery less than lower control limit
EG093F: Dissolved Metals in Saline Water by ORC-ICP 12	239602-003		Iron	7439-89-6	79.5 %	89-119%	Recovery less than lower control limit
latrix Spike (MS) Recoveries							
EG093F: Dissolved Metals in Saline Water by ORC-ICP EE	30912789-002	Anonymous	Manganese	7439-96-5	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
Ultra-Trace Nutrients ES	S0912210-005	G-WQ-09	Ammonia as N	7664-41-7	65.8 %	70130%	Recovery less than lower data quality
							objective

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Matrix: WATER

Method	E:	Extraction / Preparation			Analysis			
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days		
			overdue			overdue		
EA005: pH								

Matrix: WATER

Method	Ε×	traction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA005: pH - Analysis Holding Time C	Compliance						
Clear Plastic Bottle - Natural							
G-WQ-01,	G-WQ-02,				18-AUG-2009	17-AUG-2009	1
G-WQ-05,	G-WQ-08,						
G-WQ-09,	G-WQ-10,						
G-WQ-11,	G-WQ-12,						
QA01							

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

Matrix: WATER

Quality Control Sample Type	Count		Rate (%)		Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
Multiresidue Pesticide Screen (No. 2)	1	20	5.0	10.0	NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Chain of Custody & Analysis Request

Page __1__ of _1__

Chain of Custody Number:

			enant of edote	ay Hamber.										
		-			GHD									
IOJECT ID:	4215386 41	QUOTE:			LABORAT	DRY RAT	CHN							
OJECT:	Western Basin EIS WQ Mo	onitoring											FOR LAR LIFE ONLY	
IENT:	GHD				COOLERS	EAL .							FOR LAB USE ONLY	-
STAL ADDRESS:	PO Box 373, Gladstone 468	30	7		Yes				No				COOLER TEMP:	
NTACT:	Adrian White or Jason Fow	ler			_	Broken				Intac		******		deg.C
IONE:	0412035667 or 0404357072		07) 49726236		DESPATCH				ALS		ronme	ntal		
IAIL:	Jason.K.Fowler@ghd.	.com.au, Adrian.	A.White@ghd.com.	au								bark Ro	nad	
OICE:	Jason.K.Fowler@ghd.	.com.au, Adrian.	A.White@ghd.com.	au								2164		
				·······					02.8	784 8	555			······································
TA NEEDED BY:													ANALYSIS REQUIRED	
PORT FORMAT:					່ວົ	402,								· · · · · · · · · · · · · · · · · · ·
IAIL FORMAT:	ESDAT, EXCEL & PDF				(EG093F) , Ni, Pb, V, Hg,	RP, NH3, NO2,						(lowest DL)		
MMENTS/SPECIAL HAN	IDLING/STORAGE OR DISP	POSAL:			metals Cu, Mn	- 04) (TP, R						EP-215LL (Id		
ater samples from a	a marine environment	(Background s	ampling)		ssolved Co, Cr,	trace nutrients (UTN - TKN, TN)		(80			ty	Pesticides –E		
					ΤŬ	trien		EPO			Conductivity	Pest		
EMAIL ADDRESSES	S PROVIDED ABOVE)				a, Be,	5 T	ନ	a		2	npu	Ine		
					ra trace C , As, Ba, Al, Ag)	KN,	A02	Å	8	A01	Co	Residue		FROM MARINE
SAMPLE ID	MATRIX	DATE	DETECTION LIMIT	PRESERVATION	Ultra tu (Sb, As Fe, Al,	Ultra ti NO3, T	TSS (EA025)	Chlorophyll a (EP008)	pH (EA005)	TDS (EA015)	Electro	Multi R		IRONMENT
							┼╴	ات			ш			
WQ-04	Water	18/08/2009	LOR	As Required	x	x	x	x	x	x	x	х	NOTE THE	
						- ^	†^	<u>+</u> ^-	<u></u>	<u>⊢</u> ^	-		NOTE: Two glass amber	bottle collected at G-WQ-07, for lab
													이야기는 이야기 전에서 바이가 있어요. 이야기 이야기 등 전에 이야기 위해 이야기 있어요.	n an mar ng san agus na san Tuga wasan bisasi na salami ga
WQ-06	Water	18/08/2009	LOR	As Required	x	x	x	x	x	x	x	х		PU as a Ceall Cleanaist, and a an Ann
WQ-07	Water	18/08/2009	LOR	As Required	x	x	x	x	x	x	x	х		
						<u> </u>	†^	<u> </u>	<u></u>					Environmental Division
						L	L.,							Sydney
		RELINQUISHE											RECEIVED BY:	
ME: JFowler		RELINQUISHE										· · · · · ·		Work Order
ME: J Fowler		DATE: 18/08/200			NAME :	FC FC	int	^					DATE: 1989	
: GHD Gladstone		DATE: 18/08/200 TIME: 1530			OF:	•	AL							ES0912327
GHD Gladstone	ED ANALYSIS REQUEST TO	DATE: 18/08/200 TIME: 1530 D:	9	Jason.K.Fowler@ghd.com.au,	OF: Adrian.A.Whit	te@ghd	A\ .com.	au				· · · · · · · · · · · · · · · · · · ·	DATE: 1989	
GHD Gladstone EASE EMAIL COMPLETE ontainer Type and Preserva	ative Codes: P = Neutral Plas	DATE: 18/08/200 TIME: 1530 D: stic; N = Nitric Acid F	9 Preserved; C = Sodium H	ydroxide Preserved; J = Solvent Washe	OF: Adrian.A.Whit	te@ghd r; S = Sol	A۱ <u>.com</u> vent W	<u>au</u> ashed A	cid Rin	ced Gl	ass Bo	itle;	DATE: 1989	
GHD Gladstone EASE EMAIL COMPLETE ontainer Type and Preserva	ative Codes: P = Neutral Plas	DATE: 18/08/200 TIME: 1530 D: stic; N = Nitric Acid F	9 Preserved; C = Sodium H	Jason.K.Fowler@ghd.com.au. ydroxide Preserved; J = Solvent Washe d Glass Bottle; Z = Zinc Acetate Presen	OF: Adrian.A.Whit	te@ghd r; S = Sol	A۱ <u>.com</u> vent W	<u>au</u> ashed A	cid Rin ST = Ste	ced Gl erile Bo	ass Bo ottle;	tle;	DATE: 1989	
GHD Gladstone ASE EMAIL COMPLETE Intainer Type and Preserva = Hydrochloric Acid Prese	ative Codes: P = Neutral Plas	DATE: 18/08/200 TIME: 1530 D: stic; N = Nitric Acid F	9 Preserved; C = Sodium H	ydroxide Preserved; J = Solvent Washe	OF: Adrian.A.Whit	te@ghd r; S = Sol	A۱ <u>.com</u> vent W	<u>au</u> ashed A	cid Rin 6⊤ = Ste	ced Gl erile Bo	ass Bo ottle;	tle;	DATE: 1989	

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order	: ES09	912327		
Client Contact Address	: MR AI : G P O	SERVICES PTY LTD DRIAN WHITE BOX 668 BANE QLD, AUSTRALIA 4001	Laboratory Contact Address	 Environmental Division Sydney Charlie Pierce 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail Telephone Facsimile	: +61 07	.a.white@ghd.com.au 7 3316 3000 7 3316 3333	E-mail Telephone Facsimile	: charlie.pierce@alsenviro.com : +61-2-8784 8555 : +61-2-8784 8500
Project Order number		86 41 ESTERN BASIN EIS WQ TORING	Page	: 1 of 3
C-O-C number			Quote number	: EB2009GHDSER0401 (BN/314/09)
Site	:			, , , , , , , , , , , , , , , , , , ,
Sampler	: JF		QC Level	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dates				
Date Samples Rec	eived	: 19-AUG-2009	Issue Date	21-AUG-2009 20:27
Client Requested E	Due Date	: 02-SEP-2009	Scheduled Reportin	g Date : 02-SEP-2009
Delivery Det	ails			
Mode of Delivery		: Carrier	Temperature	: 1.6'C - Ice present
No. of coolers/boxe	es	: 1 HARD	No. of samples rece	ived : 3
Sercurity Seal		: Intact.	No. of samples anal	ysed : 3

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Breaches in recommended extraction / analysis holding times may occur. Please contact ALS for further information (Nanthini Coilparampil).
- pH analysis should be conducted within 6 hours of sampling.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Nanthini Coilparampil
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (90 days) from date of completion of work order.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

the determination tasks, that are include When date(s) and have been assur	y for the execution hay contain additional of moisture cont ed in the package. /or time(s) are sho ned by the labor sampling time is o	of client requested al analyses, such as	WATER - EA005: pH pH	WATER - EA010P Conductivity (PC)	WATER - EA015 Total Dissolved Solids	WATER - EA025H Suspended Solids (High Level)	WATER - EG035F Dissolved Mercury by FIMS	WATER - EG093A-F Dissolved metals in saline water by ORC-ICPMS	IШ ÷ К	WATER - EP008 Chlorophyll a
ES0912327-001	18-AUG-2009 15:00	G-WQ-04	1	✓	✓	✓	✓	1	1	✓
ES0912327-002	18-AUG-2009 15:00	G-WQ-06	1	✓	✓	✓	1	✓	✓	✓
ES0912327-003	18-AUG-2009 15:00	G-WQ-07	✓	✓	✓	✓	✓	✓	✓	✓

Matrix: WATER Laboratory sample ID	Client sampling date / time	Client sample ID	WATER - EP215LL Multiresidue Pesticide Screen (Suite 2) - Low Level	WATER - UTN-4 SW Ultratrace NO2, NO3, NH3, Nitrogen, Phosphorus, TKN, Reactive Phosphorus
ES0912327-001	18-AUG-2009 15:00	G-WQ-04	✓	✓
ES0912327-002	18-AUG-2009 15:00	G-WQ-06	√	✓
	18-AUG-2009 15:00	G-WQ-07	1	

Requested Deliverables

MR ADRIAN WHITE

 *AU Certificate of Analysis - NATA (COA) 	Email	adrian.a.white@ghd.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	adrian.a.white@ghd.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	adrian.a.white@ghd.com.au
- A4 - AU Sample Receipt Notification - Environmental (SRN)	Email	adrian.a.white@ghd.com.au
- A4 - AU Tax Invoice (INV)	Email	adrian.a.white@ghd.com.au
- Default - Chain of Custody (COC)	Email	adrian.a.white@ghd.com.au
- EDI Format - ENMRG (ENMRG)	Email	adrian.a.white@ghd.com.au
- EDI Format - ESDAT (ESDAT)	Email	adrian.a.white@ghd.com.au
MR JASON FOWLER		
 *AU Certificate of Analysis - NATA (COA) 	Email	jason.k.fowler@ghd.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	jason.k.fowler@ghd.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	jason.k.fowler@ghd.com.au
- A4 - AU Sample Receipt Notification - Environmental (SRN)	Email	jason.k.fowler@ghd.com.au
- A4 - AU Tax Invoice (INV)	Email	jason.k.fowler@ghd.com.au
 Default - Chain of Custody (COC) 	Email	jason.k.fowler@ghd.com.au
- EDI Format - ENMRG (ENMRG)	Email	jason.k.fowler@ghd.com.au
- EDI Format - ESDAT (ESDAT)	Email	jason.k.fowler@ghd.com.au

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order	: ES0912327	Page	: 1 of 4
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR ADRIAN WHITE	Contact	: Charlie Pierce
Address		Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E an all	GLADSTONE QLD, AUSTRALIA 4680	E se all	
E-mail	: adrian.a.white@ghd.com.au	E-mail	: charlie.pierce@alsenviro.com
Telephone	: +61 07 4972 6377	Telephone	: +61-2-8784 8555
Facsimile	: +61 07 4972 6236	Facsimile	: +61-2-8784 8500
Project	: 4215386 41 WESTERN BASIN EIS WQ MONITORING	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 19-AUG-2009
Sampler	: JF	Issue Date	: 31-AUG-2009
Site	:		
		No. of samples received	: 3
Quote number	: BN/314/09	No. of samples analysed	: 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

ΝΑΤΑ	NATA Accredited Laboratory 825 This document is issued in	Signatories This document has been electronically signed by the authorized signatories indicated below. Electronic signing has carried out in compliance with procedures specified in 21 CFR Part 11.						
	accordance with NATA	Signatories	Accreditation Category					
WORLD RECOGNISED ACCREDITATION	accreditation requirements. Accredited for compliance with ISO/IEC 17025.	Hoa Nguyen Lana Nguyen Wisam Abou-Maraseh	Inorganic Chemist LCMS Chemist Spectroscopist	Inorganics Organics Inorganics				

Environmental Division Sydney Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

• EK267PA- It has been noted that RP is greater than TP, however this difference is within the limits of experimental variation.

Analytical Results

Sub-Matrix: MARINE WATER		Clie	ent sample ID	G-WQ-04	G-WQ-06	G-WQ-07	
	C		ng date / time	18-AUG-2009 15:00	18-AUG-2009 15:00	18-AUG-2009 15:00	
		LOR	Unit	ES0912327-001	ES0912327-002	ES0912327-003	
Compound	CAS Number	LOR	Unit	200312027-001	200312027-002	200312027-000	
EA005: pH							
pH Value		0.01	pH Unit	7.95	7.89	7.88	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	µS/cm	51000	51800	51500	
EA015: Total Dissolved Solids							
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	42600	41900	43100	
EA025: Suspended Solids							
^ Suspended Solids (SS)		5	mg/L	65	37	47	
EG035F: Dissolved Mercury by FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	
EG093F: Dissolved Metals in Saline Wate	er by ORC-ICPM	s _					
Aluminium	7429-90-5	10	µg/L	60	70	210	
Antimony	7440-36-0	0.5	μg/L	<0.5	<0.5	<0.5	
Iron	7439-89-6	5	µg/L	<5	<5	<5	
Arsenic	7440-38-2	0.5	µg/L	1.5	1.2	1.0	
Barium	7440-39-3	1	µg/L	5	8	8	
Beryllium	7440-41-7	0.1	µg/L	<0.1	<0.1	<0.1	
Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	<0.2	
Chromium	7440-47-3	0.5	µg/L	<0.5	<0.5	<0.5	
Cobalt	7440-48-4	0.2	µg/L	<0.2	<0.2	<0.2	
Copper	7440-50-8	1	µg/L	<1	<1	<1	
Lead	7439-92-1	0.2	µg/L	<0.2	<0.2	<0.2	
Manganese	7439-96-5	0.5	µg/L	1.5	2.1	2.9	
Nickel	7440-02-0	0.5	µg/L	0.8	0.6	<0.5	
Silver	7440-22-4	0.1	µg/L	<0.1	<0.1	<0.1	
Vanadium	7440-62-2	0.5	µg/L	2.4	1.0	0.8	
EP008: Chlorophyll a							
Chlorophyll a		1	mg/m3	<1	1	<1	
EP215: Multiresidue Pesticide Residue S	creen (Suite 2)						
Simazine	122-34-9	0.005	µg/L	<0.005	<0.005	<0.005	
Diuron	330-54-1	0.005	µg/L	<0.005	<0.005	<0.005	
Atrazine	1912-24-9	0.005	µg/L	<0.005	<0.005	<0.005	
Molinate	2212-67-1	0.005	µg/L	<0.005	<0.005	<0.005	
Metolachlor	51218-45-2	0.005	µg/L	<0.005	<0.005	<0.005	
Malathion	121-75-5	0.002	µg/L	<0.002	<0.002	<0.002	
Diazinon	333-41-5	0.005	µg/L	<0.005	<0.005	<0.005	
Thiobencarb	28249-77-6	0.005	µg/L	<0.005	<0.005	<0.005	
Chlorpyrifos	2921-88-2	0.005	µg/L	<0.005	<0.005	<0.005	

Analytical Results

Sub-Matrix: MARINE WATER		Clie	ent sample ID	G-WQ-04	G-WQ-06	G-WQ-07			
	Cl	ient sampli	ng date / time	18-AUG-2009 15:00	18-AUG-2009 15:00	18-AUG-2009 15:00			
Compound	CAS Number	LOR	Unit	ES0912327-001	ES0912327-002	ES0912327-003			
EP215: Multiresidue Pesticide Residue Screen (Suite 2) - Continued									
Trifluralin	1582-09-8	0.005	µg/L	<0.005	<0.005	<0.005			
Ultra-Trace Nutrients									
Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.019	0.013			
Nitrite as N		0.002	mg/L	<0.002	<0.002	<0.002			
^ Nitrate as N	14797-55-8	0.002	mg/L	<0.002	<0.002	<0.002			
Nitrite + Nitrate as N		0.002	mg/L	<0.002	<0.002	<0.002			
^ Total Kjeldahl Nitrogen as N		0.05	mg/L	0.09	0.14	0.13			
Total Nitrogen as N		0.05	mg/L	0.09	0.14	0.13			
Reactive Phosphorus as P		0.001	mg/L	0.002	0.008	0.006			
Total Phosphorus as P		0.005	mg/L	<0.005	0.005	0.006			

Environmental Division

QUALITY CONTROL REPORT

Work Order	ES0912327	Page	: 1 of 9
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR ADRIAN WHITE	Contact	: Charlie Pierce
Address	: P O BOX 373	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	GLADSTONE QLD, AUSTRALIA 4680		
E-mail	: adrian.a.white@ghd.com.au	E-mail	: charlie.pierce@alsenviro.com
Telephone	: +61 07 4972 6377	Telephone	: +61-2-8784 8555
Facsimile	: +61 07 4972 6236	Facsimile	: +61-2-8784 8500
Project	: 4215386 41 WESTERN BASIN EIS WQ MONITORING	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 19-AUG-2009
Sampler	: JF	Issue Date	: 31-AUG-2009
Order number	:		
		No. of samples received	: 3
Quote number	: BN/314/09	No. of samples analysed	: 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA	NATA Accredited Laboratory 825	Signatories This document has been elect carried out in compliance with proce	ronically signed by the authorized signa dures specified in 21 CFR Part 11.	atories indicated below. Electronic sig	gning has been	
	accordance with NATA	Signatories	Position	Accreditation Category	signing has been	
	accreditation requirements.	Hoa Nguyen	Inorganic Chemist	Inorganics		
WORLD RECOGNISED	Accredited for compliance with	Lana Nguyen	LCMS Chemist	Organics		
ACCREDITATION	ISO/IEC 17025.	Wisam Abou-Maraseh	Spectroscopist	Inorganics		
Environmental Division Sydney						

Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

ub-Matrix: WATER						-	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
A005: pH (QC Lot:	: 1076637)								
ES0912327-001	G-WQ-04	EA005: pH Value		0.01	pH Unit	7.95	7.96	0.1	0% - 20%
ES0912552-001	Anonymous	EA005: pH Value		0.01	pH Unit	7.83	7.84	0.1	0% - 20%
A010P: Conductivi	ity by PC Titrator (QC I	Lot: 1078424)							
ES0912327-001	G-WQ-04	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	51000	51100	0.2	0% - 20%
S0912366-012	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	1320	1320	0.3	0% - 20%
A015: Total Dissol	ved Solids (QC Lot: 10)77349)							
ES0912184-001	Anonymous	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	2260	2250	0.5	0% - 20%
S0912327-002	G-WQ-06	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	41900	45400	7.9	0% - 20%
A025: Suspended	Solids (QC Lot: 10790	91)							
ES0912327-001	G-WQ-04	EA025H: Suspended Solids (SS)		5	mg/L	65	64	1.6	0% - 50%
ES0912397-001	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	53	61	14.0	0% - 50%
G035E: Dissolved	Mercury by FIMS (QC)						1		
ES0912327-003	G-WQ-07	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
ES0912525-001	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	< 0.0001	< 0.0001	0.0	No Limit
	-	by ORC-ICPMS (QC Lot: 1080208)			5				
S0912327-001	G-WQ-04	EG093A-F: Beryllium	7440-41-7	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EG093A-F: Silver	7440-22-4	0.1	μg/L	<0.1	<0.1	0.0	No Limit
		EG093A-F: Cadmium	7440-43-9	0.2	μg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Cobalt	7440-48-4	0.2	μg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Lead	7439-92-1	0.2	µg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Antimony	7440-36-0	0.5	μg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Arsenic	7440-38-2	0.5	µg/L	1.5	1.3	17.2	No Limit
		EG093A-F: Chromium	7440-47-3	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Manganese	7439-96-5	0.5	µg/L	1.5	1.4	7.2	No Limit
		EG093A-F: Nickel	7440-02-0	0.5	µg/L	0.8	<0.5	44.6	No Limit
		EG093A-F: Vanadium	7440-62-2	0.5	μg/L	2.4	1.3	56.8	No Limit
		EG093A-F: Barium	7440-39-3	1	µg/L	5	5	0.0	No Limit
		EG093A-F: Copper	7440-50-8	1	μg/L	<1	<1	0.0	No Limit
		EG093A-F: Aluminium	7429-90-5	10	µg/L	60	70	0.0	No Limit
S0912340-008	Anonymous	EG093A-F: Beryllium	7440-41-7	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EG093A-F: Silver	7440-22-4	0.1	μg/L	<0.1	0.1	0.0	No Limit
		EG093A-F: Cadmium	7440-43-9	0.2	µg/L	<0.2	0.2	0.0	No Limit
		EG093A-F: Cobalt	7440-48-4	0.2	μg/L	7.0	7.6	8.7	0% - 20%
		EG093A-F: Lead	7439-92-1	0.2	µg/L	<0.2	<0.2	0.0	No Limit
		EG093A-F: Antimony	7440-36-0	0.5	µg/L	4.8	5.0	3.7	0% - 50%

Page	: 4 of 9
Work Order	: ES0912327
Client	: GHD SERVICES PTY LTD
Project	2 4215386 41 WESTERN BASIN EIS WQ MONITORING

ub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report	t	
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
G093F: Dissolved	Metals in Saline Water b	by ORC-ICPMS (QC Lot: 1080208) - continued							
ES0912340-008	Anonymous	EG093A-F: Arsenic	7440-38-2	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Chromium	7440-47-3	0.5	μg/L	0.8	0.8	0.0	No Limit
		EG093A-F: Manganese	7439-96-5	0.5	μg/L	309	322	4.1	0% - 20%
		EG093A-F: Nickel	7440-02-0	0.5	µg/L	23.4	24.5	4.8	0% - 20%
		EG093A-F: Vanadium	7440-62-2	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EG093A-F: Barium	7440-39-3	1	μg/L	271	291	7.1	0% - 20%
		EG093A-F: Copper	7440-50-8	1	µg/L	17	18	0.0	0% - 50%
		EG093A-F: Aluminium	7429-90-5	10	μg/L	20	20	0.0	No Limit
G093F: Dissolved	Metals in Saline Water b	by ORC-ICPMS (QC Lot: 1080209)							
S0912327-001	G-WQ-04	EG093B-F: Iron	7439-89-6	5	μg/L	<5	5	0.0	No Limit
P215: Multiresidue	e Pesticide Residue Scre	een (Suite 2) (QC Lot: 1077505)							
S0912396-002	Anonymous	EP215-LL: Malathion	121-75-5	0.002	µg/L	<0.002	< 0.002	0.0	No Limit
	, and gine as	EP215-LL: Simazine	122-34-9	0.005	μg/L	< 0.005	< 0.005	0.0	No Limit
		EP215-LL: Diuron	330-54-1	0.005	μg/L	< 0.005	< 0.005	0.0	No Limit
		EP215-LL: Atrazine	1912-24-9	0.005	μg/L	<0.005	< 0.005	0.0	No Limit
		EP215-LL: Molinate	2212-67-1	0.005	μg/L	<0.005	< 0.005	0.0	No Limit
		EP215-LL: Metolachlor	51218-45-2	0.005	μg/L	<0.005	< 0.005	0.0	No Limit
		EP215-LL: Diazinon	333-41-5	0.005	μg/L	<0.005	< 0.005	0.0	No Limit
		EP215-LL: Thiobencarb	28249-77-6	0.005	μg/L	<0.005	< 0.005	0.0	No Limit
		EP215-LL: Chlorpyrifos	2921-88-2	0.005	μg/L	<0.005	< 0.005	0.0	No Limit
		EP215-LL: Trifluralin	1582-09-8	0.005	μg/L	<0.005	< 0.005	0.0	No Limit
	Destiside Desidue Osu		1002 00 0	0.000	P9/2	0.000	0.000	0.0	
S0912327-003	G-WQ-07	een (Suite 2) (QC Lot: 1077549)	121-75-5	0.002	.ug/l	<0.002	<0.002	0.0	No Limit
50912327-003	G-11Q-07	EP215-LL: Malathion	121-75-5	0.002	μg/L	<0.002	<0.002	0.0	No Limit
		EP215-LL: Simazine	330-54-1	0.005	μg/L	< 0.005	<0.005	0.0	No Limit No Limit
		EP215-LL: Diuron	1912-24-9	0.005	μg/L	< 0.005	<0.005	0.0	No Limit
		EP215-LL: Atrazine	2212-67-1	0.005	μg/L	< 0.005	<0.005	0.0	No Limit
		EP215-LL: Molinate			μg/L	< 0.005	<0.005	0.0	
		EP215-LL: Metolachlor	51218-45-2	0.005	μg/L		<0.005	0.0	No Limit
		EP215-LL: Diazinon	333-41-5	0.005	μg/L	< 0.005			No Limit
		EP215-LL: Thiobencarb	28249-77-6 2921-88-2	0.005	µg/L	< 0.005	<0.005 <0.005	0.0	No Limit
		EP215-LL: Chlorpyrifos		0.005	μg/L	< 0.005		0.0	No Limit
		EP215-LL: Trifluralin	1582-09-8	0.005	µg/L	<0.005	<0.005	0.0	No Limit
	ts (QC Lot: 1076579)								
S0912327-001	G-WQ-04	EK257A-SW: Nitrite as N		0.002	mg/L	<0.002	<0.002	0.0	No Limit
	ts (QC Lot: 1076580)								
S0912327-001	G-WQ-04	EK255A-SW: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.009	58.2	No Limit
Itra-Trace Nutrient	ts (QC Lot: 1076581)								
S0912327-001	G-WQ-04	EK259A-SW: Nitrite + Nitrate as N		0.002	mg/L	<0.002	<0.002	0.0	No Limit
ltro Troco Nutriont	ts (QC Lot: 1076582)								

Sub-Matrix: WATER	a Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
Ultra-Trace Nutrients	(QC Lot: 1076582) - con	tinued								
ES0912327-001	G-WQ-04	EK271A-SW: Reactive Phosphorus as P		0.001	mg/L	0.002	0.002	0.0	No Limit	
Ultra-Trace Nutrients	(QC Lot: 1076644)									
ES0912327-001	G-WQ-04	EK262PA-SW: Total Nitrogen as N		0.05	mg/L	0.09	0.07	27.8	No Limit	
Ultra-Trace Nutrients	(QC Lot: 1076645)									
ES0912327-001	G-WQ-04	EK267PA-SW: Total Phosphorus as P		0.005	mg/L	<0.005	<0.005	0.0	No Limit	

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
A010P: Conductivity by PC Titrator (QCLot: 1	078424)							
A010-P: Electrical Conductivity @ 25°C		1	µS/cm	<1	2000 µS/cm	99.6	86.3	112
A015: Total Dissolved Solids (QCLot: 1077349	9)							
A015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	<1	293 mg/L	102	77.9	122
A025: Suspended Solids (QCLot: 1079091)								
A025H: Suspended Solids (SS)		5	mg/L	<5	150 mg/L	104	30	150
EG035F: Dissolved Mercury by FIMS (QCLot: 1	080533)				, , , , , , , , , , , , , , , , , , ,	1		
G035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.010 mg/L	99.9	86	116
G093F: Dissolved Metals in Saline Water by O	PC ICBMS (OCL at: 1080209	2)	5		J			
G093F. Dissolved Metals in Same Water by O	7429-90-5	10	µg/L	<10	50 μg/L	128	80	128
EG093A-F: Antimony	7440-36-0	0.5	μg/L	<0.5				
G093A-F: Arsenic	7440-38-2	0.5	μg/L	<0.5	10 µg/L	95.9	85	125
G093A-F: Barium	7440-39-3	1	μg/L	<1	10 µg/L	88.8	81	129
G093A-F: Beryllium	7440-41-7	0.1	μg/L	<0.1	10 µg/L	89.0	80	122
G093A-F: Cadmium	7440-43-9	0.2	µg/L	<0.2	10 µg/L	83.7	78	116
G093A-F: Chromium	7440-47-3	0.5	µg/L	<0.5	10 µg/L	93.2	86	128
G093A-F: Cobalt	7440-48-4	0.2	µg/L	<0.2	10 µg/L	96.0	87	127
G093A-F: Copper	7440-50-8	1	µg/L	<1	10 µg/L	101	86	124
G093A-F: Lead	7439-92-1	0.2	µg/L	<0.2	10 µg/L	93.6	87	123
G093A-F: Manganese	7439-96-5	0.5	µg/L	<0.5	10 µg/L	90.6	90	122
G093A-F: Nickel	7440-02-0	0.5	µg/L	<0.5	10 µg/L	91.3	84	124
G093A-F: Silver	7440-22-4	0.1	µg/L	<0.1				
G093A-F: Vanadium	7440-62-2	0.5	µg/L	<0.5	10 µg/L	98.5	85	123
G093F: Dissolved Metals in Saline Water by O	RC-ICPMS (QCLot: 1080209))						
G093B-F: Iron	7439-89-6	5	µg/L	<5	50 µg/L	93.0	89	119
P008: Chlorophyll a (QCLot: 1076632)								
P008: Chlorophyll a		1	mg/m3		20 mg/m3	100	60.3	134
		1	mg/m³	<1				
P215: Multiresidue Pesticide Residue Screen (Suite 2) (QCLot: 1077505)							
P215-LL: Simazine	122-34-9	0.005	µg/L	<0.005	0.0125 µg/L	92.4	65	130
P215-LL: Diuron	330-54-1	0.005	µg/L	<0.005	0.0125 µg/L	91.8	65	130
P215-LL: Atrazine	1912-24-9	0.005	μg/L	<0.005	0.0125 µg/L	87.2	65	130
EP215-LL: Molinate	2212-67-1	0.005	µg/L	<0.005	0.0125 μg/L	76.7	65	130
EP215-LL: Metolachlor	51218-45-2	0.005	µg/L	<0.005	0.0125 µg/L	75.2	65	130

Page	: 7 of 9
Work Order	: ES0912327
Client	: GHD SERVICES PTY LTD
Project	: 4215386 41 WESTERN BASIN EIS WQ MONITORING

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report	
				Report	Spike	Spike Recovery (%)	Recovery Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
	Suite 2) (QCLot: 1077505)	- continued						
EP215-LL: Malathion	121-75-5	0.002	μg/L	<0.002	0.0125 µg/L	73.9	65	130
EP215-LL: Diazinon	333-41-5	0.005	µg/L	<0.005	0.0125 µg/L	72.2	65	130
P215-LL: Thiobencarb	28249-77-6	0.005	μg/L	<0.005	0.0125 µg/L	86.5	65	130
P215-LL: Chlorpyrifos	2921-88-2	0.005	μg/L	<0.005	0.0125 µg/L	75.1	65	130
P215-LL: Trifluralin	1582-09-8	0.005	µg/L	<0.005	0.0125 μg/L	82.9	65	130
P215: Multiresidue Pesticide Residue Screen (Suite 2) (QCLot: 1077549)							
P215-LL: Simazine	122-34-9	0.005	μg/L	<0.005	0.0125 µg/L	122	65	130
P215-LL: Diuron	330-54-1	0.005	μg/L	<0.005	0.0125 µg/L	73.3	65	130
P215-LL: Atrazine	1912-24-9	0.005	μg/L	<0.005	0.0125 µg/L	80.3	65	130
P215-LL: Molinate	2212-67-1	0.005	μg/L	<0.005	0.0125 µg/L	113	65	130
P215-LL: Metolachlor	51218-45-2	0.005	μg/L	<0.005	0.0125 µg/L	75.3	65	130
P215-LL: Malathion	121-75-5	0.002	μg/L	<0.002	0.0125 µg/L	88.5	65	130
P215-LL: Diazinon	333-41-5	0.005	μg/L	<0.005	0.0125 µg/L	100	65	130
P215-LL: Thiobencarb	28249-77-6	0.005	μg/L	<0.005	0.0125 µg/L	89.5	65	130
P215-LL: Chlorpyrifos	2921-88-2	0.005	μg/L	<0.005	0.0125 µg/L	82.2	65	130
P215-LL: Trifluralin	1582-09-8	0.005	µg/L	<0.005	0.0125 μg/L	73.0	65	130
Itra-Trace Nutrients (QCLot: 1076579)								
K257A-SW: Nitrite as N		0.002	mg/L	<0.002	1.0 mg/L	103	70	130
Itra-Trace Nutrients (QCLot: 1076580)								
K255A-SW: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.1 mg/L	87.3	74	118
Itra-Trace Nutrients (QCLot: 1076581)								
K259A-SW: Nitrite + Nitrate as N		0.002	mg/L	<0.002	0.1 mg/L	105	76	130
Itra-Trace Nutrients (QCLot: 1076582)								
K271A-SW: Reactive Phosphorus as P		0.001	mg/L	<0.001	0.1 mg/L	114	70	121
Itra-Trace Nutrients (QCLot: 1076644)								
K262PA-SW: Total Nitrogen as N		0.05	mg/L	<0.05	1.0 mg/L	104	70	110
Iltra-Trace Nutrients (QCLot: 1076645)								
K267PA-SW: Total Phosphorus as P		0.005	mg/L	<0.005	0.44 mg/L	101	72	122

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Bub-Matrix: WATER				Matrix Spike (MS) Report				
				Spike	Spike Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EG035F: Dissolved	Mercury by FIMS (QCLot: 1080	533)						
ES0912327-003	G-WQ-07	EG035F: Mercury	7439-97-6	0.0100 mg/L	84.2	70	130	
EG093F: Dissolved	Metals in Saline Water by ORC-	ICPMS (QCLot: 1080208)						
ES0912327-001	G-WQ-04	EG093A-F: Arsenic	7440-38-2	50 μg/L	97.6	70	130	
		EG093A-F: Barium	7440-39-3	50 µg/L	95.6	70	130	
		EG093A-F: Beryllium	7440-41-7	50 µg/L	88.1	70	130	
		EG093A-F: Cadmium	7440-43-9	12.5 µg/L	92.1	70	130	
		EG093A-F: Chromium	7440-47-3	50 µg/L	105	70	130	
		EG093A-F: Cobalt	7440-48-4	50 µg/L	102	70	130	
		EG093A-F: Copper	7440-50-8	50 µg/L	114	70	130	
		EG093A-F: Lead	7439-92-1	50 μg/L	88.3	70	130	
		EG093A-F: Manganese	7439-96-5	50 µg/L	95.6	70	130	
		EG093A-F: Nickel	7440-02-0	50 µg/L	90.2	70	130	
		EG093A-F: Vanadium	7440-62-2	50 µg/L	101	70	130	
EP215: Multiresidue	Pesticide Residue Screen (Sui	te 2) (QCLot: 1077505)						
ES0912210-003	Anonymous	EP215-LL: Simazine	122-34-9	0.0125 µg/L	83.9	65	130	
		EP215-LL: Diuron	330-54-1	0.0125 µg/L	108	65	130	
		EP215-LL: Atrazine	1912-24-9	0.0125 µg/L	93.7	65	130	
		EP215-LL: Molinate	2212-67-1	0.0125 µg/L	75.8	65	130	
		EP215-LL: Metolachlor	51218-45-2	0.0125 µg/L	108	65	130	
		EP215-LL: Malathion	121-75-5	0.0125 µg/L	78.9	65	130	
		EP215-LL: Diazinon	333-41-5	0.0125 µg/L	87.3	65	130	
		EP215-LL: Thiobencarb	28249-77-6	0.0125 µg/L	72.7	65	130	
		EP215-LL: Chlorpyrifos	2921-88-2	0.0125 µg/L	90.6	65	130	
		EP215-LL: Trifluralin	1582-09-8	0.0125 µg/L	72.9	65	130	
Ultra-Trace Nutrient	s (QCLot: 1076579)							
ES0912327-001	G-WQ-04	EK257A-SW: Nitrite as N		0.1 mg/L	75.2	70	130	
Ultra-Trace Nutrient	s (QCLot: 1076580)				· · · · · · · · · · · · · · · · · · ·			
ES0912327-001	G-WQ-04	EK255A-SW: Ammonia as N	7664-41-7	0.1 mg/L	84.7	70.	130	
Illtra Traco Nutrient	s (QCLot: 1076581)					-		
ES0912327-001	G-WQ-04	EK2EQA SW/: Nitrite Nitrate on N		0.1 mg/L	86.9	70	130	
		EK259A-SW: Nitrite + Nitrate as N		0. i mg/∟	00.8	10	130	
Ultra-Trace Nutrient							10.5	
ES0912327-001	G-WQ-04	EK271A-SW: Reactive Phosphorus as P		0.1 mg/L	91.6	70	130	
Ultra-Trace Nutrient	s (QCLot: 1076644)							
ES0912327-001	G-WQ-04	EK262PA-SW: Total Nitrogen as N		0.5 mg/L	101	70	130	

Page	: 9 of 9
Work Order	: ES0912327
Client	: GHD SERVICES PTY LTD
Project	: 4215386 41 WESTERN BASIN EIS WQ MONITORING

Sub-Matrix: WATER					Matrix Spike (MS) Repo	ort	
				Spike	Spike Recovery (%)	Recovery	Limits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
Ultra-Trace Nutrients	(QCLot: 1076645)						
ES0912327-001	G-WQ-04	EK267PA-SW: Total Phosphorus as P		0.5 mg/L	89.4	70	130

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order	: ES0912327	Page	: 1 of 9
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR ADRIAN WHITE	Contact	: Charlie Pierce
Address	: P O BOX 373	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	GLADSTONE QLD, AUSTRALIA 4680		
E-mail	: adrian.a.white@ghd.com.au	E-mail	: charlie.pierce@alsenviro.com
Telephone	: +61 07 4972 6377	Telephone	: +61-2-8784 8555
Facsimile	: +61 07 4972 6236	Facsimile	: +61-2-8784 8500
Project	: 4215386 41 WESTERN BASIN EIS WQ MONITORING	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 19-AUG-2009
Sampler	: JF	Issue Date	: 31-AUG-2009
Order number	:		
		No. of samples received	: 3
Quote number	: BN/314/09	No. of samples analysed	: 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Environmental Division Sydney Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withir	holding time.
Method			Extraction / Preparation					
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005: pH								
Clear Plastic Bottle - Natural G-WQ-04, G-WQ-07	G-WQ-06,	18-AUG-2009				21-AUG-2009	18-AUG-2009	×
EA010P: Conductivity by PC Titrator								
Clear Plastic Bottle - Natural G-WQ-04, G-WQ-07	G-WQ-06,	18-AUG-2009				25-AUG-2009	15-SEP-2009	~
EA015: Total Dissolved Solids								
Clear Plastic Bottle - Natural G-WQ-04, G-WQ-07	G-WQ-06,	18-AUG-2009				24-AUG-2009	25-AUG-2009	~
EA025: Suspended Solids								
Clear Plastic Bottle - Natural G-WQ-04, G-WQ-07	G-WQ-06,	18-AUG-2009				25-AUG-2009	25-AUG-2009	~
EG035F: Dissolved Mercury by FIMS								
Clear HDPE (U-T ORC) - Filtered; Lab-acidifie G-WQ-04, G-WQ-07	ed G-WQ-06,	18-AUG-2009				27-AUG-2009	15-SEP-2009	~
EG093F: Dissolved Metals in Saline Water by	ORC-ICPMS							
Clear HDPE (U-T ORC) - Filtered; Lab-acidifie G-WQ-04, G-WQ-07	ed G-WQ-06,	18-AUG-2009	26-AUG-2009	14-FEB-2010	~	26-AUG-2009	14-FEB-2010	~
EP008: Chlorophyll a								
White Plastic Bottle - Unpreserved G-WQ-04, G-WQ-07	G-WQ-06,	18-AUG-2009				21-AUG-2009	20-AUG-2009	×

Page	: 3 of 9
Work Order	: ES0912327
Client	: GHD SERVICES PTY LTD
Project	: 4215386 41 WESTERN BASIN EIS WQ MONITORING

Matrix: WATER Evaluation: \mathbf{x} = Holding time breach ; \mathbf{v} = Within holding time. Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Date analysed Due for analysis Evaluation EP215: Multiresidue Pesticide Residue Screen (Suite 2) Amber Glass Bottle - Unpreserved G-WQ-04, G-WQ-06, 18-AUG-2009 24-AUG-2009 25-AUG-2009 \checkmark 24-AUG-2009 03-OCT-2009 \checkmark G-WQ-07 Ultra-Trace Nutrients Clear Plastic - Filtered (AS) - for UT Nut. G-WQ-04, G-WQ-06, 18-AUG-2009 -----21-AUG-2009 19-AUG-2009 -------× G-WQ-07 Clear Plastic Bottle - Natural (AS) G-WQ-04, G-WQ-06, 18-AUG-2009 21-AUG-2009 19-AUG-2009 21-AUG-2009 19-AUG-2009 x × G-WQ-07

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type			Count Rate (%)			Quality Control Specification	
Analytical Methods	Method	 	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	3	33.3	10.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	2	18	11.1	10.0	<u> </u>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	2	14	14.3	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	2	20	10.0	10.0	<u> </u>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	1	3	33.3	10.0	✓ ✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Multiresidue Pesticide Screen (No. 2)	EP215-LL	2	22	9.1	10.0	*	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	1	3	33.3	10.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	3	33.3	10.0	 ✓ 	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
рН	EA005	2	20	10.0	10.0	✓ ✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	3	33.3	10.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Suspended Solids (High Level)	EA025H	2	19	10.5	9.5	 ✓ 	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids	EA015	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	3	33.3	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	3	33.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	3	33.3	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chlorophyll a	EP008	1	3	33.3	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	1	18	5.6	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	14	7.1	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	1	20	5.0	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	1	3	33.3	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Multiresidue Pesticide Screen (No. 2)	EP215-LL	2	22	9.1	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	1	3	33.3	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	3	33.3	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	3	33.3	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Suspended Solids (High Level)	EA025H	1	19	5.3	4.8	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids	EA015	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	3	33.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	3	33.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	3	33.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chlorophyll a	EP008	1	3	33.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	1	18	5.6	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	14	7.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Matrix: WATER				Evaluation	n: × = Quality Cor	ntrol frequency r	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	1	3	33.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Multiresidue Pesticide Screen (No. 2)	EP215-LL	2	22	9.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	1	3	33.3	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	3	33.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	3	33.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Suspended Solids (High Level)	EA025H	1	19	5.3	4.8	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids	EA015	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	3	33.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	3	33.3	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	3	33.3	5.0	✓	ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	14	7.1	5.0	✓	ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	1	20	5.0	5.0	✓	ALS QCS3 requirement
Multiresidue Pesticide Screen (No. 2)	EP215-LL	1	20	5.0	5.0	✓	ALS QCS3 requirement
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	1	3	33.3	5.0	✓	ALS QCS3 requirement
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	3	33.3	5.0	✓	ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	3	33.3	5.0	✓	ALS QCS3 requirement
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	3	33.3	5.0	✓	ALS QCS3 requirement
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	3	33.3	5.0	✓	ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH	EA005	WATER	APHA 21st ed. 4500 H+ B. pH of water samples is determined by ISE either manually or by automated pH meter. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Conductivity by PC Titrator	EA010-P	WATER	APHA 21st ed., 2510 B This procedure determines conductivity by automated ISE. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Dissolved Solids	EA015	WATER	APHA 21st ed., 2540C A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Suspended Solids (High Level)	EA025H	WATER	APHA 21st ed., 2540D A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Mercury by FIMS	EG035F	WATER	AS 3550, APHA 21st ed. 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45 um filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	WATER	APHA 21st ed., 3125; USEPA SW846 - 6020 Samples are 0.45 um filtered prior to analysis. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	WATER	APHA 21st ed., 3125; USEPA SW846 - 6020 Samples are 0.45 um filtered prior to analysis. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	WATER	APHA 21st ed., 4500-NH3 H Ammonia is determined by direct colorimetry by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	WATER	APHA 21st ed., 4500-NO2- B. Nitrite is determined by direct colourimetry by FIA.
Nitrate as N - Ultra-Trace in Saline Waters	EK258A-SW	WATER	APHA 21st ed., 4500-NO3- I Nitrate is reduced to nitrite by way of a cadmium reduction column followed by quantification by FIA. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results.
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	WATER	APHA 21st ed., 4500-NO3- I. Combined oxidised Nitrogen (NO2+NO3) is determined by Cadmium Reduction and direct colourimetry by FIA.

Analytical Methods	Method	Matrix	Method Descriptions
TKN (Total N - NOx-N). (FIA - UT) in Saline Waters	EK261PA-SW	WATER	APHA 21st ed., 4500-P J. & 4500-NO3- I. Calculated by difference from total Nitrogen and NOx. Contributing method parameters are determined by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	WATER	APHA 21st ed., 4500-P J. Persulfate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus. As sample is digested with persulfate under alkaline conditions yielding orthophosphate and nitrate. Following digestion, analytes are determined by flow injection analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	WATER	APHA 21st ed., 4500-P J. Persulfate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus. As sample is digested with persulfate under alkaline conditions yielding orthophosphate and nitrate. Following digestion, analytes are determined by flow injection analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	WATER	APHA 21st ed., 4500-P E Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Chlorophyll a	EP008	WATER	In-house (APHA 21st ed., 10200 H mod.) The pigments are extracted into aqueous acetone. The optical density of the extract before and after acidification at both 664 nm and 665 nm is determined spectrometrically.
Multiresidue Pesticide Screen (No. 2)	EP215-LL	WATER	In-house, LCMS (APCI in positive mode). The compounds are extracted from water samples using dichloromethane. The organic phase is evaporated to dryness and reconstituted in a mixture of acetonitrile and water for reverse phase HPLC analysis.
Preparation Methods	Method	Matrix	Method Descriptions
Persulfate Digestion for UT TN and TP for FIA/Saline	EK262/267PA-SW	WATER	APHA 21st ed., 4500 P - J. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Separatory funnel extraction for LCMS herbicides.	* EP215-PR	WATER	In-house. A 1 L sample is extracted three times with 60 mL of methylene chloride, reduced to dryness and made up in HPLC mobile phase.

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Matrix: WATER								
Method			Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
					overdue			overdue
EA005: pH								
Clear Plastic Bottle - Natural								
G-WQ-04,	G-WQ-06,					21-AUG-2009	18-AUG-2009	3
G-WQ-07								
EP008: Chlorophyll a								
White Plastic Bottle - Unpreserved								
G-WQ-04,	G-WQ-06,					21-AUG-2009	20-AUG-2009	1
G-WQ-07								
Ultra-Trace Nutrients								
Clear Plastic - Filtered (AS) - for UT Nut.								
G-WQ-04,	G-WQ-06,					21-AUG-2009	19-AUG-2009	2
G-WQ-07								
Clear Plastic Bottle - Natural (AS)								
G-WQ-04,	G-WQ-06,	:	21-AUG-2009	19-AUG-2009	2	21-AUG-2009	19-AUG-2009	2
G-WQ-07								

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

Matrix:	WATER	

Quality Control Sample Type	С	ount	Rat	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	

Page	: 9 of 9
Work Order	: ES0912327
Client	: GHD SERVICES PTY LTD
Project	: 4215386 41 WESTERN BASIN EIS WQ MONITORING

Matrix: WATER

Quality Control Sample Type		ount	Rate	e (%)	Quality Control Specification
Method	QC	QC Regular Actual Expected		Expected	
Laboratory Duplicates (DUP)					
Multiresidue Pesticide Screen (No. 2)	2	22	9.1	10.0	NEPM 1999 Schedule B(3) and ALS QCS3 requirement

														03
GHD				Chain of Cu	stody & Analysis F	lequest			-					Page _1_ of _1.
	<u> </u>				ματογραφικό το πολογοριατικό το πολογοριστικό το πολογορισ	GHD							_	
PROJECT ID:	4215386 41		QUOTE:			LABORATO	RY BATC	H NO.:						
	Western Basin Els	S WQ Moni	toring											FOR LAB USE ONLY COOLER TEMP:
	GHD					COOLERS								
	PO Box 373, Glads	tone 4680					Yes				No	***	***	
CONTACT:	Adrian White or Ja	DEODATO	Broken				Intact	ments	# <i>840000</i>					
PHONE:	0412035667 or 04	04357072	DESPATCHED TO: ALS Environmental 277-289 Woodpark Road								ad			
EMAIL:	Jason K.Fowle	r@ghd.co	om.au, Adrian.A.	White@ghd.com.au		<u>т </u>					field NS			
INVOICE:	Jason.K.Fowle	r@gnd.co	om.au, Adrian.A.	White@ghd.com.au		02 8784 8555							Environmental Division	
						ANALYSIS REQUIRED							Oudpov	
DATA NEEDED BY:							8							Work Order
REPORT FORMAT:						Hg,	ž,						L)	
					. –	3F) o, v,	Ξ						vest	ES0912397
EMAIL FORMAT:	ESDAT, EXCEL &	PDF				i, Pt	e.						(low	
COMMENTS/SPECIAL HAN Water samples from a				mpling)		C. dissolved metals (EG093F) , Cd, Co, Cr, Cu, Mn, Nl, Pb, V, Hg,	nutrients (UTN - 04) (TP, RP, NH3, NO2, TN)		Chlorophyll a (EP008)	-	- the	Conductivity	Multi Residue Pesticides –EP-215LL	Telephone : +61-2-8784 8555
(EMAIL ADDRESSE		BOVE				a, Be	T N	(2)) 8 	6	15)	Bug	due	SAMPLES COUNT WARINE
L (EMAIL ADDRESSE						S, Ba	trace TKN,	A02	hd	4005	N N	ŭ	Resi	
	<u> </u>				PRESERVATION	Ultra trace ORC - (Sb, As, Ba, Be, (Fe, Al, Ag)	Ultra ti NO3, T	TSS (EA025)	Chlore	pH (EA005)	TDS (EA015)	Electro	Multi 1	ENVIRONMENT
SAMPLE ID	M	ATRIX	DATE	DETECTION LIMIT	FREGERVATION									
G-WQ-03) v	Vater	19/08/2009	LOR	As Required	X	<u> </u>	X	X	<u>x</u>	X :	X	X	

F	RELINQUISHED BY:				Ri	CEIVED BY		 	
		1	IAME :	Frank	DATE	100	03109	 	
			DF:	ALS	TIME	:	gan	 	
DI CACE ENAUL COMPLETED ANALYSI	S REQUEST TO:				<u></u>			 <u></u>	
to untrive Trace and Breconvetive Codes:	LEOWIER DATE: 19/08/2009 NAME: Frank DATE: 10/05/09								
VC = Hydrochloric Acid Preserved Vial; VS	S = Sulfuric Acid Preserved Vial; BS = Sulfuric Aci	Preserved Glass Bottle; Z = Zinc Acetate Preserved B	0116, E = EB						

O = Other.

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order	: ES09	912397		
Client Contact Address	: MR AI : G P O	SERVICES PTY LTD DRIAN WHITE BOX 668 GANE QLD, AUSTRALIA 4001	Laboratory Contact Address	 Environmental Division Sydney Charlie Pierce 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail Telephone Facsimile	: +61 07	.a.white@ghd.com.au 7 3316 3000 7 3316 3333	E-mail Telephone Facsimile	: charlie.pierce@alsenviro.com : +61-2-8784 8555 : +61-2-8784 8500
Project		8641 WESTERN BASIN EIS WQ FORING	Page	: 1 of 3
Order number C-O-C number	:		Quote number	
Site	:		Quote number	: EB2009GHDSER0401 (BN/314/09)
Sampler	:		QC Level	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dates				
Date Samples Rece	eived	: 20-AUG-2009	Issue Date	20-AUG-2009 18:43
Client Requested D	ue Date	: 03-SEP-2009	Scheduled Reporting	g Date : 03-SEP-2009
Delivery Deta	ails			
Mode of Delivery		: Carrier	Temperature	: 1.0'c - Ice present
No. of coolers/boxes	S	: 1 HARD	No. of samples receiption	·
Sercurity Seal		: Intact.	No. of samples analy	ysed : 1

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Breaches in recommended extraction / analysis holding times may occur. Please contact ALS for further information (Jacob Waugh).
- pH analysis should be conducted within 6 hours of sampling.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Jacob Waugh
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (90 days) from date of completion of work order.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

information was not provided by client. Matrix: WATER Laboratory sample Client sampling Client sample ID ID date / time	WATER - EA005: pH 、pH	WATER - EA010P Conductivity (PC)	WATER - EA015 Total Dissolved Solids	WATER - EA025H Suspended Solids (High Level)	WATER - EG035F Dissolved Mercury by FIMS	WATER - EG093A-F Dissolved metals in saline water by ORC-ICPMS	WATER - EG093B-F Dissolved Metals in Saline Water Suite B bv ORC-ICPMS	WATER - EP008 Chlorophyll a
ES0912397-001 19-AUG-2009 15:00 G-WQ-03	✓	✓	✓	✓	 ✓ 	✓	✓	✓

Matrix: WATER Laboratory sample ID	Client sampling date / time	Client sample ID	WATER - EP215LL Multiresidue Pesticide Screen (Suite 2) - Low Level	WATER - UTN-4 SW Ultratrace NO2, NO3, NH3, Nitrogen, Phosphorus, TKN, Reactive Phosphorus
ES0912397-001	19-AUG-2009 15:00	G-WQ-03	✓	✓

Requested Deliverables

MR ADRIAN WHITE

 *AU Certificate of Analysis - NATA (COA) 	Email	adrian.a.white@ghd.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	adrian.a.white@ghd.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	adrian.a.white@ghd.com.au
- A4 - AU Sample Receipt Notification - Environmental (SRN)	Email	adrian.a.white@ghd.com.au
- A4 - AU Tax Invoice (INV)	Email	adrian.a.white@ghd.com.au
- Default - Chain of Custody (COC)	Email	adrian.a.white@ghd.com.au
- EDI Format - ENMRG (ENMRG)	Email	adrian.a.white@ghd.com.au
- EDI Format - ESDAT (ESDAT)	Email	adrian.a.white@ghd.com.au
MR JASON FOWLER		
 *AU Certificate of Analysis - NATA (COA) 	Email	jason.k.fowler@ghd.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	jason.k.fowler@ghd.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	jason.k.fowler@ghd.com.au
- A4 - AU Sample Receipt Notification - Environmental (SRN)	Email	jason.k.fowler@ghd.com.au
- A4 - AU Tax Invoice (INV)	Email	jason.k.fowler@ghd.com.au
 Default - Chain of Custody (COC) 	Email	jason.k.fowler@ghd.com.au
- EDI Format - ENMRG (ENMRG)	Email	jason.k.fowler@ghd.com.au
- EDI Format - ESDAT (ESDAT)	Email	jason.k.fowler@ghd.com.au

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order	ES0912397	Page	: 1 of 4
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR ADRIAN WHITE	Contact	: Charlie Pierce
Address	E P O BOX 373 GLADSTONE QLD, AUSTRALIA 4680	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: adrian.a.white@ghd.com.au	E-mail	: charlie.pierce@alsenviro.com
Telephone	: +61 07 4972 6377	Telephone	: +61-2-8784 8555
Facsimile	: +61 07 4972 6236	Facsimile	: +61-2-8784 8500
Project	: 421538641 WESTERN BASIN EIS WQ MONITORING	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 20-AUG-2009
Sampler	:	Issue Date	: 31-AUG-2009
Site	:		
		No. of samples received	:1
Quote number	: BN/314/09	No. of samples analysed	: 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

ΝΑΤΑ	NATA Accredited Laboratory 825 This document is issued in	Signatories This document has been electronically carried out in compliance with procedures sp	• • •	indicated below. Electronic signing has been		
	accordance with NATA	Signatories	Accreditation Category			
	accreditation requirements.	Hoa Nguyen	Inorganic Chemist	Inorganics		
ACCREDITATION Accredited for compliance with ISO/IEC 17025.		Lana Nguyen	LCMS Chemist	Organics		
		Wisam Abou-Maraseh	Spectroscopist	Inorganics		

Environmental Division Sydney Part of the ALS Laboratory Group 277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

- EG093: LCS recovery for Fe falls outside ALS Dynamic Control Limit. However, it is within the acceptance criteria based on ALS DQO. No further action is required.
- EK267PA, It has been noted that RP is greater than TP, however this difference is within the limits of experimental variation.

Analytical Results

OutcherCitery application of any	Sub-Matrix: WATER		Clie	ent sample ID	G-WQ-03	 	
ContacturdCAS NumberLORGrinE8091237-001EA05- PP00 <th>Sub-Mainx: WATER</th> <th>0</th> <th></th> <th></th> <th>· · · · · · · · · · · · · · · · · · ·</th> <th> </th> <th> </th>	Sub-Mainx: WATER	0			· · · · · · · · · · · · · · · · · · ·	 	
Control Control <t< th=""><th></th><th>CI</th><th>ient samplil</th><th>ng date / time</th><th></th><th> </th><th> </th></t<>		CI	ient samplil	ng date / time		 	
ph Vaiomm <th>Compound</th> <th>CAS Number</th> <th>LOR</th> <th>Unit</th> <th>ES0912397-001</th> <th> </th> <th> </th>	Compound	CAS Number	LOR	Unit	ES0912397-001	 	
BASTOP: Conductivity by PC Titrator V Stop	EA005: pH						
Bench conductiving 29°C1119109100010010001000100010001000100* Atal Discoled Solide (190°C0152 (10-10)1183300	pH Value		0.01	pH Unit	7.94	 	
Bench conductiving 29°C1119109100010010001000100010001000100* Atal Discoled Solide (190°C0152 (10-10)1183300	EA010P: Conductivity by PC Titrator						
EAPIS: Intal Dissolved Solids Solids (8) 0 0 0 0 EAVES: Suspended Solids (8) 0 0 0 EAVES: Suspended Solids (83) 0 0 0 EAVES: Suspended Solids (83) 0 0 0 Colspan="4">0 0 0 0 Colspan="4">0 0 0 0 Colspan="4">0 0 0 0 Colspan="4">0 0 0 0 Colspan="4" 0 <th></th> <th></th> <th>1</th> <th>µS/cm</th> <th>51000</th> <th> </th> <th> </th>			1	µS/cm	51000	 	
^ * Delisable Solide							
* Augend Solids (So)offoffoffoffoffoffEC033F: Dissolved Marcury DY TASD 700.0010.0010.000 <td< th=""><th></th><th>GIS-210-010</th><th>1</th><th>mg/L</th><th>38300</th><th> </th><th> </th></td<>		GIS-210-010	1	mg/L	38300	 	
* Augend Solids (So)offoffoffoffoffoffEC033F: Dissolved Marcury DY TASD 700.0010.0010.000 <td< th=""><th>EA025: Suspended Solids</th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	EA025: Suspended Solids						
EG033F: Dissolved Mercury by FMS v v v v v Morcury 739-07-0 0.00 mgL <0001 C6033F: Dissolved Metals in Saline Water by ORC-ICENE			5	mg/L	53	 	
MenoryYessonMenoryMenor							
Ed93.F: Dissolved Metals in Saline Water by ORC-ICPWS Variable V		7439-97-6	0.0001	mg/L	<0.0001	 	
Auminum74299.51010/L <t< th=""><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	-						
Antimony7440.3600.5upl0.05		_		ug/L	30	 	
Iron 7439896 5 µg/L 6 Arsenic 7440-39.2 0.5 µg/L 1.6						 	
Arsenic74403820.5μg/L1.6 <t< th=""><th></th><th></th><th></th><th></th><th></th><th> </th><th> </th></t<>						 	
BardumT400-39-31µg/LT						 	
Beryllum7404.170.1/µQ/L·0.01/··· <th></th> <th></th> <th></th> <th></th> <th></th> <th> </th> <th> </th>						 	
Chromium T44047.3 0.5 µg/L <0.5	Beryllium		0.1		<0.1	 	
Cobalt T40.484 0.2 µg/L <0.2	Cadmium	7440-43-9	0.2	µg/L	<0.2	 	
Copper 7440-50-8 1 µg/L <1	Chromium	7440-47-3	0.5	µg/L	<0.5	 	
Indication Ingl Ingl<	Cobalt	7440-48-4	0.2	µg/L	<0.2	 	
Maganese 7439-96- 0.5 µg/L 1.7 Nickel 7440-02-0 0.5 µg/L <-0.5	Copper	7440-50-8	1	µg/L	<1	 	
Nickel 7440-02-0 0.5 µg/L <0.5	Lead	7439-92-1				 	
Silver7440-2240.1µg/L<0.1	Manganese	7439-96-5				 	
Vanadium $7440.62.2$ 0.5 $\mu g/L$ 3.6 \dots \dots \dots \dots \dots EP008: Chlorophyll aChlorophylla \dots 1 $mg/m3$ <1 \dots \dots \dots \dots \dots \dots EP215: Multiresidue Pesticide Residue Screen (Suite 2)Simazine $122.34.9$ 0.005 $\mu g/L$ <0.005 \dots \dots \dots \dots \dots Diuron $330.54.1$ 0.005 $\mu g/L$ <0.005 \dots \dots \dots \dots \dots Atrazine $1912.24.9$ 0.005 $\mu g/L$ <0.005 \dots \dots \dots \dots \dots Molinate $2212.67.1$ 0.005 $\mu g/L$ <0.005 \dots \dots \dots \dots \dots Metolachlor $51218.45.2$ 0.005 $\mu g/L$ <0.005 \dots \dots \dots \dots \dots \dots Malthion $121.75.5$ 0.002 $\mu g/L$ <0.005 \dots \dots \dots \dots \dots \dots Diazion $333.41.5$ 0.005 $\mu g/L$ <0.005 \dots \dots \dots \dots \dots \dots Thiobencarb $28249.77.6$ 0.005 $\mu g/L$ <0.005 \dots \dots \dots \dots \dots \dots		7440-02-0				 	
EP008: Chlorophyll a 1 mg/m3 <1						 	
Chlorophylla1mg/m3<1		7440-62-2	0.5	µg/L	3.6	 	
EP215: Multiresidue Pesticide Residue Screen (Suite 2) Volume	EP008: Chlorophyll a						
Sinazine122-3490.005µµ/L<0.005	Chlorophyll a		1	mg/m3	<1	 	
Diuron 330-54-1 0.005 µg/L <0.005	EP215: Multiresidue Pesticide Residue S	creen (Suite 2)					
Atrazine 1912-24-9 0.005	Simazine	122-34-9				 	
Molinate 2212-67-1 0.005						 	
Metolachlor 51218-45-2 0.005						 	
Malathion 121-75-5 0.002 µg/L <0.002							
Diazinon 333-41-5 0.005 μg/L <0.005							
Thiobencarb 28249-77-6 0.005 µg/L <0.005						 	
Chiorpyritos 2921-88-2 0.005 µg/L <0.005						 	
	Chiorpyritos	2921-88-2	0.005	µg/L	<0.005	 	

Analytical Results

Sub-Matrix: WATER		Clie	ent sample ID	G-WQ-03							
	Client sampling date / time			19-AUG-2009 15:00							
Compound	CAS Number	LOR	Unit	ES0912397-001							
P215: Multiresidue Pesticide Residue Screen (Suite 2) - Continued											
Trifluralin	1582-09-8	0.005	µg/L	<0.005							
Ultra-Trace Nutrients	Ultra-Trace Nutrients										
Ammonia as N	7664-41-7	0.005	mg/L	<0.005							
Nitrite as N		0.002	mg/L	<0.002							
^ Nitrate as N	14797-55-8	0.002	mg/L	0.002							
Nitrite + Nitrate as N		0.002	mg/L	0.002							
^ Total Kjeldahl Nitrogen as N		0.05	mg/L	0.11							
Total Nitrogen as N		0.05	mg/L	0.12							
Reactive Phosphorus as P		0.001	mg/L	0.007							
Total Phosphorus as P		0.005	mg/L	0.006							

Environmental Division

QUALITY CONTROL REPORT

Work Order	: ES0912397	Page	: 1 of 7
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR ADRIAN WHITE	Contact	: Charlie Pierce
Address	: P O BOX 373	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	GLADSTONE QLD, AUSTRALIA 4680		
E-mail	: adrian.a.white@ghd.com.au	E-mail	: charlie.pierce@alsenviro.com
Telephone	: +61 07 4972 6377	Telephone	+61-2-8784 8555
Facsimile	: +61 07 4972 6236	Facsimile	: +61-2-8784 8500
Project	: 421538641 WESTERN BASIN EIS WQ MONITORING	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 20-AUG-2009
Sampler	:	Issue Date	: 31-AUG-2009
Order number	:		
		No. of samples received	:1
Quote number	: BN/314/09	No. of samples analysed	: 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

ΝΑΤΑ	NATA Accredited Laboratory 825	Signatories This document has been electronic carried out in compliance with procedure	cally signed by the authorized signato s specified in 21 CFR Part 11.	ories indicated below. Electronic s	signing has been			
NAIA	accordance with NATA	Signatories	Position	Accreditation Category				
	accreditation requirements.	Hoa Nguyen	Inorganic Chemist	Inorganics				
WORLD RECOGNISED	Accredited for compliance with	Lana Nguyen	LCMS Chemist	Organics				
ACCREDITATION	ISO/IEC 17025.	Wisam Abou-Maraseh	Spectroscopist	Inorganics				
Environmental Division Sydney								

Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EA005: pH (QC Lot	: 1075294)										
ES0912396-001	Anonymous	EA005: pH Value		0.01	pH Unit	8.11	8.12	0.1	0% - 20%		
EA010P: Conductiv	ity by PC Titrator (QC I	Lot: 1075578)									
ES0912397-001	G-WQ-03	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	51000	51000	0.0	0% - 20%		
EA015: Total Dissol	lved Solids (QC Lot: 10	79805)									
ES0912396-004	Anonymous	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	37100	37400	0.8	0% - 20%		
ES0912425-008	Anonymous	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	326	332	1.8	0% - 20%		
EA025: Suspended	Solids (QC Lot: 107909										
ES0912327-001	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	65	64	1.6	0% - 50%		
ES0912397-001	G-WQ-03	EA025H: Suspended Solids (SS)		5	mg/L	53	61	14.0	0% - 50%		
EG035F: Dissolved	Mercury by FIMS (QC I										
ES0912321-006	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit		
ES0912397-001	G-WQ-03	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit		
EG093F: Dissolved	Metals in Saline Water	by ORC-ICPMS (QC Lot: 1081878)									
EB0913196-001	Anonymous	EG093A-F: Beryllium	7440-41-7	0.1	µg/L	<0.1	<0.1	0.0	No Limit		
		EG093A-F: Silver	7440-22-4	0.1	μg/L	<0.1	<0.1	0.0	No Limit		
		EG093A-F: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	0.0	No Limit		
		EG093A-F: Cobalt	7440-48-4	0.2	µg/L	<0.2	<0.2	0.0	No Limit		
		EG093A-F: Lead	7439-92-1	0.2	µg/L	<0.2	<0.2	0.0	No Limit		
		EG093A-F: Antimony	7440-36-0	0.5	µg/L	<0.5	<0.5	0.0	No Limit		
		EG093A-F: Arsenic	7440-38-2	0.5	µg/L	1.4	1.3	8.7	No Limit		
		EG093A-F: Chromium	7440-47-3	0.5	µg/L	<0.5	<0.5	0.0	No Limit		
		EG093A-F: Manganese	7439-96-5	0.5	µg/L	7.6	7.2	5.3	0% - 50%		
		EG093A-F: Nickel	7440-02-0	0.5	µg/L	1.3	1.2	8.5	No Limit		
		EG093A-F: Vanadium	7440-62-2	0.5	µg/L	2.3	2.8	19.6	No Limit		
		EG093A-F: Barium	7440-39-3	1	µg/L	10	10	0.0	0% - 50%		
		EG093A-F: Copper	7440-50-8	1	µg/L	2	1	68.2	No Limit		
		EG093A-F: Aluminium	7429-90-5	10	µg/L	260	300	13.3	0% - 20%		
EG093F: Dissolved	Metals in Saline Water	by ORC-ICPMS (QC Lot: 1081879)									
EB0913196-001	Anonymous	EG093B-F: Iron	7439-89-6	5	µg/L	6	6	0.0	No Limit		
EP215: Multiresidue	e Pesticide Residue Scr	reen (Suite 2) (QC Lot: 1077549)									
ES0912327-003	Anonymous	EP215-LL: Malathion	121-75-5	0.002	µg/L	<0.002	<0.002	0.0	No Limit		
		EP215-LL: Simazine	122-34-9	0.005	µg/L	<0.005	<0.005	0.0	No Limit		
		EP215-LL: Diuron	330-54-1	0.005	µg/L	<0.005	<0.005	0.0	No Limit		
		EP215-LL: Atrazine	1912-24-9	0.005	µg/L	<0.005	<0.005	0.0	No Limit		

Page	: 4 of 7
Work Order	: ES0912397
Client	: GHD SERVICES PTY LTD
Project	: 421538641 WESTERN BASIN EIS WQ MONITORING

Sub-Matrix: WATER			Γ			Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP215: Multiresidue	e Pesticide Residue Screen (Suite 2) (QC Lot: 1077549) - continued							
ES0912327-003	Anonymous	EP215-LL: Molinate	2212-67-1	0.005	µg/L	<0.005	<0.005	0.0	No Limit
		EP215-LL: Metolachlor	51218-45-2	0.005	µg/L	<0.005	<0.005	0.0	No Limit
		EP215-LL: Diazinon	333-41-5	0.005	μg/L	<0.005	<0.005	0.0	No Limit
		EP215-LL: Thiobencarb	28249-77-6	0.005	µg/L	<0.005	<0.005	0.0	No Limit
		EP215-LL: Chlorpyrifos	2921-88-2	0.005	µg/L	<0.005	<0.005	0.0	No Limit
		EP215-LL: Trifluralin	1582-09-8	0.005	µg/L	<0.005	<0.005	0.0	No Limit
Ultra-Trace Nutrient	ts (QC Lot: 1075117)								
ES0912396-001	Anonymous	EK262PA-SW: Total Nitrogen as N		0.05	mg/L	0.10	0.11	13.9	No Limit
Ultra-Trace Nutrient	ts (QC Lot: 1075118)								
ES0912396-001	Anonymous	EK267PA-SW: Total Phosphorus as P		0.005	mg/L	0.042	0.034	19.7	No Limit
Ultra-Trace Nutrient	ts (QC Lot: 1075280)								
ES0912396-002	Anonymous	EK255A-SW: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	<0.005	0.0	No Limit
ES0912396-004	Anonymous	EK255A-SW: Ammonia as N	7664-41-7	0.005	mg/L	0.016	0.015	0.0	No Limit
Ultra-Trace Nutrient	ts (QC Lot: 1075281)								
ES0912396-002	Anonymous	EK257A-SW: Nitrite as N		0.002	mg/L	0.004	0.003	0.0	No Limit
Ultra-Trace Nutrient	ts (QC Lot: 1075282)								
ES0912396-002	Anonymous	EK259A-SW: Nitrite + Nitrate as N		0.002	mg/L	0.005	0.005	0.0	No Limit
Ultra-Trace Nutrient	ts (QC Lot: 1075283)								
ES0912396-002	Anonymous	EK271A-SW: Reactive Phosphorus as P		0.001	mg/L	0.004	0.003	0.0	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA010P: Conductivity by PC Titrator (QCLot: 10	075578)								
EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	<1	2000 µS/cm	99.8	86.3	112	
EA015: Total Dissolved Solids (QCLot: 1079805	;)								
EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	<1	293 mg/L	100	77.9	122	
A025: Suspended Solids (QCLot: 1079091)									
A025H: Suspended Solids (SS)		5	mg/L	<5	150 mg/L	104	30	150	
EG035F: Dissolved Mercury by FIMS (QCLot: 10	075689)				, , , , , , , , , , , , , , , , , , ,	1 1		I	
G035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.010 mg/L	115	86	116	
EG093F: Dissolved Metals in Saline Water by OF	RCJCPMS (OCI of: 1081878	8)	Ū					1	
EG093A-F: Aluminium	7429-90-5	10	µg/L	<10	50 μg/L	128	80	128	
G093A-F: Antimony	7440-36-0	0.5	μg/L	<0.5					
G093A-F: Arsenic	7440-38-2	0.5	μg/L	<0.5	10 µg/L	90.6	85	125	
G093A-F: Barium	7440-39-3	1	μg/L	<1	10 µg/L	95.3	81	129	
G093A-F: Beryllium	7440-41-7	0.1	μg/L	<0.1	10 µg/L	102	80	122	
G093A-F: Cadmium	7440-43-9	0.2	µg/L	<0.2	10 µg/L	89.1	78	116	
G093A-F: Chromium	7440-47-3	0.5	µg/L	<0.5	10 µg/L	87.9	86	128	
G093A-F: Cobalt	7440-48-4	0.2	µg/L	<0.2	10 µg/L	91.6	87	127	
G093A-F: Copper	7440-50-8	1	µg/L	<1	10 µg/L	92.4	86	124	
G093A-F: Lead	7439-92-1	0.2	µg/L	<0.2	10 µg/L	98.7	87	123	
G093A-F: Manganese	7439-96-5	0.5	µg/L	<0.5	10 µg/L	102	90	122	
G093A-F: Nickel	7440-02-0	0.5	µg/L	<0.5	10 µg/L	91.4	84	124	
G093A-F: Silver	7440-22-4	0.1	µg/L	<0.1	1 µg/L	104	70	130	
G093A-F: Vanadium	7440-62-2	0.5	µg/L	<0.5	10 µg/L	86.2	85	123	
G093F: Dissolved Metals in Saline Water by OI	RC-ICPMS (QCLot: 1081879))							
G093B-F: Iron	7439-89-6	5	µg/L	<5	50 μg/L	# 88.2	89	119	
P008: Chlorophyll a (QCLot: 1075297)									
P008: Chlorophyll a		1	mg/m3		20 mg/m3	100	60.3	134	
		1	mg/m³	<1					
P215: Multiresidue Pesticide Residue Screen (Suite 2) (QCLot: 1077549)								
P215-LL: Simazine	122-34-9	0.005	µg/L	<0.005	0.0125 µg/L	122	65	130	
P215-LL: Diuron	330-54-1	0.005	µg/L	<0.005	0.0125 µg/L	73.3	65	130	
EP215-LL: Atrazine	1912-24-9	0.005	μg/L	<0.005	0.0125 µg/L	80.3	65	130	
P215-LL: Molinate	2212-67-1	0.005	µg/L	<0.005	0.0125 μg/L	113	65	130	
EP215-LL: Metolachlor	51218-45-2	0.005	µg/L	<0.005	0.0125 µg/L	75.3	65	130	

Page	: 6 of 7
Work Order	: ES0912397
Client	: GHD SERVICES PTY LTD
Project	: 421538641 WESTERN BASIN EIS WQ MONITORING

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery Limits (%)		
Method: Compound	CAS Number	LOR Unit Result Concentration		Concentration	LCS	Low	High		
EP215: Multiresidue Pesticide Residue Screen (Su	ite 2) (QCLot: 1077549)	- continued							
EP215-LL: Malathion	121-75-5	0.002	µg/L	<0.002	0.0125 µg/L	88.5	65	130	
EP215-LL: Diazinon	333-41-5	0.005	µg/L	<0.005	0.0125 μg/L	100	65	130	
EP215-LL: Thiobencarb	28249-77-6	0.005	µg/L	<0.005	0.0125 μg/L	89.5	65	130	
EP215-LL: Chlorpyrifos	2921-88-2	0.005	μg/L	<0.005	0.0125 μg/L	82.2	65	130	
EP215-LL: Trifluralin	1582-09-8	0.005	µg/L	<0.005	0.0125 μg/L	73.0	65	130	
Ultra-Trace Nutrients (QCLot: 1075117)									
EK262PA-SW: Total Nitrogen as N		0.05	mg/L	<0.05	1.0 mg/L	95.4	70	110	
Ultra-Trace Nutrients (QCLot: 1075118)									
EK267PA-SW: Total Phosphorus as P		0.005	mg/L	<0.005	0.44 mg/L	101	72	122	
Ultra-Trace Nutrients (QCLot: 1075280)									
EK255A-SW: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.1 mg/L	94.8	74	118	
Ultra-Trace Nutrients (QCLot: 1075281)									
EK257A-SW: Nitrite as N		0.002	mg/L	<0.002	1.0 mg/L	103	70	130	
Ultra-Trace Nutrients (QCLot: 1075282)									
EK259A-SW: Nitrite + Nitrate as N		0.002	mg/L	<0.002	0.1 mg/L	104	76	130	
Ultra-Trace Nutrients (QCLot: 1075283)									
EK271A-SW: Reactive Phosphorus as P		0.001	mg/L	<0.001	0.1 mg/L	105	70	121	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: WATER					Matrix Spike (MS) Report			
				Spike	Spike Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
G035F: Dissolved	Mercury by FIMS (QCLot: 1075	689)						
ES0912321-001	Anonymous	EG035F: Mercury	7439-97-6	0.0100 mg/L	76.0	70	130	
EG093F: Dissolved	Metals in Saline Water by ORC-	ICPMS (QCLot: 1081878)						
EB0913196-001	Anonymous	EG093A-F: Arsenic	7440-38-2	50 µg/L	121	70	130	
		EG093A-F: Barium	7440-39-3	50 µg/L	121	70	130	
		EG093A-F: Beryllium	7440-41-7	50 µg/L	120	70	130	
		EG093A-F: Cadmium	7440-43-9	12.5 µg/L	105	70	130	
		EG093A-F: Chromium	7440-47-3	50 µg/L	119	70	130	
		EG093A-F: Cobalt	7440-48-4	50 µg/L	118	70	130	
		EG093A-F: Copper	7440-50-8	50 µg/L	117	70	130	
		EG093A-F: Lead	7439-92-1	50 µg/L	114	70	130	
		EG093A-F: Manganese	7439-96-5	50 µg/L	109	70	130	
		EG093A-F: Nickel	7440-02-0	50 µg/L	119	70	130	
		EG093A-F: Vanadium	7440-62-2	50 µg/L	112	70	130	
Jltra-Trace Nutrient	ts (QCLot: 1075117)							
ES0912396-001	Anonymous	EK262PA-SW: Total Nitrogen as N		0.5 mg/L	104	70	130	
Jltra-Trace Nutrient	ts (QCLot: 1075118)							
ES0912396-001	Anonymous	EK267PA-SW: Total Phosphorus as P		0.5 mg/L	84.3	70	130	
Jltra-Trace Nutrient	ts (QCLot: 1075280)							
ES0912396-002	Anonymous	EK255A-SW: Ammonia as N	7664-41-7	0.1 mg/L	102	70.	130	
Jltra-Trace Nutrient	ts (QCLot: 1075281)							
ES0912396-002	Anonymous	EK257A-SW: Nitrite as N		0.1 mg/L	96.6	70	130	
Iltra-Trace Nutrient	ts (QCLot: 1075282)							
ES0912396-002	Anonymous	EK259A-SW: Nitrite + Nitrate as N		0.1 mg/L	98.0	70	130	
Iltra-Trace Nutrient	ts (QCLot: 1075283)							
ES0912396-002	Anonymous	EK271A-SW: Reactive Phosphorus as P		0.1 mg/L	92.8	70	130	
		LIZI IA-OW. REDUINE I HOSPHOLUS do F	I	·····			.50	

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order	: ES0912397	Page	: 1 of 7
Client	: GHD SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR ADRIAN WHITE	Contact	: Charlie Pierce
Address	: P O BOX 373 GLADSTONE QLD, AUSTRALIA 4680	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: adrian.a.white@ghd.com.au	E-mail	: charlie.pierce@alsenviro.com
Telephone	: +61 07 4972 6377	Telephone	: +61-2-8784 8555
Facsimile	: +61 07 4972 6236	Facsimile	: +61-2-8784 8500
Project	: 421538641 WESTERN BASIN EIS WQ MONITORING	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 20-AUG-2009
Sampler	:	Issue Date	: 31-AUG-2009
Order number	:		
		No. of samples received	:1
Quote number	: BN/314/09	No. of samples analysed	: 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Environmental Division Sydney Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withir	holding time
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005: pH							
Clear Plastic Bottle - Natural							
G-WQ-03	19-AUG-2009				20-AUG-2009	19-AUG-2009	×
EA010P: Conductivity by PC Titrator							
Clear Plastic Bottle - Natural							
G-WQ-03	19-AUG-2009				21-AUG-2009	16-SEP-2009	✓
EA015: Total Dissolved Solids							
Clear Plastic Bottle - Natural							
G-WQ-03	19-AUG-2009				26-AUG-2009	26-AUG-2009	✓
EA025: Suspended Solids							
Clear Plastic Bottle - Natural							
G-WQ-03	19-AUG-2009				25-AUG-2009	26-AUG-2009	✓
EG035F: Dissolved Mercury by FIMS			1			I	
Clear HDPE (U-T ORC) - Filtered; Lab-acidified							
G-WQ-03	19-AUG-2009				21-AUG-2009	16-SEP-2009	✓
EG093F: Dissolved Metals in Saline Water by ORC-ICPMS					1		
Clear HDPE (U-T ORC) - Filtered; Lab-acidified G-WQ-03	19-AUG-2009	27-AUG-2009	15-FEB-2010	1	27-AUG-2009	15-FEB-2010	
	19-AUG-2009	27-AUG-2009	13-FEB-2010	✓	27-AUG-2009	13-FEB-2010	✓
EP008: Chlorophyll a					1		
White Plastic Bottle - Unpreserved G-WQ-03	19-AUG-2009				20-AUG-2009	21-AUG-2009	1
	19-A0G-2009				20-A0G-2003	21-700-2003	v
EP215: Multiresidue Pesticide Residue Screen (Suite 2) Amber Glass Bottle - Unpreserved							
G-WQ-03	19-AUG-2009	21-AUG-2009	26-AUG-2009	1	21-AUG-2009	03-OCT-2009	1
Ultra-Trace Nutrients	10 100 2000	217400 2000	237100 2000	•	21 400 2000	20 001 2000	•
Clear Plastic Bottle - Filtered (AS)							
G-WQ-03	19-AUG-2009				20-AUG-2009	20-AUG-2009	1
Clear Plastic Bottle - Natural (AS)							•
G-WQ-03	19-AUG-2009	20-AUG-2009	20-AUG-2009	✓	20-AUG-2009	20-AUG-2009	 ✓

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Atrix: WATER						intol frequency i	not within specification ; 🗸 = Quality Control frequency within specificat
uality Control Sample Type			ount		Rate (%)		Quality Control Specification
nalytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
aboratory Duplicates (DUP)							
mmonia as N - Ultra-Trace in Saline Waters	EK255A-SW	2	12	16.7	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
onductivity by PC Titrator	EA010-P	1	2	50.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
issolved Mercury by FIMS	EG035F	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
issolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	1	10	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
bissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	1	10	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
ultiresidue Pesticide Screen (No. 2)	EP215-LL	1	2	50.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
itrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	1	5	20.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
itrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	5	20.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Н	EA005	1	7	14.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
eactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	5	20.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
uspended Solids (High Level)	EA025H	2	19	10.5	9.5	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Dissolved Solids	EA015	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	5	20.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	5	20.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
aboratory Control Samples (LCS)							
mmonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	12	8.3	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
hlorophyll a	EP008	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
onductivity by PC Titrator	EA010-P	1	2	50.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
issolved Mercury by FIMS	EG035F	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
issolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	1	10	10.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
issolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	1	10	10.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
lultiresidue Pesticide Screen (No. 2)	EP215-LL	1	2	50.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
itrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	1	5	20.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
itrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	5	20.0	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
eactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	5	20.0	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
uspended Solids (High Level)	EA025H	1	19	5.3	4.8	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Dissolved Solids	EA015	1	20	5.0	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	5	20.0	10.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	5	20.0	10.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
ethod Blanks (MB)							
mmonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	12	8.3	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
hlorophyll a	EP008	1	19	5.3	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement
onductivity by PC Titrator	EA010-P	1	2	50.0	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	13	7.7	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	1	10	10.0	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Matrix: WATER				Evaluation	n: × = Quality Co	ntrol frequency r	not within specification ; 🗸 = Quality Control frequency within specification.
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	1	10	10.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Multiresidue Pesticide Screen (No. 2)	EP215-LL	1	2	50.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	1	5	20.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	5	20.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	5	20.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Suspended Solids (High Level)	EA025H	1	19	5.3	4.8	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids	EA015	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	5	20.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	5	20.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	1	12	8.3	5.0	✓	ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	13	7.7	5.0	✓	ALS QCS3 requirement
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	1	10	10.0	5.0	✓	ALS QCS3 requirement
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	1	5	20.0	5.0	✓	ALS QCS3 requirement
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	1	5	20.0	5.0	✓	ALS QCS3 requirement
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	1	5	20.0	5.0	✓	ALS QCS3 requirement
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	1	5	20.0	5.0	✓	ALS QCS3 requirement
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	1	5	20.0	5.0	✓	ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH	EA005	WATER	APHA 21st ed. 4500 H+ B. pH of water samples is determined by ISE either manually or by automated pH meter. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Conductivity by PC Titrator	EA010-P	WATER	APHA 21st ed., 2510 B This procedure determines conductivity by automated ISE. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Dissolved Solids	EA015	WATER	APHA 21st ed., 2540C A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Suspended Solids (High Level)	EA025H	WATER	APHA 21st ed., 2540D A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Mercury by FIMS	EG035F	WATER	AS 3550, APHA 21st ed. 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45 um filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals in Saline Water -Suite A by ORC-ICPMS	EG093A-F	WATER	APHA 21st ed., 3125; USEPA SW846 - 6020 Samples are 0.45 um filtered prior to analysis. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals in Saline Water -Suite B by ORC-ICPMS	EG093B-F	WATER	APHA 21st ed., 3125; USEPA SW846 - 6020 Samples are 0.45 um filtered prior to analysis. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ammonia as N - Ultra-Trace in Saline Waters	EK255A-SW	WATER	APHA 21st ed., 4500-NH3 H Ammonia is determined by direct colorimetry by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite as N - Ultra-Trace in Saline Waters	EK257A-SW	WATER	APHA 21st ed., 4500-NO2- B. Nitrite is determined by direct colourimetry by FIA.
Nitrate as N - Ultra-Trace in Saline Waters	EK258A-SW	WATER	APHA 21st ed., 4500-NO3- I Nitrate is reduced to nitrite by way of a cadmium reduction column followed by quantification by FIA. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results.
Nitrite and Nitrate as N - Ultra-Trace in Saline Waters	EK259A-SW	WATER	APHA 21st ed., 4500-NO3- I. Combined oxidised Nitrogen (NO2+NO3) is determined by Cadmium Reduction and direct colourimetry by FIA.

Analytical Methods	Method	Matrix	Method Descriptions
TKN (Total N - NOx-N). (FIA - UT) in Saline Waters	EK261PA-SW	WATER	APHA 21st ed., 4500-P J. & 4500-NO3- I. Calculated by difference from total Nitrogen and NOx. Contributing method parameters are determined by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline	EK262PA-SW	WATER	APHA 21st ed., 4500-P J. Persulfate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus. As sample is digested with persulfate under alkaline conditions yielding orthophosphate and nitrate. Following digestion, analytes are determined by flow injection analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline	EK267PA-SW	WATER	APHA 21st ed., 4500-P J. Persulfate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus. As sample is digested with persulfate under alkaline conditions yielding orthophosphate and nitrate. Following digestion, analytes are determined by flow injection analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Reactive Phosphorus as P - Ultra-Trace in Saline Water	EK271A-SW	WATER	APHA 21st ed., 4500-P E Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Chlorophyll a	EP008	WATER	In-house (APHA 21st ed., 10200 H mod.) The pigments are extracted into aqueous acetone. The optical density of the extract before and after acidification at both 664 nm and 665 nm is determined spectrometrically.
Multiresidue Pesticide Screen (No. 2)	EP215-LL	WATER	In-house, LCMS (APCI in positive mode). The compounds are extracted from water samples using dichloromethane. The organic phase is evaporated to dryness and reconstituted in a mixture of acetonitrile and water for reverse phase HPLC analysis.
Preparation Methods	Method	Matrix	Method Descriptions
Persulfate Digestion for UT TN and TP for FIA/Saline	EK262/267PA-SW	WATER	APHA 21st ed., 4500 P - J. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Separatory funnel extraction for LCMS herbicides.	* EP215-PR	WATER	In-house. A 1 L sample is extracted three times with 60 mL of methylene chloride, reduced to dryness and made up in HPLC mobile phase.

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Laboratory Control Spike (LCS) Recoveries							
EG093F: Dissolved Metals in Saline Water by ORC-ICP	1244751-003		Iron	7439-89-6	88.2 %	89-119%	Recovery less than lower control limit

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Matrix: WATER Method Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Date analysed Due for analysis Days Days overdue overdue EA005: pH **Clear Plastic Bottle - Natural** 20-AUG-2009 19-AUG-2009 G-WQ-03 ------------1

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

Appendix C Field Quality Control and Quality Assurance Data

Field Duplicates (WATER) Filter: ALL			SDG Field_ID Sampled_Date-Time	EB0908160 G-WQ-04 21/05/2009	EB0908160 QA1 RPE 21/05/2009	EB0908368 G-WQ-03 26/05/2009	EB0908368 QA2 26/05/2009	EB0900 RPD G-WC 23/06/2	-02 QA-03	RPD	G-WQ-07	EB0909996 QA-04 RPE 24/06/2009	G-WQ-04	ES0907382 QA1 RP 21/05/2009	D G-WQ-03	ES0907660 QA2 26/05/2009	RPD	ES0909216 G-WQ-07 24/06/2009	QA-04 RP	D G-WQ-02	ES0909220 QA-03 23/06/2009	RPD G-WQ-09	ES0911109 QA01 28/07/2009	RPD	ES0912210 G-WQ-05 17/08/2009	QA01 RPD
Method_Type	ChemName Un	nits									1		1		1											
(GC/MS/FPD) and LC/MS/MS.	Tebuthiuron mg		0.01	<0.01	<0.01 0	<0.01	<0.01	0																		
Ammonia as N - Ultra-Trace in Saline Waters	Ammonia mg	g/l	0.005										<0.005	<0.005 0	<0.005	<0.005	0	0.006	0.007 1	5 <0.005	< 0.005	0 0.009	0.009	0	<0.005	0.009 57
				54400.0	50000.0	54000.0	54500.0	4 7000	70000		50500.0	04000.0														
Conductivity by PC Titrator	Electrical conductivity *(lab) uS	S/cm	1	51100.0	50600.0 1	54900.0	54500.0	1 7200	0.0 72200.0	0 0	59500.0	61900.0 4										50100.0	50900.0	2	50100.0	50900.0 2
Dissolved Mercury by FIMS	Mercury (Filtered) mg	g/l	0.0001										<0.0001	<0.0001 0	<0.0001	<0.0001	0	<0.0001	<0.0001 0	<0.0001	<0.0001	0 <0.0001	<0.0001	0	<0.0001	<0.0001 0
Dissolved Metals in Saline Water -Suite A by ORC-I	Aluminium (Filtered) mg		0.01										<0.01	<0.01 0	<0.01	<0.01	0	<0.01	<0.01 0	<0.01	<0.01	0 <0.01	<0.01	0	<0.01	0.07 150
	Antimony (Filtered) µg Arsenic (Filtered) µg		0.5										<0.5 1.7	<0.5 0		<0.5	0	<0.5 0.7	<0.5 0		<0.5	0 <0.5	<0.5	0	<0.5	<0.5 0 0.9 12
	Barium (Filtered) mg	g/l	0.001										0.008	0.008 0 <0.1 0		0.009	11 0	0.008 <0.1	0.008 0 <0.1 0	0.007	0.006	15 0.008 0 <0.1	0.008	0	0.008 <0.1	0.009 12 <0.1 0
	Beryllium (Filtered) µg Cadmium (Filtered) µg		0.2										<0.2	<0.2 0	<0.2	<0.2	0	<0.2	<0.2 0	<0.2	<0.2	0 <0.2	<0.2	0	<0.2	<0.2 0
	Chromium (III+VI) (Filtered) µg Cobalt (Filtered) µg		0.5	-									<0.5 <0.2	<0.5 0 <0.2 0		<0.5	0	<0.5 <0.2	<0.5 0		<0.5 <0.2	0 <0.5	<0.5	0	<0.5 <0.2	<0.5 0 <0.2 0
	Copper (Filtered) mg	g/l	0.001										0.001	0.001 0	< 0.001	< 0.001	0	<0.001	<0.001 0	<0.001	<0.001	0 <0.001	<0.001	0	<0.001	<0.001 0
	Lead (Filtered) µg Manganese (Filtered) µg		0.2										<0.2	<0.2 0 3.3 3		<0.2	0	<0.2 0.7	<0.2 0	<0.2 3 0.8	<0.2	0 <0.2 22 0.8	<0.2	0 32	<0.2 3.0	<0.2 0 4.6 42
	Nickel (Filtered) µg	g/L	0.5 0.1										<0.5 <0.1	<0.5 0 <0.1 0		0.5 <0.1	18 0	<0.5 <0.1	<0.5 0 <0.1 0	<0.5 <0.1	<0.5 <0.1	0 0.9 0.1	1.0 <0.1	11	0.7 <0.1	0.5 33 <0.1 0
	Silver (Filtered) µg Vanadium (Filtered) µg		0.5										1.8	2.2 20		1.5	7	₹0.1 1.1	1.4 24		1.2	9 1.0	1.1	10	<0.1	0.6 18
Dissolved Metals in Saline Water -Suite B by ORC-I	Iron (Filtered) mg	g/l	0.005										0.006	0.006 0	<0.005	<0.005	0	<0.005	<0.005 0	<0.005	<0.005	0 <0.005	<0.005	0	0.012	<0.005 82
													0.000	0.000 0	<0.000	<0.000	0	<0.000	<0.000 0	~0.000	<0.000	0 (0.000	<0.000	Ŭ	0.012	<0.000 02
Multiresidue Pesticide Screen (N0. 1) - Low Level	Atrazine µg Hexazinone µg		0.01	<0.01 <0.01	<0.01 0 <0.01 0	<0.01 <0.01	<0.01 <0.01	0												-				_		
	Molinate µg	g/L	0.01	<0.01	<0.01 0	<0.01	<0.01	0																		
	Propiconazole µg Temephos µg		0.01 0.01	<0.01 <0.01	<0.01 0 <0.01 0	<0.01 <0.01	<0.01 <0.01	0																		
Multiresidue Pesticide Screen (No. 2)		_	0.005	<0.005	<0.005 0	<0.005	<0.005	0					1					<0.005	<0.005 0	<0.005	< 0.005	0	-		<0.005	<0.005 0
Multiresidue Pesticide Screen (No. 2)	Chlorpyrifos µg	g/L	0.005	0.008	0.015 61	<0.005	< 0.005	0										<0.005	<0.005 0	<0.005	< 0.005	0			<0.005	<0.005 0
	Diazinon µg. Diuron µg.	j/L	0.005 0.005	<0.005 <0.005	<0.005 0 <0.005 0	<0.005 <0.005	<0.005 <0.005	0						$\left - \right $			+	<0.005 <0.005	<0.005 0 <0.005 0	<0.005 <0.005	<0.005 <0.005	0		+	<0.005 <0.005	<0.005 0 <0.005 0
	Malathion µg	g/L	0.002	<0.002	<0.002 0	<0.002	<0.002	0					1					<0.002	<0.002 0	<0.002	< 0.002	0			<0.002	<0.002 0
	Metolachlor µg. Molinate µg.		0.005	<0.005 <0.005	<0.005 0 <0.005 0	<0.005 <0.005	<0.005 <0.005	0					+	+	+	1		0.03 <0.005	<0.005 14 <0.005 0		<0.005 <0.005	57 0	+		<0.005 <0.005	<0.005 0 <0.005 0
	Simazine µg	j/L	0.005	<0.005	<0.005 0	<0.005	< 0.005	0					-					<0.005	<0.005 0	<0.005	<0.005	0			< 0.005	<0.005 0
	Thiobencarb µg. Trifluralin µg.		0.005 0.005	<0.005 <0.005	<0.005 0 <0.005 0	<0.005 <0.005	<0.005 <0.005	0										<0.005 <0.005	<0.005 0 <0.005 0		<0.005 <0.005	0			<0.005 <0.005	<0.005 0 <0.005 0
Nitrate as N - Ultra-Trace in Saline Waters	-		0.002					+ $-$					0.003	0.003 0	0.005	0.003	50	0.009				0 0.006	0.006	0	0.003	<0.002 40
													0.003		0.005	0.003	50				0.006			Ŭ		
Nitrite and Nitrate as N - Ultra-Trace in Saline W	Nitrogen (Total Oxidised) mg	g/l	0.002		+			<u> </u>					0.003	0.003 0			+	0.009	0.008 12	0.006	0.006	0 0.006	0.006	0	0.003	<0.002 40
Nitrite as N - Ultra-Trace in Saline Waters	Nitrite (as N) mg	g/l	0.002	1		1							<0.002	<0.002 0	<0.002	<0.002	0	<0.002	<0.002 0	<0.002	<0.002	0 <0.002	<0.002	0	<0.002	<0.002 0
Organochlorine Pesticides (Ultra-trace)	4,4-DDE µg	g/L	0.01	<0.01	<0.01 0	<0.01	<0.01	0					1				+			-				+		
	a-BHC µg	j/L	0.01	< 0.01	<0.01 0	<0.01	< 0.01	0																		
	Aldrin µg. b-BHC µg.		0.01	<0.01 <0.01	<0.01 0 <0.01 0	<0.01 <0.01	<0.01 <0.01	0																		
	chlordane µg. Chlordane (cis) µg.		0.01	<0.01 <0.01	<0.01 0 <0.01 0	<0.01 <0.01	<0.01 <0.01	0									_							_		
	Chlordane (trans) µg		0.01	<0.01	<0.01 0	<0.01	<0.01	0																		
	d-BHC µg. DDD µg.		0.01	<0.01	<0.01 0 <0.01 0	<0.01 <0.01	<0.01 <0.01	0												_						
	DDT µg	j/L	0.01	<0.01	<0.01 0	<0.01	<0.01	0																		
	Dieldrin µg. Endosulfan µg.		0.01	<0.01 <0.01	<0.01 0 <0.01 0	<0.01 <0.01	<0.01 <0.01	0																		
	Endosulfan I µg	j/L	0.01	<0.01	<0.01 0	<0.01	<0.01	0																		
	Endosulfan II µg. Endosulfan sulphate µg.	-	0.01	<0.01	<0.01 0	<0.01 <0.01	<0.01 <0.01	0																		
	Endrin µg, Endrin aldehyde µg,		0.01	<0.01 <0.01	<0.01 0 <0.01 0	<0.01 <0.01	<0.01 <0.01	0									_							_		
	Endrin ketone µg	j/L	0.01	<0.01	<0.01 0	<0.01	<0.01	0																		
	g-BHC (Lindane) µg. Heptachlor µg.		0.01	<0.01	<0.01 0 <0.005 0	<0.01	<0.01	0												-				_		
	Heptachlor epoxide µg	j/L	0.01	< 0.01	<0.01 0	< 0.01	< 0.01	0																		
	Hexachlorobenzene µg. Methoxychlor µg.		0.01	<0.01 <0.01	<0.01 0 <0.01 0	<0.01 <0.01	<0.01 <0.01	0												-				_		
Organophanharus Pastiaidas (Litra trass)	Azinophos mothyl	л	0.1	-0.1	<0.1 0	-0.12	-0.12	0																		
Organophosphorus Pesticides (Ultra-trace)	Azinophos methyl µg. Bromophos µg.		0.1	<0.1 <0.1	<0.1 0		<0.12 <0.12	0																		
	Carbophenothion µg, Chlorfenvinphos Z µg,	ı/L	0.1 0.1	<0.1 <0.1	<0.1 0 <0.1 0	<0.12 <0.12	<0.12 <0.12	0		-		+					+			_				+		
	Chlorpyrifos-methyl µg	ı/L	0.1	<0.1	<0.1 0	<0.12	<0.12	0					1													
	Demeton-S-methyl µg, Dichlorvos µg		0.1	<0.1 <0.1	<0.1 0 <0.1 0		<0.12 <0.12	0					+		-	+					1	+ +	+			
	Dimethoate µg	ı/L	0.1	<0.1	<0.1 0	<0.12	<0.12	0					-							-						
	Ethion µg Fenamiphos µg		0.1 0.1	<0.1 <0.1	<0.1 0 <0.1 0	<0.12 <0.12	<0.12 <0.12	0																		
	Fenthion µg	ı/L	0.1	<0.1 <0.1	<0.1 0 <0.1 0	<0.12 <0.12	<0.12 <0.12	0					+		+		-					+	+			
	Methyl parathion µg	µ/L	0.1	<0.1	<0.1 0	<0.12	<0.12	0																		
	Monocrotophos ug. Parathion ug.	ı/L	0.1 0.1	<0.1 <0.1	<0.1 0 <0.1 0	<0.12 <0.12	<0.12 <0.12	0		-		+	+	+	+		+					+		+		
	Pirimphos-ethyl µg	µ∕L	0.1	<0.1	<0.1 0	<0.12	<0.12	0																		
	Prothiofos µg	ı/L	U.1	<0.1	<0.1 0	<0.12	<0.12	0					+	+	-	-	+ +				1	+ +	+	+		
Organotin Compounds (Soluble)	Tributyltin (as Sn) ng	Sn/L	2	<2.0	<2.0 0	<2.0	<2.0	0									+			-						
PAH/Phenols (GC/MS - SIM)	2,4,5-trichlorophenol µg	ı/L	1	<1.0	<1.0 0	<1.0	<1.0	0																		
	2,4,6-trichlorophenol µg	ı∕L	1	<1.0 <1.0	<1.0 0 <1.0 0	<1.0 <1.0	<1.0 <1.0	0					+				$+ \neg$							+		
	2,4-dimethylphenol µg	ı/L	1	<1.0	<1.0 0	<1.0	<1.0	0								1					1					
	2,6-dichlorophenol µg, 2-chlorophenol µg,	ı/L	1	<1.0 <1.0	<1.0 0 <1.0 0	<1.0 <1.0	<1.0 <1.0	0				+	+	<u>├</u> ──	+	-	+					+ +		+		
	2-methylphenol µg	µ∕L	1	<1.0	<1.0 0	<1.0	<1.0	0					1		1	1				1	1					
	2-nitrophenol µg. 3-&4-methylphenol µg.		1	<1.0 <2.0	<1.0 0 <2.0 0	<1.0 <2.0	<1.0 <2.0	0					+	+	+	1				-	1	+ +	+			
	4-chloro-3-methylphenol µg	ı/L	1	<1.0	<1.0 0	<1.0	<1.0	0									+			-						
	Acenaphthene µg Acenaphthylene µg		1	<1.0 <1.0	<1.0 0 <1.0 0	<1.0 <1.0	<1.0 <1.0	0			L_															
	Anthracene µg	J/L	1	<1.0	<1.0 0	<1.0	<1.0	0					1													
	Benz(a)anthracene ug Benzo(a) pyrene ug		0.5	<1.0 <0.5	<1.0 0 <0.5 0	<1.0 <0.5	<1.0 <0.5	0																		
	Benzo(b)fluoranthene ug, Benzo(g,h,i)perylene ug,	ı/L	1	<1.0 <1.0	<1.0 0 <1.0 0	<1.0 <1.0	<1.0 <1.0	0		$\neg \neg$		+ $-$	+	+	+	+	$+ \neg$						+	+ - 1		
	Benzo(k)fluoranthene µg	J/L	1	<1.0	<1.0 0	<1.0	<1.0	0																		
	Chrysene ug. Dibenz(a,h)anthracene ug.		1	<1.0 <1.0	<1.0 0 <1.0 0	<1.0 <1.0	<1.0 <1.0	0				+	+	+	+	-	+					+ +		+		
	Fluoranthene µg	J/L	1	<1.0	<1.0 0	<1.0	<1.0	0															-			
	Fluorene µg. Indeno(1,2,3-c,d)pyrene µg.		1	<1.0 <1.0	<1.0 0 <1.0 0		<1.0 <1.0	0			L_															
	Naphthalene µg		1	<1.0	<1.0 0		<1.0	0					1			1									-	

				-																									
Field Duplicates (WATER)			SDG	EB0908160				EB0908368		B0909974	EB0909974		96 EB0909996		2 ES0907382			ES090766			ES0909216		ES0909220			ES0911109		210 ES0912	
Filter: ALL			Field_ID	G-WQ-04			WQ-03	QA2 26/05/2009		G-WQ-02		PD G-WQ-0					G-WQ-03			WQ-07			G-WQ-02	QA-03 RP			RPD G-WQ-		1 RPD
			Sampled_Date-Time	21/05/2009	21/05/2009	26/	05/2009	26/05/2009	Ζ.	3/06/2009	23/06/2009	24/06/20	9 24/06/2009	21/05/2005	9 21/05/2009		26/05/2009	26/05/2009	24	06/2009	24/06/2009		23/06/2009	23/06/2009	28/07/2009	28/07/2009	17/08/2	009 17/08/2	09
	Pentachlorophenol	µg/L	4	<4.0	<4.0	0	<4.0	<4.0	0						1							1				1			
	Phenanthrene	µg/L	1	<1.0	<1.0		<1.0	<1.0	0																				-
	Phenol	µg/L	1	<1.0	<1.0	0	<1.0	<1.0	0																				
	Pyrene	µg/L	1	<1.0	<1.0	0	<1.0	<1.0	0																				
pH	pH (Lab)	pH_Unit	s 0.01	8.1	8.14	0	8.05	8.07	0	8.0	8.02	0 7.77	7.76 0												8.21	8.18	0 8.01	8.07	1
Phenoxyacetic Acid Herbicides (LCMS - Low DL)	2,4,5-T	µg/L	0.01	<0.01	<0.01	0	<0.01	<0.01	0					_	-														
Filehoxyacetic Acid Herbicides (ECIVIS - ECW DE)	2,4,5-TP (Silvex)	µg/L	0.01	<0.01	<0.01		< 0.01	<0.01	0																				
	2,4,6-trichlorophenol	µg/L	0.1	<0.1	<0.1		<0.1	<0.1	0			-																	-
	2,4-D	µg/L	0.01	< 0.01	< 0.01		< 0.01	<0.01	0																				-
	2,4-DB	µg/L	0.01	< 0.01	<0.01	0	< 0.01	< 0.01	0																				
	2,4-DP	µg/L	0.01	< 0.01	<0.01	0	< 0.01	<0.01	0																				
	2,6-D	µg/L	0.1	<0.1	<0.1		<0.1	<0.1	0																				
	4-Chlorophenoxy acetic acid	µg/L	0.01	<0.01	<0.01		<0.01	<0.01	0					_		-									_	-			
	Clopyralid	µg/L	0.05	< 0.05	< 0.05		< 0.05	< 0.05	0						+	-		-								+	+ +		
	Dicamba	µg/L	0.01	<0.01	<0.01 <0.05		<0.01 <0.05	<0.01	0																	_			
	Fluroxypyr MCPA	µg/L	0.05	<0.05	<0.05		<0.05	<0.05	0						+	-		1	+ +							+	<u> </u>		
	MCPA	μg/L μg/L	0.01	<0.01	<0.01		< 0.01	<0.01	0					-												-			
	Mecoprop	µg/L	0.01	<0.01	<0.01		<0.01	<0.01	0																				
	Picloram	µg/L	0.05	<0.05	<0.05		<0.05	<0.05	0																				
	Triclopyr	µg/L	0.01	< 0.01	< 0.01		< 0.01	< 0.01	0																				-
Reactive Phosphorus as P - Ultra-Trace in Saline W	Reactive Phosphorus as P	mg/l	0.001											<0.001	<0.001	0	0.004	0.004	0	0.002	0.002	0	0.002	0.002 0	0.005	0.006	18 0.00	<0.00	1 0
Suspended Solids	TSS	mg/l	1	90.0	78.0	14	52.0	44.0	17	18.0	26.0	36 15.0	40.0 91																
																													-
Suspended Solids (High Level)	TSS	mg/l	5																						12.0	7.0	53 8.0	14.0	55
TKN (Total N - NOx-N). (FIA - UT) in Saline Water	TKN (as N)	mg/l	0.05											0.12	0.12	0	0.12	0.11	9	0.11	0.11	0	0.15	0.12 22	0.14	0.17	19 0.09	0.05	57
Tatel Cuerida Pu Disereta Apolyan	Cyanide Total	mail	0.004	< 0.004	< 0.004	0	0.004	< 0.004	0					_					-						_	-			
Total Cyanide By Discrete Analyser	Cyanide Totai	mg/l	0.004	<0.004	<0.004	0 4	0.004	<0.004	0			-		-											-				
Total Dissolved Solids	TDS	mg/l	1	44800.0	45300.0	1 4	7600.0	49700.0	4	38800.0	42200.0	8 39600.0	37600.0 5												42100.0	42400.0	1 42800	.0 39500	.0 8
Total Nitrogen/Persulfate Digestion/Ultra-Trace/Sa	Nitrogen (Total)	µg/l	50											120.0	120.0	0	130.0	110.0	17	120.0	120.0	0	160.0	130.0 21	150.0	180.0	18 90.0	50.0	57
Total Phosphorus/Persulfate Digestion/ Ultra Trace	Phosphorus	mg/l	0.005	-								-		< 0.005	< 0.005	0	<0.005	< 0.005	0	0.005	<0.005	0	<0.005	0.007 33	< 0.005	< 0.005	0 0.01	0.013	2 18
Total Thosphordsh cisultate Digestion on a Trace	T Hospitolus	ing/i	0.000											<0.000	<0.000	0	<0.000	<0.000		0.000	<0.000		<0.000	0.007 30	<0.005	<0.000	0.01	0.012	10
TPH - Semivolatile Fraction	TPH C10 - C14 Fraction	µg/L	50	<50.0	<50.0	0	<50.0	<50.0	0																				-
	TPH C15 - C28 Fraction	µg/L	100	<100.0	<100.0	0 <	100.0	<100.0	0																				
	TPH C29-C36 Fraction	µg/L	50	<50.0	<50.0	0	<50.0	<50.0	0																				
TPH Volatiles/BTEX	Benzene	µg/L	1	<1.0	<1.0		<1.0	<1.0	0							-		-								+	↓ ↓ ↓		
	Ethylbenzene	µg/L	2	<2.0	<2.0		<2.0	<2.0	0																	+	<u>↓ </u>		
	Toluene TPH C 6 - C 9 Fraction	µg/L	20	<2.0	<2.0 <20.0		<2.0 <20.0	<2.0 <20.0	0							-		-								+	<u>↓ </u>		
	Xylene (m & p)	μg/L μg/L	20	<2.0	<2.0		<20.0	<20.0	0						+			+	+ +			-			+	+	+ +		
	Xylene (o)	µg/L	2	<2.0	<2.0		<2.0	<2.0	0					1	1										1	1	1 1	1	
		r9'-	- F		~	-			Ť					1	1	1		1							1	1	1 1	1	
Ultra-trace Volatile Organic Compounds	1,1,1-trichloroethane	µg/L	1	<1.0	<1.0	0												1								1			
·	1,2,4-trichlorobenzene	µg/L	0.5	<0.5	<0.5	0	<0.5	<0.5	0																				
Volatile Organic Compounds	1,1,2-trichloroethane	µg/L	5	<5.0	<5.0	0	<5.0	<5.0	0							1									1	1			

Volatile Organic Compounds 11,12-incnioroemane jupit po 5000 Provided Automatic Compounds 11,12-incnioroemane jupit po 5000 Provided Automatic Compounds and there as a concentration is greater than 51 times the EQL. *High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 50 (5-10 x EQL); 50 (10-30 x EQL); 50 (> 30 x EQL)) ***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

Appendix D

Summary of Quality Assurance and Quality Control Program

1. QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES

GHD institutes a Quality Assurance (QA) / Quality Control (QC) program for all projects to ensure that as far as possible the data is valid, defensible and of known precision and accuracy. These data include data obtained both in the field and in the laboratory.

The Company has established a Quality Management System based on the requirements of AS 3901-1987, *Quality Systems for Design/Development, Production, Installation and Servicing* to manage quality throughout the Company's operations.

The Company Quality System is documented in:

- Quality Manual which documents Quality Policy, Organisation and Responsibilities, and outlines the quality system
- Systems Procedures Manual which documents the administrative and management procedures for each element in the quality system
- Technical Manual which details the specific operating procedures and work methods which employees must follow in carrying out activities or processes.

Provisions of the Quality System include:

- Guidelines/Procedures for most routine situations
- Information/Responses for non-standard situations.

Quality within the Company is managed by the Quality Committee, which undertakes periodic reviews of the effectiveness of the quality system.

2. FIELD QUALITY CONTROL PROCEDURES

The Company has in place Technical Procedures under which all field operations are conducted.

A specific sampling plan is prepared for each project. The sampling plan contains details of the method/s for collecting the samples, the number and type of containers per sampling location, any required sample preservation techniques, sample identification codes, frequency of any required QC samples and documentation procedures.

In addition, the Company has developed additional procedures for assessing sampling and analytical quality and has developed procedures for assessing sampling and analytical variance.

2.1 Soil Sample Collection

Samples for chemical or physical analysis were collected by qualified and experienced environmental scientists or environmental engineers employing the appropriate Technical Procedures, as specified in the Sampling Plan.

Generally for collection of the benthic sediment samples, a van veen grab sampler was used from boat, to collect samples. Samples for analysis of were placed as soon as possible into a secure cool box on ice.

The Chain of Custody documentation was then completed. Other data, such as OH&S monitoring, groundwater data, etc. were listed in the field note book.

2.2 Water Sample Collection

Samples for chemical or physical analysis were collected by qualified and experienced environmental scientists or environmental engineers employing the appropriate Technical Procedures, as specified in the Sampling Plan.

For the collection of water samples, laboratory supplied containers were used and water was collected from the surface (approximately 0.2m below the surface). Samples for analysis of were placed as soon as possible into a secure cool box on ice.

The Chain of Custody documentation was then completed. Other data, such as OH&S monitoring, groundwater data, etc. were listed in the field notebook.

2.3 Sample Documentation

All data collected in the field was recorded in the field notebook or on field data sheets.

Sample jars were labelled with the following:

- GHD Job number
- Unique sample number referring to a particular sample location and depth
- Sampler's identification
- Destination of the sample.

Labelling of sample containers was effected with permanent marking ink on the body of the container, not the lid.

Chain of custody documentation (CoC) was employed for all sampling events with copies of the CoCs retained by GHD.

2.4 Decontamination Procedures

As described above, standard GHD decontamination procedures were employed. These include for sampling equipment, the following:

- Wash and/or scrub in tap water
- Rinse or scrub in phosphate-free detergent
- Rinse in tap water
- Rinse in nitric acid in distilled water
- Rinse in methanol/distilled water (if organic compounds are to be analysed or if oily substances are noted in samples)
- Rinse twice in distilled water.

2.4 Field Analytical Equipment

Analytical equipment used in the field was appropriate to the required task, and was used under the appropriate Technical Procedure. Analysers were calibrated, as appropriate, and details of the calibration are recorded in the field note book or on the field data sheets.

3. QUALITY CONTROL ASSESSMENT OF LABORATORY RESULTS

GHD routinely carries out a number of procedures to ensure the results of laboratory chemical analyses could be relied upon to make valid conclusions concerning the presence or absence of contamination.

3.1 Laboratory Procedures

The first requirement of laboratories employed by GHD to analyse samples is that they are certified by the National Association of Testing Authorities Australia (NATA) as required by *Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites* (ANZECC/NHMRC, 1992) and the *Draft Guidelines for the Assessment and Management of Contaminated Land in Qld* (EPA, 1998). NATA certification applies to each analytical method (ie. for each substance) and ensures that the laboratory carried out certain prescribed procedures to ensure accuracy and precision of results for each analyte (the term analyte relates to the substance being analysed, which may be a compound such as DDT or an element such as lead). The methods for analyses are certified by NATA as being appropriate for each analyte.

The NATA certification provides for strict laboratory quality assurance procedures to be in place and to be carried out on an on-going basis in the laboratories. These include meticulous adherence to approved methods for carrying out the analytical procedures themselves, and a number of other QA procedures, which have been put into place to ensure reliable analytical results. These procedures include on receipt of samples at the laboratory logging-in of samples, checking chain-of-custody documentation, ensuring analyses are carried out within appropriate holding times, ensuring the appropriate samples preparation and extraction procedures are employed, tracking of samples and analytical results, calibration of analytical equipment, etc.

As part of the NATA requirements the laboratories carry out and report analyses a number of types of quality control samples, such as duplicate samples (the same sample analysed more than once), blanks (containing no levels of the analytes to be analysed), spiked samples (containing known additions of the analytes to appropriate matrices) and standard samples (samples containing known concentrations of the analytes - also known as reference standards).

The laboratories are also obliged under the terms of their NATA certification to carry out analyses of reagents ('Reagent Blanks') used in the analytical methods. These procedures are aimed at detecting impurities in reagents, which may give impact on the accuracy of the results.

The laboratories also employ other procedures, such as analysis of surrogate sample, which involve addition of substances with properties similar to the analytes being sought to samples, which are then analysed with the field samples. The concentrations determined by the laboratory are then compared with the concentrations of the surrogates added and are another method of evaluating the laboratory performance.

To avoid confusion, samples collected in the field and which are to be analysed to determine the concentrations of potential contaminants are referred to, below, as "field samples" or in the report, itself, where there is no likelihood of confusion, simply as "samples".

3.2 Accuracy of Results - Spike and Certified Reference Samples and Reagent Blanks

3.2.1 Spike and Certified Reference Samples

The accuracy of analytical results relates to the actual or "true" concentration of each analyte in the sample. The accuracy of analytical results is measured by comparison of the results reported by the laboratory for spiked or standard samples.

Estimates of the accuracy of the laboratory results is given by analysis of the following samples:

- For analysis of organic substances, samples of similar types to the field samples are "spiked" with known concentrations of one or more of the analytes and then analysed with the field samples to determine the quantity of spike that is detected
- For analysis of inorganic substances, certified reference samples containing known concentrations of the analytes are analysed with the field samples and the quantity of substances detected is compared with the known or "true" value.

The data quality is evaluated by reference to the Relative Percentage Difference (RPD), which is generally expressed as a percentage and is defined as follows:

RPD = 100 (Result 1 - Result 2)/ (Mean Result)

The accuracy of analytical results is evaluated by reference to the "Percent Recovery" of known quantities of the analytes into a blank sample, which have been analysed in exactly the same manner as the field samples. Samples to which known quantities of the analytes have been added as known as "spiked samples" or "spikes".

The Percent Recovery is calculated as follows:

% Recovery = 100 (Result for spiked sample - background concentration in blank)

Concentration of spike

If the analysis is 100% accurate then the Recovery is 100 %.

The % Recovery is generally reported only for organic analytes, for which reliable standards are generally unsatisfactory, due to their instability, availability at concentrations, which may not be appropriate for each job, and their high cost. Because of their stability, standard samples containing accurately known concentrations of substances such as heavy metals are readily available and are generally employed to evaluate accuracy of inorganic analyses, as noted above.

3.2.2 Reagent Blanks

Reagent blanks are samples, which consist of the reagents that are used during the preparation, extraction and digestion procedure and are analysed at the beginning of every sample batch analysis. These procedures are aimed at detecting impurities in reagents, which may give impact on the accuracy of the results.

3.3 Precision of Results - Duplicate Samples and Surrogate Spikes

3.3.1 Duplicate Samples

The term precision relates to the reproducibility of the results reported by the laboratory and is measured by comparison of results of repeat analyses of the same sample. Laboratories carry out repeat analyses of samples submitted from each job.

Also as a measure of precision, GHD may submit duplicate field samples, which have been collected for the same field location and as best we are able are carefully homogenised before splitting and placing one part of the sample in one container and the other part in another container, which is labelled so as to preserve the anonymity of the samples. The samples are submitted blind to the laboratory for analysis (ie. the laboratory does not know the samples are related).

Precision is not necessarily related in a simple manner to accuracy. It is possible for a laboratory to produce results having high precision (measured by similar results for repeat analyses) but because of some systems error for the results to have low accuracy (ie. to be not close to the "true" concentrations of the analyte in question).

The precision of the laboratory analyses, themselves, is evaluated by repeated analysis of known samples which have been carefully homogenised. It is, however, not always possible to homogenise field samples, due for example to the particulate nature of the contaminants or due to the presence of volatile compounds which would be lost during any attempt to homogenise the sample. Consequently, repeated analysis of field samples gives a measure of the combined sampling and analytical precision.

Any results reported for analysis of duplicate samples are influenced strongly by the homogeneity of the samples. Clearly, if the laboratories are analysing samples containing different quantities of the analytes the RPDs would be expected to be high. No matter how carefully samples containing particulate matter are homogenised in the field, identical duplicate samples will be very difficult to produce. In general, in the field it is easier to produce duplicate samples of sand soils, but it will be difficult to produce homogeneous duplicate samples from clay soils.

The precision of results is evaluated by reference to the RPD, as above.

3.3.2 Surrogate Spikes

Surrogate spikes are added to all samples requiring analyses for organics. The surrogate spikes are organic compounds, which are similar to the target analytes in chemical composition and behaviour in the analytical process, but which are not normally found in environmental samples.

The analyses of surrogate samples, involves the addition of the organic compounds, prior to extraction, which are then analysed with the field samples. The concentrations determined by the laboratory are then compared with the concentrations of the surrogates added.

Surrogate samples are to used to determine the extraction efficiency, ie a method of evaluating the laboratory performance. The precision of results is evaluated by reference to the laboratory acceptable recovery range (%).

3.4 Blank Sample

Samples known to contain only very low or nil levels of the analytes can be submitted anonymously (blind) to the laboratory for analysis together with the field samples.

3.5 Equipment Blanks

After cleaning sampling tools, streams of distilled deionised water are sprayed over the tools, collected and analysed to determine the extent, if any, of cross-contamination that may have been transferred from sample to sample.

3.6 Trip Blanks

For projects where the utmost reliability is required, and before going to the field, blank samples are placed in containers identical to those to be employed to collect the field samples. These containers are then carried out in the field where they are treated in an identical fashion to the field samples. Analysis of the trip blanks is employed to determine if any contaminants have been introduced to samples in the field and during subsequent storage and transport. Use of these blanks is important where low levels of volatile compounds are to be sought in either soil, water or air samples.

3.7 Background Samples

For projects where all the site is likely to contain elevated concentrations of the analytes, samples representative of local background levels can be collected from an adjacent site where no contamination will be present. However, for most projects not all locations on a site will be within contaminated zones and it is generally acceptable to rely on samples from these locations to provide an estimate of background levels of the analytes.

3.8 Interlaboratory Checking

For larger or especially sensitive projects, duplicates of field samples are sent to different laboratories for analysis of the same analytes and the results reported by each laboratory are evaluated by reference to the RPD, as above.

Differences are expected in the results from each of the laboratory and the results can be expected to be the same only if the same method of extraction or dissolution of the sample is employed by both laboratories and the method of analysis is exactly the same. Commonly, these procedures differ, from laboratory to laboratory. Evaluation of the results of the interlaboratory testing are made by reference to the RPD, as above.

The evaluation of interlaboratory checking will also be influenced by the homogeneity of field samples, as explained above.

3.9 Acceptability of Analytical Results

In evaluating the acceptability of analytical results reference is made to the RPD, as below.

Analysis	Upper Acceptable	RPD
Intralaboratory results	Inorganic analytes	30%
	Organic analytes	100%
Interlaboratory results	Inorganic analytes	50%

Organic analytes 100%

The RPD cannot be used as a stand-alone measure of laboratory accuracy or precision. For example, in determining the acceptability of the laboratory duplicate analyses consideration is also given to the proximity of the results to the analytical detection limit. When the concentrations of the analytes are low, small differences in the analytical results can give rise to large RPDs which would not necessarily mean that the laboratory results are unreliable.

In addition, when the concentrations of the analytes are very high (exceeding, say for soils, 1000 mg/kg for certain analytes) the RPDs are often high, indicating that a second round of analyses may be required. Commonly, for preliminary assessments it is not required to accurately quantify extremely high levels of analytes, since it will be sufficient to know that the results can be relied on to indicate the presence of samples which greatly exceed the adopted site Environmental Investigation Levels (EILs) or Health Investigation Levels (HILs).

In determining the acceptability of analytical results employing RPDs, consideration is given to the likely distribution of contaminants within the field samples. If their distribution is heterogeneous, for example in fill, the use of RPDs to determine acceptability of the analytical results will be of little benefit. Similarly the

use of RPDs will be of little benefit as an indicator of the acceptability of analytical results of volatile compounds, such as solvents or light fraction petroleum fuels.

4. QUALITY CONTROL PROGRAM FOR THE PRESENT ASSESSMENT

Because the substances detected at the site were relatively simple compounds for which standard methods for chemical analyses have been widely used, and the site criteria were well above laboratory detection limits, no difficulties were expected to be encountered in obtaining reliable analytical results. However, to ensure that the results of the laboratory analyses for samples collected as part of the present assessment can be relied on a number of quality control samples have been submitted anonymously (blind) to the laboratories. The results of the Quality Control Program undertaken for the preset assessment are presented below.

4.1 Laboratories Employed

Commercial laboratories used for the analysis of samples were as follows:

Australian Laboratory Services (ALS)

Methods employed for the analyses of the above substances were in accordance with the respective NATA certification and are listed on the laboratory certificates of analysis.

4.2 Sample Holding and Extraction

The holding times prior to the date the analyses (extraction) of the samples commenced were within the stated holding times and are considered to be acceptable, for most of the samples with the exceptions of;

- WQ02, WQ03, WQ04, WQ08, WQ10, WQ11, WQ12 and QA3 for ultra-trace metals on 23 June 2009 by 1 day;
- WQ03, WQ04, WQ07, WQ10, WQ11 and WQ12 for ultra-trace metals on 27 July 2009 by 1 day; and
- WQ04 and WQ07 on 18 August 2009 for chlorophyll by 1 day and ultra-trace metals by 2 days.

Maximum sample holding times (days)

Analyte	Matrix	Maximum sample holding time prior to sample extraction (days)
Reactive Phosphourus, Nitrate, Nitrite, Chlorophyll a, Turbidity	Water	2
Oil & Grease, Ammonia, Nox, TKN, Total Phosphorus and Total Nitrogen	Water	28
Monoaromatic hydrocarbons (BTEX), petroleum hydrocarbons (TPH) (C6-C9),	Water	14
Polycyclic Aromatic Hydrocarbons (PAH), Phenols, PCBs, Chlorinated hydrocarbons, Semi volatile compounds (SVOC), Organo Chlorine/Organo Phosphorus Pesticides, Dioxins, Phenoxy Acid Herbicides, Organotins (TBT)	Water	7

Metals and metalloids other than mercury	Water/soils	180 (Mercury 28)
--	-------------	------------------

Note: Sample holding times published in Australian and New Zealand Environment Conservation Council (1996), *Guidelines for the Laboratory Analysis of Contaminated Soils - these holding times also appear within AS 4482.1-1997*

4.4 GHD Quality Control Program for the Present Assessment

4.4.1 Field Procedures

Samples were collected, stored and transported in accordance with the described quality assurance procedures.

4.4.2 Precision of Results

To ensure detection of errors in results reported by the laboratories, duplicates of field samples were submitted blind to the laboratories.

Six (6) Intra-laboratory duplicate surface water samples were sent to the primary laboratory (ALS) – this represented two samples from each of the six sampling events.

Date	Parent Sample	QA/QC Sample	Sample Matrix	Analysis	Laboratory
21/05/09	WQ04	QA1	Surface water	Heavy Metals, BTEX, Inorganics, Nutrients, OCP, Organic, OPP, PAH/Phenols, Pesticides, Multi-residue Pesticide Screen, Pheno Acid Herbicides, SVOC and TPH	ALS
26/05/09	WQ03	QA2	Surface water	Heavy Metals, BTEX, Inorganics, Nutrients, OCP, Organic, OPP, PAH/Phenols, Pesticides, Multi-residue Pesticide Screen, Pheno Acid Herbicides, SVOC and TPH	ALS
23/06/09	WQ02	QA3	Surface water	Heavy Metals, Inorganics, Nutrients, Multi-residue Pesticide Screen	ALS
24/06/09	WQ07	QA4	Surface water	Heavy Metals, Inorganics, Nutrients, Multi-residue Pesticide Screen	ALS
28/07/09	WQ09	QA5	Surface water	Heavy Metals, Inorganics, Nutrients, Multi-residue Pesticide Screen	ALS
17/08/09	WQ05	QA6	Surface water	Heavy Metals, Inorganics, Nutrients, Multi-residue Pesticide Screen	ALS

GHD Quality Control Samples

In order to check the precision of the analytical results, the Relative Percentage Differences (RPDs) were calculated for the water samples, as described above, for sets of duplicate samples.

The RPDs determined for the duplicates and the intra-laboratory samples analysed are summarised in Appendix C.

The RPDs that were outside the acceptable range in water:

<u>May 2009</u>

Station WQ04 (QA1)

• All parameters acceptable

```
Station WQ03 (QA2)
```

Nitrate - 50%, however deemed acceptable as values near Limit of Reporting

<u>June 2009</u>

Station WQ02 (QA3)

- Total Suspended Solids 36%, just above acceptable threshold
- Total Phosphorus 33%, just above acceptable threshold

Station WQ03 (QA4)

Metolachlor – 143%

July<u>2009</u>

Station WQ09 (QA5)

- Filtered Manganese 32%, however deemed acceptable as values near Limit of Reporting
- Total Suspended Solids 53%

August 2009

Station WQ05 (QA6)

- Filtered Aluminium 150%
- Filtered Manganese 42%
- Filtered Nickel 33%, just above acceptable threshold
- Nitrate 40%
- Nitrite 40%
- Total Suspended Solids 55%
- ▶ TKN 57%, near limit of reporting
- ▶ TN 57%, near limit of reporting

In a number of cases, the concentrations in duplicate samples that had RPDs that were outside of the nominated limits were close to the limit of reporting, meaning small differences in concentration resulted in large differences in relative percent difference. This does not necessarily indicate a poor quality assurance, but rather heightened sensitivity of small differences in measurement (i.e. one duplicate at limit of reporting and other a small concentration just above the limit of reporting).

In other cases, such as TSS, natural variability exists in the marine environment due to the effect of wind and waves in resuspending sediments, therefore higher RPDs are expected.

4.4.3 Limits of Reporting

Throughout the monitoring program, the laboratory raised the LORs for metals, due to saline sample matrix interference. The LOR's therefore differ slightly between and within some monitoring events.

4.5 Laboratory Control Samples, Duplicates, Method Blanks, Matrix Spikes and Regular Sample Surrogates

4.5.1 Duplicates

For all matrices, there were no Duplicate outilers.

4.5.2 Method Blanks

For all matrices, there were no Method Blank value outiler..

4.5.3 Laboratory Quality Control Samples

For all matrices, there were no Laboratory Control Spike outliers with the following exceptions:

- Phenolic Compounds, 21 May 2009
- Dissolved Copper, 21 May 2009
- Dissolved Iron, 21 May 2009
- Organotin Compounds, 26 May 2009
- Following Dissolved Metals on 23 June 2009:
 - Arsenic
 - Cobalt
 - Copper
 - Lead
 - Manganese
 - Nickel
 - Vanadium
- Following Dissolved Metals on 24 June 2009:
 - Arsenic
 - Cobalt
 - Copper
 - Manganese
 - Nickel
 - Vanadium
- Following Dissolved Metals on 17 August 2009:
 - Chromium
 - Cobalt
 - Copper
 - Lead
 - Manganese
 - Nickel
 - Vanadium
 - Iron

Dissolved Iron, 19 August 2009

4.5.4 Matrix Spikes

In general, there were no Matrix Spikes outliers, with the following exceptions:

- Phenoxyacetic Acid Herbidides, 21 May 2009
- QA2, 26 May 2009
 - Phenol
 - beta-BHC
 - Heptachlor
 - gamma-BHC
 - 2.4.6.-T
- QA3, 23 June 2009
 - Ammonia
 - Reactive Phosphorus
- QA4, 24 June 2009
 - Ammonia
 - Reactive Phosphorus
- QA6, 17 August 2009
 - Ammonia
 - Manganese

Spike recovery can be low or high as a result of matrix interference, particularly with organic compounds.

4.5.5 Regular Sample Surrogates

For most batches, there were no Regular sample surrogates outliners, with the following:

Organotin, WQ06, 26 May 2009-10-12

5 Overall Assessment of the Quality Control

Overall, the results of the Quality Control programs adopted by the laboratory and by GHD indicate that the results of the following chemical analyses are of sufficient quality to be confidently used to determine the concentrations of substances of the waters within the Project Area for comparison with the nominated guidelines. Appendix B (Chain of Custory and Laboratory Analysis Reports), Appendix C (Summary of Duplicate Results) and Appendix D(Quality Control Methodology and Analysis, this appendix) provide the details of this overall assessment.

GHD

GHD House, 239 Adelaide Tce. Perth, WA 6004 P.O. Box Y3106, Perth WA 6832 T: 61 8 6222 8222 F: 61 8 6222 8555 E: permail@ghd.com.au

© GHD 2009

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Document Status

Rev	Author	Reviewer		Approved for Issue						
No.	Addition	Name	Signature	Name	Signature	Date				
0	Jose Romero & Tom Ewing	Joanna Lee	Fole	Ross Fryar	Nontry	21/10/09				
1	Jose Romero	Joanna Lee	Fole	Ross Fryar	Non Ky	04/11/09				