Port of Gladstone Gatcombe and Golding Cutting Channel Duplication Project

Environmental Impact Statement

Appendix J Air quality emissions data

Appendix J Air quality emissions data

Activity data

Table 1 Construction of bund walls and barge unloading facility						
Parameter		WBE reclamation area		BUF	Information source	
			Northern			
Operations						
Operating hours	days/week	6			EIS assumption	
	hours/day 12			EIS assumption		
Generator operating	days/week	7			EIS assumption	
hours	hours/day	24			EIS assumption	
Timeframe	months	18	18	12	EIS assumption	
Materials						
Density	tonnes/m ³	2.6 (rock density)		1.8 (reclaimed material – after settling in reclamation area)	EIS assumption	
Fines content (core material)	%	10		-	EIS assumption	
Moisture content (bund wall material)	%	2.1		-	AP42, Chapter 13.2.4 Mean value for various limestone products (stone quarry and processing)	
Moisture content (reclaimed material)	%	-		3.4	AP42, Chapter 13.2.4 Mean value for exposed ground (western surface coal mining)	
Silt loading (Paved road)	g/m²	1		-	Conservative estimate based on review of public road silt loading values from AP42, Chapter 13.2.1	
Silt content	1	1		1	1	
 Dusty bund wall material 	%	10			EIS assumption	
 Unpaved road 	%	8.5			AP42, Chapter 13.2 Mean value for construction sites, scraper routes	
Materials required for construction of outer bund walls and BUF						
Armour	m³	60,000	113,000	-	EIS assumption	
Core	m³	387,568	567,730	-	EIS assumption	
 Reclaimed material 	m ³	-	-	200,000	EIS assumption	
Equipment						
B-doubles (to haul mat	terials from Ya	arwun/Targin	nie quarry a	rea)		
Empty weight	tonnes	23		23	EIS assumption	

Parameter		WBE reclamation area		BUF	Information source	
Payload	tonnes	40		40	EIS assumption	
 Maximum number of trips 	trips/day	130	198	21	EIS assumption	
Dozers	#	2	·	-	EIS assumption	
Graders	#	1		-	EIS assumption	
Average speed	km/hour	11.4		-	AP42, Chapter 11.9. Geometric mean of grader speeds	
Generator	#	4		-	EIS assumption	
Power output	kW	550		-	EIS assumption	
Dimensions						
Width of bund wall	m	23		-	Estimated from EIS cross- sections	
Exposed area	ha	16	32	2.2	Calculated from width and layout diagrams	
Distance (one way)						
 Quarry area to site (sealed road) 	km	4.2			EIS assumption	
 Unsealed road, up to bund wall 	km	0	1.9		EIS assumption	
 Average distance travelled along bund wall 	km	1.27	1.32		EIS assumption	
 Average distance travelled from reclamation areas to BUF 	km	-	-	2.3	EIS assumption	
Distance travelled						
 Quarry area to site (sealed road) 	VKT/day	1,099	1,673		Calculated based on amount of material moved	
 Distance travelled around bund wall 	VKT/day	330	1,255			
 Reclamation areas to BUF 	VKT/day	-	-	98	Calculated based on volume of material used	
 On-site haulage at quarry area 	VKT/day	32.5	49.5	-	Calculated based on amount of material moved and assumed haul length of 500m per trip	

Dust emissions associated with the following sources at quarry area have been estimated:

- Material transfers (extraction, stockpile loading, truck loading)
- Processing (one crusher, one screen, and one conveyor transfer)
- Onsite haulage
- Wind erosion of 37ha of exposed ground, estimated from aerial imagery.

Table 2Dredging operations

Parameter		Value	Information source			
TSHD						
TSHD count	#	1	EIS assumption			
Operating hours	days/week	7	EIS assumption			
	hours/day	24	EIS assumption			
Power		-				
 Pump power (trailing) 	kW	3,400	Based on 8700 TSHD (www.jandenul.com)			
 Pump power (discharging) 	kW	14,000	with hopper capacity of 18,000m ³			
Propulsion power	kW	15,000	_			
 Total installed diesel power 	kW	22,540	_			
 Auxiliary power 	kW	4,140	Calculated from total installed diesel power less propulsion and trailing power			
CSD						
CSD count	#	1	EIS assumption			
Operating hours	days/week	7	EIS assumption			
	hours/day	24	EIS assumption			
Power						
 Submerged pump power 	kW	3,800	Based on J.F.J. DE NUL CSD			
Inboard pump power	kW	12,000	(www.jandenul.com) with total installed diesel power similar to the 8700 TSHD			
 Cutter power 	kW	7,600				
Propulsion power	kW	7,600	_			
 Total installed diesel power 	kW	27,240	_			
 Auxiliary power 	kW	3,840	Calculated from total installed diesel power less submerged pump, inboard pump and cutter powers			
Barges (propelled by pushbusters)						
 Barge count 	#	4	EIS assumption			
 Operating hours 	days/week	7	EIS assumption			
	hours/day	24	EIS assumption			
Power						
 Total installed engine capacity 	kW	4,163	EIS assumption (based on https://www.vanoord.com/activities/hopper-			
Propulsion capacity	kW	3,650	barge-and-pushbuster)			
 Auxiliary engine capacity 	kW	513				
Tug at BUF						
Tug count	#	1	EIS assumption			
 Operating hours 	days/week	7	EIS assumption			
	hours/day	24	EIS assumption			
Power						
 Total installed engine capacity 	kW	3,271	Table 3-10 US EPA, mean values for tugs.			
 Propulsion capacity 	kW	3,080	_			
 Auxiliary engine capacity 	kW	100.2				

Table 3 Dredged management placement

Parameter	Value	Information source	
Operations			
Operating hours	days/week	7	EIS assumption
	hours/day	24	EIS assumption
Dozers	number	2	EIS assumption
Graders	number	1	EIS assumption
Average grader speed	Km/h	11.4	Geometric mean in Table 11.9-3, AP42 documents
Compactors	number	1	EIS assumption
Dredged material moisture content	%	3.4	Average for exposed ground from AP42 13.2, Western surface coal mining
Dredged material silt content – Stage 2	%	2.0	EIS assumption
Dredge material – initial dredging works	Mm ³	0.31	EIS assumption
Dredged material – Stage 1	Mm ³	9.06	EIS assumption
Dredged material – Stage 2	Mm ³	6.69	EIS assumption
Dimensions			
Footprint of exposed area	ha	86	Obtained from EIS concept design site layouts
Haulage			
Silt content of haul route	%	8.5	AP42, Chapter 13.2.2, Mean value for construction sites, scraper routes
Haul truck payload	tonnes	32.5	EIS assumption
Haul truck empty weight	tonnes	28.2	EIS assumption
Distance (one way)	km	1.4	EIS assumption
Average distance travelled per day	VKT/day	4,282	Calculated from distance and amount of material moved

Emission factors

Wheel-generated dust on haul roads

The emission factors for unpaved roads were calculated from the AP42 documents in Section 13.2.2 titled 'unpaved roads' dated December 2003.

The equation included in the assessment is as follows:

$$E = 281.9 * k (s/12)^{a} (W/3)^{b}$$

where

E = emission factor (g/VKT)

s = surface material silt content (%)

W =mean vehicle weight (tons) and the following constants were assumed.

The multiplier of 281.9 converts the units from lb/VMT to g/VKT.

The particle size multiplier in the equation k and exponents varies with aerodynamic particle size range, as defined in Table 4.

Table 4 Constants used in calculating emissions from wheel-generated dust

Constant	TSP (assumed from PM ₃₀)	PM10	PM _{2.5}
k (lb/VMT)	4.9	1.5	0.15
а	0.7	0.9	0.9
b	0.45	0.45	0.45

Materials handling

Emissions for materials handling are dependent on the amount of materials being transferred. Materials handling and transfers include truck loading and dumping using front end loaders and excavators, transfer points at conveyor transfer stations. These were calculated from the AP42 documents, using the following equation:

$$EF = k \times 0.0016 \times \frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}$$

where:

EF = emission factor (kg/Mg)

k = particle size multiplier (dimensionless)

U = mean wind speed (m/s)

M = material moisture content (%)

The particle size multiplier in the equation k, varies with aerodynamic particle size range, as follows:

k = 0.74	Particle size < 30 µm
k = 0.35	Particle size < 10 µm
k = 0.053	Particle size < 2.5 µm

Dozing

The TSP emission factor for dozing is based on the AP42 Ch. 11.9 emission factor. PM10 emissions were assumed to be 75% TSP emissions, while PM2.5 emissions were assumed to be 10.5% of TSP emissions. These are based on the PM10:TSP and PM2.5:PM10 ratios of AP42 emission factors.

In equation form, the emission factor is:

$$EF_{TSP} = 2.6 \times \left(\frac{s^{1.2}}{M^{1.3}}\right)$$

where:

 EF_{TSP} = emission factor for TSP (kg/hr)

s = silt content (%)

M = material moisture content (%)

Wind erosion from exposed areas

Emissions from erosion of exposed areas were based on the AP42 Ch. 11.9 emission factor of 0.85 Mg/ha/year. Of TSP emissions, 50% are estimated to be PM10 and 7.5% of TSP emissions are estimated to be PM2.5. The particulate matter size distribution is based on the USEPA AP42 document, Chapter 13.2.5.

Exhaust emissions

Auxiliary engines

Emission factors for auxiliary engines are estimated based on the NPI EET manual (NPI 2012) for maritime operations for auxiliary engines using marine diesel oil. These are summarised in Table 5.

 Table 5
 Emission factors (kg/kWh) for auxiliary engines (marine diesel oil)

Pollutant	Emission Factor (kg/kWh)
NO _X (uncontrolled)	1.39 X 10-2
СО	1.10 X 10-2
PM _{2.5}	2.8 X 10-4
PM10	7.5 X 10-4
SO ₂	6.16 X 10-3

Engine room engines

Emission factors for all engines in the engine room are based on the maximum of emission factors for stationary large diesel engines (NPI 2008), and medium speed diesel engines running on marine diesel oil (USEPA 2009), with the exception of NOx and SO₂ which have been selected as detailed in Section 12.2.1.4.

The emission factors used are summarised in Table 6.

				-			
Table 6	Emission facto	rs (ka/kWh) f	or auxiliary	engines (marine	diesel (oil)
		- (•••••				,

Pollutant	Emission Factor (kg/kWh)	Source
NOx	3.40E-03	Tier III emission limit (AMSA 2015)
СО	3.30E-03	Maximum out of large diesel engine NPI emission factor and US
PM _{2.5}	4.30E-04	EPA vessel emission factor
PM ₁₀	4.70E-04	
SO ₂	1.99E-03	As for CO, with emission factor adjusted to reflect 0.5% sulfur content (ASMA 2015)

Dispersion modelling

Meteorological modelling

TAPM meteorological simulations

The prognostic meteorological model, TAPM (The Air Pollution Model) Version 3.0.7, was developed by the CSIRO and has been validated by the CSIRO, Katestone Environmental and others for many locations in Australia, in southeast Asia and in North America (see www.cmar.csiro.au/research/tapm for more details on the model and validation results from the CSIRO). Katestone Environmental has used the TAPM model throughout Australia as well as in parts of Southeast Asia and North America. This model has performed well for simulating regional winds patterns. TAPM has proven to be a useful model for simulating meteorology in locations where monitoring data is unavailable.

TAPM is a prognostic meteorological model which predicts the flows important to regional and local scale meteorology, such as sea breezes and terrain-induced flows from the larger-scale meteorology provided by the synoptic analyses. TAPM solves the fundamental fluid dynamics equations to predict meteorology at a mesoscale (20km to 200km) and at a local scale (down to a few hundred metres). TAPM includes parameterisations for cloud/rain micro-physical processes, urban/vegetation canopy and soil, and radiative fluxes.

TAPM requires synoptic meteorological information for the Gladstone region. This information is generated by a global model similar to the large-scale models used to forecast the weather. The data are supplied on a grid resolution of approximately 75km, and at elevations of 100m to 5km above the ground. TAPM uses this synoptic information, along with specific details of the location such as surrounding terrain, land-use, soil moisture content and soil type to simulate the meteorology of a region as well as at a specific location.

TAPM was configured as follows:

- Mother domain of 30km with three nested daughter grids of 10km, 3km and 1km
- 48 x 34 grid points for all modelling domains resulting in a 48 x 34km grid at 1km resolution
- 30 vertical levels, from the surface up to an altitude of 8,000m above ground level
- AUSLIG 9 second DEM terrain data
- The TAPM defaults for sea surface temperature and land use
- Default options selected for advanced meteorological inputs
- Year modelled: 1 April 2006 to 30 March 2007.

The land use for the inner 1km grid required significant modification due to the coarseness of the TAPM dataset. Representative data was derived from vegetation maps obtained from EPA and from aerial imaging by Google Earth. The coastline was also re-defined in the database to better represent the complex coastline and islands in Gladstone. Detailed 9-second arc DEM elevation data (resolution approximately 100m) was obtained from Auslig for this modelling domain. TAPM was modelled using data assimilation from three meteorological sites; Boyne Smelter (BOY), Gladstone Radar (GLR), and Targinnie Swann's Road (YAR) with the following configuration:

- BOY assimilation radius of influence 4km over the lowest 4 vertical levels
- GLR assimilation radius of influence 7km over the lowest 3 vertical levels
- YAR assimilation radius of influence 5km over the lowest 3 vertical levels.

CALMET meteorological simulations

CALMET is an advanced non-steady-state diagnostic 3-dimensional (3D) meteorological model with micro-meteorological modules for overwater and overland boundary layers. The model is the meteorological pre-processor for the CALPUFF dispersion model. CALMET is capable reading in hourly meteorological data as data assimilation from multiple sites within the modelling domain; it can also be initialised with the gridded 3D prognostic output from other meteorological models such as TAPM. This can improve dispersion model output, particularly over complex terrain as the near surface meteorological conditions are calculated for each grid point.

CALMET v6 was used to simulate meteorological conditions in the Gladstone airshed. The modelling domain was set to mirror the TAPM 1km grid described above. CALMET was initialised with the gridded TAPM three dimensional wind field data from the 1km grid. Standard modelling procedure would indicate that a 3 to 1 ratio of model resolutions from TAPM to CALMET should be maintained. However the terrain characteristics of the Gladstone region are not well represented by the coarse 3km TAPM grid and CALMET's reliance on detailed meteorological inputs from TAPM required the use of the 1km grid resolution to capture the terrain and mesoscale wind patterns pertinent to dispersion (MfE NZ 2004).

CALMET treats the prognostic model output as the initial guess field for the diagnostic model wind fields. CALMET then adjusts the initial guess field for the kinematic effects of terrain, slope flows, blocking effects and 3-dimensional divergence minimisation. The coupled approach unites the mesoscale prognostic capabilities of TAPM with the refined terrain and landuse capabilities of CALMET.

The use of a three dimensional wind field is a significant improvement as the CALMET modelling domain has a complete set of meteorological variables at every grid point and vertical level for every hour of the simulated year. No data assimilation was used in CALMET as the modelling domain covered a region larger than the meteorological stations could reasonably cover adequately and eliminate any possibly of erroneous convergence due to the overlap of radii of influence.

The model was set up with 12 vertical levels with heights at 20m, 60m, 100m, 150m, 200m, 250m, 350m, 500m, 800m, 1600m, 2,600m and 4,600m at each grid point. The geophysical data (land use and terrain heights) were generated from TAPM, using the adjusted land use for the 1km grid. All default options and factors were selected except where noted below.

Key features of CALMET used to generate the windfields are as follows:

- Domain area of 48 by 34km with 1km grid spacing
- 1 year time scale (1 April 2006 to 1 March 2007), divided into individual months for analysis
- Prognostic wind fields input as MM5/3D.Dat 'initial guess' field only (as generated from TAPM)
- Mixing height parameters all set as default
- Step 1 wind field options include kinematic effects, divergence minimisation, Froude adjustment to a critical Froude number of 1* and slope flows
- Terrain radius of influence set at 2km
- Cloud cover calculated from prognostic relative humidity.

*Froude number (Fn) adjustments the wind for terrain features, such that if the local Fn is less than the critical Fn and the wind at that grid point has an uphill component, the wind direction is adjusted to be tangent to the terrain.

CALPUFF dispersion modelling

CALPUFF simulates the dispersion of air pollutants to predict ground-level concentration and deposition rates across a network of receptors spaced at regular intervals, and at identified discrete locations. CALPUFF is a non-steady-state Lagrangian Gaussian puff model containing parameterisations for complex terrain effects, overwater transport, coastal interaction effects, building downwash, wet and dry removal, and simple chemical transformation. CALPUFF employs the 3D meteorological fields generated from the CALMET model by simulating the effects of time and space varying meteorological conditions on pollutant transport, transformation and removal. CALPUFF takes into account the geophysical features of the study area that affects dispersion of pollutants and ground-level concentrations of those pollutants in identified regions of interest. CALPUFF contains algorithms that can resolve near-source effects such as building downwash, transitional plume rise, partial plume penetration, sub-grid scale terrain interactions, as well as the long-range effects of removal, transformation, vertical wind shear, overwater transport and coastal interactions. Emission sources can be characterised as arbitrarily-varying point, area, volume and lines or any combination of those sources within the modelling domain.

The assessment was conducted using CALPUFF model version 7.2.1. Technical details of the configuration of the CALPUFF model are discussed in Appendix B.

Key features of CALPUFF used to simulate dispersion:

- Domain area of 36 by 32 grids at 200m spacing, nested from the CALMET grid of 1km
- 365 days modelled (1 April 2006 to 31 March 2007)
- Gridded 3D hourly-varying meteorological conditions generated by CALMET
- Partial plume path adjustment for terrain modelled
- Dispersion coefficients calculated internally from sigma v and sigma w using micrometeorological variables
- PDF used for dispersion under convective conditions
- Dry deposition on
- Minimum turbulence velocities over land and water set to 0.2 m/s and
- All other options set to default.

Dust emissions associated with construction of bund walls and creation of final land form were modelled as area sources. Operational emissions were modelled during day hours (from 7:00am to 6:00pm). Wind erosion sources were modelled for 24 hours. With the exception of the quarry, all construction emissions were modelled as area sources with an effective height of 8m and initial vertical dispersion coefficient of 2.

The quarry was modelled as a volume source with an effective height of 15m, initial sigma-y of 100 and initial sigma-z of 10.

Dust emissions during dredge placement were modelled as area sources with an effective height of 1m for wind erosion (sigma-z of 0.3) and 5m for landscaping activities (sigma-z of 1.3).

Stack heights used for modelling emissions from the dredge vessels have been estimated from images in the manufacturer's specifications. An exit velocity of 15m/s has been assumed for both vessels.

Characteristics of the point sources used to model emissions from the dredging vessels are detailed in Table 7. Multiple point sources were used to represent the TSHD dredging in the channel, and travelling from the channel to the transfer location. All point sources were configured as shown in Table 7.

Parameter	Units	CSD	TSHD	Tug	Barges	Information source
Stack height	m	19.3	30.5	10	10	Estimated from images and vessel
Stack diameter	m	1.3	1.0	0.5	0.5	dimensions on manufacturer's specifications
Exit velocity	m/s	15	15	30	6.7	EIS assumption
Exit temperature	К	428	428	600	428	EIS assumption

Table 7 Stack characteristics used to model emissions from the dredging vessels