Port of Gladstone Gatcombe and Golding Cutting Channel Duplication Project

Environmental Impact Statement

Appendix E3 Geotechnical Investigation Factual Report Channel Duplication (Dredger Access Channel and Transfer Location)

GEOTECHNICAL INVESTIGATION FACTUAL REPORT

Gatcombe and Golding Cutting Channel Duplication Project (Dredger Access Channel and Transfer Location)

Submitted to:

Gladstone Ports Corporation Limited QLD 4680 Australia

Submitted by:

Golder

147 Coronation Drive Milton, Queensland 4064 Australia

+61 7 3721 5400

1787891-005-R-Rev1

01 February 2018

EXPLANATORY NOTE

March 2019

This Geotechnical Investigation Factual Report was finalised in February 2018 to support the Port of Gladstone Gatcombe and Golding Cutting Channel Duplication Project Environmental Impact Statement (EIS).

This geotechnical investigation and report presents the Project dredging methodology that was relevant and in effect at that time.

Between July 2018 and December 2018, the Project dredging methodology was amended to comply with the Sustainable Ports Development Act 2015 (Qld), however the geotechnical boreholes contained in this report are located in close proximity to the proposed barge access channel (which forms part of the Project description included in the EIS).

In this regard, this report has been provided in the Gatcombe and Golding Cutting Channel Duplication Project EIS as an indication of the sediment characteristics of the material to be dredged for proposed barge access channel.

aurecon

Distribution List

Gladstone Ports Corporation Limited - 1 Electronic Copy

Table of Contents

1.0	INTRO	DUCTION	4
2.0	GEOL	0GY	4
3.0	CURR	ENT (2017) OVERWATER INVESTIGATION	4
	3.1	Geotechnical Boreholes	4
	3.2	Geotechnical Laboratory Testing	5
4.0	INVES	TIGATION FINDINGS	7
	4.1	Ground Conditions	7
5.0	REFE	RENCES	7
6.0	IMPOF		7

TABLES

Table 1: Summary of Completed Boreholes	5
Table 2: Laboratory Test Results – Geotechnical Soil Properties	6
Table 3: Summary of Ground Conditions	7

FIGURES

Figure 1: Site Plan and Geotechnical Investigation Locations	9
--	---

APPENDICES

APPENDIX A A1 - Borehole Reports A2 - Explanation of Notes, Abbreviations & Terms Used On Borehole and Test Pit Reports

APPENDIX B Laboratory Testing Reports

APPENDIX C Important Information Relating to this Report

1.0 INTRODUCTION

Golder Associates Pty Ltd (Golder) was commissioned by Gladstone Ports Corporation Limited (GPC) to carry out a geotechnical investigation for the Gatcombe and Golding Cutting Channel Duplication Project in Gladstone. The primary purpose of the investigation was to provide advice on the characteristics of the type of material to be dredged in the dredger access channel and the transfer location. The geotechnical investigation was carried out in accordance with the Golder Proposal P1787891-001-Rev0 dated 26 September 2017. Findings of the geotechnical investigation are presented in this report.

Note that, in this report, reduced levels refer to Lowest Astronomical Tide (LAT) and coordinates relate to Map Grid of Australia 1994 (MGA94) Zone 55.

Figure 1 shows the location of the boreholes carried out.

2.0 GEOLOGY

The geology of the site is described in the "Geology of the Rockhampton and Port Clinton 1:250 000 Sheet Areas" (Kirkegaard et al., 1989) and the more recent "Gladstone Special 1:100 000 Sheet" (Donchak and Holmes, 2006). The map indicates that the site is underlain by the Early Carboniferous Wandilla Formation of the Curtis Island Group.

Depending on the level of dredging that has already occurred in the past, a varying thickness of very soft fine grained material or very loose coarse grained material can be expected to be encountered. These loosely compacted material would overlie older stiffer alluvium and residual soil in places which in turn would overlie the rock of the Wandilla Formation at depth.

Regionally, the Wandilla formation consists of mudstone, arenite (sandstone), and subordinate chert and minor limestone. The rocks were formed on the continental slope and are interpreted to be part of an accretionary wedge which resulted during a subduction of the oceanic crust beneath the Australian shield. During its formation, deposition of muds and silica rich organisms (which form cherts) were interrupted by periodic turbidity flows depositing arenaceous material.

Structurally, the Wandilla Formation is characterised by steeply dipping, north-west to north trending (geographic) fracture to slaty cleavage, which is mostly parallel to bedding. There are more localised bedding parallel disruption fabrics due to shearing forces. Tight chaotic folding is present within the chert rich units which are thought to have formed by localised slumping. Stratal disruptions by north-west faults are common within the Wandilla Formation. The faults are interpreted to be thrust related imbricated slices dipping to the east.

CURRENT (2017) OVERWATER INVESTIGATION 3.0

The current geotechnical investigation comprised four overwater boreholes at the nominated locations by GPC. The boreholes HP1, HP2, AC1 and AC2 are located in Fisherman's Landing area to the south-west of Curtis Island as shown in Figure 1.

The fieldwork was carried out from 13 to 15 December 2017.

3.1 **Geotechnical Boreholes**

The borehole drilling was undertaken using a Hydrapower Scout drill rig operated by Schneider Drilling welded on the Shine jack-up barge mobilised by a tug boat provided by MIPEC. The drill rig was equipped for rotary drilling, rock coring, SPT (Standard Penetration Test), undisturbed sampling (U₅₀) and field Vane Shear testing. The boreholes were drilled to either the proposed target depth or at least 2 m into rock material with inferred strength ranging from very low to low strength. All boreholes were terminated with the approval of GPC.

Boreholes locations are shown in **Figure 1** borehole logs are presented in APPENDIX A. The coordinates and as-drilled depths are summarised in Table 1.

Borehole ID	Coord	linates	Seabed	Termination	Termination	
	Easting (m)	Northing (m)	(RL m LAT)	Deptil (III)	(RL m LAT)	
AC1	313894.565	7368869.273	-6.371	7.450	-13.821	
AC2	AC2 313712.308 7369298.616		-6.614	6.950	-13.564	
HP1	313600.183	7369713.919	-8.049	12.500	-20.549	
HP2	313436.803	7369807.628	-8.092	12.400	-20.492	

Table 1: Summary of Completed Boreholes

3.2 Geotechnical Laboratory Testing

Laboratory testing was specified by Golder and approved by GPC on selected soil and rock samples from the SPTs, U₅₀ tube samples and rock core and included the following:

- Moisture Content to AS1289.2.1.1
- Atterberg Limits to AS1289.3.1.2, AS1289.3.2.1, AS1289.3.3.1 and AS1289.3.4.1
- Partial Size Distribution including hydrometer to AS1289.3.6.3

The results of the completed laboratory testing are summarised in Table 2 and testing reports are included in APPENDIX B.

S
Ð
÷
5
e
0
0
2
-
=
0
S
_
a
Ű
12
늣
N.
E
ō
ŏ
ň
U
1
ts.
lts
sults
sults
Results
Results
it Results
est Results
est Results
Test Results
y Test Results
ory Test Results
ory Test Results
atory Test Results
ratory Test Results
oratory Test Results
boratory Test Results
aboratory Test Results
Laboratory Test Results
: Laboratory Test Results
2: Laboratory Test Results
2: Laboratory Test Results
le 2: Laboratory Test Results
ble 2: Laboratory Test Results
able 2: Laboratory Test Results

	Sampling	g Material Description	Symbol in		Particle Size Di	istribution (PSD)	Gravel	:	i	Atterberg Limi	its	
			accordance with AS1726	Сlay <2 µт	Silt 2 µm to 75 µm	2.36 mm	2.36 mm to 63 mm	Ľ	7	ā	LS	MC
				[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
	Silty	CLAY	Ū	39	55	9	0	48	17	31	13.5	39.5
CLAY CH 51 46 3 0 84 23 61 20 72.6 CLAY CH 51 44 5 0 74 21 53 18.5 80.9 CLAY CH 42 31 24 5 0 74 21 53 18.5 80.9 CLAY CH 42 31 24 3 65 14 21 53 18.5 80.9 VSAND SC 21 42 31 24 3 65 14 7 66 58.1 VSAND SC 21 47 16 66 23 43 17.5 26.5 VCLAY CI 46 3 37 16 21 17.4 VCLAY Cl-CI 50 46 3 37 16 21 17.4 VCLAY Cl-CI 50 46 3 37 16	Sand	y CLAY	СН	(')	38	59	e					
CLAY CH 51 44 5 0 74 21 53 18.5 80.9 CLAY CH 42 31 24 3 63 16 47 16.0 58.1 CLAY CH 42 31 24 3 63 16 47 16.0 58.1 SAND SC 1 24 3 63 16 47 16.0 58.1 SAND SC 1 47 1 0 66 23 43 17.5 26.5 CLAY CI 47 56 0 35 13 22 10.5 17.4 CLAY CL-CI 50 37 16 21 17.5 17.4 CLAY CL-CI 50 337 16 21 17.5 17.4 Gravelly SC -50 337 16 21 17.4 17.6 MD SC	Silty	CLAY	СН	51	46	ო	0	84	23	61	20	72.6
	Silty (CLAY	Н	51	44	5	0	74	21	53	18.5	80.9
	Silty (CLAY	Н	42	31	24	n	63	16	47	16.0	58.1
CLAY CH 52 47 1 0 66 23 43 17.5 26.5 CLAY Cl 44 56 0 35 13 22 10.5 17.4 CLAY Cl-Cl 50 46 3 37 16 21 11 17.4 CLAY Cl-Cl 50 46 3 37 16 21 11 17.6 Gravelly SC 25 40 35 -	Clayey	SAND	SC	^N	21	65	14				1	
CLAY CI 44 56 0 35 13 22 10.5 17.4 CLAY CL-CI 50 46 3 37 16 21 11 17.6 CLAY CL-CI 50 46 3 37 16 21 11 17.6 Gravelly SC 25 40 35 -	Silty	CLAY	СН	52	47	-	0	66	23	43	17.5	26.5
CLAY CL-CI 50 46 3 37 16 21 11 17.6 Gravelly SC 25 40 35 -	Sandy	CLAY	ō	4	14	56	0	35	13	22	10.5	17.4
Gravelly SC 25 40 35	Sandy	CLAY	CL-CI	()	20	46	ю	37	16	21	11	17.6
	Clayey S/	Gravelly AND	SC		25	40	35	I	I	I	I	I

Notes: LL=Liquid Limit; PL=Plastic Limit; PI=Plasticity Index; LS=Linear Shrinkage; MC=Moisture Content

4.0 INVESTIGATION FINDINGS

4.1 **Ground Conditions**

Subsurface conditions encountered at shallow depth in the offshore boreholes comprised layers of very soft to soft silty clays interlayered in places with very loose to loose sands. Stiff to hard clays and medium dense to dense sands/gravels were then encountered, some of them being residual soil. Rock was not encountered in any of the four boreholes.

Subsurface conditions encountered in the boreholes at each of the sites are summarised in Table 3.

Investigation ID		Unit Thickness (m)	
	Alluvium Deposit	Residual Soil	Bed Rock
AC1	6.60	0.85	n/e ¹
AC2	>6.95	n/e ¹	n/e ¹
HP1	>12.50	n/e ¹	n/e ¹
HP2	>12.40	n/e ¹	n/e ¹

Table 3: Summary of Ground Conditions

Notes: 1. Material either not observed or not encountered in the field are noted as 'n/e' in the table above.

5.0 **REFERENCES**

Donchak, P.J.T., and Holmes, K.H. (2006). *Gladstone Special: Sheet 9150 & Part 9151*, Department of Resource Industries, Queensland.

Kirkegaard, A.G., Shaw, R.D., and Murray, C.G. (1989). *Geology of the Rockhampton and Port Clinton 1:250,000 Sheet Areas,* Queensland Department of Mines, Brisbane.

6.0 IMPORTANT INFORMATION

Your attention is drawn to the document – "Important Information Relating to This Report", which is included in APPENDIX C of this document. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be, and to present you with recommendations on how to minimise the risks associated with the services provided for this project. The document is not intended to reduce the level of responsibility accepted by Golder Associates, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing.

Signature Page

Golder Associates Pty Ltd

Florian Hittinger Senior Geotechnical Engineer

FHH/JA/fhh/fz

Jay Ameratunga Principal Geotechnical Engineer

Golder and the G logo are trademarks of Golder Associates Corporation

\\golder.gds\gap\brisbane\jobs\geo\2017\1787891 - gpc_cvip investigation_gladstone\correspondence out\005\1787891-005-r-rev1-gpc- access channel and handling area factual report.docx

Figure 1: Site Plan and Geotechnical Investigation Locations

BoreholeID	Easting	Northing
AC1	313894.565	7368869.273
AC2	313712.308	7369298.616
HP1	313600.183	7369713.919
HP2	313436.803	7369807.628

SITE PLAN AND GEOT	ECHNICAL INVESTIG	
	DATE	2010.0

APPENDIX A

A1 - Borehole Reports A2 - Explanation of Notes, Abbreviations & Terms Used On Borehole and Test Pit Reports

JOB NO:

GAP 8_16.4 LIB.GLB Log GAP NON-CORED FULL PAGE 1787891 CVP- GLADSTONE.GPJ <<DrawingFile>> 29-01-2018 11:27 8.30.004 Datgel Tools

GOLDER

REPORT OF BOREHOLE: AC1

GPC CLIENT: LOCATION: Fisherman Landing 1787891

PROJECT: Gatcombe and Golding Cutting Channel Duplication Project

COORDS: 313894.6 m 7368869.3 m 55 SURFACE RL: -6.37 m DATUM: LAT INCLINATION: -90° HOLE DEPTH: 7.45 m

SHEET: 1 OF 1 DRILL RIG: Hydrapower Scout CONTRACTOR: Schneider Drilling LOGGED: FZ DATE: 15-12-17 CHECKED: FHH DATE: 15-11-18

		Dri	lling		Sampling			Field Material Desc	riptio	on	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR LL FIELD TEST C	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
	L	drilled over water	0 	-6.37	SPT 1.00-1.45 m RW/450mm		CH	Silty CLAY (ALLUVIUM) high plasticity, grey, trace fine grained sand, with shell fragments		vs	
VB			- - 3 - -	3.80	SPT 2.50-2.95 m RW/450mm	×			м		
1			4 — - - 5 —	-10.17 -5.00 -11.37	SPT 4.00-4.45 m 2, 3, 5 N=8	×	CI	Silty CLAY medium plasticity, pale yellow brown and pale grey Sandy CLAY high plasticity, yellow brown, fine to coarse grained sand, trace	_	F - St	
	L-M		- - 6 - -	6.60	SPT 5.50-5.95 m 3, 5, 7 N=12			fine grained gravel, grading to clayey sand in places			
			- 7 -	12.92	SPT 7.00-7.45 m 5, 5, 10 N=15	× •	×	high plasticity, pale grey/pale orange brown/pale yellow brown, fine grained, yellow brown sand		St - VSt	
			8	10.02				EIND OF BOREHOLE @ 7.45 M TARGET DEPTH DRILLED OVER WATER			
			9	- - - - -					14 5 -		
				l geot	inis report of borehole mi echnical purposes only, v information only and	vithout do not	atten	n conjunction with accompanying notes and abbreviations. npt to assess possible contamination. Any references to po essarily indicate the presence or absence of soil or groundw	it na: tentia ater c	s deel al cont contar	n prepared for tamination are for nination. GAP gINT FN. F01. RL

	/	f		
6	2	2		
		U		
Z		0		
		U	/	

CLIENT:

GOLDER

REPORT OF BOREHOLE: AC2

COORDS: 313894.6 m 7368869.3 m 55 PROJECT: Gatcombe and Golding Cutting Channel Duplication Project SURFACE RL: -6.37 m DATUM: LAT INCLINATION: -90°

SHEET: 1 OF 1 DRILL RIG: Hydrapower Scout CONTRACTOR: Schneider Drilling LOGGED: FHH DATE: 13-12-17 DATE: 15-11-18 CHECKED: MM

LOCATION:	Fisherman Landing
JOB NO:	1787891

GPC

HOLE DEPTH: 7.45 m

			Dri	lling		Sampling				Field Material Desc	iptio	on	
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
B.GLB Log GAP NON-CORED FULL PAGE 1787891 CMP - GLADSTONE.GPJ < <drawingfile>> 29-01-2018 11:27 8.30.004 DatgelTools</drawingfile>	RD		drilled over water W		-13.56	SPT 1.00-1.90 m RW450mm PP=TNP SPT 2.50-3.40 m RW450mm PP=TNP SPT 4.00-4.90 m RW450mm PP=TNP SPT 5.50-6.40 m RW450mm PP=TNP SPT 5.50-6.40 m RW450mm PP=TNP SPT 6.50-7.40 m RW450mm PP=TNP			CH GR	Silly CLAY (ALLUVIUM) high plasticity. grey	W CO	vs	
GAP 8 16.4 I					T geot	his report of borehole echnical purposes onl information only a	mu ly, w and	st be re /ithout do not	ead ir atten nece	n conjunction with accompanying notes and abbreviations. pt to assess possible contamination. Any references to pot ssarily indicate the presence or absence of soil or groundwa	t has entia ter c	s beer I cont contar	n prepared for amination are for nination. GAP gINT FN. F01a RL3

-	6	Ē.		
9	1			
		4		-
<		2		
	1		1	

CLIENT:

GAP 8_16.4 LB.GLB Log GAP NON-CORED FULL PAGE 1787891 CVP- GLADSTONE.GPJ <<DrawingFile>> 29-01-2018 11:30 8.30.004 Dargel Tools

GPC

LOCATION: Fisherman Landing

GOLDER

REPORT OF BOREHOLE: HP1

PROJECT: Gatcombe and Golding Cutting Channel Duplication Project

COORDS: 313894.6 m 7368869.3 m 55 SURFACE RL: -6.37 m DATUM: LAT INCLINATION: -90° HOLE DEPTH 7 45 m

SHEET: 1 OF 2 DRILL RIG: Hydrapower Scout CONTRACTOR: Schneider Drilling LOGGED: FZ DATE: 15-12-17 CHECKED: FHH DATE: 15-11-18

JC	B NC):	17878	91					HOLE DEPTH: 7.45 m		CHEC	CKED: FHH DATE: 15-11-18
		Dril	lling		Sampling				Field Material Descr	iptic	n	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
WB		drilled over water		-8.05 -5.00 -13.05	SPT 1.00-1.45 m RW/450mm SPT 2.50-2.95 m RW/450mm			CH	Silty CLAY Silty CLAY Silty CLAY high plasticity, dark grey	- M	vs	
			- - 6 - -	<u>6.60</u> -14.65	SPT 5.50-5.95 m RW/450mm			СН	high plasticity, dark grey, trace fine to coarse grained sand			
			7	<u>8.30</u> -16.35	SPT 7.00-7.45 m RW/450mm			SC	Churcy SAND			
	м		9	<u>9.80</u> -17.85	SPT 8.50-8.78 m 15, 30/125mm			SW	Carlyey SAINU fine to coarse grained, yellow brown and pale grey, high plasticity day, trace fine to medium grained, sub-angular to sub-rounded gravel		D- VD	
				T geoti	his report of borehole n echnical purposes only information only an	nus , w nd c	st be re ithout lo not	ead ir atterr nece	n conjunction with accompanying notes and abbreviations. I npt to assess possible contamination. Any references to pot ssarily indicate the presence or absence of soil or groundwa	t has entia ter c	s bee Il cont ontar	n prepared for tamination are for mination. GAP gINT FN. F01a RL3

CLIENT:

JOB NO:

GOLDER

REPORT OF BOREHOLE: HP1

GPC PROJECT: Gatcombe and Golding Cutting Channel Duplication Project LOCATION: Fisherman Landing

1787891

COORDS: 313894.6 m 7368869.3 m 55 SURFACE RL: -6.37 m DATUM: LAT INCLINATION: -90° HOLE DEPTH: 7.45 m

SHEET: 2 OF 2 DRILL RIG: Hydrapower Scout CONTRACTOR: Schneider Drilling LOGGED: FZ DATE: 15-12-17 CHECKED: FHH DATE: 15-11-18

		Dril	ling		Sampling				Field Material Desc	riptic	n	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			10— - -		SPT 10.00-10.10 m 30/100mm HB		0 .0 .0	SW	Gravelly SAND fine to coarse grained, yellow brown, fine to medium grained, sub-angular to sub-rounded gravel			
WB	м		- 11 -	•	SPT 11 50-11 64 m		0. 0. 0.			м	D- VD	
			- - 12		30/140mm HB		0 0 0 0					
			- - 13 —	-20.55			<u></u>		END OF BOREHOLE @ 12.50 m TARGET DEPTH DRILLED OVER WATER			
			- - - 14									
Datgel Tools			- - - 15									
2018 11:30 8.30.004			-									
JrawingFile>> 29-01-0			16 — - -									
LADSTONE.GPJ < <c< td=""><td></td><td></td><td>- 17 — -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></c<>			- 17 — -									
ae 1787891 CMP - G			- - 18									
N-CORED FULL PAG			- - 19									
B.GLB Log GAP NO			- - - 20									
GAP 8 16.4 LI				T geot	his report of borehole echnical purposes or information only	e mu nly, w and o	st be re /ithout do not	ead ir atten nece	n conjunction with accompanying notes and abbreviations. opt to assess possible contamination. Any references to po ssarily indicate the presence or absence of soil or groundw	It has tentia ater c	been p I contan ontamin	nination are for nation. GAP gINT FN. F01 RL

GOLDER

REPORT OF BOREHOLE: HP2

CLIENT: GPC PROJECT: Gatcombe and Golding Cutting Channel Duplication Project

COORDS: 313894.6 m 7368869.3 m 55 SURFACE RL: -6.37 m DATUM: LAT

SHEET: 1 OF 2 DRILL RIG: Hydrapower Scout CONTRACTOR: Schneider Drilling

L	.OCA [.] OB N	FION: O:	Fisher	rman La	nding				INCLINATION: -90°	1		GED: FHH DATE: 14-12-17 CKED: FHH DATE: 15-11-18
F		Dri	lling		Sampling				Field Material Desc	rintic		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION		CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
F		er water	-0	-8.09			× — —× ~ —	СН	Silty CLAY (ALLUVIUM) high plasticity, grey to dark grey	w	vs	-
		drilled ov	-	<u>0.50</u> -8.59			^; * — ×	СН	Sitty CLAY high plasticity, grey and pale orange brown			
			1— -	-	SPT 1.00-1.45 m 3, 7, 10 N=17 PP=250-450 kPa		× × × × · · · ·					-
			-	-			^ 					-
			- 2		CDT 2 50 2 05 m		× — — × × —	- 4 - 7				
			- - 3—	-	SPT 2.50-2.95 m 3, 6, 9 N=15 PP=250-350 kPa		× ×					-
			-	-			— — — — — — — — — — — — — — — — — — —					-
as RD			4		SPT 4.00-4.45 m 4, 7, 9 N=16		× — × — 					-
30.004 Datgel Too	L		- 5 —	<u>5.10</u> -13.19			× · · · · · · · · · · · · · · · · · · ·	СІ	Sandy CLAY medium plasticity, grey and pale orange brown, fine to coarse	м	VSt	-
01-2018 11:30 8			- - 6—		SPT 5.50-5.95 m 10, 7, 7 N=14				grained sand, varying sand content			-
DrawingFile>> 29			-	-								-
DSTONE GPJ <<			- 7—	7.00 -15.09	SPT 7.00-7.45 m 4, 6, 10 N=16				interbeded in places with medium to coarse grained sand up to 100 mm thick			
91 CVIP - GLA			-	7.90			· · · · · · · · · · · · · · · · · · ·	СН	Gravelly CLAY			-
L PAGE 1/8/8.					SPT 8.50-8.95 m				high plasticity, grey, fine grained, subangular to angular (some gravels are quartz) pale grey to dark grey gravel, grading in places to clayey gravel			
ON-CORED FUL T			- 9—		10, 9, 11 N=20							-
B Log GAP N: R			-	<u>9.70</u> -17.79				CL-				
16.4 LIB.GL			10—	T T	his report of borehole	mu:	st be re	ead in	n conjunction with accompanying notes and abbreviations.	It has		n prepared for
GAP 8				geor	information only a	and o	do not	nece	issarily indicate the presence or absence of soil or groundwa	ater c	ontar	mination. GAP gINT FN. F01a RL3

JOB NO:

GOLDER

REPORT OF BOREHOLE: HP2

CLIENT: GPC LOCATION: Fisherman Landing

1787891

PROJECT: Gatcombe and Golding Cutting Channel Duplication Project

COORDS: 313894.6 m 7368869.3 m 55 SURFACE RL: -6.37 m DATUM: LAT INCLINATION: -90° HOLE DEPTH: 7.45 m

SHEET: 2 OF 2 DRILL RIG: Hydrapower Scout CONTRACTOR: Schneider Drilling LOGGED: FHH DATE: 14-12-17 CHECKED: FHH DATE: 15-11-18

		Dril	ling		Sampling				Field Material Desc	riptic	on	-
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			10 — - -		SPT 10.00-10.45 m 9, 15, 15 N=30			CL- CI	Sandy CLAY low to medium plasticity, grey and dark orange brown, fine to coarse grained, subrounded to rounded, white sand		н	
RT	L		- 11 — -	<u>11.30</u> -19.39	_		•••• •••• •••• ••••	SC	Clayey Gravelly SAND	м		
			- - 12—	-	SPT 11.50-11.73 m 29, 30/80mm				fine to coarse grained, grey and orange brown, fine to medium grained subrounded gravel, low plasticity clay		D- VD	
		-		-20.49					END OF BOREHOLE @ 12.40 m TARGET DEPTH DRILLED OVER WATER			
			- - - 14 —	-								
Datgel Tools			- - - 15	-								
-2018 11:30 8.30.004			-	-								
<drawingfile>> 29-01</drawingfile>			16 — - -	-								
GLADSTONE GPJ 🗠			- 17 — -	-								
PAGE 1787891 CMP			- 18— -	-								
NON-CORED FULL			- - 19—	-								
4 LIB.GLB Log GAF			- - 20 —	-						+		
GAP 8_16.4				l geot	technical purposes or information only	e mu nly, w and	vithout do not	atten nece	n conjunction with accompanying notes and appreviations. apt to assess possible contamination. Any references to po- assarily indicate the presence or absence of soil or groundw	n nas tentia ater c	l cont ontar	n prepared for tamination are for mination. GAP gINT FN. F01 RL

METHOD OF SOIL DESCRIPTION **USED ON BOREHOLE AND TEST PIT REPORTS**

	EU 2					-		
	FILL					- CLAY (CL	., CI or CH)	
0000	GRAVEL	(GW, GP, GN	l or GC)		<u>1, 1, 1</u>	ORGANIC	C SOILS (OL, OH or Pt)	
	SAND (SV	N, SP, SM or	SC)		000	COBBLE	S or BOULDERS	
× × × × × × × ×	SILT (ML	or MH)						
Combinatio	ons of these b	asic symbols	may be used to	indic	ate mixed m	aterials such as sa	ndy clay.	
	CATION AND	INFERRED	STRATIGRAPH	<u>Y</u>			<u> </u>	
Soll and Ro	OCK IS Classifie	ed and descri	oed in Reports of	t Bore	eholes and I	est Pits using the	preferred method given	in AS1726-207
The materi	ai properties a	Particlo Si		sual/l		us.	ti - it Due u - uti	
0	a Outra		Deutiele O			PI	asticity Properties	
Soll Grou	p Sub I	Division	Particle S	ize				
	BOULDERS	5	> 200 mi	m	60 -		June e	
	COBBLES		63 to 200 r	mm	50 -		11111111111111111111111111111111111111	
	Co	barse	19 to 63 n	nm	*			Allne 20)
GRAVEL	. Me	edium	6.7 to 19 r	nm	1 × 3		Сногон	13 (14)
	F	ine	2.36 to 6.7	mm	Z 30 -	411111111111111		
	Co	arse	0.6 to 2.36	mm	ICIT		Ci or Ol	+ $+$ $+$ $+$ $+$
SAND	Me	dium	0.21 to 0.6	mm	LAST		MH or OH	
SAND			0.075 to 0.2	1 mm	10 -	CL or OL		
	F F	Ine	0.075 to 0.2	· · · · · · ·			ML or OL	
	SILT		0.002 to 0.07	5 mn		10 20 30	40 50 60 70	80 90 1
	CLAY		< 0.002 m	nm			LIQUID LIMIT W _L , %	
IOISTURI		N						
Symbol	ferm De	escription	ala ara fraa flaw	ina (a may be brittle or	frichle and newdony	
ן ר א וו	Jiy Sa Moist Sc	nus anu grav bils are darkei	than in dry cond	ling. C tition	and may fee	Is may be brille or	aravels tend to cohere	
۸ N	Vet So	oils exude free	e water. Sand an	d gra	vels tend to	cohere.		
Moisture co	ndition for fir	ne grained soi	Is is described re	elativ	e to the plas	tic limit or liquid lim	it as specified in AS172	26-2017.
CONSISTE	NCY AND D	ENSITY						
<u> </u>	Fine	Grained Soi	S	г		Coars	e Grained Soils	0001 // 17
Symbol	Term	Undrained S	Shear Strength		Symbol	Term	Density Index (%)	<u>SPN "N" *</u>
VS	Very Soft	0 to	12 KPa	-	VL	Very Loose	Less than 15	0 to 4
F	Firm	12 to	20 KFa	-		Medium Dense	35 to 65	10 to 30
St	Stiff	50 to	100 kPa	F	D	Dense	65 to 85	30 to 50
VSt	Very Stiff	100 to	200 kPa	F	VD	Very Dense	Above 85	Above 50
Н	Hard	Above	200 kPa	L		,		
Fr	Friable							
n the abse	nce of test re	sults, consist	ency and density	/ may	be assesse	d from correlations	with the observed beha	aviour of the
naterial.			0.1700.00.17					
SPT corre	elations are n	ot stated in A	S1726-2017, and	d may	/ be subject	to corrections for o	verburden pressure and	d equipment ty
	1 1()N							
Veakly Ca	mented	Tho co	I may be obsily a	liead	areasted by	hand in air or wata	r	

EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT REPORTS

DRILLING/E	XCAVATION ME	THOD							
ADH	Hollow auger dri	lling	EX	Excavator			PQ3	Diamon	d core - 83 mm
ADT	Auger drilling wit	h tc-bit	HA	Hand auger			PT	Push tu	be sampling
ADV	Auger drilling wit	h v-bit	HAND	Excavated by	hand method	ds	RAB	Rotary	air blast
AIRCORE	Aircore		HMI C	Diamond core	- 63 mm		RC	Reverse	e circulation
AT	Air track		HO3	Diamond core	- 61 mm		RT	Rock ro	ller
RH	Backhoe bucket		IET	Jetting	011111		SONIC	Sonic d	rilling
СТ	Cable tool rig			Mazior tubo co	ampling		SDT	Standar	d popotration testing
			IVIZ		amping		561	Stanual	u penetration testing
	Diatube coring		NDD	Non-destructiv	/e algging		U	Undistu	rbed tube sampling
EE	Existing excavat	ion	NMLC	Diamond core	- 52 mm		WB	Washbo	bre drilling
EPT	Extruded push tu	lbe	NQ3	Diamond core	- 45 mm				
PENETRATI	ON/EXCAVATION	N RESISTAN	ICE						
L	Low resistance	. Rapid pene	etration p	ossible with littl	e effort from	the equ	uipment use	ed.	
M	Medium resista	nce. Excava	ation/pos	sible at an acce	eptable rate w	vith mo	derate effor	t from the	equipment used.
н	High resistance	to penetration	on/excav	ation. Further p	penetration is	s possil	ble at a slow	/ rate and	requires significant
-	effort from the ed	quipment.							
R	Refusal or Prac	tical Refusa	I. No fur	ther progress p	ossible witho	out the	risk of dama	age or un	acceptable wear to
	the digging imple	ement or mad	chine.						
These asses	sments are subject	ctive and are	depende	ent on many fac	tors including	g the e	quipment po	ower, wei	ght, condition of
excavation o	r drilling tools, and	the experier	nce of the	e operator.					
	Wata	r loval at dat	a chown		1 0	Dartial	water loss		
i≹_	Wate	r inflow	e shown			Comple	waler ioss		
			-f			Comple		iS ala dua tu	a duillin a such a r
GROUNDWA	ATER NOT The	observation	or groun	dwater, whethe	er present or i	not, wa	as not possi	ble due la	o drilling water,
ODSERVED		ace seepage	e or cave		ole/lest pit.	Llaura	(a. n. an a star al st		le he present in less
GROUNDWA			st pit was	ary soon aller	excavation.		/er, grounav	valer cou	n left ener for e
ENCOUNTE	KED pen	neable strate	a. Innow	may have been	i observed na	au the	porenoie/te:	st pit bee	n leit open lor a
SAMPLING		ger period.							
SPT	Standard Pe	netration Tes	st to AS1	289 6 3 1-2004					
4.7.11 N=18	4.7.11 = Bloy	ws per 150m	m. N = B	lows per 300mr	m penetration	n follow	vina 150mm	seating	
30/80 mm	Where pract	ical refusal o	ccurs. the	e blows and per	netration for t	that int	erval are rer	oorted	
RW	Penetration	occurred und	ler the ro	d weight only					
HW	Penetration	occurred und	ler the ha	mmer and rod	weiaht only				
НВ	Hammer dou	uble bouncing	n on anvi		5 ,				
DS	Disturbed sa	mple	J						
BDS	Bulk disturbe	ed sample							
G	Gas Sample	I							
W	Water Samp	le							
FP	Field perme	ability test ov	er sectior	n noted					
FV	Field vane sl	hear test exp	ressed a	s uncorrected s	hear strengt	h (sv =	peak value.	. sr = resi	dual value)
PID	Photoionisat	ion Detector	reading i	n ppm	5	`	1 .		,
PM	Pressuremet	ter test over s	section n	oted					
PP	Pocket pene	trometer test	express	ed as instrumer	nt reading in I	kPa			
U63	Thin walled t	ube sample ·	- number	indicates nomi	nal sample d	liamete	er in millimet	res	
WPT	Water press	ure test							
DCP	Dynamic cor	ne penetratio	n test						
CPT	Cone penetr	ation test							
CPTu	Cone penetr	ation test witl	h pore pr	essure (u) mea	surement				
RANKING O	F VISUALLY OB	SERVABLE	CONTAN	ΙΙΝΑΤΙΟΝ ΑΝΕ	ODOUR (fo	or speci	ific soil conta	aminatior	n assessment
projects)									
R = 0	No visible evider	nce of contan	nination		R = A	No no	on-natural o	dours ide	ntified
R = 1	Slight evidence of	of visible cont	taminatio	n	R = B	Slight	t non-natura	l odours	identified
R = 2	Visible contamin	ation			R = C	Mode	erate non-na	tural odo	urs identified
R = 3	Significant visible	e contaminati	ion		R = D	Stron	g non-natur	al odours	identified
ROCK CORI	ERECOVERY								
ROCK CORE RECOVERY TCR = Total Core Recovery RQD = Rock Quality Designation SCR = Solid Core Recovery F = Fracture (%) (%) Frequency Frequency									
1 e 41 - 5	(%)	$\nabla \cdot \cdot \cdot$	(%)	402		(' f auri' '	70)		Frequency
= Length of co	$\frac{\text{ore recovered}}{100} \times 100$	$= \Delta$ Axial len	ngths of co	re > 100 mm ×100	$= \sum$ Length o	T Cyclind	rical core recov	/ered 	= No.of defects
Length c	ot core run	Ler	ngth of core	erun		ength of	r core run		Length of zone (m)

GOLDER TERMS FOR ROCK MATERIAL STRENGTH & WEATHERING AND ABBREVIATIONS FOR DEFECT DESCRIPTIONS

STRENG	ГН						
Symbol	Term	UCS (MPa)			Field Gu	de	
VL	Very Low	0.6 to 2	Material cr to cut a tria	rumbles unde axial sample b	r firm blows with sharp end by hand. Pieces up to 30 r	l of pick; can be pee nm can be broken b	eled with knife; too hard by finger pressure.
L	Low	2 to 6	Easily sco of pick poi diameter n handling.	red with a kni nt; has dull so nay be broker	fe; indentations 1 mm to 3 bund under hammer. A pie n by hand. Sharp edges of	mm show in the spe ace of core 150 mm core may be friable	ecimen with firm blows long by 50 mm and break during
М	Medium	6 to 20	Readily so by hand w	ored with a ki ith difficulty.	nife; a piece of core 150 m	m long by 50 mm di	ameter can be broken
Н	High	20 to 60	A piece of broken wit	core 150 mm h pick with a s	long by 50 mm diameter o single firm blow; rock rings	annot be broken by under hammer.	hand but can be
VH	Very High	60 to 200	Hand spec	cimen breaks	with pick after more than o	ne blow; rock rings	under hammer.
EH	Extremely High	>200	Specimen rings unde	requires man er hammer.	y blows with geological pic	k to break through i	ntact material; rock
Material wi	th strength le	ess than 'Very	Low' shall	be described	using soil characteristics.	The presence of an	original rock structure,
Tabric or te			elevant.				
RUCKIWA	ATERIAL W	Torm			Field Cu	do	
Syn	IOUI	Term	Matariali	a weathered t	Field Gu	ue soil proportios Ma	as structure and
R	S	Residual Soil	material t significan	exture and fall	bric of original rock are no d.	longer visible, but th	ne soil has not been
X	W	Extremely Weathered	Material is material t	s weathered t exture and fa	o such an extent that it ha bric of original rock are stil	s soil properties. Ma visible.	ss structure and
DW	HW	Highly Weathered	The whole extent that changed may be in products	e of the rock r at the colour o by weathering ncreased by le in pores.	material is discoloured, usi f the original rock is not re g. Some primary minerals l eaching, or may be decrea	ally by iron staining cognizable. Rock str nave weathered to c sed due to depositio	or bleaching to the rength is significantly lay minerals. Porosity on of weathering
	MW	Moderately Weathered	The whole extent that of strengt	e of the rock r at the colour c h from fresh r	naterial is discoloured, usi f the original rock is not re ock.	ually by iron staining cognizable, but show	or bleaching to the ws little or no change
S	W	Slightly Weathered	Rock is p change o	artially discolo f strength fror	oured with staining or blea n fresh rock.	ching along joints bu	ut shows little or no
F	R	Fresh	Rock sho	ws no sign of	decomposition of individu	al minerals or colour	changes.
ABBREV	ATIONS FC	R DEFECT T	YPES AND	DESCRIPTI	ONS		
Defect Ty	ре			Coating or	Infilling	Roughness	
Р	Parting			Cn	Clean	VRo V	/ery Rough
Х	Foliation			Sn	Stain	Ro F	Rough
L	Cleavage			Ve	Veneer	Sm S	Smooth
С	Contact			Ct	Coating	Po P	Polished
J	Joint			In	Infill	SI S	Blickensided
SSu	Sheared S	urface				Vertical Borehol	es – The dip
SS	Sheared S	eam		Planarity		(inclination from h	orizontal) of the defect
SZ	Sheared Z	one		PI	Planar	is given.	
CS	Crushed S	eam		Cv	Curved	Inclined Borehol	les – The inclination is
IS	Infilled Sea	am		Un	Undulating	measured as the	acute angle between
EWS	Extremely	Weathered Se	eam	St	Stepped	the core axis and	the vertical direction.
V	Vein			lr	Irregular		

APPENDIX B

Laboratory Testing Reports

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

		PAR	TICL	E SI		DIS	TRIBL	JTI 63.3	ON 1	TEST	REF	POR	Γ					
Client	Golder As	sociates P	ty Limi	ited	551 1110			J.J, J		R	eport	No.		GA10	00271	-G		
										R	eaues	st No		20122	2017			
Address	PO Box 1	734 MILTC	N BC		QLD	4()64			Te	et Da	ite		18/1/	/2018			
												Data		24/1/	2010			
Project	GPC CVI	IP Investiga	ation (ladet	ne						epon	Dale		24/1/	2010			
Project No.	1787801	ir investige				nt Sa	mnlo N											
	1/0/091				Dav			10		-		Der	41. T.	(
Bore Hole					Dep	oth Fr	om (m)	4				Dep		o (m)				
Description	DS	1																
Jieve Jize	Passing			Fine	м	edium	Coarse		Fine	Medium	Coa	arse	Fine	Medi	ium	Coarse		
150.0	/0	100	Clay	Silt		Silt	Silt		Sand	Sand	Sa	and	Gravel	Grav	vel	Gravel	Col	bles
75.0		100								\square								
10.0		1							1									
53 N		90																\parallel
27 5																		
01.0 06.5		1																
10.0		80	$\left \right $					<u> </u>										4
13.0	-	1																
9.5		1																
6.7		70	+												_		-	
4.75																		
2.36																		
1 18		8 60	+															-
0.600		ŝsing				/												
0.425		- Ba																
0.300	100	50	1		1/	1												-
0.150	99	1																
0.075	94	1																
0.059	87	40																
0.043	75	1																
0.032	65	30																
0.023	61																	
0.017	56																	
0.012	53	20																
0.0089	50																	
0.0064	46																	
0.0045	44	10	$\left \right $					+++										
0.0037	43	1																
0.0032	42	4																
0.0026	41	, o				01			Ц р 1									Щ
0.0023	40		001		0	.01		,	Particl	e Size (n	nm)			10	,		1	00
0.0013	38									(.	,							
TES/REMARKS:		-											., 2.					
		Moisture Con	tent 39.	5%					-2.36	imm Soil	Particle	Density(t/m³) 2.	67	_		. 4	D
		Sample/s supp	lied by the	e client											P	age 1 of	r 1	KEF
Accredit	ed for compliant	nce with ISO	IEC 17	025 - Te	esting	udad in			Au	thorise	d Sigı	natory			Ň			
this docum	ient are traceal	ble to Austral	ian/Nati	onal St	andar	ds.	I		/	1	6					V		
	Tested at T-	lah Brichana	lahorot	on					\sim	C. Ch	annor	n				ECHNICA MPETENC	E	
				.ory.											Lab	orator	y No.	9926

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

		PARTICLE			BUTION	TEST R	EPORT	•		
Client	Golder As	sociates Pty Limite	ed	iculou. Ao I	209 0.0.1 , 2.1	Rep	ort No.	GA1	00272-G	
						Req	uest No	20122	2017	
Address	PO Box 1	734 MILTON BC	QLD	4064		Test	Date	17/1/	/2018	
						Rep	ort Date	24/1/	/2018	
Project	GPC_CVI	P Investigation_Gla	adstone							
Project No	1787891		Clien	nt Sample	No	-				
Bore Hole	AC1		Dept	h From (ı	n) 5.5		Dept	th To (m)		
Description	DS									
Sieve Size	Passing									
(mm)	%		Silt	Fine Sand	Medium Sand	Coarse Sand	Fine Gravel	Medium Gravel	Coarse Gravel	Cobbles
150.0		100								
75.0		90 -								
63.0										
53.0		80								
37.5		70								
26.5										
19.0		60								
13.2		(%) (%)								
9.5		SS 50								
6.7		40								
4.75	100									
2.36	97	30								
1.18	91	20								
0.600	78									
0.425	69	10								
0.300	59									
0.150	41	0 + 0.01		0.1	Parti	1 1 cle Size (mn	n)	10		100
0.075	38				i arti		~			
NOTES/REMARKS:		-								
		Moisture Content 38% Sample/s supplied by the cli	ient						Page 1 of	REP0390
Accredit The results of t this docum	ted for complian the tests, calibr ment are traceal	nce with ISO/IEC 1702 ations, and/or measure ble to Australian/Nation	5 - Testing. ments includ al Standards	led in S.	A.	thorised s	Signatory		NATA	
The	Tested at Tri	ab Brisbane Laborator	y.	4h		C. Chan	non	an atherwise	Laboratory	No. 9926

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

		PAR	TICL	E S	IZE DIS est Method [.]	AS 1289 3	JTION	TEST	REPO	RT				
Client	Golder As	sociates P	ty Limit	ed				Re	port No.		GA1002	43-G		
								Re	auest No	5	20122017			
Address	PO Box 1	734 MILTO	N BC		QLD 4	1064		Tes	st Date	-	18/1/201	8		
								Rei	nort Dat	۵	24/1/201	8		
Project	GPC CVI	IP Investia	ation G	ladst	one					C	24/1/201	0		
Project No	1787891	in invoorige			Client S	amnle N	0							
Boro Holo	AC2				Donth E	rom (m)	<u>ر</u>	-		onth T	- (m)			
					рерш г	rom (m)	4			epth 1	5 (m)			
Sieve Size	Passing													
(mm)	%		Clay	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	Cobb	
150.0		100		Silt	Silt	Silt	Sand	Sand	Sand	Gravel	Gravel	Gravel	CODE	
75.0														
63.0							1							
53.0		90									-			
37.5		1												
26.5		1												
19.0		80	+											
13.2		1												
9.5]												
6.7		70	+	+										
4.75]												
2.36														
1.18] % 60 គ្ន		1									-	
0.600		assir		$\langle $										
0.425	100	<u> </u>												
0.300	99													
0.150	99	-												
0.075	97	- 40	\downarrow											
0.055	95													
0.039	92	-												
0.029	85	- 30	+										-	
0.021	81	-												
0.015	77	4												
0.011	75	20	+	+										
0.0083	68	4												
0.006	63	-												
0.0043	60	10												
0.0000	56	1												
0.003	55	, l												
0.0023	51	0.	001		0.01		0.1		1		10		10	00
0.0022	48	1					Partie	cle Size (m	m)					
0.0010		I												
TEOREWIAKNO:		- Moisture Con	tent 72 6	%			-2.	36mm Soil P	article Dens	ity(t/m³) 🤈	.60			
		Sample/s supp	lied by the	client								Page 1 o	f 1	REP
Accredit	ed for complia	nce with ISO	/IEC 170	25 - T	estina									
The results of t	the tests, calibr	ations, and/o	r measu	remen	ts included	in	A	uthorised	Signato	ory		NATA	ί,	
this docum	nent are tracea	ble to Austral	ian/Natio	onal St	andards.		C	. a			>		Ê	
	T	lah Driahana						C Cha	nnon			COMPETENC	E	

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

		PAR	TICL	E SI		ISTRIBL	ITION	TEST	REPO	RT				
Client	Golder As	ssociates P	ty Limi	ted			,	Rei	port No.		GA1002	73-G		
								Red	auest No)	20122017			
Address	PO Box 1	734 MILTO	N BC		QLD	4064		Tes	st Date	-	18/1/201	8		
								Rei	nort Dat	<u>م</u>	24/1/201	18		
Project	GPC CV	IP Investig	ation (Gladst	one					•	24/1/201			
Project No	1787891				Client	Sample N	0	-						
Bore Hole	HD1				Denth	Erom (m)	25			onth T	o (m)			
Description					Depti		2.0			epuiri	0 (III)			
Sieve Size	Passing													
(mm)	%		Clay	Fine	Mediu	m Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	Cabbla	
150.0		100		Silt	Silt	Silt	Sand	Sand	Sand	Gravel	Gravel	Gravel	Copple:	s
75.0														
63.0		1												
53.0		90					1							
37.5		1												
26.5	1	1												
19.0		80	┥─┤		+									-
13.2		1				/								
9.5		1												
6.7		70	+		┼┼┼╢									\neg
4.75		1												
2.36		1												
1.18		60 												
0.600		Issin												
0.425	100] ^e												
0.300	99	50	\Box											
0.150	99		1											
0.075	95	40												
0.057	91													
0.04	89	1												
0.029	85	- 30												
0.021	81	4												
0.016	77	4												
0.011	74	20	$\left \right $											_
0.0083	66	4												
0.0059	63	4												
0.0043	59	10	+											┥
0.0035	57	-												
0.003	55	4												
0.0025	53	- 0 0.	+ ¹ 001		0.01		0.1		1		10		100)
0.0022	52	{					Partic	le Size (mi	m)					
0.0013	46	1												
TES/REMARKS:		-	tant 00	00/			0.0	6mm Coll D	articla Dona	itu/(t/m ³) ~	62			
		NOISTURE CON	tent 80.	9% e client			-2.3	onnin Son Pa	ai licie Dens	ity(vill) 2	.03	Page 1 o	1 P	FPſ
												raye 10		LI- (
Accredit The results of t	ted for complia	nce with ISO	r measu	u25 - To uremen	esting. ts include	ed in	Au	uthorised	Signato	ry		NATA		
this docum	nent are tracea	ble to Austral	ian/Nati	onal St	andards.		6	a	2		>		R	
	Tested at Tri	lab Brisbane	Laborat	orv.			-	C. Cha	nnon			COMPETENC		
						ha an 10 1			for the second			Laborator	/ No. 99	26

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

		PAR	TICL	E SI		DIS			ON 7	TEST	REP	ORT					
Client	Golder As	sociates P	ty Limi	ited	JJI WEL	.ou. A	J 1203 J		5.1 04 2	Re	eport N	0.		GA1002	274-G		
										Re	eauest	No		20122017	,		
Address	PO Box 1	734 MILTO	N BC		QLD	40)64			Te	est Date	<u></u>		18/1/20	18		
											nort D	ato		21/1/20	18		
Project		IP Investia	ation (ladet	ano						pon D	ale		24/1/20	10		
Project No.	1707001	ir investige				4 60											
	1/0/091				Ciler	it Sa	mple r	<u>vo</u>		-		Denth	T .	()			
Bore Hole	HP1				Dept	h Fr	om (m) /				Depth	10	(m)			
Description	DS	1															
Sieve Size	Passing			Fine	Med	ium	Coarse		Fine	Medium	Coars	e Fin	e	Medium	Coarse		
(mm) 150.0	70	100	Clay	Silt	Si	lt	Silt		Sand	Sand	Sand	Gra	vel	Gravel	Gravel	Cob	bles
75.0	-												+				
63.0		-															
53.0		90								\square							
37.5		-								/							
01.0 06.5		1															
10.0		80	$\left \right $		┼┨╎╎║												
13.0		1															
9.5	100	1															
9.0	00	70	+					1				_				-	
1.75	00	1															
2.36	07	1															
1 18	96	8 60			/	/		-			_					-	
0.600	90	sing															
0.000	03	Pas															
0.425	93	50	┥		/											-	
0.500	92	1															
0.130	73	1															
0.075	70	40															
0.001	71	1															
0.043	69	1															
0.031	66	- 30															
0.022	64	1															
0.010	62	1															
0.012	58	20	1														
0.0007	53	1															
0.0002	49	1 40															
0.0036	47																
0.0032	46	1															
0.0026	45	1 ^															
0.0023	44	, o.	001		0.0	1		0	.1		1			10		1	00
0.0013	39	1						I	Particle	e Size (n	nm)						
		<u>.</u>															
HES/KEMARKS:		- Moisture Con	tent 58	1%					-2 36	mm Soil I	Particle D	ensitv(t/m ³) 26'	2			
		Sample/s sunn	lied by the	e client					2.00				/ 2.02	<u> </u>	Page 1 o	f1	REP
A	and factors			005 T	f -												
Accredit The results of t	ted for complia	nce with ISO/ ations. and/o	r measu	uzo - 10 uremen	esting. ts includ	ded in	l		Aut	horise	d Signa	atory			NATA	À.	
this docum	nent are tracea	ble to Austral	ian/Nati	onal St	andards	S.			6	CA	he				ACCREDITED F	DR.	
	Tested at Tri	lah Brishana	l ahorat	orv						C. Ch	annon				TECHNICA	E	
			Laborat	Jory.											Laborator	y No.	9926

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

		PARTICLE	SIZE D		BUTION	TEST R	EPORT			
Client	Golder As	sociates Pty Limite	d	iculou. Ao	203 J.U.I , Z. I.	Repo	ort No.	GA10)0275-G	
						Requ	uest No	20122	017	
Address	PO Box 1	734 MILTON BC	QLD	4064		Test	Date	19/1/	2018	
						Repo	ort Date	24/1/	2018	
Project	GPC_CVI	P Investigation_G	adstone							
Project No	1787891		Clien	t Sample	No	-				
Bore Hole	HP1		Dept	h From (I	n) 8.5		Dept	h To (m)		
Description	DS									
Sieve Size	Passing									
(mm)	%	100	Silt	Fine Sand	Medium Sand	Coarse Sand	Fine Gravel	Medium Gravel	Coarse Gravel	Cobbles
150.0										
75.0										
10.0		90 -								
63.0							/			
53.0		80 -								
37.5		70 -				/				
26.5										
19.0		60 -								
						/				
13.2	100	(%)								
9.5	98	Se 50 -								
67	96									
		40 -								
4.75	94									
2.36	86	30 -								
1 10	74									
1.10	74	20 -								
0.600	55									
0.425	45									
0.000										
0.300	36									
0.150	24	0		0.1		1 1		 10		100
0 075	21				Partic	cle Size (mm	i)			
0.010										
NOTES/REMARKS.										
NOTEOREW/WWW.		Moisture Content 20%								
		Sample/s supplied by the cl	ient						Page 1 of 1	REP03903
Accredi The results of	ted for complian	nce with ISO/IEC 1702 ations_and/or measure	5 - Testing.	led in	Au	thorised S	Signatory		NATA	
this docum	nent are traceal	ble to Australian/Nation	al Standards		C	. Ch			ADOREDITED FOR	
	Tested at Tri	lab Brisbane Laborator	у.			C. Chan	non			No. 0026
The	results of calibra	tions and tests performed	apply only to	the specific i	netrument or sa	mole at the ti	ne of test unler	ss otherwise c	Laboratory	NO. 9926

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

		PAR	TICL	E S			TION	TEST	REPO	RT				
Client	Golder As	sociates P	ty Lim	ited	est Miethod:	AU 1209 3.0	,	Re	port No.		GA1002	76-G		
								Re	auest No)	20122017			
Address	PO Box 1	734 MILTC	N BC		QLD ·	4064		Tes	st Date		18/1/201	8		
								Po	nort Date	•	24/1/201	8		
Project	GPC CVI	IP Investiga	ation (Gladst	one			Ne		C	24/1/201	0		
Project No	1787801				Client	amnie N		_						
	1/0/091				Danth D		0 0 F	-			- ()			
Bore Hole	HP2				Depth	rom (m)	2.5			epthil	o (m)			
Description	DS	1												
Sieve Size	Passing			Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse		
(mm)	70	100	Clay	Silt	Silt	Silt	Sand	Sand	Sand	Gravel	Gravel	Gravel	Cobble	es
150.0		100												
10.0	+	1												
53 D	-	90												
33.0		-												
37.3 06.5		1												
20.0		80			<u> /</u>									
19.0		-												
13.2		-												
9.0		70												
0.7														
4.75		1												
1.10		8 60												
1.10		sing												
0.000		Pas												
0.425	-	50	+											
0.300	100		/											
0.130	90													
0.075	98	40												_
0.039	94													
0.000	92	1												
0.02	90	30												
0.015	85	1												
0.011	83													
0.008	78													٦
0.0058	69	1												
0.0042	64	10												
0.0034	62]												
0.003	60]												
0.0025	55	0	\square											
0.0022	53	0.	001		0.01		0.1 Romite	lo Si=o /~	1		10		10	0
0.0013	47						Fartic	ne size (mi						
TES/REMARKS:		- Moisture Con	tent 26.	5%			-2.3	6mm Soil Pi	article Dens	ity(t/m³) 2	.64			
		Sample/s supp	lied by th	e client								Page 1 of	1 R	REP0
Accredi The results of t this docun	ted for compliant the tests, calibr nent are tracea	nce with ISO/ ations, and/o ble to Austral	IEC 17 r measi ian/Nat	025 - To uremen ional St	esting. ts included andards.	in	Ац 	uthorised	Signato	ry				
The	results of calibra	ations and tests	Laborat	tory.	y only to the	specific instr	ument or sa	ample at the	time of test	unless oth	I nerwise clearl	Laboratory	/ No. 99	926

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

		PARTICLE	SIZE DISTRI		ST REPORT	Г		
Client	Golder As	sociates Pty Limite	ed	1203 0.0.1 , 2.1.1	Report No.	GA10	0277-G	
					Request No	201220)17	
Address	PO Box 1	734 MILTON BC	QLD 4064		Test Date	18/1/2	2018	
					Report Date	24/1/2	2018	
Project	GPC_CV	P Investigation_Gla	adstone					
Project No	1787891		Client Samp	e No	-			
Bore Hole	HP2		Depth From	(m) 7	Dep	th To (m)		
Description	DS							
Sieve Size	Passing		Fine	Modium	Correo Fine	Medium	Coarse	
(1111)	/0	100	Silt Sand	Sand	Sand Gravel	Gravel	Gravel	Cobbles
150.0								
75.0		00						
		30						
63.0								
53.0		80 -						
37.5								
00.5		70						
20.0								
19.0		60 -						
13.2		(%) B						
9.5								
6.7								
0.1		40						
4.75								
2.36	100	30 -						
1.18	97							
0.600	90	20						
0.425	84	10						
0.300	77							
0.150	52	0				10		
0.075	44	0.01	0.1	Particle	Size (mm)	10		100
NOTES/REMARKS:		-						
		Moisture Content 17.7%) Tant				D 4 4 4	DEDAGAGE
A	ad for cours!	Sample/s supplied by the di	ient				Page 1 of 1	KEP03903
Accredit The results of t	he tests, calibr	ations, and/or measure	ements included in	Autho	orised Signatory		NATA	
this docum	ient are tracea	DIE TO AUSTRALIAN/NATION	iai Standards.	C.	Channon			
The	lested at Tri	tions and tests porformed	y.	instrument or semal	a at the time of test up	oss othonwiss d	Laboratory N	lo. 9926

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

		PARTICLE	SIZE D				EPORT			
Client	Golder As	sociates Pty Limite	ed	ethou. AS I	209 3.0.1 , 2.1.	Rep	ort No.	GA1	00278-G	
						Req	uest No	20122	2017	
Address	PO Box 1	734 MILTON BC	QLD	4064		Test	Date	17/1/	/2018	
						Rep	ort Date	24/1/	/2018	
Project	GPC_CVI	P Investigation_Gl	adstone			•				
Project No	1787891		Clien	t Sample	No	-				
Bore Hole	HP2		Depth	h From (r	n) 10		Dept	h To (m)		
Description	DS	1								
Sieve Size	Passing									
(mm)	%	-	Silt	Fine Sand	Medium Sand	Coarse Sand	Fine Gravel	Medium Gravel	Coarse Gravel	Cobbles
150.0		100								
75.0		. 90 -								
63.0										
53.0		80 -								
37.5		70								
26.5										
19.0		60								
13.2		(%) Sing (%)								
9.5		ss 50 								
6.7	100	40								
4.75	99									
2.36	96	30								
1.18	89	20								
0.600	77									
0.425	70	10								
0.300	63									
0.150	55	0 + 0.01		0.1	Partic	1 1 le Size (mr	n)	10		100
0.075	50					,	-			
NOTES/REMARKS:		- Moisture Content 17.6%	, D							
		Sample/s supplied by the cl	ient						Page 1 of	1 REP0390
Accredi The results of t this docum	ted for complian the tests, calibr nent are traceal	nce with ISO/IEC 1702 ations, and/or measure ble to Australian/Nation	5 - Testing. ements include nal Standards.	ed in	Au	thorised :	Signatory			
The	Tested at Tri	lab Brisbane Laborator	y.			C. Chan	non	a athanuisa	Laboratory	No. 9926

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

		PARTICLE	SIZE DI		BUTION .		EPORT			
Client	Golder As	sociates Pty Limite	d		203 3.0.1 , 2.1.	Rep	ort No.	GA100)279-G	
						Req	uest No	201220	17	
Address	PO Box 1	734 MILTON BC	QLD	4064		Test	Date	18/1/2	018	
						Rep	ort Date	24/1/2	018	
Project	GPC_CVI	P Investigation_Gla	adstone							
Project No	1787891		Client	Sample	No	-				
Bore Hole	HP2		Depth	From (I	n) 11.5		Dept	h To (m)		
Description	DS	1								
Sieve Size	Passing									
(mm)	%	100	Silt	Fine Sand	Medium Sand	Coarse Sand	Fine Gravel	Medium Gravel	Coarse Gravel 0	Cobbles
150.0										
75.0		90								
63.0										
63.0										
53.0		80 -								
37.5										
26.5		70								
19.0	100	60								
13.2	86	(%) Bt								
9.5	81	- 05 - Siri								
6.7	77	40								
4.75	70									
2.36	65	30								
1.18	57									
0.600	46	20								
0.425	41	10								
0.300	35									
0.150	29	0.01		0.1		 1		10		100
0.075	25				Partic	cle Size (mr	n)			
NOTES/REMARKS.										
THE TEORNEWARKS.		Moisture Content 16.5%	ent						Page 1 of 1	REP03003
Accredit	ted for complia		5 - Testing							1121 00300
The results of this docum	the tests, calibr	ations, and/or measure ble to Australian/Nation	ments include al Standards.	d in	Au	thorised :	Signatory		NATÀ	
	Tested at Tri	ab Brisbane Laboratory	1.		\mathcal{L}	C. Chan	non		Laboratory N	o. 9926
Tho	reculte of colibra	tions and tosts porformed	apply only to th	o sposifio i	netrumont or co	mplo at the t	mo of tost unlo	ss othonwiso de	arly stated	-

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

			A	TTERB	ERG LI	MITS	TEST REPO	ORT					
				Test Met	thod: AS 128	9 2.1.1, 3.1	.2, 3.2.1, 3.3.1, 3.4.1						
Client	Golder As	ssociates Pty	/ Limited					Rep	oort No.	(GA10027	1-AL	
Address	PO Box 1	1734 MILTON	NBC Q	LD 40	64			Rec	uest No.	2	0122017	7	
								Tes	t Date	1	9/01/201	18	
Project	GPC_CV	IP Investigat	ion_Gladstor	ne				Rep	oort Date	2	3/01/201	18	
Project No.	1787891					Cli	ent Sample No)					
Bore Hole	AC1				Dep	th From	(m) 4			Dep	th To (m	ו)	
Description	DS												
					RESULT	S OF TE	STING						
			Liquid I	Limit (%)		48							
			Plastic I	Limit (%)		17							
			Plasticity I	ndex (%)		31							
		L	_inear Shrin	kage (%)		13.5	Curling Oc	urred					
		Ν	Anisture Cou	ntent (%)	:	39.5							
			Dreneration	Mothod	Wet Cier		a fu wal						
			Freparation	Imethod	wet Sie	veu anu N	aturai						
					<u>P</u>	lastic	ity Chart						
	80		-	A - Line	[PI=0.73 x (LL	20)]	× Test Result		- CL & ML				
	00												
	70												
	60												
	50					СН							
Plasticity Index (%)	40												
					CI								
	30												
	20		CL										
	10						MH&OH						
	10	CL&ML		м	L&OL								
	0	0 10	20	30	40 5	50	60 70	80	90	100	110	120	
						Liquid I	Limit (%)						
Remarks:													
ample/s supplied by client								Tested as	received		Pa	ge: 1 of 1	REP00102
Accredite	d for compliar	nce with ISO/IE	C 17025 - Testi	ing.			Author	ised Sign	atory			ゝ	
The results of the t	ests, calibrati	ions, and/or me	asurements inc	cluded in this	6		10	a					Υ.
uoument		ob Drickows I	haratar				c	. Park					a E
	rested at Tril	an puspane ra	Doratory.										0026

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

				A	ITERB	ERG I	LIMITS	TEST F	REPO	RT						
					Test Me	thod: AS 1	289 2.1.1, 3.	.1.2, 3.2.1, 3.3	.1, 3.4.1							
Client	Golder /	Associates	s Pty Lim	nited						Repo	rt No.	G	410024	I3-AL		
Address	PO Box	1734 MIL	TON BC	; QI	_D 40)64				Requ	est No.	20	12201	7		
										Test I	Date	19	/01/20	18		
Project	GPC_C	VIP Invest	tigation_	Gladston	е	-				Repo	rt Date	23	/01/20	18		
Project No.	178789	1					C	lient Sam	ole No.	-						
Bore Hole	AC2					De	epth Fror	m (m) 4				Dept	h To (n	n)		
Description	DS															
						RESUL	LTS OF T	ESTING								
				Liquid L	.imit (%)		84									
				Plastic L	.imit (%)		23									
			Dia	eticity Ir	dox (%)		61									
			г I а				01									
			Linea	ar Shrink	(%) (age		20.0	Curl	ing Ocu	rred						
			Mois	ture Con	tent (%)		72.6									
			Pre	paration	Method	Wet S	ieved and	Natural								
							Plasti	citv Ch	art							
				_	A - Line	[PI=0.73 x	(LL-20)]	× Test	Result	<u> </u>	CL & ML					
	8	0														
	7	0														
	6	0											_			
	5	0														
Dissticity Index (%) 4						СН									
Flasticity muex (%)) 4					CI										
	3	0														
	2	0		CL												
								мн8	ЮН							
	1		MI			1 201										
		0														
		0	10	20	30	40	50 Liquid	60 d Limit (%)	70	80	90	100	110	120		
								.,								
ample/s supplied by client										Tested as re-	ceived		Pa	ae: 1 of 1	REDU)102
A oorodito	d for compli	ance with IC		125 Toolir									гa			
The results of the	tests, calibra	ations, and/o	or measure	ements incl	uded in this	S		4	Authoris	ed Signat	ory			NAT	À	
document	t are traceab	le to Austral	lian/Natior	nai Standar	ds.			6	e	a ~~	1					
	Tested at T	rilab Brisban	ie Laborat	ory.					C.1	Park			I	_aboratory No	. 9926	
	The	results of calil	brations and Referen	d tests perfo ce should be	rmed apply e made to Tr	only to the ilab's "Stan Trilab Pty Lto	specific instr Idard Terms d ABN 2	ument or sam and Condition 25 065 630 506	ple at the s of Busin	time of test u ness" for furth	unless othen ner details.	vise clearly	stated.			

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

				A	TEST Me	BERG L	-IMITS 289 2.1.1, 3.1	TEST REPO .2, 3.2.1, 3.3.1, 3.4.1	RT					
Client	Golde	r Assoc	ciates Pty I	imited					Report I	No.	GA	100273	-AL	
Address	PO Bo	ox 1734	MILTON	BC C	QLD 4	064			Request	t No.	201	22017		
									Test Dat	te	19/()1/2018	3	
Project	GPC	CVIP II	nvestigatio	n Gladsto	ne				Report I	 Date	23/()1/2018	3	
Project No.	17878	91	Teelgute				Cli	ent Sample No.	-				-	
Bore Hole	HP1					De	onth From	(m) 25			Denth	To (m)		
Description	DS							r (iii) 2.5			Deptil	10 (11)		
						DEOLU	TO OF T							
						RESUL	IS OF IL	<u>STING</u>						
				Liquid	Limit (%)		74							
				Plastic	Limit (%)		21							
			I	Plasticity	Index (%)		53							
			Li	near Shrin	nkage (%)		18.5	Curling Ocur	rred					
			Ма	visture Co	ntent (%)		80.9							
			P	reparatio	n Method	Wet Si	eved and N	atural						
				_		F	Plastic	ity Chart						
		90			—— A - Line	e [PI=0.73 x (I	LL-20)]	× Test Result		ML				
		00												
		70							_				4	
		60												
		00						_		/				
		50						^						
Plasticity Index (%))	40					СП							
, , , , , , , , , , , , , , , , , , ,						CI								
		30												
		20		CL	•									
								мн&он						
		10	1 & MI			U 201								
		0												
		0	10	20	30	40	50 Liquid I	60 70	80 90) '	100	110	120	
Veniarks.														
ample/s supplied by client									Tested as receive	ed		Page	e: 1 of 1	REP00102
Accredite	d for com	pliance w	vith ISO/IEC	17025 - Tes	ting.			Authoris	ed Signatorv	12			ゝ	
The results of the t	tests, calit	orations, able to A	and/or meas	urements in	icluded in thi ards	is		1-	~					
uocument			uou ailai // Nd		ui Uð.				Park					
	Tested at	Trilab B	risbane Labo	oratory.				0.1	, set IV			La	boratory No. 9	9926
	Th	ie results	of calibrations	and tests per	formed apply	only to the s	pecific instru	ment or sample at the nd Conditions of Busin	time of test unle	ess otherw details	ise clearly s	tated.		

Trilab Pty Ltd ABN 25 065 630 506

ACCURATE QUALITY RESULTS FOR TOMORROW'S ENGINEERING

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

				AT	TERBI	ERG L	_IMITS 289 2.1.1, 3.4	TEST 1.2, 3.2.1, 3.3	REPO 3.1, 3.4.1	RT					
Client	Golder	Associates	s Pty Limite	ed						Repor	t No.	G	4100274	I-AL	
Address	PO Box	(1734 MIL	TON BC	QLE	D 406	64				Reque	est No.	20	122017		
										Test D)ate	19	/01/2018	8	
Project	GPC C	VIP Inves	tigation Gl	adstone						Renor	t Date	23	/01/2018	8	
Project No.	178789	1	iguion_or				CI	ient Sam	ple No.	-			10112011	•	
Bore Hole	HP1	•				De	onth Fron	n (m) 7	7			Dent	h To (m))	
Description	DS				I		20111101	<u>ii (iii) </u>	1			Depti	110 (11)	/	
						RESUL	TS OF T	<u>esting</u>							
			Li	iquid Liı	mit (%)		63								
			Pl	astic Lir	mit (%)		16								
			Plast	icity Ind	dex (%)		47								
			Linear	Shrinka	ige (%)		16.0	Cur	ling Ocu	rred					
			Moistu	re Conte	ent (%)		58.1								
			Prena	ration M	Method	Wet Si	eved and M	Vatural							
						<u>F</u>	Plastic	<u>city Cr</u>	<u>nart</u>						
	8	30			— A - Line [PI=0.73 x (LL-20)]	× Tes	t Result	C	L & ML				
	7	/0													
	6	60													
	ŧ	50													
							СН	×							
Plasticity Index (%	b) 4	40													
	3	30				* 1									
		20		CL											
	2	20						мна	8OH						
	1	10													
			ML	\checkmark	ML	L&OL									
		0	10 20) 3	30 4	40	50 Liquid	60	70	80	90	100	110	120	
							Liquiu	Liiiit (70)							
kemarks:															
ample/s supplied by client										Tested as rec	eived		Page		REP00102
A oorodito	d for come	iance with IC		5 - Tootina									raye		
The results of the	tests, calibr	ations, and/o	or measurem	ents includ	, ded in this				Authoris	ed Signato	ory			NAT	À
document	t are traceal	ble to Austra	IIan/National	Standards	S.			2	e	a	1				OR AL
	Tested at T	rilab Brisbar	ne Laboratory	Ι.					C.1	- агк			La	boratory No	. 9926
	The	results of cali	brations and te Reference	ests perforn should be r	ned apply o made to Tril Ti	nly to the s ab's "Stand rilab Pty Ltd	specific instru dard Terms a ABN 2	ument or san and Condition	nple at the ns of Busin 6	time of test u ess" for furth	inless othen er details.	wise clearly	La stated.	iporatory No	9920

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

compliance calibrations rraceable to ed at Trilab	with ISO/IEC s, and/or meas Australian/Na Brisbane Labo	20 17025 - Testin surements inc titional Standar pratory.	ing. sluded in this rds.	40 50) (0 70 mit (%)	Tes thorised C. Par	90 ted as receive Signatory k	ed		Page	120 :: 1 of 1	REP00102
0 0	10 with ISO/IEC	20 20 17025 - Testi	30 ·	40 50) E Liquid Li	0 70 mit (%)	tes: thorised	sted as receive	ed		Page	120 :: 1 of 1	REP00102
0 0	10	20	30	40 50) 6 Liquid Li	0 70 mit (%)	80	90	. 1	100	110	120	
0 0	10	20	30	40 50) 6 Liquid Li	0 70 mit (%)	80	90	1	100	110	120	
0 0	10	20	30	40 50) 6	0 70	80	90	1	100	110	120	
10	CL&ML		м	&OL								_	
20						MH&O	H						
~		CL											
30			0										
40 -					СН	×							
50 -												_	
60 -												_	
70													
80													
		-	A - Line [PI=0.73 x (LL-	20)]	× Test Res	sult	—— CL &	ML				
				DI	astici	tv Cha	rt						
	F	Preparation	Method	Dry Sieve	ed and Ov	en Dried							
	 Mc	oisture Cor	ntent (%)	2	6.5								
	Li	near Shrin	kage (%)	1	7.5	Curlind	Ocurred	1					
	1	Plasticity I	ndex (%)		43								
		Disetic I	∟t (%)		23								
		المنتمز إ	l imit (9/)		66								
				RESULTS	SOF TE	<u>STING</u>							
5													
2				Dept	h From	(m) 2.5				Depth	To (m)		
87891					Clie	nt Sample	No.	-					
PC_CVIP	Investigatio	on_Gladstor	ne					Report D	Date	23/0	01/2018	3	
DOX ITO		20 4						Test Dat	e NO.	201	22017	3	
older Asso D Box 173	ociates Pty I	Limited BC Q	ND 406	54				Report N	No.	GA ²	100276	-AL	
			l est Meth	10d: AS 1289	2.1.1, 3.1.2	2, 3.2.1, 3.3.1,	3.4.1						
		A	TTERBI		MITS 1	EST RE		Т					
	older Asso D Box 173 PC_CVIP 787891 P2 S	older Associates Pty I D Box 1734 MILTON PC_CVIP Investigatio 787891 P2 S Li Li	A Older Associates Pty Limited D Box 1734 MILTON BC G PC_CVIP Investigation_Gladstor 787891 P2 S Liquid Plastic Plastic Plastic Inear Shrin Moisture Con Preparation	ATTERBI Test Meth older Associates Pty Limited D Box 1734 MILTON BC QLD 400 PC_CVIP Investigation_Gladstone 787891 P2 S Liquid Limit (%) Plastic Limit (%) Plastic Limit (%) Plasticity Index (%) Linear Shrinkage (%) Moisture Content (%) Preparation Method	ATTERBERG LII Test Method: AS 1289 older Associates Pty Limited D Box 1734 MILTON BC QLD 4064 PC_CVIP Investigation_Gladstone RESULTS 2 Dept S S Liquid Limit (%) QLD 4064 PC_CVIP Investigation_Gladstone RESULTS Dept S Dept Liquid Limit (%) QL Plastic Limit (%) QL Plastic Limit (%) 4 Linear Shrinkage (%) 1 Moisture Content (%) 2 Preparation Method Dry Sieve	ATTERBERG LIMITS 1 Test Method: AS 1289 2.1.1, 3.1.2 older Associates Pty Limited D Box 1734 MILTON BC QLD 4064 PC_CVIP Investigation_Gladstone r87891 Clie P2 Depth From S S Liquid Limit (%) A Plastic Limit (%) 66 Plastic Limit (%) 23 Plasticity Index (%) 43 Linear Shrinkage (%) 17.5 Moisture Content (%) 26.5 Preparation Method Dry Sieved and Ov	ATTERBERG LIMITS TEST RE Test Method: AS 1289 2.1.1, 3.1.2, 3.2.1, 3.3.1, older Associates Pty Limited D Box 1734 MILTON BC QLD 4064 PC_CVIP Investigation_Gladstone 787891 Client Sample P2 Depth From (m) 2.5 S S Liquid Limit (%) A6 PLIS OF TESTING PLIQUID Limit (%) PLIQUID LIMIT (%) PLIQUID LI	ATTERBERG LIMITS TEST REPOR Test Method: AS 1289 2.1.1, 3.1.2, 3.2.1, 3.3.1, 3.4.1 older Associates Pty Limited D Box 1734 MILTON BC QLD 4064 PC_CVIP Investigation_Gladstone PC_CVIP Investigation_Gladstone PC_CVIP Investigation_Gladstone '87891 Client Sample No. P2 Depth From (m) 2.5 S S ESULTS OF TESTING Liquid Limit (%) 66 Plastic Limit (%) 23 Plasticity Index (%) 43 Linear Shrinkage (%) 17.5 Curling Ocurreed Moisture Content (%) 26.5 Preparation Method Dry Sieved and Oven Dried	ATTERBERG LIMITS TEST REPORT Test Method: AS 1289 2.1.1, 3.1.2, 3.2.1, 3.3.1, 3.4.1 Older Associates Pty Limited Report N Dider Associates Pty Limited Report N Older Associates Pty Limited Report N Dider Associates Pty Limited Request Colspan="2">Report N PC_CVIP Investigation_Gladstone Report N P2 Depth From (m) 2.5 S Liquid Limit (%) 66 Plastic Limit (%) 23 Plasticity Index (%) 43 Liquid Limit (%) 66 Plasticity Index (%) 43 Linear Shrinkage (%) 17.5 Curling Ocurred Moisture Content (%) 26.5 Preparation Method Dry Sieved and Oven Dried	ATTERBERG LIMITS TEST REPORT Test Method: AS 1289 2.1.1, 3.1.2, 3.2.1, 3.3.1, 3.4.1 Older Associates Pty Limited Report No. D Box 1734 MILTON BC QLD 4064 Request No. PC_CVIP Investigation_Gladstone Report Date Report Date P2 Depth From (m) 2.5 S ESULTS OF TESTING Liquid Limit (%) 66 Plastic Limit (%) 23 Plasticity Index (%) 43 Linear Shrinkage (%) 17.5 Curling Ocurred Moisture Content (%) 26.5 Preparation Method Dry Sieved and Oven Dried	ATTERBERG LIMITS TEST REPORT Test Method: AS 1289 2.1.1, 3.1.2, 3.2.1, 3.3.1, 3.4.1 Didder Associates Pty Limited	ATTERBERG LIMITS TEST REPORT Test Method: AS 1289 2.1.1, 3.1.2, 3.2.1, 3.3.1, 3.4.1 Dider Associates Pty Limited OLD 4064 Report No. 20122017 Test Date 19/01/2018 Report Date 23/01/2018 Report Date 23/01/	ATTERBERG LIMITS TEST REPORT Tet Method: AS 1289 2.1.1, 3.1.2, 3.2.1, 3.3.1, 34.1 Delot: A Sociates Pty Limited Report No. GA100276-AL Report No. 20122017 Test Date 19/01/2018 Report Date 23/01/2018 P2 Depth From (m) 2.5 Depth To (m) S ESULTS OF TESTING ESULTS OF TESTING Liquid Limit (%) 66 Plasticity Index (%) 43 Liquid Limit (%) 66 Plasticity Index (%) 43 Liquid Limit (%) 66 Plasticity Index (%) 43 Moisture Content (%) 26.5 Preparation Method Drysieved and Oven Dried

Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	TI	he result	s of calibrati	ions and to	ests perfo	rmed app	ly only to the	specific instru	ument or sam	ple at the	time of test u	unless othe	rwise clearly	stated.	Laboratory N	o. 9926	
The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards. Tested at Trilab Brisbane Laboratory.							his	Ce.				Park					
ample/s supplied by client Accredited for compliance with ISO/IEC 17025 - Testing.								Tested as received					Pa	age: 1 of 1	REP001		
emarks:																	
								Liquid	Limit (%)								
		0	10	2	0	30	40	50	60 7	70	80	90	100	110	120		
		10	CL&M				ML&OL										
		20			vh				MH&	он							
		30			CL	¥											
		20					CI										
Plasticity Index (%)		40						СН									
		50 -															
		60 -												1			
		70															
		80															
					_	— A - Li	ne [PI=0.73 x	Plastic (LL-20)1	CITY Ch × Test	art Result	<u> </u>	L & ML					
				Prepa	aration	wietno		eved and C	oven Dried								
				Moistu	re Con	Moths) d D=+0	1/.4	Wan Dried								
	Linear Shrinkage (%)) ``	10.5	Curli	ing Ocu	urred						
				Plast	ticity In	ndex (%	b)	22	_								
Plastic Limit (%						b)	13										
	Liquid Limit (%)						b)	35									
							RESU	TS OF T	<u>esting</u>								
Description	DS																
Bore Hole	HP2						D	Depth From (m) 7				Depth To (m)					
Project Project No.	1787891							Client Sample No									
Ducient	000		1								Test [Date	19	/01/20	18		
Address	PO B	ox 173	84 MILTO	N BC	QL	_D 4	4064				Requ	est No.	20	12201	7		
Client	Golder Associates Pty Limited									Report No. GA100277-AL							
						Test N	lethod: AS 1	289 2.1.1, 3. ⁻	1.2, 3.2.1, 3.3.	.1, 3.4.1							
					A٦	FTER	BERG	LIMITS	TEST F	REPO	RT						

Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Client			т	est Metho	d: AS 1289 2.1.1,	3.1.2, 3.2.1,	3.3.1, 3.4.1								
	Golder Associates Pty Limited								Report No. GA100278-AL						
Address	PO Box 1734 MILTON BC QLD 4064								st No.	201	122017	,			
								Test D	ate	19/	01/201	8			
Project	GPC CVIP	Investigation (Gladstone					Report	t Date	23/	01/201	8			
Project No.	1787891					Client Sa	nple No.	-							
Bore Hole	HP2				Depth Fre	om (m)	10			1)					
Description	DS				Doptin		10		_	200		·/			
				R	ESULTS OF	TESTING	<u>i</u>								
			Liquid Limi	it (%)	37	37									
		F	it (%)	16											
		Pla	sticity Inde	x (%)	21										
		- 14. in	r Christer	o (0/)		^	urling Occ	rrod							
		Linea	e (%)	11.0	C	uriing Ocu	ng Ocurrea								
		Moist	ure Conten	it (%)	17.6										
		Prep	paration Me	thod	Dry Sieved and	l Oven Drie	d								
				A - Line [PI	Plast	icity C	hart est Result	— сі	_ & ML						
	80														
	70														
Plasticity Index (%)	60														
	50														
					CH										
	40			CI											
	30 —				•										
	20		CL	×											
	20					мн	&OH								
	10 -	<u></u>													
	0	CL&ML		ML	&OL										
	0	10	20 30	40	50	60	70	80	90	100	110	120			
					Liqu	Jid Limit (%)									
Remarks:															
ample/s supplied by client								Tested as rece	eived		Pag	je: 1 of 1	REP00102		
Accredited f	_	Authori			sed Signatory			_	ゝ						
The results of the tes document a	d in this		ar	1											
			Park												
le	sted at Trilab	Brisbane Laborato						L	Laboratory No. 9926						

Trilab Pty Ltd ABN 25 065 630 506

APPENDIX C

Important Information Relating to this Report

The document ("Report") to which this page is attached and which this page forms a part of, has been issued by Golder Associates Pty Ltd ("Golder") subject to the important limitations and other qualifications set out below.

This Report constitutes or is part of services ("Services") provided by Golder to its client ("Client") under and subject to a contract between Golder and its Client ("Contract"). The contents of this page are not intended to and do not alter Golder's obligations (including any limits on those obligations) to its Client under the Contract.

This Report is provided for use solely by Golder's Client and persons acting on the Client's behalf, such as its professional advisers. Golder is responsible only to its Client for this Report. Golder has no responsibility to any other person who relies or makes decisions based upon this Report or who makes any other use of this Report. Golder accepts no responsibility for any loss or damage suffered by any person other than its Client as a result of any reliance upon any part of this Report, decisions made based upon this Report or any other use of it.

This Report has been prepared in the context of the circumstances and purposes referred to in, or derived from, the Contract and Golder accepts no responsibility for use of the Report, in whole or in part, in any other context or circumstance or for any other purpose.

The scope of Golder's Services and the period of time they relate to are determined by the Contract and are subject to restrictions and limitations set out in the Contract. If a service or other work is not expressly referred to in this Report, do not assume that it has been provided or performed. If a matter is not addressed in this Report, do not assume that any determination has been made by Golder in regards to it.

At any location relevant to the Services conditions may exist which were not detected by Golder, in particular due to the specific scope of the investigation Golder has been engaged to undertake. Conditions can only be verified at the exact location of any tests undertaken. Variations in conditions may occur between tested locations and there may be conditions which have not been revealed by the investigation and which have not therefore been taken into account in this Report.

Golder accepts no responsibility for and makes no representation as to the accuracy or completeness of the information provided to it by or on behalf of the Client or sourced from any third party. Golder has assumed that such information is correct unless otherwise stated and no responsibility is accepted by Golder for incomplete or inaccurate data supplied by its Client or any other person for whom Golder is not responsible. Golder has not taken account of matters that may have existed when the Report was prepared but which were only later disclosed to Golder.

Having regard to the matters referred to in the previous paragraphs on this page in particular, carrying out the Services has allowed Golder to form no more than an opinion as to the actual conditions at any relevant location. That opinion is necessarily constrained by the extent of the information collected by Golder or otherwise made available to Golder. Further, the passage of time may affect the accuracy, applicability or usefulness of the opinions, assessments or other information in this Report. This Report is based upon the information and other circumstances that existed and were known to Golder when the Services were performed and this Report was prepared. Golder has not considered the effect of any possible future developments including physical changes to any relevant location or changes to any laws or regulations relevant to such location.

Where permitted by the Contract, Golder may have retained subconsultants affiliated with Golder to provide some or all of the Services. However, it is Golder which remains solely responsible for the Services and there is no legal recourse against any of Golder's affiliated companies or the employees, officers or directors of any of them.

By date, or revision, the Report supersedes any prior report or other document issued by Golder dealing with any matter that is addressed in the Report.

Any uncertainty as to the extent to which this Report can be used or relied upon in any respect should be referred to Golder for clarification.

golder.com