			Ceriodaphi	nia Partial	Life-Cycl	e Test-Repro	duction			
Start Date:	11/05/2018 14:30	Test ID:	PR1552/01			Sample ID:	1	Mixture		
End Date:	18/05/2018 14:30	Lab ID:	8649, 8650			Sample Type	e: /	AQ-Aqueou	JS	
Sample Date:	25/04/2018	Protocol:	ESA 102			Test Species	s: (CD-Cerioda	aphnia dubia	
Comments:	Mixture- 10% Wise	es (8560) + 9	0% Eldridge	(8649). W2	2 as Diluer	nt (8651)				
				Au	ixiliary Da	ta Summary				
Conc-%	Parameter		Mean	Min	Max	SD	CV%	Ν		
W2 Diluent	No of Young		12.40	10.00	13.00	1.07	8.36	10		
DMW Control			16.30	15.00	18.00	0.95	5.98	10		
6.3			16.30	15.00	17.00	0.67	5.04	10		
12.5			16.80	14.00	19.00	1.48	7.23	10		
25			14.50	13.00	17.00	1.35	8.02	10		
50			10.90	8.00	15.00	2.18	13.56	10		
100			5.20	3.00	7.00	1.32	22.07	10		
W2 Diluent	% unaffected		100.00	100.00	100.00	0.00	0.00	10		
DMW Control			100.00	100.00	100.00	0.00	0.00	10		
6.3			100.00	100.00	100.00	0.00	0.00	10		
12.5			100.00	100.00	100.00	0.00	0.00	10		
25			100.00	100.00	100.00	0.00	0.00	10		
50			100.00	100.00	100.00	0.00	0.00	10		
100			100.00	100.00	100.00	0.00	0.00	10		
W2 Diluent	рН		8.10	8.10	8.10	0.00	0.00	1		
DMW Control			8.10	8.10	8.10	0.00	0.00	1		
6.3			8.30	8.30	8.30	0.00	0.00	1		
12.5			8.20	8.20	8.20	0.00	0.00	1		
25			8.10	8.10	8.10	0.00	0.00	1		
50			8.10	8.10	8.10	0.00	0.00	1		
100			8.00	8.00	8.00	0.00	0.00	1		
W2 Diluent	DO %		98.00	98.00	98.00	0.00	0.00	1		
DMW Control			96.30	96.30	96.30	0.00	0.00	1		
6.3			99.30	99.30	99.30	0.00	0.00	1		
12.5			98.40	98.40	98.40	0.00	0.00	1		
25			97.90	97.90	97.90	0.00	0.00	1		
50			98.20	98.20	98.20	0.00	0.00	1		
100			8.00	8.00	8.00	0.00	0.00	1		
W2 Diluent	Cond uS/cm		106.00	106.00	106.00	0.00	0.00	1		
DMW Control			186.00	186.00	186.00	0.00	0.00	1		
6.3			511.00	511.00	511.00	0.00	0.00	1		
12.5			867.00	867.00	867.00	0.00	0.00	1		
25			1475.00	1475.00	1475.00	0.00	0.00	1		
50			2590.00	2590.00	2590.00	0.00	0.00	1		
100			4660.00	4660.00	4660.00	0.00	0.00	1		

Statistical Printouts for the Duckweed Growth Inhibition Tests

Duckweed Growth Inhibtion Test-Specific Growth Rate												
Start Date:	11/05/2018	17:00	Test ID:	PR1552/04	Sample ID:	Mixture						
End Date:	15/05/2018	17:00	Lab ID:	8649, 8650	Sample Type	AQ-Aqueous						
Sample Date:	25/04/2018		Protocol:	ESA 112	Test Species:	LA-Lemna aequinoctialis						
Comments:	Mixture- 10	% Wises	(8560) + 9	0% Eldridge (3649). W2 as Diluent (8651)							
Conc-%	1	2	3	4								
W2 Diluent	0.3466	0.3666	0.3010	0.3132								
CAAC Control	0.3666	0.3359	0.2882	0.3248								
6.3	0.3248	0.3010	0.3466	0.3359								
12.5	0.3666	0.3010	0.2882	0.3248								
25	0.3359	0.3132	0.3359	0.3666								
50	0.3359	0.3132	0.3466	0.3359								
100	0.2452	0.2118	0.3248	0.2882								

		_	Transform: Untransformed						1-Tailed		Isotonic		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Mean	N-Mean	
W2 Diluent	0.3318	1.0090	0.3318	0.3010	0.3666	9.080	4	*			0.3318	1.0000	
CAAC Control	0.3289	1.0000	0.3289	0.2882	0.3666	9.845	4						
6.3	0.3271	0.9945	0.3271	0.3010	0.3466	5.970	4	0.220	2.410	0.0520	0.3295	0.9930	
12.5	0.3201	0.9734	0.3201	0.2882	0.3666	10.772	4	0.542	2.410	0.0520	0.3295	0.9930	
25	0.3379	1.0275	0.3379	0.3132	0.3666	6.486	4	-0.281	2.410	0.0520	0.3295	0.9930	
50	0.3329	1.0123	0.3329	0.3132	0.3466	4.226	4	-0.050	2.410	0.0520	0.3295	0.9930	
*100	0.2675	0.8134	0.2675	0.2118	0.3248	18.452	4	2.980	2.410	0.0520	0.2675	0.8061	

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal of	Shapiro-Wilk's Test indicates normal distribution (p > 0.05)								0.185402	-0.14152
Bartlett's Test indicates equal variance		5.122074		15.08627						
The control means are not significantly	y different (p	o = 0.90)			0.133771		2.446912			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	50	100	70.71068	2	0.052031	0.156796	0.002746	0.000932	0.040917	5, 18
Treatments vs W2 Diluent										

Linear Interpolation (200 Resamples)														
Point	%	SD	95% CL	(Exp)	Skew									
IC05	61.504	21.929	0.000	98.580	-1.2313									
IC10	74.884													
IC15	88.263					1.0								
IC20	>100					0.9								
IC25	>100													
IC40	>100					0.8								
IC50	>100					0.7								

Reviewed by:____

		[Duckweed Gr	owth Inhi	btion Test	-Specific G	rowth Ra	te	
Start Date:	11/05/2018 17:00	Test ID:	PR1552/04			Sample ID:		Mixture	
End Date:	15/05/2018 17:00	Lab ID:	8649, 8650			Sample Type	e:	AQ-Aqueous	
Sample Date:	25/04/2018	Protocol:	ESA 112			Test Species	S:	LA-Lemna aequinoctialis	
Comments:	Mixture- 10% Wise	s (8560) + 9	0% Eldridge	(8649). W2	2 as Diluer	nt (8651)			
				Au	xiliary Da	ta Summary	1		
Conc-%	Parameter		Mean	Min	Мах	SD	CV%	N	
W2 Diluent	Specific growth r	ate	0.33	0.30	0.37	0.03	52.31	4	
CAAC Control			0.33	0.29	0.37	0.03	54.71	4	
6.3			0.33	0.30	0.35	0.02	42.72	4	
12.5			0.32	0.29	0.37	0.03	58.01	4	
25			0.34	0.31	0.37	0.02	43.81	4	
50			0.33	0.31	0.35	0.01	35.63	4	
100			0.27	0.21	0.32	0.05	83.05	4	
W2 Diluent	pН		8.10	8.10	8.10	0.00	0.00	1	
CAAC Control			6.20	6.20	6.20	0.00	0.00	1	
6.3			8.30	8.30	8.30	0.00	0.00	1	
12.5			8.20	8.20	8.20	0.00	0.00	1	
25			8.10	8.10	8.10	0.00	0.00	1	
50			8.10	8.10	8.10	0.00	0.00	1	
100			8.00	8.00	8.00	0.00	0.00	1	
W2 Diluent	Cond uS/cm		106.00	106.00	106.00	0.00	0.00	1	
CAAC Control			186.00	186.00	186.00	0.00	0.00	1	
6.3			511.00	511.00	511.00	0.00	0.00	1	
12.5			867.00	867.00	867.00	0.00	0.00	1	
25			1475.00	1475.00	1475.00	0.00	0.00	1	
50			2590.00	2590.00	2590.00	0.00	0.00	1	
100			4660.00	4660.00	4660.00	0.00	0.00	1	

Statistical Printouts for *Hydra* Population Growth Tests

Hydra Population Growth Test-Growth Rate												
Start Date:	11/05/2018	15:30	Test ID:	PR1552/06		Sample ID:	Mixture					
End Date:	15/05/2018	15:30	Lab ID:	8649, 8650		Sample Type:	AQ-Aqueous					
Sample Date:	25/04/2018		Protocol:	ESA 125		Test Species:	HV-Hydra viridissima					
Comments:	Mixture- 10	% Wises	(8560) + 9	0% Eldridge (8	8649). W2 as Dilu	ent (8651)						
Conc-%	1	2	3	4								
W2 Diluent	0.3527	0.3815	0.3647	0.3466								
LC Diluent	0.3815	0.3527	0.3922	0.3704								
6.3	0.3527	0.3588	0.3466	0.3815								
12.5	0.3647	0.3402	0.3466	0.3815								
25	0.3402	0.3527	0.3588	0.3527								
50	0.2389	0.2291	0.2574	0.2747								
100	0.0000	0.0000	0.0000	0.0000								

		_		Transform: Untransformed					1-Tailed		Isotonic		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Mean	N-Mean	
W2 Diluent	0.3614	0.9657	0.3614	0.3466	0.3815	4.257	4	*			0.3614	1.0000	
LC Diluent	0.3742	1.0000	0.3742	0.3527	0.3922	4.500	4						
6.3	0.3599	0.9618	0.3599	0.3466	0.3815	4.236	4	0.130	2.360	0.0268	0.3599	0.9959	
12.5	0.3582	0.9574	0.3582	0.3402	0.3815	5.204	4	0.276	2.360	0.0268	0.3582	0.9914	
25	0.3511	0.9383	0.3511	0.3402	0.3588	2.219	4	0.904	2.360	0.0268	0.3511	0.9717	
*50	0.2500	0.6681	0.2500	0.2291	0.2747	8.080	4	9.823	2.360	0.0268	0.2500	0.6918	
100	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	4				0.0000	0.0000	

Auxiliary Tests	Auxiliary Tests								Skew	Kurt
Shapiro-Wilk's Test indicates normal d	istribution ((p > 0.05)			0.929908		0.905		0.427296	-0.93344
Bartlett's Test indicates equal variance		2.285716		13.2767						
The control means are not significantly	different (p	o = 0.30)			1.1253		2.446912			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	25	50	35.35534	4	0.026757	0.074042	0.009334	0.000257	1.5E-07	4, 15
Treatments vs W2 Diluent										

				Line	ear Interpolation	n (200 Resamples)		
Point	%	SD	95% CL	(Exp)	Skew			
IC05	26.934	4.399	1.878	30.047	-3.0698			
IC10	31.401	1.455	25.818	34.888	-0.0822			
IC15	35.868	1.563	30.498	40.538	0.1354	1.0	*	
IC20	40.335	1.790	34.607	46.558	0.3252			
IC25	44.802	2.075	38.061	51.583	0.3791	0.9		
IC40	56.636	1.754	49.477	61.156	-0.1969	0.8 -	/	
IC50	63.863	1.461	57.898	67.630	-0.1969	07		
							/	

			Hydra P	opulation	Growth T	est-Growth	Rate		
Start Date:	11/05/2018 15:30	Test ID:	PR1552/06			Sample ID:		Mixture	
End Date:	15/05/2018 15:30	Lab ID:	8649, 8650			Sample Typ	e:	AQ-Aqueous	
Sample Date:	25/04/2018	Protocol:	ESA 125			Test Specie	s:	HV-Hydra viridiss	sima
Comments:	Mixture- 10% Wise	s (8560) + 9	0% Eldridge	(8649). W2	2 as Diluer	it (8651)		-	
				Au	xiliary Da	ta Summary	/		
Conc-%	Parameter		Mean	Min	Мах	SD	CV%	N	
W2 Diluent	Specific growth r	rate	0.36	0.35	0.38	0.02	34.32	4	
LC Diluent			0.37	0.35	0.39	0.02	34.68	4	
6.3			0.36	0.35	0.38	0.02	34.31	4	
12.5			0.36	0.34	0.38	0.02	38.11	4	
25			0.35	0.34	0.36	0.01	25.14	4	
50			0.25	0.23	0.27	0.02	56.85	4	
100			0.00	0.00	0.00	0.00		4	
W2 Diluent	pН		8.10	8.10	8.10	0.00	0.00	1	
LC Diluent			7.60	7.60	7.60	0.00	0.00	1	
6.3			8.30	8.30	8.30	0.00	0.00	1	
12.5			8.20	8.20	8.20	0.00	0.00	1	
25			8.10	8.10	8.10	0.00	0.00	1	
50			8.10	8.10	8.10	0.00	0.00	1	
100			8.00	8.00	8.00	0.00	0.00	1	
W2 Diluent	Cond uS/cm		106.00	106.00	106.00	0.00	0.00	1	
LC Diluent			32.00	32.00	32.00	0.00	0.00	1	
6.3			511.00	511.00	511.00	0.00	0.00	1	
12.5			867.00	867.00	867.00	0.00	0.00	1	
25			1475.00	1475.00	1475.00	0.00	0.00	1	
50			2590.00	2590.00	2590.00	0.00	0.00	1	
100			4660.00	4660.00	4660.00	0.00	0.00	1	

Statistical Printouts for the Larval Fish Imbalance Tests

Fish Embryonic Development-% Unaffected												
Start Date:	11/05/2018	18:30	Test ID:	PR1552/02	Sample ID:	Mixture						
End Date:	23/05/2018	18:30	Lab ID:	8649, 8650	Sample Type:	AQ-Aqueous						
Sample Date:	25/04/2018		Protocol:	ESA 126	Test Species:	MS-Melanotaenia splendida						
Comments:	Mixture- 10	% Wises	(8560) + 90	0% Eldridge (8	8649). W2 as Diluent (8651)							
Conc-%	1	2	3	4								
W2 Diluent	1.0000	1.0000	1.0000	0.8000								
DMW Control	1.0000	0.8000	0.8000	1.0000								
6.3	1.0000	0.8000	0.6000	1.0000								
12.5	1.0000	1.0000	1.0000	1.0000								
25	1.0000	1.0000	0.8000	1.0000								
50	1.0000	1.0000	1.0000	1.0000								
100	0.8000	0.8000	1.0000	1.0000								

		_	Т	ransform:	Arcsin Sq	uare Root	Rank	1-Tailed	Isote	onic	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Mean	N-Mean
W2 Diluent	0.9500	1.0556	1.2857	1.1071	1.3453	9.261	4	*		0.9500	1.0000
DMW Control	0.9000	1.0000	1.2262	1.1071	1.3453	11.212	4				
6.3	0.8500	0.9444	1.1709	0.8861	1.3453	18.840	4	15.50	10.00	0.9500	1.0000
12.5	1.0000	1.1111	1.3453	1.3453	1.3453	0.000	4	20.00	10.00	0.9500	1.0000
25	0.9500	1.0556	1.2857	1.1071	1.3453	9.261	4	18.00	10.00	0.9500	1.0000
50	1.0000	1.1111	1.3453	1.3453	1.3453	0.000	4	20.00	10.00	0.9500	1.0000
100	0.9000	1.0000	1.2262	1.1071	1.3453	11.212	4	16.00	10.00	0.9000	0.9474

Auxiliary Te	ests						Statistic	Critical	Skew	Kurt
Shapiro-Will	d's Test indicates	s normal (distribution	(p > 0.05)			0.920884	0.916	-0.77636	0.66368
Equality of v	ariance cannot b	e confirm	ned							
The control I	means are not si	gnificantl	y different (p = 0.54)		0.654654	2.446912			
Hypothesis Test (1-tail, 0.05) NOEC LOEC ChV										
Steel's Many	/-One Rank Test	t	100	>100		1				
Treatments	vs W2 Diluent									
				Log-	Logit Interp	polation	(200 Resamples)		
Point	%	SD	95% C	L(Exp)	Skew					
IC05	97.438									
IC10	>100									
IC15	>100						1.0			
IC20	>100						0.9			
IC25	>100									
IC40	>100						0.8			
IC50	>100						0.7			

Reviewed by:____

			Fish Err	nbryonic E	evelopme	ent-% Unaffe	ected		
Start Date:	11/05/2018 18:30	Test ID:	PR1552/02		· · ·	Sample ID:		Mixture	
End Date:	23/05/2018 18:30	Lab ID:	8649, 8650			Sample Type	e:	AQ-Aqueous	
Sample Date:	25/04/2018	Protocol:	ESA 126			Test Species	s:	MS-Melanota	enia splendida
Comments:	Mixture- 10% Wise	s (8560) + 9	0% Eldridge	(8649). W2	2 as Diluer	nt (8651)			
				Au	xiliary Da	ta Summary	/		
Conc-%	Parameter		Mean	Min	Max	SD	CV%	N	
W2 Diluent	% Unaffected		95.00	80.00	100.00	10.00	3.33	4	
DMW Control			90.00	80.00	100.00	11.55	3.78	4	
6.3			85.00	60.00	100.00	19.15	5.15	4	
12.5			100.00	100.00	100.00	0.00	0.00	4	
25			95.00	80.00	100.00	10.00	3.33	4	
50			100.00	100.00	100.00	0.00	0.00	4	
100			90.00	80.00	100.00	11.55	3.78	4	
W2 Diluent	pН		8.10	8.10	8.10	0.00	0.00	1	
DMW Control			8.10	8.10	8.10	0.00	0.00	1	
6.3			8.30	8.30	8.30	0.00	0.00	1	
12.5			8.20	8.20	8.20	0.00	0.00	1	
25			8.10	8.10	8.10	0.00	0.00	1	
50			8.10	8.10	8.10	0.00	0.00	1	
100			8.00	8.00	8.00	0.00	0.00	1	
W2 Diluent	Conductivity (uS	/cm)	106.00	106.00	106.00	0.00	0.00	1	
DMW Control			186.00	186.00	186.00	0.00	0.00	1	
6.3			511.00	511.00	511.00	0.00	0.00	1	
12.5			867.00	867.00	867.00	0.00	0.00	1	
25			1475.00	1475.00	1475.00	0.00	0.00	1	
50			2590.00	2590.00	2590.00	0.00	0.00	1	
100			4660.00	4660.00	4660.00	0.00	0.00	1	
W2 Diluent	DO (% sat)		98.00	98.00	98.00	0.00	0.00	1	
DMW Control			96.30	96.30	96.30	0.00	0.00	1	
6.3			99.30	99.30	99.30	0.00	0.00	1	
12.5			98.40	98.40	98.40	0.00	0.00	1	
25			97.90	97.90	97.90	0.00	0.00	1	
50			98.20	98.20	98.20	0.00	0.00	1	
100			8.00	8.00	8.00	0.00	0.00	1	

Statistical Printouts for the *Chlorella* Growth Inhibition Tests

	Microalgal Cell Yield-Cell Yield									
Start Date:	11/05/2018	17:30	Test ID:	PR1552/08		Sample ID:	Mixture			
End Date:	14/05/2018	17:30	Lab ID:	8649, 8650		Sample Type:	AQ-Aqueous			
Sample Date:	25/04/2018		Protocol:	ESA 103		Test Species:	CV-Chlorella vulgaris			
Comments:	Mixture- 10	% Wises	(8560) + 9	0% Eldridge (8	8649). W2 as Dilu	ent (8651)				
Conc-%	1	2	3	4						
W2 Diluent	31.800	27.200	29.600	27.200						
USEPA Diluent	25.600	24.800	26.600	26.800						
6.3	28.200	26.600	26.800	27.800						
12.5	26.600	25.200	24.600	27.200						
25	26.200	26.800	25.000	24.600						
50	23.000	26.200	25.600	24.800						
100	23.800	25.600	26.800	24.400						

		_		Transform	n: Untrans	formed			1-Tailed		Isoto	onic
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Mean	N-Mean
W2 Diluent	28.950	1.1156	28.950	27.200	31.800	7.638	4	*			28.950	1.0000
USEPA Diluent	25.950	1.0000	25.950	24.800	26.800	3.581	4					
6.3	27.350	1.0539	27.350	26.600	28.200	2.824	4	1.621	2.410	2.379	27.350	0.9447
*12.5	25.900	0.9981	25.900	24.600	27.200	4.655	4	3.090	2.410	2.379	25.900	0.8946
*25	25.650	0.9884	25.650	24.600	26.800	3.995	4	3.343	2.410	2.379	25.650	0.8860
*50	24.900	0.9595	24.900	23.000	26.200	5.584	4	4.103	2.410	2.379	25.025	0.8644
*100	25.150	0.9692	25.150	23.800	26.800	5.290	4	3.850	2.410	2.379	25.025	0.8644

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.05)					0.957556		0.916		0.263337	-0.46097
Bartlett's Test indicates equal variances (p = 0.64)					3.399041		15.08627			
The control means are significantly dif	ferent (p = (0.05)			2.501448		2.446912			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	6.3	12.5	8.87412	15.87302	2.379006	0.082176	9.590667	1.948889	0.005168	5, 18
Treatments vs W2 Diluent										

	Linear Interpolation (200 Resamples)										
Point	%	SD	95% CL	(Exp)	Skew						
IC05*	5.700	3.610	0.929	22.732	1.6698						
IC10	11.837										
IC15	>100					1.0					
IC20	>100										
IC25	>100					0.9					
IC40	>100					0.8 -					
IC50	>100					0.7					
* indicatos IC	ostimato loss t	han the low	lest conce	otration		0.7					

indicates IC estimate less than the lowest concentration

Reviewed by:____

			N	licroalgal	Cell Yield	-Cell Yield			
Start Date:	11/05/2018 17:30	Test ID:	PR1552/08			Sample ID:		Mixture	
End Date:	14/05/2018 17:30	Lab ID:	8649, 8650			Sample Type	e:	AQ-Aqueous	
Sample Date:	25/04/2018	Protocol:	ESA 103			Test Species	S:	CV-Chlorella vulgaris	
Comments:	Mixture- 10% Wises	(8560) + 9	0% Eldridge	(8649). W2	2 as Diluer	nt (8651)			
				Au	ixiliary Da	ta Summary	1		
Conc-%	Parameter		Mean	Min	Max	SD	CV%	N	
W2 Diluent	Cell Yield		28.95	27.20	31.80	2.21	5.14	4	
USEPA Diluent			25.95	24.80	26.80	0.93	3.71	4	
6.3			27.35	26.60	28.20	0.77	3.21	4	
12.5			25.90	24.60	27.20	1.21	4.24	4	
25			25.65	24.60	26.80	1.02	3.95	4	
50			24.90	23.00	26.20	1.39	4.74	4	
100			25.15	23.80	26.80	1.33	4.59	4	
W2 Diluent	pН		8.10	8.10	8.10	0.00	0.00	1	
USEPA Diluent			7.60	7.60	7.60	0.00	0.00	1	
6.3			8.30	8.30	8.30	0.00	0.00	1	
12.5			8.20	8.20	8.20	0.00	0.00	1	
25			8.10	8.10	8.10	0.00	0.00	1	
50			8.10	8.10	8.10	0.00	0.00	1	
100			8.00	8.00	8.00	0.00	0.00	1	
W2 Diluent	Conductivity uS/ci	m	106.00	106.00	106.00	0.00	0.00	1	
USEPA Diluent			99.00	99.00	99.00	0.00	0.00	1	
6.3			511.00	511.00	511.00	0.00	0.00	1	
12.5			867.00	867.00	867.00	0.00	0.00	1	
25			1475.00	1475.00	1475.00	0.00	0.00	1	
50			2590.00	2590.00	2590.00	0.00	0.00	1	
100			4660.00	4660.00	4660.00	0.00	0.00	1	

27 / 43 Lang Parade Auchenflower 4066 QUEENSLAND

ABN 26 096 574 659

PO Box 2151 Toowong 4066 QUEENSLAND

+61 (0)7 3721 0100 P info@hydrobiology.biz

www.hydrobiology.biz

Appendix G

DTA - June 2018

DTA OF POTENTIAL RELEASE WATER FROM THE KIDSTON PUMPED STORAGE HYDRO PROJECT

BRISBANE | PERTH | SINGAPORE | PAPUA NEW GUINEA

PREPARED FOR AECOM

© Hydrobiology Pty Ltd 2017

Disclaimer: This document contains confidential information that is intended only for the use by Hydrobiology's Client. It is not for public circulation or publication or to be used by any third party without the express permission of either the Client or Hydrobiology Pty. Ltd. The concepts and information contained in this document are the property of Hydrobiology Pty Ltd. Use or copying of this document in whole or in part without the written permission of Hydrobiology Pty Ltd constitutes an infringement of copyright.

While the findings presented in this report are based on information that Hydrobiology considers reliable unless stated otherwise, the accuracy and completeness of source information cannot be guaranteed. Furthermore, the information compiled in this report addresses the specific needs of the client, so may not address the needs of third parties using this report for their own purposes. Thus, Hydrobiology and its employees accept no liability for any losses or damage for any action taken or not taken on the basis of any part of the contents of this report. Those acting on information provided in this report do so entirely at their own risk.

THIS COMPANY IS REGISTERED FOR GST.

STREET 27 / 43 Lang Parade Auchenflower 4066 QUEENSLAND

ABN 26 096 574 659

REGISTERED c/- de Blonk Smith and Young Accountants GPO 119, Brisbane 4001 QUEENSLAND

PO Box 2151 Toowong 4066 QUEENSLAND +61 (0)7 3721 0100 P info@hydrobiology.biz

www.hydrobiology.biz

DOCUMENT CONTROL INFORMATION

DATE PRINT	E D	JOB NU	J M B E R	REPORT NUM	3 E R					
17/07/2018		AEC17	701	2						
PROJECT TIT	LE	DTA OF POTENTIAL HYDRO PROJECT	RELEASE WATER FRC	OM THE KIDSTON PU	MPED STORAGE					
PROJECT SUBTITLE		Prepared for AECO	Prepared for AECOM							
PROJECT MA	N A G E R	Dustin Hobbs								
FILENAME		AEC1701_R_2_v1-0								
STATUS	ORIGINA	TOR/S	REVIEWED	AUTHORISED	DATE					
V1-1	Marie B	igot	Dustin Hobbs	Dustin Hobbs	17/07/2018					

DISTRIBUTION

FILENAME	DESCRIPTION	ISSUED TO	ISSUED BY
V1-0	Draft	Reece Fraser Rouven Lau	Marie Bigot
V2-0	Final	Reece Fraser	Marie Bigot
		Rouven Lau	

EXECUTIVE SUMMARY

This Direct Toxicity Assessment (DTA) aimed to determine effluent release rates for the Kidston pumped storage Hydro project.

Waters from Wises Pit and Eldridge Pit at the former Kidston gold mine were mixed at a volumetric ratio of 10% to 90% (respectively) to produce a representative composite sample of the proposed discharge into the Copperfield River (Gilbert Basin). Ecotoxicity testing was performed by the NATA accredited laboratories at Ecotox Services Australasia (ESA) on the composite water sample using Copperfield River water as diluent.

The following sub-chronic to chronic toxicity tests were selected for this DTA and satisfied the minimum data requirement of ANZECC & ARMCANZ (2000):

- 96hr growth inhabitation of the freshwater duckweed *Lemna aequinoctialis* based on OECD method 221 (OECD, 2006)
- 72hr microalgal growth inhibition (cell yield) test using the freshwater alga *Chlorella vulgaris* (based on US EPA method 1003.0, (US EPA, 2002))
- 96hr population growth toxicity test using Hydra viridissima (based on Riethmuller et al. (2003))
- Fish embryonic development and post-hatch survival toxicity test using the rainbowfish *Melanotaenia splendida* (based on US EPA (2002))
- 7 day reproductive impairment toxicity test using the freshwater cladoceran *Ceriodaphnia cf dubia* (based on US EPA (2002) and Bailey et al. (2000))

The results obtained from these ecotoxicity tests were used to create a species sensitivity distribution (SSD) to predict the concentrations that would protect specified percentages of species in the receiving Copperfield River ecosystem. Trigger values (TVs) were derived in accordance with ANZECC and

ARMCANZ (2000) methods using the BurrliOZ 2.0 software package (Barry and Henderson, 2014) provided by CSIRO. BurrliOZ fits a log-logistic distribution to estimate the concentrations of discharges such that a given percentage of species will be protected. The TV for the protection of 95 % of the receiving ecosystem species corresponded to a concentration of 49 % of the composite pit sample tested. This corresponded to a safe dilution factor of 1.1.

Based on the outcomes of this DTA, it is recommended that the proposed discharge water (composed of 90% Eldridge to 10% Wises pit water) be diluted at least 1.1 times to achieve a minimum protection level of 95% of species in the receiving Copperfield River. A conservative dilution factor of 2 should protect >99% of species.

It is important to note that there appears to be some temporal variability in the composition of Eldridge and Wises pit water. The results from this study apply for a representative mixture as described in Table 2-1. In the case where the composition of the mixture varies (in particular EC levels), the dilution factor may need to be adjusted. The DTA performed in May 2018 (HB 2018) could be considered a worst case scenario.

contents

1. BA	ACKGROUND AND OBJECTIVES	11
2. MI	ETHODS	12
2.1	Sample collection	12
2.2	Water quality	12
2.3	Ecotoxicity testing	16
2.4	Statistical analysis	17
2.5	Derivation of protective concentrations	17
2.6	QA/QC	18
3. RE	SULTS AND DISCUSSION	19
4. CC	DNCLUSION	22
5. RE	FERENCES	23

APPENDIX A. LABORATORY TOXICITY RESULTS

tables

Table 2-1 Water quality results for the composite and river water	
samples used in the DTA	14
Table 3-1 Summary of toxicity test results	20
Table 3-2 Calculated safe dilution factors for each level of protection	21

figures

Figure 2-1 Map of river sampling locations along the Copperfield R	liver
and proposed release points (provided by AECOM)	13
Figure 3-1 Species sensitivity distribution (SSD)	20

Glossary of Terms and Acronyms

The following glossary is based on that provided by *Australian and New Zealand Guidelines for Fresh and Marine Water Quality* (ANZECC and ARMCANZ 2000) and Environment Canada (1999) except where otherwise indicated.

Chronic toxicity – A biological response to exposure to a toxicant that takes a prolonged period to appear and persists for a prolonged period. The term can be used to define either the exposure of an aquatic species or its response to an exposure (effect). The ANZECC & ARMCANZ (2000) define chronic exposure as being greater than 96 hours duration for multi-celled organisms and being equal to or greater than 72 hours duration for single-celled organisms.

Control (control treatment) – In toxicity tests, the control is that treatment in which the test organisms are not subjected to the test substance. The control is used as a standard comparison, to check that the outcome of the experiment is a reflection of the test conditions and not some unknown factor.

Direct toxicity assessment (DTA) – The use of toxicity tests to determine the acute and/or chronic toxicity of effluents and other mixtures of potential toxicants.

EC – Electrical Conductivity, which is an estimate of the amount of total dissolved salts (TDS).

 EC_{10} – The concentration of a chemical that is estimated to cause a response in 10% of the test organisms or causes the mean response of the organisms to differ from the control by 10%. The EC10 is usually expressed as a time-dependent value, e.g. 24-hour EC₁₀ is the concentration estimated to cause an effect on 10% of the test organisms after 24 hours of exposure.

 EC_{50} – The concentration of chemical that is estimated to cause a response in 50% of the test organisms or causes the mean response of the organisms to differ from the control by 50%. The EC50 is usually expressed as a time-dependent value, e.g. 24-hour EC₅₀ is the concentration estimated to be cause an effect on 50% of the test organisms after 24 hours of exposure.

Endpoint – The biological response of test organisms in toxicity tests that is measured (e.g. lethality, immobilisation).

ESA – Ecotox Services Australasia.

Ecosystem trigger values – These are the concentration (or loads) of the key performance indicators measured for the ecosystem, below which there exists a low risk that adverse biological (ecological) effects will occur. They indicate a risk of impact if exceeded and should 'trigger' some action, either further ecosystem-specific investigations or implementation of management/remedial actions.

Goodness of Fit – A statistical measure of how well a set of observations fit the predicted pattern of a probability distribution function.

ICp – The concentration that inhibits an endpoint by 'p' percent (e.g. the IC50 $_{(reprod)}$ is the concentration that inhibits reproduction by 50%). It represents a point estimate of a concentration of test material that causes a designated percent inhibition (p) compared to the control. The ICp is usually expressed as a time-dependent value, e.g. 24-hour IC₅₀ is the concentration estimated to cause an effect on 50% of the test organisms after 24 hours of exposure.

 LC_{50} – The concentration of material in water that is estimated to be lethal to 50% of the test organisms. The LC₅₀ is usually expressed as a time-dependent value, e.g. 24-hour or 96-hour LC₅₀, the concentration estimated to be lethal to 50% of the test organisms after 24 or 96 hours of exposure.

Level of protection – The ANZECC & ARMCANZ (2000) provide three levels of protection depending on the current status of the ecosystem being considered. The levels are (1) high conservation ecosystems where the default is to protect 99% of species (i.e. PC_{99} values apply), (2) slightly to moderately modified ecosystems where the default is to protect 95% of species (i.e. PC_{95} values apply) and (3) highly modified ecosystems where the default is to protect between 80 to 90% of species (i.e. PC_{90} values apply).

LOEC – The lowest observed concentration of a toxicant used in a toxicity test that has a statistically significant ($P \le 0.05$) adverse effect on the exposed population of test organisms compared with the controls. This is estimated by hypothesis-based statistical methods and is therefore not a point estimate.

Mixing zones – An explicitly defined area around a discharge point where discharge concentrations may exceed guideline values and therefore result in certain environmental values not being protected. The size of the mixing zone is site specific.

NATA – National Association of Testing Authorities.

NOEC – The highest observed concentration of a toxicant used in a toxicity test that does not exert a statistically significant adverse effect (P > 0.05) on the exposed population of test organisms compared to the controls. This is estimated by hypothesis based statistical methods and is therefore not a point estimate.

Protective concentrations (PC) – The concentration predicted by species sensitivity distribution methods that will protect a chosen percentage of species from experiencing toxic effects. For example, the PC₉₉ should protect 99% of species in the ecosystem being considered. The toxic effects that are being prevented will depend on the type of toxicity data used to derive the PC values. Thus, if sub-lethal EC₁₀ data are used to generate a PC₉₅ – it will protect 95% of species from experiencing sub-lethal EC₁₀ effects.

Safe dilution factors – The concentration that a chemical or discharge must be diluted by in order to meet a selected PC value. The lower the PC value the higher the dilution factor must be to protect the selected percentage of species.

Species Sensitivity Distribution (SSD) – SSD is a statistical approach for predicting the threshold concentrations of a contaminant or effluent that will protect a specific proportion of aquatic species with a predetermined level of confidence.

Sub-lethal – A biological response that is less severe than death. Examples of sub-lethal effects include inhibition of reproduction, reduction in growth, reduction in population growth, inhibition of fertilisation and inhibition of development.

Toxicity – The inherent potential or capacity of a chemical to cause adverse effects in a living organism.

Toxicity test – A test that exposes living organisms to several concentrations of a substance that is under investigation, and evaluates the organism's responses.

Trigger Value (TV) – The numerical limit for the aqueous concentration of a toxicant which if exceeded leads to further investigation or action to remediate the site or to reduce the concentration of the toxicant.

1. Background and Objectives

AECOM has commissioned Hydrobiology and Ecotox Services Australia Pty Ltd (ESA) to perform a Direct Toxicity Assessment (DTA) of a mixture of water from Wises Pit and Eldridge Pit at Kidston which is being proposed to be discharged into the Copperfield River (Gilbert Basin, North Queensland). The major contaminants of concern identified in the effluent release were sulphate (as SO₄), arsenic, zinc and nickel.

The scope of this work was to determine acceptable safe dilution factors for discharge of a mixture of pit waters in the Copperfield River which is part of Gilbert Basin. The aim was to achieve a level of aquatic ecosystem protection of 95% of species in the receiving environment corresponding to a slightly to moderately disturbed upland freshwater system.

The specific objectives of this study were to:

- Use the results obtained in ecotoxicity testing performed by ESA to create a species sensitivity distribution (SSD);
- Use the SSD to predict the concentrations that would protect specified percentages of species in the receiving Copperfield River ecosystem; and
- Derive safe dilution factors for protecting this ecosystem.

2. Methods

2.1 SAMPLE COLLECTION

All water samples used for this investigation were collected by AECOM in June 2018. Two test water samples were provided from the Wises and Eldridge pits. Diluent water was also collected from the Copperfield River. The river sample was collected at site W2, as indicated in Figure 2-1. This point was located directly downstream of the proposed release point and represents the most likely river water quality that will mix with the proposed discharge.

2.2 WATER QUALITY

The two test waters from Eldridge and Wises pits were mixed by AECOM at a ratio of 90% Eldridge to 10% Wises. The DTA was undertaken using this composite sample which was serially diluted using Copperfield River water. Both the Copperfield River and composite pit samples were characterised at Australian Laboratory Services (ALS). Parameters analysed included:

- Physico-chemical parameters
- Cations/Anions
- Metals (total and dissolved)
- Nutrients
- Cyanide

Water quality results for the composite sample and the river water sample used in this DTA are presented in Table 2-1.

Figure 2-1 Map of river sampling locations along the Copperfield River and proposed release points (provided by AECOM)

Table 2-1 Water quality results for the composite and river water samples used in the DTA

Parameter	Unit	Copperfield River sample (June 2018)	Composite pit sample (90% Eldridge+10% Wises) (June 2018)	Composite pit sample (May 2018) used for previous DTA (HB, 2018)
рН	-	8.10	7.78	7.82
EC (at 25°C)	µS/cm	153	3210	4600
Total Hardness (as CaCO₃)	mg/L	50	1230	1530
Sodium adsorption ratio (SAR)	-	0.83	4.02	6.04
Total Alkalinity (as CaCO₃)	mg/L	60	48	84
Sulphate (SO ₄ ²⁻)	mg/L	7	1720	2630
Chloride	mg/L	8	107	161
Calcium	mg/L	10	338	410
Magnesium	mg/L	6	94	124
Sodium	mg/L	10	324	544
Potassium	mg/L	2	52	110
Fluoride	mg/L	0.2	2.8	4.9
Total Anions	meq/L	1.57	39.8	61.0
Total Cations	meq/L	1.48	40.0	57.1
Ionic Balance	%	-	0.3	3.25
Ammonia as N	mg/L	0.02	0.16	0.35
Nitrite as N	mg/L	<0.01	<0.01	0.01
Nitrate as N	mg/L	<0.01	5.19	0.31
Total Kjeldahl Nitrogen as N	mg/L	0.2	0.6	0.4

Parameter	Unit	Copperfield River sample (June 2018)	Composite pit sample (90% Eldridge+10% Wises) (June 2018)	Composite pit sample (May 2018) used for previous DTA (HB, 2018)
Total Phosphorous as P	mg/L	<0.01	0.03	0.09
Reactive Phosphorous as P	mg/L	<0.01	0.01	0.04
Arsenic	mg/L	<0.001 (D), <0.001 (T)	0.047 (D), 0.050 (T)	0.247 (D), 0.250 (T)
Beryllium	mg/L	<0.001 (D), <0.001 (T)	<0.001 (D), <0.001 (T)	<0.001 (D), <0.001 (T)
Barium	mg/L	0.023 (D), 0.027 (T)	0.037 (D), 0.050 (T)	0.042 (D), 0.043 (T)
Cadmium	mg/L	<0.0001 (D), <0.0001 (T)	0.0221 (D), 0.0222 (T)	0.0012 (D), 0.0015 (T)
Chromium	mg/L	<0.001 (D), <0.001 (T)	<0.001 (D), <0.001 (T)	<0.001 (D), <0.001 (T)
Cobalt	mg/L	<0.001 (D), <0.001 (T)	0.004 (D), 0.005 (T)	0.002 (D), 0.003 (T)
Copper	mg/L	<0.001 (D), <0.001 (T)	0.003 (D), 0.007 (T)	0.002 (D), 0.002 (T)
Lead	mg/L	<0.001 (D), <0.001 (T)	<0.001 (D), <0.001 (T)	<0.001 (D), <0.001 (T)
Manganese	mg/L	0.004 (D), 0.053 (T)	1.11 (D), 1.21 (T)	0.236 (D), 0.256 (T)
Mercury	mg/L	<0.0001 (D), <0.0001 (T)	<0.0001 (D), <0.0001 (T)	<0.0001 (D), <0.0001 (T)
Nickel	mg/L	<0.001 (D), <0.001 (T)	0.021 (D), 0.022 (T)	0.003 (D), 0.003 (T)
Selenium	mg/L	<0.01 (D), <0.01 (T)	<0.01 (D), <0.01 (T)	<0.01 (D), <0.01 (T)
Vanadium	mg/L	<0.01 (D), <0.01 (T)	<0.01 (D), <0.01 (T)	<0.01 (D), <0.01 (T)
Zinc	mg/L	<0.005 (D), <0.005 (T)	1.09 (D), 1.10 (T)	0.080 (D), 0.081 (T)

Parameter	Unit	Copperfield River sample (June 2018)	Composite pit sample (90% Eldridge+10% Wises) (June 2018)	Composite pit sample (May 2018) used for previous DTA (HB, 2018)
Boron	mg/L	<0.05 (D), <0.05 (T)	0.05 (D), 0.05 (T)	0.08 (D), 0.09 (T)

Notes: (D) denotes dissolved concentrations, (T) denotes total concentrations

Also presented in Table 2-1 are the water quality analysis results of a composite sample that was used in DTA testing in May 2018. We note that water quality of the mixture tested for this DTA (i.e. 90% Eldridge to 10% Wises pit water) was different when compared with the previous mixture tested in May 2018 (which was an unknown mixture ratio). It is important to note that the composition of each pit varied considerably between the two sampling dates. In particular, EC was considerably lower in June (Eldridge sample was 3340 and 2950 µS/cm in May and June, respectively, and Wises sample was 6180 and 4870 µS/cm, respectively) which resulted in a lower EC for the June composite sample compared with the previous (3210 µS/cm compared with 4600 µS/cm in May 2018). The concentrations of major ions (including Ca, Cl, Mg, Na and K), alkalinity and hardness were also lower. In terms of metal contaminants, many were found at higher concentrations in June compared with the mixture from May 2018, these included Cd, Co, Cu, Mn, Ni and Zn, which were found at concentrations above their respective trigger values for freshwater ecosystems in ANZECC & ARMCANZ (2000). Arsenic and boron were found in lower concentrations in June compared with May.

2.3 ECOTOXICITY TESTING

A minimum of five tests on species from four taxonomic groups are required to enable the derivation of "safe" dilutions of discharges using an SSD approach (ANZECC & ARMCANZ, 2000). The following chronic and sub-chronic tests were selected for this DTA:

• 96hr growth inhabitation of the freshwater duckweed *Lemna aequinoctialis* based on OECD method 221 (OECD, 2006)

Two species of macrophytes were found in the Copperfield River aquatic ecology survey undertaken in April 2018 (C&R Consulting, 2018). The test species, *L. aequinoctialis*, is a small aquatic, flowering macrophyte, commonly known as duckweed. Unlike many other evolutionary more complex plants, their small size and fast growth rates make them ideal for testing in the laboratory. This test was based on the OECD protocol method 221 (OECD, 2006). A standard number of vegetatively reproducing *Lemna* plants were exposed to dilution series of the test solution over 96 hours under controlled conditions. The number of fronds was counted at the end of the test and from this, the degree of plant growth was calculated and compared with an appropriate control to determine the percentage inhibition of growth for each treatment.

- 72hr microalgal growth inhibition (cell yield) test using the freshwater alga *Chlorella vulgaris* (based on US EPA method 1003.0, (US EPA, 2002))
 Chlorella vulgaris (Chlorophyceae) is a unicellular freshwater green alga. Exponentially growing cells of *C. vulgaris* were exposed to dilution series of the test toxicant over several generations under defined conditions. The test was conducted over 72 hours with cell counts undertaken at both 48 and 72 h. From these counts, cell division rates were calculated. The test solution was considered toxic when a statistically significant (P ≤ 0.05) concentration-dependent inhibition of algal growth
- occurred. Development of this method is described by Franklin et al. (1998).
 96hr population growth toxicity test using *Hydra viridissima* (based on Riethmuller et al. (2003))

Hydra viridissima is referred to as 'green' hydra because of its green colouration resulting from the presence of a symbiotic green alga in the gastrodermal cells of the animal. Although the precise distribution of this species has not been mapped, it has been found in a variety of aquatic habitats in northern Australia. Asexually reproducing (budding) test hydra were exposed to a dilution series of the test toxicant for 96 hours. Observations of any changes to the hydra population (i.e. changes in the number of intact hydroids, where one hydroid equals one animal plus any attached buds) were recorded at 24 h intervals. The method is based on the hydra population growth test described by Hyne et al. (1996) and Riethmuller et al. (2003).

• Fish embryonic development and post-hatch survival toxicity test using the rainbowfish *Melanotaenia splendida* (based on US EPA (2002))

Rainbowfish were chosen as they are common in freshwater areas of the Copperfield River and other north Queensland catchments. The Copperfield River aquatic ecology survey performed in April 2018 reported the presence of checkered rainbowfish (*Melanotaenia splendida inornata*) (C&R Consulting, 2018). The methods adopted by ESA for this test were based on US EPA (2002), but adapted for use with native rainbowfish. The embryo development and post-hatch survival test method covers the first 6 days of embryonic development and 4-days post hatch period (10-day exposure period in total).

• 7 day reproductive impairment toxicity test using the freshwater cladoceran, *Ceriodaphnia* cf. *dubia* (based on US EPA (2002) and Bailey et al. (2000))

The *Ceriodaphnia* cf. *dubia* freshwater cladoceran (water flea) is the most commonly used test organism to assess the potential harm a toxicant may pose to freshwater aquatic ecosystems around the world. Cladocera species were found in the Copperfield River aquatic ecology survey performed in April 2018 (C&R Consulting, 2018), therefore this test is highly relevant to the study area. The reproductive impairment toxicity test measures chronic toxicity using less than 24 h old neonates during a three-brood (seven-day), static renewal test. The test began with asexually reproducing female freshwater cladocera (waterfleas) that were less than six hours old (i.e. neonates). These neonate females were exposed to a dilution series of the test substance, an effluent or reference toxicant under 'static-renewal' conditions. These females were transferred daily to fresh solutions of the same concentration. Each day, observations were made on the survival of each female, the number of neonates produced and neonate survival. Each female was accounted for as alive, dead or missing, rather than assuming missing animals were dead. The test was terminated when three broods were produced by each surviving control female (normally over a 5 to 7 day period). The method is based on the Ceriodaphnia Survival and Reproduction Test developed by the US EPA (2002).

All tests were performed by ESA which is a NATA endorsed toxicity testing facility.

2.4 STATISTICAL ANALYSIS

The EC₁₀ (the effective concentration giving 10% reduction in the endpoint compared with the controls) was calculated by ESA using Trimmed Spearman-Karber analysis (Hamilton, Russo and Thurston, 1977), Maximum Likelihood Probit analysis (Finney, 1971) or Log-Logit Interpolations (US EPA, 2002), depending on which method was appropriate.

2.5 DERIVATION OF PROTECTIVE CONCENTRATIONS

Trigger values (TVs) were derived for the protection of aquatic freshwater species using the SSD method. The TVs were derived in accordance with ANZECC and ARMCANZ (2000) using the BurrliOZ 2.0 software package (Barry and Henderson, 2014) provided by CSIRO. BurrliOZ fits a log-logistic distribution to estimate the concentrations of discharges such that a given percentage of species will
be protected. The EC_{10} data from the DTA was input to the SSD to derive the protective concentrations. The TVs for the 80%, 90%, 95% and 99% protective concentrations were derived as per ANZECC and ARMCANZ (2000).

Safe dilution factors (i.e. the dilution needed for the discharge to have little to no effect on the receiving ecosystem) were extrapolated from the data to ensure protection of 80%, 90%, 95% and 99% species in the aquatic ecosystem of the receiving environment.

2.6 QA/QC

Specific procedures for undertaking toxicity testing activities, procurement and culturing of test organisms, maintenance and calibration of instruments, cleaning, chain-of-custody and sample handling procedures are carried out by ESA as per their Procedures Manual. Quality assurance procedures were undertaken for all toxicity tests.

Quality assurance and quality control of all NATA accredited tests were satisfied. In the case of the *Ceriodaphnia* cf. *dubia* test (not NATA accredited), the control results were satisfactory.

3. RESULTS AND DISCUSSION

A summary of ecotoxicity testing results received from ESA is presented in Table 3-1. The most sensitive species of the testing suite was the freshwater cladoceran, *Ceriodaphnia* cf. *dubia* for which the EC₁₀ was estimated at 54.3 %. This is much higher compared with the previous DTA performed on the May 2018 mixture, where the EC₁₀ for *C.* cf *dubia* was estimated at 30.9 %, and the most sensitive species of the testing suite was the microalgae *C. vulgaris* with an EC₁₀ estimated at 11.8 % (HB, 2018). It is likely that the difference in toxicity observed between the two mixtures was associated with the reduced EC in the mixture prepared in June 2018. It appears that the higher concentrations of metals (Cd, Co, Cu, Mn, Ni and Zn) did not cause further adverse effects.

The five chronic EC₁₀ data points were taken forward into the derivation of TVs for the protection of freshwater species using the BurrliOZ program by producing an SSD (Figure 3-1). The SSD was then used to derive ecosystem TVs corresponding to different levels of protection from 80 to 99% of species. These TVs are presented in Table 3-2.

The TV for the protection of 95 % of the receiving ecosystem species corresponded to a concentration of 49 % of the composite pit sample tested (Table 3-2). This result allowed the calculation of the dilution ratio that provides a 95% species protection level for the contaminant mixture proposed to be discharged to the Copperfield River. A safe dilution factor of 1.1 was calculated to achieve the 95% species protection level for the river. Hydrobiology recommends using a

conservative dilution factor of 2 at the edge of the designated mixing zone to ensure adequate protection of the aquatic ecosystem in the Copperfield River.

Test	NOEC	LOEC	EC10 (95% confidence interval)	EC50 (95% confidence interval)
96-hr Growth inhibition of <i>Lemna</i> aequinoctialis	50%	100%	64.3 (52.9-78.5)%	>100%
96-hr acute toxicity test using Hydra viridissima	50%	100%	74.6 (49.6-93.9)%	>100%
Fish embryo hatching test using Melanotaenia splendida splendida	100%	>100%	>100%	>100%
72-hr microalgal growth inhibition test using <i>Chlorella</i> <i>vulgaris</i>	100%	>100%	>100%	>100%
7-day reproduction test using Ceriodaphnia cf. dubia	50%	100%	54.3 (43.0-58.6)%	99.3 %**

Table 3-1 Summary of toxicity test results

** 95% confidence interval limits not determinable

Figure 3-1 Species sensitivity distribution (SSD)

Solution	Level of protection	Trigger value (TV) [95% confidence interval]	Safe dilution factor estimate
Composite sample 90% Eldridge + 10% Wises	99% species	38 % [31 – 75 %]	1.63
	95% species	49 % [42 – 82 %]	1.1
	90% species	55 % [46 - 86 %]	0.82
	80% species	62 % [52 – 90 %]	0.61

Table 3-2 Calculated safe dilution factors for each level of protection

4. Conclusion

Based on the composite sample used in this DTA (mixture of 90% Eldridge and 10% Wises pit waters), the proposed discharge water should be diluted at least 1.1 times to achieve a minimum protection level of 95% of species in the receiving Copperfield River. It is recommended that a conservative dilution factor of 2 be applied, which should ensure the protection of >99% of species.

It is important to note that there appears to be some temporal variability in the composition of Eldridge and Wises pit water. The results from this study apply for a representative mixture as described in Table 2-1. In the case where the composition of the mixture varies (in particular EC levels), the dilution factor may need to be adjusted. The DTA performed in May 2018 (HB 2018) could be considered a worst case scenario.

5. REFERENCES

ANZECC & ARMCANZ (2000) 'Australian and New Zealand Guidelines for Fresh and Marine Water Quality - The Guidelines', *National Water Quality Management Strategy*, 1(4), p. 314.

Bailey, H. C. *et al.* (2000) 'Application of Ceriodaphnia cf. dubia for whole effluent toxicity tests in the Hawkesbury-Nepean watershed, New South Wales, Australia: method development and validation.', *Environmental Toxicology and Chemistry*, 19, pp. 88–93.

Barry, S. and Henderson, B. (2014) *Burrlioz 2.0., Canberra (AU): Commonwealth Science and Industrial Research Organisation.*

C&R Consulting (2018) 'Kidston pumped storage Hydro Project - Aquatic Ecology Survey Report', *report prepared by Geochemical & Hydrobiological Solutions Pty Ltd for AECOM Pty Ltd*.

Finney, D. J. (1971) *Probit Analysis (3rd edition)*. Cambridge. Cambridge.

Franklin, N., Australia. Environment Australia. and Australia. Supervising Scientist. (1998) 'A new tropical algal test to assess the toxicity of metals in freshwaters', *Supervising scientist report, 133.*, p. viii, 83.

Hamilton, M. A., Russo, R. C. and Thurston, R. V. (1977) 'Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays', *Environmental Science & Technology*, 11(7), pp. 714–719.

HB (2018) 'DTA of potential release water from the Kidston pumped storage Hydro Project - June 2018', *Hydrobiology Pty Ltd prepared for AECOM*.

Hyne, R. V. *et al.* (1996) 'Procedures for the biological toxicity testing of mine waste waters using freshwater organisms', *Supervising scientist report 110*.

OECD (2006) 'Lemna sp. Growth Inhibition Test. Method 221. OECD Guideline for the Testing of Chemicals.', *Organisation for Economic Cooperation and Development, Paris*.

Riethmuller, N. *et al.* (2003) 'Ecotoxicological testing protocols for Australian tropical freshwater ecosystems', *Supervising Scientist Report 173, Supervising Scientist, Darwin NT*, p. 145.

US EPA (2002) 'Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. 4th Ed.', *United States Environmental Protection Agency, Office of Water, Washington DC.*

APPENDIX A. LABORATORY TOXICITY RESULTS

Prepared for AECOM

www.hydrobiology.biz

Ecotoxicity of a Composite of Eldridge and Wises Waters to a Suite of Tropical Freshwater Test Species

Aecom

Test Report

June 2018

(Page 1 of 2)

Toxicity Test Report: TR1552/6

Accredited for compliance with ISO/IEC 17025

Client	Assom		ESA Job #:	001550	
Client.			EGA JUD #. Data Sampladi	PR1002	
		<u>^</u>	Date Sampleu.	13 June 2018	
A 44 41	Townsville QLD 481	0	Date Received:	15 June 2018	
Attention:	Reece Fraser		Sampled By:	Client	
Client Ref:	60544566		ESA Quote #:	PR1552_02	
Lab ID No.:	Sample Name:	Sample Desc	ription:		
8666	Composite	Aqueous sam	ple, pH 7.7, conductivity 3	3370 µS/cm, total ammonia	
		<2.0mg/L. Sa	mple received at 8 °C in ap	parent good condition.	
8667	W2	Aqueous sam	ple, pH 7.8, conductivity	258 µS/cm, total ammonia	
		<2.0mg/L. Sa	mple received at 8°C in app	parent good condition.	
*NATA accreditation does not cover the performance of this service					
Test Performe	d:	Partial life-cycl	e toxicity test using th	he freshwater cladoceran	
Ceriodaphnia c			dubia		
Test Protocol:		ESA SOP 102 (ESA 2016), based on USEPA (2002) and Bailey et al.			
		(2000)			
Test Temperat	Test Temperature: The test was performed at 25±1°C.				
Deviations fro	m Protocol:	Nil			
Comments on	Solution	The Composite	sample (8666) was serial	lly diluted with W2 (sample	
Preparation:		8667) to achiev	e the final test concentration	ons. A Dilute Mineral Water	
		(DMW- culture v	vater) control was tested co	ncurrently with the samples.	
Source of Test	t Organisms:	ESA Laboratory	culture		
Test Initiated:		15 June 2018 at	: 1730h		
Composite dilut	ted with W2 (Lab ID 86	67):	Composite diluted with W	2 (Lab ID 8667):	
Concentra	Concentration % Unaffected at 7 days		Concentration	Number of Young	
(%)	(Me	ean ± SD)	(%)	(Mean ± SD)	
DMW Co	ntrol 100	± 0.0	DMW Control	15.9 ± 1.5	
W2 Dilu	ent 100	± 0.0	W2 Diluent	16.2 ± 1.3	
6.3	100	± 0.0	6.3	15.8 ± 1.3	
12.5	100	± 0.0	12.5	16.4 ± 1.4	
25	100	+ 0.0	25	16.0 + 1.4	

 100
 90.0 ± 31.6
 100
 8.0 ± 3.3*

 7 day EC10 (unaffected) = >100%
 7 day IC10 (reproduction) = 54.3 (43.0-58.6)%

 7 day EC50 (unaffected) = >100%
 7 day IC50 (reproduction) = 99.3%**

 NOEC = 100%
 NOEC = 50%

 LOEC = >100%
 LOEC = 100%

50

 $100 \ \pm \ 0.0$

* Significantly lower number of young compared with the W2 Diluent (Steels Many-One Rank Test, 1-tailed, P=0.05)
 ** 95% Confidence Limits not determinable

ECOTOX Services Australia Pty Ltd ABN>95 619 426 201 unit 27/2 chaplin drive lane cove nsw 2066 T>61 2 9420 9481

50

ê

61 2 9420 9484 W>www.ecotox.com.au

15.2

± 1.1

(Page 2 of 2)

QA/QC Parameter	Criterion	This Test	Criterion met?
DMW Control mean % unaffected	≥80.0%	100%	Yes
Control mean number of young per surviving adult	≥15.0	15.9	Yes
Reference Toxicant within cusum chart limits	192.4-242.9	197.2	Yes
	mgKCl/L	mgKCl/L	

For Vamo

Test Report Authorised by:

Dr Rick Krassoi, Director on 10 July 2018

Results are based on the samples in the condition as received by ESA. *NATA Accredited Laboratory Number:* 14709 This document shall not be reproduced except in full.

Citations:

- Bailey, H.C., Krassoi, R., Elphick, J.R., Mulhall, A., Hunt, P., Tedmanson, L. and Lovell, A. (2000) Application of *Ceriodaphnia cf. dubia* for whole effluent toxicity tests in the Hawkesbury-Nepean watershed, New South Wales, Australia: method development and validation. *Environmental Toxicology and Chemistry* 19:88-93.
- ESA (2016) ESA SOP 102 Acute Toxicity Test Using Ceriodaphnia dubia. Issue No 11. Ecotox Services Australasia, Sydney, NSW.

USEPA (2002) Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms.4th Ed. United States Environmental Protection Agency, Office of Water, Washington DC.

 ECOTOX Services Australia Pty Ltd
 ABN>95
 619
 426
 201

 unit 27/2 chaplin drive lane cove nsw
 2066
 T>61
 2
 9420
 9481

(Page 1 of 2)

Performed in compliance with ISO/IEC 17025

Client:	Aecom		ESA Job #:	PR1552
	PO Box 5423		Date Sampled:	13 June 2018
	Townsville QLD 48	10	Date Received:	15 June 2018
Attention:	Reece Fraser		Sampled By:	Client
Client Ref:	60544566		ESA Quote #:	PR1552_02
Lab ID No.:	Sample Name:	Sample Desc	ription:	
8666	Composite	Aqueous sam <2.0mg/L. Sa	ple, pH 7.7, conductivity 3 mple received at 8 °C in ap	3370 µS/cm, total ammonia parent good condition.
8667	W2	Aqueous sam	ple, pH 7.8, conductivity	258 µS/cm, total ammonia
		<2.0mg/L. Sa	mple received at 8°C in app	parent good condition.
Test Performe	d:	96-hr Growth in	nhibition of the freshwater	aquatic duckweed Lemna
Toot Brotocol		aequinoctialis	ESA 2016) based on AST	4 (2012)
Test Protocol.	turo	ESA SOP TIZ (ESA 2016), based of ASTM (2012) The test was performed at $20+2^{\circ}C$		
Deviations fro	m Protocol			
Comments on	Solution	The Composite	sample (8666) was seria	lly diluted with W2 (sample
Preparation:		8667) to achiev	e the final test concentra	tions. A CAAC control was
		tested concurre	ntly with the samples.	
Source of Tes	t Organisms:	ESA Laboratory	culture	
Test Initiated:	-	15 June 2018 a	t 1700h	
Composite dilu	ted with W2 (Lab ID 8	667):	Vacant	
Concentra	ation Specifi	c Growth Rate		
(%)	(N	lean ± SD)		
CAAC Co	ontrol 0.23	3 ± 0.01		
W2 Dilu	ent 0.23	3 ± 0.01		
6.3	0.22	2 ± 0.01		
12.5	0.24	1 ± 0.02		
25	0.23	3 ± 0.01		
50	0.24	1 ± 0.02		
100	0.15	5 ± 0.05		

96-h IC10 = 64.3 (52.9-78.5)% 96-h IC50 = >100³/₂ NOEC = 50% LOEC = 100%

С

* Significantly lower growth rate compared with the W2 Diluent (Dunnett's Test, 1-tailed, P=0.05)

ECOTOX Services Australia Pty Ltd ABN>95 619 426 201 T≥61 2 9420 9481

8

W>www.ecotox.com.au

(Page 2 of 2)

QA/QC Parameter	Criterion	This Test	Criterion met?
CAAC Control Specific Growth rate	>0.231	0.23	Yes
Reference Toxicant within cusum chart limits	5.6-58.6mg Mg/L	13.8 mg Mg/L	Yes

Test Report Authorised by:

For Vamo

Dr Rick Krassoi, Director on 10 July 2018

Results are based on the samples in the condition as received by ESA. This document shall not be reproduced except in full.

Citations:

ESA (2016) SOP 112 – Duckweed Growth Inhibition Test. Issue No. 7. Ecotox Services Australasia, Sydney NSW

OECD (2006) *Lemna sp.* Growth Inhibition Test. Method 221. OECD Guideline for the Testing of Chemicals. Organisation for Economic Cooperation and Development, Paris

 ECOTOX Services Australia Pty Ltd
 ABN>95 619 426 201

 unit 27/2 chaplin drive lane cove nsw 2066
 T>61 2 9420 9481

(Page 1 of 2)

Performed in compliance with ISO/IEC 17025

Client:	Aecom		ESA Job #: Date Sampled:	PR1552
	Townsville QLD 481	0	Date Beceived:	15 June 2018
Attention:	Reece Fraser		Sampled By:	Client
Client Ref:	60544566		ESA Quote #:	PR1552_02
Lab ID No.:	Sample Name:	Sample Desc	ription:	
8666	Composite	Aqueous sam	ple, pH 7.7, conductivity	3370 µS/cm, total ammonia
	14/0	<2.0mg/L. Sa	mple received at 8 °C in ap	parent good condition.
8667	W2	Aqueous san	ple, pH 7.8, conductivity	258 µS/cm, total ammonia
		<2.0mg/L. 5a	inple received at 8°C in app	
Test Performe	ad.	96-br acute tovi	city test using the freshwat	er hydra hydra viridissima
Test Protocol:		FSA SOP 125 (2016), based on Riethmulle	er et al. (2003)
Test Temperat	ture:	The test was pe	rformed at 28±1°C.	(2000)
Deviations fro	om Protocol:	Nil .		
Comments on	Solution	The Composite	sample (8666) was seria	lly diluted with W2 (sample
Preparation:		8667) to achiev	ve the final test concentra	itions. A LC control (culture
0	4 O	water) was teste	ed concurrently with the same	nples.
Source of Tes	t Organisms:	ESA Laboratory		
Test initiateu.		15 Julie 2016 a	1 103011	
Composite dilu	ted with W2 (Lab ID 8	367) [.]	Vacant	
Concentr	ration Popul	ation Growth	Vacant	
(%)		Rate		
	(M	ean ± SD)		
LC Con	trol 0.34	· ± 0.01		
W2 Dilu	ient 0.35	± 0.01		
6.3	0.34	· ± 0.01		
12.5	0.35	± 0.02		
25	0.35	± 0.01		
50	0.34	· ± 0.01		
100	0.29	±0.02*		
96-h IC10 = 74	6 (49,6-93,9)%			
96-h IC50 = >1	100%			
NOEC = 50%				
LOEC = 100%				

* Significantly lower growth rate compared with the W2 Diluent (Dunnett's Test, 1-tailed, P=0.05)

ECOTOX Services Australia Pty Ltd ABN>95 619 426 201 unit 27/2 chaplin drive lane cove nsw 2066 T>61 2 9420 9481

6-

(Page 2 of 2)

QA/QC Parameter	Criterion	This Test	Criterion met?
LC Control mean population growth rate	≥0.259	0.34	Yes
Reference Toxicant within cusum chart limits	2.61-10.30µg Cu/L	3.80 µg Cu/L	Yes

A Vamoi

Test Report Authorised by:

Dr Rick Krassoi, Director on 10 July 2018

Results are based on the samples in the condition as received by ESA.

This document shall not be reproduced except in full.

Citations:

ESA (2016) SOP 125 – Hydra Population Growth Test. Issue No 5. Ecotox Services Australasia, Sydney, NSW

Riethmuller N, Camilleri C, Franklin N, Hogan A, King A, Koch A, Markich SJ, Turley C and van Dam R (2003).

Green Hydra Population Growth Test. In: *Ecotoxicological testing protocols for Australian tropical freshwater ecosystems*. Supervising Scientist Report 173, Supervising Scientist, Darwin NT.

 ECOTOX Services Australia Pty Ltd
 ABN>95
 619
 426
 201

 unit 27/2 chaplin drive lane cove nsw 2066
 T>61
 2
 9420
 9481

(Page 1 of 2)

Performed in compliance with ISO/IEC 17025

Client:	Aecom		ESA Job #:	PR1552
	PO Box 5423		Date Sampled:	13 June 2018
	Townsville QLD 48	10	Date Received:	15 June 2018
Attention:	Reece Fraser		Sampled By:	Client
Client Ref:	60544566		ESA Quote #:	PR1552_02
Lab ID No.:	Sample Name:	Sample Desc	ription:	
8666	Composite	Aqueous sam	ple, pH 7.7, conductivity	3370 µS/cm, total ammonia
	110	<2.0mg/L. Sa	mple received at 8 °C in ap	parent good condition.
8667	W2	Aqueous san	ple, pH 7.8, conductivity	258μ S/cm, total ammonia
		<2.0mg/L. Sa	mple received at 8°C in app	parent good condition.
	-			
Test Performe	ed:	Rainbowtish er	mbryo hatching test usin	ig Melanotaenia splendida
Tast Protocol			(2016) based on LISEPA	(2002) but adapted for use
Test Frotocon	•	with native rainh	(2010), Dased OII USERA	(2002), but adapted for use
Test Tempera	turo	The test was ne	rformed at 25+1°C	
Deviations fro	om Protocol:	Nil		
Comments on	Solution	The Composite	sample (8666) was seria	llv diluted with W2 (sample
Preparation:		8667) to achieve the final test concentrations. A Dilute Mineral W		
		(DMW) control (culture water) was tested co	oncurrently with the samples.
Source of Tes	Source of Test Organisms: ESA Labo		culture	-
Test Initiated:		15 June 2018 a	t 1900h	
Composite dilu	ited with W2 (Lab ID 8	667):	Vacant	
Concentr	ration %	Jnaffected		
(%)	(N	lean ± SD)		
DMW Co	ontrol 95.0	0 ± 10.0		
W2 Dilu	uent 95.0	0 ± 10.0		
6.3	90.0	0 ± 20.0		
12.5	95.0	0 ± 10.0		
25	100.0	0.0 ± 0.0		
50	95.0	0 ± 10.0		
100	100.0	0.0 ± 0.0		
12-d EC10 = >	·100 %			

 ECOTOX Services Australia Pty Ltd
 ABN>95
 619
 426
 201

 unit 27/2 chaplin drive lane cove nsw
 2066
 T>61
 2
 9420
 9481

2

60

12-d EC50 = >100 % NOEC = 100% LOEC = >100%

5

6

1 2 9420 9484 W>www.ecotox.com.au

C

F

(Page 2 of 2)

QA/QC Parameter	Criterion	This Test	Criterion met?
DMW Control mean % unaffected	<u>></u> 80.0%	95.0%	Yes
Reference Toxicant within cusum chart limit	14.8-106.7µg Cu/L	87.4µg Cu/L	Yes

Pla Vamo

Test Report Authorised by:

Dr Rick Krassoi, Director on 10 July 2018

Results are based on the samples in the condition as received by ESA.

This document shall not be reproduced except in full.

Citations:

ESA (2016) SOP 126- Rainbowfish Embryo Hatching Test. Issue N°6. Ecotox Services Australasia, Sydney NSW

USEPA (2002) Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms.4th Ed. United States Environmental Protection Agency, Office of Water, Washington DC.

ECOTOX Services Australia Pty Ltd ABN>95 619 426 201 unit 27/2 chaplin drive lane cove nsw 2066 T>61 2 9420 9481

(Page 1 of 2)

Performed in compliance with ISO/IEC 17025

Client:	Aecom		ESA Job #:	PR1552	
	PO Box 5423		Date Sampled:	13 June 2018	
	Townsville QLD 48	810	Date Received:	15 June 2018	
Attention:	Reece Fraser		Sampled By:		
Client Ref.	00344300		ESA Quote #:	PR1552_02	
	Comple Name	Comple Dees	vintion		
Lad ID NO.:	Sample Name:	Sample Desc	ription:	2270 uS/cm total ammonia	
8000	Composite		mple received at 8 °C in ar	parent good condition	
8667	W2	Aqueous sam	nple nH 7.8 conductivity	258 uS/cm total ammonia	
0001	112	<2.0mg/L. Sa	mple received at 8°C in ap	parent good condition.	
1					
Test Performe	ed:	72-hr microalga	I growth inhibition test us	ing the green alga Chlorella	
		vulgaris			
Test Protocol:	:	ESA SOP 103 (ESA 2016), based on USE	PA (2002)	
Test Temperat	ture:	The test was performed at 29±1°C.			
Deviations fro	viations from Protocol: Nil				
Comments on	Solution	The Composite sample (8666) was serially diluted with W2 (sample			
Preparation:		tostod concurro	e the final test concentral	lions. A USEPA control was	
Source of Tes	t Organisms:	ESA Laboratory	culture		
Test Initiated:	t organionio.	15 June 2018 at	1730h		
<u>.</u>					
Composite dilu	ted with W2 (Lab ID	8667):	Vacant		
Concentr	ation	Cell Yield			
(%)	x	10 ⁴ cells/mL			
	(1	Mean ± SD)			
USEPA C	ontrol 23	.1 ± 0.8			
W2 Dilu	ient 23	.2 ± 0.7			
6.3	22	.8 ± 0.8			
12.5	23	.0 ± 0.2			
25	22	.8 ± 1.0			
50	23	.5 ± 0.6			
100	23	$.3 \pm 0.8$			
06 h 1010 - 54	1000/				
96-h IC50 = >1	100 %				
NOFC = 100%					
LOEC = >100%	%				

ECOTOX Services Australia Pty Ltd ABN>95 619 426 201 T≥61 2 9420 9481

6-0

LOEC = >100%

5

ล

9420 9484 W>www.ecotox.com.au

C

F

(Page 2 of 2)

QA/QC Parameter	Criterion	This Test	Criterion met?
USEPA Control mean cell density	≥16.0x10 ⁴ cells/mL	23.1 x10 ⁴ cells/mL	Yes
Control coefficient of variation	<20%	3.4 %	Yes
Reference Toxicant within cusum chart limits	447-3843mg KCI/L	3809 mg KCI/L	Yes

For Vamor

Test Report Authorised by:

Dr Rick Krassoi, Director on 10 July 2018

Results are based on the samples in the condition as received by ESA. This document shall not be reproduced except in full.

Citations:

ESA (2016) ESA SOP 103 – Green Alga, Selenastrum capricornutum, Growth Test. Issue No 11. Ecotox Services Australasia, Sydney, NSW.

USEPA (2002) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. Fourth Edition. EPA-821-R-02-013. United States Environmental Protection Agency, Office of Research and Development, Washington DC, USA,

Chain-of-Custody Documentation

Chain-of-Custody / Service Request Form

Datasheet ID: 601. Last Revised: 15. Ju	1 10 2014	Chain-of-Cust	ody / S	ervice R	equest Form	ecotox
Customer:	Accom	QUYRALIA PTV LTD		Ship To:	ESA	SERVICES AUSTRALASIA
Contact Name:	Reece	Fraser		Attention:	Rich	
Phone:	0747201674	t Email: reece. frase	Caccom	please provide an emi)	ail address for sample receipt notification	(L
Sampled by:	Gener		3			
Sample	Sample Time	Sample Name	Sample Method	Number and Volume of	Tests Requested (See reverse for guidance)	Comments / Instructions
Date				Containers		incomplete chain of custody is received
(day/month /year)		(exactly as written on the sample vessel)	(eg. Grab, composite etc.)	(eg 2 x 1L)	P TS Y	 Additional treatment of samples (i.e. spiking) Sub-contracted services (i.e. chemical
					1 17 H	 Dilutions required (if different than 100% down to 6.25%)
					06. 06. 100 100 100 100 100 100	 Sample holding time restriction (if applicable) Sample used for litigation (if applicable)
	0				php php php php	Note: An MSDS must be attached if Available
					2 7 1. 1 1	ESA Project Number: PR /552

Time: Date: 4) Received By: Of: Time: Date: 3) Released By: d. 15/6/14 1130 Date: Time: 2) Received By: ESA 25 Of: 14/06/2018 16.100 Date: Time: Reece Frase 1) Released By: Account Of:

>

>

>

> >

2×5L 3×5L

Composite

Composite

13/06/2018 Coulton T

SUE

nog

H

8664 13/06/2018

CM)

Grab

Note that the chain-of-custody documentation will provide definitive information on the tests to be performed.

Ecotox Services Australasia . Unit 27, 2 Chaplin Drive, Lane Cove NSW 2066 AUSTRALIA Phone: 61 2 9420-9481 Fax 61 2 9420-9484 info@ecotox.com.au

Page / of /

Statistical Printouts for the 3brood Partial Life Cycle Test with *Ceriodaphnia dubia*

			C	Ceriodaphnia	Partial Li	fe-Cycle T	est-7 Day l	Jnaffecte	d	
Start Date:	15/06/2018	17:30	Test ID:	PR1552/21			Sample ID:		Composite	
End Date:	22/06/2018	17:30	Lab ID:	8666		9	Sample Typ	e:	AQ-Aqueou	S
Sample Date:	13/06/2018		Protocol:	ESA 102		-	Test Specie	s:	CD-Cerioda	phnia dubia
Comments:	Diluted with	n W2 (san	nple 8667)							
Conc-%	1	2	3	4	5	6	7	8	9	10
DMW	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
W2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
6.3	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
12.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
50	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

				Not			Fisher's	1-Tailed	Isoto	onic
Conc-%	Mean	N-Mean	Resp	Resp	Total	Ν	Exact P	Critical	Mean	N-Mean
DMW	1.0000	1.0000	0	10	10	10	0.6238			
W2	1.0000	1.0000	0	10	10	10	*		1.0000	1.0000
6.3	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000
12.5	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000
25	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000
50	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000
100	0.9000	0.9000	1	9	10	10	0.5000	0.0500	0.9000	0.9000

Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Fisher's Exact Test	100	>100		1	
Treatments vs W2					

			Lo	g-Logit Interpolat	ion (200 Resamples)	
Point	%	SD	95% CL	Skew		
IC05	92.908					
IC10	>100					
IC15	>100				1.0	
IC20	>100				0.01	
IC25	>100				0.9	
IC40	>100				0.8 -	
IC50	>100				0.7	

Reviewed by:____

		(Ceriodaphni	a Partial L	ife-Cycle	Test-7 Day U	naffecte	d		
Start Date:	15/06/2018 17:30	Test ID:	PR1552/21			Sample ID:		Composite		
End Date:	22/06/2018 17:30	Lab ID:	8666			Sample Type	:	AQ-Aqueou	IS	
Sample Date:	13/06/2018	Protocol:	ESA 102			Test Species	:	CD-Cerioda	aphnia dubia	
Comments:	Diluted with W2 (sa	ample 8667)								
				Au	xiliary Da	ta Summary				
Conc-%	Parameter		Mean	Min	Max	SD	CV%	N		
DMW	No of Young		15.90	13.00	18.00	1.45	7.57	10		
W2			16.20	14.00	18.00	1.32	7.08	10		
6.3			15.80	14.00	18.00	1.32	7.26	10		
12.5			16.40	14.00	19.00	1.35	7.08	10		
25			16.00	14.00	18.00	1.41	7.43	10		
50	1		15.20	13.00	17.00	1.14	7.01	10		
100			8.00	2.00	12.00	3.33	22.82	10		
DMW	% unaffected		100.00	100.00	100.00	0.00	0.00	10		
W2			100.00	100.00	100.00	0.00	0.00	10		
6.3			100.00	100.00	100.00	0.00	0.00	10		
12.5			100.00	100.00	100.00	0.00	0.00	10		
25			100.00	100.00	100.00	0.00	0.00	10		
50			100.00	100.00	100.00	0.00	0.00	10		
100			90.00	0.00	100.00	31.62	6.25	10		
DMW	рН		8.10	8.10	8.10	0.00	0.00	1		
W2			7.90	7.90	7.90	0.00	0.00	1		
6.3			7.80	7.80	7.80	0.00	0.00	1		
12.5			7.80	7.80	7.80	0.00	0.00	1		
25			7.80	7.80	7.80	0.00	0.00	1		
50	1		7.80	7.80	7.80	0.00	0.00	1		
100			7.70	7.70	7.70	0.00	0.00	1		
DMW	DO %		96.80	96.80	96.80	0.00	0.00	1		
W2			97.90	97.90	97.90	0.00	0.00	1		
6.3			993.00	993.00	993.00	0.00	0.00	1		
12.5			98.90	98.90	98.90	0.00	0.00	1		
25			99.10	99.10	99.10	0.00	0.00	1		
50	1		99.10	99.10	99.10	0.00	0.00	1		
100			98.90	98.90	98.90	0.00	0.00	1		
DMW	Cond uS/cm		187.00	187.00	187.00	0.00	0.00	1		
W2			258.00	258.00	258.00	0.00	0.00	1		
6.3			428.00	428.00	428.00	0.00	0.00	1		
12.5			663.00	663.00	663.00	0.00	0.00	1		
25			1104.00	1104.00	1104.00	0.00	0.00	1		
50	1		1912.00	1912.00	1912.00	0.00	0.00	1		
100			3370.00	3370.00	3370.00	0.00	0.00	1		

				Ceriodaphn	ia Partial	Life-Cycle	Test-Repr	oduction	l		
Start Date:	15/06/2018	17:30	Test ID:	PR1552/21		5	Sample ID:		Composite		
End Date:	22/06/2018	17:30	Lab ID:	8666		S	Sample Typ	e:	AQ-Aqueou	S	
Sample Date:	13/06/2018		Protocol:	ESA 102		Г	Fest Specie	s:	CD-Cerioda	phnia dubia	
Comments:	Diluted with	n W2 (sar	nple 8667)								
Conc-%	1	2	3	4	5	6	7	8	9	10	
DMW	17.000	17.000	15.000	15.000	15.000	17.000	13.000	16.000	18.000	16.000	
W2	18.000	16.000	14.000	18.000	15.000	16.000	17.000	17.000	15.000	16.000	
6.3	18.000	16.000	16.000	17.000	14.000	14.000	16.000	15.000	15.000	17.000	
12.5	19.000	17.000	14.000	17.000	16.000	17.000	16.000	15.000	16.000	17.000	
25	18.000	16.000	15.000	16.000	14.000	16.000	16.000	18.000	14.000	17.000	
50	17.000	16.000	15.000	15.000	15.000	16.000	16.000	14.000	13.000	15.000	
100	12.000	8.000	11.000	12.000	10.000	7.000	2.000	7.000	7.000	4.000	

				Transform	n: Untrans	formed		Rank	1-Tailed	Isoto	onic
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Mean	N-Mean
DMW	15.900	0.9815	15.900	13.000	18.000	9.114	10				
W2	16.200	1.0000	16.200	14.000	18.000	8.127	10	*		16.200	1.0000
6.3	15.800	0.9753	15.800	14.000	18.000	8.333	10	96.50	75.00	16.100	0.9938
12.5	16.400	1.0123	16.400	14.000	19.000	8.231	10	109.00	75.00	16.100	0.9938
25	16.000	0.9877	16.000	14.000	18.000	8.839	10	101.00	75.00	16.000	0.9877
50	15.200	0.9383	15.200	13.000	17.000	7.469	10	84.00	75.00	15.200	0.9383
*100	8.000	0.4938	8.000	2.000	12.000	41.667	10	55.00	75.00	8.000	0.4938

A 111 T (0 , ,, ,,	0 1/1 1		14 4
Auxiliary lests					Statistic	Critical	Skew	Kurt
Kolmogorov D Test indicates norma	al distribution	(p > 0.05)			0.722312	0.895	-0.41555	1.936263
Bartlett's Test indicates unequal val	riances (p = 3	.08E-03)			17.8993	15.08627		
The control means are not significa	ntly different (p = 0.63)			0.484544	2.100922		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	50	100	70.71068	2				
Treatments vs W2								

				Line	ear Interpolat	tion (200 Resamples)	
Point	%	SD	95%	CL	Skew		
IC05	44.063	12.182	10.253	52.722	-0.6631		
IC10	54.306	3.762	42.961	58.560	-1.6877		
IC15	59.931	2.795	53.641	64.650	0.1689	1.0	
IC20	65.556	3.084	59.529	71.161	0.5567	na :	
IC25	71.181	3.560	64.580	77.981	0.8430		
IC40	88.056					0.8	
IC50	99.306					0.7 -	
						0.6	

			Ceriodaph	nia Partial	Life-Cycl	e Test-Repro	duction			
Start Date:	15/06/2018 17:30	Test ID:	PR1552/21			Sample ID:		Composite		
End Date:	22/06/2018 17:30	Lab ID:	8666			Sample Type	:	AQ-Aqueou	IS	
Sample Date:	13/06/2018	Protocol:	ESA 102			Test Species	:	CD-Cerioda	aphnia dubia	
Comments:	Diluted with W2 (sa	ample 8667)								
				Au	xiliary Da	ta Summary				
Conc-%	Parameter		Mean	Min	Max	SD	CV%	N		
DMW	No of Young		15.90	13.00	18.00	1.45	7.57	10		
W2			16.20	14.00	18.00	1.32	7.08	10		
6.3			15.80	14.00	18.00	1.32	7.26	10		
12.5			16.40	14.00	19.00	1.35	7.08	10		
25			16.00	14.00	18.00	1.41	7.43	10		
50			15.20	13.00	17.00	1.14	7.01	10		
100			8.00	2.00	12.00	3.33	22.82	10		
DMW	% unaffected		100.00	100.00	100.00	0.00	0.00	10		
W2			100.00	100.00	100.00	0.00	0.00	10		
6.3			100.00	100.00	100.00	0.00	0.00	10		
12.5			100.00	100.00	100.00	0.00	0.00	10		
25			100.00	100.00	100.00	0.00	0.00	10		
50			100.00	100.00	100.00	0.00	0.00	10		
100			90.00	0.00	100.00	31.62	6.25	10		
DMW	рН		8.10	8.10	8.10	0.00	0.00	1		
W2			7.90	7.90	7.90	0.00	0.00	1		
6.3			7.80	7.80	7.80	0.00	0.00	1		
12.5			7.80	7.80	7.80	0.00	0.00	1		
25			7.80	7.80	7.80	0.00	0.00	1		
50			7.80	7.80	7.80	0.00	0.00	1		
100			7.70	7.70	7.70	0.00	0.00	1		
DMW	DO %		96.80	96.80	96.80	0.00	0.00	1		
W2			97.90	97.90	97.90	0.00	0.00	1		
6.3			993.00	993.00	993.00	0.00	0.00	1		
12.5			98.90	98.90	98.90	0.00	0.00	1		
25			99.10	99.10	99.10	0.00	0.00	1		
50			99.10	99.10	99.10	0.00	0.00	1		
100			98.90	98.90	98.90	0.00	0.00	1		
DMW	Cond uS/cm		187.00	187.00	187.00	0.00	0.00	1		
W2			258.00	258.00	258.00	0.00	0.00	1		
6.3			428.00	428.00	428.00	0.00	0.00	1		
12.5			663.00	663.00	663.00	0.00	0.00	1		
25			1104.00	1104.00	1104.00	0.00	0.00	1		
50			1912.00	1912.00	1912.00	0.00	0.00	1		
100			3370.00	3370.00	3370.00	0.00	0.00	1		

Statistical Printouts for the Duckweed Growth Inhibition Tests

			D	uckweed Gro	owth Inhibtion Test-Specific Growth Rate
Start Date:	15/06/2018	17:00	Test ID:	PR1552/25	Sample ID: Composite
End Date:	23/06/2018	17:00	Lab ID:	8666	Sample Type: AQ-Aqueous
Sample Date:	13/06/2018		Protocol:	ESA 112	Test Species: LA-Lemna aequinoctialis
Comments:	Diluted with	n W2 (san	nple 8667)		
Conc-%	1	2	3	4	
LC	0.2483	0.2389	0.2189	0.2189	
W2	0.2082	0.2389	0.2291	0.2389	
6.3	0.2189	0.2082	0.2389	0.2291	
12.5	0.2574	0.2189	0.2483	0.2291	
25	0.2389	0.2189	0.2291	0.2389	
50	0.2189	0.2389	0.2291	0.2574	
100	0.0841	0.1971	0.1469	0.1733	

_			_		Transform	n: Untrans	formed			1-Tailed		Isoto	onic
	Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Mean	N-Mean
	LC	0.2312	1.0108	0.2312	0.2189	0.2483	6.395	4					
	W2	0.2288	1.0000	0.2288	0.2082	0.2389	6.317	4	*			0.2317	1.0000
	6.3	0.2238	0.9781	0.2238	0.2082	0.2389	5.895	4	0.296	2.410	0.0407	0.2317	1.0000
	12.5	0.2384	1.0422	0.2384	0.2189	0.2574	7.377	4	-0.571	2.410	0.0407	0.2317	1.0000
	25	0.2314	1.0116	0.2314	0.2189	0.2389	4.132	4	-0.157	2.410	0.0407	0.2317	1.0000
	50	0.2361	1.0319	0.2361	0.2189	0.2574	6.952	4	-0.432	2.410	0.0407	0.2317	1.0000
	*100	0.1504	0.6573	0.1504	0.0841	0.1971	32.379	4	4.642	2.410	0.0407	0.1504	0.6490

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal	distribution ((p > 0.05)			0.922065		0.916		-0.90857	3.714862
Bartlett's Test indicates equal varianc	es (p = 0.06)			10.523		15.08627			
The control means are not significantl	y different (o = 0.82)			0.238676		2.446912			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	50	100	70.71068	2	0.040705	0.177935	0.004517	0.000571	4.3E-04	5, 18
Treatments vs W2										

				Line	ear Interpola	ation (200 Resamples)		
Point	%	SD	95% CL	(Exp)	Skew			
IC05	57.123	3.452	47.418	64.096	-2.1823			
IC10	64.246	4.459	52.883	78.448	0.5617			
IC15	71.368	6.448	56.433	94.177	0.7694	1.0		1
IC20	78.491					09		
IC25	85.614					0.0		
IC40	>100					0.8		
IC50	>100					0.7 -		
						0.6		
						9 0.5		
						0 , 0.4		
						e 0.3	and the second se	

0.2 0.1 0.0 -0.1

0

50

Reviewed by:____

100

Dose %

150

Reviewed by:____

			Ouckweed Gr	rowth Inhi	btion Test	-Specific G	rowth Ra	ate		
Start Date:	15/06/2018 17:00	Test ID:	PR1552/25			Sample ID:		Composite		
End Date:	23/06/2018 17:00	Lab ID:	8666			Sample Typ	e:	AQ-Aqueou	IS	
Sample Date:	13/06/2018	Protocol:	ESA 112			Test Specie	es:	LA-Lemna a	aequinoctialis	
Comments:	Diluted with W2 (s	ample 8667)								
				Au	xiliary Dat	a Summar	у			
Conc-%	Parameter		Mean	Min	Max	SD	CV%	N		
LC	Specific growth	rate	0.23	0.22	0.25	0.01	52.59	4		
W2			0.23	0.21	0.24	0.01	52.55	4		
6.3			0.22	0.21	0.24	0.01	51.33	4		
12.5			0.24	0.22	0.26	0.02	55.63	4		
25			0.23	0.22	0.24	0.01	42.25	4		
50			0.24	0.22	0.26	0.02	54.27	4		
100			0.15	0.08	0.20	0.05	146.74	4		
LC	рН		8.10	8.10	8.10	0.00	0.00	1		
W2			7.90	7.90	7.90	0.00	0.00	1		
6.3			7.80	7.80	7.80	0.00	0.00	1		
12.5			7.80	7.80	7.80	0.00	0.00	1		
25			7.80	7.80	7.80	0.00	0.00	1		
50			7.80	7.80	7.80	0.00	0.00	1		
100			7.90	7.90	7.90	0.00	0.00	1		
LC	Cond uS/cm		103.00	103.00	103.00	0.00	0.00	1		
W2			258.00	258.00	258.00	0.00	0.00	1		
6.3			428.00	428.00	428.00	0.00	0.00	1		
12.5			663.00	663.00	663.00	0.00	0.00	1		
25			1104.00	1104.00	1104.00	0.00	0.00	1		
50			1912.00	1912.00	1912.00	0.00	0.00	1		
100			3370.00	3370.00	3370.00	0.00	0.00	1		

Statistical Printouts for *Hydra* Population Growth Tests

				Hydra Po	opulation Growth Test-Growth Rate		
Start Date:	15/06/2018	18:30	Test ID:	PR1552/26	Sample ID:	Composite	
End Date:	23/06/2018	18:30	Lab ID:	8666	Sample Type:	AQ-Aqueous	
Sample Date:	13/06/2018		Protocol:	ESA 125	Test Species:	HV-Hydra viridissima	
Comments:	Diluted with	n W2 (san	nple 8667)				
Conc-%	1	2	3	4			
LC	0.3588	0.3338	0.3466	0.3402			
W2	0.3402	0.3527	0.3647	0.3338			
6.3	0.3402	0.3202	0.3527	0.3402			
12.5	0.3588	0.3704	0.3466	0.3338			
25	0.3527	0.3466	0.3647	0.3402			
50	0.3338	0.3202	0.3338	0.3527			
100	0.2908	0.2662	0.3059	0.2985			

		_		Transform	n: Untrans	formed			1-Tailed		Isoto	onic
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Mean	N-Mean
LC	0.3448	0.9913	0.3448	0.3338	0.3588	3.093	4					
W2	0.3478	1.0000	0.3478	0.3338	0.3647	3.938	4	*			0.3478	1.0000
6.3	0.3384	0.9727	0.3384	0.3202	0.3527	3.975	4	0.947	2.410	0.0241	0.3473	0.9983
12.5	0.3524	1.0130	0.3524	0.3338	0.3704	4.476	4	-0.452	2.410	0.0241	0.3473	0.9983
25	0.3511	1.0092	0.3511	0.3402	0.3647	2.964	4	-0.320	2.410	0.0241	0.3473	0.9983
50	0.3351	0.9634	0.3351	0.3202	0.3527	3.989	4	1.272	2.410	0.0241	0.3351	0.9634
*100	0.2903	0.8347	0.2903	0.2662	0.3059	5.945	4	5.745	2.410	0.0241	0.2903	0.8347

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal	distribution ((p > 0.05)			0.954494		0.916		-0.20141	-0.90554
Bartlett's Test indicates equal variance	es (p = 0.98)			0.75652		15.08627			
The control means are not significant	ly different (o = 0.74)			0.347215		2.446912			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	50	100	70.71068	2	0.024122	0.069347	0.00218	0.0002	6.1E-05	5, 18
Treatments vs W2										

				Line	ear Interpola	tion (200 Resamples)	
Point	%	SD	95% CL	(Exp)	Skew		
IC05	55.208	9.464	18.411	73.908	-1.4073		
IC10	74.631	7.316	49.633	93.870	0.0588		
IC15	94.054					1.0 +	
IC20	>100					0.9	
IC25	>100					0.0	
IC40	>100					0.8	
IC50	>100					0.7 -	
						0.6 -	
						92 0.5	
						0. 4	
						e 0.3	

Reviewed by:____

			Hydra Po	opulation	Growth T	est-Growth	Rate		
Start Date:	15/06/2018 18:30	Test ID:	PR1552/26	·		Sample ID:		Composite	
End Date:	23/06/2018 18:30	Lab ID:	8666		,	Sample Typ	e:	AQ-Aqueous	
Sample Date:	13/06/2018	Protocol:	ESA 125			Test Specie	s:	HV-Hydra viridiss	sima
Comments:	Diluted with W2 (s	ample 8667)							
			Auxiliary Data Summary						
Conc-%	Parameter		Mean	Min	Max	SD	CV%	Ν	
LC	Growth Rate		0.34	0.33	0.36	0.01	29.95	4	
W2			0.35	0.33	0.36	0.01	33.65	4	
6.3			0.34	0.32	0.35	0.01	34.27	4	
12.5			0.35	0.33	0.37	0.02	35.64	4	
25			0.35	0.34	0.36	0.01	29.06	4	
50			0.34	0.32	0.35	0.01	34.50	4	
100			0.29	0.27	0.31	0.02	45.25	4	
LC	Conductivity		0.00	0.00	0.00	0.00		0	
W2			0.00	0.00	0.00	0.00		0	
6.3			0.00	0.00	0.00	0.00		0	
12.5			0.00	0.00	0.00	0.00		0	
25			0.00	0.00	0.00	0.00		0	
50			0.00	0.00	0.00	0.00		0	
100			0.00	0.00	0.00	0.00		0	
LC	рН		0.00	0.00	0.00	0.00		0	
W2			0.00	0.00	0.00	0.00		0	
6.3			0.00	0.00	0.00	0.00		0	
12.5			0.00	0.00	0.00	0.00		0	
25			0.00	0.00	0.00	0.00		0	
50			0.00	0.00	0.00	0.00		0	
100			0.00	0.00	0.00	0.00		0	
LC	DO, % sat		0.00	0.00	0.00	0.00		0	
W2			0.00	0.00	0.00	0.00		0	
6.3			0.00	0.00	0.00	0.00		0	
12.5			0.00	0.00	0.00	0.00		0	
25			0.00	0.00	0.00	0.00		0	
50			0.00	0.00	0.00	0.00		0	
100			0.00	0.00	0.00	0.00		0	

Statistical Printouts for the Rainbowfish Embryonic Development and Post-hatch Survival Tests

				Fish Em	bryonic Development-% Unaffected		
Start Date:	15/06/2018	19:00	Test ID:	PR1552/27	Sample ID:	Composite	
End Date:	27/06/2018	19:00	Lab ID:	8666	Sample Type:	AQ-Aqueous	
Sample Date:	13/06/2018		Protocol:	ESA 126	Test Species:	MS-Melanotaenia splendida	
Comments:	Diluted with	n W2 (san	nple 8667)				
Conc-%	1	2	3	4			
DMW	1.0000	1.0000	1.0000	0.8000			
W2	1.0000	1.0000	0.8000	1.0000			
6.3	1.0000	1.0000	0.6000	1.0000			
12.5	1.0000	1.0000	0.8000	1.0000			
25	1.0000	1.0000	1.0000	1.0000			
50	0.8000	1.0000	1.0000	1.0000			
100	1.0000	1.0000	1.0000	1.0000			

_			_	Т	ransform:	Arcsin Sq	uare Root		Rank	1-Tailed	Isoto	onic
	Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Mean	N-Mean
_	DMW	0.9500	1.0000	1.2857	1.1071	1.3453	9.261	4				
	W2	0.9500	1.0000	1.2857	1.1071	1.3453	9.261	4	*		0.9583	1.0000
	6.3	0.9000	0.9474	1.2305	0.8861	1.3453	18.660	4	17.50	10.00	0.9583	1.0000
	12.5	0.9500	1.0000	1.2857	1.1071	1.3453	9.261	4	18.00	10.00	0.9583	1.0000
	25	1.0000	1.0526	1.3453	1.3453	1.3453	0.000	4	20.00	10.00	0.9583	1.0000
	50	0.9500	1.0000	1.2857	1.1071	1.3453	9.261	4	18.00	10.00	0.9583	1.0000
	100	1.0000	1.0526	1.3453	1.3453	1.3453	0.000	4	20.00	10.00	0.9583	1.0000

Auxiliary Tes	sts						Statistic	Critical	Skew	Kurt
Shapiro-Wilk's	s Test indicates	s non-norma	l distribu	ution (p <= ().05)		0.762065	0.916	-1.76412	3.060606
Equality of var	riance cannot b	e confirmed	I							
The control m	eans are not si	gnificantly d	ifferent ((p = 1.00)			0	2.446912		
Hypothesis Test (1-tail, 0.05) NOEC LOEC ChV										
Steel's Many-One Rank Test 100 >100						1				
Treatments vs	s W2									
				Log-	Logit Inter	polation	(200 Resamples)			
Point	%	SD	95% C	L(Exp)	Skew					
IC05	>100									
IC10	>100									
IC15	>100						1.0			
IC20	>100						0.9			
IC25	>100						0.0			
IC40	>100						0.0			
IC50 >100						0.7				

Reviewed by:____

			Fish E	mbryonic l	Developme	ent-% Unaffe	ected		
Start Date:	15/06/2018 19:00	Test ID:	PR1552/27	, ,	•	Sample ID:		Composite	
End Date:	27/06/2018 19:00	Lab ID:	8666			Sample Type	e:	AQ-Aqueous	3
Sample Date:	13/06/2018	Protocol:	ESA 126			Test Species	s:	MS-Melanot	aenia splendida
Comments:	Diluted with W2 (s	ample 8667)							
				Αι	uxiliary Da	ta Summary	/		
Conc-%	Parameter		Mean	Min	Max	SD	CV%	N	
DMW	% Unaffected		95.00	80.00	100.00	10.00	3.33	4	
W2			95.00	80.00	100.00	10.00	3.33	4	
6.3			90.00	60.00	100.00	20.00	4.97	4	
12.5			95.00	80.00	100.00	10.00	3.33	4	
25			100.00	100.00	100.00	0.00	0.00	4	
50			95.00	80.00	100.00	10.00	3.33	4	
100			100.00	100.00	100.00	0.00	0.00	4	
DMW	рН		8.10	8.10	8.10	0.00	0.00	1	
W2			7.90	7.90	7.90	0.00	0.00	1	
6.3			7.80	7.80	7.80	0.00	0.00	1	
12.5			7.80	7.80	7.80	0.00	0.00	1	
25			7.80	7.80	7.80	0.00	0.00	1	
50			7.80	7.80	7.80	0.00	0.00	1	
100			7.70	7.70	7.70	0.00	0.00	1	
DMW	Conductivity (us	S/cm)	187.00	187.00	187.00	0.00	0.00	1	
W2			258.00	258.00	258.00	0.00	0.00	1	
6.3			428.00	428.00	428.00	0.00	0.00	1	
12.5			663.00	663.00	663.00	0.00	0.00	1	
25			11047.00	11047.00	11047.00	0.00	0.00	1	
50			1912.00	1912.00	1912.00	0.00	0.00	1	
100			3370.00	3370.00	3370.00	0.00	0.00	1	
DMW	DO (% sat)		96.80	96.80	96.80	0.00	0.00	1	
W2	. ,		97.90	97.90	97.90	0.00	0.00	1	
6.3			99.30	99.30	99.30	0.00	0.00	1	
12.5			98.90	98.90	98.90	0.00	0.00	1	
25			99.10	99.10	99.10	0.00	0.00	1	
50			99.10	99.10	99.10	0.00	0.00	1	
100			98.90	98.90	98.90	0.00	0.00	1	

Statistical Printouts for the *Chlorella* Growth Inhibition Tests

				М	icroalgal Cell Yield-Cell Yield		
Start Date:	15/06/2018	17:30	Test ID:	PR1552/23	Sample ID:	Composite	
End Date:	18/06/2018	17:30	Lab ID:	8666	Sample Type:	AQ-Aqueous	
Sample Date:	13/06/2018		Protocol:	ESA 103	Test Species:	CV-Chlorella vulgaris	
Comments:	Diluted with	n W2 (sar	nple 8667)				
Conc-%	1	2	3	4			
USEPA	23.800	23.600	22.000	22.800			
W2	22.800	24.200	23.000	22.600			
6.3	22.400	23.800	22.800	22.000			
12.5	22.800	23.000	23.200	22.800			
25	24.200	22.600	22.400	22.000			
50	22.800	24.200	23.200	23.600			
100	24.400	23.000	22.600	23.200			

_			_		Transform	n: Untrans	formed		Rank	1-Tailed	Isoto	onic
	Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Mean	N-Mean
	USEPA	23.050	0.9957	23.050	22.000	23.800	3.569	4				
	W2	23.150	1.0000	23.150	22.600	24.200	3.105	4	*		23.150	1.0000
	6.3	22.750	0.9827	22.750	22.000	23.800	3.395	4	14.50	10.00	23.050	0.9957
	12.5	22.950	0.9914	22.950	22.800	23.200	0.834	4	18.50	10.00	23.050	0.9957
	25	22.800	0.9849	22.800	22.000	24.200	4.237	4	14.00	10.00	23.050	0.9957
	50	23.450	1.0130	23.450	22.800	24.200	2.547	4	21.00	10.00	23.050	0.9957
	100	23.300	1.0065	23.300	22.600	24.400	3.324	4	20.00	10.00	23.050	0.9957

Auxiliary Te	sts						Statistic	Critical	Skew	Kurt
Shapiro-Wilk	's Test indicate	s non-nor	mal distribu	ution (p <= (0.05)		0.887465	0.916	0.93118	-0.07202
Bartlett's Tes	st indicates equa	al varianc	es (p = 0.3;	7)			5.34866	15.08627		
The control n	neans are not s	ignificant	ly different ((p = 0.86)			0.183083	2.446912		
Hypothesis Test (1-tail, 0.05) NOEC LOEC ChV						TU				
Steel's Many	-One Rank Tes	t	100	>100		1				
Treatments v	/s W2									
				Lin	ear Interpo	plation (2	200 Resamples)			
Point	%	SD	95% C	L(Exp)	Skew	-				
IC05	>100									
IC10	>100									
IC15	>100						1.0			
IC20	>100						0.0			
IC25	>100						0.9			
IC40	>100						0.8			
IC50	>100						0.7 -			

Dose-Response Plot

			N	licroalgal	Cell Yield-	Cell Yield			
Start Date:	15/06/2018 17:30	Test ID:	PR1552/23			Sample ID:		Composite	
End Date:	18/06/2018 17:30	Lab ID:	8666		;	Sample Typ	e:	AQ-Aqueous	
Sample Date:	13/06/2018	Protocol:	ESA 103			Test Specie	s:	CV-Chlorella	vulgaris
Comments:	Diluted with W2 (sar	nple 8667)	1						
				Au	xiliary Dat	a Summary	/		
Conc-%	Parameter		Mean	Min	Max	SD	CV%	N	
USEPA	Cell Yield		23.05	22.00	23.80	0.82	3.93	4	
W2			23.15	22.60	24.20	0.72	3.66	4	
6.3			22.75	22.00	23.80	0.77	3.86	4	
12.5			22.95	22.80	23.20	0.19	1.91	4	
25			22.80	22.00	24.20	0.97	4.31	4	
50			23.45	22.80	24.20	0.60	3.30	4	
100			23.30	22.60	24.40	0.77	3.78	4	
USEPA	pН		8.10	8.10	8.10	0.00	0.00	1	
W2			7.90	7.90	7.90	0.00	0.00	1	
6.3			7.80	7.80	7.80	0.00	0.00	1	
12.5			7.80	7.80	7.80	0.00	0.00	1	
25			7.80	7.80	7.80	0.00	0.00	1	
50			7.80	7.80	7.80	0.00	0.00	1	
100			7.90	7.90	7.90	0.00	0.00	1	
USEPA	Conductivity uS/c	m	103.00	103.00	103.00	0.00	0.00	1	
W2			258.00	258.00	258.00	0.00	0.00	1	
6.3			428.00	428.00	428.00	0.00	0.00	1	
12.5			663.00	663.00	663.00	0.00	0.00	1	
25			1104.00	1104.00	1104.00	0.00	0.00	1	
50			1912.00	1912.00	1912.00	0.00	0.00	1	
100			3370.00	3370.00	3370.00	0.00	0.00	1	

27 / 43 Lang Parade Auchenflower 4066 QUEENSLAND

ABN 26 096 574 659

PO Box 2151 Toowong 4066 QUEENSLAND

+61 (0)7 3721 0100 P info@hydrobiology.biz

www.hydrobiology.biz

Appendix

AGE 2019 Groundwater Memorandum

Australasian Groundwater and Environmental Consultants Pty Ltd Level 2 / 15 Mallon Street Bowen Hills, QLD 4006 Australia ABN: 64 080 238 642 T. +61 7 3257 2055 F. +61 7 3257 2088 brisbane@ageconsultants.com.au www.ageconsultants.com.au

AMD:kc G1789C Kidston K2-Hydro 10 January 2019

Arran McGhie Genex Power Limited

<u>via email</u>

Dear Arran,

RE: Kidston K2-Hydro – Groundwater Modelling

1 Introduction

Genex Power is assessing the potential groundwater impacts posed by the proposed hydropower scheme that uses the residual voids of the former Kidston Gold Mine. The optimised Kidston K2-Hydro operation will use the Wises pit as an upper storage and the Eldridge Pit as a receiving storage, and these pits will be connected by infrastructure that includes the hydropower plant.

The operation of the hydropower scheme will involve the variation of water levels within the existing pits (including increasing the storage volume and surface area of Wises Pit), and the water level changes will induce changes with how the pits control the regional groundwater levels. Australasian Groundwater and Environmental Consultants Pty Ltd (AGE) were engaged by Genex Power to undertake an assessment of the potential changes to the groundwater regime resulting from the optimised K2-Hydro operation.

2 Goals and scope of work

Goal of this project was to assess the operational design of the K2-Hydro Project in terms of its potential to impact the surrounding groundwater environment.

3 Model development and calibration

AGE used a numerical model to assess the impact of the proposed K2-Hydro modification. A model was originally developed by AGE in 2001 to examine final void hydrology and this assessment has used this model as a basis.

AGE Head Office Level 2 / 15 Mallon Street, Bowen Hills, QLD 4006, Australia T. +61 7 3257 2055 F. +61 7 3257 2088 brisbane@ageconsultants.com.au AGE Newcastle Office 4 Hudson Street Hamilton, NSW 2303, Australia T. +61 2 4962 2091 F. +61 2 4962 2096 newcastle@ageconsultants.com.au

AGE Townsville Office Unit 3, Building A, 10 Cummins Street Hyde Park, QLD 4812, Australia T. +61 7 4413 2020 F. +61 7 3257 2088 townsville@ageconsultants.com.au

3.1 Update of the 2001 AGE model

The following parts of the 2001 model were changed:

- model mesh the refinement of the model mesh was changed to reflect the maximum increase ratio for neighbouring cells to be 1.5. The horizontal extent of the new mesh is slightly larger;
- model layers increased from the previous three to 6 layers to better accommodate the depth of pits and simulate infrastructure;
- modelling code and solver while the old model used then current version of MODFLOW (MODFLOW 88), the modelling code have been updated to MODFOW-SURFACT that is more suitable for conditions of steep hydraulic gradients with potential of unsaturated flow;
- extending the Wises Pit void to cover the updated area of the upper reservoir (in model layers 1 and 2); and
- implementing a horizontal flow barrier to account for the HDPE liner minimizing lateral seepage of water from the upper sections of the reservoir.

3.2 Current numerical model setup

The current numerical model setup is summarised below.

3.2.1 Model grid

The model covers area of 77.8 km² (9.0 km × 8.6 km) and is rotated by -22.35°. The model grid consists of 164 rows, 144 columns and 6 layers (141,696 active cells). The cell size varies from 300 m × 300 m in the areas around the edge of the model to 20 m × 20 m in the area covering the voids.

3.2.2 Model layers

The geotechnical investigations completed by Entura (2015) included seven fully cored diamond drill holes (KDDH series) around Wises Pit. The geotechnical report contains core photographs and logs which describe the degree of weathering, and include measurement of the rock quality designation (RQD) which indicates how fractured or jointed the rock mass is.

The information from the KDDH series holes indicates that the weathered/fractured zone, which is expected to enhance the movement of groundwater, is in the order of 10 m thick around Wises Pit. This is greater than the previously modelled thickness of 2 m to 3 m in the previous version of the model that utilised remote sensing data to estimate the thickness of the weathered zone. The thicknesses of Layer 1 and Layer 2 were therefore increased to a minimum of 5 m each.

The geological units were represented by six model layers:

- Layer 1 weathered bedrock/topsoil or alluvium and spoil/tailings deposits where present;
- Layer 2 weathered bedrock or alluvium where present;
- Layer 3 fresh bedrock, base of layer at approximately 520 m AHD;
- Layer 4 fresh bedrock, base of layer at approximately 498 m AHD (floor of Wises Pit);
- Layer 5 fresh bedrock, base of layer at approximately 240 m AHD (floor of Eldridge Pit); and
- Layer 6 fresh bedrock, base of the model at 30 m AHD.

3.2.3 Hydraulic properties

Based on previous studies and in-situ testing described in AGE (2001), the hydraulic conductivity of bedrock material is characterized as 'tight' and varies from 5×10^{-9} m to 9×10^{-7} m/day. The investigation undertaken by Entura (2015) describes in-situ tests on seven bores (KDDH01 to KDDH07) and shows hydraulic conductivities higher than described previously, varying from less than 8.6×10^{-4} m/day to more than 8.6×10^{-1} m/day with average of 4×10^{-2} m/day. The records indicate that packer tests were undertaken on both 'fresh' and 'weathered' intervals and their results are skewed upwards by testing of the weathered zone. The hydraulic conductivity values were used to constrain the calibration process.

The weathered zone and fresh bedrock in the model were divided into four zones to represent the regionally extensive geological units. These zones represent Oak River granodiorite, Kennedy Province rhyolite, Einasleigh metamorphics and polymict breccias associated with the Kidston ore deposit mineralization. Zones were also created within the model to represent mine waste rock dumps, tailings deposits and alluvium aligned along surface streams.

The updated zonation of hydraulic properties is presented on Figure 1. The increased extent of Wises pit can be seen by the dashed line in the left panel of Figure 1, which represents the liner applied to the upper layers (Layer 1 to 2) in the model, and the purple coloured zone representing the void.

3.2.4 Recharge

Average annual rainfall ranges between 620 mm to 698 mm (AGE 2001) with much higher evaporation rates up to 1868 mm/year (CSIRO 2013) indicating a rainfall deficit. The actual effective recharge is estimated to be quite low – less than 5 mm/year (CSIRO 2013). Recharge within the model was varied using the geological zones described above to represent the potential variability due to geology.

©2019 Australasian Groundwater and Environmental Consultants Pty Ltd (AGE) - www.ageconsultants.com.au Source: 1 second SRTM Derived DEM-S · © Commonwealth of Australia (Geoscience Australia) 2011.; GEODATA TOPO 250K Series 3 - © Commonwealth of Australia (Geoscience Australia) 2006.; G:/Projects/G1789B.Kidston K2-Hydro/3.GIS/Workspaces/001_Deliverable1/1_zones_hydraulic_properties.ggs

3.3 Model calibration

The model was calibrated against available groundwater level measurements from monitoring bores. Data from 61 observation bores were available, of which 38 sites were actually used during the calibration process (Figure 2). Many of the observed water levels are historical observations collected during periods of active mining and are not expected to accurately reflect current water levels across the site. These bores were therefore removed from the calibration dataset. The majority of recent water level measurements are from piezometers around the tailings dam to the south of the pits. Whilst this provides a high degree of control in this area of the site there are other areas of the model, such as around Eldridge pit, where current water levels are unknown.

Table 1 presents the simulated and the measured groundwater levels for the calibrated model and the difference between these levels (the residuals).

Table 2 summarises the hydraulic conductivity values adopted for each geological zone. The calibrated hydraulic conductivities for the bedrock units in this simulation were at the higher end of the measured ranges. This version of the model is therefore expected to allow groundwater to move more freely through the bedrock than if lower values were adopted.

The calibrated recharge across the undisturbed areas of the model was relatively low at <3 mm/yr, whilst higher rates were incorporated over the alluvium and the areas disturbed by mining (spoil and tailings). A review of water quality measurements indicates the groundwater generally has a low salinity that would suggest moderate recharge rates; the fact the numerical calibrated well to a low recharge indicates some uncertainty in this parameter within the model.

A post-calibration scatter diagram is shown in Figure 3, with the main statistical indicators of the calibration in Table 3.

Figure 2 Calibration bore locations

Bore ID	Easting (GDA94 Z55)	Northing (GDA94 Z55)	Observed head (m AHD)	Modelled head (m AHD)	Residual (m)
AB1	199908	7908642	544.6	540.3	4.3
AB2	198194	7909446	533.7	537.7	-3.9
AB7	198247	7910431	525.4	526.9	-1.5
AB8	200244	7908597	516.1	527.0	-11.0
AB13	200032	7908593	531.4	533.0	-1.6
AB14	198070	7908774	541.4	544.5	-3.2

Table 1Steady state calibration - residuals

Australasian Groundwater and Environmental Consultants Pty Ltd Kidston K2-Hydro – Groundwater Modelling – v01.01 (G1789C) | 6

Bore ID	Easting (GDA94 Z55)	Northing (GDA94 Z55)	Observed head (m AHD)	Modelled head (m AHD)	Residual (m)
BA02	198681	7912331	521.6	518.9	2.6
BA03	198753	7912003	526.0	517.7	8.2
BA04	198647	7909329	547.3	541.4	6.0
BA05	198357	7909039	545.0	544.0	1.1
BA06	200936	7908971	508.1	512.0	-4.0
BA07	201370	7910080	510.3	508.0	2.2
BA08	198666	7908284	545.8	548.4	-2.6
BA09	198534	7909050	544.2	544.9	-0.6
BA10	198723	7908974	549.4	544.8	4.6
BA11	199545	7909186	540.9	538.8	2.1
BA12	199398	7909035	544.0	540.1	3.9
BA13	199723	7908167	540.0	542.7	-2.7
BA14	199436	7908333	542.0	544.0	-2.0
BA15	199262	7908880	545.3	542.0	3.2
BA16	197379	7910486	524.4	526.5	-2.1
KDDH04	199699	7910069	527.9	513.6	14.3
KDDH05	200189	7910029	515.0	509.8	5.2
KDDH06	200430	7910243	527.3	506.9	20.4
KDDH07	200456	7910535	519.0	495.4	23.5
M1	199462	7910461	516.8	514.0	2.8
Р5	199515	7910240	508.5	514.9	-6.4
PE2	200904	7910824	480.9	486.6	-5.7
PE4	200911	7911010	490.4	485.1	5.4
PE7	200804	7911192	503.6	486.9	16.6
PE8	200673	7911252	500.0	483.2	16.8
PE9	200880	7910769	496.0	487.3	8.6
PE11	200337	7911251	509.9	501.3	8.6
PE12	200253	7910535	500.2	498.6	1.6
PE13	200920	7910893	508.4	488.1	20.2
PE14	200516	7911361	531.4	509.2	22.2
PE16	200918	7910870	509.7	487.5	22.2
PE24	200562	7911244	481.2	482.0	-0.8

		Hydraulic condu	ctivity (m/day)
Matrix description		Horizontal (Kh)	Vertical (Kv)
Topsoil		0.1	0.02
Alluvium		0.5	0.025
Spoil		4.0	0.4
Tailings		0.7	0.0007
Weathered profile	Oak River granodiorite	0.08	0.004
	Kennedy Province rhyolite	0.005	0.005
	Einasleigh metamorphics	0.007	0.007
	Polymict breccia - ore mineralization	0.005	0.00025
	Oak River granodiorite	0.007	0.002
Freeh hedred	Kennedy Province rhyolite	0.008	0.008
Fresh bedrock	Einasleigh metamorphics	0.002	0.002
	Polymict breccia - ore mineralization	0.0001	0.0001

Table 2Calibrated hydraulic properties

Figure 3 Steady state calibration – scatter diagram of modelled against observed heads

Table 5	Main Statistical II		ation process
S	tatistical indicator	Value	Units
SSQ	Sum of squared residuals	3793	(m ²)
RMS	Root mean square	9.99	(m)
SRMS	Scaled RMS	14.6	(%)

Main statistical indicators of calibration process

The SRMS is one of the main indicators of calibration fit and at 14.6% it is considered to be slightly poor. This indicates that some processes in the natural environment are not represented in the model. The model was calibrated to assumed steady state water levels, which are estimates of long term average water levels. The available monitoring data suggests the water levels within the mine pits have not reached equilibrium and are therefore not likely to represent the long term average level. The water level measurements within the monitoring bores are also sporadic and may not represent the full fluctuations that occur across the wet season and dry season climatic cycles. The model also assumes the hydraulic properties of the geologic units are uniform across large areas, which is of course not true within the natural environment. These aspects likely combine to result in the slightly poor calibration.

3.4 Model predictions

Table 2

In order to assess the impact of the Project, each pit was assigned a water level that explores the maximum possible water level gradient between Wises and Eldridge pits. The setup of the model in terms of defined water levels is shown in Table 4.

Scenario	Simulated water level in reservoirs (mRL)	
	Wises Pit (upper, shallow)	Eldridge Pit (lower, deep)
Baseline	492.00	480.75
K2-Hydro	551.00 *	328.40

Table 4 Modelled scenarios - pit water levels

Note: * This is a conservative level as the Maximum Operating Level for Wises Pit is 546 mRL. The MOL is achieved when the Eldridge Pit water level is at elevation 328.40 mRL.

4 Modelling results

Two steady state models were run with the setups described in Table 4. The potential impacts of the K2-Hydro modification were determined through comparisons between these two model predictions. The key model outputs used to determine the impact were predicted groundwater table (groundwater mounding and drawdown analysis) and changes to water budgets for predicted pit inflow/outflow and flows to the Copperfield River. A simple particle tracking exercise was also undertaken to better understand the extent of the impacts in the context of the limitations of the steady state model with respect to the real-life duration of the Project (50 years).

4.1 Groundwater levels

Figure 4 below shows predicted heads (left) and predicted difference to the baseline simulation (right) in model Layer 1 (representing the phreatic surface) for the K2-Hydro setup in Table 4. The predicted difference shows both drawdown (positive contours) and mounding (negative contours). Generally, the water seeps through the floor of the upper reservoir and travels down-gradient where it is either captured by the Eldridge Pit or remains in the groundwater system and results in a rise in the water table level. Because the water level in the Wises reservoir (551 m RL) is relatively high and above the existing water table, the model predicts an increased seepage and water level rise in the immediate vicinity of the pit towards the west, southwest and south. The elevated water table around Wises pit from this seepage 'dams' the regional flow towards the north and the backed up water results in additional mounding in the areas south and southwest from the Wises reservoir.

4.2 Particle tracking

Particle tracking was used to identify the likely travel distances of water particles that start their journey in the Wises reservoir at the start of the Project. The distance of travel of particles indicates the spatial extent of the likely impacts from the Project over its operational phase. The pathlines for 100 years timeframe were generated, as these were comfortably past the expected lifetime of the Project (50 years).

Particles were started inside the lined pond (see Figure 5). Particles released on the north eastern side of Wises Pit generally migrate to the Eldridge pit. However, the particles released in other parts of the reservoir migrate in a west, south or south-west directions remain "active" in the groundwater system. During the 100 year timeframe run, only 4 (out of 54) particles ended up in the Eldridge Pit, all the other particles remained active after moving in the downwards direction through the bedrock units. Regardless of the length of the particle tracking timeframe, the travel of particles in south and southwest direction is limited. This is likely to be due to the northerly gradient being maintained from the tailings dam area towards the north. No particles made it to Copperfield River in the 100 year period.

K2-Hydro - predicted groundwater heads

K2-Hydro - predicted drawdowns

©2019 Australasian Groundwater and Environmental Consultants Pty Ltd (AGE) - www.ageconsultants.com.au Source: 1 second SRTM Derived DEM-S · © Commonwealth of Australia (Geoscience Australia) 2011.; GEODATA TOPO 250K Series 3 - © Commonwealth of Australia (Geoscience Australia) 2006.; G:/Projects/G1789B.Kidston K2-Hydro/3.GIS/Workspaces/001_Deliverable1/2_heads_drawdowns.qgs