APPENDIX

Geotechnical

Part 2 of 2

GOWRIE TO HELIDON ENVIRONMENTAL IMPACT STATEMENT

The Australian Government is deliver Inland Rail through the Australian Rail Track Corporation (ARTC), in partnership with the private sector.

Shrink Swell Index

🕓 GOLDER

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

[AIIB N 117 AII7			
	SHRINK SWELL Test M	LINDEX TES ethod AS 1289 7.1.1	ST REPORT	
Client	Golder Associates Pty Limited		Report No.	GA101181-ISS
			Request No.	Golder_1893795_TR02
Address	PO Box 1734 MILTON BC Q	LD 4064	Test Date	14/11/2018
			Report Date	20/11/2018
Project	Inland Rail Section 320			
Description	CLAY-brown			
Sample No.			320-01-BH2201	-U00200
Client ID			320-01-BH2	201
Depth (m)			2-2.18	
	RESULI	S OF TEST	ING	
	SWEI			
Swell Pres	sure (kPa) *		150	
Wet Densit	y (t/m³)		2.04	
Initial Mois	ture Content (%)		22.9	
Final Moist	ture Content (%)		21.4	
	Swell (%)		1.8	
	SHRIN	KAGE SPECIME	N	
Estimated	Inert Inclusions (%)		10-20	
Extent of C	rumbling		Nil	
Extent of C	racking		Slight	
Moisture (%	%)		21.4	
	Shrinkage (%)		6.7	
SHRINK	SWELL INDEX (Iss) (%)		4.2	
Notes/Remarks:				
	* Swell pressure determination in accorda	nce with test metho	d 45/133 3 3	
Sample/s supplied I	by client Tested as r	received	u AO Y 100.0.0	Page: 1 of 1 REP02304
Accredite	d for compliance with ISO/IEC 17025 - Testing.		Authorized Signator	
The results of the	tests, calibrations, and/or measurements included in t t are traceable to Australian/National Standards	his		ŇATÀ
Goodinelli	Tostad at Trilab Drishana Laboration		C. Channon	
	lested at Trilad Brisbane Laboratory		o. onannon	Laboratory No. 9926

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

Triaxial Compression - Consolidated Undrained

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

				TRIAXIAL TI Test Method	EST REF : AS1289.6.4.2	PORT			
lient:	Golder	Associates P	ty Limited	d			Report No.:	GA102082 -	CU
ddress	PO Bo	x 1734 MILTC	ON BC	QLD 4064		1	Request No.	Golder 1893	3795 TR04
							Test Date:	25/01/2019	
Project	Inland	Rail Section 3	20			1	Report Date:	14/02/2019	
roject No.	18937	95			Client Sa	ample No.	320-01-BH210	3-C00510	
oreHole	320-01	-BH2103		Depth From (m)	5.1		Depth ⁻	Γο (m) 5.4	1
escription:	GRAV	ELLY SILTY C	CLAY-bro	wn/grey					
				SAMPLE & T	EST DETAI	LS			
Initial Heig Initial Diame	ter: 2.0:1	mm mm		Initial Moisture Content: Final Moisture Content: Wet Density:	19.1 24.0 1 92	% % t/m ³	Rat B	e of Strain: 0.0 Response: 9	006 %/min 19 %
L/D Rd	10. 2.0.1			Dry Density:	1.61	t/m ³			
				Mohr Circl	e Diagra	m	•		
1200									
1000 -									
800 -									
ss (kPa)									
shear Stre									
400	/								
200 +									
0 1		200	400	600	800	1000	1200	1400	1600
				Princ	ipal Stress	(kPa)			
				Failure Oritoria	De els Deire				
ample Type:	Sinale Indiv	idual Undisturbed	Specimen	Failure Criteria:	Remarks:	Tested as Rec	KatlO eived		
ample/s supplied	by the client				Note: Graph n	ot to scale			Page 1 of 6

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory 6. Ch

C. Channon

Tested at Trilab Brisbane Laboratory.

Laboratory Number 9926

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory

C. Channon

Tested at Trilab Brisbane Laboratory.

Laboratory Number 9926

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Tested at Trilab Brisbane Laboratory.

Laboratory Number 9926

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd

ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

document are traceable to Australian/National Standards.

614 C. Channon

Laboratory Number 9926

Tested at Trilab Brisbane Laboratory.

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd

ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

		Test Method: AS1289.6.4.2	
	Golder Associates Pty Li	mited Report	No.: GA102082 - CU
[CLIENT:	Golder Associates Pty Lin	nited
	PROJECT:	Inland Rail Section 320	BEFORE TEST
	LAB SAMPLE No.	102082	DATE: 21/01/19
	BOREHOLE:	320-01-BH2103	DEPTH: 5.1
	CLIENT:	Golder Associates Pty Lim	ited
	CLIENT: PROJECT:	Golder Associates Pty Lim Inland Rail Section 320	ited AFTER TEST
C	CLIENT: PROJECT: LAB SAMPLE No.	Golder Associates Pty Lim Inland Rail Section 320 102082	ited AFTER TEST DATE: 4/2/19
	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates Pty Lim Inland Rail Section 320 102082 320-01-BH2103	ited AFTER TEST DATE: 4/2/19 DEPTH: 5.1
	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates Pty Lim Inland Rail Section 320 102082 320-01-BH2103	ited AFTER TEST DATE: $u/2/19$ DEPTH: 5.1
Гуре:	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates Pty Lim Inland Rail Section 320 102082 320-01-BH2103	ited AFTER TEST DATE: $u/2//9$ DEPTH: 5.1

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory C. Ch C. Channon

Tested at Trilab Brisbane Laboratory.

Laboratory Number 9926

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards. Authorised Signatory

Tested at Trilab Brisbane Laboratory.

Laboratory Number 9926

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd

ABN 25 065 630 506

Triaxial Compression - Rock

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	STRENGTH	OF ROCK MA		LINT	RIAXIAL CON	MPRESSION	
			ASTM	D7012			
	Standard Test Methods for Compr	ressive Strength and Elastic	Moduli of Inta	ct Rock Core S	Specimens under Varying S	tates of Stress and Temperatu	res
Client	Method B : Elastic Mo	oduli of Undrained Rock Cor	e Specimens i	n Triaxial Corr	pression Without Pore Pre		
					Report No.	GA 102209-RTX	
Address	PO Box 1734 MILTO	N BC QLD	4064		Test Date	20/01/2010	
					Report Date	30/01/2019	
Project	Inland Rail Section 3	20	Denth F	rom (m)	104	Sample 320-01-	BH2101_TWR · 320_01_
Bore Hole	320-01-BH2101	20	Dept	h To (m)	104 3	No:	BH2101-MOI
Description	C		Dopt		101.0		
Sample Type	Single Individual Roo	k Core Specimen					
		I I	Samnle	Details			
			oampic	Details			
Average Samp	le Diameter (mm)	60).8	Moistu	re Content (%)		8.1
Sample Height	: (mm)	13	2.0	Wet De	ensity (t/m ³)		2.20
Duration of Tes	st (min)	22:1	1:00	Dry De	ensity (t/m³)		2.04
Rate of Strain ((%/min)	0.	05	Beddir	ig (°)	5	
Rupture Angle	(°)	3	0	Test Apparatus		RTR2500 Triaxial Machine	
Mode of Failure	e Shear						
		In	tact Tes	t Resul	ts		
		Value at Plastic Deformation	Value at Deforr	t Plastic mation	Value at Plastic Deformation	Peak Value	
Confining Pre	ssure (MPa)	12.00	24	.10	48.12	48.12	
Calc'd Peak D	eviator Stress (MPa)	3.10	6.	70	-	-	
Deviator Stres	ss (MPa)	3.07	6.	63	11.3	11.4	
Axial Strain (µ	ıe)	1613	55	63	22878	28760	
Diametral Stra	ain (µe)	-185	2	9	-5822	-8821	
Tangent Modu	ulus (GPa)	1.92	1.	35	3.39	-	
Poisson's Rat	io	0.146	0.0	01	0.008	-	
		Res	idual Te	est Resi	ults		
Confining Pre	ssure (MPa)	48.13	34	.88	11.82		
Residual Devi	ator Stress (MPa)	11.2	10).8	10.6		
Axial Strain (µ	ie)	37875	420	053	45756		
Diametral Stra	ain (µe)	-14339	-18	384	-21525		
Notes/Remarks:							
Sample/s supplied by	y client		Tested as	received			Page 1 of 8 REP16601
Accredited t The results of the t this document	for compliance with ISO/IES tests, calibrations, and/or me are traceable to Australian/	17025 - Testing. easurements included National Standards.	in		Authorised Signatory	_	ACCELETES FOR TECHNICAL COMPETENCE
	Tested at Trilab Brisbane Laboratory Laboratory No. 9926						

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

ACCURATE QUALITY RESULTS FOR TOMORROW'S ENGINEERING

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

ACCURATE QUALITY RESULTS FOR TOMORROW'S ENGINEERING

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	UNLENGT	ASTM D7012				
	Standard Test Methods for Com	npressive Strength and Elastic Moduli of Intact Rock Core	e Specimens und	der Varying States of	Stress and Temperatur	res
Client	Method B : Elastic	Moduli of Undrained Rock Core Specimens in Triaxial Co	mpression With	nout Pore Pressure M	leasurements	
Chem	Golder Associates	s r ty Linited	Repoi	rt No.	GA1022	209-RTX
		Before and After Test	Photos			
	CLIENT:	Golder Associates Pty I	imited	1		
	PROJECT:	Inland Rail Section 320		BEI	FORE TE	ST
	LAB SAMPLE No.	102209		DATE:	21/01/19	
3	BOREHOLE:	320-01-BH2101		DEPTH	: 104	
es/Rema	arks:					
es/Remained	arks:					
es/Remains	arks: upplied by client	E 1702 Totia				Page 4 of 8 REP1
es/Remains and the result	arks: upplied by client corredited for compliance with ISO/I ts of the tests, calibrations, and/or	Photo not to scale Test 17025 - Testing: measurements included in				Page 4 of 8 REP1
es/Remains and the result this content of the second secon	arks: upplied by client corredited for compliance with ISO/I its of the tests, calibrations, and/or document are traceable to Australia	Image: Control of the set of the se	Autho			Page 4 of 8 REP1

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

ACCURATE QUALITY RESULTS FOR TOMORROW'S ENGINEERING

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details.

Point Load Index Testing

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

POINT LOAD TEST REPORT						
Client	Golder Associates Pty L	Test Method: AS 4133.4.1 imited	Report No	GA101184 101220 PI		
			Report No.	Golder 1803705 TR02		
Address	PO Box 1734 MILTON B	3C QLD 4064	Test Date	31/10/2018		
			Report Date	6/11/2018		
Project	Inland Rail Section 320			0,11,2010		
Project No	1893795					
		I				
Trilab Sample No.	101184	101185	101186	101188		
Client Sample No	320-01-BH2201-C00780	320-01-BH2201-C01140	320-01-BH2201-C01504	320-01-BH2201-C01808		
Bore Hole	320-01-BH2201	320-01-BH2201	320-01-BH2201	320-01-BH2201		
Depth From/To (m)	7.80-7.90	11.40-11.60	15.04-15.14	18.08-18.18		
Description	С	С	С	С		
ls (MPa)	0.09	0.21	0.17	2.21		
Is(50) (MPa)	0.09	0.21	0.17	1.99		
Load Direction	Axial	Axial	Axial	Axial		
Trilab Sample No.	101191	101192	101193	101195		
Client Sample No	320-01-BH2209-C00550	320-01-BH2209-C01190	320-01-BH2209-C01460	320-01-BH2209-C01670		
Bore Hole	320-01-BH2209	320-01-BH2209	320-01-BH2209	320-01-BH2209		
Depth From/To (m)	5.50-10.00	11.90-12.00	14.60-14.70	16.70-16.80		
Description	С	С	С	С		
ls (MPa)	0.06	1.14	3.40	0.67		

1.15

Axial

NOTES/REMARKS:

Tested as received

Sample/s supplied by the client

Is(50) (MPa)

Load Direction

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

0.06

Axial

Authorised Signatory

3.19

Axial

Page 1 of 7

REP02102

0.66

Axial

 Laboratory No. 9926

 The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

 Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details.

 Trilab Pty Ltd
 ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

POINT LOAD TEST REPORT						
Client	Golder Associates Pty L	imited	Report No.	GA101184-101220-PL		
			Request No	Golder 1893795 TR02		
Address	PO Box 1734 MILTON E	BC QLD 4064	Test Date	31/10/2018		
			Report Date	6/11/2018		
Project	Inland Rail Section 320		·			
Project No	1893795					
Trilab Sample No.	101196	101197	101200	101201		
Client Sample No	320-01-BH2209-C02000	320-01-BH2209-C02000	320-01-BH2212-C00660	320-01-BH2212-C00950		
Bore Hole	320-01-BH2209	320-01-BH2209	320-01-BH2212	320-01-BH2212		
Depth From/To (m)	20.00-20.10	20.00-20.49	6.60-6.70	9.50-9.60		
Description	С	С	С	С		
ls (MPa)	0.43	0.75	0.51	0.08		
Is(50) (MPa)	0.40	0.69	0.50	0.08		
Load Direction	Axial	Axial	Axial	Axial		
Trilab Sample No.	101203	101204	101205	101209		
Client Sample No	320-01-BH2212-C01360	320-01-BH2212-C01790	320-01-BH2212-C02000	320-01-BH2218-C00840		
Bore Hole	320-01-BH2212	320-01-BH2212	320-01-BH2212	320-01-BH2218		
Depth From/To (m)	13.60-13.70	17.90-18.00	20.00-20.10	8.40-8.50		
Description	С	С	С	С		

0.97

0.97

Axial

NOTES/REMARKS:

Tested as received

0.42

0.39

Axial

ls (MPa)

Is(50) (MPa)

Load Direction

Sample/s supplied by the client

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory No. N. Maddison

1.96

1.87

Axial

REP02102

Page 2 of 7

2.11

2.05

Axial

Laboratory No. 9926

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Trilab Pty Ltd ABN 25 065 630 506

ACCURATE QUALITY RESULTS FOR TOMORROW'S ENGINEERING

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

POINT LOAD TEST REPORT							
Client	Golder Associates Pty Limited		Report No.	GA101184-101220-PL			
			Request No	Golder_1893795_TR02			
Address	PO Box 1734 MILTON E	BC QLD 4064	Test Date	31/10/2018			
			Report Date	6/11/2018			
Project	Inland Rail Section 320						
Project No	1893795						
	Γ	Γ	Γ	1			
Trilab Sample No.	101210	101211	101213	101214			
Client Sample No	320-01-BH2218-C00935	320-01-BH2218-C01000	320-01-BH2218-C01170	320-01-BH2218-C01200			
Bore Hole	320-01-BH2218	320-01-BH2218	320-01-BH2218	320-01-BH2218			
Depth From/To (m)	9.35-9.45	10.00-10.10	11.70-11.80	12.00-12.10			
Description	С	С	С	С			
ls (MPa)	0.79	1.63	3.97	2.85			
ls(50) (MPa)	0.78	1.58	3.74	2.78			
Load Direction	Axial	Axial	Axial	Axial			
Trilab Sample No.	101215	101216	101218	101219			
Client Sample No	320-01-BH2218-C01405	320-01-BH2218-C01500	320-01-BH2218-C01640	320-01-BH2218-C01880			
Bore Hole	320-01-BH2218	320-01-BH2218	320-01-BH2218	320-01-BH2218			
Depth From/To (m)	14.05-14.15	15.00-15.10	16.40-16.50	18.80-18.90			
Description	С	С	С	С			
ls (MPa)	1.73	4.13	3.98	4.68			
ls(50) (MPa)	1.68	4.05	3.80	4.22			
Load Direction	Axial	Axial	Axial	Axial			

NOTES/REMARKS:

Tested as received

Sample/s supplied by the client

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory Na N. Maddison

REP02102

Page 3 of 7

Laboratory No. 9926 The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

POINT LOAD TEST REPORT						
Client	Golder Associates Pty Limited		Report No.	GA101184-101220-PL		
			Request No	Golder_1893795_TR02		
Address	PO Box 1734 MILTON E	3C QLD 4064	Test Date	31/10/2018		
			Report Date	6/11/2018		
Project	Inland Rail Section 320					
Project No	1893795					
Trilab Sample No.	101220	101184	101185	101186		
Client Sample No	320-01-BH2218-C02005	320-01-BH2201-C00780	320-01-BH2201-C01140	320-01-BH2201-C01504		
Bore Hole	320-01-BH2218	320-01-BH2201	320-01-BH2201	320-01-BH2201		
Depth From/To (m)	20.05-20.15	7.80-7.90	11.40-11.60	15.04-15.14		
Description	С	С	С	С		
ls (MPa)	2.63	0.04	0.17	0.25		
Is(50) (MPa)	2.45	0.04	0.17	0.25		
Load Direction	Axial	Diametral	Diametral	Diametral		
Trilab Sample No.	101188	101191	101192	101193		
Client Sample No	320-01-BH2201-C01808	320-01-BH2209-C00550	320-01-BH2209-C01190	320-01-BH2209-C01460		
Bore Hole	320-01-BH2201	320-01-BH2209	320-01-BH2209	320-01-BH2209		
Depth From/To (m)	18.08-18.18	5.50-10.00	11.90-12.00	14.60-14.70		
Description	С	С	С	С		
ls (MPa)	1.16	0.23	0.97	2.72		

NOTES/REMARKS:

Tested as received

1.17

Diametral

Is(50) (MPa)

Load Direction

Sample/s supplied by the client

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory

0.97

Diametral

REP02102

Page 4 of 7

2.69

Diametral

Laboratory No. 9926

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Trilab Pty Ltd ABN 25 065 630 506

0.23

Diametral

ACCURATE QUALITY RESULTS FOR TOMORROW'S ENGINEERING

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	POI	NT LOAD TEST R	EPORT	
Client	Golder Associates Pty Limited		Report No.	GA101184-101220-PL
				Golder_1893795_TR02
Address	PO Box 1734 MILTON E	BC QLD 4064	Test Date	31/10/2018
			Report Date	6/11/2018
Project	Inland Rail Section 320	1		
Project No	1893795			
Trilab Sample No.	101195	101196	101197	101200
Client Sample No	320-01-BH2209-C01670	320-01-BH2209-C02000	320-01-BH2209-C02000	320-01-BH2212-C00660
Bore Hole	320-01-BH2209	320-01-BH2209	320-01-BH2209	320-01-BH2212
Depth From/To (m)	16.70-16.80	20.00-20.10	20.00-20.49	6.60-6.70
Description	С	С	С	С
ls (MPa)	0.28	0.39	0.65	0.12
ls(50) (MPa)	0.28	0.39	0.65	0.12
Load Direction	Diametral	Diametral	Diametral	Diametral
Trilab Sample No.	101201	101203	101204	101205
Client Sample No	320-01-BH2212-C00950	320-01-BH2212-C01360	320-01-BH2212-C01790	320-01-BH2212-C02000
Bore Hole	320-01-BH2212	320-01-BH2212	320-01-BH2212	320-01-BH2212
Depth From/To (m)	9.50-9.60	13.60-13.70	17.90-18.00	20.00-20.10
Description	С	С	С	С
ls (MPa)	0.17	0.06	1.22	1.25
Is(50) (MPa)	0.17	0.06	1.22	1.26
Load Direction	Diametral	Diametral	Diametral	Diametral

NOTES/REMARKS:

Tested as received

Sample/s supplied by the client

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory N. Maddison

REP02102

Page 5 of 7

Laboratory No. 9926

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	POI	NT LOAD	D TEST R	EPORT	
Client	Golder Associates Pty L	imited	<u>00. A0 4100.4.1</u>	Report No.	GA101184-101220-PL
				Request No	Golder_1893795_TR02
Address	PO Box 1734 MILTON E	BC QLI	D 4064	Test Date	31/10/2018
				Report Date	6/11/2018
Project	Inland Rail Section 320				
Project No	1893795				
Trilab Sample No.	101209	101	210	101211	101213
Client Sample No	320-01-BH2218-C00840	320-01-BH2	218-C00935	320-01-BH2218-C01000	320-01-BH2218-C01170
Bore Hole	320-01-BH2218	320-01-	BH2218	320-01-BH2218	320-01-BH2218
Depth From/To (m)	8.40-8.50	9.35	-9.45	10.00-10.10	11.70-11.80
Description	С	(C	С	С

Description	С	С	С	С
ls (MPa)	1.92	1.56	1.44	2.59
Is(50) (MPa)	1.91	1.56	1.44	2.59
Load Direction Diametral		Diametral	Diametral	Diametral
	•		•	

Trilab Sample No.	101214	101215	101216	101218
Client Sample No	320-01-BH2218-C01200	320-01-BH2218-C01405	320-01-BH2218-C01500	320-01-BH2218-C01640
Bore Hole	320-01-BH2218	320-01-BH2218	320-01-BH2218	320-01-BH2218
Depth From/To (m)	12.00-12.10	14.05-14.15	15.00-15.10	16.40-16.50
Description	С	С	С	С
ls (MPa)	1.90	1.43	3.13	3.70
Is(50) (MPa)	1.90	1.43	3.16	3.69
Load Direction	Diametral	Diametral	Diametral	Diametral

|--|

Tested as received

Sample/s supplied by the client

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory NeM N. Maddison

Page 6 of 7 REP02102

 Laboratory No. 9926

 The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	POI	NT LOAD TEST R	EPORT	
Client	Golder Associates Pty L	Test Method: AS 4133.4.1 imited	Report No.	GA101184-101220-PI
			Request No	Golder 1893795 TR02
Address	PO Box 1734 MILTON E	BC QLD 4064	Test Date	31/10/2018
			Report Date	6/11/2018
Project	Inland Rail Section 320			
Project No	1893795			
Trilab Sample No.	101219	101220		
Client Sample No	320-01-BH2218-C01880	320-01-BH2218-C02005		
Bore Hole	320-01-BH2218	320-01-BH2218		
Depth From/To (m)	18.80-18.90	20.05-20.15		
Description	С	С		
ls (MPa)	4.35	2.04		
ls(50) (MPa)	4.33	2.04		
Load Direction	Diametral	Diametral		
Trilah Samala Na				
Trilab Sample No.				
Client Sample No				
Bore Hole				
Depth From/To (m)				
Description				
ls (MPa)				
ls(50) (MPa)				
Load Direction				
NOTES/RFMARKS [.]	Tested as received			
Sample/s supplied by the This documer accreditation req ISO/IEC 17025 - T and/or measureme to A The results of calibr	e client nt is issued in accordance with NAT. uirements. Accredited for compliance esting. The results of the tests, calil ents included in this document are tr ustralian/National Standards. ations and tests performed apply	A's Auth brations, aceable N only to the specific instrument of	orised Signatory 	Page 7 of 7 REP02102

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

POINT LOAD TEST REPORT					
	Colder Associates Dtul	Test Method: AS 4133.4.1			
Client	Golder Associates Pty L	Imited	Report No.	GA101325-101334-PL	
			Request No	Golder_1893795_TR03	
Address	PO Box 1734 MILTON E	3C QLD 4064	Test Date	2/11/2018	
			Report Date	7/11/2018	
Project	Inland Rail Section 320	Ι			
Project No	1893795				
	r	r	r	1	
Trilab Sample No.	101325	101326	101327	101328	
Client Sample No	320-01-BH2217-C00290	320-01-BH2217-C00510	320-01-BH2217-C00520	320-01-BH2217-C00700	
Bore Hole	320-01-BH2217	320-01-BH2217	320-01-BH2217	320-01-BH2217	
Depth From/To (m)	2.90-3.00	5.10-5.20	5.20-5.40	7.00-7.10	
Description	С	С	С	С	
ls (MPa)	3.16	4.81	3.15	4.08	
ls(50) (MPa)	3.10	4.65	3.16	4.08	
Load Direction	Axial	Axial	Axial	Axial	
	Γ	Γ	Γ	I	
Trilab Sample No.	101329	101330	101331	101332	
Client Sample No	320-01-BH2217-C00710	320-01-BH2217-C01100	320-01-BH2217-C01600	320-01-BH2217-C01610	
Bore Hole	320-01-BH2217	320-01-BH2217	320-01-BH2217	320-01-BH2217	
Depth From/To (m)	7.10-7.30	11.00-11.10	16.00-16.10	16.10-16.30	
Description	С	С	С	С	
ls (MPa)	3.32	2.52	4.61	3.94	
ls(50) (MPa)	3.08	2.43	4.51	3.86	
Load Direction	Axial	Axial	Axial	Axial	

NOTES/REMARKS:

Tested as received

Sample/s supplied by the client

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory Nell N. Maddison

Laboratory No. 9926

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

POINT LOAD TEST REPORT					
Client	Golder Associates Pty L	imited	<u>50: A5 4155.4.1</u>	Report No.	GA101325-101334-PL
				Request No	Golder_1893795_TR03
Address	PO Box 1734 MILTON E	BC QLI	D 4064	Test Date	2/11/2018
				Report Date	7/11/2018
Project	Inland Rail Section 320		1		
Project No	1893795				
	I	Γ		I	1
Trilab Sample No.	101333	101	334	101325	101326
Client Sample No	320-01-BH2217-C02025	320-01-BH2	217-C02040	320-01-BH2217-C00290	320-01-BH2217-C00510
Bore Hole	320-01-BH2217	320-01-	BH2217	320-01-BH2217	320-01-BH2217
Depth From/To (m)	20.25-20.35	20.40	-20.57	2.90-3.00	5.10-5.20
Description	С	(C	С	С
ls (MPa)	0.06	3.	03	2.55	4.26
ls(50) (MPa)	0.06	2.	80	2.54	4.19
Load Direction	Axial	Aک	tial	Diametral	Diametral
Trilab Sample No.	101327	101	328	101329	101330
Client Sample No	320-01-BH2217-C00520	320-01-BH2	217-C00700	320-01-BH2217-C00710	320-01-BH2217-C01100
Bore Hole	320-01-BH2217	320-01-	BH2217	320-01-BH2217	320-01-BH2217
Depth From/To (m)	5.20-5.40	7.00	-7.10	7.10-7.30	11.00-11.10
Description	С	(b	С	С
ls (MPa)	3.00	2.	29	4.66	2.23
Is(50) (MPa)	2.99	2.	29	4.64	2.23

NOTES/REMARKS:

Tested as received

Diametral

Load Direction

Sample/s supplied by the client

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory 10 N. Maddison

Diametral

REP02102

Page 2 of 3

Diametral

 Laboratory No. 9926

 The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Trilab Pty Ltd ABN 25 065 630 506

Diametral

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	POI	NT LOAD TEST R	EPORT	
Client	Golder Associates Pty L	Test Method: AS 4133.4.1 imited	Report No. Request No	GA101325-101334-PL Golder 1893795 TR03
Address	PO Box 1734 MILTON E	3C QLD 4064	Test Date Report Date	2/11/2018 7/11/2018
Project	Inland Rail Section 320			
Project No	1893795			
Trilab Sample No.	101331	101332	101333	101334
Client Sample No	320-01-BH2217-C01600	320-01-BH2217-C01610	320-01-BH2217-C02025	320-01-BH2217-C02040
Bore Hole	320-01-BH2217	320-01-BH2217	320-01-BH2217	320-01-BH2217
Depth From/To (m)	16.00-16.10	16.10-16.30	20.25-20.35	20.40-20.57
Description	С	С	С	С
ls (MPa)	4.44	4.06	1.56	1.56
Is(50) (MPa)	4.43	4.05	1.53	1.53
Load Direction	Diametral	Diametral	Diametral	Diametral
Trilab Sample No.				
Trilab Sample No.				
Client Sample No				
Bore Hole				
Depth From/To (m)				
Description				
ls (MPa)				
ls(50) (MPa)				
Load Direction				
NOTES/REMARKS:	Tested as received			
Sample/s supplied by the	e client			Page 3 of 3 RFP02102
This documer accreditation requision SO/IEC 17025 - To and/or measurement to A	nt is issued in accordance with NAT, uirements. Accredited for compliance esting. The results of the tests, calit ents included in this document are tr ustralian/National Standards. ations and tests performed apply	A's Auth partions, aceable nonly to the specific instrument or	orised Signatory	Laboratory No. 9926

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Unerit	Golder Associates Pty L	imited	Report No.	GA102052-102170-PL
			Request No	Golder 1893795 TR04
Address	PO Box 1734 MILTON B	BC QLD 4064	Test Date	23/01/2019
			Report Date	25/01/2019
Project	Inland Rail Section 320	I		
Project No	1893795			
	1	I	Ι	1
Trilab Sample No.	102052	102054	102055	102056
Client Sample No	320-01-BH2102-C19600	320-01-BH2102-C19740	320-01-BH2102-C20140	320-01-BH2102-C20600
Bore Hole	320-01-BH2102	320-01-BH2102	320-01-BH2102	320-01-BH2102
Depth From/To (m)	196.12-196.27	197.40-197.60	201.40-201.60	206.00-206.10
Description	С	С	С	С
ls (MPa)	0.51	0.01	0.05	0.09
Is(50) (MPa)	0.56	0.01	0.06	0.08
Load Direction	Axial	Axial	Axial	Axial
			<u></u>	
Trilab Sample No.	102057	102059	102061	102064
Trilab Sample No. Client Sample No	102057 320-01-BH2102-C20820	102059 320-01-BH2102-C21140	102061 320-01-BH2102-C21480	102064 320-01-BH2102-C21780
Trilab Sample No. Client Sample No Bore Hole	102057 320-01-BH2102-C20820 320-01-BH2102	102059 320-01-BH2102-C21140 320-01-BH2102	102061 320-01-BH2102-C21480 320-01-BH2102	102064 320-01-BH2102-C21780 320-01-BH2102
Trilab Sample No. Client Sample No Bore Hole Depth From/To (m)	102057 320-01-BH2102-C20820 320-01-BH2102 208.20-208.40	102059 320-01-BH2102-C21140 320-01-BH2102 211.40-211.60	102061 320-01-BH2102-C21480 320-01-BH2102 214.62-24.78	102064 320-01-BH2102-C21780 320-01-BH2102 217.80-217.90
Trilab Sample No. Client Sample No Bore Hole Depth From/To (m) Description	102057 320-01-BH2102-C20820 320-01-BH2102 208.20-208.40 C	102059 320-01-BH2102-C21140 320-01-BH2102 211.40-211.60 C	102061 320-01-BH2102-C21480 320-01-BH2102 214.62-24.78 C	102064 320-01-BH2102-C21780 320-01-BH2102 217.80-217.90 C
Trilab Sample No. Client Sample No Bore Hole Depth From/To (m) Description Is (MPa)	102057 320-01-BH2102-C20820 320-01-BH2102 208.20-208.40 C 0.04	102059 320-01-BH2102-C21140 320-01-BH2102 211.40-211.60 C 0.13	102061 320-01-BH2102-C21480 320-01-BH2102 214.62-24.78 C 1.04	102064 320-01-BH2102-C21780 320-01-BH2102 217.80-217.90 C 0.49
Trilab Sample No. Client Sample No Bore Hole Depth From/To (m) Description Is (MPa) Is(50) (MPa)	102057 320-01-BH2102-C20820 320-01-BH2102 208.20-208.40 C 0.04 0.04	102059 320-01-BH2102-C21140 320-01-BH2102 211.40-211.60 C 0.13 0.14	102061 320-01-BH2102-C21480 320-01-BH2102 214.62-24.78 C 1.04 1.13	102064 320-01-BH2102-C21780 320-01-BH2102 217.80-217.90 C 0.49 0.52

NOTES/REMARKS:

Tested as received

Sample/s supplied by the client

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory Nell N. Maddison

Laboratory No. 9926

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

POINT LOAD TEST REPORT					
Client	Golder Associates Pty L	imited	Report No.	GA102052-102170-PL	
			Request No	Golder_1893795_TR04	
Address	PO Box 1734 MILTON E	3C QLD 4064	Test Date	23/01/2019	
			Report Date	25/01/2019	
Project	Inland Rail Section 320				
Project No	1893795				
Trilab Sample No.	102066	102068	102069	102072	
Client Sample No	320-01-BH2102-C21900	320-01-BH2102-C22100	320-01-BH2102-C22390	320-01-BH2102-C22720	
Bore Hole	320-01-BH2102	320-01-BH2102	320-01-BH2102	320-01-BH2102	
Depth From/To (m)	219.00-219.10	221.00-221.10	223.90-224.00	227.20-227.40	
Description	С	С	С	С	
ls (MPa)	1.43	7.94	1.26	1.09	
Is(50) (MPa)	1.46	8.28	1.17	1.20	
Load Direction	Axial	Axial	Axial	Axial	
Trilab Sample No.	102074	102076	102083	102085	
Client Sample No	320-01-BH2102-C23310	320-01-BH2102-C23800	320-01-BH2103-C01050	320-01-BH2103-C01700	
Bore Hole	320-01-BH2102	320-01-BH2102	320-01-BH2103	320-01-BH2103	
Depth From/To (m)	233.17-233.30	238.00-238.10	10.50-10.60	17.00-17.20	
Description	С	С	С	С	

0.03

0.03

Axial

NOTES/REMARKS:

Tested as received

0.32

0.34

Axial

ls (MPa)

Is(50) (MPa)

Load Direction

Sample/s supplied by the client

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory N. Maddison

0.06

0.06

Axial

REP02102

Page 2 of 7

0.50

0.53

Axial

 Laboratory No. 9926

 The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

POINT LOAD TEST REPORT					
Client	Golder Associates Pty L	imited	Report No.	GA102052-102170-PL	
			Request No	Golder_1893795_TR04	
Address	PO Box 1734 MILTON E	BC QLD 4064	Test Date	23/01/2019	
			Report Date	25/01/2019	
Project	Inland Rail Section 320	1			
Project No	1893795				
	[I	I	1	
Trilab Sample No.	102087	102089	102099	102100	
Client Sample No	320-01-BH2103-C01910	320-01-BH2103-C02480	320-01-BH2203-C01000	320-01-BH2203-C01200	
Bore Hole	320-01-BH2103	320-01-BH2103	320-01-BH2203	320-01-BH2203	
Depth From/To (m)	19.00-19.15	24.77-24.85	10.00-10.12	12.10-12.23	
Description	С	С	С	С	
ls (MPa)	0.38	0.33	0.18	0.33	
ls(50) (MPa)	0.39	0.29	0.18	0.31	
Load Direction	Axial	Axial		Axial	
Trilab Sample No.	102102	102103	102111	102112	
Client Sample No	320-01-BH2203-C01600	320-01-BH2203-C01950	320-01-BH2207-C01100	320-01-BH2207-C01600	
Bore Hole	320-01-BH2203	320-01-BH2203	320-01-BH2207	320-01-BH2207	
Depth From/To (m)	16.02-16.15	19.50-19.60	11.00-11.10	16.00-16.10	
Description	С	С	С	С	
ls (MPa)	0.51	4.24	0.10	0.22	
ls(50) (MPa)	0.47	4.19	0.10	0.22	
Load Direction	Axial	Axial	Axial	Axial	

NOTES/REMARKS:

Tested as received

Sample/s supplied by the client

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory Na N. Maddison

REP02102

Page 3 of 7

 Laboratory No. 9926

 The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

POINT LOAD TEST REPORT				
		Test Method: AS 4133.4.1	-	
Client	Golder Associates Pty L	imited	Report No.	GA102052-102170-PL
			Request No	Golder_1893795_TR04
Address	PO Box 1734 MILTON E	3C QLD 4064	Test Date	23/01/2019
			Report Date	25/01/2019
Project	Inland Rail Section 320	l		
Project No	1893795			
Trilab Sample No.	102113	102115	102119	102120
Client Sample No	320-01-BH2207-C01800	320-01-BH2207-C02000	320-01-BH2215-C00740	320-01-BH2215-C01000
Bore Hole	320-01-BH2207	320-01-BH2207	320-01-BH2215	320-01-BH2215
Depth From/To (m)	18.00-18.10	20.00-20.11	7.40-7.50	10.00-10.10
Description	С	С	С	С
ls (MPa)	0.51	0.47	0.05	0.29
ls(50) (MPa)	0.51	0.46	0.05	0.29
Load Direction	Axial	Axial	Axial	Axial
Trilab Sample No.	102122	102123	102124	102129
Client Sample No	320-01-BH2215-C01370	320-01-BH2215-C01500	320-01-BH2215-C01950	320-01-BH2216-C00490
Bore Hole	320-01-BH2215	320-01-BH2215	320-01-BH2215	320-01-BH2216
Depth From/To (m)	13.60-13.73	15.00-15.10	19.50-19.60	4.90-5.00
Description	С	С	С	С
ls (MPa)	0.02	0.49	1.86	1.41
ls(50) (MPa)	0.02	0.49	1.84	1.41

NOTES/REMARKS:

Tested as received

Axial

Load Direction

Sample/s supplied by the client

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory

Axial

REP02102

Page 4 of 7

Axial

 Laboratory No. 9926

 The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Trilab Pty Ltd ABN 25 065 630 506

Axial

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

POINT LOAD TEST REPORT				
Client	Golder Associates Pty L	Test Method: AS 4133.4.1 imited	Report No.	GA102052-102170-PL
Address	PO Box 1734 MILTON E	3C QLD 4064	Test Date Report Date	23/01/2019 25/01/2019
Project	Inland Rail Section 320			
Project No	1893795			
Trilab Sample No.	102130	102131	102132	102134
Client Sample No	320-01-BH2216-C00700	320-01-BH2216-C01000	320-01-BH2216-C01500	320-01-BH2216-C01800
Bore Hole	320-01-BH2216	320-01-BH2216	320-01-BH2216	320-01-BH2216
Depth From/To (m)	7.00-7.12	10.00-10.10	15.00-15.10	18.00-18.10
Description	С	С	С	С
ls (MPa)	2.80	1.00	0.59	0.71
ls(50) (MPa)	2.75	0.99	0.59	0.72
Load Direction	Axial	Axial	Axial	Axial
Trilab Sample No.	102143	102145	102146	102148
Client Sample No	320-01-BH2301-C01109	320-01-BH2301-C01290	320-01-BH2301-C01470	320-01-BH2301-C01600
Bore Hole	320-01-BH2301	320-01-BH2301	320-01-BH2301	320-01-BH2301
Depth From/To (m)	11.09-11.20	12.90-13.00	14.70-14.80	16.00-16.10

С

3.08

3.08

Axial

NOTES/REMARKS:

Tested as received

С

0.75

0.72

Axial

Sample/s supplied by the client

Description

ls (MPa)

Is(50) (MPa)

Load Direction

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory N. Maddison

С

0.44

0.44

Axial

REP02102

Page 5 of 7

С

1.24

1.23

Axial

Laboratory No. 9926 The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

POINT LOAD TEST REPORT Test Method: AS 4133.4.1 Golder Associates Pty Limited Client **Report No.** GA102052-102170-PL Golder 1893795 TR04 **Request No** PO Box 1734 MILTON BC QLD 4064 Address **Test Date** 23/01/2019 **Report Date** 25/01/2019 Inland Rail Section 320 Project **Project No** 1893795 Trilab Sample No. 102149 102151 102153 102154 **Client Sample No** 320-01-BH2301-C01800 320-01-BH2301-C02000 320-01-BH2302-C00110 320-01-BH2302-C00300 320-01-BH2301 320-01-BH2301 320-01-BH2302 320-01-BH2302 **Bore Hole** Depth From/To (m) 18 00-18 10 20 00-20 10 1 10-1 20 3 01-3 12

Depth From/To (m)	18.00-18.10	20.00-20.10	1.10-1.20	3.01-3.12
Description	С	С	С	С
İs (MPa)	0.56	0.98	0.25	0.34
Is(50) (MPa)	0.53	0.98	0.25	0.34
Load Direction	Axial	Axial	Axial	Axial

Trilab Sample No.	102156	102157	102160	102161
Client Sample No	320-01-BH2302-C00500	320-01-BH2302-C00700	320-01-BH2302-C00900	320-01-BH2302-C01200
Bore Hole	320-01-BH2302	320-01-BH2302	320-01-BH2302	320-01-BH2302
Depth From/To (m)	5.00-5.10	7.00-7.11	9.00-9.10	12.00-12.10
Description	С	С	С	С
ls (MPa)	0.54	0.37	0.69	0.35
Is(50) (MPa)	0.54	0.37	0.69	0.35
Load Direction	Axial	Axial	Axial	Axial

NOTES/REMARKS:

Tested as received

Sample/s supplied by the client

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory NerMI N. Ma

REP02102

Page 6 of 7

 Laboratory No. 9926

 The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	Golder Associates Pty L	imited	Report No.	GA102052-102170-PL
			Request No	Golder_1893795_TR04
Address	PO Box 1734 MILTON E	BC QLD 4064	Test Date	23/01/2019
			Report Date	25/01/2019
Project	Inland Rail Section 320			
Project No	1893795			
	1	1	r	T
Trilab Sample No.	102163	102164	102166	102167
Client Sample No	320-01-BH2302-C01400	320-01-BH2302-C01700	320-01-BH2302-C02000	320-01-BH2302-C02390
Bore Hole	320-01-BH2302	320-01-BH2302	320-01-BH2302	320-01-BH2302
Depth From/To (m)	14.00-14.10	17.00-17.10	20.00-20.10	23.90-24.00
Description	С	С	С	С
ls (MPa)	1.51	0.69	0.31	0.39
Is(50) (MPa)	1.50	0.68	0.31	0.39
Load Direction	Axial	Avial	Axial	Axial
				1
				1
Trilab Sample No.	102169	102170		
Trilab Sample No.	102169 320-01-BH2302-C02800	102170 320-01-BH2302-C03000		
Trilab Sample No. Client Sample No Bore Hole	102169 320-01-BH2302-C02800 320-01-BH2302	102170 320-01-BH2302-C03000 320-01-BH2302		
Trilab Sample No. Client Sample No Bore Hole Depth From/To (m)	102169 320-01-BH2302-C02800 320-01-BH2302 28.00-28.11	102170 320-01-BH2302-C03000 320-01-BH2302 30.00-30.10		
Trilab Sample No. Client Sample No Bore Hole Depth From/To (m) Description	102169 320-01-BH2302-C02800 320-01-BH2302 28.00-28.11 C	102170 320-01-BH2302-C03000 320-01-BH2302 30.00-30.10 C		
Trilab Sample No. Client Sample No Bore Hole Depth From/To (m) Description Is (MPa)	102169 320-01-BH2302-C02800 320-01-BH2302 28.00-28.11 C 0.25	102170 320-01-BH2302-C03000 320-01-BH2302 30.00-30.10 C 0.35		
Trilab Sample No. Client Sample No Bore Hole Depth From/To (m) Description Is (MPa) Is(50) (MPa)	102169 320-01-BH2302-C02800 320-01-BH2302 28.00-28.11 C 0.25 0.25	102170 320-01-BH2302-C03000 320-01-BH2302 30.00-30.10 C 0.35 0.35		
Trilab Sample No. Client Sample No Bore Hole Depth From/To (m) Description Is (MPa) Is(50) (MPa) Load Direction	102169 320-01-BH2302-C02800 320-01-BH2302 28.00-28.11 C 0.25 0.25 Axial	102170 320-01-BH2302-C03000 320-01-BH2302 30.00-30.10 C 0.35 0.35 0.35 Axial		
Trilab Sample No. Client Sample No Bore Hole Depth From/To (m) Description Is (MPa) Is(50) (MPa) Load Direction	102169 320-01-BH2302-C02800 320-01-BH2302 28.00-28.11 C 0.25 0.25 Axial	102170 320-01-BH2302-C03000 320-01-BH2302 30.00-30.10 C 0.35 0.35 Axial		
Trilab Sample No. Client Sample No Bore Hole Depth From/To (m) Description Is (MPa) Is(50) (MPa) Load Direction	102169 320-01-BH2302-C02800 320-01-BH2302 28.00-28.11 C 0.25 0.25 Axial	102170 320-01-BH2302-C03000 320-01-BH2302 30.00-30.10 C 0.35 0.35 0.35 Axial		
Trilab Sample No. Client Sample No Bore Hole Depth From/To (m) Description Is (MPa) Is(50) (MPa) Load Direction	102169 320-01-BH2302-C02800 320-01-BH2302 28.00-28.11 C 0.25 0.25 Axial	102170 320-01-BH2302-C03000 320-01-BH2302 30.00-30.10 C 0.35 0.35 Axial		
Trilab Sample No. Client Sample No Bore Hole Depth From/To (m) Description Is (MPa) Is(50) (MPa) Load Direction	102169 320-01-BH2302-C02800 320-01-BH2302 28.00-28.11 C 0.25 0.25 Axial	102170 320-01-BH2302-C03000 320-01-BH2302 30.00-30.10 C 0.35 0.35 Axial		

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory NorM .11 N. Maddison

Laboratory No. 9926
The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

POINT LOAD TEST REPORT				
Client	Golder Associates Pty L	imited	Report No.	GA102052-102170-PL
			Request No	Golder_1893795_TR04
Address	PO Box 1734 MILTON E	3C QLD 4064	Test Date	23/01/2019
			Report Date	25/01/2019
Project	Inland Rail Section 320	1		
Project No	1893795			
		1	1	1
Trilab Sample No.	102052	102054	102055	102056
Client Sample No	320-01-BH2102-C19600	320-01-BH2102-C19740	320-01-BH2102-C20140	320-01-BH2102-C20600
Bore Hole	320-01-BH2102	320-01-BH2102	320-01-BH2102	320-01-BH2102
Depth From/To (m)	196.12-196.27	197.40-197.60	201.40-201.60	206.00-206.10
Description	С	С	С	С
ls (MPa)	1.82	0.00	0.05	0.17
ls(50) (MPa)	1.97	0.00	0.05	0.18
Load Direction	Diametral	Diametral	Diametral	Diametral
Trilab Sample No.	102057	102059	102061	102064
Client Sample No	320-01-BH2102-C20820	320-01-BH2102-C21140	320-01-BH2102-C21480	320-01-BH2102-C21780
Bore Hole	320-01-BH2102	320-01-BH2102	320-01-BH2102	320-01-BH2102
Depth From/To (m)	208.20-208.40	211.40-211.60	214.62-214.78	217.80-217.90
Description	С	С	С	С
ls (MPa)	0.06	0.01	2.86	0.30
ls(50) (MPa)	0.06	0.01	3.00	0.31
Load Direction	Diametral	Diametral	Diametral	Diametral

NOTES/REMARKS:

Tested as received

Sample/s supplied by the client

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory Nel N. Maddison

TECHNICAL

 Laboratory No. 9926

 The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

 Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details.

 Trilab Pty Ltd
 ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

POINT LOAD TEST REPORT				
Client	Golder Associates Pty L	imited	Report No.	GA102052-102170-PL
			Request No	Golder_1893795_TR04
Address	PO Box 1734 MILTON E	3C QLD 4064	Test Date	23/01/2019
			Report Date	25/01/2019
Project	Inland Rail Section 320			
Project No	1893795			
Trilab Sample No.	102066	102068	102069	102072
Client Sample No	320-01-BH2102-C21900	320-01-BH2102-C22100	320-01-BH2102-C22390	320-01-BH2102-C22720
Bore Hole	320-01-BH2102	320-01-BH2102	320-01-BH2102	320-01-BH2102
Depth From/To (m)	219.00-219.10	221.00-221.10	223.90-224.00	227.20-227.40
Description	С	С	С	С
ls (MPa)	1.75	5.20	1.00	1.66
ls(50) (MPa)	1.80	5.57	1.06	1.67
Load Direction	Diametral	Diametral	Diametral	Diametral
Trilab Sample No.	102074	102076	102083	102085
Client Sample No	320-01-BH2102-C23310	320-01-BH2102-C23800	320-01-BH2103-C01050	320-01-BH2103-C01700
Bore Hole	320-01-BH2102	320-01-BH2102	320-01-BH2103	320-01-BH2103
Depth From/To (m)	233.17-233.30	238.00-238.10	10.50-10.60	17.00-17.20
Description	С	С	С	С
ls (MPa)	0.06	0.01	0.16	0.61
ls(50) (MPa)	0.06	0.01	0.15	0.61
Load Direction	Diametral	Diametral	Diametral	Diametral

NOTES/REMARKS:

Tested as received

Sample/s supplied by the client

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory Nal N. Maddison

REP02102

Page 2 of 7

 Laboratory No. 9926

 The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Client		Test Method: AS 4133 4 1		
Cheffi	Golder Associates Pty L	imited	Report No.	GA102052-102170-PL
			Request No	Golder_1893795_TR04
Address	PO Box 1734 MILTON E	BC QLD 4064	Test Date	23/01/2019
			Report Date	25/01/2019
Project	Inland Rail Section 320	Γ		
Project No	1893795			
	1	1	1	1
Trilab Sample No.	102087	102089	102099	102100
Client Sample No	320-01-BH2103-C01910	320-01-BH2103-C02480	320-01-BH2203-C01000	320-01-BH2203-C01200
Bore Hole	320-01-BH2103	320-01-BH2103	320-01-BH2203	320-01-BH2203
Depth From/To (m)	19.00-19.15	24.77-24.85	10.00-10.12	12.10-12.23
Description	С	С	С	С
ls (MPa)	0.22	0.19	0.03	0.05
Is(50) (MPa)	0.22	0.19	0.03	0.05
Load Direction	Diametral	Diametral	Diametral	Diametral
Trilab Sample No.	102102	102103	102111	102112
Trilab Sample No. Client Sample No	102102 320-01-BH2203-C01600	102103 320-01-BH2203-C01950	102111 320-01-BH2207-C01100	102112 320-01-BH2207-C01600
Trilab Sample No. Client Sample No Bore Hole	102102 320-01-BH2203-C01600 320-01-BH2203	102103 320-01-BH2203-C01950 320-01-BH2203	102111 320-01-BH2207-C01100 320-01-BH2207	102112 320-01-BH2207-C01600 320-01-BH2207
Trilab Sample No. Client Sample No Bore Hole Depth From/To (m)	102102 320-01-BH2203-C01600 320-01-BH2203 16.02-16.15	102103 320-01-BH2203-C01950 320-01-BH2203 19.50-19.60	102111 320-01-BH2207-C01100 320-01-BH2207 11.00-11.10	102112 320-01-BH2207-C01600 320-01-BH2207 16.00-16.10
Trilab Sample No. Client Sample No Bore Hole Depth From/To (m) Description	102102 320-01-BH2203-C01600 320-01-BH2203 16.02-16.15 C	102103 320-01-BH2203-C01950 320-01-BH2203 19.50-19.60 C	102111 320-01-BH2207-C01100 320-01-BH2207 11.00-11.10 C	102112 320-01-BH2207-C01600 320-01-BH2207 16.00-16.10 C
Trilab Sample No. Client Sample No Bore Hole Depth From/To (m) Description Is (MPa)	102102 320-01-BH2203-C01600 320-01-BH2203 16.02-16.15 C 0.28	102103 320-01-BH2203-C01950 320-01-BH2203 19.50-19.60 C 1.20	102111 320-01-BH2207-C01100 320-01-BH2207 11.00-11.10 C 0.06	102112 320-01-BH2207-C01600 320-01-BH2207 16.00-16.10 C 0.21
Trilab Sample No. Client Sample No Bore Hole Depth From/To (m) Description Is (MPa) Is(50) (MPa)	102102 320-01-BH2203-C01600 320-01-BH2203 16.02-16.15 C 0.28 0.28	102103 320-01-BH2203-C01950 320-01-BH2203 19.50-19.60 C 1.20 1.20	102111 320-01-BH2207-C01100 320-01-BH2207 11.00-11.10 C 0.06 0.06	102112 320-01-BH2207-C01600 320-01-BH2207 16.00-16.10 C 0.21 0.21
Trilab Sample No. Client Sample No Bore Hole Depth From/To (m) Description Is (MPa) Is(50) (MPa) Load Direction	102102 320-01-BH2203-C01600 320-01-BH2203 16.02-16.15 C 0.28 0.28 Diametral	102103 320-01-BH2203-C01950 320-01-BH2203 19.50-19.60 C 1.20 1.20 Diametral	102111 320-01-BH2207-C01100 320-01-BH2207 11.00-11.10 C 0.06 0.06 Diametral	102112 320-01-BH2207-C01600 320-01-BH2207 16.00-16.10 C 0.21 0.21 Diametral
Trilab Sample No. Client Sample No Bore Hole Depth From/To (m) Description Is (MPa) Is(50) (MPa) Load Direction	102102 320-01-BH2203-C01600 320-01-BH2203 16.02-16.15 C 0.28 0.28 Diametral	102103 320-01-BH2203-C01950 320-01-BH2203 19.50-19.60 C 1.20 1.20 Diametral	102111 320-01-BH2207-C01100 320-01-BH2207 11.00-11.10 C 0.06 0.06 Diametral	102112 320-01-BH2207-C01600 320-01-BH2207 16.00-16.10 C 0.21 0.21 Diametral
Trilab Sample No. Client Sample No Bore Hole Depth From/To (m) Description Is (MPa) Is(50) (MPa) Load Direction	102102 320-01-BH2203-C01600 320-01-BH2203 16.02-16.15 C 0.28 0.28 Diametral	102103 320-01-BH2203-C01950 320-01-BH2203 19.50-19.60 C 1.20 1.20 Diametral	102111 320-01-BH2207-C01100 320-01-BH2207 11.00-11.10 C 0.06 0.06 Diametral	102112 320-01-BH2207-C01600 320-01-BH2207 16.00-16.10 C 0.21 0.21 Diametral
Trilab Sample No. Client Sample No Bore Hole Depth From/To (m) Description Is (MPa) Is(50) (MPa) Load Direction	102102 320-01-BH2203-C01600 320-01-BH2203 16.02-16.15 C 0.28 0.28 Diametral	102103 320-01-BH2203-C01950 320-01-BH2203 19.50-19.60 C 1.20 1.20 Diametral	102111 320-01-BH2207-C01100 320-01-BH2207 11.00-11.10 C 0.06 0.06 Diametral	102112 320-01-BH2207-C01600 320-01-BH2207 16.00-16.10 C 0.21 0.21 Diametral

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Laboratory No. 9926
The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

POINT LOAD TEST REPORT Test Method: AS 4133.4.1					
Client	Golder Associates Pty L	imited	Report No.	GA102052-102170-PL	
			Request No	Golder_1893795_TR04	
Address	PO Box 1734 MILTON E	BC QLD 4064	Test Date	23/01/2019	
			Report Date	25/01/2019	
Project	Inland Rail Section 320				
Project No	1893795				
Trilab Sample No.	102113	102115	102119	102120	
Client Sample No	320-01-BH2207-C01800	320-01-BH2207-C02000	320-01-BH2215-C00740	320-01-BH2215-C01000	
Bore Hole	320-01-BH2207	320-01-BH2207	320-01-BH2215	320-01-BH2215	
Depth From/To (m)	18.00-18.10	20.00-20.10	7.40-7.50	10.00-10.10	
Description	С	С	С	С	
İs (MPa)	0.31	0.10	0.16	0.36	
Is(50) (MPa)	0.31	0.10	0.16	0.36	
Load Direction	Diametral	Diametral	Diametral	Diametral	
Trilab Sample No.	102122	102123	102124	102129	
Client Sample No	320-01-BH2215-C01370	320-01-BH2215-C01500	320-01-BH2215-C01950	320-01-BH2216-C00490	
Bore Hole	320-01-BH2215	320-01-BH2215	320-01-BH2215	320-01-BH2216	
Depth From/To (m)	13.60-13.73	15.00-15.10	19.50-19.60	4.90-5.00	
Description	С	С	С	С	
ls (MPa)	0.03	0.56	1.63	0.62	
Is(50) (MPa)	0.03	0.56	1.63	0.63	

NOTES/REMARKS:

Tested as received

Diametral

Load Direction

Sample/s supplied by the client

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory Nal N. Ma

Diametral

REP02102

Page 4 of 7

Diametral

Laboratory No. 9926

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Trilab Pty Ltd ABN 25 065 630 506

Diametral

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

POINT LOAD TEST REPORT Test Method: AS 4133 4.1				
Client	Golder Associates Pty L	imited	Report No.	GA102052-102170-PL
			Request No	Golder_1893795_TR04
Address	PO Box 1734 MILTON E	BC QLD 4064	Test Date	23/01/2019
			Report Date	25/01/2019
Project	Inland Rail Section 320			
Project No	1893795			
Trilab Sample No.	102130	102131	102132	102134
Client Sample No	320-01-BH2216-C00700	320-01-BH2216-C01000	320-01-BH2216-C01500	320-01-BH2216-C01800
Bore Hole	320-01-BH2216	320-01-BH2216	320-01-BH2216	320-01-BH2216
Depth From/To (m)	7.00-7.12	10.00-10.10	15.00-15.10	18.00-18.10
Description	С	С	С	С
ls (MPa)	2.72	0.50	0.33	0.90
Is(50) (MPa)	2.70	0.50	0.33	0.90
Load Direction	Diametral	Diametral	Diametral	Diametral
Trilab Sample No.	102143	102145	102146	102148
Client Sample No	320-01-BH2301-C01109	320-01-BH2301-C01290	320-01-BH2301-C01470	320-01-BH2301-C01600
Bore Hole	320-01-BH2301	320-01-BH2301	320-01-BH2301	320-01-BH2301
Depth From/To (m)	11.09-11.20	12.90-13.00	14.70-14.80	16.00-16.10
Description	С	С	С	с
ls (MPa)	0.31	1.65	0.28	1.07
ls(50) (MPa)	0.31	1.64	0.28	1.07

NOTES/REMARKS:

Tested as received

Diametral

Sample/s supplied by the client

Load Direction

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory N. Maddison

Diametral

Diametral

Laboratory No. 9926

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Trilab Pty Ltd ABN 25 065 630 506

Diametral

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

POINT LOAD TEST REPORT Test Method: AS 4133.4.1 Golder Associates Pty Limited Client **Report No.** GA102052-102170-PL Golder 1893795 TR04 **Request No** PO Box 1734 MILTON BC QLD 4064 Address **Test Date** 23/01/2019 **Report Date** 25/01/2019 Inland Rail Section 320 Project **Project No** 1893795 Trilab Sample No. 102149 102151 102153 102154 **Client Sample No** 320-01-BH2301-C01800 320-01-BH2301-C02000 320-01-BH2302-C00110 320-01-BH2302-C00300 **Bore Hole** 320-01-BH2301 320-01-BH2301 320-01-BH2302 320-01-BH2302 Depth From/To (m) 18.00-18.10 20.00-20.10 1.10-1.20 3.01-3.12

Description	С	С	С	С
İs (MPa)	0.58	0.60	0.29	0.12
Is(50) (MPa)	0.58	0.60	0.29	0.11
Load Direction	Diametral	Diametral	Diametral	Diametral

Trilab Sample No.	102156	102157	102160	102161
Client Sample No	320-01-BH2302-C00500	320-01-BH2302-C00700	320-01-BH2302-C00900	320-01-BH2302-C01200
Bore Hole	320-01-BH2302	320-01-BH2302	320-01-BH2302	320-01-BH2302
Depth From/To (m)	5.00-5.10	7.00-7.11	9.00-9.10	12.00-12.10
Description	С	С	С	С
ls (MPa)	0.38	0.21	0.42	0.22
Is(50) (MPa)	0.38	0.21	0.42	0.22
Load Direction	Diametral	Diametral	Diametral	Diametral

|--|

Tested as received

Sample/s supplied by the client

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory NorM N. Ma

Page 6 of 7 REP02102

Laboratory No. 9926

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

POINT LOAD TEST REPORT				
• ••		Test Method: AS 4133.4.1		
Client	Golder Associates Pty L	limited	Report No.	GA102052-102170-PL
			Request No	Golder_1893795_TR04
Address	PO Box 1734 MILTON E	3C QLD 4064	Test Date	23/01/2019
			Report Date	25/01/2019
Project	Inland Rail Section 320			
Project No	1893795			
	Ι	I		T
Trilab Sample No.	102163	102164	102166	102167
Client Sample No	320-01-BH2302-C01400	320-01-BH2302-C01700	320-01-BH2302-C02000	320-01-BH2302-C02390
Bore Hole	320-01-BH2302	320-01-BH2302	320-01-BH2302	320-01-BH2302
Depth From/To (m)	14.00-14.10	17.00-17.10	20.00-20.10	23.90-24.00
Description	С	С	С	С
ls (MPa)	2.33	0.47	0.23	0.07
ls(50) (MPa)	2.31	0.47	0.23	0.07
Load Direction	Diametral	Diametral	Diametral	Diametral
Trilab Sample No.	102169	102170		
Client Sample No	320-01-BH2302-C02800	320-01-BH2302-C03000		
Bore Hole	320-01-BH2302	320-01-BH2302		
Depth From/To (m)	28.00-28.11	30.00-30.10		
Description	С	С		
ls (MPa)	0.40	0.25		
ls(50) (MPa)	0.40	0.25		
Load Direction	Diametral	Diametral		

NOTES/REMARKS:

<u>RKS:</u> Tested as received

Sample/s supplied by the client

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory

REP02102

Page 7 of 7

 Laboratory No. 9926

 The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

POINT LOAD TEST REPORT					
Client	Golder Associates Pty Li	mited	Report No.	GA102180-102249-PL	
Address	PO Box 1734 MILTON B	C QLD 4064	Test Date	22/01/2019	
			Report Date	23/01/2019	
Project	Inland Rail Section 320	1			
Project No	1893795				
	1				
Trilab Sample No.	102180	102182	102183	102187	
Client Sample No	320-01-BH2101	320-01-BH2101	320-01-BH2101	320-01-BH2101	
Bore Hole	320-01-BH2101	320-01-BH2101	320-01-BH2101	320-01-BH2101	
Depth From/To (m)	78.57-78.72	80.0-80.23	82.61-82.76	93.53-93.66	
Description	С	С	С	С	
ls (MPa)	0.37	0.33	0.31	0.41	
ls(50) (MPa)	0.40	0.35	0.34	0.44	
Load Direction	Axial	Axial	Axial	Axial	
Trilab Sample No.	102195	102197	102199	102205	
Client Sample No	320-01-BH2101	320-01-BH2101	320-01-BH2101	320-01-BH2101	
Bore Hole	320-01-BH2101	320-01-BH2101	320-01-BH2101	320-01-BH2101	
Depth From/To (m)	93.53-93.75	93.61-93.75	95.60-95.73	96.40-96.58	
Description	С	С	С	С	
ls (MPa)	3.65	0.17	2.47	0.50	
ls(50) (MPa)	4.01	0.18	2.73	0.55	
Load Direction	Axial	Axial	Axial	Axial	

NOTES/REMARKS:

Tested as received

Sample/s supplied by the client

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory Nell N. Maddison

REP02102

Page 1 of 4

 Laboratory No. 9926

 The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

 Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details.

 Trilab Pty Ltd
 ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

POINT LOAD TEST REPORT					
Client	Golder Associates Pty L	imited	Report No.	GA102180-102249-PL	
			Request No	1893795_TR01	
Address	PO Box 1734 MILTON E	3C QLD 4064	Test Date	22/01/2019	
			Report Date	23/01/2019	
Project	Inland Rail Section 320				
Project No	1893795				
	1	1			
Trilab Sample No.	102213	102215	102219	102224	
Client Sample No	320-01-BH2101	320-01-BH2101	320-01-BH2101	320-01-BH2101	
Bore Hole	320-01-BH2101	320-01-BH2101	320-01-BH2101	320-01-BH2101	
Depth From/To (m)	102.88-103	105.00-105.08	105.80-106.00	108.70-109.00	
Description	С	С	С	С	
ls (MPa)	0.17	0.12	0.02	0.11	
ls(50) (MPa)	0.18	0.14	0.03	0.13	
Load Direction	Axial	Axial	Axial	Axial	
Trilab Sample No.	102243	102244	102249	102180	
Client Sample No	320-01-BH2101	320-01-BH2101	320-01-BH2101	320-01-BH2101	
Bore Hole	320-01-BH2101	320-01-BH2101	320-01-BH2101	320-01-BH2101	
Depth From/To (m)	129.33-129.50	131.03-131.14	140.38-140.74	78.57-78.72	
Description	С	С	С	С	
ls (MPa)	0.32	0.40	0.05	0.51	

NOTES/REMARKS:

Tested as received

0.35

Axial

Sample/s supplied by the client

Is(50) (MPa)

Load Direction

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory A D. N. Maddison

0.05

Axial

0.52

Diametral

Laboratory No. 9926

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Trilab Pty Ltd ABN 25 065 630 506

0.41

Axial

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	POII	NT LOAD TEST R	EPORT	
Client	Golder Associates Pty L	imited	Report No.	GA102180-102249-PL
			Request No	1893795_TR01
Address	PO Box 1734 MILTON E	3C QLD 4064	Test Date	22/01/2019
			Report Date	23/01/2019
Project	Inland Rail Section 320			
Project No	1893795			
Trilab Sample No.	102182	102183	102187	102195
Client Sample No	320-01-BH2101	320-01-BH2101	320-01-BH2101	320-01-BH2101
Bore Hole	320-01-BH2101	320-01-BH2101	320-01-BH2101	320-01-BH2101
Depth From/To (m)	80.0-80.23	82.61-82.76	93.53-93.66	93.53-93.75
Description	С	С	С	С
ls (MPa)	0.37	0.33	0.39	3.36
ls(50) (MPa)	0.40	0.35	0.40	3.53
Load Direction	Diametral	Diametral	Diametral	Diametral
Trilab Sample No.	102197	102199	102205	102213
Client Sample No	320-01-BH2101	320-01-BH2101	320-01-BH2101	320-01-BH2101
Bore Hole	320-01-BH2101	320-01-BH2101	320-01-BH2101	320-01-BH2101
Depth From/To (m)	93.61-93.75	95.60-95.73	96.40-96.58	102.88-103
Description	С	С	С	С
ls (MPa)	0.48	2.57	4.96	0.08
Is(50) (MPa)	0.45	2.73	5.32	0.09
Load Direction	Diametral	Diametral	Diametral	Diametral

NOTES/REMARKS:

Tested as received

Sample/s supplied by the client

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory Na N. Maddison

 Laboratory No. 9926

 The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Trilab Pty Ltd ABN 25 065 630 506

Page 3 of 4 REP02102

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	POIN	IT LOAD TEST R	EPORT	
		Test Method: AS 4133.4.1	•···	
Client	Golder Associates Pty Lir	nited	Report No.	GA102180-102249-PL
A dalara a a			Request No	1893795_TR01
Address	PO BOX 1734 MILTON B	C QLD 4064	Test Date	22/01/2019
D : (Report Date	23/01/2019
Project No.	Inland Rall Section 320			
Project No	1695795			
Trilab Sample No.	102215	102219	102224	102243
Client Sample No	320-01-BH2101	320-01-BH2101	320-01-BH2101	320-01-BH2101
Bore Hole	320-01-BH2101	320-01-BH2101	320-01-BH2101	320-01-BH2101
Depth From/To (m)	105.00-105.08	105.80-106.00	108.70-109.00	129.33-129.50
Description	С	С	С	С
ls (MPa)	0.09	0.00	0.05	0.23
ls(50) (MPa)	0.10	0.00	0.05	0.24
Load Direction	Diametral	Diametral	Diametral	Diametral
Trilab Sample No.	102244	102249		
Client Sample No	320-01-BH2101	320-01-BH2101		
Bore Hole	320-01-BH2101	320-01-BH2101		
Depth From/To (m)	131.03-131.14	140.38-140.74		
Description	С	С		
ls (MPa)	0.17	0.06		
Is(50) (MPa)	0.19	0.06		
Load Direction	Diametral	Diametral		
NOTES/REMARKS:	Tested as received			
Sample/s supplied by th	e client			Page 4 of 4 REP02102

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory Nel N. Maddis

Laboratory No. 9926 The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Trilab Pty Ltd ABN 25 065 630 506

Unconfined Compressive Strength of Rock

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

ACCURATE QUALITY RESULTS FOR TOMORROW'S ENGINEERING

ABN 25 065 630 506

Trilab Pty Ltd

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

U	NIAXIAL COMPRES	SIVE STRENGTH	& DEFC	RMATION TEST R	EPORT	
Client	Golder Associates Pty L	imited	100.4.0.1	Report No. GA1	01187-MOD	
Average Sample	e Diameter (mm)	51.8	Moistur	L E Content (%)	7.7	
Sample Height	(mm)	142.0	Wet De	nsity (t/m ³)	2.34	
Duration of Test	t (min)	4.87	Drv Der	nsity (t/m ³)	2.17	
Rate of Loading	u (MPa/min)	0.29	Bedding	n (°)	40	
Mode of Failure	, ()	Shear	Test Ap	paratus Kelba	a 1000kN Load C	ell
	CLIENT:	Golder Associates P	tv Limite	d		
	PROJECT:	Inland Rail Section	320	BEFORE TEST	Г	
	LAB SAMPLE No.	101187		DATE: oslu 1.9		
	BOREHOLE:	320-01-BH2201		DEPTH: 17		
	CLIENT:	Golder Associates Pt	ty Limite	d		
	PROJECT:	Inland Rail Section 3	320	AFTER TEST		
	LAB SAMPLE No	101187	_	DATE: CL		
	BOREHOLE:	320-01-BH2201		DEPTH: 17		
			-			
Notes/Remarks:						
Sample/s supplied by cli	ient Graph	not to scale	Tested as rec	ceived.	Page 2 of 2	REP03603
Accredit The results of t this docum	ted for compliance with ISO/IEC ² the tests, calibrations, and/or meanent are traceable to Australian/N	17025 - Testing. asurements included in ational Standards.		Authorised Signatory	NATA	
	Tested at Trilab Brisbane Labor	ratory.		N. Maddison	Laboratory I	No. 9926

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

UN	IAXIAL COMPRE	SSIVE STRENGTH	& DEFC	DRMATION TES	ST REPORT	
Client	Golder Associates Pty	Limited	33.4.3.1	Report No.	GA101190-MOD	
Average Sample I Sample Height (m	Diameter (mm) m)	51.7 145.0	Moistur Wet De	I e Content (%) nsity (t/m ³)	7.4 2.26	
Duration of Test (min)	10.27	Dry Dei	nsity (t/m ³)	2.10	
Rate of Loading (I Mode of Failure	MPa/min)	0.91 Conical	Bedding Test Ar	g (~) poaratus	5 Kelba 1000kN I oad (Cell
				F		
	CLIENT: PROJECT:	Golder Associates Pty Inland Rail Section 32	Limited 0	BEFORE T	FST	
	LAB SAMPLE No. BOREHOLE:	101190 320-01-BH2209		DATE: 31/10/18 DEPTH: 5.5		
	CLIENT:	Golder Associates Pty	Limited			
_	PROJECT:	Inland Rail Section 32	20	AFTER TE	EST	
	LAB SAMPLE No. BOREHOLE:	101190 320-01-BH2209		DATE: 31 /10/18 DEPTH: 5.5		
otes/Remarks:					1000	
mple/s supplied by clien	t Grap	oh not to scale	Tested as rec	ceived.	Page 2 of 2	REP03
Accredited The results of the this documen	d for compliance with ISO/IEC e tests, calibrations, and/or m nt are traceable to Australian/ Tested at Trilab Brisbane Lab	C 17025 - Testing. easurements included in /National Standards. poratory.		Authorised Signatory		7 No. 9926

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

l	UNIAXIAL COMPRE	SSIVE STRENGTH	& DEFOR	MATION TE	ST REPORT	
Client	Golder Associates Pty	/ Limited	4133.4.3.1	Report No.	GA101194-MOD	
Average Samp	ble Diameter (mm)	51.8	Moisture C	content (%)	6.9	
Sample Height	t (mm)	141.2	Wet Densi	ty (t/m ³)	2.25	
Duration of Te	st (min)	9.92	Drv Densit	v (t/m ³)	2.10	
Rate of Loadin	ng (MPa/min)	1.56	Bedding (°) ')	Nil	
Mode of Failur	e	Shear	Test Appar	ratus	Kelba 1000kN Loa	id Cell
	CLIENT:	Golder Associates Pr	v Limited			
	PROJECT:	Inland Rail Section	320	BEFORE	TEST	
	LAB SAMPLE No.	101194	D	ATE: 03/11	18	
	BOREHOLE:	320-01-BH2209	D	EPTH: 16.5		
	CLIENT:	Colder Associates P	y Limited			
	PROJECT:	Inland Rail Section 3	320	AFTED T	TEST	
	LAR SAMPLE No	101104	D	ATE. ozlal	201	
	BOREHOLE:	320-01-BH2209		EPTH: 16.5	18	
tes/Remarks: mple/s supplied by Accrea The results o	client Gran dited for compliance with ISO/IE0 f the tests, calibrations, and/or m	ph not to scale C 17025 - Testing. reasurements included in	Tested as receive	ed.	Page 2 o	f 2 REP03
this docu	ument are traceable to Australian	/National Standards.	Na	n al te	ALCONO TOD	1019
	Tested at Trilab Brisbane I at	poratory		N. Maddison	COMPETEN	CE

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Client	Golder Associates	Pty Limited		Report No.	GA101202-MOD
Average Samp	ole Diameter (mm)	51.3	Moist	ure Content (%)	11.6
Sample Height	t (mm)	142.9	Wet D	Density (t/m ³)	2.24
Duration of Te	st (min)	32.83	Dry D	ensity (t/m ³)	2.01
Rate of Displace	cement (mm/min)	0.10	Beddi	ng (°)	5
Mode of Failur	e	Conical	Test A	Apparatus	100kN Compression Machine
	CLIENT:	Golder Associates Pty	Limited	1	
	PROJECT:	Inland Rail Section 3	20	BEFORE T	EST
	LAB SAMPLE No.	101202		DATE: 31 Julio	
- 1	BOREHOLE:	320-01-BH2212		DEPTH: 13.4	
	CLIENT:	Golder Associates Pt	y Limite	d	
	PROJECT:	Inland Rail Section 3	20	AFTER T	EST
	LAB SAMPLE No.	101202		DATE: 31 10/18	
	BOREHOLE:	320-01-BH2212		DEPTH: 13.4	
	•				
Notes/Remarks:					
Sample/s supplied by	client Phot	to not to scale	Tested as	received.	Page 2 of 2 REP1340
Accredited The results of the this documer	I for compliance with ISO/IEC e tests, calibrations, and/or me nt are traceable to Australian/I Tested at Trilab Brisbane Labo	17025 - Testing. easurements included in National Standards. pratory.		Authorised Signatory	TELEVILLE

 Laboratory No. 9926

 The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

 Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details.

 Trilab Pty Ltd
 ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

ACCURATE QUALITY RESULTS FOR TOMORROW'S ENGINEERING

ABN 25 065 630 506

Trilab Pty Ltd

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

U	NIAXIAL COMPRE	SSIVE STRENGTH	& DEFC	RMATION TEST	REPORT	
Client	Golder Associates Pty	/ Limited	100.4.0.1	Report No. GA	A101212-MOD	
Average Sample	Diameter (mm)	51.7	Moistur	e Content (%)	4.2	
Sample Height (r	nm)	140.0	Wet De	ensity (t/m ³)	2.21	
Duration of Test	(min)	7 37	Dry De	nsity (t/m ³)	2 12	
Rate of Loading	(MPa/min)	3 94	Beddin	n (°)	Nil	
Mode of Failure		Conical	T	9()		
			Test Ap	st Apparatus Keida Tuuukin Loa		ell
	CLIENT:	Golder Associates Pty	Limited			
	PROJECT:	Inland Rail Section 32	0	BEFORE TEST	Г	
	LAB SAMPLE No.	101212		DATE: 31/10/18		
	BOREHOLE:	320-01-BH2218		DEPTH: 11.5		
	CLIENT:	Golder Associates Pty	Limited			
	PROJECT:	Inland Rail Section 32	0	AFTER TEST	•	
	LAB SAMPLE No.	101212		DATE: 31/10/18		
	BOREHOLE:	320-01-BH2218		DEPTH: 11.5		
		0				
			1			
tes/Remarks:	nt o	nh not to cools	Tootoda		Daws 0 - 60	DEDAA
mple/s supplied by clie	nt Gra	ph not to scale	l ested as re	ceived.	Page 2 of 2	REP03
Accredite The results of th this docume	ed for compliance with ISO/IE(le tests, calibrations, and/or ment are traceable to Australian	ن 1/025 - Lesting. neasurements included in /National Standards.		Authorised Signatory	NATA	
	Tested at Trilab Brisbane Lat	poratory.		N. Maddison		No. 9926

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

ACCURATE QUALITY RESULTS FOR TOMORROW'S ENGINEERING

ABN 25 065 630 506

Trilab Pty Ltd

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

UN	IIAXIAL COMPRE	SSIVE STRENGTH	& DEFC	DRMATION TES	ST REPORT	
Client	Golder Associates Pty	Limited	155.4.5.1	Report No.	GA101217-MOD	
Average Sample	Diameter (mm)	52 0	Moistur	oisture Content (%) 7 7		
Sample Height (n	nm)	145.2	Wet De	(t/m^3)	2 28	
Duration of Tost ((min)	5 25		nsity (t/m^3)	2.20	
Duration of Loading (MDo/min)	5.25	Diy Dei	a (°)	2.1Z	
Rate of Loading (MPa/min)	5.59	Beaging	9()	INII	
Mode of Failure		Conical	Test Ap	oparatus	Kelba 1000kN Load C	Cell
_	CLIENT:	Golder Associates Pt	y Limite	d		
	PROJECT:	Inland Rail Section 3	320	BEFORE	TEST	
	LAB SAMPLE No.	101217		DATE: 31/10/18		
	BOREHOLE:	320-01-BH2218		DEPTH: 16.2		
	CLIENT: PROJECT:	Golder Associates Pty Inland Rail Section 3	Limited	AFTER T	EST	
	LAB SAMPLE No.	101217		DATE: 2115/18		
	BOREHOLE:	320-01-BH2218		DEPTH: 16.2		
otes/Remarks:					and a series of	
ample/s supplied by clier	nt Grap	oh not to scale	Tested as re	ceived.	Page 2 of 2	REP036
Accredite The results of the this docume	d for compliance with ISO/IEC e tests, calibrations, and/or m nt are traceable to Australian, Tested at Trilab Brisbane Lab	C 17025 - Testing. easurements included in /National Standards. poratory.		Authorised Signatory		No 9926

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

ACCURATE QUALITY RESULTS FOR TOMORROW'S ENGINEERING

ABN 25 065 630 506

Trilab Pty Ltd

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	UNIAXIAL COMPR	ESSIVE STRENGTH	1 & DEFORMATION 7	TEST REPORT
Client	Golder Associates Pt	y Limited	Report No.	GA101325-MOD
Average Sam	ole Diameter (mm)	51.6	Moisture Content (%)	4.3
Sample Heigh	t (mm)	136.9	Wet Density (t/m ³)	2.23
Duration of Te	est (min)	5.10	Dry Density (t/m ³)	2.14
Rate of Loadir	ng (MPa/min)	8.20	Bedding (°)	25
Mode of Failur	re	Shear	Test Apparatus	Kelba 1000kN Load Cell
	CLIENT	Colder Associates D	for Limited	
	PROJECT:	Inland Rail Section	320	
			BEFOR	E TEST
	LAB SAMPLE NO.	101325	DATE: 03/11	(18
	BOREHOLE:	320-01-BH2217	DEPTH: 2.9	
	CLIENT: PROJECT:	Golder Associates Pt Inland Rail Section 3	y Limited 320 AFTER	TEST
	LAB SAMPLE No.	101325	DATE	
	BOREHOLE:	320-01-BH2217	DEPTH: 2.9	18
tes/Remarks: mple/s supplied by	client Gr.	aph not to scale	Tested as received.	Page 2 of 2 REP03
Accre The results c this docu	oned for compliance with ISO/IE of the tests, calibrations, and/or i ument are traceable to Australia	n/National Standards.	Authorised Signator	NATA
	Tested at Trilab Brisbane La	aboratory.	N. Maddison	TECHNICAL
		-		Laboratory No. 992

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

ACCURATE QUALITY RESULTS FOR TOMORROW'S ENGINEERING

ABN 25 065 630 506

Trilab Pty Ltd

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

		SSIVE STRENGTH	& DEFC	RMATION TEST	REPORT	
Client	Golder Associates Pty	Limited	33.4.3.1	Report No. GA	101327-MOD	
Average Sample	Diameter (mm)	51.7	Moistur	e Content (%)	3.9	
Sample Height (r	nm)	144.5	Wet De	nsity (t/m^3)	2.25	
Duration of Tost	(min)	6.02		$r_{\rm acity} (t/m^3)$	2.23	
Duration of Leading	$(\mathbf{MDe}(\mathbf{min}))$	0.23	Diy Dei Deddie	- (2)	Z. 17	
Rate of Loading (MPa/min)	5.13	Beagin	g (⁻)	INII	
Mode of Failure		Conical	Test Ap	paratus Ke	lba 1000kN Load Cel	I
	CLIENT:	Golder Associates Pty	Limited	l		
	PROJECT:	Inland Rail Section 32	20	BEFORE TES	Г	
	LAB SAMPLE No.	101327		DATE: 03/11/18		
	BOREHOLE:	320-01-BH2217		DEPTH: 5.2		
	CLIENT:	Golder Associates Pty	Limited			
	PROJECT:	Inland Rail Section 32	20	AFTER TEST		
	LAB SAMPLE No.	101327		DATE: 03/11/18		
	BOREHOLE:	320-01-BH2217		DEPTH: 5.2		
<u>ptes/Remarks:</u> mple/s supplied by clien	<u>t Grap</u>	h not to scale	Tested as rec	peived.	Page 2 of 2	REP036
tes/Remarks: nple/s supplied by clien Accredite The results of th	nt Grap d for compliance with ISO/IEC e tests, calibrations, and/or me	h not to scale 2 17025 - Testing. easurements included in	Tested as ree	veived.	Page 2 of 2	REP036
tes/Remarks: mple/s supplied by clien Accredite The results of th this docume	nt Grap d for compliance with ISO/IEC e tests, calibrations, and/or me nt are traceable to Australian/	h not to scale 2 17025 - Testing. easurements included in National Standards.	Tested as rea	veived.	Page 2 of 2	REP03(

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Trilab Pty Ltd ABN 25 065 630 506

ACCURATE QUALITY RESULTS FOR TOMORROW'S ENGINEERING

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

l	UNIAXIAL COMPRESSIVE STRENGTH & DEFORMATION TEST REPORT Test Method: A5 4133.4.31 Report No. GA101329-MOD age Sample Diameter (mm) 51.8 ple Height (mm) Moisture Content (%) 4.7 Wet Density (t/m ²) 2.36 Dr. Density (t/m ²) 2.36 Dr. Density (t/m ²) 2.36 Dr. Density (t/m ²) 2.35 Dr. Density (t/m ²) 2.25 Dr. Density (t/				
Client	Golder Associates P	ty Limited	33.4.3.1	Report No. GA101	329-MOD
Average Samp	ble Diameter (mm)	51.8	Moistu	re Content (%)	4.7
Sample Heigh	t (mm)	141.1	Wet De	ensity (t/m°)	2.36
Duration of Te	st (min)	7.27	Dry De	ensity (t/m³)	2.25
Rate of Loadin	ng (MPa/min)	4.65	Beddin	g (°)	Nil
Mode of Failur	e	Conical	Test A	pparatus Kelba	1000kN Load Cell
	CLIENT:	Golder Associates Pty	Limited		
	PROJECT:	Inland Rail Section 320)	BEFORE TEST	
	LAB SAMPLE No.	101329		DATE: 3/11/10	
	BOREHOLE:	320-01-BH2217		DEPTH: 7.1	
	CLIENT:	Golder Associates Pty I	imited		
	PROJECT:	Inland Rail Section 320		AFTER TEST	
	LAB SAMPLE No.	101329	1	DATE: ozlaha	_
	BOREHOLE:	320-01-BH2217]	DEPTH: 7.1	-
Notes/Remarks:					
Sample/s supplied by	client Gr	raph not to scale	Tested as re	eceived.	Page 2 of 2 REP0360
Accrea The results o this docu	dited for compliance with ISO/IE f the tests, calibrations, and/or ument are traceable to Australia Tested at Trilab Brisbane Li	EC 17025 - Testing. measurements included in in/National Standards. aboratory.		Authorised Signatory	

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Clien	t	Golder Associ	ates Pty Limited			Repor	t No.	GA101332	2-MOD	
Addr	ess	PO Box 1734	MILTON BC QI	_D 4064		Reque	st No.	Golder_18	93795_TR	03
						Test D	ate	3/11/2018		
Proje	ct	Inland Rail Se	ction 320			Repor	t Date	6/11/2018		
Proje	ct No.	1893795		Client	Sample N	0.	320-01-B	H2217-C01	610	
Bore	Hole	320-01-BH221	17 Depth From ((m)	16.1		Depth	To (m)	16.3	
Desc	ription	С					-			
Samp	ole Type	e Single	Individual Rock Cor	e Specimen						
		Uni	axial Compressiv	ve Strength	51.9	MPa				
		You	ng's Modulus	Poiss	on Ratio					
		Tang	ent 30.1 GPa	0.	.064	from 20 °	% to 42 % (of Max UCS		
		Sec	ant 29.6 GPa	0.	064	from 0 %	to 42 % of	Max UCS		
				troop ve St		to				
	—— Axi	ial 1 — Axial 2		Diametral		Secant	Tangent		Volumetric	
	45 F									
	ŀ	λ			13		, ,			
	40 -				/					
	ŀ			<i>[</i>]			/			
	35									
	Ē									
	30		/		/					
APa)										
ess (I	25			1						
al Str	20			*						
Axia	20									
	15									
	10			/						
	5	/								
	ł									
	٥F							.		
	-500	Ó	500	10 Strain	00	1500		2000		2500
	<u> </u>			σuan - μ	~					
otes/Re	marks:									
mple/s	supplied by	/ client	Graph not to scale		Tested as re	eceived.			Page 1 of 2	REP
_	Accre	edited for compliance wit	h ISO/IEC 17025 - Testir	ıg.		Authorised	Signatory		~	
Th	e results this doc	ot the tests, calibrations, ument are traceable to A	and/or measurements in Australian/National Stand	cluded in ards.		North			NATA	
		Tested at Trilah Pric	shane Laboratory			N. Madd	ison		TECHNICAL	
	Th								Laboratory	No. 99
		A FACILITE AT COMPRATIANC CON	tacte nortarmad annu annu	to the chooitin inct	rumont or com	nnia at tha time	A TOOL INDIANA	othony of a		

Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

UNIAXIAL COMPRESSIVE STRENGTH & DEFORMATION TEST REPORT								
Client	Golder Associates Pty	Limited	100.4.0.1	Report No.	GA101332-MOD			
Average Sample D	iameter (mm)	51.7	Moistur	e Content (%)	8.1			
Sample Height (mm)		135.3	Wet Density (t/m ³) 2.32					
Duration of Test (min)		5.23	Dry Density (t/m ³) 2.15					
Rate of Loading (MPa/min)		9.92	Bedding (°) Nil		Nil			
Mode of Failure		Conical	Test Apparatus Kelba 1000kN Load Cell		ell			
-	CLIENT:	Golder Associates Pty Limited						
	PROJECT:	Inland Rail Section 32	0	BEFORE T	EST			
	LAB SAMPLE No.	101332		DATE: 3/11/18				
	BOREHOLE:	320-01-BH2217		DEPTH: 16.1	745.57			
F	CLIENT: PROJECT:	Golder Associates Pty Inland Rail Section 32	Limited	I AFTER T	FST			
+	LAR SAMPLE No	101332		DATE				
-	BOREHOLE:	320-01-BH2217		DEPTH: 16.1				
Notes/Remarks:								
Sample/s supplied by client	Gra	ph not to scale	Tested as re	ceived.	Page 2 of 2	REP0360		
Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards. Tested at Trilab Brisbane Laboratory.						No. 9926		

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

ACCURATE QUALITY RESULTS FOR TOMORROW'S ENGINEERING

ABN 25 065 630 506

Trilab Pty Ltd

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

UNIAXIAL COMPRESSIVE STRENGTH & DEFORMATION TEST REPORT								
Client	Golder Associates Pty	/ Limited	Report No. GA	101334-MOD				
Average Sample Diameter (mm) Sample Height (mm) Duration of Test (min) Rate of Loading (MPa/min) Mode of Failure		51.8 132.3 5.88 3.34 Conical	Moisture Content (%) Wet Density (t/m ³) Dry Density (t/m ³) Bedding (°) Test Apparatus Kel	Content (%) 4.6 Isity (t/m ³) 2.48 sity (t/m ³) 2.37 (°) 5 paratus Kelba 1000kN Load Cell				
	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates Pty Inland Rail Section 3 101334 320-01-BH2217	DATE: 03 111 118 DEPTH: 20.4 20					
	CLIENT:	Golder Associates P	ty Limited					
	PROJECT:	Inland Rail Section .	320 AFTER TEST					
	LAB SAMPLE No. BOREHOLE:	101334 320-01-BH2217	DATE: 03 /n (18 DEPTH: 20.4					
Notes/Remarks:								
Sample/s supplied by	client Graj	ph not to scale	Tested as received.	Page 2 of 2 REP03603				
Accre The results o this docu	dited for compliance with ISO/IE0 of the tests, calibrations, and/or m ument are traceable to Australian	C 17025 - Testing. easurements included in /National Standards.	Authorised Signatory	TECHNICAL				
	N. Maddison	Laboratory No. 9926						

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

ACCURATE QUALITY RESULTS FOR TOMORROW'S ENGINEERING

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

UNIA	XIAL COMPRES	SIVE STRENGTH	& DEFORMATION TEST	REPORT
Client	Golder Associates Pty Li	mited	Report No. G	A102053-MOD
Average Sample Dia Sample Height (mm Duration of Test (min Rate of Loading (MF Mode of Failure	ameter (mm)) n) Pa/min)	60.6 160.3 12.42 12.49 Disintegration	Moisture Content (%) Wet Density (t/m ³) Dry Density (t/m ³) Bedding (°) Test Apparatus K	1.1 2.87 2.84 Nil elba 1000kN Load Cell
	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates I Inland Rail Section 102053 320-01-BH2102	Pty Limited 320 BEFORE TE DATE: os/oz/(DEPTH: 196.1	2 ST
- 1	CLIENT:	Golder Associates P	ty Limited	
- 1	PROJECT:	Inland Rail Section	320 AFTER TES	ST
	LAB SAMPLE No. BOREHOLE:	102053 320-01-BH2102	DATE: 05/02/1 DEPTH: 196.1	9,
ites/Remarks:			Tested on monimal	
mpie/s supplied by client	Graph n	ot to scale	l ested as received.	Page 2 of 2 REP036
Accredited to The results of the te this document a	ists, calibrations, and/or meas are traceable to Australian/Nat	u2o - resting. surements included in tional Standards.	Authorised Signatory	TECHNICA

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Client Golder Associates Pty Limited Report No. GA1020 Average Sample Diameter (mm) 58.7 Moisture Content (%) Sample Height (mm) 147.6 Wet Density (t/m³) Duration of Test (min) 11.48 Dry Density (t/m³) Rate of Displacement (mm/min) 0.10 Bedding (°) Mode of Failure Shear Test Apparatus 100kN (Element Golder Associates Pty Limited PROJECT: Inland Rail Section 320 BEFORE TEST LAB SAMPLE No. 102058 DATE: 05/02/02 DEPTH: 208.4 0	PORT
Average Sample Diameter (mm) 58.7 Moisture Content (%) Sample Height (mm) 147.6 Wet Density (t/m³) Duration of Test (min) 11.48 Dry Density (t/m³) Rate of Displacement (mm/min) 0.10 Bedding (°) Mode of Failure Shear Test Apparatus 100kN (Image: CLIENT: Golder Associates Pty Limited PROJECT: Inland Rail Section 320 BEFORE TEST LAB SAMPLE No. 102058 DATE: 05/02/(9) DEPTH: 208.4 Image: Clienter content (%)	058-MOD
Sample Height (mm) 147.6 Wet Density (t/m³) Duration of Test (min) 11.48 Dry Density (t/m³) Rate of Displacement (mm/min) 0.10 Bedding (°) Mode of Failure Shear Test Apparatus 100kN (rest) Image: Shear Image: Shear Test Apparatus 100kN (rest) Image: Shear Image: Shear Image: Shear Image: Shear Image: Shear Image: Shear Ima	15.2
Duration of Test (min) 11.48 Dry Density (t/m ³) Rate of Displacement (mm/min) 0.10 Bedding (°) Mode of Failure Shear Test Apparatus 100kN (Image: CLIENT: Golder Associates Pty Limited PROJECT: Inland Rail Section 320 BEFORE TEST LAB SAMPLE No. 102058 DATE: 05/02/(rg) DEPTH: 208.4 Image: Client in the section in the section in the section in the section in the section in the section in the section in the section in the section in the section in the section in the section in the section in the section in the section is considered in the section in the section in the section is considered in the section in the section in the section is considered in the section is considered in the section is considered in the section is considered in the section is considered in the section in the section is considered in the section is considered in the section is considered in the section is considered in the section is considered in the section is considered in the section is considered in the section is considered in the section is considered in the section is considered in the section is considered in the section is considered in the section is considered in the section is considered in the section is considered in the section in the section in the section is considered in the section in the section is considered in the section in the section is considered in the section in the section in the section is considered in the section in the section in the section is considered in the section in the section in the section in the section in the section in the section in the section in the section in the section in the section in the section in	2.10
Rate of Displacement (mm/min) 0.10 Bedding (°) Mode of Failure Shear Test Apparatus 100kN (°) Image: CLIENT: Golder Associates Pty Limited PROJECT: Inland Rail Section 320 BEFORE TEST Image: LAB SAMPLE No. 102058 DATE: 05/02/09 DEPTH: 208.4 DEPTH: 208.4	1.82
Mode of Failure Shear Test Apparatus 100kN Image: Client is a structure in the image of th	Nil
CLIENT: Golder Associates Pty Limited PROJECT: Inland Rail Section 320 BEFORE TEST LAB SAMPLE No. 102058 DATE: 05/02/19 BOREHOLE: 320-01-BH2102 DEPTH: 208.4	Compression Machine
CLIENT: Golder Associates Pty Limited PROJECT: Inland Rail Section 320 BEFORE TEST LAB SAMPLE No. 102058 DATE: 05/02/19 BOREHOLE: 320-01-BH2102 DEPTH: 208.4	
LAB SAMPLE No. 102058 DATE: 05/02/19 BOREHOLE: 320-01-BH2102 DEPTH: 208.4	
BOREHOLE: 320-01-BH2102 DEPTH: 208.4	
CLIENT: Colder Associates Day Limited	
PROJECT: Inland Bail Section 320	
AFTER TEST	
LAB SAMPLE No. 102058 DATE: 05/02/19.	
Notes/Remarks:	
Sample/s supplied by client Photo not to scale Tested as received.	Page 2 of 2 REP1340
Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards. Tested at Trilab Brisbane Laboratory.	NATA

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Trilab Pty Ltd ABN 25 065 630 506

ACCURATE QUALITY RESULTS FOR TOMORROW'S ENGINEERING

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	UNIAXIAL COMPR	ESSIVE STRENGTH	& DEF	DRMATION TE	ST REPORT	
Client	Golder Associates P	ty Limited	33.4.3.1	Report No.	GA102062-MOD	
Average Sam Sample Heig Duration of T Rate of Load Mode of Failu	nple Diameter (mm) ht (mm) est (min) ing (MPa/min) ure	60.9 160.6 6.30 7.46 Conical	Moistu Wet De Dry De Beddin Test A	re Content (%) ensity (t/m ³) ensity (t/m ³) g (°) oparatus	2.5 2.63 2.57 Nil Kelba 1000kN Load (Cell
	CLIENT:	Golder Associates Pty I	imited			
	PROJECT: LAB SAMPLE No. BOREHOLE:	Inland Rail Section 320 102062 320-01-BH2102	I	AFTER TES DATE: 05/02/1 DEPTH: 214.9	T	
	CLIENT: PROJECT:	Golder Associates Pty L Inland Rail Section 320	imited			
		Infund Itan Section 520		AFTER TES	Г	
	BOREHOLE:	102062 320-01-BH2102		DATE: 05/02/1- DEPTH: 214.9	9,	
Notes/Remarks:						
Sample/s supplied b	y client Gr	aph not to scale	Tested as re	eceived.	Page 2 of 2	REP0360
Accr The results this doo	edited for compliance with ISO/IE of the tests, calibrations, and/or cument are traceable to Australia	EC 17025 - Testing. measurements included in n/National Standards.		Authorised Signatory	TEGNNICAL	
Th	nesulte of calibrations and tests pe	reformed apply only to the specific instru	ment or sam	into at the time of test unless	Laboratory	No. 9926

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

ACCURATE QUALITY RESULTS FOR TOMORROW'S ENGINEERING

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Client	Golder Associates Pty L	imited		Report No.	GA102065-MOD
Average Sam	nole Diameter (mm)	60.5	Moistu	re Content (%)	33.4
Sample Height (mm)		143.1	Wet D	ensity (t/m ³)	1 81
Duration of Te	est (min)	9 58	Dry De	ensity (t/m ³)	1.36
Pate of Displa	acoment (mm/min)	0.10	Beddir		Nil
Mode of Failure		Shear	Test A	pparatus	100kN Compression Mach
	CLIENT: PROJECT:	Golder Associates P	ty Limite	d	
		mand Ran Section	520	BEFORE T	EST
	LAB SAMPLE No. BOREHOLE:	102065 320-01-BH2102		DATE: 05/02/ DEPTH: 218	//19
	CLIENT: PROJECT:	Golder Associates P Inland Rail Section	ty Limitee 320	AFTER TH	est
	CLIENT: PROJECT: LAB SAMPLE No,	Golder Associates P Inland Rail Section 102065	ty Limited 320	AFTER TH DATE: 05/07	EST
	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates P Inland Rail Section 102065 320-01-BH2102	ty Limited 320	I AFTER TH DATE: 05 /0 2 DEPTH: 218	2 ST
	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates P Inland Rail Section 102065 320-01-BH2102	ty Limited 320	AFTER TH DATE: 05 /02 DEPTH: 218	2 ST
:es/Remarks:	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates P Inland Rail Section 102065 320-01-BH2102	ty Limited 320	AFTER TH DATE: 05 /02 DEPTH: 218	EST //g.
es/Remarks:	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates P Inland Rail Section 102065 320-01-BH2102	ty Limited 320	AFTER TH DATE: 05 /0 2 DEPTH: 218	25T 7/9
es/Remarks: ple/s supplied by Accre The results of this doc	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE: Image: Complexity of the length to diameter ratio falls out of the tests, calibrations, and/or measurement are traceable to Australian/National contents of the length to diameter of the length to diameter ratio falls out of the tests, calibrations, and/or measurement are traceable to Australian/National contents of the length to diameter of the length to diameter ratio falls out of the length to diameter r	Golder Associates P Inland Rail Section 102065 320-01-BH2102	ty Limited 320	AFTER TH DATE: 05 /02 DEPTH: 218	Page 2 of 2 REP

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	U	NIAXIAL COMPRE	SSIVE STREN Test Method: AS 4	GTH & C	EFOR 6 4133.1.1.1	MATIO	N TEST	REPOR	Г
Clien	nt	Golder Associates Pty	Limited			Report	No.	GA102070	-MOD
Addr	ress	PO Box 1734 MILTON	IBC QLD 4	1064		Reques	t No.	Golder 18	93795 TR04
						Test Da	ite	5/02/2019	
Proje	ect	Inland Rail Section 32	0			Report	Date	6/02/2019	
Proje	ect No.	1893795	Depth From	(m)	224.07		Sample	320-01-BH210	2-C22400-UCY : 320-0
Bore	Hole	320-01-BH2102	Depth To	(m)	224.22		No.	BH21	02-C22400-MOI
Desc	ription	С							
Sam	ple Type	Single Individ	ual Rock Core Speci	men					
		Uniaxial	Compressive St	rength	26.4	MPa			
		Young's Mo	dulus_	Poisson	Ratio				
		Tangent 15.	4 GPa	0.12	2	from 20 %	to 42 % o	f Max UCS	
		Secant 14.	1 GPa	0.12	3	from 0 % t	o 42 % of	Max UCS	
			Axial Stress	vs Strair	Plots				
							• *		X 1 - C
	20 T	Axiai i Axiai	2 Avg Axiai	Diame	trai	× Secant	• Tang	ent	- volumetric
	-								
	18					/	/		
	-					* /			
	16 –			/			/		
	14								
				11	. /				
MPa)	12			+					
ess (1				// *					
al Stro	10 -		/	\vdash					
Axia									
	8			/					
	6								
	-		+						
	4								
	2								
	-								
	0 <u> </u>		500		100		1	500	
			s	strain - μe					
lotes/Re	emarks:								
Sample/s	supplied by clie	ent Gra	oh not to scale	Т	ested as ree	ceived.			Page 1 of 2 (EP134)
	Accred	ited for compliance with ISO/IE	C 17025 - Testing.			Authorised Sig	gnatory		~
Th	e results of th	e tests, calibrations, and/or me	easurements included in t	this		SaMA.12-	-		NATA
	uocuille					N. Maddiso	on		TECHNICAL
		Tested at Trilab Brisbane La	boratory.						Laboratory No. 9926

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Client	Golder Associates Pty	Limited		Report No.	GA102070-MOD
Average Sample	e Diameter (mm)	59.7 Mois		re Content (%)	7.6
Sample Height (mm)		159.4 V		ensity (t/m ³)	2.43
Duration of Test (min) 2		25.15	Dry De	ensity (t/m ³)	2.25
Rate of Displace	ement (mm/min)	0.10		ng (°)	Nil
Mode of Failure		Conical	Test A	pparatus	100kN Compression Machin
	CLIENT:	Golder Associates Pt	y Limited		
	TROJECT.	Infantu Ran Section 5	20	BEFORE TE	ST
	LAB SAMPLE No.	. 102070		DATE: 05/02/	19
	BOREHOLE:	320-01-BH2102		DEPTH: 224	
	CLIENT:	Golder Associates Pt	y Limited	1	
	CLIENT: PROJECT:	Golder Associates Pt Inland Rail Section 3	y Limitee	1 AFTER TI	ST
	CLIENT: PROJECT:	Golder Associates Pt Inland Rail Section 3	y Limited 20	AFTER TH	EST
	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates Pt Inland Rail Section 3 102070 320-01-BH2102	y Limited	AFTER TH DATE: 05/02 DEPTH: 224	E ST //9.
	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates Pt Inland Rail Section 3 102070 320-01-BH2102	y Limited	AFTER TH DATE: 05/02 DEPTH: 224	2 ST
tes/Remarks:	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates Pt Inland Rail Section 3 102070 320-01-BH2102	y Limited	AFTER TH DATE: 05/02 DEPTH: 224	SST //9.
tes/Remarks: nple/s supplied by clia	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates Pt Inland Rail Section 3 102070 320-01-BH2102	y Limited	AFTER TH DATE: 05/02 DEPTH: 224	ST //٩.
tes/Remarks: mple/s supplied by clie Accredit The results of th this docum	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE: Official and the second	Golder Associates Pt Inland Rail Section 3 102070 320-01-BH2102	y Limited	AFTER TH DATE: 05/02 DEPTH: 224	Page 2 of 2 REP13

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details.

Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

UN	IAXIAL COMPRES	SSIVE STRENGTH Test Method: AS 4133.4.3	& DEF	ORMATION TES	ST REPORT	
Client	Golder Associates Pty	Limited	12 0 10 110	Report No.	GA102073-MOD	
Average Sample D	Diameter (mm)	60.8	Moist	ure Content (%)	2.9	
Sample Height (mm)		159.4 Wet De		Density (t/m ³)	2.61	
Duration of Test (n	, nin)	17.68	Dry D	ensity (t/m ³)	2.54	
Rate of Displacem	ent (mm/min)	0.10	0.10 Bedding (°)		Nil	
Mode of Failure		Shear	Test /	Apparatus	100kN Compression Machin	
	·					
	CLIENT:	Golder Associates Pty	y Limited	1	and the second second	
	PROJECT:	Inland Rail Section 3	20	BEFORE TES	T	
	LAB SAMPLE No. BOREHOLE:	102073 320-01-BH2102	4	DATE: 05/02/(4 DEPTH: 227.4/	9	
	CLIENT	Golder Associates Ptv	Limited			
	PROJECT:	Inland Rail Section 3	20	AFTER TEST	r	
	LAB SAMPLE No.	102073		DATE: 05/02/19		
- 1	BOREHOLE:	320-01-BH2102		DEPTH: 227.4		
otes/Remarks:					-	
imple/s supplied by client	Photo	not to scale	Tested as	received.	Page 2 of 2 REP134	
Accredited The results of the this documen	for compliance with ISO/IEC tests, calibrations, and/or me t are traceable to Australian/N	17025 - Testing. asurements included in lational Standards.		Authorised Signatory	NATA	
Т	ested at Trilab Brisbane Labo	pratory.		N. Maddison	Laboratory No. 9926	

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

UNI	AXIAL COMPRES	SSIVE STRENGTH	& DEF (ST REPORT
Client	Golder Associates Pty	Limited	.2 & AO 4100.	Report No.	GA102075-MOD
Average Sample Di	iameter (mm)	60.5	Moistu	re Content (%)	6.7
Sample Height (mm)		157.6 Wet Density (t/m ³)			2.35
Duration of Test (m	, in)	31.15	Drv De	2.20	
Rate of Displaceme	nt (mm/min)	0.10	0.10 Bedding (°)		Nil
Mode of Failure		Shear	Deddii	9()	I NII
		Chour	Test A	pparatus	100kN Compression Machir
	CLIENT:	Golder Associates Pty	v Limited		
	PROJECT:	Inland Rail Section 3	20	DEEODE TE	CT
		103075		DATE /	51
	BOREHOLE:	102075 320-01-BH2102		DATE: 05 02 1	9
	BOREHOLE.	520-01-0112102		DEFTH: 255.2	
		·			
	124				and the second se
					and the second se
					and the second second second second second second second second second second second second second second second
	CLIENT:	Golder Associates Pty	y Limited		
	PROJECT:	Inland Rail Section 3	20	AFTER TES	ST
	LAB SAMPLE No.	102075		DATE: 05/02/1	9.
	BOREHOLE:	320-01-BH2102		DEPTH: 233.2	
				* *	
		- Office	and a		
			MIS CA		
		2		la .	
		States and	193		
				Call State Street	
		- Alexandre			and a start of the
		Part of the second second second second second second second second second second second second second second s		-	
otes/Remarks:	A REAL PROPERTY AND				
mple/s supplied by client	Photo	not to scale	Tested as re	eceived.	Page 2 of 2 REP13
Accredited f	or compliance with ISO/IEC	17025 - Testing			^
The results of the t	ests, calibrations, and/or me	asurements included in		Authorised Signatory	NATA
this document	are traceable to Australian/N	lational Standards.		Nangelik	ACCESSION 100
Te	ested at Trilab Brisbane Labo	pratory.		N. Maddison	COMPETENCE
-		-			Laboratory No. 9926

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

UNI	AXIAL COMPRE	SSIVE STRENGTH	& DEF	ORMATION TES	ST REPORT	
Client	Golder Associates Pty	Limited	.2 & A5 413.	Report No.	GA102077-MOD	
Average Sample D	iameter (mm)	60.4	Moist	ure Content (%)	12.5	
Sample Height (mn	Sample Height (mm)		Wet [Density (t/m ³)	2.23	
Duration of Test (min) 15.82		Drv D	Dry Density (t/m^3) 1.98			
Rate of Displaceme	ate of Displacement (mm/min) 0 10 Bedding (°)		ina (°)	Nil		
Mode of Failure		Shear	Boud			
			Test /	Apparatus	100kN Compression N	<i>l</i> achine
	CLIENT:	Golder Associates Ptv	Limited			
181	PROJECT:	Inland Rail Section 32	20	BEFORE TES	T	
100	LAR SAMPLE No.	102077	_	DATE: 05/00/0		
	BOREHOLE:	320-01-BH2102		DEPTH: 238.2		
	CLIENT: PROJECT: LAB SAMPLE No.	Golder Associates Pty Inland Rail Section 32	Limited 0	AFTER TEST DATE: 05/02/00		
	BOREHOLE:	320-01-BH2102		DEPTH: 238.2		
Notes/Remarks:						
Sample/s supplied by client	Phot	o not to scale	Tested as	received.	Page 2 of 2	REP13402
Accredited f The results of the t this document	for compliance with ISO/IEC tests, calibrations, and/or mo are traceable to Australian/	17025 - Testing. easurements included in National Standards.		Authorised Signatory	TECHNICAL	
Te	ested at Trilab Brisbane Lab	oratory.		N. MAUUISON	Laboratory	No. 9926

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

U	NIAXIAL COMPRE	SSIVE STRENGTH &	DEFO	RMATION TE	ST REPORT	
Client	Golder Associates Pty	Limited	A3 4133.1.	Report No.	GA102084-MOD	
Average Sample	Diameter (mm)	51.2	Moisture	e Content (%)	16.4	
Sample Height (r	m) 140.0 Wet Density (t/m ³)		2.06			
Duration of Test	(min)	28.53	Dry Den	sity (t/m ³)	1.77	
Rate of Displace	ment (mm/min)	0.10	0.10 Bedding (°)		Nil	
Mode of Failure		Shear	Test Ap	paratus	100kN Compression Ma	achine
_	CLIENT:	Coldon Associatos Dtv I	imited			
	PROJECT:	Golder Associates Pty L Inland Rail Section 320	Imited			
	- ROULET.	mand Ran Section 520		BEFORE T	EST	
	LAB SAMPLE No.	102084		DATE: 29/01/19	10000	
	BOREHOLE:	320-01-BH2103		DEPTH: 10.6		
	CLIENT: PROJECT:	Golder Associates Pty Li Inland Rail Section 320	mited	AFTER TES	r	
	LAB SAMPLE No.	102084	D	ATE:29/01/19	at the	
	BOREHOLE:	320-01-BH2103	D	EPTH: 10.6		
<u>Votes/Remarks:</u> Sample/s supplied by clie	nt Phoi	to not to scale	ested as rec	eived	Page 2 of 2	REP134
	d for compliance with ISO/IEC	17025 Testing	5100 03 100			104
The results of th this docume	e tests, calibrations, and/or m ent are traceable to Australian/	easurements included in //National Standards.		Authorised Signatory	NATA	
	Tootod at Trilah Drichana Lat	poratory		N. Maddison	TECHNICAL	
	resteu at miab Brisbane Lac	ou atory.			Laboratory No	o. 9926

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

51		Test Method: AS 4133.4	.3.2 & AS 4133	<u>3.1.1.1</u>		
Client	Golder Associates Pty	Limited		Report No.	GA102088-MOD	
Average Sample	Diameter (mm)	51.9	Moist	ure Content (%)	8.6	
Sample Height (m	nm)	139.1	Wet D	Density (t/m ³)	2.21	
Duration of Test (min) 18.72 Dry Density (t/m ³)		ensity (t/m ³)	2 04			
Rate of Displacen	nent (mm/min)	0.10	Podding (°)		20	
		0.10	Deuui	ng ()	20	
		Conical	Test A	Apparatus	100kN Compression Mac	hir
	CLIENT:	Golder Associates P	tv Limite	d		
	PROJECT:	Inland Rail Section	320	BEFORE T	EST	
	LAB SAMPLE No.	102088		DATE: 30/01	19.	
_	BOREHOLE:	320-01-BH2103		DEPTH: 19.2	/ / (.*	
	CLIENT: PROJECT:	Golder Associates P	ty Limited	1		
		manu run Section		AFTER TE	ST	
	LAB SAMPLE No.	102088		DATE: 30 /01/	/9-	
- 1	BOREHOLE:	320-01-BH2103		DEPTH: 19.2		
tes/Remarks:						
mple/s supplied by clien	nt Phot	o not to scale	Tested as	received.	Page 2 of 2 RE	P13
Accredited The results of the this docume	d for compliance with ISO/IEC e tests, calibrations, and/or month nt are traceable to Australian/	5 17025 - Testing. easurements included in National Standards.		Authorised Signatory	NATA	
	Tested at Trilab Brisbane Lab	oratory.		N. Maddison	TECHNICAL Laboratory No. 9	92

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Client	Golder Associate	es Pty Limited		Report No.	GA102090-MOD
Average San	nple Diameter (mm)	51.6	Mois	sture Content (%)	11.5
Sample Height (mm)		141.7	Wet	Density (t/m ³)	2.20
Duration of T	est (min)	25.65	Dry I	Density (t/m ³)	1.97
Rate of Displ	splacement (mm/min) 0.10 Bedding (°)		5		
Mode of Failu	de of Failure Conical Test Apparatus		100kN Compression Machine		
	CLIENT	Colder Associates P	v I imite	d	
	PROJECT:	Inland Rail Section .	320		POP
		102000		BEFORE I	
	BORFHOLE	- 102090 320-01-RH2103	_	DATE: 25/01/	19.
	BOREHOLE:	320-01-BH2103		DEPTH: 24.9	
	CLIENT:	Golder Associates Pty	Limited		
	PROJECT:	Infand Kan Section 32	0	AFTER TEST	Г
	LAB SAMPLE No.	102090]	DATE: 25/01/19	
	(
otes/Remarks:	1				
otes/Remarks: ample/s supplied b	by client Pł	noto not to scale	Tested a	as received.	Page 2 of 2 REP134

 Laboratory No. 9926

 The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

 Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details.

 Trilab Pty Ltd
 ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Client	Golder Associates Pt	y Limited		Report No.	GA102101-	MOD
Average Samp	ple Diameter (mm)	51.6	Moistu	re Content (%)	10.4	4
Sample Height (mm)		94.8	Wet D	ensity (t/m ³)	2.2	2
Duration of Te	est (min)	22.02	Dry De	ensity (t/m ³)	2.0	1
Rate of Displa	icement (mm/min)	0.10	Beddir	ng (°)	5	
/lode of Failur	re	Disintegration Test A		est Apparatus 100kN Compression		pression Mach
	CLIENT:	Golder Associates Pty	Limited			
	PROJECT:	Inland Rail Section 3	20	BEFORE	TEST	
	LAB SAMPLE No.	102101		DATE: 04/0	12/19	
	BOREHOLE:	320-01-BH2203		DEPTH: 12.1	/	
	CLIENT: PROJECT:	Golder Associates Pty Inland Rail Section 3	Limited	AFTER I	TEST	
	CLIENT: PROJECT:	Golder Associates Pty Inland Rail Section 3	/ Limited 20	AFTER T	TEST	
	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates Pty Inland Rail Section 3 102101 320-01-BH2203	/ Limited 20	AFTER T DATE: 04/02 DEPTH: 12.1	T EST	
	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates Pty Inland Rail Section 33 102101 320-01-BH2203	/ Limited 20	AFTER T DATE: 04/02 DEPTH: 12.1	TEST 2/191	
ss/Remarks:	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates Pty Inland Rail Section 33 102101 320-01-BH2203	7 Limited 20	AFTER T DATE: 04/02 DEPTH: 12.1	TEST 2/19,	
<u>:s/Remarks:</u> ple/s supplied by	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates Pty Inland Rail Section 32 102101 320-01-BH2203	20 20 St to 3.0:1. Tested as re	AFTER T DATE: 04/02 DEPTH: 12.1	TEST 2/191	Page 2 of 2 REF
<u>s/Remarks:</u> ple/s supplied by Accre The results c this docu	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates Pty Inland Rail Section 3 102101 320-01-BH2203	20 20 5:1 to 3.0:1. Tested as re	AFTER T DATE: 04/02 DEPTH: 12.1	TEST	Page 2 of 2 REF

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details.

Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	UNIAXIAL COMPRE	ESSIVE STRENGTH	& DEFORMAT	ION TEST REPORT
Client	Golder Associates Pty	/ Limited	Report	rt No. GA102104-MOD
Average Samp	ole Diameter (mm)	51.7	Moisture Conten	t (%) 1.6
Sample Heigh	Sample Height (mm) 140.6		Wet Density (t/m	³) 2.54
Duration of Te	Duration of Test (min) 31.23		Drv Density (t/m	3) 2.49
Rate of Displacement (mm/min)		0.10	Bedding (°)	Nil
Mode of Failur	е	Conical	Test Apparatus	100kN Compression Machine
	CLIENT:	Golder Associates Pty	Limited	
	PROJECT:	Infand Kan Section 52	BE	FORE TEST
	LAB SAMPLE No.	102104	DATE:	05/02/19,
	BOREHOLE:	320-01-BH2203	DEPTH	: 19.6
	CLIENT:	Golder Associates Pty	Limited	
	PROJECT:	Inland Rail Section 32	0 AF	TER TEST
	LAB SAMPLE No.	102104	DATE:	05/02/19.
	BOREHOLE:	320-01-BH2203	DEPTH	19.6
otes/Remarks:				
ample/s supplied by	client Pho	to not to scale	l ested as received.	Page 2 of 2 REP134
	dited for compliance with ISO/IE0	C 17025 - Testing.	Authorise	d Signatory
Accree The results o this docu	of the tests, calibrations, and/or mument are traceable to Australian	neasurements included in /National Standards.	Na/14,11	

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

UNIAXIA		SIVE STRENGTH Test Method: AS 4133.4.	8 D	EFORMATION	N TEST REPORT
Client	Golder Associate	es Pty Limited		Report No.	GA102114-MOD
Average Sam	ple Diameter (mm)	51.9	Moi	sture Content (%)	8.0
Sample Heig	ht (mm)	142.2	We	t Density (t/m ³)	2.25
Duration of T	est (min)	31.85	Dry	Density (t/m ³)	2.08
Rate of Displa	acement (mm/min)	0.10	Bed	lding (°)	35
Mode of Failu	ire	Shear	Test Apparatus 10		100kN Compression Machine
	CLIENT.	Colden Associates Di	. Timite		
	PROJECT:	Inland Rail Section 3	20	d	
				BEFORE TH	EST
	LAB SAMPLE No	. 102114		DATE: 25/01/	19
	BOREHOLE:	320-01-BH2207		DEPTH: 18.1	Contraction of the
	CLIENT: PROJECT:	Golder Associates Pty Inland Rail Section 320	Limited	AFTER TES	r
	LAB SAMPLE No.	102114		DATE: 25/01/19	
	BOREHOLE:	320-01-BH2207		DEPTH: 18.1	
Notes/Remarks:					
Sample/s supplied b	y client P	hoto not to scale	Tested	as received.	Page 2 of 2 REP13402
Accredit The results of tl this docum	ed for compliance with ISO/I he tests, calibrations, and/or ent are traceable to Australia Tested at Trilab Brisbane L	EC 17025 - Testing. measurements included in an/National Standards. aboratory.		Authorised Signatory	TECHNICAL TECHNICAL Laboratory No. 9926

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Client	Golder Associates Pty	/ Limited		Report No.	GA102121-MOD
Average Sample	e Diameter (mm)	51.8	Moistu	re Content (%)	5.7
Sample Height	(mm)	137.4	Wet D	ensity (t/m ³)	2.10
Duration of Test (min)		16.73	Drv De	ensity (t/m ³)	1.99
Rate of Displacement (mm/min)		0.10	Beddir	na (°)	Nil
Mode of Failure		Conical	al Test Apparatus 100kl		100kN Compression Mach
	CLIENT:	Golder Associates P	ty Limited	1	
	PROJECT:	Inland Rail Section :	320	BEFORE	TEST
	LAR SAMPLE No	102121		DATE: 01/02	1.0
	BOREHOLE:	320-01-BH2215		DEPTH: 10.1	419
	1				
		ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL	State State		and the second
			1 Alexan		
		NAME OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A		-	
					and the second second second second second second second second second second second second second second second
	CLIENT	Golder Associates Pt	v Limited		
	PROJECT:	Inland Rail Section 3	320	AFTER TI	CST
				DATE: OF OF	10
	LAB SAMPLE No.	102121 220 01 BH2215		DEPTH: 10.1	-/ 19
	BOREHOLE:	320-01-BH2215		DEI III. IO.I	
			4		
		- Kanthannan		- Contraction	
					un the second
				Lefter March	
		- Louisean-			10-10-13-14 1
		The second second	All Anna		1
		Contraction of the			
es/Remarks:	an angener a serie a serie a serie a serie a serie a serie a serie a serie a serie a serie a serie a serie a s				
nple/s supplied by cli	lient Pho	to not to scale	Tested as re	eceived.	Page 2 of 2 REP
Accredi	ited for compliance with ISO/IE0	C 17025 - Testing.		Authorised Signatory	~
The results of this docun	the tests, calibrations, and/or ment are traceable to Australian	easurements included in /National Standards.		NaMAIL	
	Tootod at Trilah Driahar - L-I			N. Maddison	TECHNICAL COMPETENCE
	i ested at Trilab Brisbane Lab	poratory.			Laboratory No. 001

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details.

Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

A II		Test Method: AS 4133.4.3	.2 & AS 4133.	1.1.1	
Client	Golder Associates P	ty Limited		Report No.	GA102125-MOD
Average Sample	e Diameter (mm)	52.0	Moistu	re Content (%)	3.1
Sample Height ((mm)	140.0	Wet De	ensity (t/m ³)	2.40
Duration of Test	t (min)	22.53	Dry Density (t/m ³)		2.32
Rate of Displacement (mm/min)		0.10	Beddin	ng (°)	10
Mode of Failure		Conical	Test A	pparatus	100kN Compression Machin
_	CLIENT:	Golder Associates Pty	Limited		
	PROJECT:	Inland Rail Section 32	20	BEFORE T	TEST
	LAB SAMPLE No.	102125		DATE: 01/02	2/19
	BOREHOLE:	320-01-BH2215		DEPTH: 19.6	
		State of Constant			
		一,此是我保护的。			1000
					100 Mar
					1000
	CLIENT.	Coldor Associates Ptv	Limited		
	PROJECT:	Inland Rail Section 32	0	AFTER TH	EST
	LAB SAMPLE No.	102125	1	DATE: 01/02,	119.
	BOREHOLE:	320-01-BH2215	1	DEPTH: 19.6	
	Sec. 1	an an an an an an an an an an an an an a	- turne	Contraction of the second	
	The second		and the	Color I.	
	Dec interne			Wegge	
				C.	
es/Remarks:					
nple/s supplied by cli	ent Ph	oto not to scale	Tested as re	eceived.	Page 2 of 2 REP1
Accredit	ted for compliance with ISO/IE	EC 17025 - Testing.		Authorised Signatory	~
The results of t this docum	the tests, calibrations, and/or ment are traceable to Australia	measurements included in n/National Standards		No/Malt-	NATA
				N. Maddison	TECHNICAL
	rested at Trilab Brisbane La	adoratory.			Laboratory No. 992

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	UNIAXIAL COMPR	ESSIVE STRENGTH	& DEF	ORMATION TE	ST REPORT		
Client	Golder Associates P	ty Limited	2 & AS 4133	Report No.	GA102133-MOD		
Average Sam	ple Diameter (mm)	51.8	Moistu	ure Content (%)	4.4		
Sample Height (mm)		1/1 /	Wet D	Density (t/m^3)	2 30		
Duration of Te	et (min)	26.13		ensity (t/m^3)	2.00		
Pate of Displa	vcement (mm/min)	0.10	Boddi	na (°)	2.23	20	
		Conicol	Deuui	Bedding ()		20	
WOULE OF Failur		Conical	Test A	Apparatus	100kN Compression	Machine	
	CLIENT:	Golder Associates Pty	Limited	1			
	PROJECT:	Inland Rail Section 32	0	BEFORE T	EST		
	LAB SAMPLE No.	102133		DATE: 01/02	2/19		
	BOREHOLE:	320-01-BH2216		DEPTH: 15.1			
	CLIENT: PROJECT:	Golder Associates Pty Inland Rail Section 32	Limited	AFTER TE	ST		
	LAB SAMPLE No.	102133		DATE: 01/02	/19		
		20001-DH2210					
Notes/Remarks:							
Sample/s supplied by	client Ph	oto not to scale	Tested as r	received.	Page 2 of 2	REP13402	
Accre The results o this doce	dited for compliance with ISO/IE of the tests, calibrations, and/or ument are traceable to Australia	EC 17025 - Testing. measurements included in n/National Standards.		Authorised Signatory	NATA		
	rested at Trilab Brisbane La	adoratory.			Laborato	ry No. 9926	

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details.

Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	UNIAXIAL COMPR	RESSIVE STRENGTH &	DEF		REPORT		
Client	Golder Associates F	Pty Limited	x AU 4133.	Report No. GA ²	102147-MOD		
Average Sam	ple Diameter (mm)	51.8	Moistu	I re Content (%)	4.2		
Sample Heigh	Sample Height (mm) 141.7		Wet De	ensity (t/m ³)	2.40		
Duration of Te	est (min)	28.10	Dry De	ensity (t/m ³)	2.30		
Rate of Displa	acement (mm/min)	0.10	Beddin	ng (°)	30		
Mode of Failure		Conical		Test Apparatus 100kN		Compression Machine	
	CLIENT:	Golder Associates Pty L	imited				
	PROJECT:	Inland Rail Section 320		BEFORE TEST			
	LAB SAMPLE No.	102147		DATE: OL Tos Lig			
	BOREHOLE:	320-01-BH2301		DEPTH: 14.8			
	CLIENT: PROJECT: LAB SAMPLE No.	Golder Associates Pty Li Inland Rail Section 320 102147	mited	AFTER TEST DATE: 01/02/19			
	BOREHOLE:	320-01-BH2301	, I	DEPTH: 14.8			
lotes/Remarks:							
ample/s supplied by	client P	hoto not to scale T	ested as re	eceived.	Page 2 of 2	REP134	
Accre The results o this doc	edited for compliance with ISO/I of the tests, calibrations, and/or ument are traceable to Australia	EC 17025 - Testing. measurements included in an/National Standards.		Authorised Signatory	NATA		
	Tested at Trilab Brisbane L	aboratory.		N. Maddison	Laboratory 1	No. 9926	

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Client	Coldon Accordet - D	Test Method: AS 4133.4.3.	2 & AS 4133.	1.1.1	
Client	Golder Associates P	rty Limited		Report No.	GA102150-MOD
Average Sam	ple Diameter (mm)	51.8	Moistu	re Content (%)	6.0
Sample Heigh	nt (mm)	142.5	Wet D	ensity (t/m ³)	2.35
Duration of Test (min) 29.8		29.87	Dry De	ensity (t/m³)	2.21
Rate of Displa	acement (mm/min)	0.10	Beddir	ng (°)	Nil
Mode of Failure		Conical	Test A	pparatus	100kN Compression Machin
	CLIENT:	Golder Associates Ptv I	imited		
	PROJECT:	Inland Rail Section 320)	DEFODE TE	C/T
		100100		BEFORE IE	51
	LAB SAMPLE No.	102150 320_01_BH2301		DATE: 01/02/1	7 .
	CLIENT	Golder Associates Ptv	Limited		
	CLIENT: PROJECT:	Golder Associates Pty Inland Rail Section 320	Limited	AFTED TE	CTT
	CLIENT: PROJECT:	Golder Associates Pty Inland Rail Section 320	Limited	AFTER TE	ST
	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates Pty Inland Rail Section 320 102150 220.01 RH2201	Limited	AFTER TE: DATE: Or Joz/14 DEPTH: 191	ST 7.
	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates Pty Inland Rail Section 320 102150 320-01-BH2301	Limited 0	AFTER TE: DATE: Or forfit DEPTH: 18.1	ST ?.
	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates Pty Inland Rail Section 320 102150 320-01-BH2301	Limited 0	AFTER TE: DATE: Or for for DEPTH: 18.1	ST
<u>;es/Remarks:</u>	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates Pty Inland Rail Section 320 102150 320-01-BH2301		AFTER TE DATE: O O O O	
es/Remarks: nple/s supplied by	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates Pty Inland Rail Section 320 102150 320-01-BH2301	Limited 0	AFTER TE DATE: Or for for DEPTH: 18.1	ST
es/Remarks: nple/s supplied by Accre The results do this do	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates Pty Inland Rail Section 320 102150 320-01-BH2301	Limited 0	AFTER TE DATE: 0/0// DEPTH: 18.1	ST Page 2 of 2 REP1:

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	Golder Associates	Pty Limited		Report No.	GA102155-MOD
Average Samp	ble Diameter (mm)	51.1	Moist	ture Content (%)	7.7
Sample Height (mm)		141.9 Wet Density (t/m ³)		2.22	
Duration of Test (min)		28.40	Dry D	Density (t/m ³)	2.06
Rate of Displacement (mm/min)		0.10 Bedding (°)		25	
Mode of Failure		Shear	Test Apparatus 1		100kN Compression Machine
	CLIENT:	Golder Associates Pty	Limited		
_	PROJECT:	Inland Rail Section 32	0	BEFORE TE	ST
	LAB SAMPLE No.	102155		DATE: 25/01/19	
_	BOREHOLE:	320-01-BH2302		DEPTH: 3.1	
	CLIENT:	Golder Associates Pty	Limited	1	
- 1	PROJECT:	Inland Rail Section 32	20	AFTER TE	ST
	LAB SAMPLE No.	102155		DATE: 25/01/1	19.
- 1	BOREHOLE:	320-01-BH2302		DEPTH: 3.1 /	
					and the second second second second second second second second second second second second second second second
				6	
<u>tes/Remarks:</u>	client Pho	to not to scale	Tested as	a received	Page 2 of 2 REP 12
otes/Remarks: umple/s supplied by Accredited	client Pho for compliance with ISO/IFC	to not to scale	Tested as	s received.	Page 2 of 2 REP13

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	Golder Associate	s Pty Limited		Report No.	GA102158-MOD
Average Sar	nple Diameter (mm)	51.9	Moist	ure Content (%)	7.2
Sample Height (mm)		140.3 Wet D		Density (t/m ³)	2.22
Duration of Test (min)		27.95 Di		Density (t/m ³)	2.08
Rate of Displacement (mm/min)		0.10 Bedd		ing (°)	10
Mode of Failure		Conical	Test	Apparatus	100kN Compression Machine
	CLIENT:	Golder Associates Pty I	imited		
	PROJECT:	Inland Rail Section 320		BEFORE TE	ST
	LAB SAMPLE No.	102158		DATE: 2 5/01/	9
	BOREHOLE:	320-01-BH2302		DEPTH: 7.1	
	CLIENT:	Golder Associates Pty I	imited		
	PROJECT:	Inland Rail Section 320	Inned	AFTER TES	ST
	LAB SAMPLE No.	102158		DATE: 25/01/19	
	BOREHOLE:	320-01-BH2302		DEPTH: 7.1	
	BOREHOLE:	320-01-BH2302		DEPTH: 7.1	
<u>>tes/Remarks:</u>	BOREHOLE:	320-01-BH2302		DEPTH: 7.1	

 Laboratory No. 9926

 The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

 Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details.

 Trilab Pty Ltd
 ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Client Cold	er Associator	s Pty Limited		D ()	
Cheffit Golde		s F ty Linnied		Report No.	GA102162-MOD
Average Sample Dia	meter (mm)	51.0	Mois	ture Content (%)	8.2
Sample Height (mm)		142.5 Wet Density (t/m ³)		2.25	
Duration of Test (min)		31.80	Dry D	Density (t/m³)	2.08
Rate of Displacemen	t (mm/min)	0.10 Bedding (°)		ling (°)	5
Mode of Failure		Shear	Test	Apparatus	100kN Compression Machine
CLIE	NT:	Golder Associates Ptv	Limited		
PRO	JECT:	Inland Rail Section 32	20	DEEODE TE	(CTT
LABS	SAMPLE No.	102162	_	BEFORE IE	.51
BOR	EHOLE:	320-01-BH2302		DEPTH: 25/01/1	9
		520-01-5112502		DEI III. 12.1	
		KIND PROVIDENCE		ANTEREST	1000
		ESSE MUSIC			Contraction of the local division of the loc
1000		Statistics and the			
and the second		State Barris			1
Co. Down		E STATUTE STATUTE			
a strength					
					1000000
CLIE	NT:	Golder Associates Pty	Limited		
CLIE PROJ	INT: JECT:	Golder Associates Pty Inland Rail Section 32	Limited	AFTER TE	ST
CLIE PROJ LAB S	INT: JECT: SAMPLE No.	Golder Associates Pty Inland Rail Section 32	Limited	AFTER TE	ST
CLIE PROJ LAB S BORI	ENT: JECT: SAMPLE No. EHOLE:	Golder Associates Pty Inland Rail Section 32 102162 320-01-BH2302	Limited	AFTER TES DATE: 25/01/10 DEPTH: 12.1	ST
CLIE PROJ LAB S BORI	NT: JECT: SAMPLE No. EHOLE:	Golder Associates Pty Inland Rail Section 32 102162 320-01-BH2302	Limited	AFTER TE: DATE: 25/01/10 DEPTH: 12.1	ST
CLIE PROJ LAB S BORI	NT: JECT: SAMPLE No. EHOLE:	Golder Associates Pty Inland Rail Section 32 102162 320-01-BH2302	Limited	AFTER TE: DATE: 25/01/10 DEPTH: 12.1	ST
CLIE PROJ LAB S BORI	INT: JECT: SAMPLE No. EHOLE:	Golder Associates Pty Inland Rail Section 32 102162 320-01-BH2302	20	AFTER TES DATE: 25/01/10 DEPTH: 12.1	ST
CLIE PRO. LAB S BOR	NT: JECT: SAMPLE No. EHOLE:	Golder Associates Pty Inland Rail Section 32 102162 320-01-BH2302	20	AFTER TE: DATE: 25/01/10 DEPTH: 12.1	ST
CLIE PRO. LAB S BORI	INT: JECT: SAMPLE No. EHOLE:	Golder Associates Pty Inland Rail Section 32 102162 320-01-BH2302	20	AFTER TES DATE: 25/01/10 DEPTH: 12.1	ST
CLIE PRO. LAB S BORI	NT: JECT: SAMPLE No. EHOLE:	Golder Associates Pty Inland Rail Section 32 102162 320-01-BH2302	20	AFTER TE: DATE: 25/01/10 DEPTH: 12.1	ST
CLIE PRO. LAB S BORI	INT: JECT: SAMPLE No. EHOLE:	Golder Associates Pty Inland Rail Section 32 102162 320-01-BH2302	20	AFTER TES DATE: 25/01/10 DEPTH: 12.1	ST
CLIE PRO. LAB S BORI	INT: JECT: SAMPLE No. EHOLE:	Golder Associates Pty Inland Rail Section 32 102162 320-01-BH2302	Limited 20	AFTER TE: DATE: 25/01/10 DEPTH: 12.1	ST
CLIE PRO. LAB S BORI	INT: JECT: SAMPLE No. EHOLE:	Golder Associates Pty Inland Rail Section 32 102162 320-01-BH2302	20	AFTER TES DATE: 25/01/10 DEPTH: 12.1	ST
CLIE PRO. LAB S BORI	INT: JECT: SAMPLE No. EHOLE:	Golder Associates Pty Inland Rail Section 32 102162 320-01-BH2302	20	AFTER TES DATE: 25/01/10 DEPTH: 12.1	ST
CLIE PRO. LAB S BORI	INT: JECT: SAMPLE No. EHOLE:	Golder Associates Pty Inland Rail Section 32 102162 320-01-BH2302	Limited 20	AFTER TES DATE: 25/01/10 DEPTH: 12.1	ST
tes/Remarks:	NT: JECT: SAMPLE No. EHOLE:	Golder Associates Pty Inland Rail Section 32 102162 320-01-BH2302	Limited 20	AFTER TES DATE: 25/01/10 DEPTH: 12.1	ST
tes/Remarks: nple/s supplied by client	INT: JECT: SAMPLE No. EHOLE:	Golder Associates Pty Inland Rail Section 32 102162 320-01-BH2302	Limited 20	AFTER TES DATE: 25/01/10 DEPTH: 12.1	ST
tes/Remarks: mple/s supplied by client Accredited for comp The results of the tests, cal	ENT: JECT: SAMPLE No. EHOLE: HOLE: Pho diance with ISO/IEd librations, and/or m	Golder Associates Pty Inland Rail Section 32 102162 320-01-BH2302	Limited 20	AFTER TEX DATE: 25/01/10 DEPTH: 12.1	ST
tes/Remarks: mple/s supplied by client Accredited for comp The results of the tests, cal this document are trace	ENT: JECT: SAMPLE No. EHOLE: Photosoft of the second secon	Golder Associates Pty Inland Rail Section 32 102162 320-01-BH2302	Limited 20	AFTER TES DATE: 25/01/10 DEPTH: 12.1	ST

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Average Samp Sample Heigh Duration of Te Rate of Displa Mode of Failur	ole Diameter (mm) t (mm) st (min) cement (mm/min) re CLIENT: PROJECT:	51.3 141.2 21.23 0.10 Shear Golder Associates Ptv	Moiste Wet D Dry D Beddi Test A	ure Content (%) Density (t/m ³) ensity (t/m ³)	4.7 2.22 2.12 45
Average Samp Sample Heigh Duration of Te Rate of Displa Mode of Failur	ole Diameter (mm) t (mm) st (min) cement (mm/min) re CLIENT: PROJECT:	51.3 141.2 21.23 0.10 Shear Golder Associates Ptv	Moiste Wet D Dry D Beddi Test A	ure Content (%) Density (t/m ³) ensity (t/m ³) ing (°)	4.7 2.22 2.12 45
Sample Heigh Duration of Te Rate of Displa Mode of Failur	t (mm) st (min) cement (mm/min) re <u>CLIENT:</u> PROJECT:	141.2 21.23 0.10 Shear Golder Associates Ptv	Wet D Dry D Beddi Test A	Density (t/m ³) ensity (t/m ³) ing (°)	2.22 2.12 45
Duration of Te Rate of Displa Mode of Failur	st (min) cement (mm/min) e CLIENT: PROJECT:	21.23 0.10 Shear Golder Associates Ptv	Dry D Beddi Test A	ensity (t/m ³) ing (°)	2.12 45
Rate of Displa Mode of Failur	cement (mm/min) re CLIENT: PROJECT:	0.10 Shear Golder Associates Ptv	Beddi Test A	ing (°)	45
Mode of Failur	CLIENT: PROJECT:	Shear Golder Associates Ptv	Test A		
	CLIENT: PROJECT:	Golder Associates Ptv		Apparatus	100kN Compression Machine
	PROJECT:	Golder Associates Fiv	Limited	and the second states	
		Inland Rail Section 32	0	DEFODE TE	
	T + D C + M DY D M			BEFORE TE	ST
	LAB SAMPLE No.	102165 320.01 PH2202		DATE: 25/01/19	
	BOREHOLE:	320-01-BH2302		DEPTH: 17.1	
		ALL CONTRACTOR			
4	CLIENT				
	PROJECT:	Golder Associates Pty I	Limited		
	- noule II	finand Ran Section 520		AFTER TES	T
	LAB SAMPLE No.	102165	1	DATE: 25/01/19.	
	BOREHOLE:	320-01-BH2302	1	DEPTH: 17.1	
		In the second second second second second second second second second second second second second second second	tota deficie		
		The Street of		Sale II	Contraction of the local division of the loc
	1	THE REAL PROPERTY AND A DECIMAL OF A DECIMAL		C. C. C. C. C. C. C. C. C. C. C. C. C. C	
	1			A REAL PROPERTY OF	and the second second
		A Same Berg		1	Contraction of the
					ALL STREET
otes/Remarks:					
otes/Remarks:	client DL	ato not to scale	Tootod or	received	Dage 2 of 2 DED
otes/Remarks: mple/s supplied by	client Ph	oto not to scale	Tested as	received.	Page 2 of 2 REP
<u>tes/Remarks:</u> mple/s supplied by Accredited The results of the	client Ph d for compliance with ISO/IE e tests, calibrations, and/or n	oto not to scale C 17025 - Testing. neasurements included in	Tested as	received.	Page 2 of 2 REP

 Laboratory No. 9926

 The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

 Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details.

 Trilab Pty Ltd
 ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

UNIAXIA	AL COMPRESS	IVE STRENGTH Test Method: AS 4133.4.3.	& DE	FORMATION	N TEST RE	PORT
Client	Golder Associates	s Pty Limited		Report No.	GA102168-N	IOD
Average San	ple Diameter (mm)	51.7	Moist	ure Content (%)	3.6	
Sample Heig	ht (mm)	141.2	Wet [Density (t/m ³)	2.47	
Duration of Test (min)		28.03	Dry Density (t/m ³)		2.39	
Rate of Displ	acement (mm/min)	0.10 Beddir		ing (°)	Nil	
Mode of Failu	ure	Conical	Test /	Apparatus	100kN Comp Machine	pression
	CLIENT	Colden Associates Dt.	T 2			
	PROJECT:	Inland Rail Section 32	20			
				BEFORE TI	EST	
	LAB SAMPLE No.	102168 320.01.01/2202		DATE: 25/01/	(9.	
	BOREHULE:	320-01-BH2302		DEPTH: 24		
	CLIENT:	Golder Associates Pty	Limited			
	PROJECT:	Inland Rail Section 32	20	AFTER TE	ST	
	LAB SAMPLE No.	102168		DATE: 25/61	/19	
	BOREHOLE:	320-01-BH2302		DEPTH: 24		
				-		
		White		in the second		
		La contraction de	- 10 4			
		State and France	and the second second		The second second	
			E A	- Call		
		and the second second				
					1200 3	
Notes/Remarks:						
Sample/s supplied b	by client Pho	oto not to scale	Tested as	received.	Page	2 of 2 REP13402
Accredit The results of t this docum	ed for compliance with ISO/IEC he tests, calibrations, and/or m ent are traceable to Australian	C 17025 - Testing. leasurements included in /National Standards.		Authorised Signatory	N	TA
	Tested at Trilab Brisbane Lab	poratory.		N. Maddison	Labo	oratory No. 9926

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	UNIAXIA	L COMPRESSIVE ST Test Method: AS 4133 4		TEST REPORT	
Client Golder	Associates Pty Limited	. 551 metriou. Au 4103.44		Report No.	GA102200-UCS
				Request No.	1893795_TR01
Address PO Box	ress PO Box 1734 MILTON BC QLD 4064			Test Date	22/01/2019
				Report Date	23/01/2019
Project Inland Rail	Section 320			Project No	1893795
Bore Hole:	320-01-BH2101	Depth F		Depth From (m)	96.64
Client Sample No.	320-01-BH2101			Depth To (m)	96.81
Description	C	Toot Dot			
		Test Dei			
Specimen Length (mm)		161.1	Moisture C	Content (%)	3.3
Specimen Diameter (mm)		60.7	Wet Densi	ty (t/m³)	2.59
Mode of Failure		Shear	Dry Densit	sy (t/m ³)	2.50
Test Duration (Min:Sec)		7:11			
		UCS (MPa)		39.4	
		Before and Aft	er Photo's		
	CLIENT:	Golder Associates Pty	Limited		
	PROJECT:	Inland Rail Section 3	20	BEFORE TEST	
	LAB SAMPLE No.	102200	1	DATE: 22/ou/in	
	BOREHOLE:	320-01-BH2101	1	DEPTH: 96.8	
	CLIENT:	Golder Associates Pty	Limited		
	PROJECT;	Inland Rail Section 32	20	AFTER TEST	
	LAB SAMPLE No.	102200	D	ATE: 22/01/19	
	BOREHOLE:	320-01-BH2101	D	EPTH: 96.8	1
			A.		
TES/REMARKS: red and tested as received mple/s supplied by the client		Test Apparatus - Kelba 1000 kN	Load Cell		Photo not to scale Page: 1 of 1 REP027
Accredited for of The results of the tests, calibrat traceable	compliance with ISO/IEC 17025 - tions, and/or measurements inclu e to Australian/National Standard	Testing. ded in this document are s.	New	thorised Signatory	
Teste	ed at Trilab Brisbane Laboratory.				COMPETENCE

Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

		Tank Markards AD 4400			
Client Golder	Associates Pty Limited	i est method: AS 4133	0.4.2.1 & AS 413	Report No.	GA102206-UCS
				Request No.	1893795_TR01
Address PO Box	ox 1734 MILTON BC QLD 4064		Test Date	22/01/2019	
				Report Date	23/01/2019
Project Inland Ra	I Section 320			Project No	1893795
Bore Hole:	320-01-BH2101			Depth From (m)	103.1
Client Sample No.	320-01-BH2101			Depth To (m)	103.26
Description	С	Test D	etails		
Specimen Length (mm)		161.0	Moistu	re Content (%)	11
Specimen Diameter (mm)		60.8	Wet Dr	$\frac{1}{2} \frac{1}{2} \frac{1}$	2.81
Mode of Failure		Disintegration		$ansity (t/m^3)$	2.01
		0.29	Diy De		2.70
Test Duration (Min.Sec)		9.30 UCS (MPa)		150	
		Before and A	After Photo)'e	
	(married and a second s				
	CLIENT:	Golder Associates I	Pty Limite	bd	
	PROJECT:	infand Rail Section	1320	BEFORE TEST	
	LAB SAMPLE No.	102206		DATE: 22/01/19	
	BOREHOLE:	320-01-BH2101		DEPTH: 103.1	
	CLIENT:	Golder Associates P	Pty Limite	d	
	CLIENT: PROJECT:	Golder Associates P Inland Rail Section	Pty Limite 320	d AFTER TEST	
	CLIENT: PROJECT: LAB SAMPLE No.	Golder Associates P Inland Rail Section 102206	Pty Limite 320	d AFTER TEST DATE: 22/0//9	
	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates P Inland Rail Section 102206 320-01-BH2101	Pty Limite 320	d AFTER TEST DATE: 22/0//9 DEPTH: 103.1	
	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates P Inland Rail Section 102206 320-01-BH2101	rty Limite 320	d AFTER TEST DATE: 22/0//9 DEPTH: 103.1	
DTES/REMARKS: DTES/REMARKS: Dred and tested as received	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates P Inland Rail Section 102206 320-01-BH2101	^r ty Limite 320	d AFTER TEST DATE: 2000/0 DEPTH: 103.1	Photo not to scale
DTES/REMARKS: pred and tested as received mple/s supplied by the client	CLIENT: PROJECT: LAB SAMPLE No. BOREHOLE:	Golder Associates P Inland Rail Section 102206 320-01-BH2101	Pty Limite 320	d AFTER TEST DATE: 24/0/0 DEPTH: 103.1	Photo not to scale Page: 1 of 1 REPOZIO
DTES/REMARKS: pred and tested as received mple/s supplied by the client Accredited for The results of the tests, calibra traceab	CLIENT: PROJECT: LAB SAMPLE No. BOREHIOLE:	Golder Associates P Inland Rail Section 102206 320-01-BH2101 Test Apparatus - Kelba 1000 k Testing. ded in this document are s.	Ty Limite 320 KN Load Cell	AFTER TEST DATE: DEPTIH: 103.1	Photo not to scale Page: 1 of 1 REPOZAT

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

UN	NIAXIAL COMPRESSIVE STI Test Method: AS 4133.4.2.:	RENG 2 & AS 413:	TH TEST RE	PORT
Client Go	older Associates Pty Limited		Report No.	GA102210-UCS
			Request No.	1893795_TR01
Address PC	Box 1734 MILTON BC QLD	4064	Test Date	22/01/2019
			Report Date	23/01/2019
Project	Inland Rail Section 320		Project No.	1893795
	Bore Hole		320-01-BH2101	
	Client Sample No:		320-01-BH2101	
	Depth From (m)		104.32	
	Depth To (m)		104.48	
	Description		С	
	Wet Density (t/m ³)		2.19	
	Moisture Content (%)		8.1	
	Specimen Length (mm)		161.0	
	Specimen Diameter (mm)		60.8	
	Mode of Failure		Shear	
	Rate of Displacement (mm/min)		0.1	
	Test Duration (Min:Sec)		21:38	
	CLIENT: Golder Associates PROJECT: Inland Rail Section LAB SAMPLE No. 102210 BOREHOLE: 320-01-BH2101 UCS (MPa)	Pty Limited	AFTER TEST DATE: 22/0/4 DEPTH: 104.3	
			0.00	
NOTES/REMARKS: Stored and tested as rec Sample/s supplied by the	eived e client Test Apparatus - 100kN Cor	npression	Machine	Photo not to scale Page: 1 of 1 REP13302
Accredited The results of the tests this document are Tested	for compliance with ISO/IEC 17025. , calibrations, and/or measurements included in traceable to Australian/National Standards. I at Trilab Brisbane Laboratory.	A	C. Purvis	ACCRETION

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	UNIAXIAL COMPRESSIVE ST	RENG	TH TEST RE	PORT
Client	Test Method: AS 4133.4.2 Golder Associates Ptv Limited	2.2 & AS 413	Banart No	GA102216 LICS
			Report No.	GA 1022 10-005
Address	PO Box 1734 MILTON BC QLD	4064	Test Date	22/01/2019
			Report Date	23/01/2019
Project	Inland Rail Section 320		Project No.	1893795
	Bore Hole		320-01-BH2101	
	Client Sample No:		320-01-BH2101	
	Depth From (m)		105.17	
	Depth To (m)		105.29	
	Description		С	
	Wet Density (t/m ³)		2.23	
	Moisture Content (%)		13.5	
	Specimen Length (mm)		126.1 *	
	Specimen Diameter (mm)		60.6	
	Mode of Failure		Conical	
	Rate of Displacement (mm/min)		0.1	
	Test Duration (Min:Sec)		18:04	
	CLIENT: Golder Associates PROJECT: Inland Rail Section LAB SAMPLE No. 102216 BOREHOLE: 320-01-BH2101	s Pty Limite on 320	d AFTER TEST DATE: DEPTH: 105.24	
NOTES/REMAR	K <u>S:</u>			
Stored and tester Sample/s supplie	d as received * Length t ed by the client Test Apparatus - 100kN Co	o diameter	ratio less than 2.5:1 Machine	Photo not to scale Page: 1 of 1 REP13302
A The results of this docu	ccredited for compliance with ISO/IEC 17025. the tests, calibrations, and/or measurements included in ment are traceable to Australian/National Standards.	P	Authorised Signatory	ACOREDITO FOR TECHNICAL COMPETENCE
	Tested at Trilab Brisbane Laboratory.			Laboratory No. 992

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	UNIAXIAL COMPRESSIVE ST	RENG	TH TEST RE	PORT
Client	Test Method: AS 4133.4.2 Golder Associates Pty Limited	.2 & AS 413	3.1.1.1	04400005 1100
Ollent	Colder Associates 1 ty Linned		Report No.	GA102225-UCS
Address	PO Box 1734 MILTON BC QLD	4064	Request No.	22/01/2010
			Report Date	23/01/2019
Proiect	Inland Rail Section 320		Project No.	1893795
	Bore Hole		320-01-BH2101	
	Client Sample No:		320-01-BH2101	
	Depth From (m)		109.02	
	Depth To (m)		109.22	
	Description		С	
	Wet Density (t/m ³)		2.12	
	Moisture Content (%)		9.5	
	Specimen Length (mm)		160.8	
	Specimen Diameter (mm)		60.4	
	Mode of Failure		Shear	
	Rate of Displacement (mm/min)		0.1	
	Test Duration (Min:Sec)		20:28	
	CLIENT: Golder Associate PROJECT: Inland Rail Sector LAB SAMPLE No. 102225 BOREHOLE: 320-01-BH2101	s Pty Limite on 320	AFTER TEST DATE: 22/0°//9 DEPTH: 109.02	
NOTES/REMARK	<u>(S:</u>			
Stored and tested Sample/s supplie	I as received d by the client Test Apparatus - 100kN Co	mpression	Machine	Photo not to scale Page: 1 of 1 REP13302
Ac The results of this docur	credited for compliance with ISO/IEC 17025. the tests, calibrations, and/or measurements included in ment are traceable to Australian/National Standards. Tested at Trilab Brisbane Laboratory.	А	uthorised Signatory C. Purvis	ACCEPTOR TECHNICAL COMPTICAL COMPTICAL

Petrographic Analyses Reports

Feb 2019

February 2019

Dr Rowena Duckworth MAIG, MAusIMM, FSEG

Mintex Petrological Solutions

Mobile: 0429600754 Email: rowenaduckworth@bigpond.com

Client: Chris Channon - Trilab Pty Ltd

Mintex report number: 410219

DISCLAIMER

This report has been based on data and other information provided to Rowena Duckworth, (the Consultant) by Trilab Pty Ltd (the Client). The Consultant believes that the basic assumptions are appropriate and that the interpretations are reasonable. The Consultant accepts no responsibility for the use of this report and makes no warranty, either expressed or implied, as to its accuracy.

This report is provided to Trilab Pty Ltd for the purpose of assisting its processing of silicate quarry material and should not be used or relied upon for any other purpose. The report does not constitute a legal or technical audit. Neither the whole nor any part of this report, nor any reference thereto, may be included in, or attached to any document, or used for any purpose without the Consultant's written consent to the form and context in which it appears.

With respect to the use of this report by Trilab Pty Ltd or their agents Trilab Pty Ltd shall indemnify and hold harmless the Consultant, its directors, officers, and associates against any and all losses, claims, damages, liabilities or actions to which they or any of them may become subject under any statute or at common law.

Introduction

This report details the results of transmitted light microscopy observations on one core sample GA102224 (320-01-BH2101-108.70-109.00m) submitted by Trilab Pty Ltd. Darren Richardson of Ingham Petrographics prepared a cover slipped thin section from the sample.

A full petrographic description of the section was undertaken using transmitted light microscopy and observations are listed below.

Summary

- The supplied rock is identified as a sandstone.
- 55% quartz content in the sandstone occurs as unstrained grains of crystalline quartz.
- Mica, chlorite and clays form approximately 25% of the rock.
- For engineering purposes, the sample may be summarised as:
 - Containing 55% total free silica, which is unstrained,
 - Quartz crystals occur as fine to coarse subangular to subrounded, anhedral grains between 0.3-0.5mm across, possessing a hardness of 7 on the Mohs scale, and are commonly clean.
 - Containing 58% robust and durable minerals and 25% weak minerals.
 - Predicted to be innocuous in relation to alkali silica reactivity in concrete.
 - Interpreted to be suitable for use as a source for concrete aggregate pursuant to Australian Standards 2758.1, Queensland Department of Transport and Main Roads Standards MRTS70 Fine Concrete Aggregate.
 - Contains no observable asbestiform minerals

Sample Description

The sample GA102224 / 320-01-BH2101 / 108.70-109.00m is pale brown in colour with a darker weathered surround. Grain size is fairly homogenous around 0.5mm. The interstitial cement is finer grained and softer than the sand-sized grains which form the bulk of the sample. Porosity is around 5%.

Microscopic Observations

Petrographic analysis shows that this rock this is a sedimentary clastic rock that can be classified as a *sub-arkosic arenaceous sandstone*.

It can be described as a well sorted, medium-grained sandstone with dominant quartz grains and lesser altered feldspar grains hosted in a chloritic matrix. Minor opaques are present (often with orange iron staining indicative of iron oxide/sulphide grains). Rare quartz rich lithic clasts occur. Porosity is approximately 5%.

The sandstone is composed dominantly of 55% quartz and 23% clay-altered feldspar grains. The grain size of these silicate components is 0.2-0.5mm.

Quartz occurs as discrete anhedral subrounded-subangular grains, 0.3-0.5mm across, occasionally with sutured grain boundaries, but with no evidence of strain.

Clay altered probable feldspar grains (alteration is partial to almost complete) are present as discrete anhedral grains and these range in size from 0.2-0.4mm. These make up 23% of the sample, and 20% of this is *clay* after feldspar.

Opaques make up 2% of the sample. Occasional grains of white mica (muscovite are present). The cementing matrix is composed of very fine-grained chlorite.

One 0.2mm subrounded lithic clast was observed which is composed of interlocking strained quartz grains.

Photographs and a mode based on a count of 200 widely spaced grains (Table 1) appear below.

Feb 2019

Plane polarised photomicrographs (x4) showing subrounded-subangular colourless quartz grains in fine grained cement, with dark brown altered. Dark grains are opaques.

Cross polarised photomicrograph (x4) showing the texture of sub-rounded quartz grains, clay altered feldspar and one rare strained quartz lithic clast (centre).

Feb 2019

Cross polarised photomicrograph (x10) showing nature of the fine grained chloritic matrix between the quartz grains and a fine-grained clay altered ex-feldspar grain.

A mode based on a count of 100 widely spaced grains is listed below in Table 1.

Table 1 – Modal Analysis of sample GA102224

MINERALS	MODE %	COMMENTS
Quartz	55	Anhedral, grain size from 0.3-0.5mm
Clay altered feldspar	23	Anhedral grains 0.2-0.4mm, 20% totally clay altered
Chlorite	11	Fine-grained, forms cement
Mica	4	Occasional grains, 0.2-0.4mm
Porosity	5	
Opaque phases- probable iron phases	2	Disseminated
Lithic clasts	<1	Rare
Total	100	

As defined by the Queensland Department of Main Roads Test Method (Standard Q-188) the free silica content is 55%, in the form of crystalline quartz grains.

Interpretation

Petrographic analysis indicates that the major components are quartz, clay altered feldspar and chlorite. The supplied sample is identified as a sub-arkosic arenaceous sandstone. Quartz is crystalline but not visibly strained.

For industrial applications the supplied sample can be summarised as:

- Containing 55% free silica.
- Containing 55% unstrained quartz and <1% strained crystalline quartz in rare lithic clasts and is, on these grounds, considered unlikely to cause alkali silica reactivity in concrete.
- Contains 25% weak clay, chlorite and mica

The sandstone is predicted to be suitable for use as unbound pavement materials, pursuant to Australian Standards 2758.1, Queensland Department of Transport and Main Roads Standards MRTS70.

N.B. The petrology assessment for Alkali Silica Reactivity was based on:

- ASTM C 295 Standard Guide for Petrographic Assessment of Aggregates for Concrete
- AS2758.1 2014 Aggregates and rock for engineering purposes part 1: Concrete aggregates (Appendix B)
- AS1141 Standard Guide for the Method for sampling and testing aggregates

Geochempet Services

ABN 980 6945 3445 PETROLOGICAL and GEOCHEMICAL CONSULTANTS Principals: K.E. Spring B.Sc. (Hons), MAppSc and H.M. Spring B.Sc.

5/14 Redcliffe Gardens Drive Clontarf, QLD 4019 Telephone: (07) 3284 0020

Email: info@geochempet.com www.geochempet.com

PETROGRAPHIC REPORT ON THIN SECTION LABELLED (GA102073)

prepared for

GOLDERS ASSOCIATES PTY LTD MILTON

Purchase Order: Invoice Number: Client Ref: 20051 00008781 Morgan Midgley

Issued by

K. E. Spring B.Sc.(Hons), MAppSc 1 July 2019

JUNE, 2019

Gl190601

Page 1 of 4

Thin Section Sample	e Number:	GA102073:302-01	
Borehole:	320-01-BH21	02	Depth: 227.5-227.65m
Source:	Not Provided		
Work Requested	Petrographic a	nalysis of provided thin	n section
<u>Methods</u>	Account take Assessment of Aggregates a aggregates (A	en of ASTM C295 f Aggregates for Cou und rock for engined ppendix B)	Standard Guide for <i>Petrographic</i> <i>ncrete</i> and the AS2758.1 – 2014 <i>ering purposes part 1; Concrete</i>
Identification	Richly glassy	basalt	

Description

No sample was supplied, thin section only.

A thin section was supplied and detailed microscopic examination in transmitted, polarized light was undertaken. An approximate average composition of the rock, expressed in volume percent and based on a brief count of 100 widely spaced points falling within the thin section, is:

Primary Components

- 41% plagioclase feldspar
- 39% mesostasis of brown/black glass with microlites of pyroxene and opaque oxide
- <1% opaque oxide (magnetite and/or ilmenite) as discrete grains
- 3% orthopyroxene

Secondary Minerals

- 15% yellowish smectite clay
- 1% calcite
- 1% zeolite

Microscopically, the sectioned rock is seen to display finely crystalline and glassy igneous textures of basic volcanic style. The plagioclase laths are mainly 0.05 to 0.7 mm long with small grains of pyroxene and there is an interstitial, interconnected, black to brown, glassy mesostasis with microlites of opaque oxides and pyroxenes. Irregularly-shaped incipient vesicles were originally filled by a late, fractionated glass but are now entirely replaced by yellowish-green smectite clay and anisotropic zeolite.

The sectioned rock is characterised by randomly orientated, fresh laths of twinned plagioclase feldspar and small fresh clear pyroxene grains (probably diopside) within an inter-granular and intersertal texture. A network between the pyroxene and feldspar consists of a dark mesostasis which involves microlites of pyroxene and opaque oxide set in brown to black glass. There are a few tiny equant opaque oxides (probably magnetite) scattered in the groundmass. Smectite-

JUNE. 2019

Gl190601

Page 2 of 4

altered former mafic phenocrysts and crudely prismatic groundmass grains (probably former orthopyroxene) are relatively common. Other disseminated patches of a yellowish smectite (probably after a late glass) fill angular and irregular interstitial spaces (up to about 1 mm in size), some are less commonly filled by calcite and isotropic zeolite.

An intersecting pattern of thin fracture veins are filled by late calcite, isotropic zeolite and smectite clay.

Comments and Interpretations

The supplied thin section (labelled GA102073:320-01) is interpreted to be richly glassy, pyroxene basalt, a basic volcanic rock.

The basalt originally carries two types of glass: namely, a "normal" dark, silica-poor basaltic glass within an interstitial mesostasis and a more fractionated and silica-enriched glass formed as a late component filling former incipient vesicles.

Free Silica Content

Apparently nil. The supplied sample does not carry any free crystalline silica minerals. However, it is noteworthy that this sample carried late fractionated glass, so perhaps the glass concealed a trace of cryptocrystalline or amorphous silica.

Plate 1. Digital photomicrograph at low magnification showing occurrence of patches of yellow smectite clay (after orthopyroxene and late glass) in a groundmass dominated by brown to black basaltic glass and abundant white plagioclase laths. Note the fine intersecting calcite veins in the image.

Geochempet Services

ABN 980 6945 3445 PETROLOGICAL and GEOCHEMICAL CONSULTANTS Principals: K.E. Spring B.Sc. (Hons), MAppSc and H.M. Spring B.Sc.

5/14 Redcliffe Gardens Drive Clontarf, QLD 4019 Telephone: (07) 3284 0020

Email: info@geochempet.com www.geochempet.com

PETROGRAPHIC REPORT ON THIN SECTION LABELLED (GA102075)

prepared for

GOLDERS ASSOCIATES PTY LTD MILTON

Purchase Order: Invoice Number: Client Ref: 20051 00008808 Morgan Midgley Iain Turner

K. E. Spring B.Sc.(Hons), MAppSc 1 July 2019

JUNE, 2019

Gl190602

Page 1 of 4

The material contained within this report may not be quoted other than in full. Extracts may be used only with expressed prior written approval of Geochempet Services.

Issued by

C + 100075 200 01

I nin Section Sample	<u>e Number</u> :	GA1020/5:320-01		
Borehole:	320-01-BH21	02	<u>Depth:</u> 233.0-233.	16m
Source:	Not Provideo	d		
Work Requested	Petrographic a	analysis of provided thin	n section	
<u>Methods</u>	Account take Assessment of Aggregates a aggregates (A	en of ASTM C295 f Aggregates for Cou and rock for engined ppendix B)	Standard Guide fo ncrete and the AS ering purposes par	r Petrographic 2758.1 – 2014 t 1; Concrete
Identification	Clay-cemented	d quartzose sandstone		

Description

...

No sample was supplied, thin section only.

1 1.1

A thin section was supplied and detailed microscopic examination in transmitted, polarized light was undertaken. An approximate average composition of the rock, expressed in volume percent and based on a brief count of 100 widely spaced points falling within the thin section, is:

- 35% quartz sand grains
- 1% feldspar sand grains
- 1% lithic clasts of acid volcanics
- 2% quartzite clasts
- <1% epidote grains
- 53% Illite-smectite clay matrix
- 8% siderite
- <1% ferricrete fragments
- trace carbonaceous specks

In thin section, the rock is seen to be sandstone composed of clay cemented quartz and a few feldspar grains with minor acid volcanics and quartzite clasts.

Microscopically, the rocks display fine-grained arenaceous textures with poorly-sorted and loosely packed, angular, sub-angular to less commonly sub-rounded clasts, ranging from about 0.01 to 1 mm in size.

The sandstone is texturally matrix-supported by a moderately birefringent clay of mixed illite/smectite style. The dominant detrital grains are quartz grains, most of which show unstrained to mostly mild straining. Some of the quartz have preserved rims of quartz overgrowths indicating derivation from a sandstone that has suffered at least burial metamorphism. There also a few quartzite clasts showing a moderate degree of straining and may be derived from a cratonic source. Minor blocky, detrital feldspar grains are present. Lithic clasts appear to be devitrified acid tuffaceous clasts, composed of fine-grained quartzo-

JUNE, 2019

Gl190602

Page 2 of 4

feldspathic intergrowths. A few large ferricrete or ironstone fragments (around 1 mm in size) are noted in the sandstone matrix.

The late brownish siderite forms radial aggregates or nodules (sometime enclosing a quartz grain at its centre), which shows outer rims of expelled iron oxides. These nodules are relatively common and are scattered irregular in the matrix.

Comments and Interpretations

The supplied thin section (labelled GA102075:320-01) is interpreted to be clay-cemented quartzose sandstone, a sedimentary rock.

The sandstone is dominated by an interconnected clay matrix, with predominately quartz and minor feldspar grains along with a few lithic clasts of acid volcanic and quartzite style. The partial alteration of the sandstone by carbonates is attributed to diagenetic or hydrothermal processes after initial sedimentation. These sandstones are probably fairly mature with quartz persisting while other labile minerals are degraded to clays.

Free Silica Content

About 37%.

Page 3 of 4

Plate 1. Digital photomicrograph at low magnification, plane polarised transmitted light showing abundant of quartz grains of various sizes and shapes occurring in an interconnected clay matrix. Note the brownish nodules of siderite overprinting parts of the matrix and closing some quartz grains.

Brazilian Disc - Tensile Strength

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Client Golder Assoc	Report No.	GA102207-BR			
Address PO Box 1734			4064	Tast Data	00/04/0040
			Test Date	22/01/2019	
Project Inland Rail Se	ction 320			Report Date	23/01/2019
-					
Sample No.	102207	102223			
Client ID	320-01-BH2101	320-01-BH2101			
Depth (m)	103.38-103.66	108.61-108.70			
Description	с	С			
Wet Density (t/m³)	2.83	2.02			
Moisture Content (%)	0.8	11.9			
Specimen Length (mm)	39.3	41.7			
Specimen Diameter (mm)	60.7	60.1			
Bedding Angle with Relation to Axial Plane (°)	Nil	Nil			
Bedding Parallel or Perpendicular to Direction of Loading	N/A	N/A			
Mode of Failure	Axial Splitting	Axial Splitting			
Test Duration (min:sec)	1:46	0:28			
Average Load Rate (MPa/sec)	0.086	0.004			
Load at Primary Failure (N)	34286	434			
TENSILE STRENGTH (MPa) TS = 0.636 x (^{Load} / _{Diameter x Length}) MPa	9.14	0.110			

NOTES/REMARKS:

Sample/s supplied by the client

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory

C. Purvis

REP07102

Page 1 of 1

Tested at Trilab Brisbane Laboratory.

 Laboratory No. 9926

 The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

 Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details.

 Trilab Pty Ltd
 ABN 25 065 630 506

Cerchar Abrasivity

🕓 GOLDER

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

		CERCH						
ASTM D7625 - 10 - Standard Test Method for Laboratory Determination of Abrasiveness of Rock Using the Cerchar Method					od			
Client Golder Associates Pty Limited				Repo	Report No GA102062-C		2-CERC	
				Requ	est No.	Golder 1	893795 TR04	
Address PO Box 1734 MILTON BC QLD 4064					Test Date 31/01/2019		9	
				Report Date 4/02/2019)		
Project Inl	Project Inland Rail Section 320 Sample Type Single Individ					lividual Rock		
Project No 18	Project No 1893795 Depth From (m) 214.9 Core Specimen					cimen		
Bore Hole 32	20-01-E	3H2102	Depth To (m)	215	Samp	le No	320-01-BH2 : 320-01-BH	2102-C21490-CAT 12102-C21490-
Description C			SAMPLE I	DETAILS			MOI	
Samplo Diamotor	(mm);		60.7	Moisture Content	(0/.).		1.0	
Sample Diameter	(IIIII):		70.3	Dry Density (t/m ³)	(70):)	1.8		2
	<i>.</i>	Smooth	(Saw Cut) Surface	Wet Density (t/m ³	<u>,</u>		2.05	1
ounace Type.		SHIOUIT	RESULTS O	F TESTING	1	I	2.04	T
Hardness of Tip U	Jsed	25 HRC	Hardness of Tip Used	43 HRC	Hardı	rdness of Tip Used 53		53 HRC
Average Diameter	(mm)	*CAI	Average Diameter (mm)	*CAI	Avera	ge Diamet	er (mm)	*CAI
0.06		0.55	0.04	0.36		0.00		0.00
Linear Relationship between Tip Hardness and CAI CAI = (-0.0183 x HRC) + 1.0362								
		Average	e CAI _s (HRC55) =	0.51	Corrected for S	Smooth Saw Cu	t Surface	
			Classification :	Low abrasivenes	s			
			CAI v's Har	dness Plot				
0.70	0.70							
0.60	0.60							
0.50								
0.40	= 0.40							
5 _{0.30}						$\overline{}$		
0.20								
0.10							\checkmark	
0.00							\sim	
0.00		10	20 Hardne	³⁰ ss (HRC)	40		50	60
Remarks:								
Sample/s supplied by cli	Sample/s supplied by client * CAI values corrected for smooth surface. Page: 1 of 2 REP0680					of 2 REP06801		
Accredited for c The results of the tests this document are	complianc s, calibrati traceable	e with ISO/IEC 17025 ions, and/or measuren e to Australian/Nationa	- Testing. nents included in I Standards.	Authorised S	Signatory			NATA ACCREDITED FOR
Tested at Trilab Brisbane Laboratory. C. Purvis Technical Competence Laboratory No. 99				Laboratory No. 9926				

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

ACCURATE QUALITY RESULTS FOR TOMORROW'S ENGINEERING

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

CERCHAR ABRASIVITY INDEX TEST REPORT

ASTM D7625 - 10 - Standard Test Method for Laboratory Determination of Abrasiveness of Rock Using the Cerchar Method

Client	Golder Associates Pty Limited	Report No. GA102062-CERC
	BEFORE & AFTER PHO	TOS
	CLIENT: Golder Associates Pty Lin	nited
	PROJECT: Inland Rail Section 320	BEFORE TEST
	LAB SAMPLE No. 102062	DATE: 31/01/19
	CLIENT: Golder Associates Pty Limit	red
	PROJECT: Inland Rail Section 320	AFTER TEST
	LAB SAMPLE No. 102062	DATE: 31/01/19
	BOREHOLE: 320-01-BH2102	DEPTH: 214.9
Remarks:		
Sample/s supplie	ed by client * CAI values corrected for smooth s	urface. Page: 2 of 2 REP068
Accre The results o this docu	dited for compliance with ISO/IEC 17025 - Testing. of the tests, calibrations, and/or measurements included in ument are traceable to Australian/National Standards. Tested at Trilab Brisbane Laboratory.	Authorised Signatory C. Purvis

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

ACCURATE QUALITY RESULTS FOR TOMORROW'S ENGINEERING

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	CERC	HAR ABRASIVITY			ORT		
ASTM D7625	- 10 - Standard Te	st Method for Laboratory Deter	mination of Abrasivene	ess of Rock	Using the	Cerchar Metho	d
Client Golder A	ssociates Pty I	Limited		Repo	rt No.	GA102070	-CERC
				Requ	est No.	Golder 18	93795 TR04
Address PO Box	1734 MILTON	BC QLD 4064		Test [Date	31/01/2019)
				Repo	rt Date	4/02/2019	
Project Inland R	ail Section 320			Samp	le Туре	Single Indi	vidual Rock
Project No 1893795	5	Depth From (m)	224.07			Core Spec	imen
Bore Hole 320-01-	3H2102	Depth To (m)	224.22	Samp	le No	320-01-BH2	102-C22400-CAT 2102-C22400-
Description C						MOI	
		SAMPLE I	DETAILS		[
Sample Diameter (mm):		58.6	Moisture Content	(%):		3.1	
Sample Height (mm):		65.3	Dry Density (t/m ³))		2.45	
Surface Type :	Smooth	n (Saw Cut) Surface	Wet Density (t/m ³))		2.53	
		RESULIS O	<u>F TESTING</u>			I	
Hardness of Tip Used	25 HRC	Hardness of Tip Used	43 HRC	Hardr	ness of Tip	Used	53 HRC
Average Diameter (mm)	^CAI	Average Diameter (mm)	^CAI	Averaç	ge Diamete	er (mm)	"CAI
0.07	0.66	0.04	0.37		0.00		0.00
	1	Linear Relationship betwe	en Tip Hardness and	CAI			
		CAI =	(-0.0222 x HRC)	+ 1.2362			
	Averag	e CAI. (HRC55) =	0.50	Corrected for S	smooth Saw Cu	t Surface	
	/ tronug						
		Classification :	Very low abrasiv	eness			
		CAI v's Har	cdness Plot —— Line of Best Fi	it			
0.80							
0.70							
0.60							
0.50							
S 0.40							
0.30							
0.20							
0.10							
0.00 0	10	20 Hardne	³⁰ ss (HRC)	40		50	60
Remarks:							
Sample/s supplied by client		* CAI values corrected for smoo	oth surface.			Page: 1	of 2 REP06801
Accredited for compliance The results of the tests, calibrate this document are traceable Tested at Trila	e with ISO/IEC 17025 tions, and/or measure e to Australian/Nation b Brisbane Laboratory	5 - Testing. ments included in al Standards. /.	Authorised S C. Pure	Bignatory			KATA KATA COMPTENCE

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

CERCHAR ABRASIVITY INDEX TEST REPORT

ASTM D7625 - 10 - Standard Test Method for Laboratory Determination of Abrasiveness of Rock Using the Cerchar Method

Client	Golder Associates Pty Lir	nited	Report No.	GA102070-CE	RC
		BEFORE & AFTER PHOT	<u>os</u>		
	CLIENT:	Golder Associates Pty Lim	ited		
	PROJECT:	Inland Rail Section 320	BEFORE TE	ST	
	LAB SAMPLE No.	102070	DATE: 5//01/19		
	BOREHOLE:	320-01-BH2102	DEPTH: 224		
	CLIENT: PROJECT:	Golder Associates Pty Lim Inland Rail Section 320	ited		
			AFIERIES		
	LAB SAMPLE No.	102070	DATE: 51/01 /19		
	DOREMOLE.				
Remarks:					
Sample/s supplied	by client	* CAI values corrected for smooth su	rface.	Page: 2 of 2	REP0680
Accredit The results of t this docum	ted for compliance with ISO/IEC 17025 - the tests, calibrations, and/or measurem nent are traceable to Australian/National Tested at Trilab Brisbane Laboratory.	Testing. A ents included in Standards.	C. Purvis	1.04-0-	ACCREMITED FOR TECHNICAL COMPETENCE

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	CERC	HAR ABRASIVITY			ORT	
ASTM D7625	- 10 - Standard Tes	st Method for Laboratory Deter	mination of Abrasivene	ess of Rock	Using the Cerchar Me	thod
Client Golder A	ssociates Pty I	_imited		Repo	rt No. GA1021	90-CERC
				Requ	est No. 1893795	5 TR01
Address PO Box	1734 MILTON	BC QLD 4064		Test I	Date 22/01/20	
				Repo	rt Date 23/01/20)19
Project Inland Ra	ail Section 320			Samp	le Type Single Ir	ndividual Rock
Project No 1893795		Depth From (m)	89.5		Core Sp	ecimen
Bore Hole 320-01-E	3H2101	Depth To (m)	89.65	Samp	le No 320-01-I	BH2101-CER :
Description C					320-01-	BH2101-MOI
		SAMPLE I	DETAILS		l	
Sample Diameter (mm):		60.4	Moisture Content	(%):	29	0.3
Sample Height (mm):		81.7	Dry Density (t/m ³)		1.	35
Surface Type :	Smooth	(Saw Cut) Surface	Wet Density (t/m ³)	1.	74
			<u>r iesting</u>			_
Hardness of Tip Used	25 HRC	Hardness of Tip Used	43 HRC	Hardr	ness of Tip Used	53 HRC
Average Diameter (mm)	~CAI	Average Diameter (mm)	^CAI	Averaç	ge Diameter (mm)	
0.05	0.52	0.00	0.00		0.00	0.00
		Linear Relationship betwee	en Tip Hardness and	CAI		·
		CAI =	(-0.0199 x HRC)	+ 0.9742		
	Averag	e CAI _s (HRC55) =	0.36	Corrected for S	smooth Saw Cut Surface	
		Classification :	Very low abrasiv	eness		
		CAI v's Har	dness Plot			
0.60		Test Data	Line of Best F	it		
0.50		×				
0.40						
0.30						
0.20						
0.10						
0.00						
-0.10						
-0.20						
0	10	20 Hardne	30 ss (HRC)	40	50	60
Remarks:						
Sample/s supplied by client		* CAI values corrected for smoo	oth surface.		Page	:1 of 2 REP06801
Accredited for complianc The results of the tests, calibrat this document are traceable Tested at Trilat	e with ISO/IEC 17025 ions, and/or measure a to Australian/Nation b Brisbane Laboratory	5 - Testing. ments included in al Standards. r.	Authorised S C. Pure	Signatory		ACCOUNTER FOR TECHNICAL

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

CERCHAR ABRASIVITY INDEX TEST REPORT

ASTM D7625 - 10 - Standard Test Method for Laboratory Determination of Abrasiveness of Rock Using the Cerchar Method

Client	Golder Assoc	iates Pty Lin	nited	Report No.	GA102190-CE	RC
			BEFORE & AFTER PH	OTOS		
	CLIE	ENT:	Golder Associates Pty Lin	nited		
	PRO.	JECT:	Inland Rail Section 320	BEFORE TEST		
	LABS	SAMPLE No.	102190	DATE: 22/01/19		
	BOR	EHOLE:	320-01-BH2101	DEPTH: 89.5		
	CLIENT: PROJECT:		Golder Associates Pty Limited Inland Rail Section 320 AFTER TES			
	LAB S	AMPLE No.	102190	DATE: 22/01/19		
	BORE	EHOLE:	320-01-BH2101	DEPTH: 89.5		
Remarks:						
Sample/s supplie	d by client		* CAI values corrected for smooth	surface.	Page: 2 of 2	REP0680
Accred The results of this docu	lited for compliance with the tests, calibrations, a ment are traceable to Au Tested at Trilab Brisb	ISO/IEC 17025 - and/or measureme ustralian/National S pane Laboratory.	Testing. nts included in Standards.	Authorised Signatory C. Purvis	Labora	ACCREMENTAL COMPETENCE atory No. 9926

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

			CERCI	HAR ABRASIVITY			ORT		
		ASTM D7625	- 10 - Standard Tes	st Method for Laboratory Deter	mination of Abrasiven	ess of Rock	Using the	Cerchar Meth	od
Cli	ient	Golder A	ssociates Pty I	_imited		Repo	rt No.	GA10220 ²	1-CERC
						Requ	est No.	1893795_	TR01
Ad	ldress	PO Box	1734 MILTON	BC QLD 4064		Test I	Date	22/01/201	9
						Repo	rt Date	23/01/201	9
Pre	oject	Inland Ra	ail Section 320	1		Samp	le Туре	Single Ind	ividual Rock
Pre	oject No	1893795		Depth From (m)	97.15			Core Spec	Jinen
Во	ore Hole	320-01-E	3H2101	Depth To (m)	97.35	Samp	le No	320-01-BH	12101-CER :
De	scriptio	n C				· ·		320-01-BF	12101-MOI
				SAMPLE	DETAILS				
Sar	mple Dian	neter (mm):		60.4	Moisture Content	: (%):		2.6	
Sar	mple Heig	ht (mm):		82.5	Dry Density (t/m ³))		2.54	
Su	тасе Тур	Ð:	Smooth	(Saw Cut) Surface	wet Density (t/m° F TESTING)		2.61	
Hai	rdness of	Tin Llead	25 HPC	Hardness of Tip Llead	43 HRC	Hard	less of Ti-	lised	53 HRC
Ave	rage Dian	neter (mm)	*CAI	Average Diameter (mm)	*CAI	Avera	be Diamet	er (mm)	*CAI
700	lugo Dian					711014	<u>go Diamot</u>		
	0.24	4	2.35	0.10	0.96		0.02		0.22
				CAI =	(-0.0755 x HRC)	+ 4.2106			
			Averag	e CAI _s (HRC55) = Classification :	0.54 Low abrasivenes	Corrected for S	Smooth Saw Cu	t Surface	
				CAI v's Har	dness Plot				
	2.50			Test Data	—— Line of Best F	it			
	2.00								
	1.50								
CAI									
	1.00								
	0.50								
	0.00								
	0		10	20 Hardne	³⁰ ss (HRC)	40		50	60
Rema	rks:								
Sample	e/s supplied	l by client		* CAI values corrected for smoo	oth surface.			Page: 1	of 2 REP06801
The	Accredite e results of th this docume	ed for complianc ne tests, calibrat ent are traceable Tested at Trilat	e with ISO/IEC 17025 ions, and/or measure e to Australian/Nation o Brisbane Laboratory	5 - Testing. ments included in al Standards. /.	Authorised S C. Pur	Signatory			ACCEPTION OF TECHNICAL COMPETENCE
			- (*	for a state of the				0	Laboratory No. 9926

Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

CERCHAR ABRASIVITY INDEX TEST REPORT

ASTM D7625 - 10 - Standard Test Method for Laboratory Determination of Abrasiveness of Rock Using the Cerchar Method

Client Gol	der Associates Pty Lir	nited	Report No.	GA102201-CE	RC
		BEFORE & AFTER PHO	DTOS		
	CLIENT:	Golder Associates Pty Limi	ited		
	PROJECT:	Inland Rail Section 320	BEFORE TEST		
	LAB SAMPLE No.	102201	DATE: 22/01/19		
	BOREHOLE:	320-01-BH2101	DEPTH: 97.15		
	CLIENT:	Golder Associates Pty Limi	ited		
	PROJECT:	CT: Inland Rail Section 320 Al			
	LAB SAMPLE No.	102201	DATE: 22/01/19.		
	BOREHOLE:	320-01-BH2101	DEPTH: 97.15		
Remarks:					
Sample/s supplied by clie	nt	* CAI values corrected for smooth	surface.	Page: 2 of 2	REP06801
Accredited for c The results of the tests this document are Tested	ompliance with ISO/IEC 17025 - s, calibrations, and/or measurem traceable to Australian/National d at Trilab Brisbane Laboratory.	Testing. ents included in Standards.	Authorised Signatory C. Purvis	Labora	COMPORTED FOR ECHNICAL OMPETENCE

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

		CERC			T REPO	ORT		
	ASTM D7625	- 10 - Standard Te	est Method for Laboratory Dete	rmination of Abrasivene	ess of Rock	Using the	Cerchar Metho	d
Client	Golder A	ssociates Pty	Limited		Report No. GA102204-CERC		-CERC	
					Requ	est No.	1893795	FR01
Address	PO Box '	1734 MILTON	BC QLD 4064		Test Date 22/01/2019)
					Report Date 23/01/2019)
Project	Inland Ra	ail Section 320)		Samp	le Туре	Single Indi	vidual Rock
Project No	1893795		Depth From (m)	102.65			Core Spec	Imen
Bore Hole	320-01-E	3H2101	Depth To (m)	102.75	Samp	le No	320-01-BH	2101-CER :
Descriptio	n C						320-01-BH	2101-MOI
			SAMPLE	DETAILS				
Sample Diam	neter (mm):		60.8	Moisture Content	t (%):		0.8	
Sample Heig	ht (mm):		82.1	Dry Density (t/m ³))		2.74	
Surface Type	ə:	Smoot	h (Saw Cut) Surface	Wet Density (t/m ³	°)		2.76	
			<u>RESOLIS (</u>					
Hardness of	Tip Used	25 HRC	Hardness of Tip Used	43 HRC	Hardi	ness of Tip	Used	53 HRC
Average Diam	leter (mm)	CAI	Average Diameter (mm)	CAI	Avera	je Diamete	er (mm)	CAI
0.26	5	2.59	0.13	1.30		0.08		0.82
			Linear Relationship betwe	en Tip Hardness and	I CAI		·	
			CAI =	(-0.0638 x HRC)	+ 4.1314			
		Averag	Je CAI s (HRC55) = Classification :	1.10 Medium abrasive	Corrected for S	Smooth Saw Cu	t Surface	
			CAI v's Ha	rdness Plot				
3.00				Line of Best F	-it			
2.50								
2.00								
2.00								
B 1.50								
1.00								
0.50								
0.50								
0.00		10	20	30	40		50	60
		-	Hardn	ess (HRC)				
Domorko:								
Remarks.								
Sample/s supplied	by client		* CAI values corrected for smo	oth surface.			Page: 1 o	of 2 REP06801
Sample/s supplied Accredite The results of th this docume	by client ed for complianc le tests, calibrati ent are traceable	e with ISO/IEC 1702 ions, and/or measure to Australian/Nation	* CAI values corrected for smo 25 - Testing. ements included in nal Standards.	oth surface. Authorised S C. Pur	Signatory		Page: 1 d	of 2 REP06801

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

CERCHAR ABRASIVITY INDEX TEST REPORT

ASTM D7625 - 10 - Standard Test Method for Laboratory Determination of Abrasiveness of Rock Using the Cerchar Method

Client	Golder Associates Pty Lin	nited	Report No.	GA102204-CERC		
		BEFORE & AFTER PHO	TOS			
	CLIENT:	Golder Associates Pty Limi	ted			
	PROJECT:	Inland Rail Section 320	BEFORE TEST			
	LAB SAMPLE No.	102204	DATE: 22/01/19			
	BOREHOLE:	320-01-BH2101	DEPTH: 102.65			
	CLIENT:	CLIENT: Golder Associates Pty Limited				
	PROJECT:	Inland Rail Section 320 AFTER TEST				
	LAB SAMPLE No.	102204	DATE: 22/01/19			
	BOREHOLE:	320-01-BH2101	DEPTH: 102.65			
Remarks:						
Sample/s supplied b	by client	* CAI values corrected for smooth s	surface.	Page: 2 of 2 REP06		
Accredite The results of th this docume	d for compliance with ISO/IEC 17025 - e tests, calibrations, and/or measurement are traceable to Australian/National Tested at Trilab Brisbane Laboratory.	Testing. ents included in Standards.	Authorised Signatory C. Purvis			

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	CERCH		INDEX TEST		ORT				
ASTM D7625	- 10 - Standard Tes	t Method for Laboratory Deter	mination of Abrasivene	ess of Rock	Using the Cerchar Met	nod			
Client Golder A	ssociates Pty L	imited		Rano	t No GA10221	1-CERC			
	2			Requi	est No. 1893795	TR01			
Address PO Box	1734 MILTON E	3C QLD 4064		Teet F	Date 22/01/20	19			
				Reno	t Date 23/01/20	10			
Project Inland R	ail Section 320			Samp	le Type Single Ind	dividual Rock			
Project No 1893795		Depth From (m)	104 5	•	Core Spe	ecimen			
Bore Hole 320-01-E	, 3H2101	Depth Tolm (iii)	104.3		320.01				
	5112101	Deptil 10 (III)	104.0	Samp	ole No 320-01-	-BH2101-MOI			
Description		SAMPLE	DETAILS						
Sample Diameter (mm):		60.6	Moisture Content	(%).	7 (3			
Sample Height (mm).		21.5 Dry Doneity (t/m ³)		(/0]•	1.0	, 2			
Surface Type :	Smooth	(Saw Cut) Surface	Wet Density (t/m ³))	1.9	7			
ounade Type .		<u>R</u> ESULTS O	F TESTING	/	2.0	1			
Hardness of Tin Llead	25 HRC	Hardness of Tin Llead	43 HRC	Hardr	less of Tin Llead	53 HRC			
Average Diameter (mm)	*CAI	Average Diameter (mm)	*CAI	Avera	ne Diameter (mm)	*CAI			
Average Diameter (mm)		Average Diameter (mm)		Averag	je Diameter (mm)				
0.00	0.00	0.00	0.00		0.00	0.00			
	Linear Relationship between Tip Hardness and CAI								
		CAI =	(0 x HRC) + 0						
	Average	e CAI _s (HRC55) =	0.48	Corrected for S	mooth Saw Cut Surface				
		Classification :	Very low abrasive	eness					
		CAI v's Har	dness Plot						
1.00		Test Data	—— Line of Best Fi	it		I			
0.90									
0.80									
0.70									
0.60									
3 0.50									
0.30									
0.20									
0.10									
0.00	40	•	20	40					
U	ΙU	Hardne	ss (HRC)	40	50	60			
Remarks:									
Sample/s supplied by client		* CAI values corrected for smoo	oth surface.		Page:	1 of 2 REP06801			
Accredited for complianc The results of the tests, calibrat this document are traceable Tested at Trilat	e with ISO/IEC 17025 ions, and/or measurer e to Australian/Nationa b Brisbane Laboratory.	- Testing. nents included in al Standards.	Authorised S C. Purv	lignatory /ls		Laboratory No. 9926			

Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

CERCHAR ABRASIVITY INDEX TEST REPORT

ASTM D7625 - 10 - Standard Test Method for Laboratory Determination of Abrasiveness of Rock Using the Cerchar Method

Client	Golder Associates Pty Lin	nited	Report No.	GA102211-CE	RC
		BEFORE & AFTER PHO	ros		
	CLIENT.	Colden Associatos Dtv Limi	ited		
	PROJECT:	Inland Rail Section 320	BEFORE TEST	r	
	LAB SAMPLE No.	102211	DATE: 22/01/19		
	BOREHOLE:	320-01-BH2101	DEPTH: 104.5		
	CLIENT:	Golder Associates Pty Limit	ted		
	PROJECT:	Inland Rail Section 320	AFTER TEST		
	LAB SAMPLE No.	102211 220.01.PU2101	DATE: 22/01/19		
	BOREHOLE:	320-01-BH2101	DEPTH: 104.5		
Remarks:					
Sample/s supplied Accredi The results of this docun	I by client ted for compliance with ISO/IEC 17025 - the tests, calibrations, and/or measureme nent are traceable to Australian/National s Tested at Trilab Brisbane Laboratory.	* CAI values corrected for smooth si Testing.	Authorised Signatory C. Purvis	Page: 2 of 2	REP06801

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	CERCH	AR ABRASIVITY	INDEX TEST		ORT	
ASTM D7625	- 10 - Standard Tes	t Method for Laboratory Deter	mination of Abrasivene	ess of Rock	Using the Cerchar Met	nod
Client Golder A	ssociates Pty L	imited		Repo	rt No. GA10221	4-CERC
				Reque	est No. 1893795	TR01
Address PO Box	1734 MILTON E	3C QLD 4064		Test D	Date 22/01/20	19
				Repor	rt Date 23/01/20	19
Project Inland R	ail Section 320			Samp	le Type Single Ind	dividual Rock
Project No 1893795		Depth From (m)	105.39		Core Spe	ecimen
Bore Hole 320-01-E	3H2101	Depth To (m)	105.46	0	320-01-	BH2101-CER :
Description C		· · · · ·		Samp	320-01	-BH2101-MOI
		SAMPLE I	DETAILS			
Sample Diameter (mm):		60.5	Moisture Content	(%):	12.	3
Sample Height (mm):		76.7	Dry Density (t/m ³)		2.0	4
Surface Type :	Smooth	(Saw Cut) Surface	Wet Density (t/m ³))	2.2	9
		RESULTS O	F TESTING			
Hardness of Tip Used	25 HRC	Hardness of Tip Used	43 HRC	Hardr	ness of Tip Used	53 HRC
Average Diameter (mm)	*CAI	Average Diameter (mm)	*CAI	Averag	ge Diameter (mm)	*CAI
0.00	0.00	0.00	0.00		0.00	0.00
		Linear Relationship betwe	en Tip Hardness and	CAI		
		CAI =	(0 x HRC) + 0			
	Average	e CAI _s (HRC55) =	0.48	Corrected for S	imooth Saw Cut Surface	
		Classification :	Very low abrasive	eness		
		CAI v's Har	dness Plot			
1.00		Test Data	—— Line of Best Fi	it		I
0.90						
0.80						
0.70						
0.60						
3 0.50 0.40						
0.30						
0.20						
0.10						
0.00	10		20	40		
0	10	Hardne	ss (HRC)	40	50	60
Remarks:						
Sample/s supplied by client		* CAI values corrected for smoo	oth surface.		Page:	1 of 2 REP06801
Accredited for complianc The results of the tests, calibrat this document are traceable Tested at Trilal	e with ISO/IEC 17025 ions, and/or measurer e to Australian/Nationa o Brisbane Laboratory.	- Testing. nents included in I Standards.	Authorised S C. Purv	vis		COMPETENCE Laboratory No. 9926
The results of calibr	ations and tests perf	ormed apply only to the specific	instrument or sample at	the time of t	est unless otherwise clea	rlv stated.

Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

CERCHAR ABRASIVITY INDEX TEST REPORT

ASTM D7625 - 10 - Standard Test Method for Laboratory Determination of Abrasiveness of Rock Using the Cerchar Method

Client Gold	ler Associates Pty Lir	nited	Report No.	GA102214-CE	RC
		BEFORE & AFTER PHO	DTOS		
	CI IENT	C.D			
	PROJECT:	Golder Associates Pty Lim	ited		
	TROJECT:	Infanti Kan Section 520	BEFORE TEST		
	LAB SAMPLE No.	102214	DATE: 22/01/19		
	BOREHOLE:	320-01-BH2101	DEPTH: 105.08		
		0			
	CLIENT: PROJECT:	Golder Associates Pty Lim Inland Rail Section 320	ited AFTER TEST	-	
	LAB SAMPLE No.	102214	DATE: 22 loulia		
	BOREHOLE:	320-01-BH2101	DEPTH: 105.08		
Remarks:					
				_	
Sample/s supplied by client Accredited for cor The results of the tests, this document are tr Tested a	t mpliance with ISO/IEC 17025 - calibrations, and/or measurem aceable to Australian/National at Trilab Brisbane Laboratory.	* CAI values corrected for smooth Testing. ents included in Standards.	Authorised Signatory C. Purvis	Page: 2 of 2 Labor	REP06801

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

ASTM D7825 - 10 - Standard Test Method for Laboratory Determination of Abraviveness of Rock Using the Cerchar Method Client Golder Associates Pty Limited Report No. GA102218-CERC Address PO Box 1734 MILTON BC QLD 4064 Test Date 2307/2019 Project Inland Rail Section 320 Sample Type Single Individual Rock Core Specimen Sample No 320/01-BH2101 Description C Sample No 320/01-BH2101 Depth Trom (m) 105.7 Bore Hold 320.01-BH2101 Depth To (m) 105.7 Sample No 320/01-BH2101-CER : 320 Bore Hold 320.01-BH2101 Depth To (m) 105.7 Depth Rock Depth Rock Depth Rock Sample Hold (mm): 59.25 Molsture Content (%): 10.9 320/01-BH2101-CER : 320 Barnelo Blameter (mm): 59.25 Molsture Content (%): 10.9 320/01-BH2101-CER : 320 Surface Type : Smooth (Saw Cut) Surface Wet Density (t/m ³) 1.79 33/01/2014 Surface Type : Smooth (Saw Cut) Surface Wet Density (t/m ³) 1.99 25/01-BH2101-CER : 320 Verage Diameter (mm) *CAI Average Diameter (mm) *CAI Average Diameter (mm) *CAI		CERCI		INDEX TEST		ORT		
Client Golder Associates Pty Limited Report No. GA102218-CERC Address PO Box 1734 MILTON BC QLD 4064 Test Date 22/01/2019 Project Inland Rail Section 320 Sample Type Single Individual Rock Core Specimen 32/01/2019 Project Inland Rail Section 320 Sample No 32/01/2019 Single Individual Rock Core Specimen Bore Hole 32/01-BH2101 Depth Tron (m) 105.7 Sample No 32/01-BH2101-CER : 32/0 HE/101-CER : 32/0 HE/101	ASTM D762	5 - 10 - Standard Tes	st Method for Laboratory Deter	mination of Abrasivene	ess of Rock	Using the	Cerchar Meth	od
Report Rot Report	Client Golder	Associates Ptv I	_imited		Reno	rt No	GA10221	8-CERC
Address PO Box 1734 MILTON BC OLD 4064 Test Date 22/01/2019 Project Inland Rail Section 320 Sample Type Sample Type Single Individual Rock Core Specimen Project No 1893795 Depth From (m) 105.7 Bore Hole 320-01-BH2101 Depth To (m) 105.8 Sample Type Sample Type Sample Type Sample Meight (mm): 59.25 Moisture Content (%): 10.9 Sample Height (mm): 59.25 Moisture Content (%): 10.9 Sample Height (mm): 75.2 Dy Density (t/m ³) 1.79 Surface Type : Smooth (Saw Cut) Surface Wet Density (t/m ³) 1.99 Hardness of Tip Used 25 HRC Hardness of Tip Used 43 HRC Hardness of Tip Used 53 HRC Average Diameter (mm) *CAI Average Diameter (mm) *CAI Average Diameter (mm) *CAI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Linear Relationship between Tip Hardness and CAI CAI = (0 x HRC) + 0 Care Smooth Saw Cut Surface Care State Cals iffication : Very low abrasiveness Cals iffication : Very low abrasiveness Sure of Suread Surface <					Requi	est No	1803705	
Test Date 23/01/2019 Report Date 23/01/2019 Sample Type Single Individual Rock Core Specimen Bore Hole 320-01-BH2101 Depth From (m) 105.7 Bore Hole 320-01-BH2101 Depth Trom (m) 105.8 Description C Sample Diameter (mm): 59.25 Molsture Content (%): 10.9 Sample Meight (mm): 75.2 Dry Density (fm²) 1.73 Sufface Type : Samoth (Saw Cul) Surface Wet Best Colspan="2">Wet Best Colspan="2">Sample No Bore Hole 25 HRC Hardness of Tip Used 25 HRC Hardness of Tip Used 25 HRC Hardness of Tip Used 53 HRC Average Diameter (mm) *CAI Average Diameter (mm) *CAI Average CAI ₈ (HRC55) = 0.48 Conscription C	Address PO Box	1734 MILTON	BC QLD 4064		Toet [Dato	22/01/201	<u>0</u>
Reput to 2017/02/16/2017/02					Popol	t Data	22/01/201	9
Project India Nam Sector 200 Depth From (m) 105.7 Sample No 320-01-BH2101-CER : 320 Bore Hole 320-01-BH2101 Depth To (m) 105.8 Sample No 320-01-BH2101-CER : 320 Bore Hole 320-01-BH2101 Depth To (m) 105.8 Sample No 320-01-BH2101-CER : 320 Bore Hole 320-01-BH2101-CER : 320 Moisture Content (%): 10.9 Sample No 320-01-BH2101-CER : 320 Sample Height (mm): 75.2 Dry Density (t/m ³) 1.99 RESULTS OF TESTING Hardness of Tip Used 25 HRC Hardness of Tip Used 43 HRC Hardness of Tip Used 53 HRC Average Diameter (mm) *CAI Average Diameter (mm) *CAI Average Diameter (mm) *CAI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Linear Relationship between Tip Hardness and CAI CAI = (0 x HRC) + 0 Careeted for Smooth Saw Cut Surface Classification : Very low abrasiveness CAI vis Hardness Plot 100 10 0 0 0 0 0 0 0 0 <	Project Inland	Dail Soction 320			Samp		Single Ind	j lividual Rock
Project No 105/11 Depth Trout (m) 103.7 Sample No 320-01-BH2101-CER: 320 BH2101-KOI Description C Sample Diameter (mm): 59.25 Moisture Content (%): 10.9 Sample Height (mm): 75.2 Dry Density (tim*) 1.79 Surface Type : Smooth (Saw Cut) Surface Wet Density (tim*) 1.99 Hardness of Tip Used 25 HRC Hardness of Tip Used 43 HRC Hardness of Tip Used 53 HRC Average Diameter (mm) *CAI Average Diameter (mm) *CAI Average Diameter (mm) *CAI 0.00<	Project No. 180370		Dopth From (m)	105.7			Core Spe	cimen
Barrier Note Sample No Sample No <td>Boro Holo 320.01</td> <td>BH2101</td> <td>Depth From (m)</td> <td>105.7</td> <td></td> <td></td> <td>200.04 DU0</td> <td></td>	Boro Holo 320.01	BH2101	Depth From (m)	105.7			200.04 DU0	
SAMPLE DETAILS SAMPLE DETAILS Sample Diameter (mm): 59.25 Moisture Content (%): 10.9 Sample Height (mm): 75.2 Dry Density (t/m³) 1.79 Surface Type : Smooth (Saw Cut) Surface Wet Density (t/m³) 1.99 Hardness of Tip Used 25 HRC Hardness of Tip Used 43 HRC Hardness of Tip Used 53 HRC Average Diameter (mm) *CAI Average Diameter (mm) *CAI Average Diameter (mm) *CAI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Linear Relationship between Tip Hardness and CAI CAI = (0 x HRC) + 0 Average CAI ₈ (HRC55) = 0.48 Classification : Very low abrasiveness CAI v5 Hardness Plot Test Data Une of Best Fit 000 0 40 90 000 0 CAI vs/us corrected for	Description C	-0112101	Deptil 10 (III)	105.8	Samp	le No	BH2101-MC	2101-CER : 320-01-)
Sample Diameter (mm): 59.25 Moisture Content (%): 10.9 Sample Height (mm): 75.2 Dry Density (t/m³) 1.79 Surface Type : Smooth (Saw Cut) Surface Wet Density (t/m³) 1.99 Hardness of Tip Used 25 HRC Hardness of Tip Used 43 HRC Hardness of Tip Used 53 HRC Average Diameter (mm) *CAI Average Diameter (mm) *CAI Average Diameter (mm) *CAI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Linear Relationship between Tip Hardness and CAI CAI = (0 x HRC) + 0 Average CAI _s (HRC55) = 0.48 Corrected for Smooth Saw Cut Surface CAI v's Hardness Plot 100 00 0.00 0.00 0.00 60 0.00 10 20 0 0.00 60 60 *CAI v's Hardness (HRC) 40 50 60 *CAI v's Hardness (HRC) 40 50 60 *CAI v's Hardness (HRC) 40 50 60 *CAI vis lauses corre	Description		SAMPLE I	DETAILS				
Sample Height (mm): 75.2 Dry Density (t/m³) 1.79 Surface Type : Smooth (Saw Cut) Surface Wet Density (t/m³) 1.99 RESULTS OF TESTING Hardness of Tip Used 25 HRC Hardness of Tip Used 43 HRC Hardness of Tip Used 53 HRC Average Diameter (mm) *CAI Average Diameter (mm) *CAI Average Diameter (mm) *CAI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Linear Relationship between Tip Hardness and CAI CAI = (0 x HRC) + 0 CAI = (0 x HRC) + 0 Average CAI ₃ (HRC55) = 0.48 Corrected for Smooth Saw Cut Surface CAI v's Hardness Plot 0.49 Sample/Sample	Sample Diameter (mm)	:	59.25	Moisture Content	(%):		10.9)
Surface Type : Smooth (Saw Cut) Surface Wet Density (t/m ²) 1.99 RESULTS OF TESTING Hardness of Tip Used 25 HRC Hardness of Tip Used 43 HRC Hardness of Tip Used 53 HRC Average Diameter (mm) *CAI Average Diameter (mm) *CAI Average Diameter (mm) *CAI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Linear Relationship between Tip Hardness and CAI CAI = (0 x HRC) + 0 Cal = (0 x HRC) + 0 Cal sciences Average CAIs (HRC55) = 0.48 Corrected for Smooth Saw Cut Surface Classification : Very low abrasiveness Cal v's Hardness Plot Line of Best Fit 100 0.00 10 20 0.00 40 50 60 0.00 10 20 0.00 40 50 60 Remarks: *CAI values corrected for smooth surface. Page: 1 of 2 REPORT	Sample Height (mm):	-	75.2	Dry Density (t/m ³)	(10)-		1.79)
RESULTS OF TESTING Hardness of Tip Used 25 HRC Hardness of Tip Used 43 HRC Hardness of Tip Used 53 HRC Average Diameter (mm) *CAI Average Diameter (mm) *CAI Average Diameter (mm) *CAI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Linear Relationship between Tip Hardness and CAI CAI v HRC) + 0 Average CAI _s (HRC55) = 0.48 Corrected for Smooth Saw Cut Surface Claiv's Hardness Plot Line of Best Fit 100 00 0 0 0 0 0 0 0 All of Best Fit 100 0 0 0 0 0 0 0 0 030 0 0 0 0 0 0 0 0 0 0 0 0 000 0 10 20 3 40 50 60 Remarks: Sample's supplied by client * CAl values correct	Surface Type :	Smooth	(Saw Cut) Surface	Wet Density (t/m ³))		1.99)
Hardness of Tip Used 25 HRC Hardness of Tip Used 43 HRC Hardness of Tip Used 53 HRC Average Diameter (mm) *CAI Average Diameter (mm) *CAI Average Diameter (mm) *CAI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Linear Relationship between Tip Hardness and CAI CAI = (0 x HRC) + 0 Average CAIs (HRC55) = 0.48 Corrected for Smooth Saw Out Surface Classification : Very low abrasiveness CAI v's Hardness Plot Line of Best Fit 0.00 0 0 0 0 0 0 0 Official of the structure of the	RESULTS OF TESTING							
Average Diameter (mm) *CAI Average Diameter (mm) *CAI Average Diameter (mm) *CAI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Linear Relationship between Tip Hardness and CAI CAI = (0 x HRC) + 0 Average CAI _s (HRC55) = 0.48 Corrected for Smooth Saw Cut Surface Classification : Very low abrasiveness CAI v's Hardness Plot 100 0.00 10 0 0 0 0 0 0 0 0.00 0	Hardness of Tip Used	25 HRC	Hardness of Tip Used	43 HRC	Hardr	ness of Tir	o Used	53 HRC
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Linear Relationship between Tip Hardness and CAI CAI = (0 x HRC) + 0 Average CAI _s (HRC55) = 0.48 Corrected for Smooth Saw Cut Surface Classification : Very low abrasiveness CAI v's Hardness Plot Line of Best Fit 100 20 30 030 0 10 20 Classification : Very low abrasiveness CAI v's Hardness Plot Line of Best Fit 100 20 30 030 0 10 20 Cal v's Hardness (HRC) 40 50 60 Remarks: Sample/s supplied by client * CAI values corrected for smooth surface.	Average Diameter (mm)	*CAI	Average Diameter (mm)	*CAI	Averad	ge Diamet	er (mm)	*CAI
Linear Relationship between Tip Hardness and CAI CAI = (0 x HRC) + 0 Average CAI _s (HRC55) = 0.48 Corrected for Smooth Saw Cut Surface Classification : Very low abrasiveness CAI v's Hardness Plot - Test Data Line of Best Fit 0.00 0.		0.00	0.00	0.00				0.00
Linear Relationship between Tip Hardness and CAI CAI = (0 x HRC) + 0 Average CAI _s (HRC55) = 0.48 corrected for Smooth Saw Cut Surface Classification : Very low abrasiveness CAI v's Hardness Plot 100 000 000 000 000 000 000 00	0.00	0.00	0.00	0.00		0.00		0.00
CAI = (0 x HRC) + 0 Average CAI _s (HRC55) = 0.48 Corrected for Smooth Saw Cut Surface Classification : Very low abrasiveness CAI v's Hardness Plot Une of Best Fit 1.00 0.00	Linear Relationship between Tip Hardness and CAI							
Average CAI _s (HRC55) = 0.48 Corrected for Smooth Saw Cut Surface Classification : Very low abrasiveness CAI v's Hardness Plot Test Data Uine of Best Fit CAI values of Best Fit CAI values of Best Fit 1.00 0.0			CAI =	(0 x HRC) + 0				
Classification : Very low abrasiveness CAI v's Hardness Plot Une of Best Fit Une of Best Fit Geo Geo Geo Geo Geo Geo Geo Geo Geo Geo	Average CAI _s (HRC55) = 0.48 Corrected for Smooth Saw Cut Surface							
CAI v's Hardness Plot Test Data Line of Best Fit CAI v's Hardness Plot Line of Best Fit Line of Best Fit 000 0 0 0 0 0 0 0 0 0 0 0			Classification :	Very low abrasive	eness			
100 Image: Test Data Line of Best Fit 090 080 070 060 060 050 060 050 060 040 030 020 010 20 Hardness (HRC) 40 50 60			CAI v's Har	dness Plot				
$\begin{array}{c} 0.90\\ 0.80\\ 0.70\\ 0.60\\ 0.50\\ 0.50\\ 0.40\\ 0.30\\ 0.20\\ 0.10\\ 0.00\\ 0\end{array} \qquad 10 \qquad 20 \qquad 40 \qquad 50 \qquad 60 \\ \hline \\ Remarks: \\ \hline \\ \hline \\ \hline \\ Sample/s \ supplied \ by \ client \qquad * CAl \ values \ corrected \ for \ smooth \ surface. \qquad Pag: 1 \ of 2 \qquad REPORT \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ $	1.00		Test Data	—— Line of Best Fi	it			1
Remarks: Sample/s supplied by client * CAI values corrected for smooth surface. Page: 1 of 2 Report Remarks: Sample/s supplied by client * CAI values corrected for smooth surface. Remarks: Sample/s supplied by client * CAI values corrected for smooth surface.	0.90							
$\begin{array}{c} 0.70 \\ 0.60 \\ 0.50 \\ 0.40 \\ 0.30 \\ 0.20 \\ 0.10 \\ 0.00 \\ 0 \end{array} \qquad 10 \qquad 20 \qquad \begin{array}{c} 0 \\ Hardness (HRC) \end{array} \qquad 40 \qquad 50 \qquad 60 \end{array}$ Remarks: Sample/s supplied by client * CAI values corrected for smooth surface. Page: 1 of 2 REPORT	0.80							
$\begin{array}{c} & 0.60 \\ \hline \mathbf{S} & 0.50 \\ 0.40 \\ 0.30 \\ 0.20 \\ 0.10 \\ 0.00 \\ 0 \end{array} \qquad 10 \qquad 20 \qquad \begin{array}{c} & \mathbf{Mardness} (HRC) \\ \hline \mathbf{Hardness} (HRC) \end{array} \qquad 40 \qquad 50 \qquad 60 \\ \hline \mathbf{Remarks:} \\ \hline \hline \mathbf{Sample/s \ supplied \ by \ client} \qquad ^{*} CAl \ values \ corrected \ for \ smooth \ surface. \qquad \hline \mathbf{Page: 1 \ of 2} REPORt \\ \hline \mathbf{Remorks:} \\ \hline \hline \mathbf{Sample/s \ supplied \ by \ client} \qquad ^{*} CAl \ values \ corrected \ for \ smooth \ surface. \qquad \hline \mathbf{Page: 1 \ of 2} REPORt \\ \hline \hline \mathbf{Remorks:} \\ \hline \hline \hline \mathbf{Sample/s \ supplied \ by \ client} \qquad ^{*} CAl \ values \ corrected \ for \ smooth \ surface. \qquad \hline \hline \hline \mathbf{Remorks:} \\ \hline \hline \hline \hline \hline \mathbf{Sample/s \ supplied \ by \ client} \qquad ^{*} CAl \ values \ corrected \ for \ smooth \ surface. \qquad \hline \hline \hline \hline \mathbf{Sample/s \ supplied \ by \ client} \qquad \mathbf{Sample/s \ by \ client} \qquad \mathbf{Sample/s \ supplied \ by \ client} \qquad \mathbf{Sample/s \ supplied \ by \ client} \qquad \mathbf{Sample/s \ supplied \ by \ client} \qquad \mathbf{Sample/s \ supplied \ by \ client} \qquad \mathbf{Sample/s \ supplied \ by \ client} \qquad \mathbf{Sample/s \ supplied \ by \ client} \qquad \mathbf{Sample/s \ supplied \ by \ client} \qquad \mathbf{Sample/s \ supplied \ by \ client} \qquad \mathbf{Sample/s \ suppli} \qquad Sampl$	0.70							
3 0.50 0.40 0.30 0.20 0.10 0.00 0 10 20 Hardness (HRC) 40 50 60 Remarks: Sample/s supplied by client * CAI values corrected for smooth surface. Page: 1 of 2 REPORT * CAI values corrected for smooth surface.	0.60							
0.40 0.30 0.20 0.10 0.00 0 10 20 Hardness (HRC) 40 50 60 Remarks: Sample/s supplied by client * CAI values corrected for smooth surface. Page: 1 of 2 REPORT	3 0.50							
0.30 0.20 0.10 0.00 0.00 0 10 20 Hardness (HRC) 40 50 60 Remarks: Sample/s supplied by client * CAI values corrected for smooth surface. Page: 1 of 2 REPORT	0.40							
0.10 0.00 0 10 20 30 40 50 60 Remarks: Sample/s supplied by client * CAl values corrected for smooth surface. Page: 1 of 2 REPORT	0.30							
0.00 0 10 20 30 40 50 60 Remarks: Sample/s supplied by client * CAI values corrected for smooth surface. Page: 1 of 2 REPOR	0.10							
0 10 20 30 Hardness (HRC) 40 50 60 Remarks: Sample/s supplied by client * CAI values corrected for smooth surface. Page: 1 of 2 REPORT	0.00							
Remarks: Sample/s supplied by client * CAI values corrected for smooth surface. Page: 1 of 2	0	10	20 Hardne	³⁰ ss (HRC)	40		50	60
Sample/s supplied by client * CAI values corrected for smooth surface. Page: 1 of 2 REPOR	Remarks:							
	Sample/s supplied by client		* CAI values corrected for smoo	oth surface.			Page: 1	of 2 REP06801
Accredited for compliance with ISO/IEC 17025 - Iesting. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards. Tested at Trilab Brisbane Laboratory. Laboratory No. 99	Accredited for complia The results of the tests, calib this document are tracea Tested at Tr	nce with ISO/IEC 17025 ations, and/or measure ble to Australian/Nationa lab Brisbane Laboratory	i - Testing. ments included in al Standards.	Authorised S C. Purv	Bignatory			ACCEPTENCE COMPETENCE Laboratory No. 9926

Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab ty Ltd ABN 25 065 630 506

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

CERCHAR ABRASIVITY INDEX TEST REPORT

ASTM D7625 - 10 - Standard Test Method for Laboratory Determination of Abrasiveness of Rock Using the Cerchar Method

Client Gol	der Associates Pty Lim	ited	Report No.	GA102218-CE	RC
		BEFORE & AFTER PHOT	<u>OS</u>		
	CLIENT:	Golder Associates Pty Limit	ed		
	PROJECT:	Inland Rail Section 320	BEFORE TEST		
	LAB SAMPLE No.	102218	DATE: 22/01/19		
	BOREHOLE:	320-01-BH2101	DEPTH: 105.7		
	CLIENT: PROJECT:	Golder Associates Pty Limite Inland Rail Section 320	ed AFTER TEST	7	
	LAB SAMPLE No.	102218	DATE: Zz/or/m	-	
	BOREHOLE:	320-01-BH2101	DEPTH: 105.7		
Remarks:					
Sample/s supplied by clier	nt	* CAI values corrected for smooth su	rface.	Page: 2 of 2	REP06801
Accredited for co The results of the tests, this document are t Tested	ompliance with ISO/IEC 17025 - 7 , calibrations, and/or measureme traceable to Australian/National S , at Trilab Brisbane Laboratory.	Festing. A nts included in Standards.	C. Purvis	Labor	ACCEPTIFE FOR TECHNICAL COMPETENCE

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

Slake Durability

🕓 GOLDER

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

		SLAKE DURABILIT	Y INDEX TES	ST REPORT	
Cli	ent	Golder Associates Pty Limited		Report No.	GA102178-SD
Ad	dress	PO Box 1734 MILTON BC QLD	4064	Request No.	1893795_TR01
				Test Date	21/01/2019
Pre	oject	Inland Rail Section 320		Report Date	24/01/2019
Pr	oject No	1893795	Client Sam	ple No. 320)-01-BH2101
	Sample No.		102	2178	
	BoreHole		320-01-	-BH2101	
	Depth From (m)		7	6.5	
	Depth To (m)		7	6.7	
	Description			С	
	Slake Durability (1st cycle) (%)	9	7.5	
	Slake Durability (2nd cycle) (%)	9	7.3	
	Slake Durability (3rd cycle) (%)		-	
	Slake Durability (4th cycle) (%)		-	
	Water Used		Тар	Water	
	Temperature (°C)		2	0.3	
	Appearance of frag	gments retained in the drum	Origin	al Form	
	Appearance of frag	gments passing through the drum	Fragmen	its & Fines	
NOTE	S/REMARKS:	ient			Dava 4 of 4
Som-	iers supplied by the Cl	IGH			Page 1 of 1 REP0240
Samp					
Samp Tł	Accredited for co ne results of the tests, this document are t	mpliance with ISO/IEC 17025 - Testing. calibrations, and/or measurements included in raceable to Australian/National Standards.			

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	SLAKE DURABILIT	Y INDEX TE od: AS 4133.3.4	ST REPORT	
Client	Golder Associates Pty Limited		Report No.	GA102184-SD
Address	PO Box 1734 MILTON BC QLD	4064	Request No.	1893795_TR01
			Test Date	22/01/2019
Project	Inland Rail Section 320		Report Date	24/01/2019
Project No	1893795	Client Sar	nple No. 320)-01-BH2101
Sample No.		1	02184	
BoreHole		320-0	1-BH2101	
Depth From (m))		83.7	
Depth To (m)			83.9	
Description			С	
Slake Durabilit	y (1st cycle) (%)		80.3	
Slake Durabilit	y (2nd cycle) (%)		55.4	
Slake Durabilit	ty (3rd cycle) (%)		-	
Slake Durabilit	ty (4th cycle) (%)		-	
Water Used		Та	p Water	
Temperature (°	C)		20.6	
Appearance of	fragments retained in the drum	Moderate	Deterioration	
Appearance of	fragments passing through the drum	Fragme	ents & Fines	
NOTES/REMARKS:	2 client			
Accredited for The results of the tes this document a	compliance with ISO/IEC 17025 - Testing. sts, calibrations, and/or measurements included in re traceable to Australian/National Standards.	Authorise	ed Signatory	
Test	ted at Trilab Brisbane Laboratory.	C.1	Purvis	Laboratory No. 99
The res	ults of calibrations and tests performed apply only to the spe Reference should be made to Trilab's "Standard Trilab Phylod	cific instrument or sar I Terms and Conditio	mple at the time of test unless ns of Business" for further det	otherwise clearly stated. ails.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	SLAKE DURABILIT	Y INDEX TI od: AS 4133.3.4	EST REPORT	
Client	Golder Associates Pty Limited		Report No.	GA102198-SD
Address	PO Box 1734 MILTON BC QLD	4064	Request No.	1893795_TR01
			Test Date	22/01/2019
Project	Inland Rail Section 320		Report Date	24/01/2019
Project No	1893795	Client Sa	mple No. 320-	01-BH2101
Sample No.			102198	
BoreHole		320-	01-BH2101	
Depth From (m)		95.73	
Depth To (m)			96	
Description			С	
Slake Durabili	ty (1st cycle) (%)		87.4	
Slake Durabili	ty (2nd cycle) (%)		69.7	
Slake Durabili	ty (3rd cycle) (%)		-	
Slake Durabili	ty (4th cycle) (%)		-	
Water Used		Ta	ap Water	
Temperature (°	C)		20.4	
Appearance of	fragments retained in the drum	Moderat	e Deterioration	
Appearance of	fragments passing through the drum	Fragm	ients & Fines	
NOTES/REMARKS: Sample/s supplied by the	e client			Page 1 of 1 REP02402
The results of the test	e compliance with ISO/IEC 17025 - Testing. sts, calibrations, and/or measurements included in re traceable to Australian/National Standards.	Authoris		
Taa	ted at Trilah Brishane Laboratory	C.	Purvis	COMPETENCE

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Client		00. AS 4133.3.4	1	
	Golder Associates Pty Limited		Report No.	GA102211-SD
Address	PO Box 1734 MILTON BC QLD	4064	Request No.	1893795_TR01
			Test Date	22/01/2019
Project	Inland Rail Section 320		Report Date	24/01/2019
Project No	1893795	Client San	nple No. 3	20-01-BH2101
			0044	
Sample N	0.	10		
BoreHole		320-0	04.5	
	(m)		04.5	
Depth To	(m)	1	04.8	
Descriptio	n		С	
Slake Dur	rability (1st cycle) (%)		59.9	
Slake Dur	rability (2nd cycle) (%)	· · · ·	17.8	
Slake Dur	rability (3rd cycle) (%)		-	
Slake Dur	rability (4th cycle) (%)		-	
Water Use	ed	Tap	Water	
Temperatu	ure (°C)		20.9	
Appearant	ce of fragments retained in the drum	Moderate	Deterioration	
Appearan	ce of fragments passing through the drum	Fragme	nts & Fines	
DTES/REMARKS:				
DTES/REMARKS:	by the client			Page 1 of 1 REPO
<u>ITES/REMARKS:</u> mple/s supplied Accredite The results of th this docum	by the client ed for compliance with ISO/IEC 17025 - Testing. he tests, calibrations, and/or measurements included in ient are traceable to Australian/National Standards.	Authorise	d Signatory	Page 1 of 1 REPO

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Client		100: AS 4133.3.4		
	Golder Associates Pty Limited		Report No.	GA102212-SD
Address	PO Box 1734 MILTON BC QLD	4064	Request No.	1893795_TR01
			Test Date	22/01/2019
Project	Inland Rail Section 320		Report Date	24/01/2019
Project No	1893795	Client Sa	mple No. 320	D-01-BH2101
Sample No.			102212	
BoreHole		320-	01-BH2101	
Depth From (r	n)		104.8	
Depth To (m)			105	
Description			С	
Slake Durabi	lity (1st cycle) (%)		76.6	
Slake Durabi	lity (2nd cycle) (%)		58.5	
Slake Durabi	lity (3rd cycle) (%)		-	
Slake Durabi	lity (4th cycle) (%)		-	
Water Used		Та	ap Water	
Temperature	(°C)		20.6	
Appearance o	f fragments retained in the drum	Moderat	e Deterioration	
Appearance o	f fragments passing through the drum	Fragm	ents & Fines	
OTES/REMARKS:	ha cliant			Date 1 of 1
<u>OTES/REMARKS:</u> ample/s supplied by t	he client			Page 1 of 1 REPO2
<u>DTES/REMARKS:</u> ample/s supplied by th Accredited fo The results of the to this document	he client or compliance with ISO/IEC 17025 - Testing. ests, calibrations, and/or measurements included in are traceable to Australian/National Standards.	Authoris	sed Signatory	Page 1 of 1 REPOZ

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

		SLAKE DURABILIT	Y INDEX TE	ST REPORT	
Cli	ent	Golder Associates Pty Limited		Report No.	GA102220-SD
Ad	dress	PO Box 1734 MILTON BC QLD	4064	Request No.	1893795_TR01
				Test Date	23/01/2019
Pro	oject	Inland Rail Section 320		Report Date	25/01/2019
Pro	oject No	1893795	Client Sa	mple No.	320-01-BH2101
	Sample No.		1	02220	
	BoreHole		320-0)1-BH2101	
	Depth From (m)		1	106.05	
	Depth To (m)		1	106.22	
	Description			С	
	Slake Durability (1	st cycle) (%)		0.1	
	Slake Durability (2	2nd cycle) (%)		0.1	
	Slake Durability (3	3rd cycle) (%)		-	
	Slake Durability (4	Ith cycle) (%)		-	
	Water Used		Та	ıp Water	
	Temperature (°C)			29.1	
	Appearance of frag	ments retained in the drum	High D	Deterioration	
	Appearance of frag	ments passing through the drum	Fragm	ents & Fines	
NOTES	S/REMARKS:	t			David of d
Sampl				ined Gimer's	Fage For T REP02402
Th	Accredited for cor ne results of the tests, this document are tr	mpliance with ISO/IEC 17025 - Testing. calibrations, and/or measurements included in aceable to Australian/National Standards.	Name	ised Signatory	TECHNICAL
	Tested a	at Trilab Brisbane Laboratory.	N. N	naddison	Laboratory No. 9926
	The results	of calibrations and tests performed apply only to the spe Reference should be made to Trilab's "Standard Trilab Pty I td	cific instrument or sa I Terms and Conditio ABN 25 065 630 506	mple at the time of test unl ons of Business" for further	ess otherwise clearly stated. details.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

		SLAKE DURABILIT	Y INDEX TES	ST REPORT	
Cli	ent	Golder Associates Pty Limited		Report No.	GA102240-SD
Ad	dress	PO Box 1734 MILTON BC QLD	4064	Request No.	1893795_TR01
				Test Date	23/01/2019
Pro	oject	Inland Rail Section 320		Report Date	25/01/2019
Pro	oject No	1893795	Client Sam	ple No.	320-01-BH2101
	Sample No.		102	2240	
	BoreHole		320-01-	BH2101	
	Depth From (m)		12	8.3	
	Depth To (m)		128	3.44	
	Description			С	
	Slake Durability (1	st cycle) (%)	8	8.7	
	Slake Durability (2	nd cycle) (%)	8	0.8	
	Slake Durability (3	rd cycle) (%)		-	
	Slake Durability (4	th cycle) (%)		-	
	Water Used		Тар	Water	
	Temperature (°C)		2	9.1	
	Appearance of frag	ments retained in the drum	Slight De	terioration	
	Appearance of frag	ments passing through the drum	Fragmen	ts & Fines	
NOTES	S/REMARKS:	ant			
Janp			A.ithar!	d Signatory	
Tł	Accredited for cor ne results of the tests, o this document are tra	npliance with ISO/IEC 17025 - Testing. calibrations, and/or measurements included in aceable to Australian/National Standards.	NaMeli		TECHNICAL
	Tested a	at Trilab Brisbane Laboratory.	N. Ma	ddison	Laboratory No. 9926
	The results	of calibrations and tests performed apply only to the spe Reference should be made to Trilab's "Standard Trilab Ptv I td	cific instrument or samp I Terms and Conditions ABN 25 065 630 506	ble at the time of test us of Business" for furth	unless otherwise clearly stated. er details.

: 1 of 2
: Environmental Division Brisban
: Customer Services EB
: 2 Byth Street Stafford QLD Aus
: +61-7-3243 7222
Received : 21-Nov-2018 12:00
Commenced : 23-Nov-2018
: 28-Nov-2018 14:24
 1 of 2 Environmental Division Bris Customer Services EB 2 Byth Street Stafford QLD +61-7-3243 7222 Received 21-Nov-2018 12:00 Commenced 23-Nov-2018 14:24

This Certificate of Analysis contains the following information:

- **General Comments**
- Analytical Results

Quality Review and Sample Receipt Notification. Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with

Signatories
This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Diana Mesa	2IC Organic Chemist	Brisbane Inorganics, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

	on 320
published by t	
the USEPA,	
APHA, AS	
and NEPM	
. In house	

Project Client Work Order Page : 2 of 2 : EB1828518 : TRILAB PTY LTD : 1893795 - Inland Rail Se

General Comments

developed procedures are employed in the absence of c The analytical procedures used by the Environm or by client leque

Where moisture determination has been performed, results are reported on a dry weight basis. -

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. -

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing

purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details. -

- Key : -CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
- LOR = Limit of reporting
- * = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests
- \sim = Indicates an estimated value.
- CORROSION ASSESSMENT: As per Australian Standard (AS2159-1995, section 6), the Exposure Classification for all samples is rated as Non Aggressive. ALS is not NATA accredited for this comment.

Analytical Results

Sub-Matrix: SOIL		Clie	int sample ID	101183 /	101189 /	101199 /	101208 /	ł
(Matrix: SOIL)				320-01-BH2201-S0050	320-01-BH2209-S0020	320-01-BH2212-S0035	320-01-BH2218-S0050	
				0 / 5.00-5.20m	0 / 2.00-2.45m	0 / 3.50-3.95m	0 / 5.00-5.41m	
	Clie	ent samplin	ıg date∕time	[20-Nov-2018]	[20-Nov-2018]	[20-Nov-2018]	[20-Nov-2018]	
Compound	CAS Number	LOR	Unit	EB1828518-001	EB1828518-002	EB1828518-003	EB1828518-004	
				Result	Result	Result	Result	
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	8.7	9.0	6.4	9.5	
EA055: Moisture Content (Dried @ 105-110°	<u>c</u>							
Moisture Content		1.0	%	12.6	15.9	14.6	10.9	-
ED040S : Soluble Sulfate by ICPAES								
Sulfate as SO4 2-	14808-79-8	10	mg/kg	30	20	10	10	
ED045G: Chloride by Discrete Analyser								
Chloride	16887-00-6	10	mg/kg	780	310	<10	110	I

	CERTIFICATE	OF ANALYSIS		
Nork Order	: EB1902048	Page	: 1 of 2	
Client	: TRILAB PTY LTD	Laboratory	: Environmental Division Brisbane	
Contact	: THE ADMIN RESULTS	Contact	: Customer Services EB	
Address	: 346A BILSEN RD	Address	: 2 Byth Street Stafford QLD Australia	a 4053
	GEEBUNG QLD, AUSTRALIA 4031			
Felephone	: +61 07 3265 5656	Telephone	: +61-7-3243 7222	
^o roject	: 1893795 - Inland Rail Section 320	Date Samples Received	: 25-Jan-2019 13:01	ANTIPER.
Order number	: BNE 1901037	Date Analysis Commenced	: 29-Jan-2019	Contraction
C-O-C number		Issue Date	: 04-Feb-2019 10:25	
Sampler				市連条
Site			in the second	
Quote number	: EN/333		in the second se	Arrentizion No 200
No. of samples received	 СЛ			Accredited for compliance with
No. of samples analysed	:5			ISO/IEC 17025 - Testing
This report supersedes a		submitted. This document sha	all not be reproduced, except in full.	

This Certificate of Analysis contains the following information:

- **General Comments**
- Analytical Results

Quality Review and Sample Receipt Notification. Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with

Signatories
This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

Project	Client	Work Order	Page
: 1893795 - Inland Rail Section 320	: TRILAB PTY LTD	: EB1902048	: 2 of 2

General Comments

developed procedures are employed in the absence of documented standards or by client request. -The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house

Where moisture determination has been performed, results are reported on a dry weight basis. -

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. -

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing

purposes. -

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details. -

- Key : -CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
- LOR = Limit of reporting
- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests
- ~ = Indicates an estimated value.
- CORROSION ASSESSMENT: As per Australian Standard (AS2159-1995, section 6), the Exposure Classification for all samples is rated Mild to Non Aggressive. ALS is not NATA accredited for this comment.

Analytical Results

Sub-Matrix: SOIL		Clien	t sample ID	102094 /	102097 /	102108 /	102118 /	102128 /
(Matrix: SOIL)				320-01-BH2203-S0035	320-01-BH2203-S0080	320-01-BH2207-S0050	320-01-BH2215-S0035	320-01-BH2216-S0028
				0 / 3.50-3.95m	0 / 8.00-8.10m	0 / 5.00-5.45m	0 / 3.50-3.77m	0 / 2.80-2.92m
	Clien	it sampling	t date ∕ time	24-Jan-2019 00:00	24-Jan-2019 00:00	24-Jan-2019 00:00	24-Jan-2019 00:00	24-Jan-2019 00:00
Compound CAS N	umber	LOR	Unit	EB1902048-001	EB1902048-002	EB1902048-003	EB1902048-004	EB1902048-005
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value	-	0.1	pH Unit	8.0	8.2	7.3	5.2	9.8
EA055: Moisture Content (Dried @ 105-110°C)								
Moisture Content	-	1.0	%	15.1	22.0	16.8	12.5	6.2
ED040S : Soluble Sulfate by ICPAES								
Sulfate as SO4 2- 1480	8-79-8	10	mg/kg	20	<10	<10	70	40
ED045G: Chloride by Discrete Analyser								
Chloride 1688	7-00-6	10	mg/kg	220	240	<10	160	120

APPENDIX

Geotechnical

Appendix E Hydraulic testing results

GOWRIE TO HELIDON ENVIRONMENTAL IMPACT STATEMENT

Golde	er ates			١	WATER PRES	SURE TE	ST (5 Stage)			D '	aion Ma	40
Job Nº ·	1893795		Hole № ·	BH2101	г	Drilling Method	HQ	Vertical depth	Immedia	tely prior to test	sion N° : (m bal) :	18 63.44
Client :	FFJV		Dip (Deg) :	-90	Hole	e Diameter (m) :	0.096	to	l	Jsed in analysis	(m bgl) :	63.44
Proiect :	Inland Rail		DH Interval Top (m) :	94.00	Downhole Te	sted Length (m):	5.00	Groundwater	Pressur	e Gauge Height	(m aql) :	0.00
Location :	320-01-BH2101		DH Interval Base (m) :	99.00	Packer Type:	Pne	umatic - Wireline - D	ouble	Presum	ed Water Tempe	erature :	26
Tested By :	SK		Computed By :	SK	Rock tested :				Casir	ng Inner Diamete	er (mm) ·	77 80
Date ·	20/08/2001		Date :	26/08/2018	Water N	leter Reading in	Litres	Checked By :	Guon		Date ·	11.00
Duic .	20/00/2001		Bute :	Actual	Time	Water Meter Re	eadings	Volume	Discharge	Discharge/m	Dute :	
Pressure Stage	Gauge Pr	essure	No	Time	Intervals	Reading		(L)	(L/min)	(L/min/m)		Remarks
9-	kPa	1	0	(h:m:s)	(min)	(Litres)		0.00	0.00	0.00	с:	·
			1	8:49:00	01:00	10795.0		3.00	3.00	0.60	1	
			2	8:50:00	01:00	10798.0		3.00	3.00	0.60		
			3	8:51:00	01:00	10801.0		3.00	3.00	0.60	-	
P1	200)	5	8:53:00	01:00	10805.0		2.00	2.00	0.40		
			6	8:54:00	01:00	10808.0		3.00	3.00	0.60	-	
			8	8:55:00	01:00	10810.0		2.00	2.00	0.40	-	
			9	8:57:00	01:00	10818.0		4.00	4.00	0.80		
			10	8:58:00	01:00	10823.0		5.00	5.00	1.00		
								Total : Average:	31.00	6.20	Start Da	ate & Time :
			0	8:58:00	0	10823.0		0.00	0.00	0.020	с:	
			1	8:59:00	01:00	10829.0		6.00	6.00	1.20	-	
			3	9:00:00	01:00	10835.0		6.00	6.00	1.20	-	
			4	9:02:00	01:00	10846.0		5.00	5.00	1.00		
P2	300)	5	9:03:00	01:00	10855.0		9.00	9.00	1.80	-	
			6	9:04:00	01:00	10858.0		4.00	4.00	0.60	-	
			8	9:06:00	01:00	10869.0		7.00	7.00	1.40		
			9	9:07:00	01:00	10875.0		6.00	6.00	1.20	-	
			10	9.00.00	01.00	10662.0		Total :	59.00	11.80	-	
				0.00.00	0	10000 0		Average:	5.900	1.180		
			1	9:08:00	01:00	10882.0		7.00	7.00	0.00	C:	
			2	9:10:00	01:00	10895.0		6.00	6.00	1.20		
			3	9:11:00	01:00	10902.0		7.00	7.00	1.40	-	
P3	400)	5	9:12:00	01:00	10909.0		7.00	7.00	1.40	-	
			6	9:14:00	01:00	10923.0		7.00	7.00	1.40	1	
			7	9:15:00	01:00	10929.0		6.00	6.00	1.20	-	
			9	9:17:00	01:00	10930.0		8.00	8.00	1.60	1	
			10	9:18:00	01:00	10952.0		8.00	8.00	1.60		
								Total :	70.00	14.00	-	
			0	9:18:00	0	10952.0		0.00	0.00	0.00	с:	,
			1	9:19:00	01:00	10961.0		9.00	9.00	1.80	1	
			2	9:20:00	01:00	10966.0		5.00	5.00	1.00	-	
			4	9:22:00	01:00	10973.0		6.00	6.00	1.40	-	
P4	300)	5	9:23:00	01:00	10986.0		7.00	7.00	1.40	1	
			6	9:24:00	01:00	10992.0		6.00	6.00	1.20	-	
			8	9:26:00	01:00	11004.0		6.00	6.00	1.20	-	
			9	9:27:00	01:00	11010.0		6.00	6.00	1.20		
			10	9:28:00	01:00	11016.0		6.00	6.00	1.20	-	
								Average:	6.400	1.280	-	
			0	9:28:00	0	11016.0		0.00	0.00	0.00	с:	
			2	9:29:00	01:00	11020.0		4.00	4.00	0.80	-	
			3	9:31:00	01:00	11030.0		5.00	5.00	1.00	1	
DE			4	9:32:00	01:00	11035.0		5.00	5.00	1.00	-	
25			5	9:33:00	01:00	11040.0		5.00	5.00	1.00	4	
			7	9:35:00	01:00	11049.0		4.00	4.00	0.80	1	
			8	9:36:00	01:00	11053.0		4.00	4.00	0.80	-	
			10	9:38:00	01:00	11061.0		4.00	4.00	0.80	-	
								Total :	45.00	9.00	Finish Da	ate & Time :
								Average:	4.500	0.900		
TEST RESU	JLTS				·							
Stage No.	Lugeon (1933)	L	ugeon Value Curve	9	Nett Pressures		Pressure Vs Flow	,	Interpreted	Result & Hydra	ulic Con	ductivity
_	value								-	-		-
			Lugeon Value			0.50400	Interval Pressure (kPa)	7 - M O M = M O M = M O O				

ient				F	Project					Project N	lumber
A G	older		N	WATER PRES	SURE TE	ST (5 Stage)					
Ass	sociates		DUD404	-	rilling Math		Vertical depth	المرجم معاجبا	Revis	sion Nº :	18
JOD IN° :	1893795 EEN/	Hole N° :	BH2101	L	Diameter (m)		to	Immedia	tely prior to test	(m bgi) : (m bgi) :	62.18
Droigot :	. FFJV	Dip (Deg) :	-90		Diameter (m)	0.096	Groundwater	Proseur		(m od):	0.00
			103.00	Downhole Tes		4.00	oublo	Presum	e Gauge Height	(iii agi) .	0.00
Location :	. 320-01-ВП2101	Computed By:	107.00	Packer Type.	FIE		Juble	Casir	eu water Tempe	r (mm) :	20
Dete :	17/08/2001	Computed By :	3N	Notor Mator M	latar Deading in	Litroo	Checked By J	Casil			77.00
Date :		Date :	Actual	Time	Water Meter Re	eadings	Volume	Discharge	Discharge/m	Date :	
Pressure Stage	Gauge Pressure	No	Time	Intervals	Reading	Jaamgo	(L)	(L/min)	(L/min/m)	I	Remarks
Olage	kPa	0	(h:m:s)	(min)	(Litres)		0.00	0.00	0.00	c:	
		1	10:08:00	01:00	7190.0		0.00	0.00	0.00	-	
		2	10:10:00	01:00	7192.0		2.00	2.00	0.50		
		3	10:11:00	01:00	7192.0		0.00	0.00	0.00		
P1	200	5	10:12:00	01:00	7192.0		0.00	0.00	0.00		
		6	10:14:00	01:00	7192.0		0.00	0.00	0.00		
		7	10:15:00	01:00	7192.0		0.00	0.00	0.00	-	
		9	10:17:00	01:00	7193.0		0.00	0.00	0.00	-	
		10	10:18:00	01:00	7193.0		0.00	0.00	0.00		
							Total :	3.00	0.75	Start Dat	te & Time :
		0	10:18:00	0	7193.0		0.00	0.00	0.075	с:	
		1	10:19:00	01:00	7194.0		1.00	1.00	0.25	1	
		2	10:20:00	01:00	7195.0		1.00	1.00	0.25	-	
		4	10:21:00	01:00	7195.0		0.00	0.00	0.00	-	
P2	300	5	10:23:00	01:00	7196.0		1.00	1.00	0.25		
		6	10:24:00	01:00	7197.0		1.00	1.00	0.25	-	
		/ 8	10:25:00	01:00	7197.0		0.00	0.00	0.00		
		9	10:27:00	01:00	7198.0		1.00	1.00	0.25		
		10	10:28:00	01:00	7199.0		1.00	1.00	0.25	-	
							Average:	0.600	0.150	-	
		0	10:29:00	0	7199.0		0.00	0.00	0.00	c:	
		1	10:30:00	01:00	7200.0		1.00	1.00	0.25	-	
		3	10:32:00	01:00	7201.0		0.00	0.00	0.00		
50	100	4	10:33:00	01:00	7202.0		1.00	1.00	0.25		
P3	400	5	10:34:00	01:00	7202.0		0.00	0.00	0.00	-	
		7	10:36:00	01:00	7204.0		1.00	1.00	0.25		
		8	10:37:00	01:00	7205.0		1.00	1.00	0.25	-	
		9	10:38:00	01:00	7206.0		1.00	1.00	0.25		
		10	10.00.00	01.00	1201.0		Total :	8.00	2.00		
		-		_			Average:	0.800	0.200		
		0	10:39:00	0	7207.0		0.00	0.00	0.00	с:	
		2	10:41:00	01:00	7207.0		0.00	0.00	0.00	-	
		3	10:42:00	01:00	7207.0		0.00	0.00	0.00		
P4	300	4	10:43:00	01:00	7208.0		1.00	1.00	0.25		
. 4	000	6	10:45:00	01:00	7209.0		1.00	1.00	0.25		
		7	10:46:00	01:00	7209.0		0.00	0.00	0.00		
		8	10:47:00	01:00	7210.0		1.00	1.00	0.25		
		10	10:49:00	01:00	7211.0		1.00	1.00	0.25		
				-			Total :	4.00	1.00		
		0	10.40.00	0	7211.0		Average:	0.400	0.100	c :	
		1	10:50:00	01:00	7211.0		0.00	0.00	0.00	<u>.</u>	
		2	10:51:00	01:00	7211.0		0.00	0.00	0.00		
		3	10:52:00	01:00	7211.0		0.00	0.00	0.00		
P5		5	10:54:00	01:00	7212.0		0.00	0.00	0.20		
		6	10:55:00	01:00	7212.0		0.00	0.00	0.00		
		7	10:56:00	01:00	7213.0		1.00	1.00	0.25		
		9	10:58:00	01:00	7214.0		1.00	1.00	0.25		
		10	10:59:00	01:00	7214.0		0.00	0.00	0.00		
							Total :	3.00	0.75	Finish Dat	te & Time :
ERT DECI							Average.	0.300	0.075		
ESTRES					T						
Stage No.	Lugeon (1933)	Lugeon Value Curve	e	Nett Pressures		Pressure Vs Flow		Interpreted	Result & Hvdra	ulic Cond	ductivitv

APPENDIX

Geotechnical

Appendix F Slug testing results

GOWRIE TO HELIDON ENVIRONMENTAL IMPACT STATEMENT

APPENDIX

Geotechnical

Appendix G Vibrating wire piezometer calibration sheets

GOWRIE TO HELIDON ENVIRONMENTAL IMPACT STATEMENT

SLOPE INDICATOR

VW Piezometer Calibration Certificate

Serial #: 1803844 Range : 3500 kPa Cable Length: 140 m Date of Calibration: 11/14/2018 Part #: 52611050 Cable Part #: 50613824 Calibrated by: KB Note:

ABC Calibration Factors

	A	в	C
kPa	-6.044013E-4	-9.569014E-1	8.311351E+3
psi	-8.766100E-5	-1.387868E-1	1.205460E+3

Pressure in kPa/psi = $(A \times Hz^2) + (B \times Hz) + C$, where Hz is frequency in Hertz.

TI Calibration Factors

	CO	C1	C2	C3	C4	C5
kPa	8.296855E+3	-9.511214E-1	6.037635E-1	-6.055243E-4	6.070409E-6	-9.885988E-3
psi	1.203315E+3	-1.379436E-1	8.756541E-2	-8.782078E-5	8.804074E-7	-1.433791E-3
Pressure	e in kPa/psi = C0 +	(C1 x Hz) + (C2 >	$(T) + (C3 \times Hz^2)$	+ (C4 x Hz x T) +	(C5 x T ²)	

Where Hz is the frequency reading in Hertz and T is the Thermistor reading in degrees C. TI factors are calculated from temperatures at 5.0, 15.0 and 25.0 degrees C.

Applied pressure and temperature are NIST traceable.

Summary of Test Results at 15°C

Thermistor reading is 15.2 °C.

Applied Pressure is referenced to 1 atm. Calculated Pressure uses ABC Calibration factors.

Applied	Equivalent	Frequency	Calcu	lated	Error
(kPa)	(psi)	(Hz)	(kPa)	(psi)	(%FS)
0.0	0.00	2999.9	1.5	0.22	-0.04
350.0	50.76	2922.8	351.3	50.95	-0.04
700.0	101.53	2844.6	698.7	101.34	0.04
1050.0	152.29	2764.3	1047.7	151.96	0.06
1400.0	203.05	2681.8	1398.2	202.80	0.05
1750.0	253.82	2597.1	1749.5	253.75	0.01
2100.0	304.58	2510.2	2100.9	304.72	-0.03
2450.0	355.34	2421.1	2451.8	355.60	-0.05
2800.0	406.11	2329.6	2802.1	406.40	-0.06
3150.0	456.87	2235.6	3151.4	457.07	-0.04
3500.0	507.63	2139.5	3497.4	507.26	0.07

SLOPE INDICATOR

VW Piezometer Calibration Certificate

 Serial #: 1803845
 Part #: 52611050

 Range : 3500 kPa
 Cable Part #: 50613824

 Cable Length: 280 m
 Calibrated by: KB

 Date of Calibration: 11/14/2018
 Note:

ABC Calibration Factors

	A	в	C
kPa	-8.314060E-4	4.733899E-1	5.682691E+3
psi	-1.205853E-4	6.865940E-2	8.242047E+2

Pressure in kPa/psi = $(A \times Hz^2) + (B \times Hz) + C$, where Hz is frequency in Hertz.

TI Calibration Factors

	CO	C1	C2	C3	C4	C5
kPa	5.676418E+3	4.702452E-1	8.042299E-1	-8.306168E-4	-3.364994E-5	-7.939171E-3
psi	8.232658E+2	6.820090E-2	1.166396E-1	-1.204665E-4	-4.880339E-6	-1.151439E-3
Pressure	e in kPa/psi = C0 +	(C1 x Hz) + (C2)	x T) + (C3 x Hz ²)	+ (C4 x Hz x T) +	(C5 x T ²)	

Where Hz is the frequency reading in Hertz and T is the Thermistor reading in degrees C. TI factors are calculated from temperatures at 5.0, 15.0 and 25.0 degrees C. Applied pressure and temperature are NIST traceable.

Summary of Test Results at 15°C

Thermistor reading is 15.3 °C.

Applied Pressure is referenced to 1 atm. Calculated Pressure uses ABC Calibration factors.

Applied	Equivalent	Frequency	Calcu	lated	Error
(kPa)	(psi)	(Hz)	(kPa)	(psi)	(%FS)
0.0	0.00	2914.6	-0.3	-0.04	0.01
350.0	50.76	2833.0	351.0	50.91	-0.03
700.0	101.53	2749.3	699.9	101.51	0.00
1050.0	152.29	2662.5	1049.3	152.19	0.02
1400.0	203.05	2572.3	1399.2	202.94	0.02
1750.0	253.82	2478.2	1749.8	253.79	0.01
2100.0	304.58	2380.0	2099.9	304.57	0.00
2450.0	355.34	2276.9	2450.3	355.39	-0.01
2800.0	406.11	2168.1	2800.9	406.23	-0.03
3150.0	456.87	2053.0	3150.3	456.92	-0.01
3500.0	507.63	1930.1	3499.2	507.51	0.02

SLOPE INDICATOR

Calibration Record

V-Logger

Part Nu	Part Number: 52615140		Serial Number:			1832651
Specification						
Frequency Acc Temperature Acc	uracy: \pm (0.0 uracy: \pm .5 °	02% of Reading C	+0.04Hz)			
Frequency Generato	r					
Calibration Sta	ndard: A	gilent 33210A	Serial Number:			20-78-SI
)	Calibrator Re-	Certi	fication Due:	Feb. 9th, 2019
Temperature Resista	nce					
Calibration Sta	ndard: Sha	alleross Decade	Serial Number:			20-15-SI
		1	Calibrator Re-	Certi	fication Due:	Feb. 15th, 2020
	IN	PUT (Hz)	ACCEPTABL	E RE:	SPONSE (Hz)	ACTUAL RESPONSE (Hz)
	4	50.000	449.951	to	450.049	449.998
	1000.000		999.940	to	1000.060	999.991
	2000.000		1999.920	to	2000.080	1999.976
FREQUENCY	3000.000		2999.900	to	3000.100	2999.964
	4	000.000	3999.880	to	4000.120	3999.952
	5000.000		4999.860	to	5000.140	4999.943
1	6	000.000	5999.840 to 6000.160		6000.160	5999.927
	INPUT (Ω)	IDEAL RESPONSE (°C)	ACCEPTABL.	E RES	SPONSE (°C)	ACTUAL RESPONSE (°C)
TEMPERATURE	1715	-20.0	-20.5	to	-19.5	-19.9
RTD	2076	30.0	29.5	to	30.5	30.3
	2482	80.0	79.5	to	80.5	80.2
	29142	-20.0	-20.5	to	-19.5	-20.1
THERMISTOR	2416	30.0	29.5	to	30.5	29.9
	377	80.0	79.5	to	80.5	80.0

This Certificate confirms that the equipment listed above has been calibrated in accordance with the manufacturer's specifications with calibration standards that are traceable to the National Institute of Standards and Technology (NIST).

Calibrated By: TQL

Date: November 8th, 2018

APPENDIX

Geotechnical

Appendix H Hydrographs

GOWRIE TO HELIDON ENVIRONMENTAL IMPACT STATEMENT

CLIENT	FFJV			PROJECT	Inland Rail – G2	2H		
DRAWN	SK	DATE	12/03/19	TITLE	220 01 002101	Hydrograph		
CHECKED	DB	DATE	12/03/19		320-01-002101	пушодгарн		
SCALE	Not to Scale)		PROJECT N	• 1893795	FIGURE No H1.1	REV No 3	A4

CLIENT FFJV			PROJECT	Inland Rail – G2	2H			
drawn SK	DATE	12/03/19	TITLE	220 01 002102		anh		
CHECKED DB	DATE	12/03/19		320-01-BH2102		арп		
SCALE Not to Sc	ale		PROJECT No	1893795	FIGURE No	H1.2	REV No 3	A4

CLIENT FFJV		PROJECT	Inland Rail – G	2H		
drawn SK	date 12/03/19	TITLE	220 01 00210	Hudrograph		
CHECKED DB	date 12/03/19		320-01-BH2103	пушодгарн		
scale Not to Scale	9	PROJECT N	• 1893795	FIGURE № H1.3	REV No 3	A4

CLIENT FFJV			PROJECT	Inland Rail – G2	2H		
drawn SK	DATE	12/03/19	TITLE	220 01 012201	Hydrograph		
CHECKED DB	DATE	12/03/19		320-01-DH2201	пушодгарн		
SCALE Not to Scale	Э		PROJECT N	• 1893795	FIGURE NO H1.4	REV No 3	A4

CLIENT FFJ	IV			PROJECT	Inland Rail – G2	2H			
drawn SK		DATE	12/03/19	TITLE	220 01 002216	Ludrog	anh		
CHECKED DB		DATE	12/03/19		320-01-002210	пушоді	арп		
SCALE NOT	to Scale	;		PROJECT N	• 1893795	FIGURE No	H1.5	REV No 3	A4

CLIENT FFJV			PROJECT	Inland Rail – G	2H			
drawn SK	DATE	12/03/19	TITLE	220 01 04221	7 Uvdroar	anh		
CHECKED DB	DATE	12/03/19		320-01-002217	пушоді	арп		
SCALE Not to	Scale		PROJECT No	1893795	FIGURE No	H1.6	REV No 3	A4

CLIENT FFJV		PROJECT	Inland Rail – G2	2H			
drawn SK	date 12/03/19	TITLE	220 01 002210		nh		
CHECKED DB	date 12/03/19		320-01-DH2210	пушоўга	рп		
SCALE Not to Scale	e	PROJECT N	• 1893795	FIGURE No	H1.7	REV No 3	A4

CLIENT FFJV		PROJECT	Inland Rail – G2	2H		
drawn SK	date 12/03/19	TITLE	220 01 012201	Hydrograph		
CHECKED DB	date 12/03/19		320-01-00230	пушодгарн		
SCALE Not to Scale	9	PROJECT N	• 1893795	FIGURE № H1.8	REV No 3	A4

APPENDIX

Geotechnical

Appendix I

Groundwater laboratory reports

GOWRIE TO HELIDON ENVIRONMENTAL IMPACT STATEMENT

															Heavy N	letals			
Arsenic T/8m	R Arsenic (Filtered)	Barium	Barium (Filtered)	Beryllium	Reryllium (Filtered)	uouo Ba	Boron (Filtered)	cadmiu mg/L	admium (Filtered) M∧m	Chromium T/am	Chromium (Filtered)	Cobait T/8w	Cobait (Filtered)	Copper	Copper (Filtered)	<u>Ę</u>	Iron (Filtered)	lead mg/L	للعام (Filtered)
 0.001	0.001	0.001	0.001	0.001	0.001	0.05	0.05	0.0001	0.0001	0.001	0.001	0.001	0.001	0.001	0.001	0.05	0.05	0.001	0.001

Borehole ID Sampled Date

EQL

320-01-BH2101	13/09/2018	0.004	0.003	0.756	0.748	< 0.001	< 0.001	< 0.05	0.06	0.0001	<0.0001	0.003	0.003	<0.001	<0.001	0.003	0.002	0.31	0.17	< 0.001	<0.001
320-01-BH2103	11/02/2019	0.001	0.001	0.145	0.111	< 0.001	<0.001	< 0.05	< 0.05	< 0.0001	<0.0001	0.002	<0.001	0.005	0.004	0.002	<0.001	1.42	0.11	<0.001	<0.001
320-01-BH2201	30/10/2018	0.007	0.005	0.314	0.238	< 0.001	< 0.001	0.22	0.22	< 0.0001	<0.0001	0.005	<0.001	0.005	<0.001	0.008	<0.001	6.72	0.76	0.005	<0.001
320-01-BH2216	26/02/2019	0.01	0.007	0.625	0.488	< 0.001	< 0.001	0.29	0.31	< 0.0001	< 0.0001	0.006	< 0.001	0.009	0.002	0.01	<0.001	4.08	< 0.05	0.008	< 0.001
320-01-BH2217	30/10/2018	0.036	0.035	0.383	0.309	< 0.001	< 0.001	0.42	0.42	< 0.0001	< 0.0001	0.005	< 0.001	0.028	0.017	0.043	<0.001	2.24	0.34	0.012	< 0.001
320-01-BH2218	22/11/2018	0.028	0.004	0.611	0.182	0.009	0.002	0.39	0.4	0.0005	<0.0001	0.113	0.008	0.126	0.005	0.288	0.004	-	-	0.172	0.007
320-01-BH2301	07/12/2018	0.685	0.003	28.3	0.124	0.1	< 0.001	0.4	0.08	0.0564	<0.0001	0.488	<0.001	1.7	0.002	-	-	2020	< 0.05	2.31	<0.001

												Oth	ner						
Manganese Ma/T	Manganese (Filtered)	Mercury Mercury	Mercury (Filtered)	Nicke Nicke	Nickel (Filtered)	Selenium T/8m	Selenium (Filtered)	Vanadium 7/au	کا ۲/۵۳ (Filtered)	Zinc //#	Zinc (Filtered)	 Sodium Absorption Ratio 	Sodium Absorption Ratio (Filtered)	SS Electrical Conductivity @ 25°C	(qep) Hd Units BH Units	표 Total Dissolved Solids @180°C	Radium (Filtered)	Potassium (Filtered)	A Calcium (Filtered)
 0.001	0.001	0.0001	0.0001	0.001	0.001	0.01	0.01	0.01	0.01	0.005	0.005	0.01	0.01	1	0.01	10			

Borehole ID Sampled Date

EQL

320-01-BH2101	13/09/2018	0.002	< 0.001	< 0.0001	< 0.0001	0.003	0.002	< 0.01	< 0.01	0.04	0.04	< 0.005	0.005	3.58	-	3040	12	985	174	58	178
320-01-BH2103	11/02/2019	0.493	0.467	< 0.0001	<0.0001	0.005	0.005	< 0.01	< 0.01	<0.01	< 0.01	0.009	0.01	-	1.77	1460	7.72	921	94	1	78
320-01-BH2201	30/10/2018	0.101	0.029	< 0.0001	<0.0001	0.015	0.009	< 0.01	< 0.01	<0.01	< 0.01	0.023	< 0.005	-	9.81	2640	8.04	1570	442	7	101
320-01-BH2216	26/02/2019	0.11	0.031	<0.0001	<0.0001	0.01	0.006	< 0.01	< 0.01	<0.01	<0.01	0.027	< 0.005	-	25.1	2800	7.78	1770	612	18	22
320-01-BH2217	30/10/2018	0.077	0.054	< 0.0001	<0.0001	0.029	0.018	< 0.01	< 0.01	0.01	< 0.01	0.044	0.01	-	21.7	2080	7.72	1300	461	19	21
320-01-BH2218	22/11/2018	0.458	0.04	<0.0001	<0.0001	0.169	0.008	< 0.01	< 0.01	0.28	0.02	0.423	0.054	-	21.4	1210	7.17	1160	257	12	6
320-01-BH2301	07/12/2018	70.9	0.073	<0.001	<0.0001	1.71	0.003	<0.1	<0.01	1.24	<0.01	12.2	0.014	-	23.7	5690	8.22	3420	974	12	83

					Sampl	e Quali	ty Paran	neters											
Magnesium (Filtered)	Chloride	Sulphate (as SO4) (Filtered)	Bicarbonate Alkalinity (as CaCO3)	Carbonate Alkalinity (as CaCO3)	Hydroxide Alkalinity (as CaCO3)	Total Alkalinity (as CaCO3)	Nitrate (as N)	Nitrite (as N)	Nitrogen (Total Oxidised)	Ammonia (as N)	Total Kjeldahl Nitrogen (as N)	Nitrogen (Total)	Fluoride	Reactive Phosphorus (as P)	Total Phosphorus (as P)	Total Anions	Total Cations	lonic Balance (Lab)	Hardness (as CaCO3) (Filtered)
mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	meq/L	meq/L	%	mg/L
	1		1	1	1	1	0.01	0.01	0.01	0.01	0.1	0.1	0.1	0.01	0.01	0.01	0.01	0.01	

Borehole ID	Sampled Date

EQL

320-01-BH2101	13/09/2018	<1	87	77	<1	92	562	654	0.02	< 0.01	0.02	4.59	4.5	4.5	0.3	< 0.01	0.02	17.1	17.9	2.31	444
320-01-BH2103	11/02/2019	82	229	34	430	<1	<1	430	0.08	< 0.01	0.08	0.89	9.1	9.2	0.2	0.01	0.02	15.8	14.8	3.29	532
320-01-BH2201	30/10/2018	32	403	18	830	<1	<1	830	<0.01	< 0.01	< 0.01	0.43	1.1	1.1	0.4	< 0.01	0.09	28.3	27.1	2.25	384
320-01-BH2216	26/02/2019	14	321	4	1020	<1	<1	1020	0.06	< 0.01	0.06	0.21	0.7	0.8	-	< 0.01	0.14	29.5	29.3	0.32	-
320-01-BH2217	30/10/2018	8	164	7	893	<1	<1	893	< 0.01	< 0.01	< 0.01	0.06	0.2	0.2	1.8	0.01	0.17	22.6	22.2	0.82	85
320-01-BH2218	22/11/2018	3	126	2	421	<1	<1	421	0.16	< 0.01	0.16	0.24	3	3.2	0.8	< 0.01	2.41	12	12	0.1	27
320-01-BH2301	07/12/2018	27	1450	323	209	<1	<1	209	0.07	< 0.01	0.07	0.68	49.3	49.4	-	< 0.01	127	51.8	49	2.74	-

	CHAIN OF CUSTODY ALS Laboratory: please tick →	QADELAIDE 3/1 Surma Road Pooraka SA 5 Ph 08 3162 5130 E: adelside@alisglobal.co. QBRISBANE 2 Byth Street Stafford CLD 405 Ph: 07 3243 7222 E: samples brisbane@alisg QGLADSTONE 48 Calemondah Drive Glady Ph: 07 4978 7944 E: gtadstone@alisglobal.co	095 LIMACKAY 78 Harbour Road 1 m Ph: 07 4944 0177 E: mackay@ g UMELBOURNE 2-4 Westall F lobal.com Ph: 03 8549 9600 E: semoles tone QLD 4680 DMUDGEE 129 Sydney Roa m Ph: 02 6372 6735 E: mudgee.	Alackay QLD 4740 talsglobal.com Road Springvale VIC 3171 melbourne@alsglobal.com Il Mudgee NSW 2850 mail@alsglobal.com	DNEWCASTLE 5/585 Mailtand Road Mayfield West Ph: 02 4014 2500 E: samples newcastle@atsglobal.o DNOWRA 4/13 Geary Place North Nowia NSW 2541 Ph: 02 4423 2053 E: nowe@atsglobal.com DPERTH 10 Hod Way Malaga WA 6090 Ph: 08 9209 7655 E: samples.perth@atsglobal.com	NSW 2304 OBYDNEY 277-289 Woo Ph: 02 8784 8555 E: san OTOWNSVILLE 14-15 D Envir Ph: Envir Ph: Envir	dpark Road Smithfield NSW 2154 pressydney@alsglobal.com esma Court Bohle QLD 4818 Conmental Division
FICE: BIZIS	BAWE	TURNAR (Standard T e.g. Ultra T PRO JECT NO : 1000 ALS OUT	CUND REQUIREMENTS : Standard	TAT (List due date): dard or urgent TAT (List du	ve date):	FOR LAB(Wo Custody Sea	rk Order Reference B1826458
RDER NUMBER:	PURCHASE	ORDER NOT 180 210 COUNTR			COC SEQUENCE NUMBER (Circle)	receipt?	21020100
OJECT MANAGER:	MITCH MCGINI	WES CONTACT PH:			$- \frac{1}{2} \frac{1}{3} \frac{1}{4} \frac{1}{5} \frac{1}{6} \frac{1}{6} \frac{1}{2} \frac{1}{3} \frac{1}{4} \frac{1}{5} \frac{1}{6} $	7 Random Sa	
MPLER: ROB	(UPPEN	SAMPLER MOBILE: /	6448 611 113 RELINQUISH	ED BY:	RECEIVED BY	7 Other comm	
DC Emailed to ALS?	(YES / NO)	EDD FORMAT (or defa	ult):		De GK		
nail Reports to (will o	default to PM if no other addresses are li	sted): Skumarapeli 6	9010 er. COM. GU DATE/TIME:		DATE/TIME:	DATE/TIME:	
nail Invoice to (will de	efgult to PM if no other addresses are lis	ited):	J		1/11/11/ 1500	Telephon	le : + 61-7-3243 7222
MMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSAL					2	
ALS USE ONLY	SAMPLE	DETAILS		ANALX6IS F	REQUIRED including SUITES (NB. Suite Cod	es must be listed to attract suite price)	
	MATRIX: Soli	d(S) Water(W)		Where Metal	s are required, specify Total (unfiftered bottle required) or t	Bolved (field filtered bottle required).	Additional Information
				ions a, C, F nity, Hau	Vitute)	hesphou 7100	Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
LABID	SAMPLE ID	DATE / TIME MATRIX	1YPE & PRESERVATIVE (refer to codes below) E	TOTAL + 19 HOTTLES	c, p +1 8, Ba, Ba, Ba, Ba, Ba, Ba, Ba, Ba, Ba, Ba	Hed PSN Hed PSN drinn, ssorphor	
1	720 01 010017	20/10/10 200 111		- E199 -	A PLANT ASA	36 2 <u>5</u>	
	320-01-842211	20110118 200pm W	IV, SP	4	////		
	320-01-BH2201	30/10/18 1.00pm W	IN, SP	4 /	////		
·		·					
	-						
		-					
							ş.
							Ac
							No. Contraction of the second
			· ·				
		·····					
			TOTAL	0			i
er Container Codes:	P = Unpreserved Plastic; N = Nitric Preserved	d Plastic; ORC = Nitric Preserved ORC; SH	= Sodium Hydroxide/Cd Preserved; S = Sodium Hydr	oxide Preserved Plastic; AG =	Amber Glass Unpreserved; AP - Airfreight Uppreserved; AP - Airfreight Uppreserved; AP - Airfreight Uppreserved; AP - Airfreight Uppr	erved Plastic	

Y

ه,

CLIENT: (0/0ER	CHAIN OF CUSTODY ALS Laboretory: please tick →	AADELAIDE 3/1 Burma Read P Ph: 08 B162 5130 E: adelaide@ BERISSANE 2 byth Street Staff Ph: 07 3243 7222 E: samples.br DGLADSTONE 46 Callemondal Ph: 07 4978 7944 E: gladstone@	Pooraka SA 505 alsglobal.com ford QLD 4053 isbane@alsglo h Drive Gladsto galsglobal.com	35 UMACKAY 78 Harbour Road Pr: 07 4944 0177 E: mackay@ UMELBOURNE 24 Vestall bal.com Ph: 03 8549 9500 E: samples Ine QLD 4580 UMUDGEE 1/29 Sydney Roa Ph: 02 6372 6735 E: mudgee	Nackay QLO 4740 Jalsglobal.com Road Springvale VIC 3171 .melbourna@alsglobal.cor d Mudgse NSW 2850 mail@alsglobal.com	m	DNEWCASTLE 5/586 Maitland Road Mayfield West NS Ph: 02 4014 2500 E: samples.newcastle@alsglobal.com DNOWRA 4/13 Gaary Place North Nowra NSW 2541 Ph: 02 423 2063 E: nowra@alsglobal.com DPERTH 10 Hod Way Malaga WA 6000 Ph: 08 9209 7655 E: samples.perth@alsglobal.com	W 2304 SYDNEY 277-289 Woodp Ph: 02 8784 8555 E: sampl DTOWNSVILLE 14-15 Des Ph: 07 4796 0500 E: teumas DWOLLONGONG 1/19-21 Ph: 02 4225 3125 E: wolfor	ark Road Smithfield NSW 2164 as sydney@alsglobal.com ma Court Bohle QLD 4818 fillia.environmani@alsglobal.com Ralph Black Drive, Nth Wollongong NSW 2500 gong@alsglobal.com
OFFICE: (ni Dra	2 BRISANNES		TURNARC (Standard TA	DUND REQUIREMENTS : Standard	i TAT (List due date)):	4860	FOR LABORATORY USE O	NLY (Circle)
PROJECT	10 PAUL DO	1993795	e.g Ultra Tr	ace Organics)	idard or urgent TAT ((List due	ie date): -(O MY)	Custody Seal Intact?	Yes No N/A
ORDER NUMBER	PAIL VIL	ROJECT NO.: 10 TOTOL	ALS QUO	TE NO.:			COC SEQUENCE NUMBER (Circle)	receipt?	it upon Yes No N/A
PROJECT MANAGER	Vilch Al CinAse	ORDER NO.:	COUNTRY	OF ORIGIN:			COC: 1 2 3 4 5 6	7 Random Sample Temperature or	Receipt *C
SAMPLER 7	WICH MCGIMIS	, CONTACT PE		1 - 12: (0			OF: 1 2 3 4 5 6	7 Other comment:	8
COC Emailed to AI S2 ((YES I NO)	NTMA SAMPLER MI		HOOZ3462 RELINQUISH			RECEIVED BY:	ELINQUISHED BY:	RECEIVED BY:
Email Reports to (will de	efault to PM if no other addresses are li	CAPEC EDDFORMA	T (or defau		LENT		KYLIE		
Email Invoice to (will de	fault to PM if no other addresses are in	sied): Skumarap	ener	golder. Com au DATE/TIME:	12		DATE/TIME:	ATE/TIME:	DATE/TIME:
COMMENTERPECIAL	Induction with the other addresses are its	(ed):			10		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSAL								
ALS USE ONLY	SAMPLE	DETAILS			ANAL	YSIS R	REQUIRED including SUITES (NB. Suite Codes	must be listed to attract suite price)	
	MATRIX: Soli	d(S) Water(W)		CONTAINER INFORMATION	Wh		is are required, specify Total (unfiltered bottle required) or Dis	solved (field filtered bottle required).	Additional Information
					(ALL -	ŝ		2	Comments on likely contaminant levels,
•	· · · · · · · · · · · · · · · · · · ·				1, 1,	. E		SA 2	analysis etc.
	and the second second				E C	. Xt č	2 222 2 12 1	ST 2	
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE	TOTAL	- <u>ド</u>	- Maren 12 42	2 2 2 4	
				(refer to codes below)	SOTTLES	L Pa	I 0355 5 595	3 2 2 2	
					104	,Ā Q	I I I I I I I I I I I I I I I I I I I	र दे र है	
					N.O	1 6	A Long A La	A ve s	
1	200 DI RUMIO	21/11/10 202	3.1	NL CO					
	5-W-01-0F12210	21111118 0430		N SP	4 1				
				•					
						-			
			<u> </u>						
)						Environmental Division		2 ENT
							Brisbane	0171	JEINI
		· · · · · · · · · · · · · · · · · · ·					Work Order Reference		
							EB1828548		
						-+	(四川) 위신가 이번에 위신은 (四川))		
			1						
					ļ				
						-			·
			+				Telephone : + 61-7-3243 7222		
							, SIGPHINE . + 01-7-0240 7222		
		1					i) I		
	······································	- <u> </u>		• •					
				TOTAL	4				

V = VOA Vial HCI Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfuric Preserved; AV = Airfreight Unpreserved Vial SG = Sulfuric Preserved Amber Glass; H = HCI preserved Plastic; H = HCI preserved Plastic; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; SP = Sulfuric Preserved Bottle; SP = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag; L = Lugols Iodine Preserved Bottle; ST = Sterile Bottle; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag; L = Lugols Iodine Preserved Bottle; ST = Sterile Sodium Thiosulfate Preserved Bottles.

Called and the set of

CCC Emailed to ALS?	CHAIN OF CUSTODY ALS Laboratory: please tick -> R_ASSOCIATES FTY 2- BRISBANE VD RAIL (P12) PURCHASE MITCH-M.GINNAS VAH-GROVES YES 1,000	CADELAIDE 3/1 Burma Road Ph: 08 8162 5130 E: adelaide CBRISBANE 2 Byth Street Sta Ph: 07 3263 7222 E: semples. CADSTONE 48 Catternon Ph: 07 4976 7844 E: gladstone Ph: 07 4976 7844 E: gladstone Ph: 07 4976 7844 E: gladstone Ph: 07 4976 7844 E: gladstone CONTACT P SAMPLER NO.: EDD FORMA	Pooraka SA 509 Palaglobal.com fiford QLD 4053 an Drive Gladato @alaglobal.com TURNARO (Standard TA' e.g Ultra Tra e.g Ultra Tra e.g Ultra Tra COUNTRY H: IOBILE: 04 IT (or defaul	5 DMACKAY 78 Harbour Roi Pri: 07 4944 0177 E: macky balcom DMELBOURNE 2-4 Westi Ph: 03 8549 6600 E: samp Ph: 02 6372 6735 E: muldy INUD REQUIREMENTS : Standa Standa UND REQUIREMENTS : Standa Image: Standard St	di Mackay OLO 4741 Y@aksglobal.com all Road Springvale. Isa melbourne@aksglobal.co and TAT (List du landard or urger SHED BY:	IC 3171 lobal.com 850 m e date): It TAT (List du	DNEWCASTLE 5/686 / Ph: 02 4014 2500 E: se DNOWRA 4/3 0691 / Ph: 02 422 2063 E: on DPERTH 10 Hod way Ph: 08 9209 7655 E: s # 8 UUKS e date): # COC SEQUEN COC: 1 2 OF: 1 2 RECEIVED BY:	failliand Road Mayfield Wess mpkes.newcasile@alcglobal. Iace North Novra NSW 254 wa@alsglobal.com Melega W & 6090 mmples.perth@alsglobal.com CE NUMBER (Circle) 3 4 5 6 3 4 5 6 3 4 5 6	NSW 2304 com FOR Cush Free recei 7 Rank 7 Othe RELINQU	BYDNEY 277-289 Wood Ph 12 R784 8655 F same Brisbane Work Orde EB18	ark Road Smithfield NSW 2164 re surfax/Rakalabal com ntal Division r Reference 330099 N/A
Email Invoice to (will de	ault to PM if no other addresses are lis ault to PM if no other addresses are lis	sted): <u>SKUMARA</u> ted):	PELLO	GOLDER.COM. DATE/TIME AU 7/R	-118		DATE/TIME: 7/12//	3 1920	DATE/TIN	Telephone : + 61-	··3243 7222
ALS USE ONLY	SAMPLE MATRIX: Soli	DETAILS d(S) Water(W)		CONTAINER INFORMATION		ANALYSIS R	EQUIRED including	SUITES (NB. Suite Coo	ies must be list	ed to attract suite price)	Additional Information
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	O4, AIKalinin Haches	2, pH, TDS DTAL/DISSOLUED S.B.B. B. B. alphan	ULTPLEUTS ULTPLEUTS ULTPLEUTS TITPLEUTS TITPLEUTS	TEACTIVE HIDSPACE	Illered bottle required).	Comments on likely contaminant levels, ditutions, or samples requiring specific QC analysis etc.
	320-01-BH230	1 7/12/18	W	NISP	4						
Water Container Codes: 1 V = VOA Vial HCI Preserver	 ² = Unpreserved Plastic; N = Nitric Preserve ; VB = VOA Vial Sodium Bisulphate Preserve 	d Plastic; ORC = Nitric Preserve ed; VS = VOA Vlal Sulfuric Preşe	d ORC; SH = : rved; AV = Airf.	TOTAL Sodium Hydroxide/Cd Preserved: S = Sodium H reight Unpreserved Vial SG = Sulfuric Preserve	ydroxide Preserve Amber Glass:	ed Plastic; AG =	Amber Glass Unpreserv	ed; AP - Ainfreight Unpre-	served Plastic	Preserved Plactice 6 - E-	maklabuda Prasaanad Class

ALS	CHAIN OF CUSTODY ALS Laboratory: please tick →	DACELAIDE 3/1 Buinna Road Ph. 08 9162 5130 E. adelaide@ CBRISBANE 2 Byin Street Stat Ph. 07 3243 7222 E. samples b DCLAOSTONE 48 Catemenod, Ph. 07 4978 7944 E. gladstone	Pooraka SA 5095 Balsglobat.com ford 01:0 4053 risbane@atsglobat wh Drive Gtadstone @atsglobat.com	UMACKAN Ph D7 394 LÌMELBO com Ph 03 85 QLD 4680 IJMUOGE Ph 02 631	778 Haibout Road 14 0177 E. mackaye 149 9600 E. sample 149 9600 E. sample 149 9600 E. sample 149 9603 E. mudget	Mackay OLLI 4 Balaglobal com Road Springval s melbourne@a ad Hudgoe NSv i mai@alsgloba	43 9 VIC 3171 Isglobal com 7 2850 I com	ONE Ph ONC Ph C Ph C Ph	EWCASTLE 5/585 02 4014 2500 E s 02 4014 2500 E s 02 4423 2063 E n ERTH 10 Hod Wi 08 9209 7655 E	Mailland Road amples newcas Place North No owra@alsgloba iy Maiaga WA sanioles pertig	Mayfield West sile@alsglobal o wra NSW 2541 I com 6090 @alsglobal com	NSW 2304 com	USYONEY 277 Ph 02 8784 85 UTOWNSVILL Ph 07 4796 06 UWOLLONGO Ph 02 4225 31	-289 Woodpa 55 E' sample: E 14 15 Desn 00 E Townsvill ING 1/19-21 R 25 E wollong	rk Road Smithfeid NSW 2154 sydney@alsglobil wa Cowi Bohir OL D 4818 é anvedniental@disglobil.com alph Black Drive Nih Wotlongong NS ong@alsglobal.com	W 2500
LIENT: Golder Ass	ociates Pty Ltd		TURNAROU	ND REQUIREMENTS :	Standa:	d TAT (List e	lue date):					FOR	ABORATOR	Y USE OI	VLY (Circle)	
FFICE: Golder - Bri	sbane	1892795	Standard TAT	may be longer for some tests	Non Sta	ndard or urg	ent TAT (List	due date)	:			Cuslod	y Seal Intact?		Yes No	N/A
ROJECT: Inland Rai	il (Pkg 1	PROJECT NO 1897791	ALS QUOTE	NO.:					COC SEQUE	NCE NUMBE	R (Circle)	Free ic	e / frozen ice br	icks present	upon Yes No	N/A
RDER NUMBER:	PURCHAS	E ORDER NO.:	COUNTRY O	F ORIGIN:			- *	coc	1 2	34	56	7 Rando	m Sample Tem	perature on	Receipt C	
ROJECT MANAGER:	Mitch McGinnis	, CONTACT P	H: 040	CINS	-	en an belikke den fengen gan das sonere		OF:	12	34	56	7 Other	omment		•	
AMPLER: Hannah (Broves / Ying Zhang LOB	CUP DELSAMPLER N	OBILE: 040	5 048 250	RELINQUIS	HED BY:		REC	EIVED BY:			RELINQUIS	HED BY:	,	RECEIVED BY:	
OC Emailed to ALS? (YES / NO)	EDD FORMA	T (or default)	:	-			B	innone	-						
mail Reports to (will de	efault to PM if no other addresses are	listed) skumarapeli@gold	ler.com.au, h	groves@golder.com.au	DATE/TIME	:		DAT	E/TIME:			DATE/TIME	:		DATE/TIME:	
mail Invoice to (will de	fault to PM if no other addresses are li	sted):		· · · · · · · · · · · · · · · · · · ·	-			13	1210	9 13	SIPm.					
OMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSA		a in the second se													
ALS USE ONLY	SAMPLE Matrix: So		CONTAINER INF	INFORMATION Where Matel				RED includin	g SUITES (al (unfiliered bo	NB: Suite Co	des must be fis Dissolved (held	tod to attract sur filtered bottle req	ule price) uired)	Additional Inform	ation	
LABID	LAB ID SAMPLE ID DA		MATRIX	TYPE & PRESERVA (refer lo codes belo	ITIVE ow)	HILES		EC, pH, TDS	Total/Dissolved Metals: As, B, Ba, Be, Cd, Cr, Co, Cu, Cd, Mn, Fe, Ni, Pb, Se, V, Zn, Hg	X Nutrients: Nitrate, Nitrite,	X Reactive Phosphorus, Total P, Total N, TKN	X Sodium Adsorption Ratio			Comments on likely contamina dilutions or samples requiring analysis etc	ni ičvelS specific QC
				1									· · · · · · · · · · · · · · · · · · ·		Environmental Brisbane Work Order Ref EB190	Division erence 3588
Water Container Codes: V = VOA Vial HCl Preserv	Container Codes: P = Unpreserved Plastic: N = Nitinc Preserved Plastic: ORC = Nitiric Preserved ORC; SH = Sodium Hydroxide/C A Vial HCI Preserved, VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfunc Preserved; AV = Anfreight Unpreserved V		Sodium Hydroxide/Cd Preserve reight Unpreserved Vial SG = 5	TOTAL de/CdProserved, S = Sodium Hydroxide Preserved Pla ved Vial SG = Sulfunc Preserved Amber Glass. H = H			ic. AG = Ambér Gláss Unpreserved, AP - Airfreight Unpre I proserved Plastic; HS = HC) preserved Speciation bollie					c IC Preserved Ph	asııc,			

Profile (profiles)

1

Fermitings Left

)

(ALS)	CHAIN OF CUSTODY ALS Laboratory: please tick \Rightarrow	DADELAIDE 3/1 Burna Road Po Ph. 08.8162.5130 E. addetaide@a UBRISBANE 2.Byin Steel Stafo Ph. 07.3243.7222 E. samples bris ULQLAOSTONE 48.Cattemondah Ph. 07.4978.7944 E. gladstone@a	koraka SA 5095 Isglobal com Id DLD 4053 bane@alsglobal Drive Gladstone alsglobal com	UMACRAY Ph. 07-394 DMEL60 com Ph. 03-85 QLD -1680 CMU00E Ph. 02-637 Ph. 02-637	78 Harbour Roa 4 8177 E mackay URNE 2-4 Westa 19 9600 E sampl E 1/29 Sydnay Ri 2 6735 E mudge	I Mackay QLQ @alsglobal.com I Road Springvi Is nielbourne@ ad Mudgco NS a mail@alsglob	740 1 9 VIC 3171 9 sglobal com W 2850 81 com	QNE Ph I DNO Ph 0 DP Ph 0 Ph	WGASTLE 5/58 02 4014 2500 E WRA 4/13 Geary 2 4423 2063 E ERTH 10 Hod W 08 9209 7655 E	S Mailland Roa samples newca r Place North N 10wra@alsglob ay Maiaga WA sanibles perth	d Mayfield West Islia@alsglobul Iowra NSW 254 al com 6090 @alsglobal com	i NSW 2304 com r	GSYDNEY 277-2891 Ph 02 8784 8555 E: UTOWNSVILLE 14 Ph 07 4796 0600 E LIWOLLONGONG I Ph 02 4225 3125 E	Vooddark Road Smithleid Sambias sydneyalsgibba 5 Desma Couri Bonie Ou Sowasville sneroninenia@ai 19-21 Raipti Black Drive N vollongorg@aisgibbai.com	NSW 2154 I com 24818 Sglobal com Illa Wolloigong NSW 2500 n	
CLIENT: Golder As	sociates Pty Ltd	1	TURNAROU	ND REQUIREMENTS :	🗍 Standa	d TAT (List	due date):					FC	OR LABORATORY U	E ONLY (Circle)		-
OFFICE: Golder - B	risbane	1895195	Mandard TAT n g . Ultra Trace	ay be longer for some tests Organics)	I Non St	Indard or ur	ent TAT (List	due date).	481	nom	5.	Cu	ustody Seal Intact?	Ye	15 No	N/A
PROJECT: Inland R	ail (Pkg 11) - P/2	PROJECT NO.: 1897791 /	ALS QUOTE	ND.:					COC SEQUE	NCE NUMBI	ER (Circle)	Fre	ee ice / frozen ice bricks p	resent upon Ye	95 No	NZA
ORDER NUMBER:	PURCHASE	ORDER NO.: C	OUNTRY O	F ORIGIN:		•	. *	coc:	1 2	34	5 6	7 Ra	ceipir andom Sample Temperate	ire on Receipt	'C	
PROJECT MANAGER:	Mitch McGinnis	CONTACT PH:	044	Scilling			a	OF:	1 2	34	56	7 01	her comment		-	
SAMPLER: <u>Hannah</u>	Broves 7 Ying Zhang LOBELT	CAPPENSAMPLER MO	BILE: -0405	846-250	RELINQUIS	HED BY:	3	RECI	EIVED BY:			RELING	UISHED BY:	RECEIV	ED BY:	
COC Emailed to ALS?	(YES / NO)	EDD FORMAT	(or default):		1			R	OBENJ	CMP	1En	2	F	For	9,6	
Email Reports to (will c	default to PM if no other addresses are lis	sted skumarapeli@golder	r.com.au, he	groves@golder.com.au	DATE/TIME			DATE	E/T,IME:			DATER	IME:	DATE/T	IME:	
Email Invoice to (will d	efault to PM if no other addresses are lis	led):						27	12/10	12	00			ובר	Sha w	55
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSAL	-										_1				
ALS USE ONLY	SAMPLE MATRIX: Soli	DETAILS d(S) Water(W)		CONTAINER INF	ORMATION		ANALYSI:	S REQUIR	ED includin	g SUITES ((NB Suite Co	des must b r Dissolvad (e listed to affract suite pri (field littered bottle required)	:e) Addı	tional Information	
LAB ID	SAMPLE ID 320-01 - BH221G	DATE / TIME 1 26-02-2019 8.20 AM		TYPE & PRESERVAT (refer lo codes belo	ſIVE ₩)	TOTAL BOTTLES	Anions/Cations: Ca, Mg, Na, Cl, F, SO4 Alkalinity, Hardness	Ec, pH, TDS	Totať/Dissofved Metals: As, B, Ba, Be, Cd, Cr, Co, Cu, Cd, Mn, Fe, Ni, Pb, Se, V, Zn, Hg	Nutrients: Nitrate, Nitrite, Ammonia	Reactive Phosphorus, Total P, Total N, TKN	Sodium Adsorption Ratio		Comments on in dilutions, or sam analysis etc	keiy contamutant levels npies requiring specific (ЭС
									7				Env Bris	I Ironmentai Ibane Iork Order Ref EB1904	Division erence 1979	
						NI	•					n - Sana an an an an an an an an an an an an				lare, waar
				*	**				1			-	Telepi;	one : + 61-7-3243 7	222	
					TOTAL	4										
Water Container Codes:	P = Unpreserved Plastic: N = Nitric Preserve	d Plastic ORC = Nitric Preservert			C - Codure -		Deved Direction	C - A - L		1			<u> </u>	<u> </u>		

CERTIFICATE OF ANALYSIS

Work Order	EB1826458	Page	: 1 of 5
Client	: GOLDER ASSOCIATES	Laboratory	Environmental Division Brisbane
Contact	: MR MITCH McGINNIS	Contact	: Andrew Epps
Address	: P O BOX 1734	Address	: 2 Byth Street Stafford QLD Australia 4053
	MILTON QLD, AUSTRALIA 4064		
Telephone	: +61 07 3721 5400	Telephone	: +61 7 3552 8639
Project	: 1893795	Date Samples Received	: 01-Nov-2018 15:00
Order number	17893795	Date Analysis Commenced	: 01-Nov-2018
C-O-C number	:	Issue Date	: 06-Nov-2018 17:32
Sampler	: ROBERT CUPPER		Hac-MRA NATA
Site	: INLAND RAIL (P12)		
Quote number	: EN/002/18 National BQ		According to a set
No. of samples received	: 2		Accredited for compliance with
No. of samples analysed	: 2		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. -

Where moisture determination has been performed, results are reported on a dry weight basis. -

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. -

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. -

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. -

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details. -

Key : - CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

 \sim = Indicates an estimated value.

Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page	: 3 of 5
Work Order	: EB1826458
Client	: GOLDER ASSOCIATES
Project	: 1893795

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	310-01-BH2217	310-01-BH2201	 	
	Cl	ient samplii	ng date / time	30-Oct-2018 15:00	30-Oct-2018 13:00	 	
Compound	CAS Number	LOR	Unit	EB1826458-001	EB1826458-002	 	
				Result	Result	 	
EA005P: pH by PC Titrator							
pH Value		0.01	pH Unit	7.72	8.04	 	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	μS/cm	2080	2640	 	
EA015: Total Dissolved Solids dried at 1	80 ± 5 °C						
Total Dissolved Solids @180°C		10	mg/L	1300	1570	 	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	893	830	 	
Total Alkalinity as CaCO3		1	mg/L	893	830	 	
ED041G: Sulfate (Turbidimetric) as SO4 2	2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	7	18	 	
ED045G: Chloride by Discrete Analyser							
Chloride	16887-00-6	1	mg/L	164	403	 	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	21	101	 	
Magnesium	7439-95-4	1	mg/L	8	32	 	
Sodium	7440-23-5	1	mg/L	461	442	 	
Potassium	7440-09-7	1	mg/L	19	7	 	
ED093F: SAR and Hardness Calculations	5						
Total Hardness as CaCO3		1	mg/L	85	384	 	
^ Sodium Adsorption Ratio		0.01	-	21.7	9.81	 	
EG020F: Dissolved Metals by ICP-MS							
Arsenic	7440-38-2	0.001	mg/L	0.035	0.005	 	
Boron	7440-42-8	0.05	mg/L	0.42	0.22	 	
Barium	7440-39-3	0.001	mg/L	0.309	0.238	 	
Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	 	
Cobalt	7440-48-4	0.001	mg/L	0.017	<0.001	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	 	
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	 	
Manganese	7439-96-5	0.001	mg/L	0.054	0.029	 	
Nickel	7440-02-0	0.001	mg/L	0.018	0.009	 	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	 	

Page	: 4 of 5
Work Order	: EB1826458
Client	: GOLDER ASSOCIATES
Project	: 1893795

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			310-01-BH2217	310-01-BH2201	 	
	Cli	ient sampliı	ng date / time	30-Oct-2018 15:00	30-Oct-2018 13:00	 	
Compound	CAS Number	LOR	Unit	EB1826458-001	EB1826458-002	 	
				Result	Result	 	
EG020F: Dissolved Metals by ICP-MS - C	ontinued						
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	 	
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	 	
Zinc	7440-66-6	0.005	mg/L	0.010	<0.005	 	
Iron	7439-89-6	0.05	mg/L	0.34	0.76	 	
EG020T: Total Metals by ICP-MS							
Arsenic	7440-38-2	0.001	mg/L	0.036	0.007	 	
Boron	7440-42-8	0.05	mg/L	0.42	0.22	 	
Barium	7440-39-3	0.001	mg/L	0.383	0.314	 	
Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	 	
Cobalt	7440-48-4	0.001	mg/L	0.028	0.005	 	
Chromium	7440-47-3	0.001	mg/L	0.005	0.005	 	
Copper	7440-50-8	0.001	mg/L	0.043	0.008	 	
Manganese	7439-96-5	0.001	mg/L	0.077	0.101	 	
Nickel	7440-02-0	0.001	mg/L	0.029	0.015	 	
Lead	7439-92-1	0.001	mg/L	0.012	0.005	 	
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	 	
Vanadium	7440-62-2	0.01	mg/L	0.01	<0.01	 	
Zinc	7440-66-6	0.005	mg/L	0.044	0.023	 	
Iron	7439-89-6	0.05	mg/L	2.24	6.72	 	
EG035F: Dissolved Mercury by FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	 	
EG035T: Total Recoverable Mercury by	FIMS						
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	 	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	1.8	0.4	 	
EK055G: Ammonia as N by Discrete Ana	alvser						
Ammonia as N	7664-41-7	0.01	mg/L	0.06	0.43	 	
EK057G: Nitrite as N by Discrete Analys	ser						
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	 	
FK058G: Nitrate as N by Discrete Analy	ser						
Nitrate as N	14797-55-8	0.01	ma/L	<0.01	<0.01	 	
EK059G: Nitrito plue Nitrato as N (NOx)	by Discrete Are	lyeor					
Nitrite + Nitrate as N	by Discrete Ana	0.01	ma/l	<0.01	<0.01	 	
mane · maate us n		0.01		-0.01	-0.01	 	

Page	5 of 5
Work Order	: EB1826458
Client	: GOLDER ASSOCIATES
Project	1893795

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID		310-01-BH2217	310-01-BH2201	 		
	Cli	ent sampli	ng date / time	30-Oct-2018 15:00	30-Oct-2018 13:00	 	
Compound	CAS Number	LOR	Unit	EB1826458-001	EB1826458-002	 	
				Result	Result	 	
EK061G: Total Kjeldahl Nitrogen By Di	iscrete Analyser						
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.2	1.1	 	
EK062G: Total Nitrogen as N (TKN + N	Ox) by Discrete An	alyser					
^ Total Nitrogen as N		0.1	mg/L	0.2	1.1	 	
EK067G: Total Phosphorus as P by Dis	screte Analyser						
Total Phosphorus as P		0.01	mg/L	0.17	0.09	 	
EK071G: Reactive Phosphorus as P by	y discrete analyser						
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.01	<0.01	 	
EN055: Ionic Balance							
Total Anions		0.01	meq/L	22.6	28.3	 	
Total Cations		0.01	meq/L	22.2	27.1	 	
Ionic Balance		0.01	%	0.82	2.25	 	

CERTIFICATE OF ANALYSIS

Work Order	EB1828548	Page	: 1 of 5
Client	: GOLDER ASSOCIATES	Laboratory	Environmental Division Brisbane
Contact	: MR MITCH McGINNIS	Contact	: Andrew Epps
Address	: P O BOX 1734	Address	: 2 Byth Street Stafford QLD Australia 4053
	MILTON QLD, AUSTRALIA 4064		
Telephone	: +61 07 3721 5400	Telephone	: +61 7 3552 8639
Project	: 1893795 INLAND RAIL P12	Date Samples Received	: 22-Nov-2018 08:35
Order number	:	Date Analysis Commenced	: 22-Nov-2018
C-O-C number	:	Issue Date	: 26-Nov-2018 14:46
Sampler	: SUSANTHA KUMARAPELI		Hac-MRA NATA
Site	:		
Quote number	: EN/002/18 National BQ		Accordition No. 925
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. -

Where moisture determination has been performed, results are reported on a dry weight basis. -

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. -

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. -

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. -

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details. -

Key : - CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

 \sim = Indicates an estimated value.

- It is recognised that EG020-T (Total Metals by ICP-MS) is less than EG020-F (Dissolved Metals by ICP-MS) for sample EB1828548-001(320-01-BH2218). However, the difference is within experimental variation of the methods.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page	: 3 of 5
Work Order	: EB1828548
Client	: GOLDER ASSOCIATES
Project	: 1893795 INLAND RAIL P12

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			320-01-BH2218	 	
	Cl	ient samplii	ng date / time	22-Nov-2018 00:00	 	
Compound	CAS Number	LOR	Unit	EB1828548-001	 	
				Result	 	
EA005P: pH by PC Titrator						
pH Value		0.01	pH Unit	7.17	 	
EA010P: Conductivity by PC Titrator						
Electrical Conductivity @ 25°C		1	µS/cm	1210	 	
EA015: Total Dissolved Solids dried at 18	80 ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	1160	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	421	 	
Total Alkalinity as CaCO3		1	mg/L	421	 	
ED041G: Sulfate (Turbidimetric) as SO4 2	2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	2	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	126	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	6	 	
Magnesium	7439-95-4	1	mg/L	3	 	
Sodium	7440-23-5	1	mg/L	257	 	
Potassium	7440-09-7	1	mg/L	12	 	
ED093F: SAR and Hardness Calculations	5					
Total Hardness as CaCO3		1	mg/L	27	 	
^ Sodium Adsorption Ratio		0.01	-	21.4	 	
EG020F: Dissolved Metals by ICP-MS						
Arsenic	7440-38-2	0.001	mg/L	0.004	 	
Boron	7440-42-8	0.05	mg/L	0.40	 	
Barium	7440-39-3	0.001	mg/L	0.182	 	
Beryllium	7440-41-7	0.001	mg/L	0.002	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
Cobalt	7440-48-4	0.001	mg/L	0.005	 	
Chromium	7440-47-3	0.001	mg/L	0.008	 	
Copper	7440-50-8	0.001	mg/L	0.004	 	
Manganese	7439-96-5	0.001	mg/L	0.040	 	
Nickel	7440-02-0	0.001	mg/L	0.008	 	
Lead	7439-92-1	0.001	mg/L	0.007	 	

Page	: 4 of 5
Work Order	: EB1828548
Client	: GOLDER ASSOCIATES
Project	: 1893795 INLAND RAIL P12

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			320-01-BH2218				
	Cli	ient samplir	ng date / time	22-Nov-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1828548-001				
				Result				
EG020F: Dissolved Metals by ICP-MS - C	ontinued							
Selenium	7782-49-2	0.01	mg/L	<0.01				
Vanadium	7440-62-2	0.01	mg/L	0.02				
Zinc	7440-66-6	0.005	mg/L	0.054				
EG020T: Total Metals by ICP-MS								
Arsenic	7440-38-2	0.001	mg/L	0.028				
Boron	7440-42-8	0.05	mg/L	0.39				
Barium	7440-39-3	0.001	mg/L	0.611				
Beryllium	7440-41-7	0.001	mg/L	0.009				
Cadmium	7440-43-9	0.0001	mg/L	0.0005				
Cobalt	7440-48-4	0.001	mg/L	0.126				
Chromium	7440-47-3	0.001	mg/L	0.113				
Copper	7440-50-8	0.001	mg/L	0.288				
Manganese	7439-96-5	0.001	mg/L	0.458				
Nickel	7440-02-0	0.001	mg/L	0.169				
Lead	7439-92-1	0.001	mg/L	0.172				
Selenium	7782-49-2	0.01	mg/L	<0.01				
Vanadium	7440-62-2	0.01	mg/L	0.28				
Zinc	7440-66-6	0.005	mg/L	0.423				
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001				
EG035T: Total Recoverable Mercury by	FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001				
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.8				
EK055G: Ammonia as N by Discrete Ana	llyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.24				
EK057G: Nitrite as N by Discrete Analys	er							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01				
EK058G: Nitrate as N by Discrete Analys	ser							
Nitrate as N	14797-55-8	0.01	mg/L	0.16				
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lvser						
Nitrite + Nitrate as N		0.01	mg/L	0.16				
FK061G: Total Kieldahl Nitrogen By Disc	rete Analyser							
Total Kieldahl Nitrogen as N		0.1	mg/L	3.0				
		· ·	J· =					

Page	5 of 5
Work Order	: EB1828548
Client	: GOLDER ASSOCIATES
Project	: 1893795 INLAND RAIL P12

Sub-Matrix: WATER	Client sample ID			320-01-BH2218	 	
	ent sampli	ng date / time	22-Nov-2018 00:00	 	 	
Compound	CAS Number	LOR	Unit	EB1828548-001	 	
				Result	 	
EK062G: Total Nitrogen as N (TKN + NC	x) by Discrete An	alyser				
^ Total Nitrogen as N		0.1	mg/L	3.2	 	
EK067G: Total Phosphorus as P by Disc	crete Analyser					
Total Phosphorus as P		0.01	mg/L	2.41	 	
EK071G: Reactive Phosphorus as P by						
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	 	
EN055: Ionic Balance						
Total Anions		0.01	meq/L	12.0	 	
Total Cations		0.01	meq/L	12.0	 	
Ionic Balance		0.01	%	0.10	 	

CERTIFICATE OF ANALYSIS

Work Order	EB1830099	Page	: 1 of 5
Client	: GOLDER ASSOCIATES	Laboratory	Environmental Division Brisbane
Contact	: MR SUSANTHA KUMARAPELI	Contact	: Andrew Epps
Address	: P O BOX 1734	Address	: 2 Byth Street Stafford QLD Australia 4053
	MILTON QLD, AUSTRALIA 4064		
Telephone	: +61 07 3721 5400	Telephone	: +61 7 3552 8639
Project	: 1893795 INLAND RAIL P12	Date Samples Received	: 07-Dec-2018 19:20
Order number	:	Date Analysis Commenced	: 08-Dec-2018
C-O-C number	:	Issue Date	: 12-Dec-2018 08:39
Sampler	: HANNAH GROVES		HAC-MRA NAIA
Site	:		
Quote number	: EN/002/18 National BQ		Accordition No. 225
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. -

Where moisture determination has been performed, results are reported on a dry weight basis. -

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. -

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. -

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. -

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details. -

Key : - CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

 \sim = Indicates an estimated value.

- EG020T (Total Metals by ICP-MS): Limit of reporting raised for sample EB1830099-001(320-01-BH2301) due to matrix interference.
- TDS by method EA-015 may bias high due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- -EG035T (Total Mercury): Sample EB1830099-001(320-01-BH2301) diluted due to matrix interference. LOR adjusted accordingly.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page	: 3 of 5
Work Order	: EB1830099
Client	: GOLDER ASSOCIATES
Project	: 1893795 INLAND RAIL P12

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			320-01-BH2301	 	
	Cl	ient sampliı	ng date / time	07-Dec-2018 00:00	 	
Compound	CAS Number	LOR	Unit	EB1830099-001	 	
				Result	 	
EA005P: pH by PC Titrator						
pH Value		0.01	pH Unit	8.22	 	
EA010P: Conductivity by PC Titrator						
Electrical Conductivity @ 25°C		1	μS/cm	5690	 	
EA015: Total Dissolved Solids dried at 18	80 ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	3420	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	209	 	
Total Alkalinity as CaCO3		1	mg/L	209	 	
ED041G: Sulfate (Turbidimetric) as SO4 2	2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	323	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	1450	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	83	 	
Magnesium	7439-95-4	1	mg/L	27	 	
Sodium	7440-23-5	1	mg/L	974	 	
Potassium	7440-09-7	1	mg/L	12	 	
ED093F: SAR and Hardness Calculations	;					
^ Sodium Adsorption Ratio		0.01	-	23.7	 	
EG020F: Dissolved Metals by ICP-MS						
Arsenic	7440-38-2	0.001	mg/L	0.003	 	
Beryllium	7440-41-7	0.001	mg/L	<0.001	 	
Barium	7440-39-3	0.001	mg/L	0.124	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	 	
Cobalt	7440-48-4	0.001	mg/L	0.002	 	
Lead	7439-92-1	0.001	mg/L	<0.001	 	
Manganese	7439-96-5	0.001	mg/L	0.073	 	
Nickel	7440-02-0	0.001	mg/L	0.003	 	
Selenium	7782-49-2	0.01	mg/L	<0.01	 	
Vanadium	7440-62-2	0.01	mg/L	<0.01	 	
Zinc	7440-66-6	0.005	mg/L	0.014	 	

Page	: 4 of 5
Work Order	: EB1830099
Client	: GOLDER ASSOCIATES
Project	1893795 INLAND RAIL P12

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID		320-01-BH2301	 	 	
	Cl	ient sampliı	ng date / time	07-Dec-2018 00:00	 	
Compound C	CAS Number	LOR	Unit	EB1830099-001	 	
				Result	 	
EG020F: Dissolved Metals by ICP-MS - Contin	ued					
Boron	7440-42-8	0.05	mg/L	0.08	 	
Iron	7439-89-6	0.05	mg/L	<0.05	 	
EG020T: Total Metals by ICP-MS						
Arsenic	7440-38-2	0.001	mg/L	0.685	 	
Beryllium	7440-41-7	0.001	mg/L	0.100	 	
Barium	7440-39-3	0.001	mg/L	28.3	 	
Cadmium	7440-43-9	0.0001	mg/L	0.0564	 	
Chromium	7440-47-3	0.001	mg/L	0.488	 	
Cobalt	7440-48-4	0.001	mg/L	1.70	 	
Lead	7439-92-1	0.001	mg/L	2.31	 	
Manganese	7439-96-5	0.001	mg/L	70.9	 	
Nickel	7440-02-0	0.001	mg/L	1.71	 	
Selenium	7782-49-2	0.01	mg/L	<0.10	 	
Vanadium	7440-62-2	0.01	mg/L	1.24	 	
Zinc	7440-66-6	0.005	mg/L	12.2	 	
Boron	7440-42-8	0.05	mg/L	0.40	 	
Iron	7439-89-6	0.05	mg/L	2020	 	
EG035F: Dissolved Mercury by FIMS						
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	
EG035T: Total Recoverable Mercury by FIMS	;					
Mercury	7439-97-6	0.0001	mg/L	<0.0010	 	
EK055G: Ammonia as N by Discrete Analyser	r					
Ammonia as N	7664-41-7	0.01	mg/L	0.68	 	
EK057G: Nitrite as N by Discrete Analyser						
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	 	
EK058G: Nitrate as N by Discrete Analyser						
Nitrate as N	14797-55-8	0.01	mg/L	0.07	 	
EK059G: Nitrite plus Nitrate as N (NOx) by D	iscrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	0.07	 	
EK061G: Total Kjeldahl Nitrogen By Discrete	Analyser					
Total Kjeldahl Nitrogen as N		0.1	mg/L	49.3	 	
EK062G: Total Nitrogen as N (TKN + NOx) by	Discrete Ar	nalys <u>er</u>				
^ Total Nitrogen as N		0.1	mg/L	49.4	 	

Page	5 of 5
Work Order	: EB1830099
Client	: GOLDER ASSOCIATES
Project	: 1893795 INLAND RAIL P12

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			320-01-BH2301		 	
	Cli	ent sampli	ng date / time	07-Dec-2018 00:00		 	
Compound	CAS Number	LOR	Unit	EB1830099-001		 	
				Result		 	
EK067G: Total Phosphorus as P by Di	screte Analyser						
Total Phosphorus as P		0.01	mg/L	127		 	
EK071G: Reactive Phosphorus as P by discrete analyser							
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01		 	
EN055: Ionic Balance							
Total Anions		0.01	meq/L	51.8		 	
Total Cations		0.01	meq/L	49.0		 	
Ionic Balance		0.01	%	2.74		 	

CERTIFICATE OF ANALYSIS

Work Order	EB1903588	Page	: 1 of 5
Client	: GOLDER ASSOCIATES	Laboratory	Environmental Division Brisbane
Contact	: MR MITCH McGINNIS	Contact	: Andrew Epps
Address	: 32 SHAND STREET	Address	: 2 Byth Street Stafford QLD Australia 4053
	BRISBANE QLD, AUSTRALIA 4053		
Telephone	: +61 07 3721 5400	Telephone	: +61 7 3552 8639
Project	: 1893795 Inland Rail (Pkg 12)	Date Samples Received	: 13-Feb-2019 13:51
Order number	:	Date Analysis Commenced	: 13-Feb-2019
C-O-C number	:	Issue Date	: 20-Feb-2019 16:34
Sampler	: ROBERT CUPPER		Hac-MRA NATA
Site	:		
Quote number	: EN/002/18 National BQ		Accordition No. 925
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	:1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. -

Where moisture determination has been performed, results are reported on a dry weight basis. -

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. -

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. -

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. -

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details. -

Key : - CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

 \emptyset = ALS is not NATA accredited for these tests.

 \sim = Indicates an estimated value.

- It is recognised that EG020-T (Total Metals by ICP-MS) is less than EG020-F (Dissolved Metals by ICP-MS). However, the difference is within experimental variation of the methods.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			320-01-BH2103	 	
	Cl	ient sampliı	ng date / time	11-Feb-2019 02:30	 	
Compound	CAS Number	LOR	Unit	EB1903588-001	 	
				Result	 	
EA005P: pH by PC Titrator						
pH Value		0.01	pH Unit	7.72	 	
EA010P: Conductivity by PC Titrator						
Electrical Conductivity @ 25°C		1	µS/cm	1460	 	
EA015: Total Dissolved Solids dried at 18	30 ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	921	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	430	 	
Total Alkalinity as CaCO3		1	mg/L	430	 	
ED041G: Sulfate (Turbidimetric) as SO4 2	2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	34	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	229	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	78	 	
Magnesium	7439-95-4	1	mg/L	82	 	
Sodium	7440-23-5	1	mg/L	94	 	
Potassium	7440-09-7	1	mg/L	1	 	
ED093F: SAR and Hardness Calculations	;					
Total Hardness as CaCO3		1	mg/L	532	 	
^ Sodium Adsorption Ratio		0.01	-	1.77	 	
EG020F: Dissolved Metals by ICP-MS						
Arsenic	7440-38-2	0.001	mg/L	0.001	 	
Boron	7440-42-8	0.05	mg/L	<0.05	 	
Barium	7440-39-3	0.001	mg/L	0.111	 	
Beryllium	7440-41-7	0.001	mg/L	<0.001	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
Cobalt	7440-48-4	0.001	mg/L	0.004	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	 	
Copper	7440-50-8	0.001	mg/L	<0.001	 	
Manganese	7439-96-5	0.001	mg/L	0.467	 	
Nickel	7440-02-0	0.001	mg/L	0.005	 	
Lead	7439-92-1	0.001	mg/L	<0.001	 	

Page	: 4 of 5
Work Order	: EB1903588
Client	: GOLDER ASSOCIATES
Project	 1893795 Inland Rail (Pkg 12)

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			320-01-BH2103				
	Client sampling date / time			11-Feb-2019 02:30				
Compound	CAS Number	LOR	Unit	EB1903588-001				
				Result				
EG020F: Dissolved Metals by ICP-MS - Continued								
Selenium	7782-49-2	0.01	mg/L	<0.01				
Vanadium	7440-62-2	0.01	mg/L	<0.01				
Zinc	7440-66-6	0.005	mg/L	0.010				
Iron	7439-89-6	0.05	mg/L	0.11				
EG020T: Total Metals by ICP-MS								
Arsenic	7440-38-2	0.001	mg/L	0.001				
Boron	7440-42-8	0.05	mg/L	<0.05				
Barium	7440-39-3	0.001	mg/L	0.145				
Beryllium	7440-41-7	0.001	mg/L	<0.001				
Cadmium	7440-43-9	0.0001	mg/L	<0.0001				
Cobalt	7440-48-4	0.001	mg/L	0.005				
Chromium	7440-47-3	0.001	mg/L	0.002				
Copper	7440-50-8	0.001	mg/L	0.002				
Manganese	7439-96-5	0.001	mg/L	0.493				
Nickel	7440-02-0	0.001	mg/L	0.005				
Lead	7439-92-1	0.001	mg/L	<0.001				
Selenium	7782-49-2	0.01	mg/L	<0.01				
Vanadium	7440-62-2	0.01	mg/L	<0.01				
Zinc	7440-66-6	0.005	mg/L	0.009				
Iron	7439-89-6	0.05	mg/L	1.42				
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001				
EG035T: Total Recoverable Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001				
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.2				
EK055G: Ammonia as N by Discrete Ana	llyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.89				
EK057G: Nitrite as N by Discrete Analys	er							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01				
EK058G: Nitrate as N by Discrete Analyser								
Nitrate as N	14797-55-8	0.01	mg/L	0.08				
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser								
Nitrite + Nitrate as N		0.01	mg/L	0.08				
			5					
Page	5 of 5							
------------	------------------------------							
Work Order	: EB1903588							
Client	: GOLDER ASSOCIATES							
Project	1893795 Inland Rail (Pkg 12)							

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			320-01-BH2103	 	
	Cli	ient sampli	ng date / time	11-Feb-2019 02:30	 	
Compound	CAS Number	LOR	Unit	EB1903588-001	 	
				Result	 	
EK061G: Total Kjeldahl Nitrogen By	Discrete Analyser					
Total Kjeldahl Nitrogen as N		0.1	mg/L	9.1	 	
EK062G: Total Nitrogen as N (TKN +	NOx) by Discrete An	alyser				
^ Total Nitrogen as N		0.1	mg/L	9.2	 	
EK067G: Total Phosphorus as P by	Discrete Analyser					
Total Phosphorus as P		0.01	mg/L	0.02	 	
EK071G: Reactive Phosphorus as P	by discrete analyser					
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.01	 	
EN055: Ionic Balance						
Total Anions		0.01	meq/L	15.8	 	
Total Cations		0.01	meq/L	14.8	 	
Ionic Balance		0.01	%	3.29	 	

CERTIFICATE OF ANALYSIS

Work Order	EB1904979	Page	: 1 of 5
Client	: GOLDER ASSOCIATES	Laboratory	Environmental Division Brisbane
Contact	: MR SUSANTHA KUMARAPELI	Contact	: Andrew Epps
Address	C/- GOLDING CONTRACTORS PTY LTD LEVEL 3 8 GARDNER CLOSE MILTON QLD 4064	Address	: 2 Byth Street Stafford QLD Australia 4053
Telephone	: +61 07 3721 5400	Telephone	: +61 7 3552 8639
Project	: 1893795 Inland Rail P/2	Date Samples Received	: 27-Feb-2019 14:55
Order number	:	Date Analysis Commenced	: 27-Feb-2019
C-O-C number	:	Issue Date	: 04-Mar-2019 09:43
Sampler	: ROBERT CUPPER		Hac-MRA NATA
Site	:		
Quote number	: EN/002/18 National BQ		Accorditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. -

Where moisture determination has been performed, results are reported on a dry weight basis. -

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. -

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. -

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. -

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details. -

Key : - CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- It is recognised that EG020-T (Total Metals by ICP-MS) is less than EG020-F (Dissolved Metals by ICP-MS). However, the difference is within experimental variation of the methods.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page	3 of 5
Work Order	: EB1904979
Client	: GOLDER ASSOCIATES
Project	: 1893795 Inland Rail P/2

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			320-01-BH2216	 	
	Cl	ient sampliı	ng date / time	26-Feb-2019 08:20	 	
Compound	CAS Number	LOR	Unit	EB1904979-001	 	
				Result	 	
EA005P: pH by PC Titrator						
pH Value		0.01	pH Unit	7.78	 	
EA010P: Conductivity by PC Titrator						
Electrical Conductivity @ 25°C		1	µS/cm	2800	 	
EA015: Total Dissolved Solids dried at 18	30 ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	1770	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	1020	 	
Total Alkalinity as CaCO3		1	mg/L	1020	 	
ED041G: Sulfate (Turbidimetric) as SO4 2	2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	4	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	321	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	22	 	
Magnesium	7439-95-4	1	mg/L	14	 	
Sodium	7440-23-5	1	mg/L	612	 	
Potassium	7440-09-7	1	mg/L	18	 	
ED093F: SAR and Hardness Calculations	;					
^ Sodium Adsorption Ratio		0.01	-	25.1	 	
EG020F: Dissolved Metals by ICP-MS						
Arsenic	7440-38-2	0.001	mg/L	0.007	 	
Beryllium	7440-41-7	0.001	mg/L	<0.001	 	
Barium	7440-39-3	0.001	mg/L	0.488	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	 	
Cobalt	7440-48-4	0.001	mg/L	0.002	 	
Copper	7440-50-8	0.001	mg/L	<0.001	 	
Lead	7439-92-1	0.001	mg/L	<0.001	 	
Manganese	7439-96-5	0.001	mg/L	0.031	 	
Nickel	7440-02-0	0.001	mg/L	0.006	 	
Selenium	7782-49-2	0.01	mg/L 	<0.01	 	
Vanadium	7440-62-2	0.01	mg/L	<0.01	 	

Page	: 4 of 5
Work Order	: EB1904979
Client	: GOLDER ASSOCIATES
Project	: 1893795 Inland Rail P/2

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			320-01-BH2216				
	Cli	ient samplir	ng date / time	26-Feb-2019 08:20				
Compound	CAS Number	LOR	Unit	EB1904979-001				
				Result				
EG020F: Dissolved Metals by ICP-MS - Co	ontinued							
Zinc	7440-66-6	0.005	mg/L	<0.005				
Boron	7440-42-8	0.05	mg/L	0.31				
Iron	7439-89-6	0.05	mg/L	<0.05				
EG020T: Total Metals by ICP-MS								
Arsenic	7440-38-2	0.001	mg/L	0.010				
Beryllium	7440-41-7	0.001	mg/L	<0.001				
Barium	7440-39-3	0.001	mg/L	0.625				
Cadmium	7440-43-9	0.0001	mg/L	<0.0001				
Chromium	7440-47-3	0.001	mg/L	0.006				
Cobalt	7440-48-4	0.001	mg/L	0.009				
Copper	7440-50-8	0.001	mg/L	0.010				
Lead	7439-92-1	0.001	mg/L	0.008				
Manganese	7439-96-5	0.001	mg/L	0.110				
Nickel	7440-02-0	0.001	mg/L	0.010				
Selenium	7782-49-2	0.01	mg/L	<0.01				
Vanadium	7440-62-2	0.01	mg/L	<0.01				
Zinc	7440-66-6	0.005	mg/L	0.027				
Boron	7440-42-8	0.05	mg/L	0.29				
Iron	7439-89-6	0.05	mg/L	4.08				
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001				
EG035T: Total Recoverable Mercury by F	FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001				
EK055G: Ammonia as N by Discrete Anal	lyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.21				
EK057G: Nitrite as N by Discrete Analyse	er							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01				
EK058G: Nitrate as N by Discrete Analys	ser							
Nitrate as N	14797-55-8	0.01	mg/L	0.06				
EK059G: Nitrite plus Nitrate as N (NOx)	bv Discrete Ana	lvser						
Nitrite + Nitrate as N		0.01	mg/L	0.06				
EK061G: Total Kieldahl Nitrogen By Disc	rete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.7				
EK062G: Total Nitrogen as N (TKN + NOx	() by Discrete An	alvser						
EK062G: Total Nitrogen as N (TKN + NOx) by Discrete Analyser								

Page	5 of 5
Work Order	: EB1904979
Client	: GOLDER ASSOCIATES
Project	: 1893795 Inland Rail P/2

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			320-01-BH2216	 	
	Cli	ent sampli	ing date / time	26-Feb-2019 08:20	 	
Compound	CAS Number	LOR	Unit	EB1904979-001	 	
				Result	 	
EK062G: Total Nitrogen as N (TKN + N	Dx) by Discrete An	alyser - C	Continued			
^ Total Nitrogen as N		0.1	mg/L	0.8	 	
EK067G: Total Phosphorus as P by Dis	crete Analyser					
Total Phosphorus as P		0.01	mg/L	0.14	 	
EK071G: Reactive Phosphorus as P by	discrete analyser					
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	 	
EN055: Ionic Balance						
Total Anions		0.01	meq/L	29.5	 	
Total Cations		0.01	meq/L	29.3	 	
Ionic Balance		0.01	%	0.32	 	

QUALITY CONTROL REPORT

Work Order	EB1826458	Page	: 1 of 8	
Client	: GOLDER ASSOCIATES	Laboratory	: Environmental Division B	risbane
Contact	: MR MITCH McGINNIS	Contact	: Andrew Epps	
Address	: P O BOX 1734 MILTON QLD. AUSTRALIA 4064	Address	: 2 Byth Street Stafford QL	D Australia 4053
Telephone	+61 07 3721 5400	Telephone	: +61 7 3552 8639	
Project	: 1893795	Date Samples Received	: 01-Nov-2018	AND IN CONTRACTOR OF A
Order number	: 17893795	Date Analysis Commenced	: 01-Nov-2018	summer and
C-O-C number	:	Issue Date	: 06-Nov-2018	NATA
Sampler	: ROBERT CUPPER			HALA NALA
Site	: INLAND RAIL (P12)			
Quote number	EN/002/18 National BQ			Accorditation No. 825
No. of samples received	: 2			Accredited for compliance with
No. of samples analysed	: 2			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

- CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
- LOR = Limit of reporting
- RPD = Relative Percentage Difference
- # = Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA005P: pH by PC Tit	trator (QC Lot: 2015212)								
EB1826453-001	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.81	7.80	0.128	0% - 20%
EA010P: Conductivity	y by PC Titrator (QC Lot: 20	15213)							
EB1826453-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	1020	1020	0.498	0% - 20%
EA015: Total Dissolve	ed Solids dried at 180 ± 5 °C	(QC Lot: 2015717)							
EB1826453-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	724	774	6.76	0% - 20%
ED037P: Alkalinity by	PC Titrator (QC Lot: 20152	11)							
EB1826453-001	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.00	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.00	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	381	380	0.278	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	381	380	0.278	0% - 20%
ED041G: Sulfate (Tur									
EB1826477-004	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	305	307	0.534	0% - 20%
EB1826453-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	4	4	0.00	No Limit
ED045G: Chloride by	Discrete Analyser (QC Lot:	2015252)							
EB1826477-004	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	463	461	0.486	0% - 20%
EB1826453-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	113	114	0.00	0% - 20%
ED093F: Dissolved M	ajor Cations (QC Lot: 2015)	721)							
EB1826406-006	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	9	10	0.00	No Limit
		ED093F: Magnesium	7439-95-4	1	mg/L	6	6	0.00	No Limit
		ED093F: Sodium	7440-23-5	1	mg/L	28	28	0.00	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	3	3	0.00	No Limit
EB1826295-015	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	381	382	0.00	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	258	256	0.443	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	2030	1990	1.90	0% - 20%

Page	: 3 of 8
Work Order	: EB1826458
Client	: GOLDER ASSOCIATES
Project	1893795

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
ED093F: Dissolved M	lajor Cations (QC Lot: 2015	721) - continued							
EB1826295-015	Anonymous	ED093F: Potassium	7440-09-7	1	mg/L	9	9	0.00	No Limit
EG020F: Dissolved N	letals by ICP-MS (QC Lot: 2	015722)							
EB1826295-015	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.154	0.148	3.69	0% - 20%
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.295	0.293	0.604	0% - 20%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.002	0.001	0.00	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.00	No Limit
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-F: Boron	7440-42-8	0.05	mg/L	0.54	0.52	3.20	0% - 50%
		EG020A-F: Iron	7439-89-6	0.05	mg/L	0.78	0.76	2.59	0% - 50%
EG020T: Total Metals	by ICP-MS (QC Lot: 20157	14)							
EB1826414-002	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.1 µg/L	<0.0001	0.00	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	2 µg/L	0.002	0.00	No Limit
		EG020A-T: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Barium	7440-39-3	0.001	mg/L	0.074	0.074	0.00	0% - 20%
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<1 µg/L	<0.001	0.00	No Limit
		EG020A-T: Cobalt	7440-48-4	0.001	mg/L	<1 µg/L	<0.001	0.00	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	2 µg/L	0.001	0.00	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<1 µg/L	<0.001	0.00	No Limit
		EG020A-T: Manganese	7439-96-5	0.001	mg/L	24 µg/L	0.021	14.0	0% - 20%
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	2 µg/L	0.002	0.00	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	<5 µg/L	<0.005	0.00	No Limit
		EG020A-T: Selenium	7782-49-2	0.01	mg/L	<10 µg/L	<0.01	0.00	No Limit
		EG020A-T: Vanadium	7440-62-2	0.01	mg/L	<10 µg/L	<0.01	0.00	No Limit
		EG020A-T: Boron	7440-42-8	0.05	mg/L	130 µg/L	0.14	0.00	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	320 µg/L	0.24	31.6	No Limit
EB1826295-015	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	0.0004	<0.0001	114	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	0.001	<0.001	0.00	No Limit
		EG020A-T: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Barium	7440-39-3	0.001	mg/L	0.175	0.172	2.17	0% - 20%
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.002	0.001	0.00	No Limit

Page	: 4 of 8
Work Order	: EB1826458
Client	: GOLDER ASSOCIATES
Project	1893795

Sub-Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020T: Total Metals	by ICP-MS (QC Lot: 201571	14) - continued							
EB1826295-015	Anonymous	EG020A-T: Lead	7439-92-1	0.001	mg/L	0.001	<0.001	0.00	No Limit
		EG020A-T: Manganese	7439-96-5	0.001	mg/L	0.339	0.322	5.24	0% - 20%
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.002	0.002	0.00	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.006	<0.005	21.2	No Limit
		EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-T: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-T: Boron	7440-42-8	0.05	mg/L	0.54	0.52	4.50	0% - 50%
		EG020A-T: Iron	7439-89-6	0.05	mg/L	1.85	1.86	0.00	0% - 20%
EG035F: Dissolved M	ercury by FIMS (QC Lot: 20	15723)							
EB1826295-015	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EG035T: Total Recov	verable Mercury by FIMS (Q	C Lot: 2015712)							
EB1826295-015	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EK040P: Fluoride by PC Titrator (QC Lot: 2015210)									
EB1826453-001	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	0.2	0.2	0.00	No Limit
EK055G: Ammonia as	N by Discrete Analyser (Q	C Lot: 2015264)							
EB1826453-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.09	0.12	25.0	0% - 50%
EB1826477-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.08	0.09	0.00	No Limit
EK057G: Nitrite as N	by Discrete Analyser (QC L	_ot: 2015253)							
EB1826477-004	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.00	No Limit
EB1826453-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.00	No Limit
EK059G: Nitrite plus	Nitrate as N (NOx) by Discr	rete Analyser (QC Lot: 2015265)							
EB1826453-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.08	0.08	0.00	No Limit
EB1826477-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.00	No Limit
EK061G: Total Kjelda	hl Nitrogen By Discrete Ana	ılyser (QC Lot: 2015244)							
EB1826453-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	23.2	24.3	4.75	0% - 20%
EB1826477-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	10.8	10.7	0.00	0% - 20%
EK067G: Total Phosp	horus as P by Discrete Ana	lyser (QC Lot: 2015243)							
EB1826453-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.30	0.30	0.00	0% - 20%
EB1826477-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.67	0.66	0.00	0% - 20%
EK071G: Reactive Ph	osphorus as P by discrete a	analyser (QC Lot: 2015250)							
EB1826453-001	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.10	0.10	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
			Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound CAS Nur	iber LOR	Unit	Result	Concentration	LCS	Low	High	
EA005P: pH by PC Titrator (QCLot: 2015212)								
EA005-P: pH Value		pH Unit		4 pH Unit	99.2	98	102	
				7 pH Unit	100	98	102	
EA010P: Conductivity by PC Titrator (QCLot: 2015213)								
EA010-P: Electrical Conductivity @ 25°C	1	μS/cm	<1	2100 µS/cm	100	91	107	
			<1	12890 µS/cm	99.3	91	107	
EA015: Total Dissolved Solids dried at 180 ± 5 °C (QCLot: 2015717)								
EA015H: Total Dissolved Solids @180°C	10	mg/L	<10	293 mg/L	103	88	112	
			<10	2000 mg/L	101	88	112	
ED037P: Alkalinity by PC Titrator (QCLot: 2015211)								
ED037-P: Total Alkalinity as CaCO3		mg/L		200 mg/L	93.4	80	120	
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (OCLot: 2015251)								
ED041G: Sulfate as SO4 - Turbidimetric 14808-7	9-8 1	mg/L	<1	25 mg/L	103	85	118	
		_	<1	100 mg/L	102	85	118	
ED045G: Chloride by Discrete Analyser (QCLot: 2015252)								
ED045G: Chloride 16887-0)-6 1	mg/L	<1	10 mg/L	107	90	115	
		_	<1	1000 mg/L	104	90	115	
ED093F: Dissolved Major Cations (QCLot: 2015721)								
ED093F: Calcium 7440-7)-2 1	mg/L	<1					
ED093F: Magnesium 7439-9	5-4 1	mg/L	<1					
ED093F: Sodium 7440-2	3-5 1	mg/L	<1					
ED093F: Potassium 7440-0	9-7 1	mg/L	<1					
EG020F: Dissolved Metals by ICP-MS (QCLot: 2015722)								
EG020A-F: Arsenic 7440-3	3-2 0.001	mg/L	<0.001	0.1 mg/L	96.0	88	116	
EG020A-F: Beryllium 7440-4	I-7 0.001	mg/L	<0.001	0.1 mg/L	87.2	81	117	
EG020A-F: Barium 7440-3	9-3 0.001	mg/L	<0.001	0.5 mg/L	88.8	70	130	
EG020A-F: Cadmium 7440-4	3-9 0.0001	mg/L	<0.0001	0.1 mg/L	92.1	88	108	
EG020A-F: Chromium 7440-4	7-3 0.001	mg/L	<0.001	0.1 mg/L	109	87	113	
EG020A-F: Cobalt 7440-4	3-4 0.001	mg/L	<0.001	0.1 mg/L	94.8	86	112	
EG020A-F: Copper 7440-5	0.001	mg/L	<0.001	0.2 mg/L	108	88	114	
EG020A-F: Lead 7439-9	2-1 0.001	mg/L	<0.001	0.1 mg/L	96.0	89	110	
EG020A-F: Manganese 7439-9	6-5 0.001	mg/L	<0.001	0.1 mg/L	96.5	89	120	
EG020A-F: Nickel 7440-0	2-0 0.001	mg/L	<0.001	0.1 mg/L	92.8	89	113	
EG020A-F: Selenium 7782-4	9-2 0.01	mg/L	<0.01	0.1 mg/L	94.8	83	112	
EG020A-F: Vanadium 7440-6	2-2 0.01	mg/L	<0.01	0.1 mg/L	111	88	114	

Page	: 6 of 8
Work Order	: EB1826458
Client	: GOLDER ASSOCIATES
Project	1893795

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020F: Dissolved Metals by ICP-MS (QCLot: 201	5722) - continued							
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.2 mg/L	94.9	87	113
EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	0.5 mg/L	99.0	81	125
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	96.7	82	114
EG020T: Total Metals by ICP-MS (QCLot: 2015714)							
EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	98.0	88	112
EG020A-T: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	85.8	81	119
EG020A-T: Barium	7440-39-3	0.001	mg/L	<0.001	0.5 mg/L	95.6	70	130
EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	96.6	88	111
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	100	89	115
EG020A-T: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	103	89	115
EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.2 mg/L	105	88	116
EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	93.5	89	112
EG020A-T: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	104	88	114
EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	97.8	88	116
EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	96.2	79	111
EG020A-T: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	113	87	114
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.2 mg/L	94.4	84	114
EG020A-T: Boron	7440-42-8	0.05	mg/L	<0.05	0.5 mg/L	97.4	82	128
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	98.6	82	118
EG035F: Dissolved Mercury by FIMS (QCLot: 201	5723)							
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	86.2	84	118
EG035T: Total Recoverable Mercury by FIMS (QC	Lot: 2015712)							
EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	84.9	84	118
EK040P: Fluoride by PC Titrator (QCLot: 2015210)								
EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5 mg/L	106	80	117
EK055G: Ammonia as N by Discrete Analyser (QC	Lot: 2015264)							
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.5 mg/L	97.0	86	112
EK057G: Nitrite as N by Discrete Analyser (OCI o	t: 2015253)		_					
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	98.9	90	110
FK059G ⁺ Nitrite plus Nitrate as N (NOx), by Discre	te Analyser (QCI of: 201	5265)						
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	98.7	89	115
EK061G: Total Kieldahl Nitrogen By Discrete Anal	vser (QCLot: 2015244)							
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	99.9	70	111
EK067G: Total Phosphorus as P by Discrete Analy	(ser (QCI of: 2015243)							
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	94.8	77	109
EK071G: Reactive Phosphorus as P by discrete ar	nalvser (QCL of: 2015250							
EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	92.6	88	115
			.		Ŭ Ŭ			

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER					Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery I	.imits (%)			
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
ED041G: Sulfate (Furbidimetric) as SO4 2- by DA (QCLot: 2015	251)								
EB1826453-002	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	20 mg/L	108	70	130			
ED045G: Chloride	by Discrete Analyser (QCLot: 2015252)									
EB1826453-002	Anonymous	ED045G: Chloride	16887-00-6	400 mg/L	108	70	130			
EG020F: Dissolve	d Metals by ICP-MS (QCLot: 2015722)									
EB1826467-001	Anonymous	EG020A-F: Arsenic	7440-38-2	0.1 mg/L	99.6	70	130			
	-	EG020A-F: Bervllium	7440-41-7	0.1 mg/L	94.0	70	130			
		EG020A-F: Barium	7440-39-3	0.5 mg/L	90.8	70	130			
		EG020A-F: Cadmium	7440-43-9	0.1 mg/L	94.8	70	130			
		EG020A-F: Chromium	7440-47-3	0.1 mg/L	109	70	130			
		EG020A-F: Cobalt	7440-48-4	0.1 mg/L	94.8	70	130			
		EG020A-F: Copper	7440-50-8	0.2 mg/L	107	70	130			
		EG020A-F: Lead	7439-92-1	0.1 mg/L	102	70	130			
		EG020A-F: Manganese	7439-96-5	0.1 mg/L	94.3	70	130			
		EG020A-F: Nickel	7440-02-0	0.1 mg/L	94.7	70	130			
	EG020A-F: Selenium	7782-49-2	0.1 mg/L	99.7	70	130				
		EG020A-F: Vanadium	7440-62-2	0.1 mg/L	102	70	130			
		EG020A-F: Zinc	7440-66-6	0.2 mg/L	99.8	70	130			
		EG020A-F: Boron	7440-42-8	0.5 mg/L	98.5	70	130			
EG020T: Total Me	als by ICP-MS (QCLot: 2015714)									
EB1826406-001	Anonymous	EG020A-T: Arsenic	7440-38-2	1 mg/L	102	70	130			
		EG020A-T: Beryllium	7440-41-7	0.1 mg/L	88.7	70	130			
		EG020A-T: Barium	7440-39-3	1 mg/L	105	70	130			
		EG020A-T: Cadmium	7440-43-9	0.5 mg/L	102	70	130			
		EG020A-T: Chromium	7440-47-3	1 mg/L	91.6	70	130			
		EG020A-T: Cobalt	7440-48-4	1 mg/L	90.8	70	130			
		EG020A-T: Copper	7440-50-8	1 mg/L	92.8	70	130			
		EG020A-T: Lead	7439-92-1	1 mg/L	92.8	70	130			
		EG020A-T: Manganese	7439-96-5	1 mg/L	88.9	70	130			
		EG020A-T: Nickel	7440-02-0	1 mg/L	91.1	70	130			
		EG020A-T: Vanadium	7440-62-2	1 mg/L	96.6	70	130			
L		EG020A-T: Zinc	7440-66-6	1 mg/L	90.6	70	130			
EG035F: Dissolve	d Mercury by FIMS (QCLot: 2015723)									
EB1826295-015	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	78.0	70	130			

Page	: 8 of 8
Work Order	: EB1826458
Client	: GOLDER ASSOCIATES
Project	1893795

Matrix Spike (MS) Report Sub-Matrix: WATER Spike SpikeRecovery(%) Recovery Limits (%) Client sample ID Laboratory sample ID CAS Number MS Concentration Low High Method: Compound EG035T: Total Recoverable Mercury by FIMS (QCLot: 2015712) EB1826414-001 Anonymous 7439-97-6 0.05 mg/L 84.3 70 130 EG035T: Mercury EK040P: Fluoride by PC Titrator (QCLot: 2015210) EB1826453-002 16984-48-8 Anonymous 5 mg/L 101 70 130 EK040P: Fluoride EK055G: Ammonia as N by Discrete Analyser (QCLot: 2015264) EB1826453-002 7664-41-7 Anonymous 0.4 mg/L 82.0 70 130 EK055G: Ammonia as N EK057G: Nitrite as N by Discrete Analyser (QCLot: 2015253) EB1826453-002 Anonymous 14797-65-0 0.4 mg/L 101 70 130 EK057G: Nitrite as N EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 2015265) EB1826453-002 Anonymous 0.4 mg/L 100 70 130 EK059G: Nitrite + Nitrate as N ----EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 2015244) EB1826453-002 Anonymous EK061G: Total Kjeldahl Nitrogen as N 5 mg/L 97.5 70 130 ____ EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 2015243) EB1826453-002 Anonymous 1 mg/L 112 70 130 EK067G: Total Phosphorus as P ____ EK071G: Reactive Phosphorus as P by discrete analyser (QCLot: 2015250) EB1826453-002 Anonymous 14265-44-2 0.4 mg/L 101 70 130 EK071G: Reactive Phosphorus as P

QUALITY CONTROL REPORT

Work Order	EB1828548	Page	: 1 of 8	
Client	: GOLDER ASSOCIATES	Laboratory	: Environmental Division I	Brisbane
Contact	: MR MITCH McGINNIS	Contact	: Andrew Epps	
Address	: P O BOX 1734	Address	: 2 Byth Street Stafford Q	LD Australia 4053
Telephone	MILTON QLD, AUSTRALIA 4064	Telephone	+61 7 3552 8639	
Project	: 1893795 INLAND RAIL P12	Date Samples Received	: 22-Nov-2018	sullu.
Order number	:	Date Analysis Commenced	: 22-Nov-2018	
C-O-C number	:	Issue Date	: 26-Nov-2018	
Sampler	: SUSANTHA KUMARAPELI			HAC-MRA NAIA
Site	:			
Quote number	: EN/002/18 National BQ			Accorditation No. 825
No. of samples received	: 1			Accredited for compliance with
No. of samples analysed	: 1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

- CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
- LOR = Limit of reporting
- RPD = Relative Percentage Difference
- # = Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER					Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EA005P: pH by PC Ti	trator (QC Lot: 2051941)									
EB1828142-003	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.68	7.74	0.778	0% - 20%	
EB1828180-003	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.57	7.64	0.920	0% - 20%	
EA010P: Conductivity	y by PC Titrator (QC Lot: 20	51943)								
EB1828142-003	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	404	404	0.00	0% - 20%	
EB1828180-003	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	16800	16800	0.482	0% - 20%	
EA015: Total Dissolv	ed Solids dried at 180 ± 5 °C	(QC Lot: 2052371)								
EB1828018-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	1590	1580	0.883	0% - 20%	
ED037P: Alkalinity by	PC Titrator (QC Lot: 20519	42)								
EB1828142-003	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.00	No Limit	
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.00	No Limit	
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	87	86	0.00	0% - 20%	
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	87	86	0.00	0% - 20%	
EB1828180-003	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.00	No Limit	
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.00	No Limit	
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	637	642	0.699	0% - 20%	
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	637	642	0.699	0% - 20%	
ED041G: Sulfate (Tur	bidimetric) as SO4 2- by DA	(QC Lot: 2052011)								
EB1827988-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	11	11	0.00	0% - 50%	
EB1828167-005	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	1	0.00	No Limit	
ED045G: Chloride by	Discrete Analyser (QC Lot:	2052012)								
EB1827988-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	153	154	0.00	0% - 20%	
EB1828167-005	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	744	740	0.540	0% - 20%	
ED093F: Dissolved M	ajor Cations (QC Lot: 20530	078)								
EB1828548-001	320-01-BH2218	ED093F: Calcium	7440-70-2	1	mg/L	6	6	0.00	No Limit	

Page	3 of 8
Work Order	EB1828548
Client	GOLDER ASSOCIATES
Project	1893795 INLAND RAIL P12

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
ED093F: Dissolved N	lajor Cations (QC Lot: 2053	8078) - continued							
EB1828548-001	320-01-BH2218	ED093F: Magnesium	7439-95-4	1	mg/L	3	3	0.00	No Limit
		ED093F: Sodium	7440-23-5	1	mg/L	257	259	0.827	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	12	12	0.00	0% - 50%
EG020F: Dissolved N	letals by ICP-MS (QC Lot: 2	2053080)					<u> </u>		
EB1828548-001	320-01-BH2218	EG020A-E: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	< 0.0001	0.00	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.004	0.004	0.00	No Limit
		EG020A-F: Bervllium	7440-41-7	0.001	mg/L	0.002	0.001	0.00	No Limit
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.182	0.191	4.88	0% - 20%
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	0.008	0.007	0.00	No Limit
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	0.005	0.006	18.1	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.004	0.003	0.00	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	0.007	0.007	0.00	No Limit
		FG020A-F: Manganese	7439-96-5	0.001	mg/L	0.040	0.040	0.00	0% - 20%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.008	0.006	26.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.054	0.050	7.93	0% - 50%
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	0.02	0.02	0.00	No Limit
		EG020A-F: Boron	7440-42-8	0.05	mg/L	0.40	0.40	0.00	No Limit
EG020T: Total Metals	by ICP-MS (QC Lot: 2053)	085)							
EB1828168-001	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
	-	EG020A-T: Arsenic	7440-38-2	0.001	mg/L	0.002	0.002	0.00	No Limit
		EG020A-T: Bervllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Barium	7440-39-3	0.001	mg/L	0.113	0.114	1.47	0% - 20%
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Cobalt	7440-48-4	0.001	mg/L	0.003	0.003	0.00	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.004	0.004	0.00	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	0.001	<0.001	0.00	No Limit
		EG020A-T: Manganese	7439-96-5	0.001	mg/L	0.385	0.384	0.00	0% - 20%
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.006	0.006	0.00	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.007	0.006	0.00	No Limit
		EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-T: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-T: Boron	7440-42-8	0.05	mg/L	0.14	0.14	0.00	No Limit
EG035F: Dissolved N	lercury by FIMS (QC Lot: 2	053079)							
EB1828548-001	320-01-BH2218	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EG035T: Total Recov	verable Mercury by FIMS (0	QC Lot: 2053088)							
EB1828168-001	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EK040P: Fluoride by	PC Titrator (QC Lot: 20519	44)							
EB1828142-003	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	0.1	0.1	0.00	No Limit

Page	: 4 of 8
Work Order	: EB1828548
Client	: GOLDER ASSOCIATES
Project	: 1893795 INLAND RAIL P12

Sub-Matrix: WATER					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EK040P: Fluoride by PC Titrator (QC Lot: 2051944) - continued											
EB1828180-003	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	0.2	0.2	0.00	No Limit		
EK055G: Ammonia as	s N by Discrete Analyser (Q	C Lot: 2052027)									
EB1828540-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.02	0.05	81.1	No Limit		
EK057G: Nitrite as N	by Discrete Analyser (QC I	_ot: 2052014)									
EB1828548-001	320-01-BH2218	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.00	No Limit		
EK059G: Nitrite plus	Nitrate as N (NOx) by Disci	rete Analyser (QC Lot: 2052026)									
EB1828540-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.06	0.07	0.00	No Limit		
EK061G: Total Kjelda	hl Nitrogen By Discrete Ana	alyser (QC Lot: 2052364)									
EB1828147-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	2.6	2.7	4.48	0% - 20%		
EB1828540-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.6	0.5	0.00	No Limit		
EK067G: Total Phosp	horus as P by Discrete Ana	lyser (QC Lot: 2052363)									
EB1828147-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.38	0.37	0.00	0% - 20%		
EB1828540-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	<0.01	0.00	No Limit		
EK071G: Reactive Ph	osphorus as P by discrete a	analyser (QC Lot: 2052015)									
EB1828548-001	320-01-BH2218	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit		

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA005P: pH by PC Titrator (QCLot: 2051941)								
EA005-P: pH Value			pH Unit		4 pH Unit	101	98	102
					7 pH Unit	100	98	102
EA010P: Conductivity by PC Titrator (QCLot: 2051943)							
EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	<1	2100 µS/cm	96.6	91	107
				<1	24800 µS/cm	99.5	91	107
EA015: Total Dissolved Solids dried at 180 ± 5 °C(QC	Lot: 2052371)							
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	293 mg/L	99.6	88	112
				<10	2000 mg/L	99.8	88	112
ED037P: Alkalinity by PC Titrator (QCLot: 2051942)								
ED037-P: Total Alkalinity as CaCO3			mg/L		50 mg/L	103	80	120
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (OC	ot: 2052011)							
ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	104	85	118
				<1	100 mg/L	98.3	85	118
ED045G: Chlorido by Discroto Analysor (OCL ot: 2052)	112)							
ED045G: Chloride	16887-00-6	1	ma/l	<1	10 mg/l	99.4	90	115
		•		<1	1000 mg/L	105	90	115
ED093E: Dissolved Major Cations (OCI of: 2053078)								
ED093E: Calcium	7440-70-2	1	ma/L	<1				
ED093F: Magnesium	7439-95-4	1	ma/L	<1				
ED093F: Sodium	7440-23-5	1	mg/L	<1				
ED093F: Potassium	7440-09-7	1	mg/L	<1				
EG020E: Dissolved Metals by ICP-MS (OCI of: 205308	ດາ							
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	97.1	88	116
EG020A-F: Bervllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	101	81	117
EG020A-F: Barium	7440-39-3	0.001	mg/L	<0.001	0.5 mg/L	95.1	70	130
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	91.0	88	108
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	91.8	87	113
EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	92.5	86	112
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.2 mg/L	96.9	88	114
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	97.7	89	110
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	92.7	89	120
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	95.6	89	113
EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	94.3	83	112
EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	95.7	88	114

Page	: 6 of 8
Work Order	: EB1828548
Client	: GOLDER ASSOCIATES
Project	: 1893795 INLAND RAIL P12

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG020F: Dissolved Metals by ICP-MS (QCLot: 20	53080) - continued								
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.2 mg/L	96.7	87	113	
EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	0.5 mg/L	99.4	81	125	
EG020T: Total Metals by ICP-MS (QCLot: 205308	5)								
EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	97.8	88	112	
EG020A-T: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	92.7	81	119	
EG020A-T: Barium	7440-39-3	0.001	mg/L	<0.001	0.5 mg/L	93.8	70	130	
EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	90.6	88	111	
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	97.5	89	115	
EG020A-T: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	98.3	89	115	
EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.2 mg/L	102	88	116	
EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	97.4	89	112	
EG020A-T: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	104	88	114	
EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	98.1	88	116	
EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	94.4	79	111	
EG020A-T: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	110	87	114	
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.2 mg/L	94.2	84	114	
EG020A-T: Boron	7440-42-8	0.05	mg/L	<0.05	0.5 mg/L	96.6	82	128	
EG035F: Dissolved Mercury by FIMS (QCLot: 205	53079)								
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	90.3	84	118	
EG035T: Total Recoverable Mercury by FIMS (Q	CLot: 2053088)								
EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	89.5	84	118	
EK040P: Fluoride by PC Titrator (QCLot: 2051944	4)								
EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5 mg/L	93.6	80	117	
EK055G· Ammonia as N by Discrete Analyser. (O	CL of: 2052027)								
EK055G: Ammonia as N	7664-41-7	0.01	ma/L	<0.01	0.5 mg/L	95.7	86	112	
EK057C: Nitrite as N by Discrete Analyser (OCL)	ot: 2052014)		5						
EK057G: Nitrite as N	14797-65-0	0.01	ma/l	<0.01	0.5 mg/l	102	90	110	
		0.01	ing/2	0.01	o.o mg/L	102	00	110	
EK059G: Nitrite plus Nitrate as N (NOX) by Discr	ete Analyser (QCLot: 205	0.01	ma/l	<0.01	0.5 mg/l	102	89	115	
		0.01	ing/L	\$0.01	0.0 mg/L	102	03	113	
EK061G: Total Kjeldahl Nitrogen By Discrete Ana	lyser (QCLot: 2052364)	0.1		10.4	4	02.0	70	400	
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	1 mg/L	83.8	70	108	
EK067G: Total Phosphorus as P by Discrete Anal	yser (QCLot: 2052363)							16-	
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	0.442 mg/L	93.4	79	105	
EK071G: Reactive Phosphorus as P by discrete a	nalyser (QCLot: 2052015)							
EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	95.2	88	115	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED041G: Sulfate (T	urbidimetric) as SO4 2- by DA (QCLot: 2052011)						
EB1828101-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	20 mg/L	# Not	70	130
					Determined		
ED045G: Chloride	by Discrete Analyser (QCLot: 2052012)						
EB1828101-001	Anonymous	ED045G: Chloride	16887-00-6	400 ma/L	81.9	70	130
EC020E: Dissolved							
EG020F. DISSOIVED			7440.00.0	0.4 mm/	00.4	70	100
EB1828572-001	Anonymous	EG020A-F: Arsenic	7440-38-2	0.1 mg/L	99.1	70	130
		EG020A-F: Beryllium	7440-41-7	0.1 mg/L	94.5	70	130
		EG020A-F: Barium	7440-39-3	0.5 mg/L	100	70	130
		EG020A-F: Cadmium	7440-43-9	0.1 mg/L	91.1	70	130
		EG020A-F: Chromium	7440-47-3	0.1 mg/L	85.8	70	130
		EG020A-F: Cobalt	7440-48-4	0.1 mg/L	88.8	70	130
		EG020A-F: Copper	7440-50-8	0.2 mg/L	90.3	70	130
		EG020A-F: Lead	7439-92-1	0.1 mg/L	86.4	70	130
		EG020A-F: Manganese	7439-96-5	0.1 mg/L	87.3	70	130
		EG020A-F: Nickel	7440-02-0	0.1 mg/L	88.2	70	130
		EG020A-F: Selenium	7782-49-2	0.1 mg/L	98.9	70	130
		EG020A-F: Vanadium	7440-62-2	0.1 mg/L	94.2	70	130
		EG020A-F: Zinc	7440-66-6	0.2 mg/L	89.5	70	130
		EG020A-F: Boron	7440-42-8	0.5 mg/L	89.2	70	130
EG020T: Total Meta	als by ICP-MS (QCLot: 2053085)						
EB1828168-002	Anonymous	EG020A-T: Arsenic	7440-38-2	1 mg/L	88.2	70	130
		EG020A-T: Bervllium	7440-41-7	0.1 mg/L	90.8	70	130
		EG020A-T: Barium	7440-39-3	1 mg/L	90.4	70	130
		EG020A-T: Cadmium	7440-43-9	0.5 mg/L	93.3	70	130
		EG020A-T: Chromium	7440-47-3	1 mg/L	90.9	70	130
		EG020A-T: Cobalt	7440-48-4	1 mg/L	88.1	70	130
		EG020A-T: Copper	7440-50-8	1 mg/L	93.9	70	130
		FG020A-T' Lead	7439-92-1	1 mg/L	88.3	70	130
		EG020A-T: Manganese	7439-96-5	1 mg/L	89.9	70	130
		FG020A-T' Nickel	7440-02-0	1 mg/L	90.9	70	130
		FG020A-T: Vanadium	7440-62-2	1 ma/L	86.2	70	130
		FG020A-T: Zinc	7440-66-6	1 mg/L	88.0	70	130
EG035E: Disselved	Marcury by EIMS (OCI at: 2053079)			5			
EB4000570 004			7420.07.0	0.01 mm//	00.0	70	120
EB18285/2-001	Anonymous	EG035F: Mercury	1439-91-0	0.01 mg/L	80.2	70	130

Page	: 8 of 8
Work Order	: EB1828548
Client	: GOLDER ASSOCIATES
Project	: 1893795 INLAND RAIL P12

Sub-Matrix: WATER		[Ма	trix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Recovery Limi	its (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 2053088)						
EB1828168-002	Anonymous	EG035T: Mercury	7439-97-6	0.01 mg/L	81.7	70	130
EK040P: Fluoride	by PC Titrator (QCLot: 2051944)						
EB1828142-004	Anonymous	EK040P: Fluoride	16984-48-8	5 mg/L	90.4	70	130
EK055G: Ammonia	a as N by Discrete Analyser (QCLot: 2052027)						
EB1828548-001	320-01-BH2218	EK055G: Ammonia as N	7664-41-7	0.4 mg/L	86.8	70	130
EK059G: Nitrite p	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 205	2026)					
EB1828548-001	320-01-BH2218	EK059G: Nitrite + Nitrate as N		0.4 mg/L	94.9	70	130
EK061G: Total Kje	Idahl Nitrogen By Discrete Analyser (QCLot: 2052364)						
EB1828148-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	96.1	70	130
EK067G: Total Pho	osphorus as P by Discrete Analyser (QCLot: 2052363)						
EB1828148-001	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	94.5	70	130

QUALITY CONTROL REPORT

Work Order	: EB1830099	Page	: 1 of 7			
Client	: GOLDER ASSOCIATES	Laboratory	: Environmental Division B	risbane		
Contact	: MR SUSANTHA KUMARAPELI	Contact	: Andrew Epps			
Address		Address	2 Byth Street Stafford QLD Australia 4053			
Telephone	: +61 07 3721 5400	Telephone	: +61 7 3552 8639			
Project	: 1893795 INLAND RAIL P12	Date Samples Received	: 07-Dec-2018	sullu.		
Order number	:	Date Analysis Commenced	: 08-Dec-2018	stimulation of the		
C-O-C number	:	Issue Date	: 12-Dec-2018	NATA		
Sampler	: HANNAH GROVES			HAC-MRA NAIA		
Site	:					
Quote number	: EN/002/18 National BQ			Acceptization No. 825		
No. of samples received	: 1			Accredited for compliance with		
No. of samples analysed	: 1			ISO/IEC 17025 - Testing		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

- CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
- LOR = Limit of reporting
- RPD = Relative Percentage Difference
- # = Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER					Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EA005P: pH by PC Tit	trator (QC Lot: 2082923)									
EB1829787-001	Anonymous	EA005-P: pH Value		0.01	pH Unit	8.84	8.92	0.901	0% - 20%	
EA010P: Conductivity	y by PC Titrator (QC Lot: 20	82922)								
EB1829787-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	5280	5250	0.575	0% - 20%	
EA015: Total Dissolve	ed Solids dried at 180 ± 5 °C	(QC Lot: 2083184)								
EB1830080-004	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	5140	5220	1.54	0% - 20%	
ED037P: Alkalinity by	PC Titrator (QC Lot: 20829	25)								
EB1830028-001	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.00	No Limit	
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.00	No Limit	
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	161	167	3.96	0% - 20%	
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	161	167	3.96	0% - 20%	
ED041G: Sulfate (Tur	bidimetric) as SO4 2- by DA	(QC Lot: 2083109)								
EB1830063-007	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	8	8	0.00	No Limit	
EB1830002-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	100	100	0.00	0% - 20%	
ED045G: Chloride by	Discrete Analyser (QC Lot:	2083112)								
EB1830063-007	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	95	97	1.49	0% - 20%	
EB1830002-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	900	901	0.00	0% - 20%	
ED093F: Dissolved M	ajor Cations (QC Lot: 2083	337)								
EB1830099-001	320-01-BH2301	ED093F: Calcium	7440-70-2	1	mg/L	83	84	0.00	0% - 20%	
		ED093F: Magnesium	7439-95-4	1	mg/L	27	28	0.00	0% - 20%	
		ED093F: Sodium	7440-23-5	1	mg/L	974	972	0.165	0% - 20%	
		ED093F: Potassium	7440-09-7	1	mg/L	12	12	0.00	0% - 50%	
EB1829556-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	87	86	1.52	0% - 20%	
		ED093F: Magnesium	7439-95-4	1	mg/L	65	64	0.00	0% - 20%	
		ED093F: Sodium	7440-23-5	1	mg/L	356	350	1.55	0% - 20%	

Page	: 3 of 7
Work Order	: EB1830099
Client	: GOLDER ASSOCIATES
Project	: 1893795 INLAND RAIL P12

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
ED093F: Dissolved M	ajor Cations (QC Lot: 2083	837) - continued							
EB1829556-001	Anonymous	ED093F: Potassium	7440-09-7	1	mg/L	3	3	0.00	No Limit
EG020F: Dissolved M	etals by ICP-MS (QC Lot: 2	2083841)							
EB1830099-001	320-01-BH2301	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.003	0.003	0.00	No Limit
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.124	0.123	0.00	0% - 20%
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	0.002	0.002	0.00	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.073	0.073	0.00	0% - 20%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.003	0.003	0.00	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.014	0.014	0.00	No Limit
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-F: Boron	7440-42-8	0.05	mg/L	0.08	0.08	0.00	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.00	No Limit
EG020T: Total Metals	by ICP-MS (QC Lot: 20839	97)							
EB1830098-001	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	0.004	0.004	0.00	No Limit
		EG020A-T: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Barium	7440-39-3	0.001	mg/L	0.166	0.162	2.30	0% - 20%
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.002	0.002	0.00	No Limit
		EG020A-T: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.001	0.00	No Limit
		EG020A-T: Manganese	7439-96-5	0.001	mg/L	0.078	0.076	2.83	0% - 20%
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.002	0.002	0.00	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.014	0.014	0.00	No Limit
		EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-T: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-T: Boron	7440-42-8	0.05	mg/L	0.20	0.13	42.2	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	3.31	3.15	5.05	0% - 20%
EB1829787-001	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	0.0001	0.0002	0.00	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	0.006	0.006	0.00	No Limit
		EG020A-T: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Barium	7440-39-3	0.001	mg/L	0.287	0.292	1.56	0% - 20%
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Manganese	7439-96-5	0.001	mg/L	0.038	0.038	0.00	0% - 20%
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.060	0.063	4.50	0% - 20%

Page	: 4 of 7
Work Order	: EB1830099
Client	: GOLDER ASSOCIATES
Project	: 1893795 INLAND RAIL P12

Sub-Matrix: WATER					Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020T: Total Metals	by ICP-MS (QC Lot: 208399	97) - continued							
EB1829787-001	Anonymous	EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.037	0.037	0.00	No Limit
		EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-T: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-T: Boron	7440-42-8	0.05	mg/L	1.54	1.83	17.3	0% - 20%
		EG020A-T: Iron	7439-89-6	0.05	mg/L	2.62	2.68	2.08	0% - 20%
EG035F: Dissolved M	ercury by FIMS (QC Lot: 20	83838)							
EB1830022-001	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EB1829556-001	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EG035T: Total Recov	erable Mercury by FIMS (Q	C Lot: 2083995)							
EB1830028-001	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	0.0705	0.0745	5.52	0% - 20%
EK055G: Ammonia as	N by Discrete Analyser (Q	C Lot: 2087612)							
EB1830099-001	320-01-BH2301	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.68	0.68	0.00	0% - 20%
EK057G: Nitrite as N	by Discrete Analyser (QC L	_ot: 2083111)							
EB1830063-007	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.00	No Limit
EB1830002-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.00	No Limit
EK059G: Nitrite plus	Nitrate as N (NOx) by Discr	rete Analyser (QC Lot: 2087613)							
EB1830099-001	320-01-BH2301	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.07	0.06	0.00	No Limit
EK061G: Total Kjelda	hl Nitrogen By Discrete Ana	ılyser (QC Lot: 2084226)							
EB1829364-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	2.7	2.8	0.00	0% - 20%
EB1830099-001	320-01-BH2301	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	49.3	55.1	11.1	No Limit
EK067G: Total Phosp	horus as P by Discrete Ana	lyser (QC Lot: 2084225)							
EB1829364-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.39	0.38	3.38	0% - 20%
EB1830099-001	320-01-BH2301	EK067G: Total Phosphorus as P		0.01	mg/L	127	125	2.10	0% - 20%
EK071G: Reactive Ph	osphorus as P by discrete a	analyser (QC Lot: 2083110)							
EB1830002-001	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.05	0.05	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound CAS N	umber	LOR	Unit	Result	Concentration	LCS	Low	High	
EA005P: pH by PC Titrator (QCLot: 2082923)									
EA005-P: pH Value			pH Unit		4 pH Unit	101	98	102	
					7 pH Unit	100	98	102	
EA010P: Conductivity by PC Titrator (QCLot: 2082922)									
EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	<1	220 µS/cm	103	91	107	
				<1	12890 µS/cm	98.9	91	107	
EA015: Total Dissolved Solids dried at 180 ± 5 °C(QCLot: 2083184									
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	293 mg/L	102	88	112	
				<10	2000 mg/L	98.0	88	112	
ED037P: Alkalinity by PC Titrator (QCLot: 2082925)									
ED037-P: Total Alkalinity as CaCO3			mg/L		50 mg/L	107	80	120	
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (OCI of: 2083109									
ED041G: Sulfate as SO4 - Turbidimetric 14808-	79-8	1	mg/L	<1	25 mg/L	101	85	118	
			Ū	<1	100 mg/L	95.5	85	118	
ED045G: Chloride by Discrete Analyser (QCI of: 2083112)									
ED045G: Chloride 16887	00-6	1	mg/L	<1	10 mg/L	103	90	115	
			Ū	<1	1000 mg/L	102	90	115	
ED093F: Dissolved Major Cations (QCLot: 2083837)									
ED093F: Calcium 7440	70-2	1	mg/L	<1					
ED093F: Magnesium 7439	95-4	1	mg/L	<1					
ED093F: Sodium 7440	23-5	1	mg/L	<1					
ED093F: Potassium 7440	09-7	1	mg/L	<1					
EG020F: Dissolved Metals by ICP-MS (QCLot: 2083841)									
EG020A-F: Arsenic 7440	38-2	0.001	mg/L	<0.001	0.1 mg/L	91.9	88	116	
EG020A-F: Beryllium 7440	41-7	0.001	mg/L	<0.001	0.1 mg/L	95.1	81	117	
EG020A-F: Barium 7440	39-3	0.001	mg/L	<0.001	0.5 mg/L	104	70	130	
EG020A-F: Cadmium 7440	43-9	0.0001	mg/L	<0.0001	0.1 mg/L	97.0	88	108	
EG020A-F: Chromium 7440	47-3	0.001	mg/L	<0.001	0.1 mg/L	88.0	87	113	
EG020A-F: Cobalt 7440	48-4	0.001	mg/L	<0.001	0.1 mg/L	92.3	86	112	
EG020A-F: Lead 7439	92-1	0.001	mg/L	<0.001	0.1 mg/L	92.1	89	110	
EG020A-F: Manganese 7439	96-5	0.001	mg/L	<0.001	0.1 mg/L	92.6	89	120	
EG020A-F: Nickel 7440	02-0	0.001	mg/L	<0.001	0.1 mg/L	90.0	89	113	
EG020A-F: Selenium 7782-	49-2	0.01	mg/L	<0.01	0.1 mg/L	95.6	83	112	
EG020A-F: Vanadium 7440-	62-2	0.01	mg/L	<0.01	0.1 mg/L	101	88	114	
EG020A-F: Zinc 7440-	66-6	0.005	mg/L	<0.005	0.2 mg/L	89.8	87	113	

Page	: 6 of 7
Work Order	: EB1830099
Client	: GOLDER ASSOCIATES
Project	: 1893795 INLAND RAIL P12

Sub-Matrix: WATER					Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG020F: Dissolved Metals by ICP-MS (QCLot: 2	2083841) - continued								
EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	0.5 mg/L	102	81	125	
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	95.0	82	114	
EG020T: Total Metals by ICP-MS (QCLot: 20839	97)								
EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	99.8	88	112	
EG020A-T: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	87.4	81	119	
EG020A-T: Barium	7440-39-3	0.001	mg/L	<0.001	0.5 mg/L	93.4	70	130	
EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	91.0	88	111	
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	99.9	89	115	
EG020A-T: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	104	89	115	
EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	95.6	89	112	
EG020A-T: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	97.7	88	114	
EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	100	88	116	
EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	98.2	79	111	
EG020A-T: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	102	87	114	
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.2 mg/L	104	84	114	
EG020A-T: Boron	7440-42-8	0.05	mg/L	<0.05	0.5 mg/L	93.8	82	128	
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	96.3	82	118	
EG035F: Dissolved Mercury by FIMS (QCLot: 20	083838)								
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	99.3	84	118	
EG035T: Total Recoverable Mercury by FIMS (QCLot: 2083995)								
EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	97.6	84	118	
EK055G: Ammonia as N by Discrete Analyser (QCI of: 2087612)								
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.5 mg/L	101	86	112	
EK057G: Nitrite as N by Discrete Analyser (OC	Lot: 2083111)								
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	101	90	110	
EK059G · Nitrite plus Nitrate as N (NOx) by Disc	crete Analyser (OCI of: 20)	87613)							
EK059G: Nitrite + Nitrate as N		0.01	ma/L	<0.01	0.5 mg/L	95.5	89	115	
EKOCAC: Total Kialdahl Nitragan Dy Discrete Ar	alveer (OCL et 2004220)		5					-	
EK061C: Total Kjeldahl Nitrogen by Discrete An	lalyser (QCLOI: 2004226)	0.1	ma/l	<0.1	10 mg/l	95.1	70	108	
		0.1	ilig/L	-0.1	To thg/L	35.1	10	100	
EK067G: Total Phosphorus as P by Discrete An	alyser (QCLot: 2084225)	0.01		10.01	4.40 mm/	00.0	70	105	
EKU67G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	89.9	79	105	
EK071G: Reactive Phosphorus as P by discrete	analyser (QCLot: 2083110))							
EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	96.3	88	115	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Page	: 7 of 7
Work Order	: EB1830099
Client	: GOLDER ASSOCIATES
Project	: 1893795 INLAND RAIL P12

Sub-Matrix: WATER				Ма	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery Li	nits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED041G: Sulfate (Furbidimetric) as SO4 2- by DA (QCLot: 2083109)						
EB1830002-004	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	20 mg/L	112	70	130
ED045G: Chloride	by Discrete Analyser (QCLot: 2083112)						
EB1830002-004	Anonymous	ED045G: Chloride	16887-00-6	400 mg/L	98.1	70	130
EG020T: Total Me	als by ICP-MS (QCLot: 2083997)						
EB1829787-002	Anonymous	EG020A-T: Arsenic	7440-38-2	1 mg/L	98.6	70	130
		EG020A-T: Beryllium	7440-41-7	0.1 mg/L	83.5	70	130
		EG020A-T: Barium	7440-39-3	1 mg/L	98.3	70	130
		EG020A-T: Cadmium	7440-43-9	0.5 mg/L	89.8	70	130
		EG020A-T: Chromium	7440-47-3	1 mg/L	94.6	70	130
		EG020A-T: Cobalt	7440-48-4	1 mg/L	94.2	70	130
		EG020A-T: Lead	7439-92-1	1 mg/L	88.2	70	130
		EG020A-T: Manganese	7439-96-5	1 mg/L	88.0	70	130
		EG020A-T: Nickel	7440-02-0	1 mg/L	90.6	70	130
		EG020A-T: Vanadium	7440-62-2	1 mg/L	95.8	70	130
		EG020A-T: Zinc	7440-66-6	1 mg/L	96.5	70	130
EG035F: Dissolve	d Mercury by FIMS (QCLot: 2083838)						
EB1829556-002	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	87.2	70	130
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 2083995)						
EB1830098-001	Anonymous	EG035T: Mercury	7439-97-6	0.01 mg/L	83.0	70	130
EK057G: Nitrite a	s N by Discrete Analyser (QCLot: 2083111)						
EB1830002-004	Anonymous	EK057G: Nitrite as N	14797-65-0	0.4 mg/L	107	70	130
EK061G: Total Kje	Idahl Nitrogen By Discrete Analyser (QCLot: 2084226)						
EB1829364-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	108	70	130
EK067G: Total Ph	osphorus as P by Discrete Analyser (QCLot: 2084225)						
EB1829364-002	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	107	70	130
EK071G: Reactive	Phosphorus as P by discrete analyser (QCLot: 2083110						
EB1830002-004	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.4 mg/L	101	70	130

QUALITY CONTROL REPORT

Work Order	: EB1903588	Page	: 1 of 9
Client		Laboratory	: Environmental Division Brisbane
Contact	: MR MITCH McGINNIS	Contact	: Andrew Epps
Address	32 SHAND STREET	Address	: 2 Byth Street Stafford QLD Australia 4053
	BRISBANE QLD, AUSTRALIA 4053		
Telephone	: +61 07 3721 5400	Telephone	: +61 7 3552 8639
Project	: 1893795 Inland Rail (Pkg 12)	Date Samples Received	: 13-Feb-2019
Order number	:	Date Analysis Commenced	: 13-Feb-2019
C-O-C number	:	Issue Date	: 20-Feb-2019
Sampler	: ROBERT CUPPER		Hac-MRA NATA
Site	:		
Quote number	: EN/002/18 National BQ		Accreditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

- CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
- LOR = Limit of reporting
- RPD = Relative Percentage Difference
- # = Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory I	plicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EA005P: pH by PC T	itrator (QC Lot: 2189174)										
EB1903588-001	320-01-BH2103	EA005-P: pH Value		0.01	pH Unit	7.72	7.76	0.517	0% - 20%		
EA010P: Conductivit	ty by PC Titrator (QC Lot: 2	189173)									
EB1903588-001	320-01-BH2103	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	1460	1440	0.820	0% - 20%		
EA015: Total Dissolv	ved Solids dried at 180 ± 5 °C	C (QC Lot: 2184942)									
EB1903487-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	1230	1190	3.77	0% - 20%		
EB1903545-002	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	693	671	3.13	0% - 20%		
ED037P: Alkalinity b	y PC Titrator (QC Lot: 2189	172)									
EB1903001-001	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.00	No Limit		
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	168	150	11.1	0% - 20%		
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	532	551	3.56	0% - 20%		
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	700	701	0.221	0% - 20%		
EB1903588-001	320-01-BH2103	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.00	No Limit		
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.00	No Limit		
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	430	432	0.432	0% - 20%		
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	430	432	0.432	0% - 20%		
ED041G: Sulfate (Tu	rbidimetric) as SO4 2- by DA	A (QC Lot: 2184260)									
EB1903541-022	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	282	278	1.66	0% - 20%		
ED045G: Chloride by	/ Discrete Analyser (QC Lot	:: 2184259)									
EB1903541-022	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	374	373	0.305	0% - 20%		
ED093F: Dissolved	lajor Cations (QC Lot: 2184	561)									
EB1903549-002	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	48	50	3.58	0% - 20%		
		ED093F: Magnesium	7439-95-4	1	mg/L	20	20	0.00	0% - 20%		
		ED093F: Sodium	7440-23-5	1	mg/L	19	20	0.00	0% - 50%		
		ED093F: Potassium	7440-09-7	1	mg/L	3	3	0.00	No Limit		

Page	: 3 of 9
Work Order	: EB1903588
Client	: GOLDER ASSOCIATES
Project	: 1893795 Inland Rail (Pkg 12)

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
ED093F: Dissolved M	ajor Cations (QC Lot: 2184	561) - continued							
EB1903588-001	320-01-BH2103	ED093F: Calcium	7440-70-2	1	mg/L	78	78	0.00	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	82	84	1.49	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	94	94	0.00	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	1	1	0.00	No Limit
EG020F: Dissolved M	etals by ICP-MS (QC Lot: 2	184563)							
EB1903584-005	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.002	0.002	0.00	No Limit
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.003	0.003	0.00	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.161	0.160	0.00	0% - 20%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.007	0.008	16.2	No Limit
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-F: Boron	7440-42-8	0.05	mg/L	0.05	0.05	0.00	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	1.21	1.22	0.00	0% - 20%
EB1903588-001	320-01-BH2103	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.001	0.001	0.00	No Limit
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.111	0.112	0.00	0% - 20%
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	0.004	0.004	0.00	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.001	0.00	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.467	0.471	0.925	0% - 20%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.005	0.005	0.00	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.010	0.009	0.00	No Limit
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	0.00	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	0.11	0.12	0.00	No Limit
EG020T: Total Metals	by ICP-MS (QC Lot: 21846	57)							
EB1903541-071	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.1 µg/L	<0.0001	0.00	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	2 µg/L	0.001	0.00	No Limit
		EG020A-T: BervIlium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Barium	7440-39-3	0.001	mg/L	85 µg/L	0.082	2.68	0% - 20%

Page	: 4 of 9
Work Order	: EB1903588
Client	: GOLDER ASSOCIATES
Project	: 1893795 Inland Rail (Pkg 12)

Sub-Matrix: WATER			[Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020T: Total Metals	by ICP-MS (QC Lot: 21846	57) - continued							
EB1903541-071	Anonymous	EG020A-T: Chromium	7440-47-3	0.001	mg/L	2 µg/L	0.002	0.00	No Limit
		EG020A-T: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	3 µg/L	0.003	0.00	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<1 µg/L	<0.001	0.00	No Limit
		EG020A-T: Manganese	7439-96-5	0.001	mg/L	36 µg/L	0.035	3.38	0% - 20%
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	3 µg/L	0.004	27.7	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	32 µg/L	0.032	0.00	No Limit
		EG020A-T: Selenium	7782-49-2	0.01	mg/L	<10 µg/L	<0.01	0.00	No Limit
		EG020A-T: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-T: Boron	7440-42-8	0.05	mg/L	<50 µg/L	<0.05	0.00	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	1370 µg/L	1.39	1.75	0% - 20%
EB1903581-002	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	0.003	0.003	0.00	No Limit
		EG020A-T: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Barium	7440-39-3	0.001	mg/L	0.167	0.173	3.15	0% - 20%
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Cobalt	7440-48-4	0.001	mg/L	0.001	0.001	0.00	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Manganese	7439-96-5	0.001	mg/L	0.023	0.024	0.00	0% - 20%
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.004	0.003	0.00	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.00	No Limit
		EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-T: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-T: Boron	7440-42-8	0.05	mg/L	0.30	0.32	8.10	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	0.10	0.06	52.4	No Limit
EG035F: Dissolved M	ercury by FIMS (QC Lot: 21	84562)							
EB1903563-001	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EG035T: Total Recov	erable Mercury by FIMS (Q	C Lot: 2184654)							
EB1903541-071	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.1 µg/L	<0.0001	0.00	No Limit
EK040P: Fluoride by I	PC Titrator (QC Lot: 218917	(1)							
EB1903001-001	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	0.3	0.3	0.00	No Limit
EK055G: Ammonia as	N by Discrete Analyser (Q	C Lot: 2186057)							
EB1903588-001	320-01-BH2103	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.89	0.82	7.73	0% - 20%
EB1903620-010	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.05	<0.01	133	No Limit
EK057G: Nitrite as N	by Discrete Analyser (QC L	ot: 2184257)							
EB1903541-007	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.00	No Limit
EB1903588-001	320-01-BH2103	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.00	No Limit
EK059G: Nitrite plus	Nitrate as N (NOx) by Discr	ete Analyser (QC Lot: 2186058)							

Page	5 of 9
Work Order	: EB1903588
Client	: GOLDER ASSOCIATES
Project	: 1893795 Inland Rail (Pkg 12)

Sub-Matrix: WATER					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)			
EK059G: Nitrite plus	Nitrate as N (NOx) by Discr	rete Analyser (QC Lot: 2186058) - continued										
EB1903588-001	320-01-BH2103	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.08	0.08	0.00	No Limit			
EB1903620-010	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.00	No Limit			
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QC Lot: 2187209)												
EB1903370-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	4.0	3.9	0.00	No Limit			
EB1903566-004	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	1.0	1.0	0.00	No Limit			
EK067G: Total Phosphorus as P by Discrete Analyser (QC Lot: 2187208)												
EB1903370-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.85	0.80	5.39	0% - 50%			
EB1903566-004	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	<0.01	0.00	No Limit			
EK071G: Reactive Ph	osphorus as P by discrete a	analyser (QC Lot: 2184261)										
EB1903588-001	320-01-BH2103	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.01	<0.01	0.00	No Limit			

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Report Spike Spike Recovery (%) Recovery Limits (Method: Compound CAS Number LOR Unit Result Concentration LCS Low EA005P: pH by PC Titrator (QCLot: 2189174) pH Unit 4 pH Unit 101 98 EA010P: Conductivity by PC Titrator (QCLot: 2189173) pH Unit 7 pH Unit 100 98 EA010P: Conductivity by PC Titrator (QCLot: 2189173)	%) High 102 102 107 107 107 112 112
Internet: CAS Number LOR Unit Result Concentration LCS Low EA005P: pH by PC Titrator (QCLot: 2189174) EA005-P: pH Value	High 102 102 107 107 107 112 112 112
EA005P: pH by PC Titrator (QCLot: 2189174) PH Unit PH Unit 101 98 EA005-P: pH Value 7 pH Unit 100 98 EA010P: Conductivity by PC Titrator (QCLot: 2189173) EA010-P: Electrical Conductivity @ 25°C 1 µS/cm <1 2100 µS/cm 104 91 EA015-P: Electrical Conductivity @ 25°C 1 µS/cm <1 2100 µS/cm 102 91 EA015-P: Total Dissolved Solids dried at 180 ± 5 °C (QCLot: 2184942) 10 mg/L <10 293 mg/L 107 88 EA015H: Total Dissolved Solids @180°C 10 mg/L <10 2000 mg/L 103 88 ED037P: Alkalinity by PC Titrator (QCLot: 2184972) E mg/L 200 mg/L 98.1 80 5 ED037P: Alkalinity as CaCO3 mg/L 200 mg/L 98.1 80 5 ED041G: Sulfate as SO4 - Turbidimetric) as SO4 2- by DA (QCLot: 2184260) E 20 mg/L 103 85 5 ED041G: Sulfate as SO4 - Turbidimetric 14808-79-8	102 102 107 107 112 112 112
EA005-P: pH Value PH Unit 4 pH Unit 101 98 EA010P: Conductivity by PC Titrator (QCLot: 2189173) EA010-P: Electrical Conductivity @ 25°C 1 µS/cm <1	102 102 107 107 112 112 112
EA010P: Conductivity by PC Titrator (QCLot: 2189173) 7 pH Unit 100 98 EA010-P: Electrical Conductivity @ 25°C 1 μS/cm <1	102 107 107 112 112 112
EA010P: Conductivity by PC Titrator (QCLot: 2189173) EA010-P: Electrical Conductivity @ 25°C 1 μS/cm <1	107 107 112 112
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	107 107 112 112 112
Image: Constraint of the sector of	107 112 112
EA015: Total Dissolved Solids dried at 180 ± 5 °C (QCLot: 2184942) EA015H: Total Dissolved Solids @180°C 10 mg/L <10	112
EA015H: Total Dissolved Solids @180°C 10 mg/L <10	112
Image: Constraint of the second sec	112
ED037P: Alkalinity by PC Titrator (QCLot: 2189172) ED037-P: Total Alkalinity as CaCO3 mg/L 200 mg/L 98.1 80 ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 2184260) ED041G: Sulfate as SO4 - Turbidimetric 14808-79-8 1 mg/L <1	120
ED037-P: Total Alkalinity as CaCO3 mg/L 200 mg/L 98.1 80 ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 2184260) mg/L 200 mg/L 98.1 80 ED041G: Sulfate as SO4 - Turbidimetric 14808-79-8 1 mg/L <1 25 mg/L 103 85	120
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 2184260) ED041G: Sulfate as SO4 - Turbidimetric 14808-79-8 1 mg/L <1	120
ED041G: Sulfate as SO4 - Turbidimetric 14808-79-8 1 mg/L <1 25 mg/L 103 85 1 100 mg/L 100 mg	
	118
<1 100 mg/L 98.7 85	118
ED045G: Chloride by Discrete Analyser (QCL of: 2184259)	
ED045G: Chloride 10 mg/L <1 10 mg/L 106 90	115
<1 1000 mg/L 107 90	115
ED093F: Dissolved Major Cations (QCLot: 2184561)	
ED093E: Calcium 7440-70-2 1 mg/L <1	
ED093F: Magnesium 7439-95-4 1 mg/L <1	
ED093F: Sodium 7440-23-5 1 mg/L <1	
ED093F: Potassium 7440-09-7 1 mg/L <1	
EG020F: Dissolved Metals by ICP-MS (OCLot: 2184563)	
EG020A-F: Arsenic 7440-38-2 0.001 mg/L <0.001 0.1 mg/L 100 88	116
EG020A-F: Bervllium 7440-41-7 0.001 mg/L <0.001 0.1 mg/L 100 81	117
EG020A-F: Barium 7440-39-3 0.001 mg/L <0.001 0.5 mg/L 103 70	130
EG020A-F: Cadmium 7440-43-9 0.0001 mg/L <0.0001 0.1 mg/L 98.8 88	108
EG020A-F: Chromium 7440-47-3 0.001 mg/L <0.001 0.1 mg/L 102 87	113
EG020A-F: Cobalt 7440-48-4 0.001 mg/L <0.001 0.1 mg/L 101 86	112
EG020A-F: Copper 7440-50-8 0.001 mg/L <0.001 0.2 mg/L 97.1 88	114
EG020A-F: Lead 7439-92-1 0.001 mg/L <0.001 0.1 mg/L 94.2 89	110
EG020A-F: Manganese 7439-96-5 0.001 mg/L <0.001 0.1 mg/L 92.9 89	120
EG020A-F: Nickel 7440-02-0 0.001 mg/L <0.001 0.1 mg/L 98.4 89	113
EG020A-F: Selenium 7782-49-2 0.01 mg/L <0.01 0.1 mg/L 102 83	112
EG020A-F: Vanadium 7440-62-2 0.01 mg/L <0.01 0.1 mg/L 102 88	

Page	: 7 of 9
Work Order	: EB1903588
Client	: GOLDER ASSOCIATES
Project	: 1893795 Inland Rail (Pkg 12)

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020F: Dissolved Metals by ICP-MS (QCLot: 21845	63) - continued							
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.2 mg/L	96.4	87	113
EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	0.5 mg/L	102	81	125
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	106	82	114
EG020T: Total Metals by ICP-MS (QCLot: 2184657)								
EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	107	88	112
EG020A-T: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	100	81	119
EG020A-T: Barium	7440-39-3	0.001	mg/L	<0.001	0.5 mg/L	101	70	130
EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	106	88	111
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	107	89	115
EG020A-T: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	112	89	115
EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.2 mg/L	111	88	116
EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	104	89	112
EG020A-T: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	108	88	114
EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	110	88	116
EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	106	79	111
EG020A-T: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	108	87	114
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.2 mg/L	108	84	114
EG020A-T: Boron	7440-42-8	0.05	mg/L	<0.05	0.5 mg/L	97.1	82	128
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	108	82	118
EG035F: Dissolved Mercury by FIMS (QCLot: 21845)	62)							
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	105	84	118
EG035T: Total Recoverable Mercury by FIMS (QCLo	ot: 2184654)							
EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	93.7	84	118
EK040P: Fluoride by PC Titrator (QCLot: 2189171)								
EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5 mg/L	97.6	80	117
EK055G: Ammonia as N by Discrete Analyser (OCL	ot: 2186057)							
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.5 mg/L	90.3	86	112
EK057G: Nitrite as N by Discrete Analyser (OCL ot 1	2184257)							
EK057G: Nitrite as N	14797-65-0	0.01	ma/L	<0.01	0.5 ma/L	101	90	110
EK050CL Nitrite plue Nitrete es N (NOv) by Discrete	Analyzar (OCI at 219	00059)	5		J			-
EK059G: Nitrite + Nitrate as N		0.01	ma/l	<0.01	0.5 mg/l	99.4	89	115
		0.01	ing/2	.0.01	0.0 mg/2	00.1	00	
EK061G: Total Kjeldani Nitrogen By Discrete Analyse	er (QCLot: 2187209)	0.1	ma/l	<0.1	1 mg//	70 0	70	109
EKU61G: Total Kjeldani Nitrogen as N		0.1	mg/L	SU. 1	T mg/L	10.0	70	106
EK067G: Total Phosphorus as P by Discrete Analyse	er (QCLot: 2187208)	0.61		-0.01	0.440	00.0	70	405
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	0.442 mg/L	88.2	79	105
EK071G: Reactive Phosphorus as P by discrete anal	yser (QCLot: 2184261)						
EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	89.2	88	115

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Laboratory sample ID Client sample ID Method: Compound CAS Number ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 2184260) ED041G: Sulfate as SO4 - Turbidimetric 14808-79-8 ED045G: Chloride by Discrete Analyser (QCLot: 2184259) ED041G: Sulfate as SO4 - Turbidimetric 14808-79-8 EB1903588-001 320-01-BH2103 ED045G: Chloride by Discrete Analyser (QCLot: 2184259) ED045G: Chloride EB1903588-001 320-01-BH2103 ED045G: Chloride 16887-00-6 EG020F: Dissolved Metals by ICP-MS (QCLot: 2184563) ED045G: Chloride 7440-38-2 EB1903584-006 Anonymous EG020A-F: Arsenic 7440-38-2 EG020A-F: Benvilium 7440-41-7	Spike Concentration 20 mg/L 400 mg/L 0.1 mg/L	SpikeRecovery(%) MS 97.9 105	Recovery Low 70 70	Limits (%) High 130
Laboratory sample ID Client sample ID Client sample ID Method: Compound CAS Number ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 2184260) ED041G: Sulfate as SO4 - Turbidimetric 14808-79-8 ED045G: Chloride by Discrete Analyser (QCLot: 2184259) ED041G: Sulfate as SO4 - Turbidimetric 14808-79-8 EB1903588-001 320-01-BH2103 ED045G: Chloride 16887-00-6 EB1903588-001 320-01-BH2103 ED045G: Chloride 16887-00-6 EG020F: Dissolved Metals by ICP-MS (QCLot: 2184563) ED045G: Chloride 7440-38-2 EB1903584-006 Anonymous EG020A-F: Arsenic 7440-38-2 EG020A-F: Benvilium 7440-41-7	Concentration 20 mg/L 400 mg/L 0.1 mg/L	MS 97.9 105	<i>Low</i> 70 70	High 130
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 2184260) EB1903588-001 320-01-BH2103 ED041G: Sulfate as SO4 - Turbidimetric 14808-79-8 ED045G: Chloride by Discrete Analyser (QCLot: 2184259) ED045G: Chloride 16887-00-6 EB1903588-001 320-01-BH2103 ED045G: Chloride 16887-00-6 EG020F: Dissolved Metals by ICP-MS (QCLot: 2184563) EG020A-F: Arsenic 7440-38-2 EB1903584-006 Anonymous EG020A-F: Arsenic 7440-41-7	20 mg/L 400 mg/L	97.9	70 70	130
EB1903588-001 320-01-BH2103 ED041G: Sulfate as SO4 - Turbidimetric 14808-79-8 ED045G: Chloride by Discrete Analyser (QCLot: 2184259) ED045G: Chloride 16887-00-6 EB1903588-001 320-01-BH2103 ED045G: Chloride 16887-00-6 EG020F: Dissolved Metals by ICP-MS (QCLot: 2184563) EG020A-F: Arsenic 7440-38-2 EB1903584-006 Anonymous EG020A-F: Arsenic 7440-41-7	20 mg/L 400 mg/L 0.1 mg/L	97.9	70 70	130
ED045G: Chloride by Discrete Analyser (QCLot: 2184259) EB1903588-001 320-01-BH2103 ED045G: Chloride 16887-00-6 EG020F: Dissolved Metals by ICP-MS (QCLot: 2184563) EG020A-F: Arsenic 7440-38-2 EB1903584-006 Anonymous EG020A-F: Arsenic 7440-41-7	400 mg/L	105	70	
EB1903588-001 320-01-BH2103 ED045G: Chloride 16887-00-6 EG020F: Dissolved Metals by ICP-MS (QCLot: 2184563) EG020A-F: Arsenic 7440-38-2 EB1903584-006 Anonymous EG020A-F: Arsenic 7440-41-7	400 mg/L 0.1 mg/L	105	70	
EG020F: Dissolved Metals by ICP-MS (QCLot: 2184563) EB1903584-006 Anonymous EG020A-F: Arsenic 7440-38-2 EG020A-F: Benyllium 7440-41-7	0.1 mg/L	1		130
EB1903584-006 Anonymous EG020A-F: Arsenic 7440-38-2 EG020A-F: Bepdlium 7440-41-7	0.1 mg/L			
EG0204_F: Benyllium 7440-41-7		105	70	130
	0.1 mg/L	101	70	130
EG020A-F: Barium 7440-39-3	0.5 mg/L	106	70	130
EG020A-F: Cadmium 7440-43-9	0.1 mg/L	99.7	70	130
EG020A-F: Chromium 7440-47-3	0.1 mg/L	101	70	130
EG020A-F: Cobalt 7440-48-4	0.1 mg/L	101	70	130
EG020A-F: Copper 7440-50-8	0.2 mg/L	98.8	70	130
EG020A-F: Lead 7439-92-1	0.1 #ngdt		70	130
	0.1 mg// //	Determined	70	120
EG020A-F: Manganese 7439-96-5	0.1 mg/L #1	Not Determined	70	130
EG020A-F: Nickel 7440-02-0	0.1 mg/L	96.0	70	130
EG020A-F: Selenium 7782-49-2	0.1 mg/L	102	70	130
EG020A-F: Vanadium 7440-62-2	0.1 mg/L	99.5	70	130
EG020A-F: Zinc 7440-66-6	0.2 mg/L	98.0	70	130
EG020A-F: Boron 7440-42-8	0.5 mg/L	99.0	70	130
EG020T: Total Metals by ICP-MS (QCLot: 2184657)				
EB1903541-074 Anonymous EG020A-T: Arsenic 7440-38-2	1 mg/L	102	70	130
EG020A-T: Beryllium 7440-41-7	0.1 mg/L	93.2	70	130
EG020A-T: Barium 7440-39-3	1 mg/L	93.6	70	130
EG020A-T: Cadmium 7440-43-9	0.5 mg/L	98.1	70	130
EG020A-T: Chromium 7440-47-3	1 mg/L	98.2	70	130
EG020A-T: Cobalt 7440-48-4	1 mg/L	97.2	70	130
EG020A-T: Copper 7440-50-8	1 mg/L	93.5	70	130
EG020A-T: Lead 7439-92-1	1 mg/L	93.7	70	130
EG020A-T: Manganese 7439-96-5	1 mg/L	92.5	70	130
EG020A-T: Nickel 7440-02-0	1 mg/L	97.4	70	130
EG020A-T: Vanadium 7440-62-2	1 mg/L	103	70	130
EG020A-T: Zinc 7440-66-6	1 mg/L	93.5	70	130
EG035F: Dissolved Mercury by FIMS (QCLot: 2184562)				

: 9 of 9
: EB1903588
: GOLDER ASSOCIATES
: 1893795 Inland Rail (Pkg 12)

Sub-Matrix: WATER					Matrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Recovery L	imits (%)	
Laboratory sample ID	Client sample ID	Method: Compound	Method: Compound CAS Number				High	
EG035F: Dissolved	I Mercury by FIMS (QCLot: 2184562) - continued							
EB1903630-001	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	87.6	70	130	
EG035T: Total Recoverable Mercury by FIMS (QCLot: 2184654)								
EB1903541-074	Anonymous	EG035T: Mercury	7439-97-6	0.01 mg/L	87.6	70	130	
EK040P: Fluoride by PC Titrator (QCLot: 2189171)								
EB1903001-003	Anonymous	EK040P: Fluoride	EK040P: Fluoride 16984-48-8		87.2	70	130	
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 2186057)							
EB1903620-001	Anonymous	EK055G: Ammonia as N	7664-41-7	2 mg/L	80.8	70	130	
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 2184257)							
EB1903541-021	Anonymous	EK057G: Nitrite as N	14797-65-0	0.4 mg/L	96.4	70	130	
EK059G: Nitrite pl	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 218	6058)						
EB1903620-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.4 mg/L	94.0	70	130	
EK061G: Total Kjel	dahl Nitrogen By Discrete Analyser (QCLot: 2187209)							
EB1903370-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	92.3	70	130	
EK067G: Total Pho	sphorus as P by Discrete Analyser (QCLot: 2187208)							
EB1903370-002	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	98.6	70	130	

QUALITY CONTROL REPORT

Work Order	EB1904979	Page	: 1 of 9
Client		Laboratory	: Environmental Division Brisbane
Contact	: MR SUSANTHA KUMARAPELI	Contact	: Andrew Epps
Address	: C/- GOLDING CONTRACTORS PTY LTD LEVEL 3 8 GARDNER CLOSE MILTON OLD 4064	Address	: 2 Byth Street Stafford QLD Australia 4053
Telephone	: +61 07 3721 5400	Telephone	: +61 7 3552 8639
Project	: 1893795 Inland Rail P/2	Date Samples Received	: 27-Feb-2019
Order number	:	Date Analysis Commenced	: 27-Feb-2019
C-O-C number		Issue Date	04-Mar-2019
Sampler	: ROBERT CUPPER		HALA NAIA
Site	:		
Quote number	: EN/002/18 National BQ		The state of the second st
No. of samples received	: 1		Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing
This report supersedes an	v previous report(s) with this reference. Results apply to the sample(s) as	submitted. This document sha	all not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories

Kim McCabe

Senior Inorganic Chemist

Position

Brisbane Inorganics, Stafford, QLD

Accreditation Category

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

- CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
- LOR = Limit of reporting
- RPD = Relative Percentage Difference
- # = Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EA005P: pH by PC Titrator (QC Lot: 2208558)										
EB1904665-001	Anonymous	EA005-P: pH Value	EA005-P: pH Value		pH Unit	7.08	7.10	0.282	0% - 20%	
EB1904676-006	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.98	7.99	0.125	0% - 20%	
EA010P: Conductivity	y by PC Titrator (QC Lot: 22	08557)								
EB1904665-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	30300	30200	0.331	0% - 20%	
EB1904676-006	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	3460	3470	0.288	0% - 20%	
EA015: Total Dissolv	ed Solids dried at 180 ± 5 °C	(QC Lot: 2209488)								
EB1902060-003	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	165	164	0.00	0% - 50%	
ED037P: Alkalinity by	PC Titrator (QC Lot: 22085	56)								
EB1904407-001	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.00	No Limit	
		ED037-P: Carbonate Alkalinity as CaCO3 38		1	mg/L	12	15	26.5	0% - 50%	
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	271	303	11.3	0% - 20%	
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	282	318	12.0	0% - 20%	
EB1904676-006	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.00	No Limit	
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.00	No Limit	
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	1220	1220	0.202	0% - 20%	
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	1220	1220	0.202	0% - 20%	
ED041G: Sulfate (Tur	bidimetric) as SO4 2- by DA	(QC Lot: 2208937)								
EB1904971-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	367	374	1.90	0% - 20%	
ED045G: Chloride by	Discrete Analyser (QC Lot:	2208934)								
EB1904948-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	<1	<1	0.00	No Limit	
ED093F: Dissolved M	ajor Cations (QC Lot: 22092	254)								
EB1904819-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	15	15	0.00	0% - 50%	
		ED093F: Magnesium	7439-95-4	1	mg/L	8	8	0.00	No Limit	
		ED093F: Sodium	7440-23-5	1	mg/L	29	29	0.00	0% - 20%	

: 3 of 9
: EB1904979
: GOLDER ASSOCIATES
: 1893795 Inland Rail P/2

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
ED093F: Dissolved N	ajor Cations (QC Lot: 2209	254) - continued							
EB1904819-001	Anonymous	ED093F: Potassium	7440-09-7	1	mg/L	6	6	0.00	No Limit
EG020F: Dissolved N	letals by ICP-MS (QC Lot: 2	2209256)							
EB1905027-002	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.097	0.099	1.68	0% - 20%
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.007	0.007	0.00	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.001	0.001	0.00	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.00	No Limit
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-F: Boron	7440-42-8	0.05	mg/L	0.27	0.26	0.00	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.00	No Limit
EB1904909-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.008	0.008	0.00	No Limit
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.510	0.513	0.490	0% - 20%
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.002	0.002	0.00	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.014	0.014	0.00	0% - 50%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.040	0.040	0.00	0% - 20%
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.059	0.058	0.00	0% - 50%
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-F: Boron	7440-42-8	0.05	mg/L	1.64	1.72	5.26	0% - 20%
		EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.00	No Limit
EG020T: Total Metals	by ICP-MS (QC Lot: 22093	861)							
EB1904909-002	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	0.0001	<0.0001	0.00	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	0.009	0.010	0.00	No Limit
		EG020A-T: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Barium	7440-39-3	0.001	mg/L	0.465	0.462	0.560	0% - 20%
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.003	0.003	0.00	No Limit

Page	: 4 of 9
Work Order	: EB1904979
Client	: GOLDER ASSOCIATES
Project	 1893795 Inland Rail P/2

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EG020T: Total Metals	by ICP-MS (QC Lot: 22093	61) - continued								
EB1904909-002	Anonymous	EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit	
		EG020A-T: Manganese	7439-96-5	0.001	mg/L	0.016	0.016	0.00	0% - 50%	
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.045	0.046	3.19	0% - 20%	
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.063	0.062	2.03	0% - 50%	
		EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit	
		EG020A-T: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit	
		EG020A-T: Boron	7440-42-8	0.05	mg/L	1.84	1.74	4.99	0% - 20%	
		EG020A-T: Iron	7439-89-6	0.05	mg/L	0.08	0.08	0.00	No Limit	
EB1904909-001	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	0.0001	<0.0001	0.00	No Limit	
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	0.010	0.010	0.00	No Limit	
		EG020A-T: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.00	No Limit	
		EG020A-T: Barium	7440-39-3	0.001	mg/L	0.565	0.584	3.28	0% - 20%	
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.002	0.002	0.00	No Limit	
		EG020A-T: Cobalt	7440-48-4	0.001	mg/L	0.001	0.002	0.00	No Limit	
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.006	0.007	0.00	No Limit	
		EG020A-T: Lead	7439-92-1	0.001	mg/L	0.002	0.002	0.00	No Limit	
		EG020A-T: Manganese	7439-96-5	0.001	mg/L	0.026	0.026	0.00	0% - 20%	
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.041	0.040	0.00	0% - 20%	
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.178	0.185	3.52	0% - 20%	
		EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit	
		EG020A-T: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit	
		EG020A-T: Boron	7440-42-8	0.05	mg/L	1.69	1.77	4.25	0% - 20%	
		EG020A-T: Iron	7439-89-6	0.05	mg/L	1.09	1.12	2.23	0% - 20%	
EG035F: Dissolved M	ercury by FIMS (QC Lot: 22	209257)								
EB1904979-001	320-01-BH2216	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit	
EG035T: Total Recov	verable Mercury by FIMS (Q	C Lot: 2209365)								
EB1904979-001	320-01-BH2216	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit	
EB1905049-003	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit	
EK055G: Ammonia as	s N by Discrete Analyser(Q	C Lot: 2209285)								
EB1904909-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	2.77	2.92	5.35	0% - 20%	
EK057G: Nitrite as N	by Discrete Analyser (QC I	_ot: 2208938)								
EB1904971-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.00	No Limit	
EK059G: Nitrite plus	Nitrate as N (NOx) by Disci	rete Analyser (QC Lot: 2209286)								
EB1904909-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.00	No Limit	
EK061G: Total Kjelda	hl Nitrogen By Discrete Ana	alyser (QC Lot: 2209188)								
EB1904902-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.4	0.4	0.00	No Limit	
EK067G: Total Phosp	horus as P by Discrete Ana	lyser (QC Lot: 2209187)								
EB1904902-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.00	No Limit	
EK071G: Reactive Ph	osphorus as P by discrete a	analyser (QC Lot: 2208935)								

Page	5 of 9
Work Order	: EB1904979
Client	: GOLDER ASSOCIATES
Project	: 1893795 Inland Rail P/2

Sub-Matrix: WATER					Laboratory D	ouplicate (DUP) Report			
Laboratory sample ID Client sample ID Method: Compound CAS Numi		CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EK071G: Reactive Phosphorus as P by discrete analyser (QC Lot: 2208935) - continued									
EB1904948-001	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA005P: pH by PC Titrator (QCLot: 2208558)									
EA005-P: pH Value			pH Unit		4 pH Unit	100	98	102	
					7 pH Unit	100	98	102	
EA010P: Conductivity by PC Titrator (QCLot: 2208557)									
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	4000 µS/cm	103	91	107	
				<1	12890 µS/cm	99.4	91	107	
EA015: Total Dissolved Solids dried at 180 ± 5 °C(QCLot: 22	209488)								
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	293 mg/L	101	88	112	
				<10	2000 mg/L	100	88	112	
ED037P: Alkalinity by PC Titrator (QCLot: 2208556)									
ED037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	90.1	80	120	
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 22	08937)								
ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	105	85	118	
			-	<1	100 mg/L	107	85	118	
ED045G: Chloride by Discrete Analyser (OCLot: 2208934)									
ED045G: Chloride	16887-00-6	1	mg/L	<1	10 mg/L	95.9	90	115	
			C C	<1	1000 mg/L	103	90	115	
ED093F: Dissolved Maior Cations (QCLot: 2209254)									
ED093F: Calcium	7440-70-2	1	mg/L	<1					
ED093F: Magnesium	7439-95-4	1	mg/L	<1					
ED093F: Sodium	7440-23-5	1	mg/L	<1					
ED093F: Potassium	7440-09-7	1	mg/L	<1					
EG020F: Dissolved Metals by ICP-MS (QCLot: 2209256)									
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	99.9	88	116	
EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	99.8	81	117	
EG020A-F: Barium	7440-39-3	0.001	mg/L	<0.001	0.5 mg/L	103	70	130	
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	95.6	88	108	
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	96.0	87	113	
EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	98.2	86	112	
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.2 mg/L	106	88	114	
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	96.8	89	110	
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	102	89	120	
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	100	89	113	
EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	104	83	112	
EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	102	88	114	

Page	: 7 of 9
Work Order	: EB1904979
Client	: GOLDER ASSOCIATES
Project	 1893795 Inland Rail P/2

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG020F: Dissolved Metals by ICP-MS (QCLot: 2	2209256) - continued								
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.2 mg/L	99.4	87	113	
EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	0.5 mg/L	98.3	81	125	
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	101	82	114	
EG020T: Total Metals by ICP-MS (QCLot: 22093	361)								
EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	99.5	88	112	
EG020A-T: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	95.8	81	119	
EG020A-T: Barium	7440-39-3	0.001	mg/L	<0.001	0.5 mg/L	98.8	70	130	
EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	94.7	88	111	
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	99.0	89	115	
EG020A-T: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	99.1	89	115	
EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.2 mg/L	99.3	88	116	
EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	97.9	89	112	
EG020A-T: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	98.8	88	114	
EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	99.0	88	116	
EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	93.7	79	111	
EG020A-T: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	99.8	87	114	
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.2 mg/L	94.3	84	114	
EG020A-T: Boron	7440-42-8	0.05	mg/L	<0.05	0.5 mg/L	96.6	82	128	
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	100	82	118	
EG035F: Dissolved Mercury by FIMS (QCLot: 2	209257)								
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	97.3	84	118	
EG035T: Total Recoverable Mercury by FIMS (QCLot: 2209365)								
EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	100	84	118	
EK055G: Ammonia as N by Discrete Analyser(QCLot: 2209285)								
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.5 mg/L	99.0	86	112	
EK057G: Nitrite as N by Discrete Analyser (QC	Lot: 2208938)								
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	97.2	90	110	
EK059G: Nitrite plus Nitrate as N (NOx) by Disc	crete Analyser (QCLot: 220	9286)							
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	99.3	89	115	
EK061G: Total Kieldahl Nitrogen By Discrete Ar	nalvser (QCLot: 2209188)								
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	1 mg/L	76.6	70	108	
EK067G: Total Phosphorus as P by Discrete An	alvser (QCLot: 2209187)								
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	0.442 mg/L	85.3	79	105	
EK071G: Reactive Phosphorus as P by discrete	analyser (QCLot: 2 <u>208935</u>)							
EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	104	88	115	

Matrix Spike (MS) Report

Page	: 8 of 9
Work Order	: EB1904979
Client	: GOLDER ASSOCIATES
Project	: 1893795 Inland Rail P/2

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER			Ma				
				Spike SpikeRecovery(%) Recovery		Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED041G: Sulfate (T	urbidimetric) as SO4 2- by DA (QCLot: 2208937)						
EB1904963-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	20 mg/L	# Not Determined	70	130
ED045G: Chloride	by Discrete Analyser (QCLot: 2208934)						
EB1904963-001	Anonymous	ED045G: Chloride	16887-00-6	400 mg/L	# Not	70	130
EG020F: Dissolved	I Metals by ICP-MS (QCLot: 2209256)				Botominou		
EB1904909-002	Anonymous	EG020A-F: Arsenic	7440-38-2	0.1 mg/L	105	70	130
		EG020A-F: Bervllium	7440-41-7	0.1 mg/L	103	70	130
		EG020A-F: Barium	7440-39-3	0.5 mg/L	104	70	130
		EG020A-F: Cadmium	7440-43-9	0.1 mg/L	96.4	70	130
		EG020A-F: Chromium	7440-47-3	0.1 mg/L	91.7	70	130
		EG020A-F: Cobalt	7440-48-4	0.1 mg/L	93.1	70	130
		EG020A-F: Copper	7440-50-8	0.2 mg/L	90.9	70	130
		EG020A-F: Lead	7439-92-1	0.1 mg/L	91.5	70	130
		EG020A-F: Manganese	7439-96-5	0.1 mg/L	96.3	70	130
		EG020A-F: Nickel	7440-02-0	0.1 mg/L	92.0	70	130
		EG020A-F: Selenium	7782-49-2	0.1 mg/L	109	70	130
		EG020A-F: Vanadium	7440-62-2	0.1 mg/L	99.1	70	130
		EG020A-F: Zinc	7440-66-6	0.2 mg/L	95.2	70	130
		EG020A-F: Boron	7440-42-8	0.5 mg/L	99.4	70	130
EG020T: Total Meta	als by ICP-MS (QCLot: 2209361)						
EB1904819-001	Anonymous	EG020A-T: Arsenic	7440-38-2	1 mg/L	98.4	70	130
		EG020A-T: Beryllium	7440-41-7	0.1 mg/L	98.1	70	130
		EG020A-T: Barium	7440-39-3	1 mg/L	98.7	70	130
		EG020A-T: Cadmium	7440-43-9	0.5 mg/L	94.7	70	130
		EG020A-T: Chromium	7440-47-3	1 mg/L	97.0	70	130
		EG020A-T: Cobalt	7440-48-4	1 mg/L	93.7	70	130
		EG020A-T: Copper	7440-50-8	1 mg/L	95.4	70	130
		EG020A-T: Lead	7439-92-1	1 mg/L	96.8	70	130
		EG020A-T: Manganese	7439-96-5	1 mg/L	93.6	70	130
		EG020A-T: Nickel	7440-02-0	1 mg/L	95.1	70	130
		EG020A-T: Vanadium	7440-62-2	1 mg/L	96.3	70	130
		EG020A-T: Zinc	7440-66-6	1 mg/L	93.2	70	130
EG035F: Dissolved	I Mercury by FIMS (QCLot: 2209257)						
EB1905016-013	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	78.5	70	130
EG035T: Total Rec	coverable Mercury by FIMS (QCLot: 2209365)						

Page	: 9 of 9
Work Order	: EB1904979
Client	: GOLDER ASSOCIATES
Project	: 1893795 Inland Rail P/2

Sub-Matrix: WATER			Γ	Matrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Recovery Li	mits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG035T: Total Recoverable Mercury by FIMS (QCLot: 2209365) - continued							
EB1905016-013	Anonymous	EG035T: Mercury	7439-97-6	0.01 mg/L	79.3	70	130
EK055G: Ammonia as N by Discrete Analyser (QCLot: 2209285)							
EB1904909-002	Anonymous	EK055G: Ammonia as N	7664-41-7	0.4 mg/L	103	70	130
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 2208938)						
EB1904963-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.4 mg/L	91.4	70	130
EK059G: Nitrite plu	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 220	9286)					
EB1904909-002	Anonymous	EK059G: Nitrite + Nitrate as N		0.4 mg/L	94.2	70	130
EK061G: Total Kjel	dahl Nitrogen By Discrete Analyser (QCLot: 2209188)						
EB1904902-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	95.8	70	130
EK067G: Total Pho	sphorus as P by Discrete Analyser (QCLot: 2209187)						
EB1904902-002	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	95.9	70	130
EK071G: Reactive I	Phosphorus as P by discrete analyser (QCLot: 2208935						
EB1904963-001	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.4 mg/L	92.7	70	130

QA/QC Compliance Assessment to assist with Quality Review					
Work Order	: EB1826458	Page	: 1 of 8		
Client	: GOLDER ASSOCIATES	Laboratory	: Environmental Division Brisbane		
Contact	: MR MITCH McGINNIS	Telephone	: +61 7 3552 8639		
Project	: 1893795	Date Samples Received	: 01-Nov-2018		
Site	: INLAND RAIL (P12)	Issue Date	: 06-Nov-2018		
Sampler	ROBERT CUPPER	No. of samples received	: 2		
Order number	: 17893795	No. of samples analysed	: 2		

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Page	: 2 of 8
Work Order	: EB1826458
Client	: GOLDER ASSOCIATES
Project	: 1893795

Outliers : Analysis Holding Time Compliance

Matrix: WATER								
Method			Extraction / Preparation			Analysis		
Container / Client Sample ID(s)		Da	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
					overdue			overdue
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural								
310-01-BH2217,	310-01-BH2201					02-Nov-2018	30-Oct-2018	3

Analysis Holding Time Compliance

Matrix: WATER

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: * = Holding time breach ; \checkmark = Within holding time.

					· · · · · · · · · · · · · · · · · · ·		
Method		Extraction / Preparation		Analysis			
		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
310-01-BH2201	30-Oct-2018				02-Nov-2018	30-Oct-2018	x
310-01-BH2201	30-Oct-2018				02-Nov-2018	27-Nov-2018	~
310-01-BH2201	30-Oct-2018				02-Nov-2018	06-Nov-2018	~
310-01-BH2201	30-Oct-2018				02-Nov-2018	13-Nov-2018	~
310-01-BH2201	30-Oct-2018				01-Nov-2018	27-Nov-2018	~
310-01-BH2201	30-Oct-2018				01-Nov-2018	27-Nov-2018	~
310-01-BH2201	30-Oct-2018				02-Nov-2018	27-Nov-2018	✓
	310-01-BH2201 310-01-BH2201 310-01-BH2201 310-01-BH2201 310-01-BH2201 310-01-BH2201 310-01-BH2201	Sample Date 310-01-BH2201 30-Oct-2018 310-01-BH2201 30-Oct-2018	Sample Date Ex Date extracted Date extracted 310-01-BH2201 30-Oct-2018 310-01-BH2201 30-Oct-2018	Sample Date Extraction / Preparation Date extracted Due for extraction 310-01-BH2201 30-Oct-2018 310-01-BH2201 30-Oct-2018	Sample Date Extraction / Preparation Date extracted Due for extraction Evaluation 310-01-BH2201 30-Oct-2018 310-01-BH2201 30-Oct-2018	Sample Date Extraction / Preparation Control of the straction of the stractin of the straction of the	Sample Date Extraction / Preparation Image of the straction of the stractin of the straction of the st

Page	: 3 of 8
Work Order	: EB1826458
Client	: GOLDER ASSOCIATES
Project	: 1893795

Matrix: WATER					Evaluation	uation: × = Holding time breach ; ✓ = Within holding time			
Method		Sample Date	Extraction / Preparation			Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
ED093F: SAR and Hardness Calculations									
Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) 310-01-BH2217,	310-01-BH2201	30-Oct-2018				02-Nov-2018	27-Nov-2018	✓	
EG020F: Dissolved Metals by ICP-MS									
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) 310-01-BH2217,	310-01-BH2201	30-Oct-2018				02-Nov-2018	28-Apr-2019	~	
EG020T: Total Metals by ICP-MS									
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) 310-01-BH2217,	310-01-BH2201	30-Oct-2018	02-Nov-2018	28-Apr-2019	~	02-Nov-2018	28-Apr-2019	~	
EG035F: Dissolved Mercury by FIMS									
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) 310-01-BH2217,	310-01-BH2201	30-Oct-2018				02-Nov-2018	27-Nov-2018	~	
EG035T: Total Recoverable Mercury by FIMS									
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG035T) 310-01-BH2217,	310-01-BH2201	30-Oct-2018				02-Nov-2018	27-Nov-2018	~	
EK040P: Fluoride by PC Titrator									
Clear Plastic Bottle - Natural (EK040P) 310-01-BH2217,	310-01-BH2201	30-Oct-2018				02-Nov-2018	27-Nov-2018	~	
EK055G: Ammonia as N by Discrete Analyser									
Clear Plastic Bottle - Sulfuric Acid (EK055G) 310-01-BH2217,	310-01-BH2201	30-Oct-2018				01-Nov-2018	27-Nov-2018	~	
EK057G: Nitrite as N by Discrete Analyser									
Clear Plastic Bottle - Natural (EK057G) 310-01-BH2217,	310-01-BH2201	30-Oct-2018				01-Nov-2018	01-Nov-2018	~	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete An	alyser	-							
Clear Plastic Bottle - Sulfuric Acid (EK059G) 310-01-BH2217,	310-01-BH2201	30-Oct-2018				01-Nov-2018	27-Nov-2018	~	
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser									
Clear Plastic Bottle - Sulfuric Acid (EK061G) 310-01-BH2217,	310-01-BH2201	30-Oct-2018	01-Nov-2018	27-Nov-2018	~	01-Nov-2018	27-Nov-2018	~	
EK067G: Total Phosphorus as P by Discrete Analyser									
Clear Plastic Bottle - Sulfuric Acid (EK067G) 310-01-BH2217,	310-01-BH2201	30-Oct-2018	01-Nov-2018	27-Nov-2018	~	01-Nov-2018	27-Nov-2018	~	
EK071G: Reactive Phosphorus as P by discrete analyse	er								
Clear Plastic Bottle - Natural (EK071G) 310-01-BH2217	310-01-BH2201	30-Oct-2018				01-Nov-2018	01-Nov-2018	1	

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER Evaluation: * = Quality Control frequency not within specification; \checkmark = Quality Control frequency within specification							
Quality Control Sample Type		Сс	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Alkalinity by PC Titrator	ED037-P	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	1	10	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	4	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by PC Titrator	EA005-P	1	10	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	10	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Alkalinity by PC Titrator	ED037-P	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	2	10	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	7	14.29	5.00	1	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by PC Titrator	EA005-P	2	10	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	2	7	28.57	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	16	6.25	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	19	5.26	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	16	6.25	5.00	√	NEPM 2013 B3 & ALS QC Standard

Page	: 5 of 8
Work Order	: EB1826458
Client	: GOLDER ASSOCIATES
Project	: 1893795

Matrix: WATER				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; \checkmark = Quality Control frequency within specification.	
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification	
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation		
Method Blanks (MB)								
Ammonia as N by Discrete analyser	EK055G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Chloride by Discrete Analyser	ED045G	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Conductivity by PC Titrator	EA010-P	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Mercury by FIMS	EG035F	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Fluoride by PC Titrator	EK040P	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Major Cations - Dissolved	ED093F	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Dissolved Solids (High Level)	EA015H	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Mercury by FIMS	EG035T	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-MS - Suite A	EG020A-T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Matrix Spikes (MS)								
Ammonia as N by Discrete analyser	EK055G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Chloride by Discrete Analyser	ED045G	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Mercury by FIMS	EG035F	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Fluoride by PC Titrator	EK040P	1	7	14.29	5.00	1	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	16	6.25	5.00	~	NEPM 2013 B3 & ALS QC Standard	
Total Mercury by FIMS	EG035T	1	10	10.00	5.00	~	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-MS - Suite A	EG020A-T	1	19	5.26	5.00	~	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	1	16	6 25	5.00	1	NEPM 2013 B3 & ALS QC Standard	

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by PC Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)
Conductivity by PC Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (2013) Schedule B(3)
Alkalinity by PC Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013) Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Fluoride by PC Titrator	EK040P	WATER	In house: Referenced to APHA 4500-F C: CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM (2013) Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Reactive Phosphorus as P-By Discrete Analyser	EK071G	WATER	In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Ionic Balance by PCT DA and Turbi SO4 DA	EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM (2013) Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions

Page	: 8 of 8
Work Order	: EB1826458
Client	: GOLDER ASSOCIATES
Project	: 1893795

Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013) Schedule B(3)
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant
			with NEPM (2013) Schedule B(3)

QA/QC Compliance Assessment to assist with Quality Review					
Work Order	: EB1828548	Page	: 1 of 9		
Client		Laboratory	: Environmental Division Brisbane		
Contact	: MR MITCH McGINNIS	Telephone	: +61 7 3552 8639		
Project	: 1893795 INLAND RAIL P12	Date Samples Received	: 22-Nov-2018		
Site	:	Issue Date	: 26-Nov-2018		
Sampler	: SUSANTHA KUMARAPELI	No. of samples received	: 1		
Order number	:	No. of samples analysed	: 1		

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	r Data	Limits	Comment
Matrix Spike (MS) Recoveries							
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA	EB1828101001	Anonymous	Sulfate as SO4 -	14808-79-8	Not		MS recovery not determined,
			Turbidimetric				background level greater than or
							equal to 4x spike level.

Outliers : Frequency of Quality Control Samples

Matrix: WATER

Motrix: WATED

Quality Control Sample Type	Count Rate (%)		e (%)	Quality Control Specification	
Method	QC	Regular	Actual	Expected	
Matrix Spikes (MS)					
Nitrite as N by Discrete Analyser	0	1	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	0	1	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: * = Holding time breach ; \checkmark = Within holding time.

				Evaluation	. Holding allo	broadin, what	in noraling arrie.
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator							
Clear Plastic Bottle - Natural (EA005-P) 320-01-BH2218	22-Nov-2018				22-Nov-2018	22-Nov-2018	✓
EA010P: Conductivity by PC Titrator							
Clear Plastic Bottle - Natural (EA010-P) 320-01-BH2218	22-Nov-2018				22-Nov-2018	20-Dec-2018	~
EA015: Total Dissolved Solids dried at 180 ± 5 °C							
Clear Plastic Bottle - Natural (EA015H) 320-01-BH2218	22-Nov-2018				22-Nov-2018	29-Nov-2018	~
ED037P: Alkalinity by PC Titrator							
Clear Plastic Bottle - Natural (ED037-P) 320-01-BH2218	22-Nov-2018				22-Nov-2018	06-Dec-2018	✓
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA							
Clear Plastic Bottle - Natural (ED041G) 320-01-BH2218	22-Nov-2018				22-Nov-2018	20-Dec-2018	~

Page	: 3 of 9
Work Order	: EB1828548
Client	: GOLDER ASSOCIATES
Project	: 1893795 INLAND RAIL P12

Matrix: WATER		Evaluation: \times = Holding time breach ; \checkmark = Within holding time.							
Method	Sample Date	Ex	Extraction / Preparation			Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation		
ED045G: Chloride by Discrete Analyser									
Clear Plastic Bottle - Natural (ED045G) 320-01-BH2218	22-Nov-2018				22-Nov-2018	20-Dec-2018	~		
ED093F: Dissolved Major Cations									
Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) 320-01-BH2218	22-Nov-2018				23-Nov-2018	20-Dec-2018	~		
ED093F: SAR and Hardness Calculations									
Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) 320-01-BH2218	22-Nov-2018				23-Nov-2018	20-Dec-2018	~		
EG020F: Dissolved Metals by ICP-MS									
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) 320-01-BH2218	22-Nov-2018				23-Nov-2018	21-May-2019	~		
EG020T: Total Metals by ICP-MS									
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) 320-01-BH2218	22-Nov-2018	23-Nov-2018	21-May-2019	1	23-Nov-2018	21-May-2019	~		
EG035F: Dissolved Mercury by FIMS									
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) 320-01-BH2218	22-Nov-2018				23-Nov-2018	20-Dec-2018	~		
EG035T: Total Recoverable Mercury by FIMS									
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG035T) 320-01-BH2218	22-Nov-2018				23-Nov-2018	20-Dec-2018	~		
EK040P: Fluoride by PC Titrator									
Clear Plastic Bottle - Natural (EK040P) 320-01-BH2218	22-Nov-2018				22-Nov-2018	20-Dec-2018	~		
EK055G: Ammonia as N by Discrete Analyser									
Clear Plastic Bottle - Sulfuric Acid (EK055G) 320-01-BH2218	22-Nov-2018				22-Nov-2018	20-Dec-2018	~		
EK057G: Nitrite as N by Discrete Analyser									
Clear Plastic Bottle - Natural (EK057G) 320-01-BH2218	22-Nov-2018				22-Nov-2018	24-Nov-2018	~		
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser									
Clear Plastic Bottle - Sulfuric Acid (EK059G) 320-01-BH2218	22-Nov-2018				22-Nov-2018	20-Dec-2018	~		
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser									
Clear Plastic Bottle - Sulfuric Acid (EK061G) 320-01-BH2218	22-Nov-2018	23-Nov-2018	20-Dec-2018	~	23-Nov-2018	20-Dec-2018	✓		
EK067G: Total Phosphorus as P by Discrete Analyser									
Clear Plastic Bottle - Sulfuric Acid (EK067G) 320-01-BH2218	22-Nov-2018	23-Nov-2018	20-Dec-2018	1	23-Nov-2018	20-Dec-2018	1		

Page	4 of 9
Work Order	EB1828548
Client	GOLDER ASSOCIATES
Project	1893795 INLAND RAIL P12

- Matrix: WATER Evaluation: ★ = Holding time breach ; ✓ = Within holding time							
Method	Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK071G: Reactive Phosphorus as P by discrete analyser							
Clear Plastic Bottle - Natural (EK071G)							
320-01-BH2218	22-Nov-2018				22-Nov-2018	24-Nov-2018	

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency i	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Alkalinity by PC Titrator	ED037-P	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	1	3	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	20	10.00	10.00	\checkmark	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	2	50.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	2	50.00	10.00	\checkmark	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	3	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	1	100.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by PC Titrator	EA005-P	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	1	100.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	19	10.53	10.00	\checkmark	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Alkalinity by PC Titrator	ED037-P	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by PC Titrator	EA005-P	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	2	8	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	18	5.56	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	7	14.29	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	19	5.26	5.00	√	NEPM 2013 B3 & ALS QC Standard

Page :	6 of 9
Work Order	EB1828548
Client	GOLDER ASSOCIATES
Project	1893795 INLAND RAIL P12

Matrix: WATER		Evaluation: * = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.						
Quality Control Sample Type		Сс	ount		Rate (%)	-	Quality Control Specification	
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation		
Method Blanks (MB)								
Ammonia as N by Discrete analyser	EK055G	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Chloride by Discrete Analyser	ED045G	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard	
Conductivity by PC Titrator	EA010-P	1	14	7.14	5.00	1	NEPM 2013 B3 & ALS QC Standard	
Dissolved Mercury by FIMS	EG035F	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Fluoride by PC Titrator	EK040P	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Major Cations - Dissolved	ED093F	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Dissolved Solids (High Level)	EA015H	1	8	12.50	5.00	1	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	18	5.56	5.00	1	NEPM 2013 B3 & ALS QC Standard	
Total Mercury by FIMS	EG035T	1	7	14.29	5.00	1	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-MS - Suite A	EG020A-T	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard	
Matrix Spikes (MS)								
Ammonia as N by Discrete analyser	EK055G	1	3	33.33	5.00	1	NEPM 2013 B3 & ALS QC Standard	
Chloride by Discrete Analyser	ED045G	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard	
Dissolved Mercury by FIMS	EG035F	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard	
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Fluoride by PC Titrator	EK040P	1	13	7.69	5.00	1	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	0	1	0.00	5.00	x	NEPM 2013 B3 & ALS QC Standard	
Reactive Phosphorus as P-By Discrete Analyser	EK071G	0	1	0.00	5.00	22	NEPM 2013 B3 & ALS QC Standard	
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	18	5.56	5.00	1	NEPM 2013 B3 & ALS QC Standard	
Total Mercury by FIMS	EG035T	1	7	14.29	5.00	1	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-MS - Suite A	EG020A-T	1	7	14.29	5.00	1	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	1	19	5 26	5.00	1	NEPM 2013 B3 & ALS QC Standard	

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by PC Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)
Conductivity by PC Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (2013) Schedule B(3)
Alkalinity by PC Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013) Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.

Page	: 8 of 9
Work Order	: EB1828548
Client	: GOLDER ASSOCIATES
Project	: 1893795 INLAND RAIL P12

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Fluoride by PC Titrator	EK040P	WATER	In house: Referenced to APHA 4500-F C: CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM (2013) Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Reactive Phosphorus as P-By Discrete Analyser	EK071G	WATER	In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
lonic Balance by PCT DA and Turbi SO4 DA	EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM (2013) Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions

Page	: 9 of 9
Work Order	: EB1828548
Client	: GOLDER ASSOCIATES
Project	: 1893795 INLAND RAIL P12

Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013) Schedule B(3)
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (2013) Schedule B(3)

	QA/QC Compliance Assessment to assist with Quality Review							
Nork Order	EB1830099	Page	: 1 of 8					
Client	: GOLDER ASSOCIATES	Laboratory	: Environmental Division Brisbane					
Contact	: MR SUSANTHA KUMARAPELI	Telephone	: +61 7 3552 8639					
Project	: 1893795 INLAND RAIL P12	Date Samples Received	: 07-Dec-2018					
Site	:	Issue Date	: 12-Dec-2018					
Sampler	: HANNAH GROVES	No. of samples received	: 1					
Order number	:	No. of samples analysed	: 1					

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Analysis Holding Time Compliance

Matrix: WATER

Method	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
			overdue			overdue
EA005P: pH by PC Titrator						
Clear Plastic Bottle - Natural						
320-01-BH2301				10-Dec-2018	08-Dec-2018	2

Outliers : Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	Count		Rate	: (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Matrix Spikes (MS)					
Ammonia as N by Discrete analyser	0	1	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	0	1	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	0	1	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER				Evaluation	i: × = Holding time	breach ; ✓ = With	in holding time
Method	Sample Date Extra						
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator							
Clear Plastic Bottle - Natural (EA005-P) 320-01-BH2301	07-Dec-2018				10-Dec-2018	08-Dec-2018	×
EA010P: Conductivity by PC Titrator							
Clear Plastic Bottle - Natural (EA010-P) 320-01-BH2301	07-Dec-2018				10-Dec-2018	04-Jan-2019	✓
EA015: Total Dissolved Solids dried at 180 ± 5 °C							
Clear Plastic Bottle - Natural (EA015H) 320-01-BH2301	07-Dec-2018				08-Dec-2018	14-Dec-2018	~
ED037P: Alkalinity by PC Titrator							
Clear Plastic Bottle - Natural (ED037-P) 320-01-BH2301	07-Dec-2018				10-Dec-2018	21-Dec-2018	✓
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA							
Clear Plastic Bottle - Natural (ED041G) 320-01-BH2301	07-Dec-2018				08-Dec-2018	04-Jan-2019	\checkmark

Matrix: WATER				Evaluation	n: × = Holding time	breach ; ✓ = Withi	in holding time	۶.
Method	Sample Date	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
ED045G: Chloride by Discrete Analyser								
Clear Plastic Bottle - Natural (ED045G) 320-01-BH2301	07-Dec-2018				08-Dec-2018	04-Jan-2019	\checkmark	
ED093F: Dissolved Major Cations								
Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) 320-01-BH2301	07-Dec-2018				10-Dec-2018	04-Jan-2019	✓	
ED093F: SAR and Hardness Calculations								
Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) 320-01-BH2301	07-Dec-2018				10-Dec-2018	04-Jan-2019	1	
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) 320-01-BH2301	07-Dec-2018				10-Dec-2018	05-Jun-2019	✓	
EG020T: Total Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) 320-01-BH2301	07-Dec-2018	10-Dec-2018	05-Jun-2019	1	10-Dec-2018	05-Jun-2019	1	
EG035F: Dissolved Mercury by FIMS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) 320-01-BH2301	07-Dec-2018				10-Dec-2018	04-Jan-2019	~	
EG035T: Total Recoverable Mercury by FIMS								
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG035T) 320-01-BH2301	07-Dec-2018				10-Dec-2018	04-Jan-2019	✓	
EK055G: Ammonia as N by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK055G) 320-01-BH2301	07-Dec-2018				11-Dec-2018	04-Jan-2019	~	
EK057G: Nitrite as N by Discrete Analyser								
Clear Plastic Bottle - Natural (EK057G) 320-01-BH2301	07-Dec-2018				08-Dec-2018	09-Dec-2018	1	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK059G) 320-01-BH2301	07-Dec-2018				11-Dec-2018	04-Jan-2019	~	
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK061G) 320-01-BH2301	07-Dec-2018	10-Dec-2018	04-Jan-2019	1	10-Dec-2018	04-Jan-2019	✓	
EK067G: Total Phosphorus as P by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK067G) 320-01-BH2301	07-Dec-2018	10-Dec-2018	04-Jan-2019	1	10-Dec-2018	04-Jan-2019	1	
EK071G: Reactive Phosphorus as P by discrete analyser								
Clear Plastic Bottle - Natural (EK071G) 320-01-BH2301	07-Dec-2018				08-Dec-2018	09-Dec-2018	1	1

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluation	n: × = Quality Co	ntrol frequency r	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		С	ount	Rate (%)			Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Alkalinity by PC Titrator	ED037-P	1	3	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	1	1	100.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	1	100.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	2	11	18.18	10.00	\checkmark	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	1	100.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by PC Titrator	EA005-P	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	6	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	1	6	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	3	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Alkalinity by PC Titrator	ED037-P	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	2	8	25.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by PC Titrator	EA005-P	2	8	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	2	6	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	3	33.33	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	11	9.09	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	1	1	100.00	5.00	1	NEPM 2013 B3 & ALS QC Standard

Page	5 of 8
Work Order	EB1830099
Client	GOLDER ASSOCIATES
Project	: 1893795 INLAND RAIL P12

Matrix: WATER				Evaluatio	on: × = Quality Co	ontrol frequency	not within specification ; ✓ = Quality Control frequency within specification.
Quality Control Sample Type		Count Rate (%)				Quality Control Specification	
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Chloride by Discrete Analyser	ED045G	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	1	8	12.50	5.00	~	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	6	16.67	5.00	~	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	13	7.69	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	0	1	0.00	5.00	<u>sc</u>	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	16	6.25	5.00	~	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	0	1	0.00	5.00	32	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	0	1	0.00	5.00	x	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	13	7.69	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	3	33.33	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	18	5 56	5.00	1	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by PC Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)
Conductivity by PC Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (2013) Schedule B(3)
Alkalinity by PC Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013) Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Reactive Phosphorus as P-By Discrete Analyser	EK071G	WATER	In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
lonic Balance by PCT DA and Turbi SO4 DA	EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM (2013) Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013) Schedule B(3)

Page	: 8 of 8
Work Order	: EB1830099
Client	: GOLDER ASSOCIATES
Project	: 1893795 INLAND RAIL P12

Preparation Methods	Method	Matrix	Method Descriptions
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure
			used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant
			with NEPM (2013) Schedule B(3)

Work OrderEB1903588Page: 1 of 9Client: GOLDER ASSOCIATESLaboratory: Environmental Division BrisbaneContact: MR MITCH McGINNISTelephone: +61 7 3552 8639Project: 1893795 Inland Rail (Pkg 12)Date Samples Received: 13-Feb-2019Site:Issue Date: 20-Feb-2019Sampler: ROBERT CUPPERNo. of samples received: 1	QA/QC Compliance Assessment to assist with Quality Review							
Client: GOLDER ASSOCIATESLaboratory: Environmental Division BrisbaneContact: MR MITCH McGINNISTelephone: +61 7 3552 8639Project: 1893795 Inland Rail (Pkg 12)Date Samples Received: 13-Feb-2019Site:Issue Date: 20-Feb-2019Sampler: ROBERT CUPPERNo. of samples received: 1Order number: No. of samples analysed: 1	Nork Order	: EB1903588	Page	: 1 of 9				
Contact: MR MITCH McGINNISTelephone: +61 7 3552 8639Project: 1893795 Inland Rail (Pkg 12)Date Samples Received: 13-Feb-2019Site:Issue Date: 20-Feb-2019Sampler: ROBERT CUPPERNo. of samples received: 1Order number:No. of samples analysed: 1	Client		Laboratory	: Environmental Division Brisbane				
Project : 1893795 Inland Rail (Pkg 12) Date Samples Received : 13-Feb-2019 Site : Issue Date : 20-Feb-2019 Sampler : ROBERT CUPPER No. of samples received : 1 Order number No. of samples analysed : 1	Contact	: MR MITCH McGINNIS	Telephone	: +61 7 3552 8639				
Site Issue Date : 20-Feb-2019 Sampler : ROBERT CUPPER No. of samples received : 1 Order number No. of samples analysed : 1	Project	: 1893795 Inland Rail (Pkg 12)	Date Samples Received	: 13-Feb-2019				
Sampler : ROBERT CUPPER No. of samples received : 1 Order number No. of samples analysed : 1	Site	:	Issue Date	: 20-Feb-2019				
Order number No. of samples analysed 1	Sampler	: ROBERT CUPPER	No. of samples received	: 1				
	Order number	:	No. of samples analysed	: 1				

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EG020F: Dissolved Metals by ICP-MS	EB1903584006	Anonymous	Lead	7439-92-1	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EG020F: Dissolved Metals by ICP-MS	EB1903584006	Anonymous	Manganese	7439-96-5	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Outliers : Analysis Holding Time Compliance

Matrix: WATER

Ex	traction / Preparation		Analysis		
Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
		overdue			overdue
			15-Feb-2019	11-Feb-2019	4
	Ex Date extracted	Extraction / Preparation Date extracted Due for extraction	Extraction / Preparation Date extracted Due for extraction Days overdue	Extraction / Preparation Date analysed Date extracted Due for extraction Days overdue 15-Feb-2019	Extraction / Preparation Analysis Date extracted Due for extraction Days overdue Date analysed Due for analysis 15-Feb-2019 11-Feb-2019

Outliers : Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type		Count		: (%)	Quality Control Specification
Method	QC	Regular	Jular Actual Expected		
Matrix Spikes (MS)					
Reactive Phosphorus as P-By Discrete Analyser	0	1	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withir	n holding time.
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator							
Clear Plastic Bottle - Natural (EA005-P) 320-01-BH2103	11-Feb-2019				15-Feb-2019	11-Feb-2019	x
EA010P: Conductivity by PC Titrator							
Clear Plastic Bottle - Natural (EA010-P) 320-01-BH2103	11-Feb-2019				15-Feb-2019	11-Mar-2019	~

Matrix: WATER			Evaluation	ition: \star = Holding time breach ; \checkmark = Within holding time				
Matrix: WATER Method Container / Client Sample ID(s)	Sample Date	Ex	traction / Preparation			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EA015: Total Dissolved Solids dried at 180 ± 5 °C								
Clear Plastic Bottle - Natural (EA015H) 320-01-BH2103	11-Feb-2019				14-Feb-2019	18-Feb-2019	~	
ED037P: Alkalinity by PC Titrator								
Clear Plastic Bottle - Natural (ED037-P) 320-01-BH2103	11-Feb-2019				15-Feb-2019	25-Feb-2019	✓	
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA								
Clear Plastic Bottle - Natural (ED041G) 320-01-BH2103	11-Feb-2019				13-Feb-2019	11-Mar-2019	~	
ED045G: Chloride by Discrete Analyser								
Clear Plastic Bottle - Natural (ED045G) 320-01-BH2103	11-Feb-2019				13-Feb-2019	11-Mar-2019	~	
ED093F: Dissolved Major Cations								
Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) 320-01-BH2103	11-Feb-2019				16-Feb-2019	11-Mar-2019	~	
ED093F: SAR and Hardness Calculations								
Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) 320-01-BH2103	11-Feb-2019				16-Feb-2019	11-Mar-2019	~	
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) 320-01-BH2103	11-Feb-2019				16-Feb-2019	10-Aug-2019	~	
EG020T: Total Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) 320-01-BH2103	11-Feb-2019	16-Feb-2019	10-Aug-2019	~	16-Feb-2019	10-Aug-2019	~	
EG035F: Dissolved Mercury by FIMS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) 320-01-BH2103	11-Feb-2019				16-Feb-2019	11-Mar-2019	~	
EG035T: Total Recoverable Mercury by FIMS								
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG035T) 320-01-BH2103	11-Feb-2019				18-Feb-2019	11-Mar-2019	~	
EK040P: Fluoride by PC Titrator								
Clear Plastic Bottle - Natural (EK040P) 320-01-BH2103	11-Feb-2019				15-Feb-2019	11-Mar-2019	~	
EK055G: Ammonia as N by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK055G) 320-01-BH2103	11-Feb-2019				15-Feb-2019	11-Mar-2019	~	
EK057G: Nitrite as N by Discrete Analyser								
Clear Plastic Bottle - Natural (EK057G) 320-01-BH2103	11-Feb-2019				13-Feb-2019	13-Feb-2019	1	

Page	: 4 of 9
Work Order	: EB1903588
Client	: GOLDER ASSOCIATES
Project	: 1893795 Inland Rail (Pkg 12)

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method	Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G) 320-01-BH2103	11-Feb-2019				15-Feb-2019	11-Mar-2019	~
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK061G) 320-01-BH2103	11-Feb-2019	15-Feb-2019	11-Mar-2019	~	15-Feb-2019	11-Mar-2019	~
EK067G: Total Phosphorus as P by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK067G) 320-01-BH2103	11-Feb-2019	15-Feb-2019	11-Mar-2019	1	15-Feb-2019	11-Mar-2019	~
EK071G: Reactive Phosphorus as P by discrete analyser							
Clear Plastic Bottle - Natural (EK071G) 320-01-BH2103	11-Feb-2019				13-Feb-2019	13-Feb-2019	~

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER Evaluation: × = Quality Control frequency not within specification ; ✓ = Quality Control frequency within spe							not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type	Sample Type Count Rate (%)			Quality Control Specification			
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Alkalinity by PC Titrator	ED037-P	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	1	9	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	6	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by PC Titrator	EA005-P	1	3	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	1	100.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	7	14.29	10.00	~	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Alkalinity by PC Titrator	ED037-P	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	7	28.57	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	2	9	22.22	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by PC Titrator	EA005-P	2	3	66.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	7	28.57	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	12	8.33	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	8	12.50	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	18	5.56	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard

Page	: 6 of 9
Work Order	: EB1903588
Client	: GOLDER ASSOCIATES
Project	: 1893795 Inland Rail (Pkg 12)

Matrix: WATER Evaluation: × = Quality Control frequency not within specification ; ✓ = Quality Control frequency within sp								
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification	
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation		
Method Blanks (MB)								
Ammonia as N by Discrete analyser	EK055G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Chloride by Discrete Analyser	ED045G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Conductivity by PC Titrator	EA010-P	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Mercury by FIMS	EG035F	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Fluoride by PC Titrator	EK040P	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Major Cations - Dissolved	ED093F	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Dissolved Solids (High Level)	EA015H	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Mercury by FIMS	EG035T	1	8	12.50	5.00	1	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-MS - Suite A	EG020A-T	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Matrix Spikes (MS)								
Ammonia as N by Discrete analyser	EK055G	1	16	6.25	5.00	~	NEPM 2013 B3 & ALS QC Standard	
Chloride by Discrete Analyser	ED045G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Mercury by FIMS	EG035F	1	6	16.67	5.00	~	NEPM 2013 B3 & ALS QC Standard	
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	16	6.25	5.00	1	NEPM 2013 B3 & ALS QC Standard	
Fluoride by PC Titrator	EK040P	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Reactive Phosphorus as P-By Discrete Analyser	EK071G	0	1	0.00	5.00	x	NEPM 2013 B3 & ALS QC Standard	
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Mercury by FIMS	EG035T	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-MS - Suite A	EG020A-T	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard	

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by PC Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)
Conductivity by PC Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (2013) Schedule B(3)
Alkalinity by PC Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013) Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Fluoride by PC Titrator	EK040P	WATER	In house: Referenced to APHA 4500-F C: CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM (2013) Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Reactive Phosphorus as P-By Discrete Analyser	EK071G	WATER	In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
lonic Balance by PCT DA and Turbi SO4 DA	EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM (2013) Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions

Page	: 9 of 9
Work Order	: EB1903588
Client	: GOLDER ASSOCIATES
Project	: 1893795 Inland Rail (Pkg 12)

Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013) Schedule B(3)
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (2013) Schedule B(3)

QA/QC Compliance Assessment to assist with Quality Review							
Nork Order	EB1904979	Page	: 1 of 9				
Client		Laboratory	: Environmental Division Brisbane				
Contact	: MR SUSANTHA KUMARAPELI	Telephone	: +61 7 3552 8639				
Project	: 1893795 Inland Rail P/2	Date Samples Received	: 27-Feb-2019				
Site	:	Issue Date	: 04-Mar-2019				
Sampler	: ROBERT CUPPER	No. of samples received	: 1				
Order number	:	No. of samples analysed	:1				

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA	EB1904963001	Anonymous	Sulfate as SO4 - Turbidimetric	14808-79-8	Not Determined		MS recovery not determined, background level greater than or equal to 4x spike level.
ED045G: Chloride by Discrete Analyser	EB1904963001	Anonymous	Chloride	16887-00-6	Not Determined		MS recovery not determined, background level greater than or equal to 4x spike level.

Outliers : Analysis Holding Time Compliance

Matrix: WATER						
Method	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)	Date extracted Due for extraction Days			Date analysed	Due for analysis	Days
			overdue			overdue
EA005P: pH by PC Titrator						
Clear Plastic Bottle - Natural						
320-01-BH2216				27-Feb-2019	26-Feb-2019	1
EA005P: pH by PC Titrator Clear Plastic Bottle - Natural 320-01-BH2216			overdue	27-Feb-2019	26-Feb-2019	overdue

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator							
Clear Plastic Bottle - Natural (EA005-P) 320-01-BH2216	26-Feb-2019				27-Feb-2019	26-Feb-2019	×
EA010P: Conductivity by PC Titrator							
Clear Plastic Bottle - Natural (EA010-P) 320-01-BH2216	26-Feb-2019				27-Feb-2019	26-Mar-2019	~
EA015: Total Dissolved Solids dried at 180 ± 5 °C							
Clear Plastic Bottle - Natural (EA015H) 320-01-BH2216	26-Feb-2019				28-Feb-2019	05-Mar-2019	~
ED037P: Alkalinity by PC Titrator							
Clear Plastic Bottle - Natural (ED037-P) 320-01-BH2216	26-Feb-2019				27-Feb-2019	12-Mar-2019	~

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time		
Method	Sample Date	Ex	traction / Preparation		Analysis				
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation		
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA									
Clear Plastic Bottle - Natural (ED041G) 320-01-BH2216	26-Feb-2019				27-Feb-2019	26-Mar-2019	~		
ED045G: Chloride by Discrete Analyser									
Clear Plastic Bottle - Natural (ED045G) 320-01-BH2216	26-Feb-2019				27-Feb-2019	26-Mar-2019	1		
ED093F: Dissolved Major Cations									
Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) 320-01-BH2216	26-Feb-2019				28-Feb-2019	26-Mar-2019	1		
ED093F: SAR and Hardness Calculations									
Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) 320-01-BH2216	26-Feb-2019				28-Feb-2019	26-Mar-2019	✓		
EG020F: Dissolved Metals by ICP-MS									
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) 320-01-BH2216	26-Feb-2019				28-Feb-2019	25-Aug-2019	✓		
EG020T: Total Metals by ICP-MS									
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) 320-01-BH2216	26-Feb-2019	28-Feb-2019	25-Aug-2019	~	28-Feb-2019	25-Aug-2019	~		
EG035F: Dissolved Mercury by FIMS									
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) 320-01-BH2216	26-Feb-2019				28-Feb-2019	26-Mar-2019	1		
EG035T: Total Recoverable Mercury by FIMS									
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG035T) 320-01-BH2216	26-Feb-2019				28-Feb-2019	26-Mar-2019	✓		
EK055G: Ammonia as N by Discrete Analyser									
Clear Plastic Bottle - Sulfuric Acid (EK055G) 320-01-BH2216	26-Feb-2019				28-Feb-2019	26-Mar-2019	~		
EK057G: Nitrite as N by Discrete Analyser									
Clear Plastic Bottle - Natural (EK057G) 320-01-BH2216	26-Feb-2019				27-Feb-2019	28-Feb-2019	1		
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser									
Clear Plastic Bottle - Sulfuric Acid (EK059G) 320-01-BH2216	26-Feb-2019				28-Feb-2019	26-Mar-2019	~		
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser									
Clear Plastic Bottle - Sulfuric Acid (EK061G) 320-01-BH2216	26-Feb-2019	28-Feb-2019	26-Mar-2019	~	28-Feb-2019	26-Mar-2019	~		
EK067G: Total Phosphorus as P by Discrete Analyser									
Clear Plastic Bottle - Sulfuric Acid (EK067G) 320-01-BH2216	26-Feb-2019	28-Feb-2019	26-Mar-2019	1	28-Feb-2019	26-Mar-2019	1		

Page	: 4 of 9
Work Order	: EB1904979
Client	: GOLDER ASSOCIATES
Project	: 1893795 Inland Rail P/2

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK071G: Reactive Phosphorus as P by discrete analyser							
Clear Plastic Bottle - Natural (EK071G)							
320-01-BH2216	26-Feb-2019				27-Feb-2019	28-Feb-2019	\checkmark

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluatio	n: × = Quality Cor	ntrol frequency r	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Alkalinity by PC Titrator	ED037-P	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	1	10	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	10	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	4	25.00	10.00	\checkmark	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	10	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by PC Titrator	EA005-P	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	6	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Alkalinity by PC Titrator	ED037-P	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	7	28.57	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	2	19	10.53	10.00	1	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by PC Titrator	EA005-P	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	5	40.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	2	7	28.57	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	14	7.14	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	7	14.29	5.00	~	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	1	10	10.00	5.00	1	NEPM 2013 B3 & ALS QC Standard

Page	: 6 of 9
Work Order	: EB1904979
Client	: GOLDER ASSOCIATES
Project	: 1893795 Inland Rail P/2

Matrix: WATER				Evaluatio	on: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Chloride by Discrete Analyser	ED045G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	14	7.14	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	7	14.29	5.00	1	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	1	10	10.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	7	14.29	5.00	~	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	10	10.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	12	8.33	5.00	~	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	10	10.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	7	14.29	5.00	~	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	6	16.67	5.00	~	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	5	20.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	7	14.29	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	11	9.09	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	14	7.14	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	7	14.29	5.00	~	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by PC Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)
Conductivity by PC Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (2013) Schedule B(3)
Alkalinity by PC Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013) Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.

Page	: 8 of 9
Work Order	: EB1904979
Client	: GOLDER ASSOCIATES
Project	: 1893795 Inland Rail P/2

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Reactive Phosphorus as P-By Discrete Analyser	EK071G	WATER	In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Ionic Balance by PCT DA and Turbi SO4 DA	EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM (2013) Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013) Schedule B(3)

Page	: 9 of 9
Work Order	: EB1904979
Client	: GOLDER ASSOCIATES
Project	: 1893795 Inland Rail P/2

Preparation Methods	Method	Matrix	Method Descriptions
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure
			used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant
			with NEPM (2013) Schedule B(3)

APPENDIX

Geotechnical

Appendix J Important information

GOWRIE TO HELIDON ENVIRONMENTAL IMPACT STATEMENT

The document ("Report") to which this page is attached and which this page forms a part of, has been issued by Golder Associates Pty Ltd ("Golder") subject to the important limitations and other qualifications set out below.

This Report constitutes or is part of services ("Services") provided by Golder to its client ("Client") under and subject to a contract between Golder and its Client ("Contract"). The contents of this page are not intended to and do not alter Golder's obligations (including any limits on those obligations) to its Client under the Contract.

This Report is provided for use solely by Golder's Client and persons acting on the Client's behalf, such as its professional advisers. Golder is responsible only to its Client for this Report. Golder has no responsibility to any other person who relies or makes decisions based upon this Report or who makes any other use of this Report. Golder accepts no responsibility for any loss or damage suffered by any person other than its Client as a result of any reliance upon any part of this Report, decisions made based upon this Report or any other use of it.

This Report has been prepared in the context of the circumstances and purposes referred to in, or derived from, the Contract and Golder accepts no responsibility for use of the Report, in whole or in part, in any other context or circumstance or for any other purpose.

The scope of Golder's Services and the period of time they relate to are determined by the Contract and are subject to restrictions and limitations set out in the Contract. If a service or other work is not expressly referred to in this Report, do not assume that it has been provided or performed. If a matter is not addressed in this Report, do not assume that any determination has been made by Golder in regards to it.

At any location relevant to the Services conditions may exist which were not detected by Golder, in particular due to the specific scope of the investigation Golder has been engaged to undertake. Conditions can only be verified at the exact location of any tests undertaken. Variations in conditions may occur between tested locations and there may be conditions which have not been revealed by the investigation and which have not therefore been taken into account in this Report.

Golder accepts no responsibility for and makes no representation as to the accuracy or completeness of the information provided to it by or on behalf of the Client or sourced from any third party. Golder has assumed that such information is correct unless otherwise stated and no responsibility is accepted by Golder for incomplete or inaccurate data supplied by its Client or any other person for whom Golder is not responsible. Golder has not taken account of matters that may have existed when the Report was prepared but which were only later disclosed to Golder.

Having regard to the matters referred to in the previous paragraphs on this page in particular, carrying out the Services has allowed Golder to form no more than an opinion as to the actual conditions at any relevant location. That opinion is necessarily constrained by the extent of the information collected by Golder or otherwise made available to Golder. Further, the passage of time may affect the accuracy, applicability or usefulness of the opinions, assessments or other information in this Report. This Report is based upon the information and other circumstances that existed and were known to Golder when the Services were performed and this Report was prepared. Golder has not considered the effect of any possible future developments including physical changes to any relevant location or changes to any laws or regulations relevant to such location.

Where permitted by the Contract, Golder may have retained subconsultants affiliated with Golder to provide some or all of the Services. However, it is Golder which remains solely responsible for the Services and there is no legal recourse against any of Golder's affiliated companies or the employees, officers or directors of any of them.

By date, or revision, the Report supersedes any prior report or other document issued by Golder dealing with any matter that is addressed in the Report.

Any uncertainty as to the extent to which this Report can be used or relied upon in any respect should be referred to Golder for clarification

