Appendix C

Preliminary calculations for sizing water \& wastewater infrastructure components

Domestic Wastewater

a) Volume

Peak Workforce $=100$ persons
Load $=100 \times 0.2 \mathrm{EP} /$ worker $=20 \mathrm{EP}$
Residents : 3 families $=10 \mathrm{EP}$
Load $=20 \mathrm{EP}+10 \mathrm{EP}=30 \mathrm{EP}$

Volume $=30$ EP x $150 \mathrm{~L} / \mathrm{EP} . \mathrm{d}=4,500 \mathrm{~L} / \mathrm{d}$
b) Treatment

Normally 70 gBOD/EP.d load for domestic sewage
Septic tank volume - allow 24hrs detention plus 80L/EP.year for sludge accumulation
septic tank volume $=4,500 \mathrm{~L}+(30 \mathrm{EP} \times 80 \mathrm{~L} / \mathrm{EP}$. year $)$

$$
=7 \mathrm{~kL}(\text { say } 1 \mathrm{~m} \text { deep } \times 2 \mathrm{~mW} \times 3.5 \mathrm{~mL})
$$

BOD removal in septic tank 30% ie reduction to $50 \mathrm{gBOD} / \mathrm{EP} . \mathrm{d}$
BOD load $=50 \mathrm{~g} / \mathrm{EP} . \mathrm{d} \times 30 \mathrm{EP}=1,500 \mathrm{~g} \mathrm{BOD} / \mathrm{d}$
Adopt aerobic sand filter to remove BOD and pathogens
Aerobic sand filter organic loading rate $25 \mathrm{~g} / \mathrm{dBOD} / \mathrm{m} 2$ and hydraulic loading rate $50 \mathrm{~L} / \mathrm{d} / \mathrm{m} 2$

$$
\begin{array}{ll}
\text { Aerobic sand filter size } & \Rightarrow 25 \mathrm{gBOD} / \mathrm{m}^{2} \Rightarrow 60 \mathrm{~m}^{2} \\
& \Rightarrow 50 \mathrm{~L} / \mathrm{m}^{2} \Rightarrow 90 \mathrm{~m}^{2}(\text { say } 8 \mathrm{~m} \times 12 \mathrm{~m})
\end{array}
$$

Provide recirculation pump station to aerobic sand filter to enhance nutrient removal and pathogen destruction
c) Treated Effluent Storage

Wet Weather Storage : Allow storage Jan - March (90 days)
volume $=90 \mathrm{~d} \times 4.5 \mathrm{~kL} / \mathrm{d}=405 \mathrm{~kL}$

Adopt $4 / 100 \mathrm{~kL}$ tanks say 2 m deep x 8 m dia
d) Treated Effluent Disposal

Allow $5 \mathrm{ML} /$ ha.year for irrigation
Total annual volume $=$ volume from daytime workforce + volume from residents

Assume peak workforce for 7 months of year

```
volume = (7/12 mths/yr x 365d x 100EP x 150L/EP.d ) / 1,000,000L/ML
    =3.19 ML/year
```

Permanent residents

$$
\begin{aligned}
\text { volume } & =(10 \mathrm{EP} \times 365 \mathrm{~d} \times 150 \mathrm{~L} / \mathrm{EP} . \mathrm{d}) / 1,000,000 \mathrm{~L} / \mathrm{ML} \\
& =0.55 \mathrm{ML} / \text { year }
\end{aligned}
$$

Total volume $=3.74 \mathrm{ML}$
Area required $\quad=3.74 \mathrm{ML} / \mathrm{a} / 5.0 \mathrm{ML} /$ ha.a
$=0.74$ ha, i.e. $5 \mathrm{~m} \times 1500 \mathrm{~m}$ tree line

Depending on the topography and arrangement of the domestic wastewater system, raw sewage pumps, septic tank effluent pumps, aerobic sand filter recirculation / effluent pumps and irrigation pumps may be required.

Processing Wastewater

a) Waste Stream

Volume $\quad=100 \mathrm{k} / \mathrm{d}$ Jan to Jun (6 months)
Assume treatment over $8 \mathrm{hrs} / \mathrm{d}$; assume flow peaking factor of 3
treatment rate $=100 \mathrm{~kL} / \mathrm{d} \times 1,000 \mathrm{~L} / \mathrm{kL} \times 3 /(8 \mathrm{hrs} / \mathrm{d} \times 3600 \mathrm{sec} / \mathrm{hr})$
$=10 \mathrm{~L} / \mathrm{s}$
Water Quality:

- salty
- particulates (legs, shells, etc.)
- organics ? (after boiling)
- colour? (after boiling)
b) Treatment

Adopt screening, sand filtration, chlorination, dechlorination and release to the aquaculture pond treatment system.

Screening :

Adopt wedgewire screen to remove particles greater than say 1 mm
Filtration : sand filter, say $5 \mathrm{~m} / \mathrm{hr}$ filtration rate

Filter area $\quad=10 \mathrm{~L} / \mathrm{s} \times 3600 \mathrm{sec} / \mathrm{hr} /(1000 \mathrm{~L} / \mathrm{m} 3 \times 5 \mathrm{~m} / \mathrm{hr})$
$=7 \mathrm{~m} 2$
say 3 m square filter area

Adopt proprietary sand media filters modules

Backwash tank

Assume filtered water tank (for backwashing) say 20 minutes at $25 \mathrm{~m} / \mathrm{hr}$
volume $\quad=3 \mathrm{~m} \times 3 \mathrm{~m} \times 25 \mathrm{~m} / \mathrm{hr} \times 20 / 60 \mathrm{mins} / \mathrm{hr}$
$=75 \mathrm{~kL}($ say 2 m deep $\times 7 \mathrm{~m}$ dia $)$
NaOCl Requirement:
Assume dose at say $10 \mathrm{mg} / \mathrm{L}$ with $10 \% \mathrm{Cl}$ solution
Solution tank size, assume weekly or fortnightly deliveries from Bowen

```
volume = 1000L/kL x100kL/d x10mg/L x10d/(1,000,000mg/kg x10% sol)
    = 100 L every 10 days
```

For $5 \mathrm{mg} / \mathrm{L}$ dose rate and 7 days storage, usage $=50 \mathrm{~L}$
Chlorination requirement is pretty small and can be readily achieved with a poly storage tank and a dosing pump

Chlorine Contact Tank, assume 20 minutes
volume $=10 \mathrm{~L} / \mathrm{s} \times 20 \mathrm{mins} \times 60 \mathrm{secs} / 1000 \mathrm{~L} / \mathrm{kL}$
$=12 \mathrm{~kL}$ say 2 m deep $\times 2.5 \mathrm{~m}$ dia

Dechlorination:
Allow 24 hours detention in an open storage lagoon to dissipate residual chlorine prior to release to treatment area no. 1

Dechlorination lagoon $=100 \mathrm{~kL}$ say 1 m deep $\times 20 \mathrm{~mL} \times 5 \mathrm{~m} \mathrm{~W}$
Depending on the topography and arrangement of the processing water system, raw effluent pumps, screened effluent pumps, backwash pumps and final pumps may be required.

Potable Water

a) Demands:

Workforce	$20 \mathrm{EP} \times 300 \mathrm{~L} / \mathrm{EP}=6 \mathrm{~kL} / \mathrm{d}$
Residents	$10 \mathrm{EP} \times 300 \mathrm{~L} / \mathrm{EP}=3 \mathrm{~kL} / \mathrm{d}$
Process	$30-50 \mathrm{~kL} / \mathrm{d}$
Total (say)	$60 \mathrm{~kL} / \mathrm{d}$

b) Sources:
on-site dam - will require treatment by filtration and chlorination rain water collection - will require treatment by chlorination groundwater - will require treatment by chlorination carted from Bowen - will require treatment by chlorination
c) Raw water storage

Assume 1 day storage at peak demand ie 60 kL , say 2 m deep x 6 m dia
d) Treatment, adopt sand filtration and chlorine disinfection

Filtration: 1.5 (peaking factor) x daily flow rate filtered at $5 \mathrm{~m} / \mathrm{hr}=1 \mathrm{~m}^{2}$ filter
Adopt simple proprietary sand media filter
Backwash recovery tank, assume 2 backwash volumes at 20 mins x $5 \mathrm{~L} / \mathrm{s}$ ie 4 kL
Chlorination (NaOCl) - say $2 \mathrm{mg} / \mathrm{L} \mathrm{Cl}$
NaOCl requirement $=60,000 \mathrm{~L} / \mathrm{d} \times 2 \mathrm{mgCl} / \mathrm{L} /(1,000,000 \mathrm{mg} / \mathrm{kg} \times 10 \% \mathrm{sol})$

$$
=1.2 \mathrm{~L} / \mathrm{d}
$$

NaOCl requirement is pretty small and can be readily handled with a poly tank and dosing pump
e) Treated Water Storage, say 1 day at peak demand ie 60 kL , say 2 mdeep x 6 mdia

Depending on the topography and arrangement of the potable water system, source pumps, raw water pumps, backwash pumps, filtered water pumps and treated water pumps may be required.

