Appendix T Risk Assessment

URS Australia Pty Ltd

Brisbane

Gladstone Pacific Nickel Limited Gladstone Nickel Project Risk Assessment

6th Floor, 34 Queen Street, Melbourne VIC 3000, Tel: +61 3 9614 1285 Fax: +61 3 9614 3917 Email: melbourne@moduspec.com Website: www.moduspec.com Enquiries regarding this report please contact the author For other ModuSpec services contact Lachlan Dreher

Project Title	GPNL Proposed Nickel Plant Risk Assessment
Client Name	URS Australia Pty Ltd
Job No.	AUS0352.3
Project Manager	Colin Moffat
Project Analyst (s)	Colin Moffat, Sharon Hurree
Report Author (s)	Sharon Hurree, Colin Moffat
	ABSTRACT

ABSTRACT

URS were commissioned by Gladstone Pacific (GPNL) to prepare an environmental impact statement (EIS) for the Gladstone Nickel Project, a proposed nickel refinery to be located in an industrial area of Gladstone, Queensland. URS commissioned ModuSpec Australia to undertake a risk assessment of the Gladstone Nickel Project to allow URS to address the health and safety requirements of the EIS.

The main objectives of the risk assessment were to assess the major hazards associated with the Gladstone Nickel Project in accordance with AS/NZS 4360:2004, to identify hazards that have the potential to extend offsite, and to determine if a quantitative risk assessment is necessary in accordance with the terms of reference document

This reports documents the risk assessment.

Key Words: (e.g. Industry category, study type) MINE, EIS, SQRA,

Release No.	Date of Issue	Reviewed by	Approved by	Reason for Update
Draft A	27 April 2006	Lachlan Dreher John Gray	Colin Moffat	Issue for client comment
Release 01	6 June 2006	Lachlan Dreher John Gray	Colin Moffat	Issue to client

This report, prepared by ModuSpec, is confidential. It has been prepared on behalf of the client mentioned on the cover page ("the client") and is issued pursuant to an agreement between ModuSpec and the client. It has been produced according to the scope of work and is only suitable for use in connection therewith.

All measures and decisions based on this analysis and these findings are the sole responsibility of the client.

ModuSpec does not accept:

- any liability for the identification, indication or elimination of dangers and non-compliances (in the broadest sense of the word), nor for any damage caused by any of these;
- any obligation to report all facts or circumstances established during the visit. This obligation comes completely under the authority and responsibility of the client
- any liability for the client's obligations resulting from (legal) rules and/or statutes;
- any liability or responsibility whatsoever in respect of or reliance upon this report by any third party.

The execution of improvements recommended by ModuSpec does not indemnify the client against any legal or contractual obligations and offers no safeguard against the elimination of dangers or damages resulting from the client's products, services, company assets, et cetera.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without prior permission, in writing, of ModuSpec, except for restricted use within the client's organisation.

TABLE OF CONTENTS

1.	EXECUTIVE SUMMARY 4
2.	ACRONYMS AND ABBREVIATIONS
3. 3.1.	INTRODUCTION 6 Objectives and Scope 6
4 . 4.1. 4.2. 4.3. 4.4. 4.4. 4.5.	METHODOLOGY7Preliminary work7Preliminary Hazard Identification (HAZID)7Workshop Review73.1.Workshop Participants8Consequence Modelling8Finalisation of the Risk Assessment
5.	RESULTS
6.	DISCUSSION 10
7.	CONCLUSION AND RECOMMENDATIONS
8.	REFERENCES 10
Apper	ndix A: Risk MatrixA1
Apper	ndix B: Risk Assessment ResultsB1
Apper	ndix C: Consequence Modelling Data C1
Apper	ndix D: Selected Consequence Modelling ResultsD1

1. EXECUTIVE SUMMARY

URS were commissioned by Gladstone Pacific (GPNL) to prepare an environmental impact statement (EIS) for the Gladstone Nickel Project, a proposed nickel refinery to be located in an industrial area of Gladstone, Queensland. URS commissioned ModuSpec Australia to undertake a risk assessment of the Gladstone Nickel Project to allow URS to address the health and safety requirements of the EIS.

The main objectives of the risk assessment were to assess the major hazards associated with the Gladstone Nickel Project in accordance with AS/NZS 4360:2004, to identify hazards that have the potential to extend offsite, and to determine if a quantitative risk assessment is necessary in accordance with the terms of reference document [1].

The following steps were undertaken:

- 1. Preliminary work
- 2. Preliminary hazard identification (HAZID)
- 3. Workshop review with GPNL and URS project personnel
- 4. Consequence modelling
- 5. Finalisation of the risk assessment.

The risks associated with the Gladstone Nickel Project were assessed and found to be generally low. Notable exceptions are the risks associated with the following areas:

- Solvent extraction (organic phase fire medium risk)
- Ammonia (ammonia release medium risk)
- Nickel and cobalt reduction areas (ammonia release medium risk).

Releases of ammonia from the ammonia area have the potential to cause multiple onsite fatalities. The impact of these releases could extend to nearby plant areas and, in the case of vessel failure, the store, car park, workshop and other areas likely to house personnel.

The following major hazards have the potential to extend offsite:

- Release of slurry or saline water from pipelines to/from residue storage facility at Aldoga
- Release of sulphur from sulphuric acid plant stack.
- Release of ammonia from the ammonia storage area.

Only a release of ammonia has the potential for significant offsite impact, however offsite fatalities are considered unlikely as the area is not populated. In particular, ammonia releases do not impact the Orica Yarwun site. On this basis ModuSpec believe that further analysis of the risks from the site in the form of a QRA is not warranted.

To address the potential for onsite fatalities associated with the ammonia area, GPNL should consider implementing further mitigation measures in this area.

2. ACRONYMS AND ABBREVIATIONS

HAZID	Hazard identification
HMS	High magnesium saprolite
LMS	Low magnesium saprolite
PPE	Personal protective equipment
ppm	Parts per million
SLOT DTL	Specified level of toxicity dangerous toxic load

3. INTRODUCTION

URS were commissioned by Gladstone Pacific (GPNL) to prepare an environmental impact statement (EIS) for the Gladstone Nickel Project, a proposed nickel refinery to be located in an industrial area of Gladstone, Queensland. URS commissioned ModuSpec Australia to undertake a risk assessment of the Gladstone Nickel Project to allow URS to address the health and safety requirements of the EIS.

This reports documents the risk assessment undertaken.

3.1. Objectives and Scope

The main objectives of the risk assessment were to assess the major hazards associated with the Gladstone Nickel Project in accordance with AS/NZS 4360:2004, to identify hazards that have the potential to extend offsite, and to determine if a quantitative risk assessment is necessary in accordance with the terms of reference document [1].

A major hazard was defined as a large scale situation that has the potential to have a significant impact on people, environment or property i.e. events that have the potential to lead to:

- Fatalities
- Wide spread environmental damage
- Large cost property loss.

Excluded from the assessment were localised events such as:

- Occupational health and safety events e.g. falls
- Events associated with maintenance e.g. isolation and confined space hazards.

The risk assessment only covered operation of the Gladstone Nickel Project. Further, the risk assessment only covered the following parts of the facility:

- Nickel refinery (leach)
- Nickel refinery (metal)
- Pipelines to/from the residue storage facility at Aldoga
- Residue storage facility at Aldoga
- Associated facilities.

Transfer of materials to/from the Port of Gladstone, port operations, pipelines from Marlborough, and the Marlborough Mine and Coorumburra Beneficiation Plant were not included.

Finally, all hazards were assessed qualitatively/semi-quantitatively. No quantitative risk assessment was undertaken.

4. METHODOLOGY

The methodology used has five main steps:

- 1. Preliminary work
- 2. Preliminary hazard identification (HAZID)
- 3. Workshop review with GPNL and URS project personnel
- 4. Consequence modelling
- 5. Finalisation of the risk assessment.

This methodology is consistent with the guidelines set out in AS/NZS 4360:2004 Risk Management. The steps are outlined below:

4.1. Preliminary work

Project information was reviewed to familiarise with the Gladstone Nickel Project. This information included:

- Process description
- Process flow diagrams
- Plant layout and location drawings
- Reagents and emissions data.

4.2. Preliminary Hazard Identification (HAZID)

Credible major hazards, causes, consequences and controls were identified using a structured review process as follows:

- 1. Divide the refinery into smaller areas
- 2. Identify significant equipment and hazardous materials handled in each area
- 3. Discuss the processes employed in each area
- 4. Brainstorm credible major hazards
- 5. Identify causes, consequences and existing controls for each major hazard.

The HAZID involved ModuSpec personnel experienced in nickel refinery risk assessment. The HAZID was supplemented by a review of risk assessments of similar facilities.

4.3. Workshop Review

The preliminary HAZID work was reviewed during a one-day workshop involving ModuSpec, GPNL and URS project personnel. Steps 2 to 5 above were repeated for each area to:

- Ensure all major hazards identified during the preliminary HAZID were relevant and correct
- Identify additional major hazards, causes, consequences and controls.

An initial risk assessment was also performed for each major hazard using a risk matrix developed from AS/NZS 4360:2004 (refer to Appendix A). A risk matrix is a tool that allows the risk associated with a hazard to be quickly approximated. This is done by:

- 1. Estimating how often the major hazard is expected to occur (likelihood).
- 2. Estimating the impact on people, environment and property when the major hazard occurs (consequence).
- 3. Reading the associated risk from the matrix where the likelihood row and consequence column intersect.

The matrix has been developed to ensure that major hazards that occur often and have the greatest impact are considered to be very high risk. Those that occur infrequently and have little impact are considered to be low risk. A sliding scale is applied between these two extremes. Refer to Appendix A for more information on how the risk levels were determined.

During the risk assessment, the role of existing controls was considered in determining likelihood and consequence. The most credible consequence associated with each major hazard was determined and the risk assessed based on that outcome.

4.3.1. Workshop Participants

The participants involved in the workshop are listed in Table 4-1.

Name	Position	Company	
Paul Doyle	Senior Environmental Engineer	URS	
Lisa Park	Senior Process Engineer	GPNL	
Rod Cox	Editor/Study Coordinator	GPNL	
John Miller	Logistics Consultant	GPNL	
Colin Moffat	Facilitator	ModuSpec Australia	
Sharon Hurree	Technical Secretary	ModuSpec Australia	

Table 4-1: Workshop Participants

4.4. Consequence Modelling

To improve the estimation of consequences and to identify consequences that extend offsite, consequence modelling was conducted for each major hazard that involved significant release of vapour/gas. Representative scenarios were created from the data collected during the workshop and from subsequent data collected from project personnel.

For flammable releases, consequence modelling determined the extent of the lower flammable limit (LFL) cloud at 1 m above ground level. Fatalities are considered likely within this contour should the cloud be ignited.

For toxic releases, consequence modelling determined the extent of the specified level of toxicity dangerous toxic load (SLOT DTL) cloud at 1 m above ground level. This equates roughly to the toxic dose that will result in 1% mortality for the exposed population (i.e. LD_{01}) [2]. Fatalities are considered possible within this contour. The SLOT DTL values used are presented in Table 4-2.

Material	SLOT DTL	Unit
Ammonia	3.78 x 10 ⁰⁸	ppm ² .min
Hydrogen sulphide	2.00 x 10 ¹²	ppm⁴.min
Sulphur trioxide	1.30 x 10 ⁰⁴	ppm ² .min

Table 4-2: Toxicity Data

4.5. Finalisation of the Risk Assessment

The initial risk assessment made during the workshop was reviewed. The consequence modelling results were used to verify or update the assessment accordingly.

5. **RESULTS**

The refinery was divided into 31 areas. Twenty-seven major hazards were identified and consequence modelling completed for 15 representative scenarios.

The results are presented as follows:

- Risk assessment results for the 31 areas and 27 major hazards are summarised in Table 5-1 and detailed in Appendix B
- Consequence modelling data and assumptions for the 15 representative scenarios are presented in Appendix C
- Major hazard consequences that have the potential to extend offsite are summarised in Table 5-2. Consequence modelling results for the ammonia cases are presented in Appendix D.

Area No.	Area	Hazard No.	Major hazard	Consequence	Likelihood	Risk
1	Ore Receival and Slurry Storage	-	None	-	-	-
2	High Pressure Acid Leach	-	None	-	-	-
3	Saprolite Neutralisation	-	None	-	-	-
4	Counter Current Decantation	-	None	-	-	-
5	Solution Neutralisation	1	Release of hydrogen sulphide	3	E	L
6	Sulphide Precipitation	2	Release of hydrogen sulphide	3	D	L
7	Final Neutralisation	-	None	-	-	-
8	Pipelines to/from Residue Storage Facility at Aldoga	3	Release to environment	4	E	L
9	Residue Storage Facility at Aldoga	4	Release to environment	2	E	L
10	Sulphide Leach	-	None	-	-	-
11	Impurity Removal	5	Release of ammonia	2	С	L
12	Solvent extraction	6	Release of organic phase	4	D	М
		7	Mixer/settler fire	4	D	М
13	Nickel Reduction	8	Release of ammonia	3	С	М
		9	Release of hydrogen	4	E	L
14	Nickel Metal Handling	10	Furnace explosion	2	D	L
		11	Release of natural gas	1	С	L
		12	Release of hydrogen	2	С	L
15	Cobalt Reduction	13	Release of ammonia	3	С	М
		14	Release of hydrogen	4	E	L
16	Cobalt Metal Handling	15	Furnace explosion	2	D	L
		16	Release of natural gas	1	С	L
		17	Release of hydrogen	2	С	L
17	End Solution Stripping	18	Release of hydrogen sulphide	2	E	L
18	Ammonium Sulphate Plant	-	None	-	-	
19	Sulphuric Acid Plant	19	Release of sulphuric acid	2	С	L
		20	Release of sulphur, sulphur dioxide/trioxide	4	E	L

ModuSpec Results

Area No.	Area	Hazard No.	Major hazard	Consequence	Likelihood	Risk
20	Hydrogen Plant	21	Release of hydrogen	4	E	L
		22	Release of natural gas	4	E	L
21	Hydrogen Sulphide Plant	23	Release of hydrogen sulphide	3	D	L
		24	Release of hydrogen	3	E	L
22	Air Separation Plant	-	None	-	-	-
23	Limestone Plant	-	None	-	-	-
24	Lime Plant	-	None	-	-	-
25	Flocculants	-	None	-	-	-
26	Filter aid	-	None	-	-	-
27	Ammonia	25	Release of ammonia	5	E	М
28	Polyacrylic Acid	-	None	-	-	-
29	Caustic Soda		None	-	-	-
30	Power station	26	Release of natural gas	4	E	L
		27	Gas-fired boiler explosion	4	E	L
31	Waste water treatment plant	-	None	-	-	-

Area No.	Area	Hazard No.	Major hazard	Cause	Likelihood	Scenario	Consequence Description	Consequence	Risk
8	Pipelines to/from Residue Storage Facility at Aldoga	3	Release to environment	Pipe/flange failure Vehicle impact	E	_	Release of slurry/saline water into pipeline corridor/offsite, short term impact	4	L
19	Sulphuric Acid Plant	20	Release of sulphur, sulphur dioxide/ trioxide	Lose temperature in converter during start up, sublime plant leading to sulphur deposition and sulphur, sulphur dioxide/trioxide release via stack	E	-	Potential sulphur deposition offsite, short term impact on plants. Note: Sulphur dioxide/trioxide cloud does not extend offsite	4	L
27	Ammonia	25	Release of ammonia	Vessel failure (100mm)	E	15	SLOT DTL extends 800m	5	Μ
				Pump or unloading arm failure (80mm)	E	7	SLOT DTL extends 145m.	4	L

6. DISCUSSION

The risks associated with the Gladstone Nickel Project are generally low. All areas were assessed as having a "low" risk with the exception of the solvent extraction, nickel reduction/cobalt reduction, and ammonia areas. These were assessed as having a "medium" risk.

The risk associated with the solvent extraction area is due to the potential for significant equipment damage by fire. The following controls are important in controlling risk in this area:

- Condition monitoring
- Ignition control (anti-static clothing, diesel vehicles, hot work permits)
- Fire water/foam systems.

The risk associated with the ammonia area is driven by the large inventory of toxic liquefied gas. The following controls are important in controlling risk in this area:

- Condition monitoring
- Excess flow valves on storage vessels, road tankers and supply pipeline
- Ammonia storage area is located away from the main facility
- Supply pipeline is buried.

Driver PPE also makes a contribution.

While the risk associated with the ammonia area was assessed to be medium, it should be noted that releases of ammonia from this area have the potential to cause multiple onsite fatalities. The impact of these releases could extend to nearby plant areas and, in the case of vessel failure, the store, car park, workshop and other areas likely to house personnel.

The risks associated with the nickel and cobalt reduction areas are greater than the other areas using ammonia (i.e. impurity removal) due to larger pipe diameters from which there would be higher release rates in the case of a failure. Once again, condition monitoring is important in controlling risk in these areas.

For areas with hydrogen sulphide, the following controls are particularly important in contributing to the low risk:

- Hydrogen sulphide detectors/alarms/shutdown
- Administrative controls for personnel in the hydrogen sulphide area.

Other controls that make a contribution are:

- Man down radios
- Hydrogen sulphide PPE (personal monitor, escape respirator)
- Additional hydrogen sulphide respirators throughout the wider plant.

The results show that most major hazards do not extend offsite and, of those that do, only a release of ammonia has the potential to be significant. However offsite fatalities are considered unlikely as the surrounding area is not populated. In particular, this release does not impact the Orica Yarwun site. Further, pump or unloading arm failures only just extend offsite. Based on these results, ModuSpec believe that further analysis of the risks from the site in the form of a QRA is not warranted.

7. CONCLUSION AND RECOMMENDATIONS

The risks associated with the Gladstone Nickel Project were assessed and found to be generally low. Notable exceptions are the risks associated with the following areas:

- Solvent extraction (organic phase fire medium risk)
- Ammonia (ammonia release medium risk)
- Nickel and cobalt reduction areas (ammonia release medium risk).

Releases of ammonia from the ammonia area have the potential to cause multiple onsite fatalities. The impact of these releases could extend to nearby plant areas and, in the case of vessel failure, the store, car park, workshop and other areas likely to house personnel.

The following major hazards have the potential to extend offsite:

- Release of slurry or saline water from pipelines to/from residue storage facility at Aldoga
- Release of sulphur from sulphuric acid plant stack.
- Release of ammonia from the ammonia storage area.

Only a release of ammonia has the potential for significant offsite impact, however offsite fatalities are considered unlikely as the area is not populated. In particular, ammonia releases do not impact the Orica Yarwun site. On this basis ModuSpec believe a QRA is not warranted.

To address the potential for onsite fatalities associated with the ammonia area, GPNL should consider implementing further mitigation measures in this area.

8. **REFERENCES**

- 1 Email from P. Doyle, (Senior Environmental Engineer, URS Australia Pty Ltd) to C. Moffat (Principal Risk Engineer, ModuSpec Australia Pty Ltd) "Re: Scope of work and workshop date" with attached document (pages 37 39 of draft terms of reference), 9th March 2006.
- 2 Health and Safety Executive, "Assessment of the Dangerous Toxic Load (DTL) for Specified Level of Toxicity (SLOT) and Significant Likelihood of Death (SLOD)", <u>http://www.hse.gov.uk/hid/haztox.htm</u>, 26th November 2003.

APPENDIX A: Risk Matrix

TABLE OF CONTENTS

1.	INTRODUCTION	2
2.	RISK MATRIX	3
3.	REFERENCES	4

1. INTRODUCTION

This appendix documents the risk matrix used during the risk assessment. The matrix was developed from HB 436:2004 [1]. This document is a companion document to AS/NZS4360:2004 and provides guidelines on determining risk matrices.

It should be noted that HB 436:2004 only provides generic guidance; matrices must be developed to suit the individual risk assessment being undertaken.

The following was considered when developing the matrix:

- 5 x 5 matrix are commonly used
- Major hazards occur infrequently so likelihood axis needs to extend well beyond "once in the life of the facility"
- Major hazards can result in significant consequences or much reduced consequences if there are sufficient controls in place. Therefore the consequence axis needs to include a full range of consequences e.g. from fatalities to no injury.
- The community is more concerned about offsite fatalities and releases to the environment than onsite fatalities and releases
- Each major hazard is area based e.g. release of hydrogen sulphide from sulphide precipitation area. Risk levels need to reflect this. Further, risk levels (L, M, H, VH) should change gradually across the matrix. Defining points include:
 - Single onsite fatality risk is considered very high (VH) if it occurs more than once every 10 years, high (H) if it occurs once in the life of the facility
 - Lowest consequence risk is considered to be low (L) in all but the most frequent of events.

2. RISK MATRIX

	Consequence				
Likelihood	1	2	3	4	5
Α	М	Н	VH	VH	VH
В	L	М	Н	VH	VH
С	L	L	М	Н	VH
D	L	Ĺ	L	М	Н
E	L	L	L	L	М

VH = Very high, H = High, M = Medium, L = Low

Figure 1: Risk matrix

Table 2-1: Frequency Guidelines.

Level	Frequency p.a.	Description 1	Description 2	Description 3	Description 4
A	>1	More than once per year		Highly likely	Repeated incidents
В		Once every 10 years to once per year		Likely	Isolated incidents
С		Once every 100 years to once every 10 years		Possible	
D		Once every 1000 years to once every 100 years		Unlikely	
E	<0.001	Less than once every 1000 years		Rare	

Table 2-2: Consequence Guidelines.

Level	Health & Safety		Environment	Property \$AUS
	Onsite	Offsite		
1	No treatment required	No impact	Insignificant release	<10K
2			Onsite release contained	10K - 100K
3	Medical treatment required, one person disabled		Onsite release with large clean up	100K - 1M
	S	Medical treatment required, one person disabled	Offsite release with short term impact	1M - 10M
5	Multiple fatalities, large number of people disabled	0	Offsite release with long term impact	10M+

3. **REFERENCES**

1 Australian standards, HB 436:2004, "Risk Management Guidelines Companion to AS/NZS 4360:2004", Standards Australia and Standards New Zealand, 2004.

APPENDIX B: Risk Assessment Results

1. INTRODUCTION

This appendix presents the results of the risk assessment. The following is presented for each plant area:

(1) Area details including:

- Equipment list
- Brief process description
- List of major hazards identified.
- Comments on other hazards discussed
- (2) For each major hazard in the plant area, hazard details including:
 - Possible causes
 - Potential consequences
 - Existing controls
 - Consequence, likelihood and risk for the hazard
 - Comments on the determination of consequence and likelihood.

ModuSpec Appendix B: Risk Assessment Results

Area No:	1	Date:	27-Mar-2006
Area:	Ore Receival and Slurry Storage		
Equipment List:	Screening and scrubbing equipment		
	Gravity treatment equipment		
	Ball milling		
	Thickeners		
	Storage tanks		
Process:	(1) Thickening and storage of LMS and HMS sl	lurries fr	om Marlborough Mine /
Coorumburra Ben	ificiation Plant		
	(2) Beneficiation (to produce LMS and HMS slu imported ore	urries), tł	nickening and storage of

Major Hazards Identified	Comments	Hazard Sheets
No major hazards identified	No hazardous material present.	0

ModuSpec Appendix B: Risk Assessment Results

AREA DETAILS

Area No: Area: Equipment List: Process:	Heater vesse Pumps Autoclaves Flash vessels Scrubbers Leach nickel			27-Mar-2006
Major Hazards I	dentified	Comments		Hazard Sheets
No major hazards identified		Discussed: (1) Leak from autoclave. Considivessel is dual wall with leak determation of the second state	ection in idered a clave. W depress or haza utoclave . If failur layer or iner fails	between a major Vould suring of ard. e. Considered re did n top of the s,

considered a major hazard.

outside wall is carbon steel). If leak did occur, not

ModuSpec Appendix B: Risk Assessment Results

Area No: Area: Equipment List:	3 Saprolite Neu Neutralisation Pumps		Date:	27-Mar-2006
Process:		and cobalt from HMS ore slurry, r	neutralis	e most of free sulphuric acid
Major Hazards I	dentified	Comments		Hazard Sheets

No major hazards identified	Lined tanks, not pressurised. Vent gas is mainly	0
No major nazarao naominoa	steam with small amount of acidic liquor.	U

ModuSpec Appendix B: Risk Assessment Results

AREA DETAILS

Area No:4Date:27-Mar-2006Area:Counter Current DecantationEquipment List:ThickenersProcess:Recover nickel and cobalt solution from barren leach solids

Major Hazards Identified	Comments	Hazard Sheets
No major hazards identified	The thickeners are not covered, contents are mildly acidic	0

ModuSpec Appendix B: Risk Assessment Results

Area No:	5	Date:	27-Mar-2006
Area:	Solution Neutralisation		
Equipment List:	Pipe reactor		
	Neutralisation tanks		
	Thickeners		
	Cyclones		
	Belt filters		
	Repulp tanks		
Process:	(1) Pre-reduction of chrome 6 and ferric		
	(2) Neutralise residual free sulphuric acid in CC impurities	CD over	flow and precipitate

Major Hazards Identified	Comments	Hazard Sheets
Release of hydrogen sulphide		1
No other major hazards identified	Discussed carbon dioxide leak. Could result in carbon dioxide cloud, not considered a major hazard.	0

ModuSpec Appendix B: Risk Assessment Results

AREA DETAILS

Area No: Area: Equipment List:	6 Sulphide Precipitation Plate heaters Direct contact heater Sulphide precipitation autoclaves Flash Vessel Cyclones Thickeners Pumps Barren solution filters Belt filters Plate and frame filter Repulp tanks Bagging equipment Tower mill	Date:	27-Mar-2006
Process:	Recover nickel and cobalt as mixed sulphide s as required.	olids, fil	ter mixed sulphide and pack

Major Hazards Identified	Comments	Hazard Sheets
Release of hydrogen sulphide		1
No other major hazards identified	 Discussed: (1) Leak from autoclave. Considered unlikely as vessel is lined with hard scale. (2) Leak from vent system. Hydrogen sulphide concentration 10-50 ppm, not considered a major hazard. (3) Leak of hydrogen peroxide. Will support combustion, no adjacent equipment, not considered a major hazard. 	O

 Ref: AUS0352.3, Release 01

 6 June 2006
 © ModuSpec Pty Ltd v6.4:30-0 Prometheus 1.6.0

ModuSpec Appendix B: Risk Assessment Results

Area No:	7	Date:	27-Mar-2006
Area:	Final Neutralisation		
Equipment List:	Neutralisation tanks		
	Pumps		
Process:	Neutralise excess barren liquor for transfer to re	esidue s	storage area

Major Hazards Identified	Comments	Hazard Sheets
No major hazards identified	No hazardous material present.	0

ModuSpec Appendix B: Risk Assessment Results

Area No: Area: Equipment List: Process:	8 Pipelines to and from Residue Storage Facility at Pipelines (500 mm diameter, 25 km each way ap Transfer neutralised slurry from Yarwun refinery Transfer barren liquor from residue storage facilit Estimated pressure at pump discharge = 2500 km	t Aldog oprox.) to resi ity to Y	due storage facility arwun refinery

Major Hazards Identified	Comments	Hazard Sheets
Release to environment		1
No other major hazards identified		0

identified

ModuSpec Appendix B: Risk Assessment Results

Area No: Area: Equipment List:			 27-Mar-2006
Process:	feed system	bed into thickeners, und n, overflow into barren li o barren liquor tanks	nto residue storage area e storage area decant
Major Hazards I	dentified	Comments	Hazard Sheets
Release to enviro	onment		1
No other major ha	azards		0

ModuSpec Appendix B: Risk Assessment Results

Area No: Area:	10 Sulphide Leach	Date:	27-Mar-2006	
Equipment List:	Sulphide leach autoclave Flash vessel			
Process:	Re-dissolve mixed sulphide solids to produce an impure nickel/cobalt sulphas solution with low acidity and impurity content. Sulphide converted to sulphat oxygen injection.			

Major Hazards Identified	Comments	Hazard Sheets
No major hazards identified	 Discussed: (1) Autoclave fire/explosion due to excess oxygen. Considered not credible. (2) Vessel corrosion due to loss of oxygen (reducing conditions). Release due to vessel corrosion not considered a major hazard. 	0

ModuSpec Appendix B: Risk Assessment Results

Area No:	11 Impurity Domousi	Date:	27-Mar-2006
Area:	Impurity Removal		
Equipment List:	Impurity removal tanks		
	Filters		
	Pumps		
Process:	Precipitate iron and aluminium from the sulphi- the acid with aqueous ammonia. Liquid anhyd area via 1" pipe and is mixed with water to forr	rous am	monia is supplied to this

Major Hazards Identified	Comments	Hazard Sheets
Release of ammonia		1
No other major hazard identified		0

ModuSpec Appendix B: Risk Assessment Results

AREA DETAILS

Area No: Area: Equipment List:	Heat excha Equipment vessel	rs ngers containing organic pha	ase: pumps, tanks, a	27-Mar-2006 ctivated carbon filtration	
Process: Major Hazards I	from fibre g ground leve	lass lined steel and ar		er/settlers are constructed phase equipment is at Hazard Sheets	
Release of organ	ic phase			1	
Mixer/settler fire				1	
No other major ha	azards			0	

identified

ModuSpec Appendix B: Risk Assessment Results

Area No:	13	Date:	27-Mar-2006
Area:	Nickel Reduction		
Equipment List:	Mixer		
	Heat exchanger		
	Autoclave		
	Flash vessel		
	Pumps		
Process:	Recover nickel from solution as metallic powde	er.	

Major Hazards Identified	Comments	Hazard Sheets
Release of ammonia		1
Release of hydrogen		1
No other major hazards identified	Discussed autoclave explosion due to development of flammable mixture and ignition. Considered not credible.	0

ModuSpec Appendix B: Risk Assessment Results

Area No:	14	Date:	27-Mar-2006
Area:	Nickel Metal Handling		
Equipment List:	Pan filters		
	Dryer		
	Pipe chain conveyors		
	Bucket elevators		
	Hammer mill		
	Conveyors		
	Briquette machine		
	Sinter furnace		
	Dust collection system		
	Packaging equipment		
	Hoppers		
Process:	Form nickel powder into briquettes, treat in sint impurities	ter furna	ace to drive off residual

Major Hazards Identified	Comments	Hazard Sheets
Furnace explosion		1
Release of natural gas		1
Release of hydrogen		1
No other major hazards identified	Discussed explosion in dust collection system. Not considered a major hazard.	0

ModuSpec Appendix B: Risk Assessment Results

15	Date:	27-Mar-2006
Cobalt Reduction		
Mixer		
Heat exchanger		
Autoclave		
Flash vessel		
Pumps		
Recover cobalt from solution as metallic powde	ər	
	Cobalt Reduction Mixer Heat exchanger Autoclave Flash vessel Pumps	Cobalt Reduction Mixer Heat exchanger Autoclave Flash vessel

Major Hazards Identified	Comments	Hazard Sheets
Release of ammonia		1
Release of hydrogen		1
No other major hazards identified	Discussed autoclave explosion due to development of flammable mixture and ignition. Considered not credible.	0

ModuSpec Appendix B: Risk Assessment Results

Area No:	16 Date: 27-Mar-2006
Area:	Cobalt Metal Handling
Equipment List:	Pan filters
	Dryer
	Pipe chain conveyors
	Bucket elevators
	Hammer mill
	Conveyors
	Briquette machine
	Sinter furnace
	Dust collection system
	Packaging equipment
	Hoppers
Process:	Form cobalt powder into briquettes, then treat in sinter furnace to drive off residual impurities

Major Hazards Identified	Comments	Hazard Sheets
Furnace explosion		1
Release of natural gas		1
Release of hydrogen		1
No other major hazards identified	Discussed explosion in dust collection system. Not considered a major hazard.	0

ModuSpec Appendix B: Risk Assessment Results

AREA DETAILS

 Area No:
 17
 Date:
 27-Mar-2006

 Area:
 End Solution Stripping
 End Solution Stripping

 Equipment List:
 Reaction vessel Polishing filters Thickener
 Process:

 Process:
 Precipitate residual nickel and cobalt from spent hydrogen reduction end solutions

 using hydrogen sulphide
 Process:
 Process:

Major Hazards Identified	Comments	Hazard Sheets
Release of hydrogen sulphide		1
No other major hazards identified		0

ModuSpec Appendix B: Risk Assessment Results

Area No:	18	Date:	27-Mar-2006
Area:	Ammonium Sulphate Plant		
Equipment List:	Crystallizers		
	Pumps		
	Conveyors		
	Storage shed		
Process:	Produce ammonium sulphate for refinery use a	and for s	ale as by-product

Major Hazards Identified	Comments	Hazard Sheets
No major hazards identified	Vapour is predominantly water	0

19

Area No:

ModuSpec Appendix B: Risk Assessment Results

AREA DETAILS

Date: 27-Mar-2006

Area:	Sulphuric Acid Plant
Equipment List:	Sulphur stock pile
	Conveyor
	Sulphur melter
	Lime silo
	Pumps
	Sulphur filter
	Molten sulphur tank
	Sulphur burner
	Waste heat boilers
	Converter
	Packed columns
	Superheaters
	Economisers
	Heat exchangers
	Sulphuric acid storage tank
Process:	Sulphur is burnt in air to form sulphur dioxide, combined with oxygen in air to
	form sulphur trixoide (in the presence of a catalyst) and then combined with water
	to form a solution containing sulphuric acid (98.5%). Other outputs are: high
	pressure superheated steam, low pressure saturated steam for the refinery, molten
	sulphur for the hydrogen sulphide plant.

Major Hazards Identified	Comments	Hazard Sheets
Release of sulphuric acid		1
Release of sulphur, sulphur dioxide / trioxide		1
No other major hazards identified	Discussed: (1) Sulphur fire. Known to occur but is localised and not considered a major hazard. (2) Sulphur dust explosion. Considered unlikely as stock pile in open area.	0

ModuSpec Appendix B: Risk Assessment Results

AREA DETAILS

Area No: Area: Equipment List: Process:	Steam produ Hydrogen ste	iction facility	 27-Mar-2006
Major Hazards I	dentified	Comments	Hazard Sheets
Release of hydro	gen	10t hydrogen inventory	1
Release of natura	al gas		1
No other major ha	azards		0

No other major hazards identified

ModuSpec Appendix B: Risk Assessment Results

Area No:	21	Date:	27-Mar-2006
Area:	Hydrogen Sulphide Plant		
Equipment List:	Sulphur circulating pumps		
	Heat exchangers		
	Reactors (packed column with heaters)		
	Knock-out pots (for sulphur)		
Process:	Produce hydrogen sulphide by passing hydrogelevated temperature	gen gas i	through molten sulphur at

Major Hazards Identified	Comments	Hazard Sheets
Release of hydrogen sulphide		1
Release of hydrogen		1
No other major hazards identified	Discussed overpressure of hydrogen sulphide plant due to excessive upstream pressure, i.e. hydrogen plant. Hydrogen sulphide plant fitted with pressure safety valves, not considered an issue.	0

ModuSpec Appendix B: Risk Assessment Results

Area No:	22	Date:	27-Mar-2006
Area:	Air Separation Plant		
Equipment List:	Main air compressor		
	Molecular sieves		
	Distillation column		
	Liquid nitrogen storage		
	Liquid oxygen storage		
Process:	Cryogenic plant producing high pressure oxyge high and low pressure nitrogen	en gas,	plant and instrument air,

Major Hazards Identified	Comments	Hazard Sheets
No major hazards identified	 Discussed: (1) 20t liquid oxygen inventory. Supports combustion, can saturate clothing, gas can auto-ignite debris in lines. Not considered a major hazard. (2) 10t liquid nitrogen inventory. Can be an asphyxiant. Not considered a major hazard. 	0

ModuSpec Appendix B: Risk Assessment Results

Area No:	23	Date:	27-Mar-2006
Area:	Limestone Plant		
Equipment List:	Grinding mills		
	Cyclones		
	Thickeners		
Process:	Grind limestone, thicken to produce neutralisat	tion slur	ry

Major Hazards Identified	Comments	Hazard Sheets
No major hazards identified	No hazardous material present.	0

ModuSpec Appendix B: Risk Assessment Results

Date: 27-Mar-2006

AREA DETAILS

Area No:24Area:Lime PlantEquipment List:Lime slakerProcess:Produce milk of lime neutralisation slurry

Major Hazards Identified	Comments	Hazard Sheets
No major hazards identified	No hazardous material present.	0

 Ref: AUS0352.3, Release 01

 6 June 2006
 © ModuSpec Pty Ltd v6.4:30-0 Prometheus 1.6.0

ModuSpec Appendix B: Risk Assessment Results

AREA DETAILS

Date: 27-Mar-2006

Area No:	25
Area:	Flocculants
Equipment List:	Storage silo
	Mixing vessel
	Distribution pumps
Process:	Mix flocculant for use throughout refinery
_	Mixing vessel Distribution pumps

Major Hazards Identified	Comments	Hazard Sheets
No major hazards identified	No hazardous material present.	0

 Ref: AUS0352.3, Release 01

 6 June 2006
 © ModuSpec Pty Ltd v6.4:30-0 Prometheus 1.6.0

ModuSpec Appendix B: Risk Assessment Results

Area No: Area:	26 Filter aid	Date:	27-Mar-2006
Equipment List:	Bag handling facility Mixing vessel Distribution pump		
Process:	Mix filter aid for use throughout refinery		

Major Hazards Identified	Comments	Hazard Sheets
No major hazards identified	No hazardous material present.	0

ModuSpec Appendix B: Risk Assessment Results

Area No: Area: Equipment List:	27 Ammonia Bullets	Date:	27-Mar-2006
Process:	Unloading arms Pumps Storage of anhydrous ammonia in bullets.	Ammonia is	delivered by road tanker.

Major Hazards Identified	Comments	Hazard Sheets
Release of ammonia		1
No other major hazards identified		0

ModuSpec Appendix B: Risk Assessment Results

AREA DETAILS

Area No:	28	Date:	27-Mar-2006
Area:	Polyacrylic Acid		
Equipment List:	Bag storage vessel		
	Pumps		
	Dilution tank		
Process:	Storage of polyacrylic acid. Acid is delivered to	site by	road tankers.

Major Hazards Identified Comments

Hazard Sheets

No major hazards identified

ModuSpec Appendix B: Risk Assessment Results

AREA DETAILS

Date: 27-Mar-2006

Area No:29Area:Caustic SodaEquipment List:Tank
PumpsProcess:Storage of caustic soda

Major Hazards Identified Comments

No major hazards identified

Hazard Sheets

0

ModuSpec Appendix B: Risk Assessment Results

Area No:	30	Date:	27-Mar-2006
Area:	Power station		
Equipment List:	Boilers		
	Steam turbo-generators		
	Pumps		
	De-aerator		
Process:	Produce electricity from high pressure steam. plant offline.	Produce	e steam when sulphuric acid

Major Hazards Identified	Comments	Hazard Sheets
Release of natural gas		1
Gas-fired boiler explosion		1
No other major hazards identified		0

ModuSpec Appendix B: Risk Assessment Results

AREA DETAILS

Area No:31Date:27-Mar-2006Area:Waste water treatment plantEquipment List:Demineralisation plantProcess:Produce filtered water and demineralised water, direct waste water to final
neutralisation area

Major Hazards Identified	Comments	Hazard Sheets
No major hazards identified	No hazardous material present.	0

APPENDIX C: Consequence Modelling Data

TABLE OF CONTENTS

1.	INTRODUCTION	2
2.	CONSEQUENCE MODELLING SCENARIOS	2
3.	WEATHER DATA	5
4.	ASSUMPTIONS	6
5.	REFERENCES	7

1. INTRODUCTION

This appendix documents the modelling data and assumptions used during the consequence modelling. Justifications and references have been included where applicable.

2. CONSEQUENCE MODELLING SCENARIOS

Table 2-1, Table 2-2 and Table 2-3 contain the modelling data used for each major hazard. This data was either collected during the workshop or received post workshop [1].

Table 2-1: Modelling Data

No.	Scenario	Material	Temp. (°C)	Pressure (kPa)	Release elevation (m)	Pipe length (m)	Hole size (mm)	Туре	Detect & isolate time (s)	Max Release (kg/s)	Hazard No.
1	Release from pipework	H ₂ S	110	300	2	150	25 80	Leak Rupture	300 120	1.62	1
2	Release from pipework	H ₂ S	110	800	10	150	25 100	Leak Rupture	300 120	1.62	2, 23
3	Release from pipework	H ₂ S	110	800	7	300	25 40	Leak Rupture	300 120	1.62	18
4	Release from pipework	NH ₃	50	2100	7	150	25 40	Leak Rupture	300 300		5
5	Release from pipework	NH ₃	50	2100	7	100	25 50	Leak Rupture	300 300		8, 13
6	Release from pipework	NH ₃	50	2100	7	100	25 80	Leak Rupture	300 300		25
7	Release from pump/unloading arm	NH ₃	50	2100	1	20	25 80	Leak Rupture	120 20		25
8	Release from supply pipeline	NH ₃	30	1600	1	1500	25 80	Leak Rupture	300 20		25
9	Release from pipework	H ₂	80	5000	7	500	25 100	Leak Rupture	300 300	0.25	9, 14, 21
10	Release from pipework	H ₂	80	900	7	400	25 50	Leak Rupture	120 120	0.25	24
11	Release from pipework	CH ₄	30	4000	7	600	25 100	Leak Rupture	300 300		22, 26

No.	Scenario	Material	Temp. (°C)	Pressure (KPa)	Release elevation (m)	Pipe length (m)	Hole size (mm)	Туре	Time to stop flow (min)	Hazard No
12	Release from reactor	H_2S	140	900	20	N/A	100	Leak	2	23
13	Release from ductwork	10% SO ₃ 90% N ₂	300	20	15	N/A	100	Leak	10	20
14	Release from stack	10% SO ₃ 90% N ₂	75	10	80	80	2000	Rupture	10	20

Table 2-2: Modelling Data for Release of Sulphur Dioxide / Trioxide

No	Scenario	Material	Temp. (°C)	Pressure (KPa)	Release elevation (m)	Inventory (tonnes)	Hole size (mm)	Туре	Hazard No
15	Release from	NH ₃	50	2100	1.5	80	25	Leak	25
	vessel						100	Rupture	

3. WEATHER DATA

Consolidated weather data used in the modelling was supplied by URS [2]. The data was consolidated to provide average weather conditions for the consequence modelling and are presented in Table 3-1. The relative humidity was taken from the Bureau of Meteorology and averaged at 0.67 [3].

Table 3-1: Weather Details

Stability	Average wind speed (m/s)	Average temperature (°C)
В	2.17	26
С	2.65	24
D	3.36	24
F	1.39	20

Solar flux values were estimated and are presented in Table 3-2.

Table 3-2: Solar Flux

Stability	Solar flux (kW/m ²)
В	1
С	0.6
D	0.3
F	0

4. ASSUMPTIONS

The following general assumptions were made for the consequence modelling:

- 1. Release rate was assumed to be constant throughout the duration of the release.
- 2. Release rates were reduced where applicable to account for pipe friction.
- 3. The inventory between isolation valves and the release point was ignored when less than 10% of the total release mass before isolation.
- 4. The surface roughness was assumed to be 1 m.

5. **REFERENCES**

- 1 Various emails:
 - Email from Lisa J Park (Senior Process Engineer, GPNL) to Colin Moffat (Principal Risk Engineer, Moduspec Australia Pty Ltd), "Re: H₂S leak at solution neutralisation", 11 April 2006.
 - Email from Lisa J Park (Senior Process Engineer, GPNL) to Colin Moffat (Principal Risk Engineer, Moduspec Australia Pty Ltd), "Re: Additional modelling data", 11 April 2006.
 - Email from Lisa J Park (Senior Process Engineer, GPNL) to Colin Moffat (Principal Risk Engineer, Moduspec Australia Pty Ltd), "Fw: Consequence modelling data", 9 April 2006.
 - Email from Paul Doyle (Senior Environmental Engineer, URS Australia Pty Ltd) to Colin Moffat (Principal Risk Engineer, Moduspec Australia Pty Ltd), "Re: Consequence modelling data ", 8 April 2006.
- 2 Email from Abbie Brooke (Senior Environmental Engineer, URS Australia Pty Ltd) to Colin Moffat (Principal Risk Engineer, Moduspec Australia Pty Ltd), "Fw: GPNL Weather Information ", 18 April 2006.
- 3 Bureau of Meteorology, "Averages for Gladstone Post Office", <u>http://www.bom.gov.au/climate/averages/tables/cw_039041.shtml</u>, 19th April 2004.

APPENDIX D: Selected Consequence Modelling Results

TABLE OF CONTENTS

1.	INTRODUCTION	2
2.	CONSEQUENCE MODELLING RESULTS	3

1. INTRODUCTION

This appendix presents the consequence modelling results for ammonia releases that have the potential to extend offsite.

2. CONSEQUENCE MODELLING RESULTS

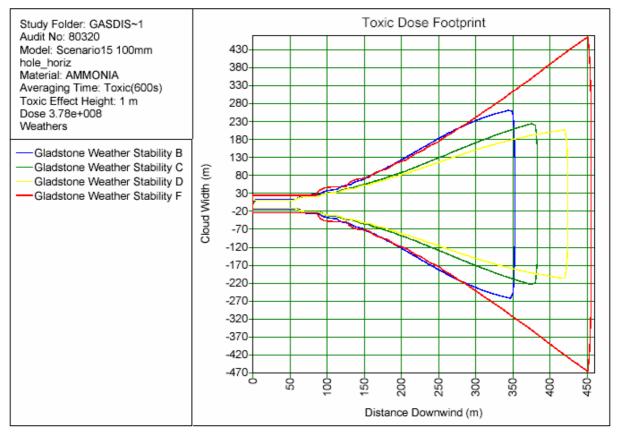


Figure 1: Scenario 15 Ammonia Vessel Failure (100mm) SLOT DTL Contours.

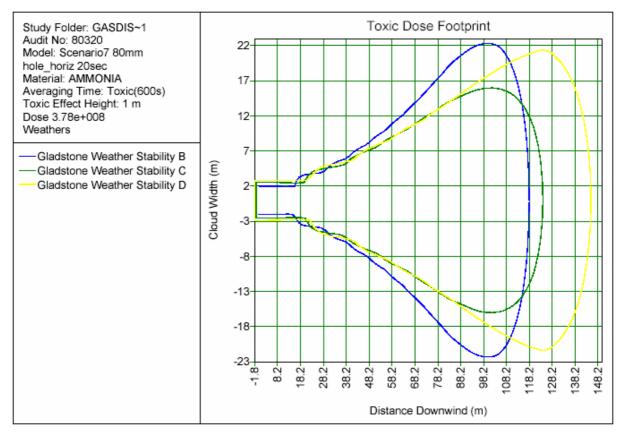


Figure 2: Scenario 7 Ammonia Pump/Unloading Arm Failure (80mm) SLOT DTL Contours.