





# Report

Dredge Material Placement Facility Dewatering Assessment and Preliminary Design

NOVEMBER 2009

Prepared for Santos 32 Turbot Street,

Brisbane, Qld 4000

42626450



Project Manager:

Julian Lon

Julian Long Group Manager

Project Director:

Jim Barker Associate Enviornmental Scientist **URS Australia Pty Ltd** 

Level 16, 240 Queen Street Brisbane, QLD 4000 GPO Box 302, QLD 4001 Australia T: 61 7 3243 2111 F: 61 7 3243 2199

Author:

Nazuha Rosli Graduate Environmental Engineer

Reviewer:

Julian Long Group Manager

Date: Reference: Status: November 2009 42626450/1/C FINAL

#### © Document copyright of URS Australia Pty Limited.

The contents of this report are and remain the intellectual property of the addressee of this report and are not to be provided or disclosed to or used by third parties without the addressee's consent.

URS Australia and the addressee of this report accept no liability to third parties of any kind for any unauthorised use of the contents of this report and reserve their right to seek compensation for any such unauthorised use.

#### **Document delivery**

**URS Australia** provides this document in either printed format, electronic format or both. URS considers the printed version to be binding. The electronic format is provided for the client's convenience and URS requests that the client ensures the integrity of this electronic information is maintained. Storage of this electronic information should at a minimum comply with the requirements of the Commonwealth Electronic Transactions Act (ETA) 2000.

Where an electronic only version is provided to the client, a signed hard copy of this document is held on file by URS and a copy will be provided if requested.



## **Table of Contents**

| 1 | Introd                                                                                                       | duction1                                                                                                                                                                                                                                                                                                                                                                       |
|---|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 1.1                                                                                                          | Scope of Work1                                                                                                                                                                                                                                                                                                                                                                 |
|   | 1.2                                                                                                          | Objectives1                                                                                                                                                                                                                                                                                                                                                                    |
| 2 | Proje                                                                                                        | ct Description2                                                                                                                                                                                                                                                                                                                                                                |
| 3 | Desig                                                                                                        | In Criteria and Constraints4                                                                                                                                                                                                                                                                                                                                                   |
|   | 3.1                                                                                                          | Design Criteria4                                                                                                                                                                                                                                                                                                                                                               |
|   | 3.2                                                                                                          | Constraints                                                                                                                                                                                                                                                                                                                                                                    |
|   | 3.2.1                                                                                                        | Facility Life4                                                                                                                                                                                                                                                                                                                                                                 |
|   | 3.2.2                                                                                                        | Landform Constraints4                                                                                                                                                                                                                                                                                                                                                          |
|   | 3.2.3                                                                                                        | Future Land Use Constraints5                                                                                                                                                                                                                                                                                                                                                   |
|   | 3.2.4                                                                                                        | Constructability5                                                                                                                                                                                                                                                                                                                                                              |
|   | 3.2.5                                                                                                        | Access Requirements5                                                                                                                                                                                                                                                                                                                                                           |
| 4 | Dred                                                                                                         | ge Material Characteristics8                                                                                                                                                                                                                                                                                                                                                   |
|   | 4.1                                                                                                          | Dredge Volumes                                                                                                                                                                                                                                                                                                                                                                 |
|   | 4.2                                                                                                          | Laboratory Testing8                                                                                                                                                                                                                                                                                                                                                            |
|   | 4.2.1                                                                                                        | Particle Size Distribution (PSD)10                                                                                                                                                                                                                                                                                                                                             |
|   |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                |
|   | 4.2.2                                                                                                        | Zone Settlement10                                                                                                                                                                                                                                                                                                                                                              |
|   | 4.2.2<br>4.2.3                                                                                               | Zone Settlement                                                                                                                                                                                                                                                                                                                                                                |
|   | 4.2.2<br>4.2.3<br>4.3                                                                                        | Zone Settlement       10         Sediment Quality       11         Consideration of Swell – Indicative Factor       18                                                                                                                                                                                                                                                         |
| 5 | 4.2.2<br>4.2.3<br>4.3<br>Disch                                                                               | Zone Settlement    10      Sediment Quality    11      Consideration of Swell – Indicative Factor    18      harge Criteria    19                                                                                                                                                                                                                                              |
| 5 | 4.2.2<br>4.2.3<br>4.3<br>Disch<br>5.1                                                                        | Zone Settlement       10         Sediment Quality       11         Consideration of Swell – Indicative Factor       18         narge Criteria       19         Overview       19                                                                                                                                                                                               |
| 5 | 4.2.2<br>4.2.3<br>4.3<br>Disch<br>5.1<br>5.2                                                                 | Zone Settlement10Sediment Quality11Consideration of Swell – Indicative Factor18narge Criteria19Overview19Regulatory Requirements19                                                                                                                                                                                                                                             |
| 5 | 4.2.2<br>4.2.3<br>4.3<br>Disch<br>5.1<br>5.2<br>5.3                                                          | Zone Settlement10Sediment Quality11Consideration of Swell – Indicative Factor18narge Criteria19Overview19Regulatory Requirements19Sensitive Receptors19                                                                                                                                                                                                                        |
| 5 | 4.2.2<br>4.2.3<br>4.3<br><b>Disch</b><br>5.1<br>5.2<br>5.3<br>5.4                                            | Zone Settlement10Sediment Quality11Consideration of Swell – Indicative Factor18narge Criteria19Overview19Regulatory Requirements19Sensitive Receptors19Receiving Environment Water Quality21                                                                                                                                                                                   |
| 5 | 4.2.2<br>4.2.3<br>4.3<br><b>Disch</b><br>5.1<br>5.2<br>5.3<br>5.4<br>5.5                                     | Zone Settlement10Sediment Quality11Consideration of Swell – Indicative Factor18marge Criteria19Overview19Regulatory Requirements19Sensitive Receptors19Receiving Environment Water Quality21Modelling Turbidity and Deposition from Discharge22                                                                                                                                |
| 5 | 4.2.2<br>4.2.3<br>4.3<br>Disch<br>5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>Conc                                    | Zone Settlement10Sediment Quality.11Consideration of Swell – Indicative Factor.18narge Criteria19Overview19Regulatory Requirements19Sensitive Receptors.19Receiving Environment Water Quality.21Modelling Turbidity and Deposition from Discharge22eptual Layout25                                                                                                             |
| 5 | 4.2.2<br>4.2.3<br>4.3<br>Disch<br>5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>Conc<br>6.1                             | Zone Settlement10Sediment Quality11Consideration of Swell – Indicative Factor18harge Criteria19Overview19Regulatory Requirements19Sensitive Receptors19Receiving Environment Water Quality21Modelling Turbidity and Deposition from Discharge22eptual Layout25Concept Design25                                                                                                 |
| 5 | 4.2.2<br>4.2.3<br>4.3<br>Disch<br>5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>Conc<br>6.1<br>6.2                      | Zone Settlement10Sediment Quality11Consideration of Swell – Indicative Factor18narge Criteria19Overview19Regulatory Requirements19Sensitive Receptors19Receiving Environment Water Quality21Modelling Turbidity and Deposition from Discharge22eptual Layout25Concept Design25Proposed Operating Mechanism25                                                                   |
| 6 | 4.2.2<br>4.2.3<br>4.3<br>Disch<br>5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>Conc<br>6.1<br>6.2<br>6.3               | Zone Settlement10Sediment Quality11Consideration of Swell – Indicative Factor18harge Criteria19Overview19Regulatory Requirements19Sensitive Receptors19Receiving Environment Water Quality21Modelling Turbidity and Deposition from Discharge22eptual Layout25Concept Design25Proposed Operating Mechanism25Design Parameters25                                                |
| 6 | 4.2.2<br>4.2.3<br>4.3<br>Disch<br>5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>Conc<br>6.1<br>6.2<br>6.3<br>6.4        | Zone Settlement10Sediment Quality11Consideration of Swell – Indicative Factor18harge Criteria19Overview19Regulatory Requirements19Sensitive Receptors19Receiving Environment Water Quality21Modelling Turbidity and Deposition from Discharge22eptual Layout25Concept Design25Proposed Operating Mechanism25Cell Sizing26                                                      |
| 6 | 4.2.2<br>4.2.3<br>4.3<br>Disch<br>5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>Conc<br>6.1<br>6.2<br>6.3<br>6.4<br>6.5 | Zone Settlement10Sediment Quality11Consideration of Swell – Indicative Factor18marge Criteria19Overview19Regulatory Requirements19Sensitive Receptors19Receiving Environment Water Quality21Modelling Turbidity and Deposition from Discharge22eptual Layout25Concept Design25Proposed Operating Mechanism25Design Parameters25Cell Sizing26Facility Staging and Development29 |

|    | 6.5.1  | Main Embankment                             |
|----|--------|---------------------------------------------|
|    | 6.5.2  | Saddle Dams                                 |
|    | 6.5.3  | Internal Bunds                              |
| 7  | Mass   | and Water Balance Model36                   |
|    | 7.1    | Model Assumptions and Accuracy              |
|    | 7.2    | Model Parameters                            |
|    | 7.2.1  | 'Capacity to Contain' Assessment            |
|    | 7.2.2  | Effluent Discharge Quality                  |
|    | 7.2.3  | Treatment of Resuspension                   |
|    | 7.3    | Modelling Results                           |
| 8  | Mode   | l Findings                                  |
| 9  | Surfa  | ce Water Assessment40                       |
|    | 9.1    | Site Surface Water Existing Conditions40    |
|    | 9.1.1  | Natural Catchments40                        |
|    | 9.1.2  | Flood Hydrology42                           |
|    | 9.1.3  | Flood Assessment43                          |
|    | 9.1.4  | Tidal Flooding43                            |
|    | 9.2    | Existing Water Quality44                    |
|    | 9.2.1  | Water Quality Assessment45                  |
|    | 9.3    | Modification to Site Surface Water45        |
|    | 9.3.1  | Proposed Catchment Modifications45          |
|    | 9.3.2  | Site Water Supply51                         |
|    | 9.3.3  | Spillway51                                  |
|    | 9.4    | Dam Hazard Classification – All Embankments |
| 10 | Prop   | osed Impact Management59                    |
|    | 10.1   | Operation of Facility                       |
|    | 10.2   | Construction Phase                          |
|    | 10.2.1 | Erosion and Sediment Mobilisation59         |
|    | 10.2.2 | Works Adjacent to/within Drainage Lines60   |
|    | 10.2.3 | Pollution61                                 |
|    | 10.2.4 | Flooding62                                  |
|    | 10.2.5 | Water Supply63                              |
|    |        |                                             |



|    | 10.2.6 Seawater Discharge                                        | 63 |
|----|------------------------------------------------------------------|----|
|    | 10.2.7 Erosion and Sediment Mobilisation                         | 64 |
|    | 10.2.8 Improper Disposal of Effluent and Operational Waste Water | 65 |
|    | 10.2.9 Flooding                                                  | 65 |
|    | 10.3 Decommissioning Phase                                       | 66 |
|    | 10.3.1 Erosion and Sediment Mobilisation                         | 67 |
|    | 10.3.2 Contaminant Mobilisation                                  | 67 |
|    | 10.3.3 Pollution                                                 | 68 |
| 11 | References                                                       | 69 |
| 12 | Limitations                                                      | 71 |



## **Tables**

| Table 6-1  | Design Parameters                                                                                   | 26        |
|------------|-----------------------------------------------------------------------------------------------------|-----------|
| Table 6-2  | Cell sizing                                                                                         | 26        |
| Table 6-3  | Sluice Intake Levels                                                                                | 27        |
| Table 7-1  | Volume of Dredged Material Contained at each Stage in Each Cell                                     | 37        |
| Table 9-1  | Predicted peak design flow for drainage features at the edge of the estuarine flat                  | 42        |
| Table 9-2  | Predicted flood depths for main drainage features at the edge of the estuarine mudfla Curtis Island | at,<br>43 |
| Table 9-3  | Tidal Range at Gladstone (Standard Port)                                                            | 43        |
| Table 9-4  | Predicted Extreme Tidal Surge Levels at Gladstone                                                   | 44        |
| Table 9-5  | Water Quality Objectives for the Waters of Curtis Island                                            | 45        |
| Table 9-6  | Natural Storage available in Catchment Valleys                                                      | 48        |
| Table 9-7  | Potential Average Annual Stormwater yields                                                          | 51        |
| Table 9-8  | RORB output of peak flood volumes and natural flows to DMPF Facility                                | 52        |
| Table 9-9  | Rational Method Parameters                                                                          | 53        |
| Table 9-10 | Spillway Design Parameters                                                                          | 53        |
| Table A-1  | Laboratory Analysis - Dredge Sample Descriptions                                                    |           |
| Table A-2  | Laboratory Analysis - Average PSD                                                                   |           |
| Table A-3  | Laboratory Analysis - Zone Settling                                                                 |           |
| Table B-4  | Long Term Rainfall Statistics (107 years, commencing 1900) (mm)                                     |           |
| Table B-5  | Monthly Site & Data Drill Rainfalls (Jan 1958 - Dec 2007) (mm)                                      |           |
| Table B-6  | Mean Monthly Pan Evaporation (mm/day)                                                               |           |
| Table B-7  | Adopted Natural Land Type AWBM Parameters                                                           |           |
| Table B-8  | Average Particle Size Distribution                                                                  |           |
| Table C-9  | Stage 1 DMPF Performance Assessment Summary                                                         |           |
| Table C-10 | Stage 2 DMPF Performance Assessment Summary                                                         |           |
| Table C-11 | Stage 3 DMPF Performance Assessment Summary                                                         |           |
| Table C-12 | Stage 4 DMPF Performance Assessment Summary                                                         |           |
| Table F-13 | Catchment 1 Site Assessment                                                                         |           |
| Table F-14 | Catchment 2 Site Assessment                                                                         |           |
| Table F-15 | Surface Water Assessment - Location A                                                               |           |
| Table F-16 | Catchment 3 Site Assessment                                                                         |           |



- Table F-17 Surface Water Assessment Location B
- Table F-18 Surface Water Assessment Location C
- Table F-19 Surface Water Assessment Location D
- Table F-20 Catchment 4 Site Assessment
- Table F-21 Surface Water Assessment Location F
- Table F-22 Surface Water Assessment Location G
- Table F-23 Surface Water Assessment Location H
- Table F-24 Catchment 5 Site Assessment
- Table F-25 Catchment 6 Site Assessment
- Table F-26 Surface Water Assessment Location I
- Table F-27 Catchment 7 Site Assessment
- Table F-28 Surface Water Assessment Location J
- Table G-29 Adopted Mannings 'n' Values
- Table G-30 Predicted peak design flow for drainage features at the edge of the estuarine flat
- Table G-31 Predicted Flood Depths near start of Mudflat
- Table G-32 Predicted peak design flow for modified catchments 3 and 4 at edge of facility
- Table G-33 RORB model Parameters
- Table G-34 Existing Site Catchment RORB Results
- Table G-35 Proposed Site Catchment RORB Results
- Table H-36 Catchment 3 Storage yield
- Table H-37 Catchment 4 Storage Yield
- Table I-38 Risk Assessment Likelihood Scale
- Table I-39
   Risk Assessment Consequence Scale
- Table I-40
   Risk Assessment Risk Rating Matrix
- Table J-41 Hazard Matrix



## **Figures**

| Figure 2-1  | Location Plan                                                                                                       | . 3 |
|-------------|---------------------------------------------------------------------------------------------------------------------|-----|
| Figure 3-1  | Landform Constraints                                                                                                | . 6 |
| Figure 3-2  | Dredged Materials Transport to DMPF                                                                                 | . 7 |
| Figure 4-1  | Sediment Core Investigation                                                                                         | . 9 |
| Figure 4-2  | Average Particle Size Distribution                                                                                  | 10  |
| Figure 4-3  | Schematic of potential contaminant migration pathways for the DMPF (adapted from (USACE 2003)                       | 12  |
| Figure 5-1  | Distribution of seagrass beds within Port Curtis area- Reproduced from Rasheed et al (2003)                         | 20  |
| Figure 5-2  | CSD with 50 mg/L discharge - Maximum Plume TSS Concentration (BMT WBM)                                              | 22  |
| Figure 5-3  | CSD with 50 mg/L discharge - TSS Concentration Exceeded 10% of the Time (BMT WBM)                                   | 23  |
| Figure 5-4  | CSD with 50 mg/L discharge - Sediment Deposition                                                                    | 24  |
| Figure 6-1  | Conceptual Operating mechanism of DMPF                                                                              | 25  |
| Figure 6-2  | Conceptual Layout of the DMPF                                                                                       | 28  |
| Figure 6-3  | Proposed DMPF Cell Sequencing                                                                                       | 30  |
| Figure 9-1  | Existing Catchment Plan                                                                                             | 41  |
| Figure 9-2  | Modified Catchment Plan                                                                                             | 47  |
| Figure 9-3  | Surface Water Infrastructure Plan                                                                                   | 50  |
| Figure 9-4  | Initial Spillway Plan                                                                                               | 55  |
| Figure 9-5  | Final Spillway Plan                                                                                                 | 56  |
| Figure B-1  | Comparison of Data Drill with Site Recorded Data, Monthly Totals (1958 - 2007)                                      |     |
| Figure B-2  | Correlation of evaporation Data Drill values with site recorded data, monthly totals (January 1967 – December 1992) |     |
| Figure B-3  | Site Layout                                                                                                         |     |
| Figure B-4  | AWBM Process                                                                                                        |     |
| Figure B-5  | Land Use Classification                                                                                             |     |
| Figure F-6  | Hec-Ras Result for Catchment 2                                                                                      |     |
| Figure F-7  | Hec-Ras Result for Catchment 2 Location A                                                                           |     |
| Figure F-8  | Hec-Ras Result for Catchment 3                                                                                      |     |
| Figure F-9  | Hec-Ras Result for Catchment 3 Location C                                                                           |     |
| Figure F-10 | Hec-Ras Result for Catchment 3 Location D                                                                           |     |
| Figure F-11 | Hec-Ras Result for Catchment 4                                                                                      |     |



- Figure F-12 Hec-Ras Result for Catchment 4 Location F
- Figure F-13 Hec-Ras Result for Catchment 4 Location H
- Figure F-14 Hec-Ras Result for Catchment 5
- Figure F-15 Hec-Ras Result for Catchment 6
- Figure F-16 Hec-Ras Result for Catchment 6 Location I

## **Appendices**

- Appendix A Sediment Characterisation
- Appendix B Mass and Water Balance Model Input Data
- Appendix C Sediment Basin Design Calculations
- Appendix D Leach Elutriate Results
- Appendix E GLNG Marine Water Quality Report
- Appendix F Site Assessment Notes
- Appendix G Flood Assessment
- Appendix H Water Supply Dam Yield
- Appendix I Risk Assessment Scale
- Appendix J Hazard Matrix



## Abbreviations

| Abbreviation | Description                                                                       |
|--------------|-----------------------------------------------------------------------------------|
| AEP          | Annual Exceedence Probability                                                     |
| ANRA         | Australian Natural Resources Atlas                                                |
| ANZECC       | Australian and New Zealand Environment and Conservation Council                   |
| AR&R         | Australian Rainfall and Runoff                                                    |
| ARI          | Annual Reoccurrence Interval                                                      |
| AWBM         | Australian Water Balance Model                                                    |
| BOD          | Biological Oxygen Demand                                                          |
| CDFs         | Confined Disposal Facilities                                                      |
| CSD          | Cutter Suction Dredging                                                           |
| DERM         | Queensland Department of Environment and Resources Management<br>(previously EPA) |
| DMPF         | Dredge Material Placement Facility                                                |
| DO           | Dissolved Oxygen                                                                  |
| DPA          | Dugong Protection Area                                                            |
| EIS          | Environmental Impact Statement                                                    |
| EM           | Engineering Manual                                                                |
| EPA          | Queensland Environmental Protection Agency                                        |
| GBR WHA      | Great Barrier Reef World Heritage Area                                            |
| GPC          | Gladstone Ports Corporation                                                       |
| НАТ          | Highest Astronomical Tide                                                         |
| HEC-RAS      | Hydrologic Engineering Centre River Analysis System                               |
| IEAust       | Institute of Engineers Australia                                                  |
| LNG          | Liquefied Natural Gas                                                             |
| RRL          | Rainfall Runoff Library                                                           |
| TSHD         | Trailing Suction Hopper Dredger                                                   |
| TSS          | Total Suspended Solids                                                            |
| USACE        | United State Army Corps of Engineers                                              |



## Introduction

This report has been prepared as part of the Supplementary EIS to provide additional information on the design of the proposed dredge material placement facility (DMPF) at Laird Point and its impact on surface waters. This report builds on information provided on the material placement facility provided in EIS Section 8.17 and its purpose is to:

- Provide further detail on the DMPF design;
- · Refine the surface water impact assessment on the basis of the revised design; and
- Address comments that were raised in government agency and public submissions on the EIS.

### 1.1 Scope of Work

URS has been engaged to undertake a preliminary design and surface water impact assessment of the proposed DMPF.

A fundamental component of the DMPF design is the dredge spoil dewatering process. This report and associated investigation evaluates settling performance and storage capacity of the facility during the placement process, and in so doing establishes the internal layout of the facility to show that the proposed DMPF design will be able to achieve the required dewatering objectives.

This report should be read in conjunction with Attachments G1-G9 of the EIS Supplement.

### 1.2 Objectives

The key objectives of the DMPF preliminary design are to:

- Provide adequate storage for the placement of dredged materials, including slurried seawater, during all stages of the dredging operation;
- Achieve required effluent discharge criteria, therefore having little to no impact on sensitive receptors, and
- Providing an efficient dewatering process, that overcomes both operational and constructability limitations.

These objectives are fundamentally interrelated and have been the basis for the preliminary design of the DMPF.



## **Project Description**

The capital dredging programme to develop an approach channel to the proposed LNG facility on Curtis Island and also to create a new berthing and manoeuvring area for LNG vessels comprises two elements as follows:

- Creation of an approach channel adjacent Hamilton Point and China Bay in Port Curtis to -13.5 m LAT; and
- Creation of a new berthing and manoeuvring area at the proposed LNG facility providing depths of -13.5 m LAT.

The location map shown as Figure 2-1 shows the LNG facility area, the capital dredging area and the dredge material placement facility footprint.

The DMPF will cover an area of approximately 120 ha, and have a capacity of 10.1 million m<sup>3</sup> of consolidated dredged material. The DMPF will also provide some capacity for ongoing maintenance dredging.

A more detailed description of the dredging project, proposed dredging equipment, and dredging scenarios envisaged is provided in Attachment G9.





A4

## 3.1 Design Criteria

The design criteria adopted for the design of the DMPF are presented in Table 3-1. The design criteria were developed with reference to the Dredging and Dredged Material Disposal, Engineering Manual EM 11102-5025, Washington, D.C published by U.S Army Corps of Engineers (USACE) and information gathered during site visits.

| Item                                                      | Design Criteria                                                                                                                            | Source of Information                                                                                 |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Design capacity                                           | Initial embankment design to provide<br>storage during dredging operation (48.8<br>weeks, 6.8 million m <sup>3</sup> of dredged materials) | HR Wallingford                                                                                        |
| Freeboard                                                 | Minimum of 0.6 m                                                                                                                           | USACE (EM 1110-2-5027)                                                                                |
| Ponding depth                                             | Minimum of 0.6 m                                                                                                                           | USACE (EM 1110-2-5027)                                                                                |
| Surface area                                              | 120 ha                                                                                                                                     | Shapefile                                                                                             |
| Effluent Quality                                          | 50 mg/L suspended solids concentrations                                                                                                    | Consistency with recently<br>approved and concurrent<br>dredging projects in the Port of<br>Gladstone |
| Length to width ratio to<br>improve settlement efficiency | 3:1                                                                                                                                        | USACE (EM 1110-2-5027)                                                                                |
| Rainfall                                                  | Highest rainfall event in 100 years<br>commencing 1900 to 2000                                                                             | Bureau of Meteorology                                                                                 |

#### Table 3-1 Design Criteria Summary

## 3.2 Constraints

The design of a DMPF requires careful evaluation of the design criteria in conjunction with design constraints. As part of the design approach, an evaluation of potential design constraints was performed. Section 3.2.1 to 3.2.5 discusses the potential design constraints that were considered in the design of the DMPF.

## 3.2.1 Facility Life

The proposed LNG facility is anticipated to have a lifespan of 20 years. In order to maintain the channel depth required for LNG vessels during the lifespan of the LNG facility, periodic additional maintenance dredging may be required. Therefore the DMPF will have the same lifespan as that of the proposed LNG facility.

## 3.2.2 Landform Constraints

The shape of the disposal area is constrained by the natural topographical and drainage constraints present on the site. Key landform constraints include the following:

- Footprint extent Gas Transmission Pipeline (GTP) Corridor on the North and East boundary and Queensland Gas Company (QGC) property on South boundary (as shown in Figure 3.1);
- Proximity to shore; and
- Encroachment on Grahams Creek and adjacent catchments.

At this stage of DMPF design no constraints have been placed on the maximum allowable height for the embankments.



#### **3 Design Criteria and Constraints**

### 3.2.3 Future Land Use Constraints

The final landform of the DMPF is expected to be stable and free draining once rehabilitation works have been completed, but the nature of the dredge material and underlying soft clay foundation are potential key constraints on the future land use of the site. Potential future land uses could include possible commercial or industrial use or as native vegetation and habitat. While the DMPF area will become temporarily unsuitable as a habitat for flora and fauna during the construction and operation of the facility, it is anticipated that a short time after the capital dredging is completed and a majority of the area is rehabilitated, the area should quickly revegetate and regain productivity (Herbich, 1992).

#### 3.2.4 Constructability

The availability of material for construction has constructability and cost implications. It is anticipated that construction materials will either be locally sourced, imported or utilise dredged materials. Potential constraints on construction material are as follows:

- Potential off-site sources;
- Availability of on-site rock borrow;
- · Potential location for on-site quarry facility; and
- Barge access.

#### 3.2.5 Access Requirements

Site access is essential for the construction, operation and management of the DMPF. Access to the facility is mainly constrained by the surrounding landform. Considerations for access include:

- Roads for earthmoving equipment;
- Barge access locations;
- Jetty location/use;
- Booster station; and
- Dredge slurry transfer pipeline.

Access to the site for both facility and workforce is proposed to be either via a causeway located on the existing tidal surface at the front of the facility or at the alternative landing point location indicated on Figure 3-2.





#### This drawing is subject to COPYRIGHT. It remains the property of URS Australia Pty Ltd.



The characteristics of the dredge material are a key consideration in the design and operation of the DMPF. The physical properties determine the storage capacity and detention time required for appropriate settlement. The presence of contaminants in dredge material will determine the potential surface water and groundwater impacts that may arise from the storage and dewatering of dredge material with the DMPF.

## 4.1 Dredge Volumes

There are broadly two types of material to be dredged, loose sandy silt and a small amount of rock. Table 4-1 shows the estimated proportions of sand and rock in the dredge areas.

| Dredge Area                         | Dredge volumes<br>(m³) in situ |         | Total Volume (m <sup>3</sup> )<br>in situ |
|-------------------------------------|--------------------------------|---------|-------------------------------------------|
|                                     | Sandy<br>Silt                  | Rock    |                                           |
| GLNG basin                          | 5,482,000                      | 193,000 | 5,675,000                                 |
| North China Bay Approach<br>Channel | 1,079,000                      | 0       | 1,079,000                                 |
| Total volume (m <sup>3</sup> )      | 6,561,000                      | 193,000 | 6,754,000                                 |

Table 4-1 Dredge Material Volumes

## 4.2 Laboratory Testing

A field sampling program was undertaken to supplement the assessment of dredge sediments presented in EIS Appendix R3.

Intact sediment cores were collected using a vibracorer from eight locations within the capital dredging area. The sampling locations are presented in Figure 4-1. Sampling locations were selected based on proximity to sites that had previously been sampled during the EIS as discussed in EIS Appendix R3. Sediment samples were taken from each sediment core at each change in lithology and submitted for laboratory analysis. The laboratory testing comprised the following:

- Particle Size Distribution;
- Zone settlement; and
- Sediment Quality
  - Metal Leachate.





#### 4.2.1 Particle Size Distribution (PSD)

PSD analysis was conducted by sieve and hydrometer by Australian Soil Testing laboratories in accordance with USACE EM 1110-2-5027. The laboratory results for the PSD analysis and a description of the material present in each sediment sample are presented in Appendix A.

The PSD results were combined to estimate the anticipated particle size distribution of dredge material that would expected for the duration of the dredging program. This average particle size distribution is provided in Figure 4-2.



The average PSD indicates that approximately 57 % of the dredged materials are coarse gained and 43 % are fine grained where USACE EM 1110-2-5027 defines coarse grained materials to be > 0.075 mm (>No. 200 sieve). The PSD of Borehole 07A (0-1.0 m) and 08C (4.74-5.6 m) most closely reflect this average PSD and are described as silty sand. This average PSD has been assumed for design purposes as representative of the material within the dredging channel.

#### 4.2.2 Zone Settlement

Zone Settling analysis was conducted on samples of dredge material at Australian Soil Testing laboratories in accordance with the method described in USACE 1987.

An initial dry weight of 50 g from each borehole core layer was placed in a cylinder and filled with seawater (19°C) to a height of 344 mm (1 L). This equates to a ratio of approximately 1:10 to 1:20 of sediment (ranging from saturated to dry) to water. The interface between the supernatant and the settling materials was observed and recorded over time. The final settlement time was a visual observation, chosen conservatively as the time when zone settling was complete. Using the time to 100 % settlement and the change in height the zone settling velocity for each sample was calculated.

#### Analysis

Results of the zone settling tests are provided in Appendix A. In general the samples containing higher portions of sand and lower portions of clays/silts have a faster settling velocity shown with a steeper initial curve in the zone settling tests. The samples with increasing clay content settle at slower rates and flocculate together to have a higher final settlement height. The higher content of fines (i.e. the flatter the PSD curve) tends to increase the initial settling time and also the height of the sediment during zone settlement. Those with a sandy clay description have the highest final settlement height, compared to silty clay.

The zone settling results are summarised in Table 4-2.

| PSD                                                       | Time to 100% Settlement (min) | Settling Velocity, $v_s$ (m/s) |
|-----------------------------------------------------------|-------------------------------|--------------------------------|
| Average Sample                                            | 620                           | 5.16E-05                       |
| Sample with a larger proportion of fines                  | 1440                          | 3.32E-06                       |
| Sample with a larger<br>proportion of coarse<br>particles | 15                            | 3.48E-04                       |

Table 4-2 GLNG Sample Settling Rates

The zone settling results were compared with particle size settling velocities predicted by Stokes' Law to validate the testing results and also identify critical particle sizes for settling. This comparison found that the settling velocity for the average sample is equivalent to that for a particle sized between 0.005 mm – 0.01 mm whilst the slowest settling velocity corresponds to that for a 0.002 mm sized particle.

The 0.002 mm particle size was selected as the critical particle size for settlement of the samples with the slowest settling velocities. This is a conservative estimate as it does not allow for any flocculation of the clay/silt fraction within the facility.

#### 4.2.3 Sediment Quality

The quality of marine sediment within the proposed capital dredge area was investigated as part of the EIS Marine Sediment Investigation report (EIS Appendix R3). This report found elevated concentrations of antimony, arsenic, chromium, copper, manganese, mercury and nickel within the dredge material. These levels were generally found at depths greater than 1.0 m BSB. It was concluded that it is likely that the presence of metals in marine sediments is naturally occurring as several metals were consistently present at higher concentrations in the residual material than the overlying sediment. It was also stated in the report that despite the likelihood of metals being naturally occurring, that metals present in the material may be mobilised during the dredging activity and potentially pose a risk to any receiving environment where dredging waters are released.

The US Army Corps of Engineers (USACE 2003) has defined three key pathways by which contaminants associated with dredge material may be mobilised and pose a risk to the receiving environment. These pathways are:

- 1. Decant discharges to surface water during filling operations and subsequent settling and dewatering
- 2. Precipitation surface runoff



3. Leachate into groundwater

The potential mobilisation pathways are represented in Figure 4 – 3 below.





In order to assess the potential for metals to be mobilised, and pose a risk to the receiving environment of the DMPF, intact sediment cores where collected using a vibracorer from eight locations within the capital dredging area and submitted for laboratory analysis. Sampling locations were selected based on proximity to sites that had previously been sampled during the EIS and discussed in Appendix R3. Sub-samples were taken from each sediment core at the changes lithology.

#### Laboratory Analysis

A total of 26 sediment samples were submitted to ALS laboratories for elutriate and leachate analysis for Aluminium, Arsenic, Cadmium, Chromium, Copper, Iron, Lead, Manganese, Nickel and Zinc.

• Elutriate Testing

Elutriate testing was undertaken in accordance with the methods described in the National Assessment Guidelines for Dredging 2009 (NAGD, 2009) to assess the potential for metals to be mobilised from dredge material and impact marine water quality through decant discharges from the DMPF during filling operations and subsequent settling and dewatering.

The elutriate test involves the mixing of sediment with seawater in a ratio of 1:4. The test simulates the effects of dredging on the release of bound contaminants near the dredge head and during the transfer from the dredger to the DMPF and subsequent decant discharge from the DMPF.

Test results are normally compared to the relevant Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC/ARMCANZ 2000a,b) trigger values for 95 percent protection.

Leachate Testing

Leachate testing was undertaken in accordance with the Australian Standard Leaching Procedures (AS4439.3 and AS4439.2) using deionised water as leaching fluid. The purpose of the analysis was to assess the potential for metals to leach from stored sediment in the DMPF following rainfall and to cause environmental impacts through discharges to surface water in surface runoff or migration to groundwater.

#### **Results and Discussion**

The elutriate and leachate testing results are presented in Appendix D. .

• Elutriate Testing

The elutriate results are summarised in Table 4-3. Relevant ANZECC 2000 trigger values are provided, where available, for comparison purposes.

|                                                    | Aluminium       | Arsenic      | Cadmium        | Chromium      | Copper           |
|----------------------------------------------------|-----------------|--------------|----------------|---------------|------------------|
| Minimum (µg/L)                                     | <10             | <0.5         | <0.2           | <0.5          | <1               |
| Maximum (µg/L)                                     | 260.0           | 14.4         | 0.8            | 0.6           | 4.0              |
| Average (µg/L)                                     | 44.0            | 4.4          | <0.2           | <0.5          | <1               |
| ANZECC 2000<br>(Ambient WQ<br>Sampling<br>Results) | ID (170 – 1210) | ID (7 – 18)  | 5.5 (LD – 2.7) | 27.4 (LD – 9) | 1.3 (LD -<br>28) |
|                                                    | Iron            | Lead         | Manganese      | Nickel        | Zinc             |
| Minimum                                            | <5              | <0.2         | 63.3           | <0.5          | <5               |
| Maximum                                            | 688.0           | <0.2         | 2520.0         | 4.9           | 22.0             |
| Average                                            | 96.2            | <0.2         | 1117.1         | 1.6           | 3.8              |
| ANZECC 2000<br>(Ambient WQ<br>Sampling<br>Results  | ID (460 - 2030) | 4.4 (LD – 8) | ID (5-31)      | 70 (LD – 7)   | 15 (LD –<br>39)  |

#### Table 4-3 Summary elutriate results

• ID = Insufficient data is available to define a trigger value.

 (Ambient WQ Sampling Results) = Measured range for Port Curtis waters in the vicinity of the discharge location. These results are presented in Appendix E.

#### Aluminium

Aluminium results ranged from below detection limits to 260  $\mu$ g/L with the average concentration being 44  $\mu$ g/L. No ANZECC 2000 trigger value has been established for aluminium (due to insufficient data) to enable the significance of the measured results to be



determined. However a comparison of the results with water quality monitoring data from the vicinity of the proposed discharge from the DMPF shows that the results are within the natural range (Appendix D).

#### Arsenic

Arsenic was detected at concentrations up to 14.4  $\mu$ g/L with the average concentration being 4.4  $\mu$ g/L. No ANZECC 2000 trigger value has been established for arsenic (due to insufficient data) to enable the significance of the measured results to be determined. However a comparison of the results with water quality monitoring data from the vicinity of the proposed discharge from the DMPF shows that the results are within the natural range (Appendix D).

#### Cadmium

Cadmium was generally absent from the elutriate samples. Only one sample recorded a result which was above detection limit and this was well below the ANZECC 2000 trigger value.

#### Chromium

Chromium was only detected in one sample and the concentration detected was well below the ANZECC 2000 trigger value.

#### Copper

Copper was generally absent from the samples with the exception of three samples for which concentrations ranged from  $2 - 4 \mu g/L$ . These concentrations exceed the ANZECC 2000 trigger value however they are well within the natural range recorded during water quality sampling in the area (Appendix D).

#### Iron

Iron was detected in the majority of samples at concentrations ranging from 6  $\mu$ g/L to 688  $\mu$ g/L. An ANZECC 2000 trigger value has not been established for iron (due to insufficient data) to enable the significance of the measured results to be determined. However a comparison of the results with water quality monitoring undertaken in the vicinity of the proposed discharge from the DMPF shows that the results are within the natural range (Appendix D).

#### Lead

Lead was not detected in any of the elutriate samples.

#### Manganese

Manganese was detected in all samples at concentrations ranging from a low of 63  $\mu$ g/L to a high of 2520  $\mu$ g/L with average concentrations across all samples being approximately 1100  $\mu$ g/L. No specific guideline levels for manganese are specified in the ANZECC 2000 guidelines due to insufficient data. Manganese is a naturally occurring element that is found in rock, soil and water. It is ubiquitous in the environment and comprises about 0.1 % of the

Earth's crust. Given the absence of specific guideline levels and the high levels present in sediment it is likely that manganese is naturally occurring in the area and will not pose a significant risk to the receiving environment

#### Nickel

Nickel was detected in the majority of elutriate samples. The maximum concentration recorded was  $4.9 \ \mu g/L$  which is well below the ANZECC 2000 trigger value.

#### Zinc

Zinc was detected in three of the elutriate samples. The recorded concentration range from 6  $\mu$ g/L to 22  $\mu$ g/L. Whilst this maximum value exceeds the ANZECC 2000 trigger value it is well within the natural range recorded within Port Curtis (Appendix D).

The elutriate testing results indicate that there is a low potential for dredge materials to pose a risk to ambient water quality either at the dredge head or through the discharge of decanted seawater from the DMPF



#### • Leachate Testing

The leachate testing results are provided in Appendix D. Summary leach results are provided in Table 4-4.

|                                                    | Aluminium       | Arsenic      | Cadmium        | Chromium      | Copper           |
|----------------------------------------------------|-----------------|--------------|----------------|---------------|------------------|
| Minimum (µg/L)                                     | 240.0           | 1.0          | 0.1            | 1.0           | 2.0              |
| Maximum (µg/L)                                     | 17800.0         | 27.0         | 2.4            | 30.0          | 50.0             |
| Average (µg/L)                                     | 4921.3          | 12.2         | 0.6            | 8.6           | 11.4             |
| ANZECC 2000<br>(Ambient WQ<br>Sampling<br>Results) | ID (170 – 1210) | ID (7 – 18)  | 5.5 (LD – 2.7) | 27.4 (LD – 9) | 1.3 (LD -<br>28) |
|                                                    | Iron            | Lead         | Manganese      | Nickel        | Zinc             |
| Minimum                                            | 110.0           | 1.0          | 8.0            | 1.0           | 15.0             |
| Maximum                                            | 36800.0         | 200.0        | 296.0          | 15.0          | 526.0            |
| Average                                            | 6344.6          | 17.3         | 70.8           | 5.2           | 120.5            |
| ANZECC 2000<br>(Ambient WQ<br>Sampling<br>Results  | ID (460 - 2030) | 4.4 (LD – 8) | ID (5-31)      | 70 (LD – 7)   | 15 (LD –<br>39)  |

 Table 4-4
 Summary leach results

The results shown in Table 4-4 show that the dredge material has the potential to generate metal containing leachates following rainfall. As mentioned previously there are two main pathways by which leachates may migrate to the environment: surface runoff and migration to groundwater. Each of these pathways has been assessed separately to assess the potential for adverse impact on the receiving environment.

#### a. Surface Runoff

To interpret the potential impacts that may arise from surface runoff, the leach results have been compared against ANZECC (2000) guidelines as a highly conservative approach.

#### Aluminium

Aluminium leach results ranged from 240  $\mu$ g/L to 17,800  $\mu$ g/L with average concentrations being 4921  $\mu$ g/L. No trigger values have been established for aluminium. However the results correspond with elevated aluminium concentrations that were detected in marine sediments and consequently are considered to be naturally occurring and therefore unlikely to pose a significant problem.

#### Arsenic

Arsenic was detected in leach samples from most locations sampled at concentrations ranging from 1.0  $\mu$ g/L to 27  $\mu$ g/L. No prescribed ANZECC (2000) limits have been established for arsenic. It is not expected that the concentrations detected would pose a significant environment risk. Arsenic leach results ranged from 1 to 27  $\mu$ g/L. No trigger values have been established for arsenic. The concentrations detected are considered to be a naturally occurring problem.

#### Cadmium

Cadmium was detected in leachates from nine samples. All concentrations detected were below the ANZECC (2000) trigger value of  $5.5 \mu g/L$ .

#### Chromium

Chromium was detected in leachates from 24 samples in generally low concentrations. Two leachates exceeded the ANZECC (2000) guideline of 27.4 µg/L.

#### Copper

Copper was detected in leachate from 22 samples. The concentrations generally exceeded the ANZECC (2000) guideline of 1.3  $\mu$ g/L. Interestingly copper was only detected in low concentrations within the dredge sediment.

#### Lead

Lead was detected in leachates from 18 samples at generally low concentrations. Three samples exceeded the ANZECC (2000) guidelines for lead of  $4.4 \mu g/L$ .

#### Manganese

Manganese was detected at moderate concentrations in leachates from all locations.

#### Nickel

Nickel was detected in low concentrations in 20 samples. All samples were below the ANZECC (2000) guideline value of 70  $\mu$ g/L.

#### Zinc

Elevated zinc concentrations were detected in leach samples from all locations. The minimum concentration detected was equivalent to the ANZECC (2000) trigger value of 15  $\mu$ g/L and the maximum was 526  $\mu$ g/L. Elevated zinc levels have been reported for water samples collected from Port Curtis (see Appendix D). It is uncertain whether these levels are naturally occurring or whether they represent contamination of sediments and pose an environmental risk.

The results indicate that occasional exceedances of water quality guidelines may occur for copper and lead and regular exceedances for copper and zinc, should surface runoff concentrations mirror those detected in leach samples. However the likelihood of surface runoff being discharged at concentrations approaching leach results is extremely low. During operation of the facility any



leachate generated from rainfall will be significantly diluted by transport water prior to discharge. Following closure, the DMPF will be transformed into a stable free-draining landform by reshaping the surface to promote controlled runoff and prevent ponding of water. The prevention of water from ponding on the surface will minimise the opportunity for the formation of metal containing leachates in surface runoff. Runoff from higher elevations around the periphery would be directed in a controlled manner along a network of surface drains toward the centre of the landform then to the spillway. The spillway would serve as a chute directing surface waters to Port Curtis.

b. Migration to groundwaters

The potential for leachate migration to groundwater is discussed in the Hydrogeological (Groundwater) Study undertaken for the DMPF (Attachment G3). The hydrogeology study found as a consequence of the short seepage period, slow groundwater migration, and limited alteration in groundwater patterns the impact of seepage on the groundwater resources and ocean (once groundwater reaches the ocean) will be reduced due to dilution, attenuation, and limited source. This suggests that the potential impacts of leachates forming within the facility will be low.

### 4.3 Consideration of Swell – Indicative Factor

When a dredger lifts material off the seabed, the volume which this material occupies in the DMPF can be larger than the volume it occupied in the ground. This increase in volume can be expressed by the ratio of the volume of the soil in the containment area after dredging to that volume of the soil in situ and is known as the bulking factor. In practice, a change in density is caused by the formation of additional voids in the soil or rock which reduces the dry density.

Bulking factors vary greatly for different types of soil, different particle size distributions and for different methods of dredging. In the majority of cases cited in literature, dredging operations rely heavily on practical experience to predict bulking factors. This is consistent with BS 6349 Part 5 which qualifies its guidance by noting that 'experienced judgement is required to provide reliable estimates on volumetric changes'.

When material is being dredged with a CSD, and in particular for soils with a low in situ density and relatively high fines content, a bulking factor of between 1.1 and 1.4 can be expected.

A bulking factor of 1.4 has been utilised for the purposes of this assessment as a conservative worst case scenario and the actual bulking factor may be smaller

## 5.1 Overview

Discharges of seawater will occur from the DMPF through dewatering of the dredge spoil that has been deposited in the facility. It is estimated that the volume of seawater discharge will be approximately 170 ML/day. These discharges have the potential to have a negative impact on the receiving environment if the quality of the discharge is not appropriately controlled through adequate design.

## 5.2 Regulatory Requirements

In Queensland, effluent discharges to the marine environment are regulated by the Department of Environment and Resource Management (DERM). When new infrastructure is proposed, a licensing agreement is formed as part of the planning process, to permit offsite discharges.

As yet, no instructions on water quantity and quality objectives for the DMPF have been established. It is however understood that the concentration of suspended solids must not exceed 50 mg/L, in the dewatering discharge from the current DMPF at Fishermans Landing and the recently approved DMPF at Wiggins Island

## 5.3 Sensitive Receptors

Seagrass communities have been identified as one of the main sensitive receptors in Port Curtis. The value of seagrasses in the Port Curtis area to dugong has been recognised by the declaration of the Rodds Bay Dugong Protection Area (DPA). Figure 5-1 below shows the seagrass communities within Port Curtis as belonging to *Zostera Capricorni* or *Halophila Ovalis*, with one usually dominant in each area (Rasheed *et. al.* 2003). Meadows in the receiving environment of the decant discharge from the DMPF include areas 30 - 36 and 124 - 125. However, these areas are mostly isolated or aggregated patches of seagrass growth, and represent an area which is small in comparison to the more established areas of cover on the mainland side of the estuary. These areas are summarised in Table 5-1 using information gathered from Rasheed *et. al.* (2003).

| Meadow<br>ID | Community Type                                       | Cover              | Mean Biomass<br>(g dw m <sup>-2</sup> ) | Mean<br>Area (ha) | No<br>Sites |
|--------------|------------------------------------------------------|--------------------|-----------------------------------------|-------------------|-------------|
| 30           | Light Zostera Capricorni                             | Aggregated patches | 2.9 ± 1.5                               | 14.9 ± 1.3        | 2           |
| 31           | Light Zostera Capricorni with<br>Halophila Ovalis    | Aggregated patches | $0.9 \pm 0.2$                           | 40.0 ± 2.6        | 19          |
| 32           | Zostera Capricorni                                   | Isolated patches   | Na                                      | 2.4 ± 0.3         | 0           |
| 33           | Moderate Halophila Ovalis<br>with Zostera Capricorni | Aggregated patches | 2.0 ± 1.2                               | 2.1 ± 0.4         | 3           |
| 34           | Moderate Halophila Ovalis<br>with Zostera Capricorni | Aggregated patches | 1.0 ± 0.5                               | 10.1 ± 0.8        | 6           |
| 35           | Light Zostera Capricorni with<br>Halophila Ovalis    | Aggregated patches | 0.7 ± 0.2                               | 22.1 ± 2.0        | 18          |
| 36           | Light Zostera Capricorni                             | Isolated patches   | 0.3 ± 0.3                               | $6.5 \pm 0.7$     | 2           |
| 124          | Zostera Capricorni                                   | Isolated patches   | Na                                      | na                | 0           |
| 125          | Zostera Capricorni                                   | Isolated patches   | Na                                      | na                | 0           |

#### Table 5-1 Mean Biomass and Area of Seagrass Meadows in the receiving environment of the DMPF







URS

Drawn: MG

Job No.: 4262 6440

| N                                                            | SEAGRASS                                                                                                                                                       |                                                                                                |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| W ZE                                                         | Halophila decipiens                                                                                                                                            | GLNG Gas Transmission Pipeline (Sep. 2009)                                                     |
| 5                                                            | Halophila decipiens with Halophila ovalis                                                                                                                      | Existing Channels                                                                              |
| Kilemetere                                                   | Halophila ovalis with Zostera Capricorni                                                                                                                       | Proposed Dredging Channel                                                                      |
|                                                              | Zostera capricorni                                                                                                                                             | Dredge Material Placement Facility                                                             |
| Scale 1:70 000 (A4)<br>Datum : GDA 94                        | Zostera capricorni with Halophila ovalis                                                                                                                       | LNG Facility Indicative Site Boundary                                                          |
| ource: This map may contain data which is sourced and Copyri | ht. Refer to Section 18.2 of the EIS for Ownership and Copyright.                                                                                              | I                                                                                              |
| Client                                                       | GLADSTONE LNG PROJECT<br>ENVIRONMENTAL IMPACT STATEMENT<br>SUPPLEMENT<br>DREDGE MATERIAL PLACEMENT FACILITY<br>DEWATERING ASSESSMENT AND<br>PRELIMINARY DESIGN | DISTRIBUTION OF SEAGRASS BEDS<br>WITHIN PORT CURTIS<br>REPRODUCED<br>FROM RASHEED ET AL (2003) |

File No.: 42626440-g-2191.mxd

Approved: JL

Date: 19-11-2009

Figure: 5-1

Rev. A

A4

### 5.4 Receiving Environment Water Quality

URS conducted a marine water quality survey from 22 to 23 July 2009 to supplement marine water quality data previously gathered from other areas within Port Curtis. The findings of this survey are provided in Appendix E. The following is a summary of the baseline water quality of the immediate coastal vicinity of the proposed DMPF.

#### рН

The pH levels are generally within the QWQG 2006 limits and exhibit pH characteristic of seawater. In general the pH levels vary from 8.0 to 8.4 pH levels were not significantly different between low and high tide.

#### DO

Dissolved oxygen levels complied with the QWQG 2006 guideline levels during high tide. However during low tide dissolved oxygen levels were lower showing some signs of oxygen depletion at this time.

#### Conductivity and Salinity

Conductivity and salinity levels varied between low and high tide. Salinity levels in low tide ranged from approximately 32.5 g/L to 35 g/L, and were more saline than the levels observed during high tide, which generally ranged from 30 to 32 g/L. Typically, salinity levels may be expected to increase during high tide events with more saline water flooding in from the open ocean.

#### Temperature

The water temperature ranged between 19.4°C to 21°C with no thermal stratification expected.

#### **Turbidity and Suspended Solids**

The levels of turbidity and suspended solids exceeded the prescribed values under QWQG 2006 which are 6 NTU and 15 mg/L, respectively. Turbidity levels ranged from 3.1 NTU to 13.0 NTU while suspended solids varied from 17 mg/L to 88 mg/L. The elevated levels were consistent with the results of the previous BMT WBM (2008) survey. Such elevated levels were described to be consistent for high energy environments where current-driven sediment resuspension contributes to water column sediment load (BMT WBM, 2008).

#### **Nutrients**

Total nitrogen levels were elevated (200-300  $\mu$ g/L) compared to the QWQG limit of 200  $\mu$ g/L. The majority of the nitrogen present appears to be in organic form. This is apparent from the levels of Kjeldahl nitrogen, which is the total of organic and ammonium nitrogen, being similar to those of the total nitrogen levels. Ammonium nitrogen levels are comparatively lower with most of the reported concentrations being less than the analytical detection limit. However, detectable concentrations are elevated (20-140  $\mu$ g/L) compared to the limit of 8  $\mu$ g/L. Oxidisable nitrogen levels registered values that are mostly greater than the QWQG limit of 3  $\mu$ g/L.

Total phosphorus levels were also found to be elevated (80-600  $\mu$ g/L) compared to the QWQG limit of 20  $\mu$ g/L. However reactive phosphorus levels were below detection limits.



#### Metals

Elevated aluminium, iron, manganese, and arsenic concentrations were detected but were similar to levels found in other areas of Port Curtis based on the results of previous surveys. Cadmium, chromium, lead, mercury and nickel exhibited concentrations are within their respective ANZECC (2000) 95 % trigger values. Both total and dissolved levels of zinc and copper indicated exceedance to prescribed ANZECC (2000) 95 % trigger limits.

### 5.5 Modelling Turbidity and Deposition from Discharge

The discharge of seawater from the DMPF from dewatering of dredge spoil has the potential to generate sediment plumes and also contribute to the resuspension of bed material.

URS appointed BMT WBM to perform hydrodynamic modelling to evaluate the impact of the seawater discharge from the DMPF on the existing water quality. The full report is provided as Appendix A in Attachment G4 of the EIS Supplement. The discharge of effluent from the facility was modelled at a flow rate 2.8 m<sup>3</sup>/s with a TSS concentration of 50 mg/L. The model simulation results for maximum TSS concentrations and 10 % exceedance are shown in Figure 5-2 and Figure 5-3. The figures show the plume extent arising from capital dredging using a Cutter Suction Dredge (CSD) with a 50mg/L (TSS) discharge occurring from the DMPF. The plume extent for the discharge from the DMPF is shown within the red circle in each case



Figure 5-2 CSD with 50 mg/L discharge - Maximum Plume TSS Concentration (BMT WBM)



Figure 5-3 CSD with 50 mg/L discharge - TSS Concentration Exceeded 10% of the Time (BMT WBM)

The model simulation results for potential sediment deposition arising from capital dredging using a CSD and a 50 mg/L (TSS) discharge from the DMPF are provided in Figure 5-4 below.





Figure 5-4 CSD with 50 mg/L discharge - Sediment Deposition

It can also be seen from the modelling results that the discharge from the DMPF has minimal impact and is not expected to have any detectable impacts on sensitive receptors. The modelling results indicate that the water quality impacts arising from the discharge from the DMPF would be localised and unlikely to pose a significant risk of environmental harm.

## **Conceptual Layout**

An initial concept design of the DMPF was provided in EIS Section 8.17. This design concept has been further developed to account for the construction and operational constraints that have been identified through the additional investigations discussed in the earlier sections of this report.

## 6.2 Proposed Operating Mechanism

The primary operating mechanism for the DMPF is the gravitational settling of suspended solids from the dredge slurry prior to discharge. As the dredging operation begins, dredged materials would be pumped into the facility and no discharge would occur until the water level reaches a preset level of sluice intake. The level of the sluice intake would be set to ensure that there is adequate surface area available to achieve the required concentration of suspended solids in the discharge. When the water level reaches the preset height, water will overflow through the sluice intake and discharge into the ocean. This concept is illustrated graphically in Figure 6-1.





The elevation of the water-solids interface increases with time until eventually there is an insufficient depth of water for the required settling to take place. Prior to the occurrence of this situation the disposal of the dredge material would either move to the next cell or alternatively the embankments and sluice intake would be raised to provide the required ponding depth.

## 6.3 Design Parameters

The preliminary design of the facility was developed on the basis of the anticipated dredge production rate, dredge material flow rate, site capacity, embankment height, sediment storage depth, ponding



6
depth, freeboard, bulking factor and anticipate discharge water quality standard. The following are project conditions used in the design of the DMPF:

| Design parameter                        | Value                      |
|-----------------------------------------|----------------------------|
| Volume to dredge                        | 6.8 million m <sup>3</sup> |
| Total extraction time                   | 48.8 weeks                 |
| Production hours per day                | 20                         |
| Effective production rate               | 19906 m <sup>3</sup> /day  |
| Solid to water ratio                    | 14:86                      |
| Bulking factor                          | 1.4                        |
| Slurry concentration                    | 293 g/L                    |
| Minimum ponding depth                   | 0.6 m                      |
| Freeboard                               | 1.5 m                      |
| Minimum effluent water quality standard | 50 mg/L                    |

#### Table 6-1 Design Parameters

A minimum ponding depth of 0.6 m was adopted as it is recommend by USACE to prevent scouring, while the 1.5 m freeboard was adopted to provide adequate volume for direct rainfall during wet weather events which is well above the USACE recommend height.

# 6.4 Cell Sizing

As illustrated in Figure 6-2, the facility has been divided into six cells. Each cell is connected to the neighbouring cell by adjustable weirs. The main advantage of this configuration is that it allows drying and levelling to be occurring in some cells while dredge soil is being placed into operational cells (Herbich, 1992). This configuration also enables the velocity of the dredged slurry flows to be reduced to promote settlement of particles and improve discharge quality. Figure 6.-2 presents the sizing of each cell at each stage of operation.

| Stage             | Cell | Volume (ML) | Surface Area (ha) |
|-------------------|------|-------------|-------------------|
| Stage 1 (10m AHD) | -    | 4256        | 82.2              |
| Stage 2 (14m AHD) | S1   | 747         | 15.5              |
|                   | S2   | 768         | 15.9              |
|                   | S3   | 626         | 14.4              |
|                   | N1   | 824         | 15.7              |
|                   | N2   | 857         | 16.4              |
|                   | N3   | 814         | 16.0              |
| Total:            |      | 4636        | 93.9              |
| Stage 3 (18m AHD) | S1   | 860         | 16.6              |
|                   | S2   | 923         | 17.7              |
|                   | S3   | 855         | 16.8              |
|                   | N1   | 864         | 16.3              |

#### Table 6-2 Cell sizing

| Stage              | Cell | Volume (ML) | Surface Area (ha) |
|--------------------|------|-------------|-------------------|
|                    | N2   | 940         | 17.5              |
|                    | N3   | 944         | 17.6              |
| Total:             |      | 5386        | 102.5             |
| Stage 4 (22 m AHD) | S1   | 907         | 16.9              |
|                    | S2   | 1014        | 18.9              |
|                    | S3   | 996         | 19.1              |
|                    | N1   | 891         | 16.6              |
|                    | N2   | 1004        | 18.3              |
|                    | N3   | 1034        | 18.8              |
| Total:             |      | 5846        | 108.6             |

### Inlet and outlet Structures

The rate of discharge is regulated by the outlet structure. It is desirable that the discharge is released from the DMPF at approximately the same rate as the dredged materials are pumped into the facility. Proper design and operation can control the solids concentration in the discharge (Herbich 1992).

Sluice intakes would be used as the inlet structure within each cell with two separate pipes used to transport effluent from the Northern and Southern cells (as shown in Figure 6-2). The sluice intake levels for each stage of development are presented in Table 6-3. As discussed earlier, adjustable weirs would be used to enable water to flow from one cell to another.

The effective weir length and ponding depth are two key parameters in weir design. Only weir length has been considered for the preliminary design presented in this report. Assuming that effluent is released from the facility at the same rate as dredge spoil is pumped into the facility and a minimum ponding depth of 0.6 m, approximately 20 m of effective weir length is required in accordance with Figure 4.7 from the USACE (EM) 1110-2-5027.

Any further development on the weir design should follow the guidelines for weir design outlined in the USACE (EM) 1110-2-5027. Further investigation is required to ensure that position of the weirs will minimise short-circuiting and dead zones and maximise effective detention time. It is anticipated that due to the shape and landform of the facility more than one weir will be required for each cell to maximise the flow path and minimise short-circuiting as well as providing flexibility in relation the placement of the dredge transfer pipeline discharge. The current design is sufficient for feasibility and assessment purposes

| Stage   | Sluice Intake Levels |
|---------|----------------------|
| Stage 1 | 8.7 m AHD            |
| Stage 2 | 13.2 m AHD           |
| Stage 3 | 16.5 m AHD           |
| Stage 4 | 19.9 m AHD           |

#### Table 6-3 Sluice Intake Levels





# 6.5 Facility Staging and Development

The information discussed in this section has been developed to demonstrate the feasibility of the DMPF and is preliminary in nature. The dredging contractor who is appointed to undertake the capital dredging works, and to construct and operate the DMPF, may ultimately adopt another sequence / methodology so long as it meets the required discharge quality within the same footprint.

Embankments are required to confine the storage of dredged material and to separate the internal cells. The Main Embankment is needed to close off the tidal area and the remainder of the confinement for the facility is provided using saddle dams at low points around the periphery of the facility and the natural topography. It is proposed that the embankments be constructed in four stages:

Stage 1: the external embankment constructed to 10 m RL (internal bunds partially constructed using borrowed materials as shown in Figure 6-5).

Stage 2: the external and internal bunds constructed to 14 m RL

Stage 3: the external and internal bunds constructed to 18 m RL

Stage 4: the external and internal bunds constructed to 22 m RL

Dredging quantities for the proposed stages of the development are estimated to be as follows.

| Stage                | Quantity of Dredge materials |
|----------------------|------------------------------|
| Stage 1              | 1.53 million m <sup>3</sup>  |
| Stage 2              | 1.60 million m <sup>3</sup>  |
| Stage 3              | 1.92 million m <sup>3</sup>  |
| Stage 4              | 1.75 million m <sup>3</sup>  |
| Ultimate development | 6.8 million m <sup>3</sup>   |

#### Table 6-4 Quantity of Dredged Material

Stage 2 to Stage 4 of the DMPF have been designed such that the cells will be operating in series, where at one time, five cells would be utilised in order to meet the effluent discharge quality. In this case, the first cell acts as a primary sedimentation basin while the remaining cells act as secondary, tertiary and polishing basins. Dredge slurry from the dredging site would be hydraulically pumped to the DMPF into the primary cell and effluent will overflow to the neighbouring cell through an adjustable weir until it reaches the fifth cell where it will overflow through a sluice intake and discharge back into the ocean. Once there is insufficient ponding depth available in the primary cell, the discharge pipe is then moved to the next cell where the same process occurs. The sequence for the proposed discharge operations is presented in Figure 6-3.





Figure 6-3 Proposed DMPF Cell Sequencing

Effluent discharge will occur from sequential cells in line with sequence shown in Figure 6-3 and the discharge plan is shown in Figure 6-4. The exact location of the sluice intakes within each cell has not been finalised and this would be addressed during detailed design. The final operations will be determined by the dredging contractor keeping in mind that the sluice locations must be selected to ensure that sufficient surface area/flow path is available to achieve the required discharge quality.

# 6.5.1 Main Embankment

To close off the tidal area, a main embankment would be constructed. Construction of the main embankment will start after the completion of the foundation preparation. Details of main embankment design and construction options are presented in Attachment G6.

# 6.5.2 Saddle Dams

Due to the existence of natural topographical and landform constraints, such as low land area, site and access boundary, saddle dams are proposed in order to achieve the required surface area, storage volume, and surface water management requirements.

Six saddle dams are proposed to be constructed with either locally sourced and/or imported earthfill materials. Details of conceptual saddle dam design are presented in Attachment G6.

# 6.5.3 Internal Bunds

Two types of internal bunds are proposed: Type 1 constructed using engineered earthfill and built on original ground areas, and Type 2 constructed using coarse grained dredged materials on areas overlying the mudflats. Proposed details of Type 1 and Type 2 bunds are discussed in Attachment G6. The bund types are illustrated in Figure 6.5 and the proposed staging of internal bund construction are presented in Figures 6-6a and 6-6b.













This drawing is subject to COPYRIGHT. It remains the property of URS Australia Pty Ltd.





STAGE 04





# Mass and Water Balance Model

As stated in section 1.2, the main objectives of the DMPF are to provide adequate storage capacity during hydraulic placement of dredged materials and to ensure that discharges from the facility meet the required discharge criteria.

Mass and water balance modelling was conducted using Goldsim to evaluate the performance of the proposed preliminary design to retain the dredged materials and to achieve the effluent water quality standard taking into account the detention time, rainfall, runoff and evaporation. The mass and water balance model input data and assumptions are presented in Appendix B. A design and terrain model was used to verify that the proposed area has sufficient capacity for the anticipated dredge material volumes.

# 7.1 Model Assumptions and Accuracy

In addition to the assumptions listed in Appendix B, several other assumptions were made in the construction of the model, including:

- No allowance was made in the model for seepage through the base of the storages. This is a conservative assumption and will generally overestimate the overflow volumes and frequency;
- No allowance was made for lag time for catchments upstream of the facility. For the scale of the catchments represented by the modelling, lag would typically be less than a day, and as such this assumption is not significant;
- No allowance was made for tidal effects;
- Discharge concentration limit of 50 mg/L for TSS;
- The model also contains several sources of potential inaccuracy, including:
- Hydrologic information of the site was unavailable, and as such synthetic data for the 100 year simulation was used as a substitute;
- Relatively poor correlation of natural runoff parameters was achieved, and no data was available to calibrate hardstand runoff parameters;
- Lack of data regarding model layout, surface gradient and contaminated areas; and
- Model verification and calibration of the model has not been undertaken given the lack of available local gauged data.

However, the accuracy of the assessment is considered adequate for preliminary design of the DMPF and EIS purposes. Further model refinement would be required for detailed design of the facility.

# 7.2 Model Parameters

# 7.2.1 'Capacity to Contain' Assessment

A conservative approach has been adopted for the 'capacity to contain' assessment by assuming that all material for embankment construction will be sourced from external local sources or imported materials. In practice it is likely that some embankment raising and internal bund construction would be undertaken using dredged materials.

Modelling work has been carried out to determine the amount of dredged materials to be contained in the facility. Applying a bulking factor of 1.4 to the dredge spoil, a total volume of 9.52 million m<sup>3</sup> of dredged material will need to be contained in the facility. This will be discharged into the facility combined with approximately 41.8 million m<sup>3</sup> of transport water which will be discharged back into the ocean following sufficient detention for the suspended solids to settle out. To account for the reduction



#### 7 Mass and Water Balance Model

in effective volume and surface area due to mounding of coarse grained materials and dead spots, 20 % of hydraulically inactive zone has been assumed in the capacity to contain assessment.

Allowing for the minimum ponding depth required for settling of suspended solids, freeboard and capacity required for stormwater management, and the volume of dredge spoil, the modelling result demonstrates that approximately 113 ha of storage area and dredged material storage depth of 17.4 m with ultimate embankment height of 22 m AHD is sufficient to contain the dredge spoil. The following table shows the volume of materials contain in each cell and final solid level for each stage of development.

| Stage  | Cell | Final Solid Level | Volume of Dredged Materials |
|--------|------|-------------------|-----------------------------|
|        |      | (m)               | (million m³)                |
| 1      | -    | 7.9               | 2.14                        |
| 2      | S1   | 11.90             | 0.36                        |
|        | S2   | 11.92             | 0.37                        |
|        | S3   | 11.91             | 0.28                        |
|        | N1   | 11.91             | 0.41                        |
|        | N2   | 11.92             | 0.43                        |
|        | N3   | 11.92             | 0.40                        |
| Total: |      |                   | 2.25                        |
| 3      | S1   | 15.90             | 0.42                        |
|        | S2   | 15.93             | 0.46                        |
|        | S3   | 15.93             | 0.42                        |
|        | N1   | 15.94             | 0.43                        |
|        | N2   | 15.93             | 0.47                        |
|        | N3   | 15.94             | 0.48                        |
| Total: |      |                   | 2.68                        |
| 4      | S1   | 19.34             | 0.38                        |
|        | S2   | 19.33             | 0.43                        |
|        | S3   | 19.32             | 0.42                        |
|        | N1   | 19.14             | 0.35                        |
|        | N2   | 19.33             | 0.43                        |
|        | N3   | 19.33             | 0.44                        |
| Total: |      |                   | 2.45                        |

 Table 7-1
 Volume of Dredged Material Contained at each Stage in Each Cell

Details on the DMPF performance for each stage of the proposed operations are summarised in Appendix C.

# 7.2.2 Effluent Discharge Quality

The assessment on the effluent discharge quality encompasses the discharge criteria and constraints as outlined in Section 5. The effluent discharge quality has been assessed based on suspended solids concentrations. URS has adopted a conservative approach by assuming that the settling properties of



#### 7 Mass and Water Balance Model

particles exhibit Class I sedimentation where the particles settle at constant velocity and they settle as individual particles and do not flocculate during settling. The assessment was conducted by comparing the surface overflow rate to settling velocity whereby any particle with a settling velocity equal or larger than the surface overflow rate will completely settle out.

# 7.2.3 Treatment of Resuspension

Direct rainfall and short wind-waves may play an important role in shallow water sediment resuspension processes (Wright *et al.*, 1992). USACE recommended that an appropriate adjustment should be made for dredged material exhibiting zone settling. At this stage however the potential impact of wind on sedimentation processes has not been considered in the modelling. These aspects will be considered during detailed design and are likely to have limited environmental impacts.

# 7.3 Modelling Results

The modelling results indicate that approximately 59.3 ha of ponded surface area must be provided within the DMPF for appropriate settling based on a dredge spoil pumping rate of approximately 7,100  $m^3$ /hour. This surface area requires five cells to be operational during Stage 2 to Stage 4 of the development to achieve the required settling. In reality however, it is likely that less operational cells would be required as a conservative approach was adopted for the modelling which assume that no flocculation of suspended particles occurs. Once dredged material is in suspension, its settlement characteristics are a function of water salinity, turbulence and soils concentration which cause clay particles to form flocculants (Herbich, 1992). Consequently, representative settling velocities are likely to be higher thus reducing the surface area required to achieve the required effluent discharge quality.

# **Model Findings**

Based on the results of the dredged material characterisation analysis and the water balance modelling, the following is concluded:

- Approximately 57 % of the dredged materials are coarse grained and 43 % are fine grained;
- The Port Curtis sediment exhibits zone settling with minimum settling rate of 3.32\*10<sup>-6</sup> m/s;
- The concentrations of solids within the effluent discharge from the DMPF are highly dependent on the finest fraction of materials being discharged into the facility and how the material is handled through the facility (i.e. discharge location, outlets height and locations etc);
- The effluent discharge dredge plume is expected to have minimal impact on the receiving water quality;
- The modelling result indicates the storage of 6.8 million m<sup>3</sup> of dredged material requires approximately 113 ha of storage area and dredged material storage depth of 17.4 m with ultimate embankment height of 22 m AHD. However, if the dredged materials are being used to construct the internal bunds, the surface area and depth of dredged material will be reduced. Additionally, as a conservative bulking factor of 1.4 has been utilised in this analysis, it should be noted that the actual volume will be smaller depending on dredging methodology; and
- The modelling results indicates that in order to achieve concentrations of 50 mg/L for effluent discharge, approximately 59.3 ha of ponded surface area must be provided within the DMPF for appropriate settling based on a dredge spoil pumping rate of approximately 7,100 m<sup>3</sup>/hour. In reality however, it is likely that less operational cells would be required as a conservative approach was adopted for the modelling which assume that no flocculation of suspended particles occurs. Consequently; representative settling velocities are likely to be higher thus reducing the surface area required to achieve the required effluent discharge quality.



9

# Surface Water Assessment

# 9.1 Site Surface Water Existing Conditions

# 9.1.1 Natural Catchments

The study area has a plan area of 2.28 km<sup>2</sup> and is located some 1.5 km south east of Laird Point on Curtis Island. The site is bounded on the west by Port Curtis at sea level and rises to the east with various small hill crests around the north, east and south of the site area, the highest of which is 71 m AHD. The site area consists of an estuarine/marine mudflat and tidal mangrove flats surrounded by low to moderately sloped foothills and undulating valleys. The estuarine flat is not vegetated; however the foothills are covered in medium to high density woodland.

Within and surrounding the DMPF five significant drainage paths/watercourses have been identified. These are shown in Figure 9-1. The features are all ephemeral in nature, with small catchments (less than 1 km<sup>2</sup>) and generally quite undefined flow paths (except for the larger catchments 3 and 4). Additionally one area in catchment 2 was found to be a low lying basin holding surface water, which appears to have formed due to the naturally occurring flat topography.

The site investigation indicated that defined drainage paths have evolved from erosive runoff in the upper catchment during high intensity storm events. The small feature drains are hard to distinguish with the channel width varying between 0.3 - 3 m, and in some flat areas multiple small channels were observed. The channels are generally extremely shallow with depths of 0.1 - 1.5 m, however heavily eroded bends in steeper parts of the catchment have gully features up to 3 m in depth.

The site assessment notes are summarised in Appendix F with an existing catchment plan shown in Figure 9-1.



### Soil and Geology

The soils on the estuarine/coastal flats areas comprise deep soft saline clay, silt and muddy sand soils, with deep uniform (non-cracking) clay soils with a silty clay surface and some thin silt loamy surface duplex soils. On the alluvial flats and drainage-ways a moderately saline medium to heavy clay subsoils is encountered. The lower slopes and valley plains are characterised by medium to deep gravelly loamy surface duplex soils and locally some gradational clay soils occur. In the low rounded hilly areas shallow to medium deep gravelly red-brown duplex soils were encountered, and on the steeper hilly land and saddles shallow to medium deep stony loams and shallow gravelly uniform structured clay soils occur.

In most of the observed eroded watercourses no rock was encountered, indicating the ephemeral nature of the streams and the ongoing nature of the erosion process. In some cases, particularly near the flatter downstream areas of watercourses 3 and 4, the eroded watercourses in clayey substrate widen out into alluvial soils leaving no signs of a defined channel. This is a sign of surface-groundwater connection and occurs most notably at point C and also downstream of location H (refer Appendix F).

Most of the site is not underlain with rock, except in some areas to the south where rock was encountered at significant depths of greater than 20 m. Additionally, weathered conglomerate was observed in the eroded bed of some upstream areas of watercourses 3 and 4. Geological and geotechnical investigations were undertaken and are discussed in more detail in the site geotechnical investigation report.

# 9.1.2 Flood Hydrology

A hydrological assessment was undertaken for the DMPF site based on AR&R (IEAust, 1987). This analysis considered the catchment characteristics and local hydrological patterns to determine the time of concentration and runoff coefficient, and was confirmed by the Rational Method based on the Queensland MRD Bridge-Branch method (AR&R, 1987) for runoff coefficients as discussed in the previous reports on site surface water for the DMPF.

Details of the hydrological assessment undertaken for the seven drainage features identified are provided in Appendix F. Results of the assessment are summarised below in Table 9-1. As the facility has a proposed life of 20 years peak flows were calculated for annual recurrence intervals (ARI's) of 2, 20 and 100 years.

| Catchment/Drainage<br>Feature | Catchment<br>Area (km²) | 2 Year ARI<br>Peak Flow<br>(m³/s) | 20 Year ARI<br>Peak Flow<br>(m <sup>3</sup> /s) | 100 Year ARI<br>Peak Flow<br>(m <sup>3</sup> /s) |
|-------------------------------|-------------------------|-----------------------------------|-------------------------------------------------|--------------------------------------------------|
| Catchment 1                   | 0.137                   | 1.3                               | 4.0                                             | 7.0                                              |
| Catchment 2                   | 0.327                   | 2.8                               | 8.8                                             | 15.6                                             |
| Catchment 3                   | 0.871                   | 4.2                               | 13.2                                            | 23.1                                             |
| Catchment 4                   | 0.692                   | 4.4                               | 13.8                                            | 24.3                                             |
| Catchment 5                   | 0.126                   | 1.5                               | 4.7                                             | 8.5                                              |
| Catchment 6                   | 0.210                   | 2.4                               | 7.6                                             | 13.5                                             |

| Catchment/Drainage<br>Feature             | Catchment<br>Area (km²) | 2 Year ARI<br>Peak Flow<br>(m³/s) | 20 Year ARI<br>Peak Flow<br>(m³/s) | 100 Year ARI<br>Peak Flow<br>(m³/s) |
|-------------------------------------------|-------------------------|-----------------------------------|------------------------------------|-------------------------------------|
| Catchment 7 –estuarine<br>mudflat         | 0.186                   | 0.7                               | 2.3                                | 4.1                                 |
| (to proposed main<br>embankment location) |                         |                                   |                                    |                                     |

Further details of each drainage feature are provided in Appendices F and H.

### 9.1.3 Flood Assessment

To approximate the flood depths at significant natural drainage features, a basic hydraulic assessment has been undertaken using industry accepted software (HEC-RAS v3). The predicated water depths are summarized below in Table 9-2 (further details of the assessment are provided in Appendix F). In all three simulated flood events 2, 20 and 100 year ARI, some out of channel bank flooding is predicated to occur.

#### Table 9-2 Predicted flood depths for main drainage features at the edge of the estuarine mudflat, Curtis Island

| Drainage Feature               | 2yr ARI<br>Depth (m) | 20yr ARI<br>Depth (m) | 100yr ARI<br>Depth (m) |
|--------------------------------|----------------------|-----------------------|------------------------|
| Unnamed Drainage Feature No. 3 | 0.30                 | 0.42                  | 0.51                   |
| Unnamed Drainage Feature No. 4 | 0.41                 | 0.52                  | 0.59                   |
| Unnamed Drainage Feature No. 6 | 0.19                 | 0.31                  | 0.41                   |

Further details of each drainage feature crossing are provided in Appendix F and G.

# 9.1.4 Tidal Flooding

Although the marine environment has been explored in further detail in EIS Section 8, it is expected the naturally occurring semi-diurnal tidal range will have an impact on flood levels on the site. During the regular high tide range (between MHWS and MHWN) the entire mudflat area will be inundated, including any drainage infrastructure and sea outfalls below the tide level. The tidal range at Gladstone is displayed in Table 9-3. This has implications for the construction of the site, particularly the main embankment, outfall and any other drainage infrastructure.

#### Table 9-3 Tidal Range at Gladstone (Standard Port)

| Tidal Plane                     | Tide Levels (m AHD) |
|---------------------------------|---------------------|
| Highest Astronomical Tide (HAT) | 2.42                |
| Mean High Water Spring (MHWS)   | 1.64                |
| Mean High Water Neap (MHWN)     | 0.79                |
| Mean Low Water Neap (MLWN)      | -0.75               |
| Mean Low Water Spring (MLWS)    | -1.60               |
| Lowest Astronomical Tide (LAT)  | -2.27               |



#### Storm Surge

The following storm surge levels show that during large storms a significant portion of the site is inundated. This inundation will influence flood levels in the lower areas of the site and the main embankment stability during a combined tidal surge and hydrologic event. Table below provides extreme tidal level predictions for Gladstone (Queensland Government, 2008).

| Probability | Predicted Level |
|-------------|-----------------|
| 100 yr ARI  | 2.82 m AHD      |
| 500 yr ARI  | 3.51 m AHD      |
| 1000 yr ARI | 3.80 m AHD      |

| Table 9-4 | Predicted I   | Extreme | Tidal | Surge | Levels a | at Gladstone  |
|-----------|---------------|---------|-------|-------|----------|---------------|
|           | i i culotcu i |         | indu  | Guige | ECVCID C | il Oldustolic |

The above flow and water depth results have been calculated with limited data of the site and have not calibrated to real data. Due to the simplistic nature of this investigation and the lack of verification, the level of accuracy is low. Hence any results provided in this appendix should only be used to obtain an indicative understanding of the flooding behaviour they are not suitable for design purposes but are sufficient for impact assessment.

All of these events are significantly below the proposed first stage of the main embankment facility and it would be expected that inundation of the site from storm surge in an extreme event will not occur once the main embankment is constructed. Storm surge and tidal flooding will be able to be managed through one way flow devices on the outfall pipes of the facility and appropriate embankment erosion protection on the downstream side of the main embankment.

# 9.2 Existing Water Quality

The Australian and New Zealand Environment and Conservation Council (ANZECC) Guidelines 2000 provide guideline values or descriptive statements for different indicators to protect aquatic ecosystems and human uses of waters (e.g. primary recreation, human drinking water, agriculture, stock watering). The ANZECC (2000) Guidelines are a broad scale assessment and it is recommended that, where applicable, locally relevant guidelines are adopted.

The Queensland EPAs Queensland Water Quality Guidelines 2006 (QWQG, 2006) are intended to address the need identified in the ANZECC Guidelines by:

- Providing guideline values that are specific to Queensland regions and water types; and
- Provide a process/framework for deriving and applying local guidelines for waters in Queensland (i.e. more specific guidelines than those in the ANZECC).

Relevant water quality objectives for the study area were identified from QWQG (2006) to support and protect different environmental values for waters in the Curtis Island Basin (refer to Table 5-1). Salinity guidelines were obtained from Appendix G of the QWQG (2006). These water quality objectives should be used as a guide to what the ambient water quality should be. The receiving environment is Port Curtis. Detailed assessment of the water quality of Port Curtis is contained in the LNG facility EIS.

| Parameters                                     | Enclosed Coastal | Upper Estuarine | Lowland Streams |
|------------------------------------------------|------------------|-----------------|-----------------|
| Ammonia N (µg/I)                               | 8                | 30              | 20              |
| Oxidised Nitrogen (Nitrate and Nitrite) (µg/l) | 3                | 15              | 60              |
| Organic N (µg/l)                               | 180              | 400             | 420             |
| Total N (µg/l)                                 | 200              | 450             | 500             |
| Filterable Reactive<br>Phosphorus (µg/l)       | 6                | 10              | 20              |
| Total Phosphorous (µg/l)                       | 20               | 40              | 50              |
| Chlorophyll-a (µg/l)                           | 2                | 10              | 5               |
| Dissolved Oxygen<br>(%saturation)              | 90 – 100         | 70 - 100        | 85 - 110        |
| Turbidity (NTU)                                | 6                | 25              | 50              |
| Suspended Solids (mg/l)                        | 15               | 25              | 10              |
| рН                                             | 8.0 - 8.4        | 7.0 – 8.4       | 6.5 - 8.0       |
| Conductivity (µS/cm)                           | 970              | 970             | 970             |

#### Table 9-5 Water Quality Objectives for the Waters of Curtis Island

### 9.2.1 Water Quality Assessment

No existing surface water quality data was available for watercourses and drainage features within the DMPF area on Curtis Island. There are no DERM recognized watercourses that will potentially be affected by the project. The water features within the study area would generally be classified as drainage feature lines carrying water only during immediately and after storm events. Observations during the URS site visual assessment, undertaken in August 2009, indicated drainage features at the site were ephemeral and dry outside of rain events. The visual assessment also suggested that both minor and major flows would carry sediment and organic matter such as leaf litter. Appendix F presents details of the drainage features as noted by the URS site assessment. These characterizations will be used to establish baseline physical conditions of the watercourses and be used to determine changes over time and from potential impacts as a result of the development.

# 9.3 Modification to Site Surface Water

# 9.3.1 Proposed Catchment Modifications

As part of the development of the facility several modifications will be required to the natural hydrology and drainage. This is primarily due to the installation of embankments, which intersect natural drainage paths and create a need for drainage diversion.

### **DMPF Catchment**

The DMPF will be constructed to have no external catchment flows entering it, so that it collects runoff only from rainfall directly on its footprint. The footprint of the dredge placement area alone will be approximately 1.3 km<sup>2</sup> and will also have some minor hillside catchments draining into it to make the facility catchment 1.4 km<sup>2</sup>. All direct rainfall will be collected in the facility which will dilute the saline



dredge water. This will be discharge from the facility and managed in the same way as the effluent from the dredge slurry. Figure 9-2 shows the extent of the proposed catchment modifications.



This drawing is subject to COPYRIGHT. It remains the property of URS Australia Pty Ltd.

#### **External Catchment Diversion**

The key catchment modification on site will occur in catchments 3 and 4. This modification will encompass the construction of catchment storages and diversion high flows and overflows of the upper reaches of these catchments by large diameter pipe through the site to discharge directly into Port Curtis.

Confirmation will be required on the proposals for any alteration of catchment 3 within the QGC site. At this stage of the project it is assumed that the development of the QGC site will not cause any increase in runoff volume or significant change in water quality entering the DMPF site.

Additionally as the proposed QGC site boundary intersects catchment 3, diversion pipes and storage upstream of the embankment across catchment 3 will be provided to pass and store the volumes up to the 1 in 100 ARI event to prevent flooding back into the QGC site.

The proposed facility design requires saddle dams to be installed across the existing drainage lines in catchments 3 and 4. This will create water storages in these catchments which will need to be drained to prevent un-necessary retention of water in these catchments and risk of water backing up and flooding the QGC site for catchment 3 or the adjoining Grahams Creek catchment for catchment 4.

It is proposed to drain these areas of potential water retention by installation of both small and large diameter pipes sized for up to the peak 20 year ARI design flow. This will mean the upstream storages in catchments 3 and 4 will act essentially as retarding basins, which have low flow outlets and higher level outlets to control outflows and improve water quality. Additionally it is proposed that the storages will have some permanent retention of water. This is to provide a water source for site construction and operation and also for sediment control and to improve water quality discharges from the upstream catchments.

The proposed diversion pipes have not been sized, but it is expected that sizing for no greater than the 20 year ARI peak flow would be a sufficient level of protection for the facility. As there is significant storage available upstream of the embankment this can be utilised to prevent the 1:100 year ARI flood inundating the adjacent QGC site.

#### Storage available

Using survey data an estimate of storage upstream of the proposed bunds in catchment 3 and 4 was made. These storage volumes are displayed in Table 9-6.

| Catchment | Level Range for Storage (m AHD) | Volume (ML) |
|-----------|---------------------------------|-------------|
| 3         | 10.0 -16.0                      | 123         |
| 4         | 12.0 - 17.0                     | 222         |

#### Table 9-6 Natural Storage available in Catchment Valleys

In catchment 4, storage is only available between RL 10 and RL 16, as any additional storage above this will cause overspilling to the North into the catchments flowing to the Grahams creek area. Similarly storage in catchment 3 is only available between RL12 and RL17 as any storage above RL 17 will cause inundation of the adjoining QGC site. This will be managed by provision of low flow and overflow pipes to transmit the peak 1 in 100 ARI flow.

Area envelopes of the maximum inundation possible are shown in Figure 9-3; however it is expected the actual day to day inundation will be significantly less than this. These are worst case areas, which will be significantly reduced by diligent design of the dam outlets and pipes. The inundation upstream of the new embankments will cause changes to vegetation in the proposed storage area and likely loss of some vegetation in areas regularly wet/inundated.

Water quality from the natural catchments is expected to be reasonably good. The storages at catchment 3 and 4 will remove sediment and to some extent attenuate peak flows from the natural catchments prior to discharge into the site drainage system and ultimately Port Curtis.

It is proposed that the outfall of these diversion pipes will be into the tidal zone of Port Curtis between the dredge water outfall and the proposed spillway. It is not anticipated that there will be significant quality issues with this water as it will be water from the natural catchment, with naturally occurring sediment loads and water quality that will be buffered by storage. The rate of outflow of the stormwater diversion outfall will be managed so as to not have a higher rate of discharge than currently occurs as storage and attenuation of flows will be achieved by careful design of the upstream storage areas. The storages will provide a buffer for reducing flow rate and improving water quality from the diversion pipes, prior to discharge to the ocean.

#### Blockage

Blockage prevention of the drainage system is a key issue which needs to be regularly monitored and managed. Over sizing of pipes may be considered to mitigate likely blockage from siltation. Through the installation of inlet screens and a high level bypass inlet some protection and redundancy will be provided to prevent blockage. Regular maintenance of the diversion drainage system will be required to be undertaken by the facility operator, particularly during the wet season.





### 9.3.2 Site Water Supply

The upstream storages created in catchments 3 or 4 will be used for surface water storage and harvesting for construction water. As the natural storage areas are generally flat and shallow some modification of the existing topography may be required to improve the storage characteristics of these areas. This will require clearance and earthworks to achieve the required surface profile.

An approximate yield assessment was undertaken to evaluate the potential yield of the two catchments and is attached in Appendix H. The average annual catchment yield for both catchments is displayed in Table 9-7. This shows there is a significant volume of water available for harvesting from the catchments for construction water and any water requirements for the operation of the facility. It is expected only a fraction of this potential yield would be retained and stored and sufficient bypassing and overflows will be provided to ensure outflows from the catchments do not change significantly.

| Location    | Potential Runoff available for harvesting (ML) |
|-------------|------------------------------------------------|
| Catchment 3 | 204                                            |
| Catchment 4 | 104                                            |

#### Table 9-7 Potential Average Annual Stormwater yields

Water quality of the water supply is as discussed in section 9.2.1 and it is not expected treatment will be required for construction water or other site uses.

#### 9.3.3 Spillway

A design life of 20 years has been adopted for the DMPF as the facility will hold and retain water beyond its expected operational life of 50 weeks. This requires that the spillway shall be sized for the 1 in 20,000 ARI event (Manual for Assessing Hazard Categories and Hydraulic Performance of Dams v1.0 EPA) with a design storage allowance (DSA) for the 1 in 100 ARI, 72 hour event.

It is expected that beyond the 20 year design life, re-profiling and rehabilitation of the site will be undertaken to remove the water retaining embankments and make the site and associated catchment free-draining. The rehabilitation will eliminate the risk posed from the high hazard main embankment during operations, and allow the facility to be reclassified with a lower hazard category.

Due to the expected similarity of the geotechnical conditions on both abutments the preferred location for the spillway is the southern abutment of the main embankment. This has more favourable topography and will result in fewer earthworks. The spillway will require significant excavation (approx.  $210,000 \text{ m}^3$ ) but it is anticipated that the material won from these earthworks will be used in the construction of the main embankment.

#### Design Storage Allowance (DSA)

The design storage allowance and mandatory reporting level for the DMP facility were calculated using a hydrological model to estimate rainfall and runoff across the facility and upstream catchments. This was calculated for the 1 in 100 ARI event.



#### RORB

A hydrological model was built using RORB (version 6) software to assess the runoff from the site catchments and the estuarine flat where the DMPF is located. This software output the peak catchment flows and volumes, which were then used for the preliminary design of the spillway and assessment of the DSA.

The RORB model was used to identify the peak runoff volume likely in both the 1 in 100 ARI, 72 hour duration event to calculate the Design Storage Allowance required in the placement area. Additionally runoff volumes and flows from the upper reaches of catchments 3 and 4 were calculated to identify the requirements for draining these areas when the perimeter bunds are constructed.

Peak volumes are displayed in Table 9-8 and a summary of the RORB output is displayed in Appendix H.

| Catchment                                 | Area (km²) | 100yr ARI, 72 hr Flood<br>Volume (ML) | Peak 100 year flow<br>(m <sup>3</sup> /s) |
|-------------------------------------------|------------|---------------------------------------|-------------------------------------------|
| Modified Catchment 3                      | 0.588      | 357                                   | 10.2                                      |
| Modified Catchment 4                      | 0.431      | 254                                   | 14.0                                      |
| Facility Catchment                        | 1.398      | 821                                   | 23.2                                      |
| TOTAL AREA (Facility plus outlying areas) | 2.477      | 1432                                  | 41.9                                      |

#### Table 9-8 RORB output of peak flood volumes and natural flows to DMPF Facility

Given the DMPF facility area is 1.3 km<sup>2</sup>, 0.6 m of freeboard is required between the finished level of dredge material and the spillway sill to accommodate the DSA requirement of 821 ML. This ensures that the DSA is provided prior to the spillway being engaged.

A sluice offtake will be used to decant clean water from the dredge material within the facility. This will occur throughout the predicted life of the facility, beyond the operation phase. The sluice offtake will discharge a significant volume of runoff during the critical 72 hour event. It is estimated that the sluice offtake will discharge up to 7,100 m<sup>3</sup>/hr, which equates to approximately 511 ML over the 72 hour event. This means that the 1 in 10 ARI event and approximately 60 % of the 1 in 100 ARI event (821 ML) can be passed by the sluice offtake at only small head requirements (0.1 - 0.2 m). If this is taken into account a DSA of only 381 ML or 0.29 m is required for the 1 in 100 ARI event.

# Spillway Staging

The spillway will be raised three times in parallel with the embankment raises. The ultimate outlet chute profile and initial spillway excavation will be constructed as part of the first stage of works. The spillway will then be upgraded (raised) three times in conjunction with the associated embankment raise. The three embankment raises are envisaged to be required during the ~50 week filling period specified for the facility. This may mean that the embankment raise and spillway upgrade works will be ongoing during the operation of the facility.

Each raise will be approximately 4 m in height and is proposed to be undertaken through a combination of sheet piling and filling with select site clay material and/or concrete works. The approximate geometry for the proposed spillway raises are shown in Figure 9-4 to Figure 9-6.

The initial, stage 2 and Stage 3 spillway upgrades have been designed for the 1:20,000 AEP event. It is anticipated that during these stages and with the current embankment raising regime, that a composite free overflow and fuseplug type spillway may be required to safely pass the design event

due to the low head available. This is due to the limited driving head above the DSA allowance in these stages due to the high proposed water level during operations.

A fuseplug spillway typically consists of erodible earth panels that washout at predetermined supply levels. For example, the composite spillway could operate as follows:

- DSA provided below the free overflow spillway sill level;
- 100 yr ARI event discharge provided through the free overflow spillway;
- Fuseplugs overtopped for events exceeding the 100 yr ARI event; and
- Composite spillway to pass the 20,000 yr ARI event.

This composite arrangement requires that the sill of the fuseplug spillway be below that of the free overflow spillway. This level has not yet been determined. This arrangement is considered a reasonable compromise considering the operational life specified for the facility.

Further optimisation of the main embankment and the spillway staging will be undertaken in the future design stages.

#### Ultimate Spillway Sizing

Concept sizing of the spillway has been undertaken and the design flow estimated using the rational method in accordance with previous reports. The rational method parameters are displayed in Table 9-9.

| Parameter                  | Value  |  |
|----------------------------|--------|--|
| Flood Event (ARI)          | 20,000 |  |
| Runoff Coefficient         | 1.0    |  |
| Rainfall Intensity (mm/hr) | 250    |  |

#### Table 9-9 Rational Method Parameters

The key design parameters, flow and characteristics for the spillway are displayed in Table 9-10. This corresponds to a facility design life of 20 years which requires that the spillway must pass the 20,000 year ARL event peak flow.

#### Table 9-10 Spillway Design Parameters

| Spillway Parameter                     | Value                |
|----------------------------------------|----------------------|
| Design Flow (20,000 year ARI)          | 177m <sup>3</sup> /s |
| Depth of flow over sill                | 1.4m                 |
| Design Storage Allowance (0.01<br>AEP) | 0.29m                |
| Spillway Width                         | 80m                  |

An arrangement for the proposed final spillway is provided as Figure 9-5.

#### Geotechnical conditions

Geotechnical investigations were not carried out in either of the abutments due to environmental access restrictions (significant felling of trees required). Boreholes drilled in saddle areas encountered deep deposits of clayey residual soil and some bedrock (below 25 m). However, the topography at the



southern abutment is relatively steep (40 % grade), which implies harder and more resistant natural materials may be present. It should be anticipated that hard residual soils and bedrock are present.

A key consideration is the possible need to provide energy dissipation for the design flows downstream of the spillway crest if softer, less resistant materials are encountered. Concrete or rip rap armouring would be suitable for this purpose.

The progressive spillway raising will be done by adding a 4 m section at each stage of the spillway. The Stage 2 through Stage 4 spillway raises would pass over a portion of the embankment, which also would require armouring for erosion protection.



This drawing is subject to COPYRIGHT. It remains the property of URS Australia Pty Ltd.



This drawing is subject to COPYRIGHT. It remains the property of URS Australia Pty Ltd.



# 9.4 Dam Hazard Classification – All Embankments

As discussed in previous reporting the Dam Hazard classification for the main embankment is high based on the dam break criteria. Hence the criterion for design of the embankment offers the highest level of protection required by the current guidelines (Manual for Assessing Hazard Categories and Hydraulic Performance of Dams v1.0 EPA).

The main embankment and saddle dams will be constructed to 22 m AHD. The actual height of the main embankment will be 20 m whilst saddle dams (A-E) will be 9.1 m, 14.1m, 12.6 m, 10.2 m and 15.0 m respectively. The main embankment is considered to represent the highest hazard and will therefore used to determine the design requirements for the entire facility. As the highest level of protection is required on the main embankment and hence the facility as a whole, it is not necessary to assess the surrounding perimeter embankments for dam hazard classification. This is because the design considerations and criteria being used for the spillway and DSA of the main embankment will either match or exceed any guideline requirements for the perimeter embankments, which generally are expected to have significantly lesser consequences of failure.

#### Dams in Catchments 3 and 4

The proposed storages in catchments 3 and 4 will ultimately be landlocked by the accumulation of dredge material downstream of the embankments, and hence the hazard risk of these embankments will be Low for catastrophic failure.

If the storage in catchment 3 fails to contain flood volume within the DMPF site, there is a risk of overspilling into the QGC site adjacent to it. The 1 in 100 year flow volume will be designed for both the storage and dam bypass flow of catchment 3, however if a larger event occurs there is the potential for significant harm based on general economic loss of the neighbouring site. This will need to be confirmed with the proposals for the development of this site. Currently any overspilling into the adjoining site would cause low harm under all categories.

Similarly if the storage in catchment 4 does not contain the flood volume of catchment 4 below RL 16, there is the potential for flows to spill into the adjoining Grahams Creek catchment. As the flows are expected to be natural with no significant contaminants the hazard category of this occurring would be low under all categories, or as an extreme worst case significant under the general environmental criteria.

# **Proposed Impact Management**

# **10.1** Operation of Facility

The following information details the major planned activities for the proposed DMPF site through the different stages of construction, commissioning, operation (both initial capital works dredging and ongoing maintenance dredging) and decommissioning. The potential impacts are discussed and management measures to minimise those impacts are outlined. This was undertaken using a qualitative risk assessment approach (refer to Appendix I). The detailed risk matrix for the proposed DMPF site activities is provided in Appendix J and the impacts and mitigation measures identified are outlined as follows.

# **10.2 Construction Phase**

It is anticipated that the DMPF construction will generally involve the following steps:

- Site survey;
- Mobilisation of earthmoving equipment;
- Construction of the Haul Road to the site;
- Transport and storage of bulk fuels, including the construction of bunded areas to avoid spillage;
- Clearance of vegetation on and around the site;
- Removal of topsoil and stockpiling in an approved area. This will be used for landscaping following construction of the facility;
- Excavation, backfilling and compaction of material in accordance with detailed design specifications;
- Construction of appropriate foundations;
- Construction of barge landing and/or causeway (if required);
- Construction of outfall and facility drainage works and foundations;
- · Construction of main bund and spillway; and
- Construction of saddle dams.

# 10.2.1 Erosion and Sediment Mobilisation

#### **Activities**

Earth moving activities are expected to include:

- Removal of vegetation;
- Top soil removal and stockpiling;
- Cut and fill activities; and
- Construction of storage and lay down areas as required for equipment storage.

# **Potential Impacts**

Sediment mobilised during construction activities may enter surface water runoff during rainfall events and discharge to drainage lines leading to deleterious effects on water quality and aquatic habitats. Sediment exposed or generated during construction may also be blown by wind into surface water bodies.

# Mitigation and Management Measures

Areas of disturbed or exposed soil may be managed to reduce sediment mobilisation and erosion by:



### **10 Proposed Impact Management**

- Concentrating work to as small an area as possible and progressively expanded to reduce the area potentially at risk;
- Minimising the number of passes by heavy earth moving equipment;
- Stripping and stockpiled usable topsoil away from drainage lines to protect it from erosion;
- Implementing sediment limitation devices (e.g. settlement/evaporation ponds, drainage ditches);
- Constructing temporary and permanent bunds to restrict flow velocities across the project site;
- Limiting vegetation clearing work during heavy rainfall;
- Requesting the earthworks contractor to prepare a Sediment and Erosion Control Plan prior to the commencement of construction;
- Adopting stormwater controls and upstream treatment, such as infiltration devices, sediment ponds and vegetation filters;
- Locating vehicle wash bays away from watercourses;
- Revegetating and/or using of other stabilisation techniques, considering seasonal influences, upon completion of works;
- Minimising vegetation disturbance, especially riparian vegetation;
- Implementing dust suppression measures including irrigation and/or covering of stockpiles;
- Adopting erosion control, energy dissipation and scour protection, such as matting, riprap and gabions;
- Preparing a Stormwater Management Plan (SWMP) for the construction of the DMPF; and
- The application of the above proposed management measures will reduce both the likelihood and the consequences of the above impacts.

# 10.2.2 Works Adjacent to/within Drainage Lines

#### Activities

Works adjacent to or within drainage lines are expected to include:

- Perimeter embankment construction;
- Surface water diversion pipe work; and
- Vehicle crossings of watercourses and drainage lines.

#### **Potential Impacts**

Construction activities at or near drainage features can mobilise sediment and alter flow and quality characteristics.

#### Mitigation and Management Measures

These potential impacts may be mitigated by:

- Construction during seasonal times of low rainfall;
- Installing suitable stormwater management infrastructure prior to commencing construction activities;
- Using low flow diversions or coffer dams with pumping, to divert flows;
- Minimising disturbance by heavy earth moving equipment, especially in riparian areas; and
- Riverine Protection Permit Under Section 266 of the Water Act 2000, a Riverine Protection Permit is required from DERM where development will:
  - Destroy vegetation in a watercourse;

#### **10 Proposed Impact Management**

- Excavate in a watercourse; or
- Place fill in a watercourse.

Watercourse surveys have yet to be undertaken by DERM to determine whether watercourses as defined in the Water Act 2000 are present in the vicinity of the DMPF. Should designated watercourses not be identified in the vicinity of the DMPF, then a Riverine Protection Permit may not be required for works within the drainage features.

If a Riverine Protection Permit is required, then a range of specific management measures and conditions relating to each watercourse will be established by DERM. As a minimum, this is likely to include the following:

- The area of disturbance must be no greater than the minimum area necessary for the purpose;
- The area of bed and banks disturbed by the activities must be stabilised regardless of previous stability;
- The extent and duration of bare surface exposure must be minimised, and protected from weathering, rain drop impact, and water runoff;
- Clean water run-off must be diverted around areas of disturbance where practicable;
- Bed and bank stability must be managed to minimise erosion and reduce sedimentation;
- · Where practicable, sediment must be captured and retained on-site;
- Machinery to be used in carrying out the activities must be selected on the basis of a type and size necessary and capable of safe operation to achieve minimal disturbance of the site; and
- Constructed drainage and discharge structures must not alter the natural bed and bank profile.

# 10.2.3 Pollution

#### Activities

Potential sources of onsite pollution during the construction phase predominantly comprise diesel and other petroleum-based fuels and lubricants used by excavation and construction machinery. Litter and sewage will also detrimentally impact the surface water environment.

#### **Potential Impacts**

Without proper mitigation measures, runoff from potentially contaminated drainage from fuel oil storage areas and general washdown water could enter into drainage features and receiving waters, altering the physical and chemical quality of the water and receiving environment. Additionally, site excavation works may expose groundwater which have been found to have high background levels of dissolved metals in both near-surface and deeper aquifers.

#### Mitigation and Management Measures

These potential impacts may be mitigated by:

- The construction of bunded storage areas for contaminants are recommended with spill cleanup kits in accordance with Australian Standards (AS1940 and AS3780) to prevent the contamination of surrounding surface runoff;
- The transfers of fuels and chemicals controlled and managed to prevent spillage outside bunded areas;


- Implement controls so that leaks/spills are immediately reported and appropriate emergency clean-up operations implemented to prevent possible mobilisation of contaminants;
- Chemically contaminated areas are to be protected from rainfall by roofing to reduce the likelihood of overtopping;
- Bunds and sumps are frequently drained, and effluent is treated appropriately;
- Contaminants or major spillages of stored material in the bunded areas are collected by licensed waste collection and transport contractors for disposal off site at a licensed facility;
- Any site groundwater extraction activities may require treatment or other appropriate management controls before discharges;
- The application of the above proposed management measures may reduce the likelihood and consequence of the potential impacts; and
- Pollution from sewage can be managed with a Waste Management/Disposal Plan.

### 10.2.4 Flooding

### **Potential Impacts**

In the existing environment, flooding on the proposed DMPF study area and along the valleys entering the area is predicted to occur at least every 2 years (Appendix G). Fluvial flooding may therefore present a significant risk to plant, equipment and workers' health and safety, especially given the likely 'flashy' response of the catchment to short, intense rainfall events. Furthermore, out-of-bank flooding could cause damage to erosion and sediment control infrastructure leading to detrimental impacts on the environment. Flooding within the valleys around the site is however likely to subside relatively quickly following cessation of rainfall.

As much of the site lies on the tidal flat area, construction of the main embankment and spillway will be subject to tidal inundation regularly during high tides. This poses a risk to workers, plant and equipment. Tidal flooding also poses a risk of mobilising sediment and causing erosion damage to construction works on the mudflat area.

### Mitigation and Management Measures

Stormwater management measures such as permanent or temporary drainage diversions and flood defence bunds (designed to provide an appropriate level of protection – recommended at AEP 0.01 (100 yr ARI)) will be implemented before construction commences to mitigate impacts. Furthermore these will be inspected on a regular basis throughout the construction period, especially following significant storm events, and maintained as necessary.

Emergency response procedures (including evacuation procedures) and a flood warning system will be established and incorporated into the site's Health, Safety and Environment Plan to protect on-site personnel. Vulnerable infrastructure will be designed with floor levels above a given AEP flood level (this is recommended to be set at the 0.01 AEP (100 yr ARI) level) or specific defences should be provided.

Additionally the tidal regime will be assessed regularly and flood prevention measures taken to protect works from tidal inundation. The main embankment and other works exposed to tidal variance will have sufficient erosion and protection measures to minimise impacts from tidal inundation.

The application of the above proposed management measures will reduce the likelihood of the above impacts.

### 10.2.5 Water Supply

### **Potential Impacts**

A lack of water supply may result in inadequate dust suppression, soil compaction and washdown, allowing sediment movement into nearby watercourses, with a resultant deterioration in water quality.

### Mitigation and Management Strategies

It is proposed to develop at least one water supply dam on site. This will be managed to provide water for the site throughout the year where possible. Alternative supplies shall be investigated for backup to the main supply through the development, implementation and maintenance of a Water Supply Strategy.

Sediment and erosion control, dust suppression and vehicle/facility washdown techniques will also be developed along with the water supply strategy and emergency plan (as detailed in Section 10.2.1).

### 10.2.6 Seawater Discharge

### **Activities**

The operation of the DMPF will involve the discharge of seawater from the facility at a rate of approximately 7,100 m<sup>3</sup>/hr. The quality of the discharge will be dependent on sufficient detention time within the DMPF for settlement of suspended solids to an appropriate concentration prior to discharge. The design concept for the DMPF is based on achieving a discharge quality of 50 mg/L.

### Impacts

Modelling of the proposed discharge predicts that only localised turbidity and depositional impacts would arise from the discharge and there would be a negligible effect on sensitive receptors in the area. This was based on a discharge quality of 50 mg/L for TSS. However should concentrations exceed 50 mg/L the potential impacts in terms of turbidity and deposition would increase and may have a negative impact on sensitive receptors in close proximity to the discharge location.

### Mitigation and Management Measures

The design assumptions will be verified through more detailed investigations to:

- Better characterise of the effective PSD of suspended sediment that will be conveyed to the DMPF. This will include an assessment of the proportion of fine material that will be in suspension as opposed to being present in clay balls that will readily settle out;
- Improve understanding of the flocculation behaviour of suspended material within the DMPF; and
- Improve understanding of the sediment solids to water ratios that will be generated during dredging operations.

The findings of these additional investigations will be used to inform the detailed facility design.



When dredging operations commence, frequent sampling should be taken at the dredge pipeline discharge into the facility to verify the design assumptions.

Water quality will be regularly monitored in the polishing ponds to ensure that discharges from the facility comply with licence conditions. The frequency of sampling will increase in the period prior to and during embankment raises and towards the end of the dredging process as the remaining capacity within the DMPF reduces and the detention time available for settling decreases.

During the operation of the facility, periodic site inspections will be conducted. Management effort will be focused on maximising the storage capacity gained from drying and consolidation of dredged material.

To avoid ponding of water due to precipitation, the sluice intake levels will be kept at a level that allows efficient release of runoff water.

Silt curtains and baffles may be employed to increase the effectiveness of the DMPF.

### **10.2.7** Erosion and Sediment Mobilisation

### Activities

During operation the main sources of erosion and sediment mobilisation are likely to arise from vehicle usage of construction roads and earthworks for embankment raises.

### **Potential Impacts**

The above activities can result in localised erosion and sediment mobilisation leading to deleterious effects on water quality and aquatic habitats.

### Mitigation and Management Measures

- Concentrating work to as small an area as possible and progressively expanded to reduce the area potentially at risk;
- Minimising the number of passes by heavy earth moving equipment;
- Stripping and stockpiled usable topsoil away from drainage lines to protect it from erosion;
- Implementing sediment limitation devices (e.g. settlement/evaporation ponds, drainage ditches);
- Constructing temporary and permanent bunds to restrict flow velocities across the project site;
- Limiting vegetation clearing work during heavy rainfall;
- Requesting the earthworks contractor to prepare a Sediment and Erosion Control Plan prior to the commencement of construction;
- Adopting stormwater controls and upstream treatment, such as infiltration devices, sediment ponds and vegetation filters;
- · Locating vehicle wash bays away from watercourses;
- Minimising vegetation disturbance, especially riparian vegetation;
- Implementing dust suppression measures including irrigation and/or covering of stockpiles; and
- Adopting erosion control, energy dissipation and scour protection, such as matting, riprap and gabions.

### 10.2.8 Improper Disposal of Effluent and Operational Waste Water

### Activities

It is expected a small amount of human sewage waste may result from site construction and operation. This will be generated by civil and dredging contractors working on site. It is expected that the construction phase will create the bulk of the human activity on site, with this reducing significantly during the operation phase of the site for maintenance dredging.

### Impacts

Sewage and operational waste water can enter into drainage features and receiving waters altering the physical and chemical quality of the water and waterway. Effluent from any site ablutions facilities requires appropriate treatment and discharge or removal from site to avoid scour, sediment mobilisation or adverse impact on receiving surface water quality.

### Mitigation and Management Measures

The effective level and rate of treatment will be evaluated to mitigate the likelihood of uncontrolled and/or non compliant discharge to receiving waters. This may be undertaken using a water balance or water quality model.

Telemetry monitoring systems will be installed (to measure, EC, pH and water level) in all containment facilities with off-site discharges to the receiving environment. This will provide accurate information regarding both quantity and quality of discharged effluent and calibration data for future water balance, water quality and flood assessment modelling.

Any other site effluent and/or any operational waste water will be removed and disposed of as per the Waste Management Strategy (refer to EIS Section 7).

### 10.2.9 Flooding

### Impacts

Out-of-bank/flash flood events during the operational phase of the project could result in noncompliant off-site discharges due to inadequate containment capacity of the proposed stormwater management system. If fluvial flooding is frequent and uncontrolled, it may present a significant risk to workers' health and safety, as well as to vulnerable infrastructure, especially given the likely 'flashy' response of the catchment to short, intense rainfall events.

Additionally siltation or blockage of stormwater diversion infrastructure may pose a potential risk of inundation to adjoining properties and catchments.

Flooding or fast surface flows within the DMPF has the potential to cause re-suspension of dredge material and cause a non-compliant discharge.

### Mitigation and Management Measures

Assessments described in Appendix F and H, consider indicative designs for stormwater management measures at the DMPF study area. In areas where high velocities are predicted erosion protection will be provided in the form of baffles, bunds or rock protection.



Drainage diversions and sedimentation dams/evaporation basins will be inspected on a bi-annual basis, and after significant storm events, to check for erosion, cracking, visible seepage and any other unsuitable conditions. Timely action will be taken to prevent or minimise any actual or potential environmental harm through preventative works.

A guideline for the operation of the DMPF discharges during rainfall events will be developed to prevent discharges after a certain amount of rainfall when the risk of re-suspension of sediment is high.

Emergency response procedures (including evacuation procedures) and a flood warning system will be established and incorporated into the site's Health, Safety and Environment Plan to protect on-site personnel. Vulnerable infrastructure will be designed with floor levels above the 0.01 AEP (100 yr ARI) level.

## **10.3 Decommissioning Phase**

Decommissioning of the DMPF will involve the reshaping of the surface into a stable free-draining landform by promoting controlled runoff and preventing ponding of water. Runoff from higher elevations around the periphery would be directed in a controlled manner along a network of surface drains toward the centre of the landform then to the spillway. The spillway would serve as a chute directing surface waters to the sea.

The surface drains would be designed to meet suitable ARI flood events and to resist erosion. Sediment traps and/or silt dams will be constructed to capture suspended sediment while vegetation is established. A range of options is available to provide erosion protection including a number of proprietary surface mat products, straw mulching or hydro-mulching.

Vegetation would be established across the surface of the final landform to promote natural regrowth and control erosion. Limited topsoil is available from the existing soil profile so additional treatment would be required, such as the addition of fertiliser and mulch, to promote vegetative growth across the rehabilitated surfaces.

Consolidation settlement of the dredged material and foundation is likely to occur for several years. However the rate of settlement will decrease over time. Several metres of settlement are estimated to occur primarily in areas above the mudflat, and lesser so toward the periphery. However a significant portion of this settlement would likely occur during placement of the dredge spoil. Surface drainage would be designed to allow for changes in grade to maintain positive drainage.

The stormwater drains built to transfer under the facility stormwater captured from upstream catchments would also be used to drain vadose water percolating through the dredge material. The drains are envisaged as maintenance-free, comprised of rockfill encased in engineered filter materials

The range of potential impacts and proposed mitigation and management measures during the decommissioning phase are broadly similar to those which are likely to be encountered during the construction phase of the Project.

The following impacts will be managed during the decommissioning phase of the project.

### 10.3.1 Erosion and Sediment Mobilisation

### Activities

Earth moving activities are expected to include:

- Reshaping of the surface of the dredged material to provide a stable free-draining landform;
- Creation of surface drains;
- Filling and re-contouring of sedimentation/evaporation basins to match the surrounding topography; and
- · Rehabilitation of storage and lay down areas.

### **Potential Impacts**

Sediment mobilised during earth moving activities associated with the rehabilitation of storage and lay down areas and decommissioning of sedimentation/evaporation ponds may enter surface water runoff during rainfall events and discharge to drainage lines leading to deleterious effects on water quality and aquatic habitats. Sediment exposed or generated during earth moving works may also be blown by wind into surface water bodies.

#### Mitigation and Management Measures

Areas of disturbed or exposed soil will be managed to reduce sediment mobilisation and erosion by:

- Concentrating work to as small an area as possible and progressively expanded to reduce the area potentially at risk;
- Minimising the number of passes by heavy earth moving equipment;
- Requesting the earthworks contractor to prepare a Sediment and Erosion Control Plan covering the decommissioning works;
- · Locating vehicle wash bays away from watercourses;
- Revegetating and/or using of other stabilisation techniques, considering seasonal influences, upon completion of works;
- Implementing dust suppression measures including irrigation and/or covering of stockpiles; and
- Adopting erosion control, energy dissipation and scour protection, such as matting, riprap and gabions.

The application of the above proposed management measures will reduce both the likelihood and the consequences of the above impacts.

### **10.3.2** Contaminant Mobilisation

#### **Activities**

The use of fuels onsite may involve the refuelling of vehicles during decommissioning of the site facility and associated infrastructure. Potential aqueous waste streams may include oily waste water (from equipment wash water), contaminated drainage from fuel oil storage areas, and general washdown water.



### **Potential Impacts**

Without proper mitigation measures, runoff from potentially contaminated drainage from fuel oil storage areas and general washdown water could enter into drainage features and receiving waters, altering the physical and chemical quality of the water and receiving environment. Additionally, site excavation works may expose groundwater which have been found to have high background levels of dissolved metals in both near-surface and deeper aquifers.

### Mitigation and Management Measures

These potential impacts will be mitigated by:

- Storage of fuels and chemicals in bunded areas with spill cleanup kits in accordance with Australian Standards (AS1940 and AS3780) to prevent the contamination of surrounding surface runoff;
- The transfers of fuels and chemicals controlled and managed to prevent spillage outside bunded areas;
- Implement controls so that leaks/spills are immediately reported and appropriate emergency cleanup operations implemented to prevent possible mobilisation of contaminants;
- Chemically contaminated areas are to be protected from rainfall by roofing to reduce the likelihood of overtopping;
- Bunds and sumps are frequently drained, and effluent is treated appropriately; and
- Contaminants or major spillages of stored material in the bunded areas are collected by licensed waste collection and transport contractors for disposal off site at a licensed facility;

The application of the above proposed management measures may reduce the likelihood and consequence of the potential impacts.

### 10.3.3 Pollution

### Activities & Potential Impacts

Decommissioning activities associated with potential pollution sources will involve the removal of chemical storage areas and other pollutant storage areas. Testing of these areas will be undertaken and decontamination work undertaken where necessary. These areas will then be rehabilitated and revegetated.

### Mitigation and Management Measures

Mitigation measures for the decommissioning of potential pollution sources:

- Testing and decontamination works will be undertaken by appropriately qualified personnel;
- Earthworks will be undertaken in accordance with the sediment and erosion control plan; and
- Waste materials from the decommissioning works areas will be collected by licensed waste collection and transport contractors for disposal off site at a licensed facility

The application of the above proposed management measures will reduce the likelihood of the potential pollution impacts.

# References

Australian Natural Resources Atlas (ANRA), 2007, *Rivers- Assessment of River Condition-Queensland*. Queensland Government.

Australian and New Zealand Environment and Conservation Council (ANZECC), 2000, Australia and New Zealand Guidelines for Fresh and Marine Water Quality,

Australian Standards AS 1940, 2004, *The storage and handling of flammable and combustible liquids*, Standards Australia.

Australian Standards AS 3780 – 1994, *The storage and handling of corrosive substances*, Standards Australia.

Australian Standards AS 4390, 1996, Records management – Strategies, Standards Australia.

Australian Standards Leaching Procedures (AS4439.3 and AS4439.2), Standards Australia.

Bureau of Meteorology. Available online: http://www.bom.gov.au

BMT WBM. Plume Dispersion Modelling and Data Review Port Curtis GLNG Supplementary EIS. October 2009.

Chow, 1959, Open Channel Hydraulics, McGraw-Hill Book Company, Inc.

Department of Infrastructure and Planning, 2008, Queensland Government

Environmental Protection Act 1994 *Queensland Government Environmental Protection (Water) Amendment Policy (No. 1), 2008, Subordinate Legislation 2008 No. 443.* Available online: <u>http://www.legislation.gld.gov.au/LEGISLTN/SLS/2008/08SL443.pdf</u>

Environmental Protection Agency, 2008, Queensland Government.

Environmental Protection Agency, 2008, *Queensland Government Draft Manual for assessing Hazard Categories and Hydraulic Performance of Dams Version 1.0* 

Herbich JB, 1992, Handbook of Dredging Engineering, McGRaw-Hill Inc, New York.

HR Wallingford, 2009, Gladstone LNG Project – Laird Point Placement Facility Concept Description, GLNG Ref: 1603-HRW-2-3.3-9038-PDF.

Institution of Engineers Australia, 1987, Australian Rainfall and Runoff: A Guide to Flood Estimation.

Marine Sediment Investigation – Environmental Investigations of Proposed Capital Dredging of China Bay and Pipeline Crossing at the Narrows, Gladstone (URS 28 January 2009).

Monash University RORB v6 User Manual, 2005.

National Assessment Guidelines for Dredging (NAGD) 2009. Australian Government.

Nelson K D, 1985, Design and Construction of Small Earth dams.

Queensland Government (Environmental Protection Agency) Queensland Water Quality Guidelines 2006, March 2006.

Rasheed, M.A., Thomas, R., Roelofs, A.J. Neil, K.M. and Kerville, S.P. 2003. *Port Curtis and Rodds Bay seagrass and benthic macro-invertebrate community baseline survey, November/December 2002.* DPI Information Series QI03058 (DPI, Cairns).



### **11 References**

Schroeder, P.R., Bailey, S.E., Estes, T.J., and Price, R.A, 2008, *Screening Evaluations for Upland Confined Disposal Facility Surface Runoff Quality (ERDC TN-DOER-R12)*, U.S. Army Corps of Engineers.

Water Act 2000 Queensland Government (Department of Natural Resources and Water), "Water Act 2000", Act No. 34 of 2000, Assented to 13 September 2000, available online: http://www.legislation.qld.gov.au/LEGISLTN/ACTS/2000/00AC034.pdf

Weeks, WD, 1991, Design Floods for Small Rural Catchments in Queensland, Civ Eng Trans, IE Aust, Vol CE 33, No 4, pp 249-260.

Wright, L.D, Boon, J.D., Xu, J.P., Kim, S.C, 1992, *The Bottom Boundary Layer of The Bay Stem Plains Environment of Lower Chesapeake bay.* Estuarine, Coastal and Shelf Science 35, 17-36.

U.S. Army Corps of Engineers (USACE), 1987, *Confined Disposal of Dredged Material*, Engineering Manual EM 1110-2-5027, Washington, D.C.

U.S. Army Corps of Engineers (USACE), 2003, *Evaluation of Dredged Material Proposed for Disposal at Island, Nearshore, or Upland Confined Disposal Facilities* — Testing Manual, ERDC/EL TR-03-1, U.S. Vickburg, MS.

U.S. Army Corps of Engineers (USACE), 1983, *Dredging and Dredged Material Disposal*, Engineering Manual EM 11102-5025, Washington, D.C.

USACE/USEPA, 2003, Great lakes Confined Disposal Facilities.

# Limitations

URS Australia Pty Ltd (URS) has prepared this report in accordance with the usual care and thoroughness of the consulting profession. It is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this report. It is prepared in accordance with the scope of work and for the purpose outlined in the Proposal dated 15 July 2009.

The methodology adopted and sources of information used by URS are outlined in this report. URS has made no independent verification of this information beyond the agreed scope of works and URS assumes no responsibility for any inaccuracies or omissions. No indications were found during our investigations that information contained in this report as provided to URS was false.

This report was prepared between 6 July to 23 October 2009 and is based on the conditions encountered and information reviewed at the time of preparation. URS disclaims responsibility for any changes that may have occurred after this time.

This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.



# Appendix A Sediment Characterisation

# A.1 Summary dredge sample descriptions

### Table A-1 Laboratory Analysis - Dredge Sample Descriptions

| Location | Depth (m)                                                                                                            | Description                                                                                                                         |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|
| BH01A    | 0.0 - 1.0                                                                                                            | SILTY SAND: grey, fine to coarse sand, some gravel (shells), some clay of low plasticity (Alluvial).                                |  |  |
|          | 1.0 - 2.1                                                                                                            | SANDY CLAY: grey, medium plasticity, fine to coarse sand, some fine gravel (shells) (Alluvial).                                     |  |  |
|          | 2.1 - 2.8                                                                                                            | SANDY CLAY: grey, medium plasticity, fine to coarse sand, some fine gravel (Residual).                                              |  |  |
| BH02A    | 0.0 - 1.0                                                                                                            | SAND: brown, fine to coarse sand, trace of silt, trace of fine gravel (shells)                                                      |  |  |
|          | 1.0 - 2.75                                                                                                           | SANDY CLAY/CLAYEY SAND: dark grey, medium plasticity, fine to coarse sand, some fine to medium gravel (Shells) (Alluvial).          |  |  |
|          | 2.75 - 3.1                                                                                                           | SANDY CLAY: brown & grey, medium plasticity, fine to medium sand (Residual).                                                        |  |  |
| BH04A    | 0.0 - 0.2                                                                                                            | GRAVELLY (shells) SAND: grey, fine to coarse sand, some clay of low plasticity (Alluvial soil)                                      |  |  |
|          | 0.2 - 0.5                                                                                                            | SANDY CLAY: mottled yellow-brown and grey, medium plasticity, some fine to medium gravel (Residual soil)                            |  |  |
|          | 0.5 - 1.0                                                                                                            | SILTY CLAY: mottled yellow-brown and grey. High plasticity, some fine to coarse sand (Residual soil)                                |  |  |
| BH07A    | A 0.0 - 1.0 SANDY CLAY/CLAYEY SAND: grey, fine to coarse sand, low plasticity, son gravel shells present (Alluvium). |                                                                                                                                     |  |  |
|          | 2.0 - 2.8                                                                                                            | SANDY GRAVEL: fine to coarse gravel, fine to coarse sand, some silt and clay of low plasticity (Alluvial).                          |  |  |
|          | 3.0 - 4.0                                                                                                            | GRAVELLY SAND: brown, fine to coarse sand, fine to medium gravel, some silt (Alluvial).                                             |  |  |
| BH08C    | 0.0 - 1.0                                                                                                            | GRAVELLY SAND: grey, fine to coarse sand, fine to medium gravel, some silt (Alluvial).                                              |  |  |
|          | 3.0 - 4.0                                                                                                            | SILTY SAND: grey, fine to coarse sand, some gravel (shells) some clay of low plasticity (Alluvial)                                  |  |  |
|          | 4.75 - 5.6                                                                                                           | SANDY CLAY: grey, medium plasticity, fine to coarse sand, with fine to medium gravel as shells (Alluvial).                          |  |  |
| BH13A    | 0.0 - 1.0                                                                                                            | SAND: grey, fine to coarse, some clay of low plasticity, some gravel (shells) (Alluvial).                                           |  |  |
|          | 6.0 - 7.0                                                                                                            | SILTY SAND: grey, fine to coarse sand, some low plastic clay, some fine gravel (shells) (Alluvial).                                 |  |  |
|          | 11.5 - 12                                                                                                            | SANDY CLAY: grey, medium plasticity, fine to coarse sand, some gravel (shells) (Alluvial)                                           |  |  |
| BH14A    | 0.0 - 1.0                                                                                                            | CLAYEY SILT: grey, fine to coarse, low plasticity with shells (Alluvial).                                                           |  |  |
|          | 2.5 - 3.5                                                                                                            | SANDY CLAY: dark grey, high plasticity, fine to coarse sand, some of fine gravel (Alluvial).                                        |  |  |
|          | 6.0 - 7.0                                                                                                            | GRAVELLY SANDY CLAY/SANDY GRAVEL: brown, fine to medium gravel, fine to coarse sand, some silt (Alluvial).                          |  |  |
| BH17A    | 0.0 – 0.3                                                                                                            | SANDY CLAY/CLAYEY SAND: dark grey, medium plasticity, fine to coarse sand, some fine to medium gravel,(shells and rock)             |  |  |
|          | 0.3 – 1.2                                                                                                            | SILTY CLAY: brown, medium plasticity, some fine to coarse sand.                                                                     |  |  |
| BH18A    | 2.0 - 3.0                                                                                                            | SANDY CLAY/CLAYEY SAND: dark grey, medium plasticity, fine to coarse sand, some fine to medium gravel (shells and rock) (Alluvial). |  |  |
|          | 10.0 - 11.0                                                                                                          | SILTY CLAY: brown, medium plasticity, some fine to coarse sand (Residual).                                                          |  |  |



Δ

### Appendix A

| Location | Depth (m)   | Description                                                                                        |
|----------|-------------|----------------------------------------------------------------------------------------------------|
|          | 11.1 - 11.5 | SAND: grey, fine to coarse, some fine to medium gravel (shells), some low plastic clay (Alluvial). |

# A.2 Average Particle Size Distribution

### Table A-2 Laboratory Analysis - Average PSD

| Sieve Size (mm) | % Passing |
|-----------------|-----------|
| <0.002          | 21        |
| 0.002 - 0.005   | 26        |
| 0.005 - 0.01    | 29        |
| 0.01 - 0.02     | 33        |
| 0.02 - 0.05     | 38        |
| 0.05 - 0.075    | 43        |
| 0.075 - 0.15    | 47        |
| 0.15 - 0.3      | 59        |
| 0.3 - 0.425     | 66        |
| 0.425 - 0.6     | 72        |
| 0.6 - 1.18      | 81        |
| 1.18 - 2.36     | 87        |
| 2.36 - 4.75     | 91        |
| 4.75 - 6.7      | 93        |
| 6.7 - 9.5       | 96        |
| 9.5 - 13.2      | 97        |
| 13.2 – 19       | 98        |
| 19 - 26.5       | 98        |
| 26.5 - 37.5     | 99        |
| 37.5 – 53       | 100       |

# A.3 Zone Settling Summary

### Table A-3 Laboratory Analysis - Zone Settling

| Borehole<br>Sample | Depth (m)  | Time for 100% settlement (mins) | Sample Settling Velocity<br>(m/s) |
|--------------------|------------|---------------------------------|-----------------------------------|
| BH01A              | 0.0 - 1.0  | 500                             | 9.528E-06                         |
|                    | 1.0 - 2.1  | 500                             | 1.014E-05                         |
|                    | 2.1 - 2.8  | 500                             | 9.528E-06                         |
| BH02A              | 0.0 - 1.0  | 20                              | 2.870E-04                         |
|                    | 1.0 - 2.75 | 600                             | 1.086E-05                         |
|                    | 2.75 - 3.1 | 600                             | 1.098E-05                         |
| BH04A              | 0.0 - 0.2  | 60                              | 8.964E-05                         |

# Appendix B Mass and Water Balance Model Input Data

The mass and water balance model has been developed on the basis of the following information and data:

- URS project proposal (9 February 2009);
- Site inspection and geotechnical investigation;
- Climate data (rainfall and evaporation) obtained by URS from Queensland Department of Natural Resources and Water SILO Data Drill (17 July 2009);
- Feasibility of Disposal of Dredged Material on Curtis Island (GLNG Ref: 1603-HRW-2-3.3-9006-PDF);
- Laird Point Placement Facility Concept Description report by HR Wallingford (GLNG Ref: 1603-HRW-2-3.3-9038-PDF);
- Source Terms for Plume Dispersion Modelling (GLNG Ref: 3301-HRW-3-3.3-9101-PDF); and
- The water sources represented in the water management system include:
  - Runoff from varying catchment types,
  - Evaporation from storage areas, and
  - Direct rainfall onto the inundation surface of storages.

### B.1 Rainfall

Long-term rainfall data for the LPDSPF was obtained from the Department of Natural Resources and Water (NRW) Data Drill system. The Data Drill rainfall is determined through accessing grids of data derived from interpolation of regional Bureau of Meteorology (BoM) station records. This provides a synthetic data set for a defined set of co-ordinates, derived from actual recorded data.

The long-term rainfall statistics for the proposed site are listed in following table.

|          | Tuble |     | Long I |     |     |     | (101 )0 | u. 0, 001 |     | ing root | //  |     |      |
|----------|-------|-----|--------|-----|-----|-----|---------|-----------|-----|----------|-----|-----|------|
| Item     | Jan   | Feb | Mar    | Apr | Мау | Jun | Jul     | Aug       | Sep | Oct      | Nov | Dec | Year |
| Average  | 122   | 117 | 83     | 43  | 45  | 39  | 32      | 26        | 26  | 47       | 67  | 102 | 749  |
| Std. Dev | 108   | 119 | 81     | 54  | 55  | 43  | 38      | 28        | 28  | 42       | 44  | 81  | 255  |

 Table B-4
 Long Term Rainfall Statistics (107 years, commencing 1900) (mm)

Daily site records from the Gladstone Radar gauge (station number 039326) for the period January 1958 to December 2007 was used to analyse against the corresponding Data Drill averages for the period. Monthly averages are detailed in Table B-5, along with the corresponding Data Drill averages for that period.

|  | Table B-5 | Monthly Site & | Data Drill Rainfalls (Jan | 1958 - Dec 2007) (mm) |
|--|-----------|----------------|---------------------------|-----------------------|
|--|-----------|----------------|---------------------------|-----------------------|

| Item                         | Jan | Feb | Mar | Apr | Мау | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Year |
|------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| Data Drill<br>Average        | 146 | 143 | 96  | 52  | 63  | 40  | 33  | 32  | 26  | 53  | 72  | 125 | 881  |
| Stn No.<br>039326<br>Average | 141 | 133 | 82  | 45  | 60  | 39  | 32  | 32  | 26  | 62  | 72  | 130 | 853  |





Comparison of monthly totals is also represented in Figure B-1.

Review of Figure B-1 shows good correlation between the Gladstone gauge station recorded data and data drill rainfall values, for the concurrent period, with a  $R^2$  value of 0.9029. Given this, current investigations have adopted the Data Drill rainfall values for long-term water management simulation.

The WBM was run using the highest wet year daily rainfall data in 100 years commencing 1900 to 2000. Using the Log-Persons III method it has been identified that this event occurred from 1 September 1955 to 31 October 1956 with 1666.5 mm of rainfall falls within that period.

# **B.2** Evaporation

Long-term evaporation data for the Laird Point dredge spoil placement facility was obtained from the Department of Natural Resources and Water (NRW) Data Drill system. The Data Drill evaporation is determined through accessing grids of data derived from interpolation of regional Bureau of Meteorology (BoM) station records. This provides a synthetic data set for a defined set of co-ordinates, derived from actual recorded data.

Average total evaporation rates from the Gladstone Radar gauge station (039123) and Data Drill evaporation data, provided by DERM are listed in Table B-6.



### Appendix **B**

| Item                         | Jan | Feb | Mar | Apr | Мау | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Year |
|------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| Data Drill<br>Average        | 6   | 5   | 5   | 4   | 3   | 3   | 3   | 4   | 5   | 6   | 6   | 6   | 147  |
| Stn No.<br>039326<br>Average | 6   | 5   | 5   | 4   | 3   | 3   | 3   | 3   | 4   | 5   | 6   | 6   | 145  |

#### Table B-6 Mean Monthly Pan Evaporation (mm/day)

Comparison of monthly totals is also compared in Figure B-2.

# Figure B-2 Correlation of evaporation Data Drill values with site recorded data, monthly totals (January 1967 – December 1992)



Review of Figure B-2 shows good correlation between the Gladstone gauge station recorded data and data drill evaporation values, for the concurrent period, with a  $R^2$  value of 0.9231. As for rainfall data, given its good correlation current investigations have adopted the Data Drill evaporation values for long-term water management simulation.

## B.3 Survey

Contour and feature survey information for the site were provided by Santos. This information was current as at June 2009 and for the purposes of this investigation, this data has been assumed to define current conditions (e.g. land disturbance, catchment areas, etc). Survey data is presented in Figure B-3.



### B.4 Catchment Runoff

Catchment runoff was modelled using the AWBM runoff model, further description of the may be obtained from the CRC Catchment Hydrology Rainfall Runoff Library software documentation (www.toolkit.net.au). The AWBM model is considered a more superior method of estimating runoff from rainfall than simpler methods using runoff coefficients. The AWBM model takes account of observe variability of runoff rate in response to preceding rainfall conditions and corresponding effect on catchments "wetness". For example a moderate to intense rainfall event on a relatively dry catchment could produce little or no runoff, whereas a relatively small rainfall event on saturated catchment can produce substantial runoff (see Figure B-4).



Figure B-4 AWBM Process

### B.4.1 Adopted AWBM Parameters

The natural land type parameters were calibrated using the Rainfall Runoff Library (RRL). The RRL uses daily time series rainfall and evapotranspiration data to generate daily catchment runoff. The generator provides several commonly used lumped rainfall-runoff models, calibration optimisers and display tools to facilitate model calibration. Once the runoff is estimated, it is then compared, using statistical correlation methods, to real flow data.



### Appendix **B**

The calibration of AWBM runoff parameters for natural land type was presented in EIS Appendix O using recorded flow data. A variety of different optimisation methods were used to assess numerous AWBM parameter sets, resulting in the highest correlation being adopted. For this assessment a correlation R<sup>2</sup> value of 0.676 was achieved, which is considered adequate for this level of assessment.

There was no data available to calibrate runoff parameters for hardstand catchment land types. The adopted AWBM runoff parameters were therefore estimated by adjustment of the natural land type runoff model parameters based on the inferred physical differences between hardstand areas relative to characteristics of natural (relatively undisturbed) catchment surfaces.

The general approach was to reduce the catchment store depth (C1, C2 and C3), generally to produce higher runoff. This alteration takes into account the relatively heavily compacted areas and the assumption that hardstand areas will be well drained. However, hardstand areas are often relatively flat and include many minor small surface depressions, which produce some losses as water is retained on the surface and evaporates away after rainfall events.

Additionally, hardstand catchments are assumed to have minimal or no significant baseflow recession. Therefore the Base Flow Index parameter was set to zero. Table B-7 below provides the adopted AWBM parameters for the proposed site.

| AWM Parameters | Natural | Hardstand |
|----------------|---------|-----------|
| A1             | 0.134   | 0.134     |
| A2             | 0.433   | 0.433     |
| A3             | 0.433   | 0.433     |
| BFI            | 0.673   | 0         |
| C1             | 19.292  | 5         |
| C2             | 154.526 | 20        |
| C3             | 914.447 | 40        |
| K Base         | 0.269   | 0.269     |
| K Surf         | 0.917   | 0.917     |

#### Table B-7 Adopted Natural Land Type AWBM Parameters

A1-A3 = Partial areas represented by surface storages

C1-C3 = Surface storage capacities

BFI = Baseflow index

Kbase = Daily baseflow recession constant

Ksurf = Daily surface flow recession constant

## **B.5** Catchment Areas and Land Use Classifications

The dredge spoil placement facility and upstream catchments were divided into different catchment that can be considered as having relatively similar runoff quantity characteristics. Stormwater runoff is anticipated to be attributed by two key sources, disturbed and natural catchments. These areas will also be referred to as natural and hardstand.

Maximum stormwater runoff is anticipated to occur once the dredge spoil placement area has been cleared. This cleared area within the footprint of the proposed facility is classified as hardstand while

the external area which contributes to stormwater runoff flowing into the facility is classified as natural land type. The following figure shows the catchment area and land use classification of the propose facility. Runoff from the external catchment has been included in the WBM to evaluate the capacity of the facility to handle stormwater runoff from the upstream catchment. However, it has been proposed that the runoff from the external catchment will be diverted by large diameter pipe through the site to discharge directly into North China Bay. For detailed information please refer to the Gladstone LNG Dredge Material Placement Facility Phase II Surface Water Assessment report.



This drawing is subject to COPYRIGHT. It remains the property of URS Australia Pty Ltd.



### Appendix **B**

### **B.5.1** Catchment Runoff Suspended Solids Concentrations

The catchment runoff suspended solids concentrations adopted in the WBM were sourced from MUSIC where 100 mg/L and 200 mg/L has been adopted for natural and hardstand land type respectively.

# **B.6** Particle Size Distribution

The PSD used in the modelling was based on the average PSD taken from the laboratory analysis as presented in the following table.

| Sieve Size (mm) | % Passing |
|-----------------|-----------|
| <0.002          | 21        |
| 0.002 - 0.005   | 26        |
| 0.005 - 0.01    | 29        |
| 0.01 - 0.02     | 33        |
| 0.02 - 0.05     | 38        |
| 0.05 - 0.075    | 43        |
| 0.075 - 0.15    | 47        |
| 0.15 - 0.3      | 59        |
| 0.3 - 0.425     | 66        |
| 0.425 - 0.6     | 72        |
| 0.6 - 1.18      | 81        |
| 1.18 - 2.36     | 87        |
| 2.36 - 4.75     | 91        |
| 4.75 - 6.7      | 93        |
| 6.7 - 9.5       | 96        |
| 9.5 - 13.2      | 97        |
| 13.2 – 19       | 98        |
| 19 - 26.5       | 98        |
| 26.5 - 37.5     | 99        |
| 37.5 – 53       | 100       |

### Table B-8 Average Particle Size Distribution

# Appendix C Sediment Basin Design Calculations

### Table C-9 Stage 1 DMPF Performance Assessment Summary

| Sc | Laird Point Dredge Material Placement Facility Performance Assessment Summary<br>Scenario: Stage 1 with external embankments being constructed to 10 m RL and no internal bunds. |                              |  |  |  |  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|--|--|
| 1. | Material Description                                                                                                                                                             | Parameters                   |  |  |  |  |  |
|    | Total dredge material to be removed (m <sup>3</sup> )                                                                                                                            | 6.8 million m <sup>3</sup>   |  |  |  |  |  |
|    | Solid to water ratio (%)                                                                                                                                                         | 14:86                        |  |  |  |  |  |
|    | Total combined volume (m <sup>3</sup> )                                                                                                                                          | 48.57 million m <sup>3</sup> |  |  |  |  |  |
|    | Bulking factor                                                                                                                                                                   | 1.4                          |  |  |  |  |  |
|    | Grading:                                                                                                                                                                         |                              |  |  |  |  |  |
|    | • Silt and Clay (<0.075 mm)                                                                                                                                                      | 43%                          |  |  |  |  |  |
|    | • Sand ( 0.075 mm to 4.75 mm)                                                                                                                                                    | 48%                          |  |  |  |  |  |
|    | • Gravel (>4.75 mm)                                                                                                                                                              | 9%                           |  |  |  |  |  |
|    | Concentration (mg/L)                                                                                                                                                             | 293023                       |  |  |  |  |  |
|    | Assumed average dry bulk density (kg/m <sup>3</sup> )                                                                                                                            | 1800                         |  |  |  |  |  |
|    | Assumed density of particle (kg/m <sup>3</sup> )                                                                                                                                 | 2600                         |  |  |  |  |  |
|    | Density of fluid (kg/m <sup>3</sup> )                                                                                                                                            | 1030                         |  |  |  |  |  |
|    | Dynamic viscosity (Pa.s)                                                                                                                                                         | 0.00108                      |  |  |  |  |  |
|    |                                                                                                                                                                                  |                              |  |  |  |  |  |
| 2. | Extraction Rate                                                                                                                                                                  |                              |  |  |  |  |  |
|    | Solid volume (m <sup>3</sup> /hr)                                                                                                                                                | 995.3                        |  |  |  |  |  |
|    | Total inflow (solid+water) (m <sup>3</sup> /hr)                                                                                                                                  | 7109.4                       |  |  |  |  |  |
|    |                                                                                                                                                                                  |                              |  |  |  |  |  |
| 3. | Project Duration                                                                                                                                                                 |                              |  |  |  |  |  |
|    | Production hours per day                                                                                                                                                         | 20                           |  |  |  |  |  |
|    | Total extraction time (weeks)                                                                                                                                                    | 48.8                         |  |  |  |  |  |
|    |                                                                                                                                                                                  |                              |  |  |  |  |  |
| 4. | Performance                                                                                                                                                                      |                              |  |  |  |  |  |
|    | Height of embankment (m RL)                                                                                                                                                      | 10                           |  |  |  |  |  |
|    | Total surface area at 10m RL (m <sup>2</sup> )                                                                                                                                   | 821801                       |  |  |  |  |  |
|    | Total capacity (m <sup>3</sup> )                                                                                                                                                 | 4256101                      |  |  |  |  |  |
|    | Height of sluice (m RL)                                                                                                                                                          | 8.7                          |  |  |  |  |  |
|    | Assumed dead zone (%)                                                                                                                                                            | 20                           |  |  |  |  |  |
|    | Surface Area at 8.7m RL (m <sup>2</sup> )                                                                                                                                        | 741202                       |  |  |  |  |  |
|    | Effective surface area at 8.7m RL (m <sup>2</sup> )                                                                                                                              | 592962                       |  |  |  |  |  |
|    | Freeboard allowance (m)                                                                                                                                                          | 1-1.5                        |  |  |  |  |  |
|    | Maximum operating volume (m <sup>3</sup> )                                                                                                                                       | 2479049                      |  |  |  |  |  |
|    | Days of operation                                                                                                                                                                | 77.7                         |  |  |  |  |  |
|    | Average detention time (hrs)                                                                                                                                                     | 214.4                        |  |  |  |  |  |
|    | Pond rating (m <sup>2</sup> per m <sup>3</sup> /s)                                                                                                                               | 300259                       |  |  |  |  |  |
|    | Minimum ponding/operating depth (m)                                                                                                                                              | 0.6                          |  |  |  |  |  |
|    | Maximum ponding/operating depth (m)                                                                                                                                              | 4.7                          |  |  |  |  |  |



С

| Sc | Laird Point Dredge Material Placement Facility Performance Assessment Summary<br>Scenario: Stage 1 with external embankments being constructed to 10 m RL and no internal bunds |                        |  |  |  |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|--|--|
| 1. | . Material Description Parameters                                                                                                                                               |                        |  |  |  |  |  |
|    | Final solid level (m RL)                                                                                                                                                        | 7.9                    |  |  |  |  |  |
|    | Final water depth (m)                                                                                                                                                           | 0.8                    |  |  |  |  |  |
|    | Minimum flow velocity (m/s)                                                                                                                                                     | 3.329*10 <sup>-6</sup> |  |  |  |  |  |
|    | Maximum flow velocity (m/s)                                                                                                                                                     | 3.331*10 <sup>-6</sup> |  |  |  |  |  |
|    | Smallest particle removed based on Stokes Law (mm)                                                                                                                              | 0.002                  |  |  |  |  |  |
|    | Estimated concentration in discharge effluent (mg/l)                                                                                                                            | <50                    |  |  |  |  |  |

### Table C-10 Stage 2 DMPF Performance Assessment Summary

| Lai | Laird Point Dredge Material Placement Facility performance Assessment Summary |                              |
|-----|-------------------------------------------------------------------------------|------------------------------|
| 1.  | Material Description                                                          | Parameters                   |
|     | Total dredge material to be removed (m <sup>3</sup> )                         | 6.8 million m <sup>3</sup>   |
|     | Solid to water ratio (%)                                                      | 14:86                        |
|     | Total combined volume (m <sup>3</sup> )                                       | 48.57 million m <sup>3</sup> |
|     | Bulking factor                                                                | 1.4                          |
|     | Grading:                                                                      |                              |
|     | Silt and Clay (<0.075 mm)                                                     | 43%                          |
|     | • Sand ( 0.075 mm to 4.75 mm)                                                 | 48%                          |
|     | Gravel (>4.75 mm)                                                             | 9%                           |
|     | Concentration (mg/L)                                                          | 293023                       |
|     | Assumed average dry bulk density (kg/m <sup>3</sup> )                         | 1800                         |
|     | Assumed density of particle (kg/m <sup>3</sup> )                              | 2600                         |
|     | Density of fluid (kg/m <sup>3</sup> )                                         | 1030                         |
|     | Dynamic viscosity (Pa.s)                                                      | 0.00108                      |
|     |                                                                               |                              |
| 2.  | Extraction Rate                                                               |                              |
|     | Solid volume (m <sup>3</sup> /hr)                                             | 995.3                        |
|     | Total inflow (solid+water) (m <sup>3</sup> /hr)                               | 7109.4                       |
| 2   | Project Duration                                                              |                              |
| 5.  |                                                                               | 20                           |
|     | Tatal autraction time (weeks)                                                 | 20                           |
|     |                                                                               | 40.0                         |
| 4.  | Performance                                                                   |                              |
|     | Combined Pond S1, S2, S3, N3 and N2 Performance                               |                              |
|     | Height of embankment (m RL)                                                   | 14                           |
|     | Total surface area at 14m RL (m <sup>2</sup> )                                | 782289                       |
|     | Total capacity (m <sup>3</sup> )                                              | 3813164                      |



# Appendix C

| Lai | Laird Point Dredge Material Placement Facility performance Assessment Summary      |                        |
|-----|------------------------------------------------------------------------------------|------------------------|
| Sc  | ario: Stage 2 with external and internal embankments being constructed to 14 m RL. |                        |
| 1.  | Material Description                                                               | Parameters             |
|     | Height of sluice (m RL)                                                            | 13.2                   |
|     | Assumed dead zone (%)                                                              | 20                     |
|     | Surface Area at 13.2m RL (m <sup>2</sup> )                                         | 747481                 |
|     | Effective surface area at 13.2m RL (m <sup>2</sup> )                               | 597985                 |
|     | Freeboard allowance (m)                                                            | 1-1.5                  |
|     | Maximum operating volume (m <sup>3</sup> )                                         | 2562365                |
|     | Days of operation                                                                  | 13.7                   |
|     | Average detention time (hrs)                                                       | 161.9                  |
|     | Pond rating (m <sup>2</sup> per m <sup>3</sup> /s)                                 | 289649                 |
|     | Minimum ponding/operating depth (m)                                                | 0.6                    |
|     | Maximum ponding/operating depth (m)                                                | 3.7                    |
|     | Final solid level (m RL)                                                           | 11.9                   |
|     | Final water depth (m)                                                              | 0.7                    |
|     | Minimum flow velocity (m/s)                                                        | 3.302*10 <sup>-6</sup> |
|     | Maximum flow velocity (m/s)                                                        | 3.304*10 <sup>-6</sup> |
|     | Smallest particle removed based on Stokes Law (mm)                                 | 0.002                  |
|     | Estimated concentration in discharge effluent (mg/l)                               | <50                    |
|     |                                                                                    |                        |
|     | Combined Pond S2, S3, N3, N2 and N1 Performance                                    |                        |
|     | Height of embankment (m RL)                                                        | 14                     |
|     | Total surface area at 14m RL (m <sup>2</sup> )                                     | 784778                 |
|     | Total capacity (m <sup>3</sup> )                                                   | 3890181                |
|     | Height of sluice (m RL)                                                            | 13.2                   |
|     | Assumed dead zone (%)                                                              | 20                     |
|     | Surface Area at 13.2m RL (m <sup>2</sup> )                                         | 752243                 |
|     | Effective surface area at 13.2m RL (m <sup>2</sup> )                               | 601794                 |
|     | Freeboard allowance (m)                                                            | 1-1.5                  |
|     | Maximum operating volume (m <sup>3</sup> )                                         | 2621560                |
|     | Days of operation                                                                  | 13                     |
|     | Average detention time (hrs)                                                       | 212                    |
|     | Pond rating (m <sup>2</sup> per m <sup>3</sup> /s)                                 | 304726                 |
|     | Minimum ponding/operating depth (m)                                                | 0.6                    |
|     | Maximum ponding/operating depth (m)                                                | 4.0                    |
|     | Final solid level (m RL)                                                           | 11.9                   |
|     | Final water depth (m)                                                              | 1.33                   |
|     | Minimum flow velocity (m/s)                                                        | 3.282*10 <sup>-6</sup> |
|     | Maximum flow velocity (m/s)                                                        | 3.290*10 <sup>-6</sup> |
|     | Smallest particle removed based on Stokes Law (mm)                                 | 0.002                  |
|     | Estimated concentration in discharge effluent (mg/l)                               | <50                    |
|     |                                                                                    |                        |

Г

|    |                                                      | Denemeters             |
|----|------------------------------------------------------|------------------------|
| 1. |                                                      | Parameters             |
|    | Combined Pond S3, N3, N2, N1 and S1 Performance      |                        |
|    | Height of embankment (m RL)                          | 14                     |
|    | Total surface area at 14m RL (m <sup>2</sup> )       | 780219                 |
|    | Total capacity (m <sup>3</sup> )                     | 3869778                |
|    | Height of sluice (m RL)                              | 13.2                   |
|    | Assumed dead zone (%)                                | 20                     |
|    | Surface Area at 13.2m RL (m <sup>2</sup> )           | 746725                 |
|    | Effective surface area at 13.2m RL (m <sup>2</sup> ) | 597380                 |
|    | Freeboard allowance (m)                              | 1-1.5                  |
|    | Maximum operating volume (m <sup>3</sup> )           | 2608551                |
|    | Days of operation                                    | 9.9                    |
|    | Average detention time (hrs)                         | 201                    |
|    | Pond rating (m <sup>2</sup> per m <sup>3</sup> /s)   | 302496                 |
|    | Minimum ponding/operating depth (m)                  | 0.6                    |
|    | Maximum ponding/operating depth (m)                  | 3.8                    |
|    | Final solid level (m RL)                             | 11.9                   |
|    | Final water depth (m)                                | 1.3                    |
|    | Minimum flow velocity (m/s)                          | 3.305*10 <sup>-6</sup> |
|    | Maximum flow velocity (m/s)                          | 3.306*10 <sup>-6</sup> |
|    | Smallest particle removed based on Stokes Law (mm)   | 0.002                  |
|    | Estimated concentration in discharge effluent (mg/l) | <50                    |
|    |                                                      |                        |
|    | Combined Pond N3, N2, N1, S1 and S2 Performance      |                        |
|    | Height of embankment (m RL)                          | 14                     |
|    | Total surface area at 14m RL (m <sup>2</sup> )       | 795538                 |
|    | Total capacity (m <sup>3</sup> )                     | 4011573                |
|    | Height of sluice (m RL)                              | 13.2                   |
|    | Assumed dead zone (%)                                | 20                     |
|    | Surface Area at 13.2m RL (m <sup>2</sup> )           | 762981                 |
|    | Effective surface area at 13.2m RL (m <sup>2</sup> ) | 610385                 |
|    | Freeboard allowance (m)                              | 1-1.5                  |
|    | Maximum operating volume (m <sup>3</sup> )           | 2711791                |
|    | Days of operation                                    | 14.2                   |
|    | Average detention time (hrs)                         | 222.5                  |
|    | Pond rating (m <sup>2</sup> per m <sup>3</sup> /s)   | 309082                 |
|    | Minimum ponding/operating depth (m)                  | 0.6                    |
|    | Maximum ponding/operating depth (m)                  | <u> </u>               |
|    | Final solid level (m RI )                            | 11 0                   |
| -+ | Final water denth (m)                                | 1 2                    |
|    |                                                      | 1.3                    |



# Appendix C

Г

| Lai | rd Point Dredge Material Placement Facility performa                                | ance Assessment Summary |
|-----|-------------------------------------------------------------------------------------|-------------------------|
| So  | nario: Stage 2 with external and internal embankments being constructed to 14 m RL. |                         |
| 1.  | Material Description                                                                | Parameters              |
|     | Maximum flow velocity (m/s)                                                         | 3.255*10 <sup>-6</sup>  |
|     | Smallest particle removed based on Stokes Law (mm)                                  | 0.002                   |
|     | Estimated concentration in discharge effluent (mg/l)                                | <50                     |
|     |                                                                                     |                         |
|     | Combined Pond N2, N1, S1, S2 and S3 Performance                                     |                         |
|     | Height of embankment (m RL)                                                         | 14                      |
|     | Total surface area at 14m RL (m <sup>2</sup> )                                      | 779445                  |
|     | Total capacity (m <sup>3</sup> )                                                    | 3823198                 |
|     | Height of sluice (m RL)                                                             | 13.2                    |
|     | Assumed dead zone (%)                                                               | 20                      |
|     | Surface Area at 13.2m RL (m <sup>2</sup> )                                          | 745167                  |
|     | Effective surface area at 13.2m RL (m <sup>2</sup> )                                | 596134                  |
|     | Freeboard allowance (m)                                                             | 1-1.5                   |
|     | Maximum operating volume (m <sup>3</sup> )                                          | 2572005                 |
|     | Days of operation                                                                   | 15.2                    |
|     | Average detention time (hrs)                                                        | 225.3                   |
|     | Pond rating (m <sup>2</sup> per m <sup>3</sup> /s)                                  | 301865                  |
|     | Minimum ponding/operating depth (m)                                                 | 0.6                     |
|     | Maximum ponding/operating depth (m)                                                 | 4.2                     |
|     | Final solid level (m RL)                                                            | 11.9                    |
|     | Final water depth (m)                                                               | 1.3                     |
|     | Minimum flow velocity (m/s)                                                         | 3.312*10 <sup>-6</sup>  |
|     | Maximum flow velocity (m/s)                                                         | 3.322*10 <sup>-6</sup>  |
|     | Smallest particle removed based on Stokes Law (mm)                                  | 0.002                   |
|     | Estimated concentration in discharge effluent (mg/l)                                | <50                     |
|     |                                                                                     |                         |
|     | Combined Pond N1, S1, S2, S3 and N3 Performance                                     |                         |
|     | Height of embankment (m RL)                                                         | 14                      |
|     | Total surface area at 14m RL (m <sup>2</sup> )                                      | 775913                  |
|     | Total capacity (m <sup>3</sup> )                                                    | 3780233                 |
|     | Height of sluice (m RL)                                                             | 13.2                    |
|     | Assumed dead zone (%)                                                               | 20                      |
|     | Surface Area at 13.2m RL (m <sup>2</sup> )                                          | 740149                  |
|     | Effective surface area at 13.2m RL (m <sup>2</sup> )                                | 592119                  |
|     | Freeboard allowance (m)                                                             | 1-1.5                   |
|     | Maximum operating volume (m <sup>3</sup> )                                          | 2540075                 |
|     | Days of operation                                                                   | 14.6                    |
|     | Average detention time (hrs)                                                        | 220.6                   |
|     | Pond rating (m <sup>2</sup> per m <sup>3</sup> /s)                                  | 299832                  |
|     | Minimum ponding/operating depth (m)                                                 | 0.6                     |

| Lai | Laird Point Dredge Material Placement Facility performance Assessment Summary          |                        |
|-----|----------------------------------------------------------------------------------------|------------------------|
| Sc  | Scenario: Stage 2 with external and internal embankments being constructed to 14 m RL. |                        |
| 1.  | Material Description                                                                   | Parameters             |
|     | Maximum ponding/operating depth (m)                                                    | 4.3                    |
|     | Final solid level (m RL)                                                               | 11.9                   |
|     | Final water depth (m)                                                                  | 1.3                    |
|     | Minimum flow velocity (m/s)                                                            | 3.330*10 <sup>-6</sup> |
|     | Maximum flow velocity (m/s)                                                            | 3.338*10 <sup>-6</sup> |
|     | Smallest particle removed based on Stokes Law (mm)                                     | 0.002                  |
|     | Estimated concentration in discharge effluent (mg/l)                                   | <50                    |

Table C-11 Stage 3 DMPF Performance Assessment Summary

| Lai     | Laird Point Dredge Material Placement Facility Performance Assessment Summary |                              |
|---------|-------------------------------------------------------------------------------|------------------------------|
| SC<br>E | enario: Stage 3 with external and internal embankments beir                   | ig constructed to 18 m RL.   |
| э.      | Tetal deadars material to be received (m <sup>3</sup> )                       |                              |
|         |                                                                               | 6.8 million m                |
|         | Solid to water ratio (%)                                                      | 14:86                        |
|         | l otal combined volume (m <sup>2</sup> )                                      | 48.57 million m <sup>o</sup> |
|         | Bulking factor                                                                | 1.4                          |
|         | Grading:                                                                      |                              |
|         | Silt and Clay (<0.075 mm)                                                     | 43%                          |
|         | • Sand ( 0.075 mm to 4.75 mm)                                                 | 48%                          |
|         | • Gravel (>4.75 mm)                                                           | 9%                           |
|         | Concentration (mg/L)                                                          | 293023                       |
|         | Assumed average dry bulk density (kg/m <sup>3</sup> )                         | 1800                         |
|         | Assumed density of particle (kg/m <sup>3</sup> )                              | 2600                         |
|         | Density of fluid (kg/m <sup>3</sup> )                                         | 1030                         |
|         | Dynamic viscosity (Pa.s)                                                      | 0.00108                      |
| 6.      | Extraction Rate                                                               |                              |
|         | Solid volume (m <sup>3</sup> /hr)                                             | 995.3                        |
|         | Total inflow (solid+water) (m <sup>3</sup> /hr)                               | 7109.4                       |
| 7.      | Project Duration                                                              |                              |
|         | Production hours per day                                                      | 20                           |
|         | Total extraction time (weeks)                                                 | 48.8                         |
| 8.      | Performance                                                                   |                              |
|         | Combined Pond S1, S2, S3, N3 and N2 Performance                               |                              |
|         | Height of embankment (m RL)                                                   | 18                           |
|         | Total surface area at 18m RL (m <sup>2</sup> )                                | 861424                       |



# Appendix C

Г

| Lai | d Point Dredge Material Placement Facility Performan                                   | ce Assessment Summary  |
|-----|----------------------------------------------------------------------------------------|------------------------|
| Sc  | Scenario: Stage 3 with external and internal embankments being constructed to 18 m RL. |                        |
| 5.  | Material Description                                                                   | Parameters             |
|     | Total capacity (m <sup>3</sup> )                                                       | 4522181                |
|     | Height of sluice (m RL)                                                                | 16.5                   |
|     | Assumed dead zone (%)                                                                  | 20                     |
|     | Surface Area at 16.5m RL (m <sup>2</sup> )                                             | 805811                 |
|     | Effective surface area at 16.5m RL (m <sup>2</sup> )                                   | 644649                 |
|     | Freeboard allowance (m)                                                                | 1-1.5                  |
|     | Maximum operating volume (m <sup>3</sup> )                                             | 2617736                |
|     | Days of operation                                                                      | 16.1                   |
|     | Average detention time (hrs)                                                           | 186.8                  |
|     | Pond rating (m <sup>2</sup> per m <sup>3</sup> /s)                                     | 326432                 |
|     | Minimum ponding/operating depth (m)                                                    | 0.6                    |
|     | Maximum ponding/operating depth (m)                                                    | 3.8                    |
|     | Final solid level (m RL)                                                               | 15.9                   |
|     | Final water depth (m)                                                                  | 0.6                    |
|     | Minimum flow velocity (m/s)                                                            | 3.063*10 <sup>-6</sup> |
|     | Maximum flow velocity (m/s)                                                            | 3.082*10 <sup>-6</sup> |
|     | Smallest particle removed based on Stokes Law (mm)                                     | 0.002                  |
|     | Estimated concentration in discharge effluent (mg/l)                                   | <50                    |
|     |                                                                                        |                        |
|     | Combined Pond S2, S3, N3, N2 and N1 Performance                                        |                        |
|     | Height of embankment (m RL)                                                            | 18                     |
|     | Total surface area at 18m RL (m <sup>2</sup> )                                         | 858682                 |
|     | Total capacity (m <sup>3</sup> )                                                       | 4526966                |
|     | Height of sluice (m RL)                                                                | 16.5                   |
|     | Assumed dead zone (%)                                                                  | 20                     |
|     | Surface Area at 16.5m RL (m <sup>2</sup> )                                             | 803848                 |
|     | Effective surface area at 16.5m RL (m <sup>2</sup> )                                   | 643079                 |
|     | Freeboard allowance (m)                                                                | 1-1.5                  |
|     | Maximum operating volume (m <sup>3</sup> )                                             | 2624391                |
|     | Days of operation                                                                      | 16.4                   |
|     | Average detention time (hrs)                                                           | 186.8                  |
|     | Pond rating (m <sup>2</sup> per m <sup>3</sup> /s)                                     | 325637                 |
|     | Minimum ponding/operating depth (m)                                                    | 0.6                    |
|     | Maximum ponding/operating depth (m)                                                    | 3.7                    |
|     | Final solid level (m RL)                                                               | 15.9                   |
|     | Final water depth (m)                                                                  | 0.6                    |
|     | Minimum flow velocity (m/s)                                                            | 3.070*10 <sup>-6</sup> |
|     | Maximum flow velocity (m/s)                                                            | 3.087*10 <sup>-6</sup> |
|     | Smallest particle removed based on Stokes Law (mm)                                     | 0.002                  |
|     | Estimated concentration in discharge effluent (mg/l)                                   | <50                    |

| Material Description                                   | Parameters             |
|--------------------------------------------------------|------------------------|
|                                                        |                        |
| <br>Combined Pond S3, N3, N2, N1 and S1 Performance    |                        |
| Height of embankment (m RL)                            | 18                     |
| Total surface area at 18m RL (m <sup>2</sup> )         | 847649                 |
| Total capacity (m <sup>3</sup> )                       | 4463832                |
| Height of sluice (m RL)                                | 16.5                   |
| Assumed dead zone (%)                                  | 20                     |
| Surface Area at 16.5m RL (m <sup>2</sup> )             | 793825                 |
| Effective surface area at 16.5m RL (m <sup>2</sup> )   | 635060                 |
| <br>Freeboard allowance (m)                            | 1-1.5                  |
| Maximum operating volume (m <sup>3</sup> )             | 2586516.75             |
| Days of operation                                      | 15                     |
| Average detention time (hrs)                           | 184.4                  |
| <br>Pond rating (m <sup>2</sup> per m <sup>3</sup> /s) | 321577                 |
| Minimum ponding/operating depth (m)                    | 0.6                    |
| Maximum ponding/operating depth (m)                    | 3.8                    |
| Final solid level (m RL)                               | 15.9                   |
| Final water depth (m)                                  | 0.6                    |
| Minimum flow velocity (m/s)                            | 3.109*10 <sup>-6</sup> |
| Maximum flow velocity (m/s)                            | 3.115*10 <sup>-6</sup> |
| Smallest particle removed based on Stokes Law (mm)     | 0.002                  |
| Estimated concentration in discharge effluent (mg/l)   | <50                    |
|                                                        |                        |
| Combined Pond N3, N2, N1, S1 and S2 Performance        |                        |
| Height of embankment (m RL)                            | 18                     |
| I otal surface area at 18m RL (m <sup>2</sup> )        | 856603                 |
| Total capacity (m°)                                    | 4532308                |
| Height of sluice (m RL)                                | 16.5                   |
| <br>Assumed dead zone (%)                              | 20                     |
| Surface Area at 16.5m RL (m <sup>2</sup> )             | 803641                 |
| Effective surface area at 16.5m RL (m <sup>2</sup> )   | 642913                 |
| Freeboard allowance (m)                                | 1-1.5                  |
| Maximum operating volume (m°)                          | 2629976                |
| Days of operation                                      | 17                     |
| Average detention time (hrs)                           | 195.1                  |
| Pond rating (m <sup>2</sup> per m <sup>3</sup> /s)     | 325553                 |
| <br>Minimum ponding/operating depth (m)                | 0.6                    |
| <br>Maximum ponding/operating depth (m)                | 4.0                    |
| Final solid level (m RL)                               | 15.9                   |
| Final water depth (m)                                  | 0.6                    |



# Appendix C

| Lai | rd Point Dredge Material Placement Facility Performan       | ce Assessment Summary                                                             |  |
|-----|-------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| Sc  | enario: Stage 3 with external and internal embankments beir | rio: Stage 3 with external and internal embankments being constructed to 18 m RL. |  |
| 5.  | Material Description                                        | Parameters                                                                        |  |
|     | Minimum flow velocity (m/s)                                 | 3.071*10 <sup>-6</sup>                                                            |  |
|     | Maximum flow velocity (m/s)                                 | 3.084*10 <sup>-6</sup>                                                            |  |
|     | Smallest particle removed based on Stokes Law (mm)          | 0.002                                                                             |  |
|     | Estimated concentration in discharge effluent (mg/l)        | <50                                                                               |  |
|     |                                                             |                                                                                   |  |
|     | Combined Pond N2, N1, S1, S2 and S3 Performance             |                                                                                   |  |
|     | Height of embankment (m RL)                                 | 18                                                                                |  |
|     | Total surface area at 18m RL (m <sup>2</sup> )              | 848293                                                                            |  |
|     | Total capacity (m <sup>3</sup> )                            | 4442735                                                                           |  |
|     | Height of sluice (m RL)                                     | 16.5                                                                              |  |
|     | Assumed dead zone (%)                                       | 20                                                                                |  |
|     | Surface Area at 16.5m RL (m <sup>2</sup> )                  | 792012                                                                            |  |
|     | Effective surface area at 16.5m RL (m <sup>2</sup> )        | 633609                                                                            |  |
|     | Freeboard allowance (m)                                     | 1-1.5                                                                             |  |
|     | Maximum operating volume (m <sup>3</sup> )                  | 2570351                                                                           |  |
|     | Days of operation                                           | 16.9                                                                              |  |
|     | Average detention time (hrs)                                | 186.2                                                                             |  |
|     | Pond rating (m <sup>2</sup> per m <sup>3</sup> /s)          | 320842                                                                            |  |
|     | Minimum ponding/operating depth (m)                         | 0.6                                                                               |  |
|     | Maximum ponding/operating depth (m)                         | 3.8                                                                               |  |
|     | Final solid level (m RL)                                    | 15.9                                                                              |  |
|     | Final water depth (m)                                       | 0.6                                                                               |  |
|     | Minimum flow velocity (m/s)                                 | 3.116*10 <sup>-6</sup>                                                            |  |
|     | Maximum flow velocity (m/s)                                 | 3.132*10 <sup>-6</sup>                                                            |  |
|     | Smallest particle removed based on Stokes Law (mm)          | 0.002                                                                             |  |
|     | Estimated concentration in discharge effluent (mg/l)        | <50                                                                               |  |
|     |                                                             |                                                                                   |  |
|     | Combined Pond N1, S1, S2, S3 and N3 Performance             |                                                                                   |  |
|     | Height of embankment (m RL)                                 | 18                                                                                |  |
|     | Total surface area at 18m RL (m <sup>2</sup> )              | 849133                                                                            |  |
|     | Total capacity (m <sup>3</sup> )                            | 4446909                                                                           |  |
|     | Height of sluice (m RL)                                     | 16.5                                                                              |  |
|     | Assumed dead zone (%)                                       | 20                                                                                |  |
|     | Surface Area at 16.5m RL (m <sup>2</sup> )                  | 793302                                                                            |  |
|     | Effective surface area at 16.5m RL (m <sup>2</sup> )        | 634641                                                                            |  |
|     | Freeboard allowance (m)                                     | 1-1.5                                                                             |  |
|     | Maximum operating volume (m <sup>3</sup> )                  | 2572447                                                                           |  |
|     | Days of operation                                           | 15.5                                                                              |  |
|     | Average detention time (hrs)                                | 183.2                                                                             |  |
|     | Pond rating (m <sup>2</sup> per m <sup>3</sup> /s)          | 321365                                                                            |  |

| Lai | Laird Point Dredge Material Placement Facility Performance Assessment Summary          |                        |
|-----|----------------------------------------------------------------------------------------|------------------------|
| Sc  | Scenario: Stage 3 with external and internal embankments being constructed to 18 m RL. |                        |
| 5.  | Material Description                                                                   | Parameters             |
|     | Minimum ponding/operating depth (m)                                                    | 0.6                    |
|     | Maximum ponding/operating depth (m)                                                    | 3.8                    |
|     | Final solid level (m RL)                                                               | 15.9                   |
|     | Final water depth (m)                                                                  | 0.6                    |
|     | Minimum flow velocity (m/s)                                                            | 3.111*10 <sup>-6</sup> |
|     | Maximum flow velocity (m/s)                                                            | 3.115*10 <sup>-6</sup> |
|     | Smallest particle removed based on Stokes Law (mm)                                     | 0.002                  |
|     | Estimated concentration in discharge effluent (mg/l)                                   | <50                    |

# Table C-12 Stage 4 DMPF Performance Assessment Summary

#### Laird Point Dredge Material Placement Facility Performance Assessment Summary Scenario: Stage 4 with external and internal embankments being constructed to 22 m RL. 9. **Material Description Parameters** Total dredge material to be removed (m<sup>3</sup>) 6.8 million m<sup>3</sup> Solid to water ratio (%) 14:86 48.57 million m<sup>3</sup> Total combined volume (m<sup>3</sup>) Bulking factor 1.4 Grading: Silt and Clay (<0.075 mm) 43% • 48% Sand (0.075 mm to 4.75 mm) ٠ 9% • Gravel (>4.75 mm) Concentration (mg/L) 293023 Assumed average dry bulk density (kg/m<sup>3</sup>) 1800 Assumed density of particle (kg/m<sup>3</sup>) 2600 Density of fluid (kg/m<sup>3</sup>) 1030 Dynamic viscosity (Pa.s) 0.00108 10. **Extraction Rate** Solid volume (m<sup>3</sup>/hr) 995.3 Total inflow (solid+water) (m<sup>3</sup>/hr) 7109.4 11. **Project Duration** Production hours per day 20 Total extraction time (weeks) 48.8 12. Combined Pond S1, S2, S3, N3 and N2 Performance Height of embankment (m RL) 22 Total surface area at 22m RL (m<sup>2</sup>) 920938



# Appendix C

| Lai | rd Point Dredge Material Placement Facility Performan                                  | ce Assessment Summary  |
|-----|----------------------------------------------------------------------------------------|------------------------|
| Sc  | Scenario: Stage 4 with external and internal embankments being constructed to 22 m RL. |                        |
| 9.  | Material Description                                                                   | Parameters             |
|     | Total capacity (m <sup>3</sup> )                                                       | 4955033                |
|     | Height of sluice (m RL)                                                                | 19.9                   |
|     | Assumed dead zone (%)                                                                  | 20                     |
|     | Surface Area at 19.9m RL (m <sup>2</sup> )                                             | 846559                 |
|     | Effective surface area at 19.9m RL (m <sup>2</sup> )                                   | 677247                 |
|     | Freeboard allowance (m)                                                                | 1-1.5                  |
|     | Maximum operating volume (m <sup>3</sup> )                                             | 2480946                |
|     | Days of operation                                                                      | 14.7                   |
|     | Average detention time (hrs)                                                           | 177.7                  |
|     | Pond rating (m <sup>2</sup> per m <sup>3</sup> /s)                                     | 342939                 |
|     | Minimum ponding/operating depth (m)                                                    | 0.6                    |
|     | Maximum ponding/operating depth (m)                                                    | 3.3                    |
|     | Final solid level (m RL)                                                               | 19.3                   |
|     | Final water depth (m)                                                                  | 0.6                    |
|     | Minimum flow velocity (m/s)                                                            | 2.916*10 <sup>-6</sup> |
|     | Maximum flow velocity (m/s)                                                            | 2.922*10 <sup>-6</sup> |
|     | Smallest particle removed based on Stokes Law (mm)                                     | 0.0019                 |
|     | Estimated concentration in discharge effluent (mg/l)                                   | <50                    |
| 13. | Combined Pond S2, S3, N3, N2 and N1 Performance                                        |                        |
|     | Height of embankment (m RL)                                                            | 22                     |
|     | Total surface area at 22m RL (m <sup>2</sup> )                                         | 917625                 |
|     | Total capacity (m <sup>3</sup> )                                                       | 4939385                |
|     | Height of sluice (m RL)                                                                | 19.9                   |
|     | Assumed dead zone (%)                                                                  | 20                     |
|     | Surface Area at 19.9m RL (m <sup>2</sup> )                                             | 843618                 |
|     | Effective surface area at 19.9m RL (m <sup>2</sup> )                                   | 674894                 |
|     | Freeboard allowance (m)                                                                | 1-1.5                  |
|     | Maximum operating volume (m <sup>3</sup> )                                             | 2473556                |
|     | Days of operation                                                                      | 15.3                   |
|     | Average detention time (hrs)                                                           | 178.1                  |
|     | Pond rating (m <sup>2</sup> per m <sup>3</sup> /s)                                     | 341747                 |
|     | Minimum ponding/operating depth (m)                                                    | 0.6                    |
|     | Maximum ponding/operating depth (m)                                                    | 3.2                    |
|     | Final solid level (m RL)                                                               | 19.3                   |
|     | Final water depth (m)                                                                  | 0.6                    |
|     | Minimum flow velocity (m/s)                                                            | 2.926*10 <sup>-6</sup> |
|     | Maximum flow velocity (m/s)                                                            | 2.932*10 <sup>-6</sup> |
|     | Smallest particle removed based on Stokes Law (mm)                                     | 0.0019                 |
|     | Estimated concentration in discharge effluent (mg/l)                                   | <50                    |

| 9.  | Material Description                                 | Parameters             |
|-----|------------------------------------------------------|------------------------|
| 14. | Combined Pond S3, N3, N2, N1 and S1 Performance      |                        |
|     | Height of embankment (m RI )                         | 22                     |
|     | Total surface area at 22m RL $(m^2)$                 | 898130                 |
|     | Total capacity $(m^3)$                               | 4831856                |
|     | Height of sluice (m RL)                              | 19.9                   |
|     | Assumed dead zone (%)                                | 20                     |
|     | Surface Area at 19.9m RI (m <sup>2</sup> )           | 825714                 |
|     | Effective surface area at 19.9m RL $(m^2)$           | 660571                 |
|     | Freeboard allowance (m)                              | 1-1.5                  |
|     | Maximum operating volume $(m^3)$                     | 2419087                |
|     | Days of operation                                    | 14.8                   |
|     | Average detention time (hrs)                         | 171.2                  |
|     | Pond rating (m <sup>2</sup> per m <sup>3</sup> /s)   | 334495                 |
|     | Minimum ponding/operating depth (m)                  | 0.6                    |
|     | Maximum ponding/operating depth (m)                  | 3.2                    |
|     | Final solid level (m RL)                             | 19.3                   |
|     | Final water depth (m)                                | 0.6                    |
|     | Minimum flow velocity (m/s)                          | 2.990*10 <sup>-6</sup> |
|     | Maximum flow velocity (m/s)                          | 2.993*10 <sup>-6</sup> |
|     | Smallest particle removed based on Stokes Law (mm)   | 0.0019                 |
|     | Estimated concentration in discharge effluent (mg/l) | <50                    |
| 15. | Combined Pond N3, N2, N1, S1 and S2 Performance      |                        |
|     | Height of embankment (m RL)                          | 22                     |
|     | Total surface area at 22m RL (m <sup>2</sup> )       | 896201                 |
|     | Total capacity (m <sup>3</sup> )                     | 4849969                |
|     | Height of sluice (m RL)                              | 19.9                   |
|     | Assumed dead zone (%)                                | 20                     |
|     | Surface Area at 19.9m RL (m <sup>2</sup> )           | 827369                 |
|     | Effective surface area at 19.9m RL (m <sup>2</sup> ) | 661896                 |
|     | Freeboard allowance (m)                              | 1-1.5                  |
|     | Maximum operating volume (m <sup>3</sup> )           | 2433321                |
|     | Days of operation                                    | 15.8                   |
|     | Average detention time (hrs)                         | 168.1                  |
|     | Pond rating (m <sup>2</sup> per m <sup>3</sup> /s)   | 335165                 |
|     | Minimum ponding/operating depth (m)                  | 0.6                    |
|     | Maximum ponding/operating depth (m)                  | 3.2                    |
|     | Final solid level (m RL)                             | 19.3                   |
|     | Final water depth (m)                                | 0.6                    |
|     | Minimum flow velocity (m/s)                          | 2.984*10 <sup>-6</sup> |



# Appendix C

Г

| Laird Point Dredge Material Placement Facility Performance Assessment Summary          |                                                      |                        |  |
|----------------------------------------------------------------------------------------|------------------------------------------------------|------------------------|--|
| Scenario: Stage 4 with external and internal embankments being constructed to 22 m RL. |                                                      |                        |  |
| 9.                                                                                     | Material Description                                 | Parameters             |  |
|                                                                                        | Maximum flow velocity (m/s)                          | 2.996*10 <sup>-6</sup> |  |
|                                                                                        | Smallest particle removed based on Stokes Law (mm)   | 0.0019                 |  |
|                                                                                        | Estimated concentration in discharge effluent (mg/l) | <50                    |  |
| 16.                                                                                    | Combined Pond N2, N1, S1, S2 and S3 Performance      |                        |  |
|                                                                                        | Height of embankment (m RL)                          | 22                     |  |
|                                                                                        | Total surface area at 22m RL (m <sup>2</sup> )       | 898712                 |  |
|                                                                                        | Total capacity (m <sup>3</sup> )                     | 4811977                |  |
|                                                                                        | Height of sluice (m RL)                              | 19.9                   |  |
|                                                                                        | Assumed dead zone (%)                                | 20                     |  |
|                                                                                        | Surface Area at 19.9 m RL (m <sup>2</sup> )          | 823328                 |  |
|                                                                                        | Effective surface area at 19.9m RL (m <sup>2</sup> ) | 658662                 |  |
|                                                                                        | Freeboard allowance (m)                              | 1-1.5                  |  |
|                                                                                        | Maximum operating volume (m <sup>3</sup> )           | 2404636                |  |
|                                                                                        | Days of operation                                    | 15.3                   |  |
|                                                                                        | Average detention time (hrs)                         | 167.3                  |  |
|                                                                                        | Pond rating (m <sup>2</sup> per m <sup>3</sup> /s)   | 333528                 |  |
|                                                                                        | Minimum ponding/operating depth (m)                  | 0.6                    |  |
|                                                                                        | Maximum ponding/operating depth (m)                  | 3.2                    |  |
|                                                                                        | Final solid level (m RL)                             | 19.3                   |  |
|                                                                                        | Final water depth (m)                                | 0.6                    |  |
|                                                                                        | Minimum flow velocity (m/s)                          | 2.998*10 <sup>-6</sup> |  |
|                                                                                        | Maximum flow velocity (m/s)                          | 2.999*10 <sup>-6</sup> |  |
|                                                                                        | Smallest particle removed based on Stokes Law (mm)   | 0.0019                 |  |
|                                                                                        | Estimated concentration in discharge effluent (mg/l) | <50                    |  |
| 17.                                                                                    | Combined Pond N1, S1, S2, S3 and N3 Performance      |                        |  |
|                                                                                        | Height of embankment (m RL)                          | 22                     |  |
|                                                                                        | Total surface area at 22m RL (m <sup>2</sup> )       | 903729                 |  |
|                                                                                        | Total capacity (m <sup>3</sup> )                     | 4842454                |  |
|                                                                                        | Height of sluice (m RL)                              | 19.9                   |  |
|                                                                                        | Assumed dead zone (%)                                | 20                     |  |
|                                                                                        | Surface Area at 19.9m RL (m <sup>2</sup> )           | 828275                 |  |
|                                                                                        | Effective surface area at 19.9m RL (m <sup>2</sup> ) | 662620                 |  |
|                                                                                        | Freeboard allowance (m)                              | 1-1.5                  |  |
|                                                                                        | Maximum operating volume (m <sup>3</sup> )           | 2420777                |  |
|                                                                                        | Days of operation                                    | 12.6                   |  |
|                                                                                        | Average detention time (hrs)                         | 176.3                  |  |
|                                                                                        | Pond rating (m <sup>2</sup> per m <sup>3</sup> /s)   | 335532                 |  |
|                                                                                        | Minimum ponding/operating depth (m)                  | 0.6                    |  |
|                                                                                        | Maximum ponding/operating depth (m)                  | 3.2                    |  |

Г

| Laird Point Dredge Material Placement Facility Performance Assessment Summary          |                                                      |                        |  |
|----------------------------------------------------------------------------------------|------------------------------------------------------|------------------------|--|
| Scenario: Stage 4 with external and internal embankments being constructed to 22 m RL. |                                                      |                        |  |
| 9.                                                                                     | Material Description                                 | Parameters             |  |
|                                                                                        | Final solid level (m RL)                             | 19.1                   |  |
|                                                                                        | Final water depth (m)                                | 0.8                    |  |
|                                                                                        | Minimum flow velocity (m/s)                          | 2.980*10 <sup>-6</sup> |  |
|                                                                                        | Maximum flow velocity (m/s)                          | 2.996*10 <sup>-6</sup> |  |
|                                                                                        | Smallest particle removed based on Stokes Law (mm)   | 0.0019                 |  |
|                                                                                        | Estimated concentration in discharge effluent (mg/l) | <50                    |  |

URS

# Appendix D Leach Elutriate Results


|          |                                                                                                         | Units | Aluminium | Arsenic | Cadmium | Chromium | Copper | Iron  | Lead | Manganese | Nickel | Zinc  |
|----------|---------------------------------------------------------------------------------------------------------|-------|-----------|---------|---------|----------|--------|-------|------|-----------|--------|-------|
|          | LOR                                                                                                     | mg/kg | 50        | 5       | 1       | 2        | 5      | 50    | 5    | 5         | 2      | 5     |
|          | QEPA EILs                                                                                               | mg/kg | ne        | 20      | 3       | 50       | 60     | ne    | 300  | 500       | 60     | 200   |
|          | NEPM HBILs 'F'                                                                                          | mg/kg | ne        | 500     | 100     | 500      | 5000   | ne    | 1500 | 7500      | 0      | 35000 |
|          | NADG 2009                                                                                               | mg/kg | ne        | ne      | 1.5     | 80       | 65     | ne    | 50   | ne        | 21     | 200   |
|          | Guideline Values Derived from<br>Local Ambient Monitoring and<br>ANZECC/QLD Water Quality<br>Objectives | µg/L  | ne        | ne      | 5.5     | 27.4     | 1.3    | ne    | 4.4  | ne        | 70     | 15    |
| Location | Sample ID                                                                                               |       |           |         |         |          |        |       |      |           |        |       |
| BH01A    | Total Metals<br>GC/GLNG #1_0.5-1.0                                                                      | mg/kg | 7290      | 15      | <1      | 18       | 11     | 38200 | 9    | 546       | 15     | 33    |
| BH01A    | DI Water Leach 0-1.0                                                                                    | µg/L  | 5820      | 24      | <1      | 9        | 9      | 6910  | 4    | 57        | 6      | 57    |
| BH01A    | DI Water Leach 1.0-2.1                                                                                  | µg/L  | 3470      | 27      | <1      | 6        | 13     | 3800  | 4    | 39        | 4      | 59    |
| BH01A    | DI Water Leach 2.1-2.8                                                                                  | µg/L  | 17800     | 15      | <1      | 29       | 40     | 25700 | 20   | 91        | 13     | 126   |
| BH01A    | Elutriate 0-1.0                                                                                         | µg/L  | <10       | 7.8     | <0.2    | <0.5     | <1     | <5    | <0.2 | 359       | 0.5    | <5    |
| BH01A    | Elutriate 1.0-2.1                                                                                       | µg/L  | <10       | 7       | <0.2    | <0.5     | <1     | <5    | <0.2 | 240       | <0.5   | <5    |
| BH01A    | Elutriate 2.1-2.8                                                                                       | µg/L  | <10       | 4.7     | <0.2    | <0.5     | <1     | <5    | <0.2 | 282       | 3.6    | <5    |
| BH01A    | Elutriate SEA WATER                                                                                     | µg/L  | <10       | 0.8     | <0.2    | <0.5     | <1     | <5    | <0.2 | 0.6       | 1.1    | <5    |

Exceeds the Queensland Environmental Protection Agency 1998 Environmental Investigation Levels

Exceeds the National Environment Protection Council 1999 Healthnabased

Investigation Levels na Commercial/Industrial

Exceeds the National Assessment Guidelines for dredging 2009

Exceeds the Guideline Values Derived from Local Ambient Monitoring and ANZECC/QLD Water Quality Objectives

ne: not established

240 359

|          |                                                                                              | Units | Aluminium | Arsenic | Cadmium | Chromium | Copper | Iron  | Lead | Manganese | Nickel | Zinc  |
|----------|----------------------------------------------------------------------------------------------|-------|-----------|---------|---------|----------|--------|-------|------|-----------|--------|-------|
|          | LOR                                                                                          | mg/kg | 50        | 5       | 1       | 2        | 5      | 50    | 5    | 5         | 2      | 5     |
|          | QEPA EILs                                                                                    | mg/kg | ne        | 20      | 3       | 50       | 60     | ne    | 300  | 500       | 60     | 200   |
|          | NEPM HBILs 'F'                                                                               | mg/kg | ne        | 500     | 100     | 500      | 5000   | ne    | 1500 | 7500      | 0      | 35000 |
|          | NADG 2009                                                                                    | mg/kg | ne        | ne      | 1.5     | 80       | 65     | ne    | 50   | ne        | 21     | 200   |
|          | Guideline Values Derived<br>from Local Ambient<br>Monitoring and<br>ANZECC/QLD Water Quality | µg/L  | ne        | ne      | 5.5     | 27.4     | 1.3    | ne    | 4.4  | ne        | 70     | 15    |
| Location | Sample ID                                                                                    |       |           |         |         |          |        |       |      |           |        |       |
| BH02     | Total Metals<br>BH02 1.9-2.3                                                                 | µg/L  | 5210      | 10      | <1      | 11       | 11     | 14600 | 5    | 1110      | 7      | 22    |
| BH02     | Total Metals<br>BH02 4.2-4.6                                                                 | µg/L  | 6190      | <5      | <1      | 13       | 26     | 20700 | <5   | 1340      | 12     | 31    |
| BH 2A    | DI Water Leach 0-1.0                                                                         | µg/L  | 800       | 3       | <0.1    | 1        | 2      | 1650  | <1   | 15        | <1     | 120   |
| BH 2A    | DI Water Leach 2.0-2.75                                                                      | µg/L  | 2150      | 17      | 0.3     | 4        | 5      | 3720  | 3    | 68        | 3      | 25    |
| BH 2A    | DI Water Leach 2.75-3.1                                                                      | µg/L  | 6250      | 2       | 0.1     | 7        | 13     | 10900 | 2    | 169       | 5      | 72    |
| BH 2A    | Elutriate 0-1.0                                                                              | µg/L  | 170       | 2.4     | <0.2    | <0.5     | <1     | <5    | <0.2 | 208       | 4.8    | <5    |
| BH 2A    | Elutriate 2.0-2.75                                                                           | µg/L  | 50        | 5.1     | <0.2    | <0.5     | <1     | <5    | <0.2 | 1330      | 4.9    | <5    |
| BH 2A    | Elutriate 2.75-3.1                                                                           | μg/L  | <10       | <0.5    | <0.2    | <0.5     | <1     | <5    | <0.2 | 2520      | 2.3    | <5    |
| BH 2A    | Elutriate SEA WATER                                                                          | µg/L  | 20        | <0.5    | <0.2    | <0.5     | <1     | <5    | <0.2 | <0.5      | <0.5   | <0.5  |

Exceeds the Queensland Environmental Protection Agency 1998 Environmental

Investigation Levels

Exceeds the National Environment Protection Council 1999 Healthnabased

Investigation Levels na Commercial/Industrial

Exceeds the National Assessment Guidelines for dredging 2009

Exceeds the Guideline Values Derived from Local Ambient Monitoring and ANZECC/QLD Water Quality Objectives

ne: not established

| _        |                                                                                                         | Units | Aluminium | Arsenic | Cadmium | Chromium | Copper | Iron  | Lead | Manganese | Nickel | Zinc  |
|----------|---------------------------------------------------------------------------------------------------------|-------|-----------|---------|---------|----------|--------|-------|------|-----------|--------|-------|
|          | LOR                                                                                                     | mg/kg | 50        | 5       | 1       | 2        | 5      | 50    | 5    | 5         | 2      | 5     |
|          | QEPA EILS<br>NEPM HBILS 'F'                                                                             |       | ne        | 20      | 3       | 50       | 60     | ne    | 300  | 500       | 60     | 200   |
|          |                                                                                                         |       | ne        | 500     | 100     | 500      | 5000   | ne    | 1500 | 7500      | 0      | 35000 |
|          | NADG 2009                                                                                               | mg/kg | ne        | ne      | 1.5     | 80       | 65     | ne    | 50   | ne        | 21     | 200   |
|          | Guideline Values Derived from<br>Local Ambient Monitoring and<br>ANZECC/QLD Water Quality<br>Objectives | µg/L  | ne        | ne      | 5.5     | 27.4     | 1.3    | ne    | 4.4  | ne        | 70     | 15    |
| Location | Sample ID                                                                                               |       |           |         |         |          |        |       |      |           |        |       |
| BH04A    | DI Water Leach 0-0.2                                                                                    | µg/L  | 4990      | 8       | 0.4     | 8        | 6      | 6850  | 3    | 60        | 4      | 87    |
| BH04A    | DI Water Leach 0.2-0.5                                                                                  | µg/L  | 13200     | 11      | <0.1    | 12       | 15     | 16000 | 6    | 63        | 5      | 526   |
| BH04A    | DI Water Leach 0.5-1.0                                                                                  | µg/L  | 6060      | 4       | <0.1    | 4        | 3      | 5520  | 3    | 18        | <1     | 198   |
| BH04A    | Elutriate 0-0.2                                                                                         | µg/L  | <10       | 6.8     | <0.2    | <0.5     | 2      | <5    | <0.2 | 515       | 0.9    | <5    |
| BH04A    | Elutriate 0.2-0.5                                                                                       | µg/L  | <10       | 4.8     | <0.2    | <0.5     | <1     | <5    | <0.2 | 63.3      | 0.6    | <5    |
| BH04A    | Elutriate 0.5-1.0                                                                                       | µg/L  | <10       | 0.8     | <0.2    | <0.5     | <1     | <5    | <0.2 | 152       | 1.1    | 22    |
| BH04A    | Elutriate SEA WATER                                                                                     | µg/L  | <10       | 1.4     | <0.2    | <0.5     | <1     | <5    | <0.2 | <0.5      | <0.5   | <5    |

Exceeds the Queensland Environmental Protection Agency 1998 Environmental Investigation Levels

Exceeds the National Environment Protection Council 1999 Healthnabased

Investigation Levels na Commercial/Industrial

Exceeds the National Assessment Guidelines for dredging 2009

Exceeds the Guideline Values Derived from Local Ambient Monitoring and

ANZECC/QLD Water Quality Objectives

ne: not established

| _        |                                                                                                         | Units | Aluminium | Arsenic | Cadmium | Chromium | Copper | Iron  | Lead | Manganese | Nickel | Zinc  |
|----------|---------------------------------------------------------------------------------------------------------|-------|-----------|---------|---------|----------|--------|-------|------|-----------|--------|-------|
|          | LOR                                                                                                     | mg/kg | 50        | 5       | 1       | 2        | 5      | 50    | 5    | 5         | 2      | 5     |
|          | QEPA EILs                                                                                               | mg/kg | ne        | 20      | 3       | 50       | 60     | ne    | 300  | 500       | 60     | 200   |
|          | NEPM HBILs 'F'                                                                                          | mg/kg | ne        | 500     | 100     | 500      | 5000   | ne    | 1500 | 7500      | 0      | 35000 |
|          | NADG 2009                                                                                               | mg/kg | ne        | ne      | 1.5     | 80       | 65     | ne    | 50   | ne        | 21     | 200   |
|          | Guideline Values Derived from<br>Local Ambient Monitoring and<br>ANZECC/QLD Water Quality<br>Objectives | µg/L  | ne        | ne      | 5.5     | 27.4     | 1.3    | ne    | 4.4  | ne        | 70     | 15    |
| Location | Sample ID                                                                                               |       |           |         |         |          |        |       |      |           |        |       |
| BH07     | Total Metals<br>BH07 2.7-3.2                                                                            | µg/L  | na        | 13      | <1      | 15       | 96     | na    | 6    | na        | 9      | 43    |
| BH07     | Total Metals<br>BH07 3.2-3.5                                                                            | µg/L  | 8330      | 10      | <1      | 16       | 117    | 18400 | 7    | 274       | 8      | 47    |
| BH7A     | DI Water Leach 0-1.0                                                                                    | µg/L  | 2790      | 19      | <0.1    | 5        | 5      | 3730  | 2    | 51        | 4      | 145   |
| BH7A     | DI Water Leach 2.0-2.8                                                                                  | µg/L  | 740       | 10      | 0.3     | 1        | 2      | 870   | <1   | 23        | 1      | 149   |
| BH7A     | DI Water Leach 3.0-4.0                                                                                  | µg/L  | 270       | <1      | 0.1     | <1       | <1     | 440   | <1   | 10        | <1     | 146   |
| BH7A     | Elutriate 0-1.0                                                                                         | µg/L  | <10       | 5.4     | <0.2    | <0.5     | <1     | 136   | <0.2 | 814       | 0.8    | <5    |
| BH7A     | Elutriate 2.0-2.8                                                                                       | µg/L  | 140       | 3.3     | <0.2    | <0.5     | <1     | 111   | <0.2 | 1470      | 0.7    | <5    |
| BH7A     | Elutriate 3.0-4.0                                                                                       | µg/L  | <1        | 1.4     | <0.2    | 0.6      | <1     | 14    | <0.2 | 1070      | 2.1    | <5    |
| BH 7A    | Elutriate SEA WATER                                                                                     | µg/L  | 30        | 1.2     | <0.2    | <0.5     | <1     | <5    | 1.2  | <0.5      | 0.6    | <5    |

Exceeds the Queensland Environmental Protection Agency 1998 Environmental

Investigation Levels

Exceeds the National Environment Protection Council 1999 Healthnabased

Investigation Levels na Commercial/Industrial

Exceeds the National Assessment Guidelines for dredging 2009

Exceeds the Guideline Values Derived from Local Ambient Monitoring and ANZECC/QLD Water Quality Objectives

ne: not established

na: not analysed

| _        |                                                                                                         | Units | Aluminium | Arsenic | Cadmium | Chromium | Copper | Iron | Lead | Manganese | Nickel | Zinc  |
|----------|---------------------------------------------------------------------------------------------------------|-------|-----------|---------|---------|----------|--------|------|------|-----------|--------|-------|
|          | LOR                                                                                                     | mg/kg | 50        | 5       | 1       | 2        | 5      | 50   | 5    | 5         | 2      | 5     |
|          | QEPA EILs                                                                                               | mg/kg | ne        | 20      | 3       | 50       | 60     | ne   | 300  | 500       | 60     | 200   |
|          | NEPM HBILs 'F'                                                                                          | mg/kg | ne        | 500     | 100     | 500      | 5000   | ne   | 1500 | 7500      | 0      | 35000 |
|          | NADG 2009                                                                                               | mg/kg | ne        | ne      | 1.5     | 80       | 65     | ne   | 50   | ne        | 21     | 200   |
|          | Guideline Values Derived from<br>Local Ambient Monitoring and<br>ANZECC/QLD Water Quality<br>Objectives | µg/L  | ne        | ne      | 5.5     | 27.4     | 1.3    | ne   | 4.4  | ne        | 70     | 15    |
| Location | Sample ID                                                                                               |       |           |         |         |          |        |      |      |           |        |       |
| BH08C    | DI Water Leach 0-1.0                                                                                    | µg/L  | 280       | 1       | 0.5     | <1       | <1     | 440  | <1   | 8         | <1     | 20    |
| BH08C    | DI Water Leach 3.0-4.0                                                                                  | µg/L  | 16700     | 24      | <.1     | 30       | 22     | 2100 | 12   | 238       | 15     | 204   |
| BH08C    | DI Water Leach 4.75-5.6                                                                                 | µg/L  | 3000      | 9       | <.1     | 5        | 4      | 3890 | 2    | 54        | 2      | 58    |
| BH08C    | Elutriate 0-1.0                                                                                         | µg/L  | 10        | 2.1     | <0.2    | <0.5     | <1     | <5   | <0.2 | 1180      | 2.3    | <5    |
| BH08C    | Elutriate 3.0-4.0                                                                                       | µg/L  | 10        | 11.2    | <0.2    | <0.5     | <1     | 105  | <0.2 | 766       | 2.1    | 6     |
| BH08C    | Elutriate 4.75-5.6                                                                                      | µg/L  | 90        | 4.2     | <0.2    | <0.5     | <1     | 317  | <0.2 | 1440      | 0.6    | <5    |
| BH08C    | Elutriate SEA WATER                                                                                     | µg/L  | <10       | 1.4     | <0.2    | <0.5     | <1     | <5   | <0.2 | <0.5      | <0.5   | <5    |

Exceeds the Queensland Environmental Protection Agency 1998 Environmental Investigation Levels

Exceeds the National Environment Protection Council 1999 Healthnabased

Investigation Levels na Commercial/Industrial

Exceeds the National Assessment Guidelines for dredging 2009

Exceeds the Guideline Values Derived from Local Ambient Monitoring and

ANZECC/QLD Water Quality Objectives

ne: not established

|          |                                                                                                         | Units | Aluminium | Arsenic | Cadmium | Chromium | Copper | Iron  | Lead | Manganese | Nickel | Zinc  |
|----------|---------------------------------------------------------------------------------------------------------|-------|-----------|---------|---------|----------|--------|-------|------|-----------|--------|-------|
|          | LOR                                                                                                     | mg/kg | 50        | 5       | 1       | 2        | 5      | 50    | 5    | 5         | 2      | 5     |
|          | QEPA EILs                                                                                               | mg/kg | ne        | 20      | 3       | 50       | 60     | ne    | 300  | 500       | 60     | 200   |
|          | NEPM HBILs 'F'                                                                                          | mg/kg | ne        | 500     | 100     | 500      | 5000   | ne    | 1500 | 7500      | 0      | 35000 |
|          | NADG 2009                                                                                               | mg/kg | ne        | ne      | 1.5     | 80       | 65     | ne    | 50   | ne        | 21     | 200   |
|          | Guideline Values Derived from<br>Local Ambient Monitoring and<br>ANZECC/QLD Water Quality<br>Objectives | µg/L  | ne        | ne      | 5.5     | 27.4     | 1.3    | ne    | 4.4  | ne        | 70     | 15    |
| Location | Sample ID                                                                                               |       |           |         |         |          |        |       |      |           |        |       |
| BH13     | Total Metals<br>BH13 1.0-1.6                                                                            | µg/L  | 2580      | 18      | <1      | 8        | <5     | 16500 | <5   | 1730      | 6      | 10    |
| BH13     | Total Metals<br>BH13 1.6-2.3                                                                            | µg/L  | 2840      | 26      | <1      | 7        | <5     | 15800 | <5   | 808       | 5      | 6     |
| BH13     | Total Metals<br>QC 42                                                                                   | µg/L  | 4600      | 14      | <1      | 11       | 7      | 16800 | <5   | 624       | 7      | 14    |
| BH13     | Total Metals<br>QC 43                                                                                   | µg/L  | 2660      | 22      | <1      | 6        | <5     | 12900 | <5   | 934       | 5      | 6     |
| BH13     | Total Metals<br>BH13 4.9-5.3                                                                            | µg/L  | 2490      | 11      | <1      | 7        | <5     | 10200 | <5   | 934       | 5      | <5    |
| BH13     | Total Metals<br>BH13 7.3-7.4                                                                            | µg/L  | 4660      | 10      | <1      | 10       | 11     | 14100 | <5   | 840       | 6      | 12    |
| BH13     | Total Metals<br>BH13 9.0-9.15                                                                           | µg/L  | 3300      | 7       | <1      | 9        | 16     | 15500 | 5    | 2490      | 9      | 14    |
| BH13     | Total Metals<br>BH13 11.3-11.4                                                                          | µg/L  | na        | 28      | <1      | 10       | 10     | na    | 6    | na        | 11     | 28    |
| BH13     | Total Metals<br>BH13 11.9-12.07                                                                         | µg/L  | 3030      | 23      | <1      | 7        | 12     | 32400 | <5   | 170       | 11     | 24    |
| BH13A    | DI Water Leach 0-1.0                                                                                    | µg/L  | 4300      | 15      | 0.1     | 8        | 6      | 6200  | 200  | 59        | 4      | 207   |
| BH13A    | DI Water Leach 6.0-7.0                                                                                  | µg/L  | 960       | 7       | <0.1    | 2        | 2      | 1360  | <1   | 42        | 1      | 42    |
| BH13A    | DI Water Leach 11.5-12.0                                                                                | µg/L  | 240       | <1      | <0.1    | <1       | <0.001 | 110   | <1   | 40        | <1     | 46    |
| BH13A    | DI Water Leach COMP                                                                                     | µg/L  | 320       | <1      | <0.1    | <1       | <0.001 | 300   | <1   | 36        | <1     | 133   |
| BH13A    | Elutriate 0-1.0                                                                                         | µg/L  | 40        | 6.8     | <0.2    | <0.5     | <1     | 10    | <0.2 | 738       | <0.5   | <5    |
| BH13A    | Elutriate 6.0-7.0                                                                                       | µg/L  | <10       | 2.7     | <0.2    | <0.5     | <1     | 688   | <0.2 | 2340      | <0.5   | <5    |
| BH13A    | Elutriate 11.5-12.0                                                                                     | µg/L  | <10       | 1.1     | <0.2    | <0.5     | <1     | <5    | <0.2 | 1530      | 3.9    | <5    |
| BH 13A   | Elutriate SEA WATER                                                                                     | µg/L  | <10       | 2       | <0.2    | <0.5     | <1     | <5    | <0.2 | <0.5      | <0.5   | <5    |

Exceeds the Queensland Environmental Protection Agency 1998 Environmental

#### Investigation Levels

Exceeds the National Environment Protection Council 1999 Healthnabased

Investigation Levels na Commercial/Industrial

Exceeds the National Assessment Guidelines for dredging 2009

Exceeds the Guideline Values Derived from Local Ambient Monitoring and ANZECC/QLD Water Quality Objectives

ne: not established

na: not analysed

| _        |                                                                                                      | Units | Aluminium | Arsenic | Cadmium | Chromium | Copper | Iron  | Lead | Manganese | Nickel | Zinc  |
|----------|------------------------------------------------------------------------------------------------------|-------|-----------|---------|---------|----------|--------|-------|------|-----------|--------|-------|
|          | LOR                                                                                                  | mg/kg | 50        | 5       | 1       | 2        | 5      | 50    | 5    | 5         | 2      | 5     |
|          | QEPA EILs                                                                                            | mg/kg | ne        | 20      | 3       | 50       | 60     | ne    | 300  | 500       | 60     | 200   |
|          | NEPM HBILs 'F'                                                                                       | mg/kg | ne        | 500     | 100     | 500      | 5000   | ne    | 1500 | 7500      | 0      | 35000 |
|          | NADG 2009                                                                                            | mg/kg | ne        | ne      | 1.5     | 80       | 65     | ne    | 50   | ne        | 21     | 200   |
|          | Guideline Values Derived from Local<br>Ambient Monitoring and ANZECC/QLD<br>Water Quality Objectives | µg/L  | ne        | ne      | 5.5     | 27.4     | 1.3    | ne    | 4.4  | ne        | 70     | 15    |
| Location | Sample ID                                                                                            |       |           |         |         |          |        |       |      |           |        |       |
| BH 14    | Total Metals<br>BH14 7.1-7.4                                                                         | µg/L  | 1300      | <5      | <1      | 66       | 6      | 12400 | <5   | 122       | 6      | 17    |
| BH 14    | Total Metals<br>BH14 7.8-8                                                                           | µg/L  | na        | 11      | <1      | 12       | 23     | na    | 8    | na        | 68     | 156   |
| BH 14    | Total Metals<br>BH14 8.2-8.5                                                                         | µg/L  | 9030      | <5      | <1      | 24       | 21     | 22000 | 14   | 99        | 23     | 47    |
| BH 14    | Total Metals<br>BH14 8.6-8.85                                                                        | µg/L  | na        | 5       | <1      | 16       | 21     | na    | 11   | na        | 22     | 54    |
| BH 14A   | DI Water Leach 0-1.0                                                                                 | µg/L  | 3080      | 12      | 1.1     | 5        | 5      | 4390  | 2    | 36        | 3      | 37    |
| BH 14A   | DI Water Leach 2.5-3.5                                                                               | µg/L  | 1000      | 9       | <0.1    | 2        | 2      | 1240  | <1   | 37        | 1      | 88    |
| BH 14A   | DI Water Leach 6.0-7.0                                                                               | µg/L  | 460       | <1      | 2.4     | <1       | <1     | 460   | <1   | 18        | <1     | 166   |
| BH 14A   | Elutriate 0-1.0                                                                                      | µg/L  | <10       | 3.5     | <0.2    | <0.5     | <1     | 329   | <0.2 | 2050      | 1.2    | <5    |
| BH 14A   | Elutriate 2.5-3.5                                                                                    | µg/L  | 40        | 2.2     | <0.2    | <0.5     | <1     | 443   | <0.2 | 2130      | <0.5   | 10    |
| BH 14A   | Elutriate 6.0-7.0                                                                                    | µg/L  | 70        | 1       | <0.2    | <0.5     | 4      | <5    | <0.2 | 913       | 1.7    | <5    |
| BH 13A   | Elutriate SEA WATER                                                                                  | µg/L  | <10       | 1.2     | <0.2    | <0.5     | 1.2    | <5    | 1.2  | <0.5      | 0.6    | <5    |

Exceeds the Queensland Environmental Protection Agency 1998 Environmental

#### Investigation Levels

Exceeds the National Environment Protection Council 1999 Healthnabased

Investigation Levels na Commercial/Industrial

Exceeds the National Assessment Guidelines for dredging 2009

Exceeds the Guideline Values Derived from Local Ambient Monitoring and ANZECC/QLD Water Quality Objectives

ne: not established

na: not analysed

| _        |                                                                                                         | Units | Aluminium | Arsenic | Cadmium | Chromium | Copper | Iron  | Lead | Manganese | Nickel | Zinc  |
|----------|---------------------------------------------------------------------------------------------------------|-------|-----------|---------|---------|----------|--------|-------|------|-----------|--------|-------|
|          | LOR                                                                                                     | mg/kg | 50        | 5       | 1       | 2        | 5      | 50    | 5    | 5         | 2      | 5     |
|          | QEPA EILs                                                                                               | mg/kg | ne        | 20      | 3       | 50       | 60     | ne    | 300  | 500       | 60     | 200   |
|          | NEPM HBILs 'F'                                                                                          | mg/kg | ne        | 500     | 100     | 500      | 5000   | ne    | 1500 | 7500      | 0      | 35000 |
|          | NADG 2009                                                                                               | mg/kg | ne        | ne      | 1.5     | 80       | 65     | ne    | 50   | ne        | 21     | 200   |
|          | Guideline Values Derived from<br>Local Ambient Monitoring and<br>ANZECC/QLD Water Quality<br>Objectives | µg/L  | ne        | ne      | 5.5     | 27.4     | 1.3    | ne    | 4.4  | ne        | 70     | 15    |
| Location | Sample ID                                                                                               |       |           |         |         |          |        |       |      |           |        |       |
| BH 18    | BH18 0.7-0.85                                                                                           | µg/L  | 3260      | 10      | <1      | 9        | <5     | 14400 | <5   | 623       | 5      | 15    |
| BH 18    | BH18 0.9-1.2                                                                                            | µg/L  | 2170      | 12      | <1      | 7        | <5     | 12200 | <5   | 812       | 4      | 7     |
| BH 18    | BH18 1.3-1.7                                                                                            | µg/L  | 3480      | 11      | <1      | 8        | 5      | 12900 | <5   | 999       | 5      | 10    |
| BH 18    | QC 34                                                                                                   | µg/L  | 3200      | 11      | <1      | 8        | <5     | 13700 | <5   | 817       | 5      | 11    |
| BH 18    | BH18 3.0-3.2                                                                                            | µg/L  | 2880      | 37      | <1      | 11       | 7      | 21900 | <5   | 607       | 7      | 12    |
| BH 18    | BH18 4.6-4.9                                                                                            | µg/L  | 3720      | 12      | <1      | 11       | 6      | 14200 | <5   | 1400      | 6      | 11    |
| BH 18    | BH18 5.7-6.0                                                                                            | µg/L  | 3270      | 20      | <1      | 10       | 5      | 13300 | <5   | 733       | 6      | 9     |
| BH 18    | BH18 11.3-11.5                                                                                          | µg/L  | 10700     | <5      | <1      | 17       | 63     | 26500 | 9    | 3750      | 20     | 58    |
| BH 18    | BH18 13.0-13.25                                                                                         | µg/L  | 11800     | 5       | <1      | 16       | 52     | 35900 | 10   | 1670      | 14     | 56    |
| BH 18    | BH18 15.6-16.0                                                                                          | µg/L  | 4780      | 16      | <1      | 8        | 42     | 19000 | 7    | 275       | 25     | 44    |
| BH18A    | DI Water Leach 2.0-3.0                                                                                  | µg/L  | 1170      | 14      | <0.1    | 2        | 2      | 1630  | 1    | 26        | 1      | 15    |
| BH18A    | DI Water Leach 10.0-11.0                                                                                | µg/L  | 5480      | 21      | <0.1    | 9        | 21     | 7560  | 7    | 182       | 6      | 164   |
| BH18A    | DI Water Leach 11.1-11.5                                                                                | µg/L  | 17100     | 4       | <0.1    | 23       | 50     | 36800 | 6    | 296       | 15     | 134   |
| BH18A    | DI Water Leach COMP                                                                                     | µg/L  | 8270      | 4       | <0.1    | 11       | 21     | 12700 | 2    | 185       | 7      | 201   |
| BH18A    | Elutriate 2.0-3.0                                                                                       | µg/L  | 60        | 14.4    | <0.2    | <0.5     | <1     | 7     | <0.2 | 351       | 0.7    | <5    |
| BH18A    | Elutriate 10.0-11.0                                                                                     | µg/L  | 60        | 4.9     | <0.2    | <0.5     | <1     | 18    | <0.2 | 2060      | 0.7    | <5    |
| BH18A    | Elutriate 11.1-11.5                                                                                     | µg/L  | 260       | 0.9     | 0.8     | <0.5     | 2      | 6     | <0.2 | 2290      | 1.1    | <5    |
| BH 18A   | Elutriate SEA WATER                                                                                     | µg/L  | 90        | 1.1     | <0.2    | <0.5     | <1     | 6     | <0.2 | 0.7       | 0.7    | <5    |

Exceeds the Queensland Environmental Protection Agency 1998 Environmental

#### **Investigation Levels**

Exceeds the National Environment Protection Council 1999 Healthnabased

Investigation Levels na Commercial/Industrial

Exceeds the National Assessment Guidelines for dredging 2009

Exceeds the Guideline Values Derived from Local Ambient Monitoring and ANZECC/QLD Water Quality Objectives

ne: not established

# Appendix E GLNG Marine Water Quality Report

Ε





Report GLNG Marine Water Quality Report

NOVEMBER 2009

Prepared for Santos Brisbane, Australia

42626234



Project Manager:

Jim Barker Associate Environmental Scientist

Project Director:

CM Rigott

Chris Pigott Senior Principal

URS Australia Pty Ltd

Level 16, 240 Queen Street Brisbane, QLD 4000 GPO Box 302, QLD 4001 Australia T: 61 7 3243 2111 F: 61 7 3243 2199

Author:

Ann b. Jula

Aries Milay Senior Environmental Scientist

Reviewer:

ulian Long

Julian Long Group Manager

Date: Reference: Status: November 2009 42626234/01/0 FINAL

#### © Document copyright of URS Australia Pty Limited.

The contents of this report are and remain the intellectual property of the addressee of this report and are not to be provided or disclosed to or used by third parties without the addressee's consent.

URS Australia and the addressee of this report accept no liability to third parties of any kind for any unauthorised use of the contents of this report and reserve their right to seek compensation for any such unauthorised use.

#### **Document delivery**

**URS Australia** provides this document in either printed format, electronic format or both. URS considers the printed version to be binding. The electronic format is provided for the client's convenience and URS requests that the client ensures the integrity of this electronic information is maintained. Storage of this electronic information should at a minimum comply with the requirements of the Commonwealth Electronic Transactions Act (ETA) 2000.

Where an electronic only version is provided to the client, a signed hard copy of this document is held on file by URS and a copy will be provided if requested.



# **Table of Contents**

| Exec | cutive | Summaryv                                                                                                |
|------|--------|---------------------------------------------------------------------------------------------------------|
| 2    | Introd | luction1                                                                                                |
|      | 2.1    | Project Background1                                                                                     |
| 3    | Metho  | odology2                                                                                                |
|      | 3.1    | Sampling Locations2                                                                                     |
|      | 3.2    | Sampling Techniques5                                                                                    |
|      | 3.3    | Analytical Techniques5                                                                                  |
| 4    | Resu   | Its and Discussion8                                                                                     |
|      | 4.1    | Water Quality Objectives                                                                                |
|      | 4.2    | Results9                                                                                                |
|      | 4.2.1  | Physico-chemical Water Quality Results(In-situ)19                                                       |
|      | 4.2.2  | Turbidity and Nutrient Levels                                                                           |
|      | 4.2.3  | Metals with no prescribed guideline values- Aluminum, Iron,<br>Manganese and Arsenic26                  |
|      | 4.2.4  | Metals with prescribed guideline values- Cadmium, Chromium,<br>Copper, Lead, Mercury, Nickel and Zinc28 |
| 5    | Conc   | lusion32                                                                                                |
| 6    | Refer  | ences33                                                                                                 |
| 7    | Limita | ations34                                                                                                |

# **Tables**

| Table 2-1 | Marine Water Quality Sampling Locations         | 2 |
|-----------|-------------------------------------------------|---|
| Table 2-2 | Parameters and Sample Handling and Preservation | 5 |
| Table 2-3 | Laboratory Analytical Methods                   | 5 |

# **Figures**

| Figure 2-1 | Sampling Locations                                                                        |
|------------|-------------------------------------------------------------------------------------------|
| Figure 3-1 | pH measurements- low water (22 July 09) and high water (23 July 09) surveys               |
| Figure 3-2 | dissolved oxygen measurements, low water (22 July 09) and high water (23 July 09) surveys |
| Figure 3-3 | Conductivity measurements- low water (22 July 09) and high water (23 July 09) surveys     |
| Figure 3-4 | Salinity - low water (22 July 09) and high water (23 July 09) surveys                     |
|            | URS                                                                                       |

| Figure 3-5  | Temperature- low water (22 July 09) and high water (23 July 09) surveys                    |
|-------------|--------------------------------------------------------------------------------------------|
| Figure 3-6  | Total Suspended Solids- low water (22 July 09) and high water (23 July 09) surveys 23 $$   |
| Figure 3-7  | Turbidity- low water (22 July 09) and high water (23 July 09) surveys                      |
| Figure 3-8  | Nitrogen Levels- low water (22 July 09) and high water (23 July 09) surveys 24             |
| Figure 3-9  | Total Phosphorus- low water (22 July 09) and high water (23 July 09) surveys25             |
| Figure 3-10 | Aluminium- Comparative levels of total and dissolved concentrations for low and high water |
| Figure 3-11 | Iron- Comparative levels of total and dissolved concentrations for low and high water. 27  |
| Figure 3-12 | Manganese-Comparative levels of total and dissolved concentrations for low and high water  |
| Figure 3-13 | Arsenic-Comparative levels of total and dissolved concentrations for low and high water    |
| Figure 3-14 | Cadmium- Comparative levels of total and dissolved concentrations for low and high water   |
| Figure 3-15 | Chromium- Comparative levels of total and dissolved concentrations for low and high water  |
| Figure 3-16 | Copper - Comparative levels of total and dissolved concentrations for low and high water   |
| Figure 3-17 | Zinc- Comparative levels of total and dissolved concentrations for low and high water 31   |

# Appendices

- Appendix A Certificate of Analysis
- Appendix B Quality Control



# Abbreviations

| Abbreviation      | Description                                                              |
|-------------------|--------------------------------------------------------------------------|
| AI                | aluminium                                                                |
| ALS               | Australian Laboratory Services                                           |
| ANZECC            | Australian and New Zealand Environment Conservation Council              |
| АРНА              | American Public Health Association                                       |
| ARMCANZ           | Agriculture and Resource Management Council of Australia and New Zealand |
| AAS               | atomic-absorption spectroscopy                                           |
| AS                | Australian Standards                                                     |
| As                | arsenic                                                                  |
| AWQG              | Australian Water Quality Guidelines                                      |
| Oo                | degrees celsius                                                          |
| Cd                | cadmium                                                                  |
| Cr                | chromium                                                                 |
| Cu                | copper                                                                   |
| DO                | dissolved oxygen                                                         |
| EIS               | Environmental Impact Statement                                           |
| Fe                | iron                                                                     |
| FIMS              | field ionization mass spectrometry                                       |
| Нд                | mercury                                                                  |
| ICP-MS            | inductively coupled plasma mass spectroscopy                             |
| L                 | litre                                                                    |
| LD                | less than detection                                                      |
| mg                | milligram                                                                |
| Mn                | manganese                                                                |
| Ν                 | nitrogen                                                                 |
| NEPM              | National Environment Protection Measures                                 |
| NH <sub>3</sub>   | ammonia                                                                  |
| Ni                | nickel                                                                   |
| nm                | nanometer                                                                |
| NO <sub>2</sub>   | nitrite                                                                  |
| NO <sub>3</sub>   | nitrate                                                                  |
| N <sub>org</sub>  | organic nitrogen                                                         |
| NTU               | nephelometric turbidity units                                            |
| Р                 | phosphorus                                                               |
| Pb                | lead                                                                     |
| PCIMP             | Port Curtis Integrated Monitoring Program                                |
| QWQG              | Queensland Water Quality Guidelines                                      |
| SnCl <sub>2</sub> | stannous chloride                                                        |
| ТКМ               | total Kjeldahl nitrogen                                                  |
| TN                | total nitrogen                                                           |
| TON               | total organic nitrogen                                                   |
| ТР                | total phosphorus                                                         |
| TSS               | total suspended solids                                                   |
| USEPA             | United States Environmental Protection Agency                            |



| Abbreviation |  |
|--------------|--|
| WQO          |  |
| Zn           |  |
| μ <b>g</b>   |  |

#### Description

Water Quality Objectives zinc microgram



# **Executive Summary**

Santos Ltd. proposes to develop a Dredge Material Placement Facility (DMPF) as a component of its proposed Gladstone Liquefied Natural Gas (LNG) project. This report provides a water quality assessment of the immediate coastal vicinity of the proposed DMPF.

URS conducted a one-time marine water quality survey from 22 to 23 July 2009 to supplement marine water quality data previously gathered from other areas around Port Curtis. Various physico-chemical parameters were analysed to characterise the baseline marine water quality. Nutrients, total and dissolved metals levels were among the parameters examined.

Analytical results were compared to a draft Water Quality Objectives based on the Queensland Water Quality Guidelines (EPA, 2006) and the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC, 2000).

The key findings based on the results of the marine water quality survey of the immediate coastal vicinity of the DMPF are as follows:

### **Physical Parameters**

- pH, temperature, turbidity and TSS did not show significant difference between high water and low water.
- pH, DO, temperature, conductivity and salinity did not show significant variation with depth.
- Turbidity and TSS levels exceed the QWQG.

#### **Nutrients**

- Nutrient levels are elevated with respect to QWQG.
  - Total nitrogen, total phosphorus and total organic nitrogen levels exceed prescribed QWQG concentrations.
  - The presence of high total organic nitrogen levels suggests that likely sources of nutrients are resuspended organic detrital sediments.
  - Oxidisable nitrogen and ammonia as N levels also exhibited readings greater than the prescribed criteria.
- Chlorophyll a levels exceed the QWQG prescribed level.

#### Metals

- Aluminium, iron, manganese, and arsenic levels are comparable to other areas of Port Curtis based on results of previous surveys. There are no prescribed limits for these metals but concentrations are mostly sediment bound as shown by the ratio of total to dissolved levels.
- Cadmium, chromium, lead, mercury and nickel exhibited concentrations that are within their respective ANZECC (2000) 95% trigger values. Levels of these metals were also generally less than analytical detection limits for both total and dissolved concentrations.
- Both total and dissolved levels of zinc and copper indicated exceedance to prescribed ANZECC (2000) 95% trigger limits. Insufficient data exists to conclude the source of elevated levels.



# Introduction

## 2.1 Project Background

Santos Ltd. proposes to develop a Dredge Material Placement Facility (DMPF) as a component of its proposed Gladstone Liquefied Natural Gas (LNG) project. The proposed DMPF is to be located in Laird Point, Curtis Island. This report provides a water quality assessment of the immediate coastal vicinity of the proposed DMPF. URS conducted a one-time marine water quality survey from 22 to 23 July 2009 to supplement marine water quality data previously gathered from other areas around Port Curtis.



# Methodology

## 3.1 Sampling Locations

Ten locations were surveyed to assess the water quality of the immediate coastal vicinity of the proposed DMPF, (**Figure 1**, **Table 1**).

| Sampling Locations | Easting | Northing  |
|--------------------|---------|-----------|
| MW1                | 314,043 | 7,372,043 |
| MW2                | 314,060 | 7,371,748 |
| MW3                | 314,135 | 7,371,499 |
| MW4                | 314,384 | 7,371,185 |
| MW5                | 314,683 | 7,371,016 |
| MW6                | 314,813 | 7,370,900 |
| MW7                | 314,690 | 7,371,036 |
| MW8                | 314,332 | 7,371,380 |
| MW9                | 314,471 | 7,371,275 |
| MW10               | 314,196 | 7,371,620 |

 Table 2-1
 Marine Water Quality Sampling Locations



#### This drawing is subject to COPYRIGHT. It remains the property of URS Australia Pty Ltd.



## 3.2 Sampling Techniques

Two separate surveys were undertaken: one at low water (afternoon, 22 July 09) and one at high water (morning, 23 July 09), all conducted under a spring tide regime.

*In-situ* measurements of pH, dissolved oxygen (DO), temperature, conductivity and salinity were taken for each location using a TPS 90SL model Water Quality Multimeter. Measurements were taken at three depths by submerging the multi-parameter probes at near surface, mid, and near bottom depths.

Grab samples from the near surface, mid and near bottom depths of the water column were collected using Van Dorn horizontal water sampler. These were then composited to form a representative sample for each site at each tidal condition. This equated to 20 sets of samples in total. In addition, two sets of site replicates were also collected for each tidal condition. The samples were sent to Australian Laboratory Services (ALS) laboratory within 24 hours of sampling for analysis of the parameters outlined in **Table 2**.

### Table 2-2 Parameters and Sample Handling and Preservation

| Parameter                                                                                                                                             | Container Type (Preservation)                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Turbidity, Total Suspended Solids (TSS)                                                                                                               | Plastic container (no preservative, cool stored)                                              |
| Chlorophyll- a                                                                                                                                        | Opaque Plastic container (no preservative, dark cool storage)                                 |
| Dissolved Metals (Al, As, Cd, Cr, Cu, Pb, Mn, Ni, Zn, Fe, Hg)                                                                                         | Plastic container (field filtered, no preservative, cool stored), lab acidified (nitric acid) |
| Total Metals (Al, As, Cd, Cr, Cu, Pb, Mn, Ni, Zn, Fe, Hg)                                                                                             | Plastic container ( no preservative, cool stored), lab acidified (nitric acid)                |
| Nutrients (Ammonia as N, Nitrite as N, Nitrate as N,<br>Nitrite+Nitrate as N, Total Kjeldahl Nitrogen as N,<br>Total Nitrogen as N, Total Phosphorus) | Plastic container (sulphuric acid, cool stored)                                               |
| Reactive Phosphorus as P                                                                                                                              | Plastic container (no preservative, cool stored)                                              |

## 3.3 Analytical Techniques

The analytical procedures used by the laboratory to analyse the water samples are in accordance with established internationally recognized procedures such as those published by the United States Environmental Protection Agency (USEPA), American Public Health Association (APHA), Australian Standards (AS) and NEPM.

#### Table 2-3 Laboratory Analytical Methods

| Parameter        | Analytical Method Description                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dissolved Metals | Inductively coupled plasma mass spectroscopy (ICP-MS)<br>(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The<br>ICPMS technique utilizes a highly efficient argon plasma to ionize<br>selected elements. Ions are then passed into a high vacuum mass<br>spectrometer, which separates the analytes based on their distinct mass<br>to charge ratios prior to their measurement by a discrete dynode ion<br>detector. |
| Total Metals     | ICP-MS<br>(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020)                                                                                                                                                                                                                                                                                                                                                              |



## 2 Methodology

| Parameter                       | Analytical Method Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dissolved Mercury               | Field ionization mass spectrometry (FIMS)<br>AS 3550, APHA 21st ed. 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour<br>generation) AAS) FIM-AAS is an automated flameless atomic absorption<br>technique. A bromate/bromide reagent is used to oxidise any organic<br>mercury compounds in the filtered sample. The ionic mercury is reduced<br>online to atomic mercury vapour by SnCl <sub>2</sub> which is then purged into a<br>heated quartz cell. Quantification is by comparing absorbance against a<br>calibration curve. This method is compliant with NEPM (1999) Schedule<br>B(3) (Appdx. 2) |
| Total Mercury                   | FIMS<br>AS 3550, APHA 21st ed. 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour<br>generation) AAS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ammonia as N                    | Discrete Analyser<br>APHA 21st ed., 4500-NH <sub>3</sub> G Ammonia is determined by direct colorimetry<br>by Discrete Analyser. This method is compliant with NEPM (1999)<br>Schedule B(3) (Appdx. 2)                                                                                                                                                                                                                                                                                                                                                                                                   |
| Nitrite as N                    | Discrete Analyser<br>APHA 21st ed., 4500-NO <sub>2</sub> - B. Nitrite is determined by direct colourimetry<br>by Discrete Analyser. This method is compliant with NEPM (1999)<br>Schedule B(3) (Appdx. 2)                                                                                                                                                                                                                                                                                                                                                                                               |
| Nitrate as N                    | Discrete Analyser<br>APHA 21st ed., 4500-NO <sub>3</sub> - F. Nitrate is reduced to nitrite by way of a<br>cadmium reduction column followed by quantification by Discrete<br>Analyser. Nitrite is determined seperately by direct colourimetry and result<br>for Nitrate calculated as the difference between the two results. This<br>method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)                                                                                                                                                                                                   |
| Nitrite and Nitrate as N (NOx)  | Discrete Analyser<br>APHA 21st ed., 4500-NO <sub>3</sub> - F. Combined oxidised Nitrogen (NO2+NO3) is<br>determined by Cadmium Reduction and direct colourimetry by Discrete<br>Analyser. This method is compliant with NEPM (1999) Schedule B(3)<br>(Appdx. 2)                                                                                                                                                                                                                                                                                                                                         |
| Total Kjeldahl Nitrogen as N    | Discrete Analyser<br>APHA 21st ed., 4500-N <sub>org</sub> D. 25mL water samples are digested using a<br>traditional Kjeldahl digestion followed by determination by Discrete<br>Analyser. This method is compliant with NEPM (1999) Schedule B(3)<br>(Appdx. 2)                                                                                                                                                                                                                                                                                                                                         |
| Total Nitrogen as N (TKN + Nox) | Discrete Analyser<br>APHA 21st ed., 4500-N <sub>org</sub> / 4500-NO <sub>3</sub> This method is compliant with<br>NEPM (1999) Schedule B(3) (Appdx. 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Total Phosphorus as P           | Discrete Analyser<br>APHA 21st ed., 4500-P B&F This procedure involves sulphuric acid<br>digestion of a 100mL sample to break phosphorus down to<br>orthophosphate. The orthophosphate reacts with ammonium molybdate<br>and antimony potassium tartrate to form a complex which is then reduced<br>and its concentration measured at 880nm using Discrete Analyser. This<br>method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)                                                                                                                                                              |
| Reactive Phosphorus as P        | Discrete Analyser<br>APHA 21st ed., 4500-P F Ammonium molybdate and potassium antimonyl<br>tartrate reacts in acid medium with othophosphate to form a heteropoly<br>acid -phosphomolybdic acid - which is reduced to intensely coloured<br>molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser.<br>This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)                                                                                                                                                                                                             |



## 2 Methodology

| Parameter     | Analytical Method Description                                                                                                                                                                                            |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chlorophyll a | ALS In-house (APHA 21st ed., 10200 H mod.) The pigments are extracted into aqueous acetone. The optical density of the extract before and after acidification at both 664 nm and 665 nm is determined spectrometrically. |
| Turbidity     | APHA 21st ed., 2130 B. This method is compliant with NEPM (1999)<br>Schedule B(3) (Appdx. 2)                                                                                                                             |



## 4.1 Water Quality Objectives

Table 3-1 shows the water quality parameters analysed and a draft list of the corresponding water quality objectives (WQO's). The WQO's for nutrients and physical parameters were based on the Queensland Water Quality Guidelines (QWQG 2006) Table 2.5.2.1, for slightly to moderately disturbed enclosed coastal systems in the Central Coast Queensland region. The guidelines for enclosed coastal systems were selected over those of the open coastal systems as the study area lies within the inner reaches of Port Curtis. Open Coastal guidelines are more appropriate for the coastal waters on the pacific side of Curtis Island. There are no metal WQO's prescribed under QWQG 2006, as such, these were sourced from the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC, 2000) Table 3.4.1 – guidelines for slightly to moderately disturbed marine environments in South East Australia at the 95% level of protection of species.

The draft WQO's are provided for initial comparative purposes and are subject to review. WQO's are typically based on annual statistics and require a comprehensive monitoring data set. It should be noted that current results are a result of a one-time sampling activity and are being informally compared to the draft WQO's. ANZECC guidelines also encourage the use of locally specific data, where available, for defining WQO's. Such locally specific data does exist for Port Curtis, however ownership of this data is unclear and as such has not been presented or used in detail in this report (WBM, 2008).

| Physical and Nutrient Parameters      | v                                    | VQO                                  |
|---------------------------------------|--------------------------------------|--------------------------------------|
|                                       | Enclosed Coastal                     | Open Coastal                         |
| Turbidity                             | 6 NTU                                | 1 NTU                                |
| TSS                                   | 15 mg/L                              | 10.0 mg/L                            |
| Total Nitrogen                        | 200 μg/L                             | 140 μg/L                             |
| Total Phosphorus P                    | 20 µg/L                              | 20 µg/L                              |
| Ammonia                               | 8 µg/L                               | 6 µg/L                               |
| Organic Nitrogen                      | 180 μg/L                             | 130 µg/L                             |
| Oxidised Nitrogen (Nitrate + Nitrite) | 3 µg/L                               | 3 μg/L                               |
| Filterable Reactive Phosphorus        | 6 µg/L                               | 6 µg/L                               |
| Dissolved Oxygen                      | lower limit-90%,<br>upper limit-100% | lower limit-95%,<br>upper limit-105% |
| рН                                    | lower limit- 8,<br>upper limit-8.4   | lower limit-8,<br>upper limit-8.4    |
| Chlorophyll a                         | 2 µg/L                               | 1 µg/L                               |

#### Table 4-1Water Quality Parameters and Draft WQO's

Notes:

WQO's are from Queensland Water Quality Guidelines (QWQG 2006) Table 2.5.2.1, for slightly to moderately disturbed enclosed and open coastal systems in the Central Coast Queensland region.

The enclosed coastal objectives have been given preference as the survey location is within inner Port Curtis. Open Coastal objectives were presented fur purposes of comparison.

| Metal Parameters | WQO      |
|------------------|----------|
| Aluminium        | ID       |
| Arsenic          | ID       |
| Cadmium          | 5.5 μg/L |



| Metal Parameters    | WQO       |
|---------------------|-----------|
| Copper              | 1.3 μg/L  |
| Chromium (Cr III)   | 27.4 μg/L |
| Chromium (Cr VI)    | 4.4 μg/L  |
| Iron                | ID        |
| Lead                | 4.4 μg/L  |
| Manganese           | ID        |
| Mercury (inorganic) | 0.4 μg/L  |
| Nickel              | 70 μg/L   |
| Zinc                | 15 μg/L   |

Notes:

WQO's are from the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC, ARMCANZ, 2000) Table 3.4.1 – guidelines for slightly to moderately disturbed marine environments in South East Australia at the 95% level of protection of species

ID= Insufficient data to derive a reliable trigger value.

## 4.2 Results

**Tables 3-2** to **3-5** provide the high and low water survey results for the various physico-chemical parameters analysed for each of the 10 sampling locations. Water quality objectives are included for reference. H and L refer to high water and low water samples, respectively. Potential exceedance to the draft WQO's are indicated in bold.



|                         | Location        | ר MW1            |                  | MW2              |                  | MW3              |                  | MW4              |                  | M                | MW5              |                  | MW6              |                  | MW7              |                  | N8               | MW9              |                  | MW10             |                  |                |
|-------------------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------|
|                         | Tide<br>State   | L                | н                | L                | н                | L                | н                | L                | н                | L                | н                | L                | н                | L                | н                | L                | н                | L                | н                | L                | н                |                |
| Parameter               | Date,<br>Time   | 22 July<br>1230h | 23 July<br>0740h | 22 July<br>1245h | 23 July<br>0755h | 22 July<br>1310h | 23 July<br>0810h | 22 July<br>1335h | 23 July<br>0850h | 22 July<br>1355h | 23 July<br>1025h | 22 July<br>1415h | 23 July<br>1040h | 22 July<br>1500h | 23 July<br>1055h | 22 July<br>1545h | 23 July<br>0930h | 22 July<br>1515h | 23 July<br>0950h | 22 July<br>1610h | 23 July<br>0910h | WQO            |
| Depth (m)               |                 | 1                | 1                | 6                | 6.1              | 6.9              | 8.5              | 6.8              | 9.3              | 2.5              | 8                | 2                | 5                | 2.5              | 4.4              | 3.8              | 6.5              | 1                | 4.9              | 2                | 5.1              |                |
| рН                      | Near<br>Surface | 8.40             | 7.77             | 8.06             | 8.01             | 8.18             | 8.18             | 8.21             | 8.23             | 8.27             | 8.28             | 8.26             | 8.29             | 8.26             | 8.24             | 8.24             | 8.27             | 8.25             | 8.27             | 8.27             | 8.26             | Lower:<br>8.0  |
|                         | Mid<br>Depth    | 8.40             | 7.88             | 8.17             | 8.03             | 8.19             | 8.21             | 8.23             | 8.24             | -                | 8.29             |                  | 8.30             | -                | 8.24             | 8.24             | 8.27             | -                | 8.28             | -                | 8.26             | Upper:<br>8.4  |
|                         | Near<br>Bottom  | 8.00             | 7.93             | 8.20             | 8.12             | 8.21             | 8.22             | 8.23             | 8.25             | 8.20             | 8.31             | 8.19             | 8.29             | 8.26             | 8.25             | 8.23             | 8.28             | 8.22             | 8.28             | 8.26             | 8.27             |                |
| DO (% sat)              | Near<br>Surface | 84               | 98               | 84               | 106              | 88               | 105              | 88               | 104              | 84               | 100              | 75               | 102              | 82               | 101              | 86               | 103              | 90               | 102              | 90               | 103              | Lower:<br>90%  |
|                         | Mid<br>Depth    | 84               | 97               | 82               | 102              | 86               | 102              | 86               | 101              | -                | 100              | -                | 99               |                  | 100              | 84               | 101              | -                | 100              |                  | 102              | Upper:<br>100% |
|                         | Near<br>Bottom  | 83               | 94               | 79               | 100              | 86               | 100              | 85               | 100              | 80               | 96               | -                | 101              | 77               | 101              | 82               | 100              | 82               | 99               | 87               | 101              |                |
| Conductivity<br>(mS/cm) | Near<br>Surface | 46.1             | 38.9             | 47.5             | 43.0             | 47.0             | 43.5             | 46.5             | 43.8             | 46.5             | 43.5             | 46.4             | 43.5             | 46.1             | 43.8             | 45.5             | 43.5             | 45.9             | 43.6             | 45.2             | 43.6             |                |
|                         | Mid<br>Depth    | 46.1             | 40.4             | 47.9             | 43.3             | 47.2             | 43.9             | 46.6             | 43.8             | -                | 43.4             | -                | 43.5             | -                | 43.3             | 45.3             | 43.4             | -                | 43.6             | -                | 43.7             | NGV            |
|                         | Near<br>Bottom  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                |
|                         |                 | 47.2             | 41.3             | 47.8             | 43.5             | 47.2             | 43.9             | 46.6             | 43.9             | 46.4             | 43.6             | 46.3             | 43.5             | 46.1             | 43.5             | 45.3             | 43.6             | 45.9             | 43.6             | 45.1             | 43.8             |                |

### Table 4-2 Physico-chemical Water Quality Results(In-situ)



|                     | Location        | MW1              |                  | MW1 MW           |                  | MW2 MW3          |                  | MW4              |                  | MW5              |                  | MW6              |                  | MW7              |                  | MW8              |                  | MW9              |                  | MW10             |                  |     |
|---------------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----|
|                     | Tide<br>State   | L                | Н                | L                | н                | L                | н                | L                | н                | L                | н                | L                | н                | L                | Н                | L                | н                | L                | Н                | L                | н                |     |
| Parameter           | Date,<br>Time   | 22 July<br>1230h | 23 July<br>0740h | 22 July<br>1245h | 23 July<br>0755h | 22 July<br>1310h | 23 July<br>0810h | 22 July<br>1335h | 23 July<br>0850h | 22 July<br>1355h | 23 July<br>1025h | 22 July<br>1415h | 23 July<br>1040h | 22 July<br>1500h | 23 July<br>1055h | 22 July<br>1545h | 23 July<br>0930h | 22 July<br>1515h | 23 July<br>0950h | 22 July<br>1610h | 23 July<br>0910h | WQO |
| Salinity (ppt)      | Near<br>Surface | 33.3             | 28.1             | 34.8             | 31.4             | 34.3             | 31.8             | 33.8             | 31.8             | 33.5             | 30.8             | 33.2             | 31               | 32.9             | 31.6             | 32.7             | 31.4             | 32.9             | 31.3             | 32.7             | 31.6             | NGV |
|                     | Mid Depth       | 33.3             | 29.2             | 35.2             | 31.5             | 34.7             | 32               | 34.0             | 31.7             | -                | 31.0             | -                | 31.3             | -                | 31               | 32.9             | 31.6             | -                | 31.4             | -                | 31.6             |     |
|                     | Near<br>Bottom  | 34.5             | 29.9             | 35.2             | 31.7             | 34.7             | 32               | 34.1             | 31.8             | 33.8             | 31.3             | 33.3             | 31.3             | 32.8             | 31.3             | 33.0             | 31.6             | 32.9             | 31.4             | 32.7             | 31.8             |     |
| Temperature<br>(°C) | Near<br>Surface | 20.1             | 19.5             | 19.8             | 19.5             | 20.0             | 19.5             | 20.0             | 19.8             | 20.4             | 20.8             | 20.7             | 20.5             | 20.8             | 21               | 20.4             | 20.1             | 20.6             | 20.2             | 20.1             | 19.8             | NGV |
|                     | Mid Depth       | 20.1             | 19.6             | 19.7             | 19.6             | 19.7             | 19.6             | 19.8             | 19.9             |                  | 20.4             |                  | 20.2             |                  | 20.4             | 20.0             | 20.0             |                  | 20.1             |                  | 19.9             |     |
|                     | Near<br>Bottom  | 19.9             | 19.6             | 19.6             | 19.6             | 19.6             | 19.6             | 19.8             | 19.9             | 20.0             | 20.2             | 20.5             | 20.1             | 20.9             | 20.2             | 19.8             | 20.0             | 20.6             | 20.1             | 20.0             | 19.8             |     |
|                     |                 |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |     |

Notes (Table 3-2):

WQO's are from Queensland Water Quality Guidelines (QWQG 2006) Table 2.5.2.1, for slightly to moderately disturbed enclosed coastal systems in the Central Coast Queensland region. NGV- stands for No Guideline Value available under QWQG 2006 and ANZECC 2000

WQO for temperature: QWQG 2006 recommends that local guidelines be developed. A full seasonal cycle of measurements is required to develop guideline values.

L, H – stand for low water survey and high water survey, respectively Values in bold indicate exceedance to WQO



|                                         | MW1 MW     |            | MW2        |            | MW3        |            | MW3-<br>Replicate |            | MW4        |            | MW5        |            | MW6        |            | MW7        |            | MW8        |            | MW9        |            | N9-<br>icate | MW10       |            |            |             |
|-----------------------------------------|------------|------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------|------------|------------|------------|-------------|
|                                         | L          | н          | L          | н          | L          | н          | L                 | н          | L          | н          | L          | н          | L          | н          | L          | н          | L          | н          | L          | н          | L            | н          | L          | н          |             |
| Parameter                               | 22<br>July | 23<br>July | 22<br>July | 23<br>July | 22<br>July | 23<br>July | 22<br>July        | 23<br>July | 22<br>July | 23<br>July | 22<br>July | 23<br>July | 22<br>July | 23<br>July | 22<br>July | 23<br>July | 22<br>July | 23<br>July | 22<br>July | 23<br>July | 22<br>July   | 23<br>July | 22<br>July | 23<br>July | WQO         |
|                                         | 1230<br>h  | 0740<br>h  | 1245<br>h  | 0755<br>h  | 1310<br>h  | 0810<br>h  | 1310<br>h         | 0810<br>h  | 1335<br>h  | 0850<br>h  | 1355<br>h  | 1025<br>h  | 1415<br>h  | 1040<br>h  | 1500<br>h  | 1055<br>h  | 1545<br>h  | 0930<br>h  | 1515<br>h  | 0950<br>h  | 1515<br>h    | 0950<br>h  | 1610<br>h  | 0910<br>h  |             |
| Suspended<br>Solids<br>(mg/L)           | 71         | 71         | 68         | 80         | 63         | 27         | 69                | 79         | 67         | 17         | 64         | 64         | 83         | 65         | 79         | 65         | 65         | 59         | 69         | 88         | 88           | 63         | 61         | 83         | 15 mg/L     |
| Turbidity<br>(NTU)                      | 4.5        | 9.0        | 7.1        | 8.1        | 7.0        | 11.0       | 5.0               | 3.1        | 6.0        | 10.0       | 5.3        | 7.1        | 13.0       | 5.6        | 14.0       | 6.8        | 7.2        | 7.8        | 12.0       | 8.0        | 13.0         | 9.0        | 8.4        | 8.8        | 6 NTU       |
| Chlorophyll<br>a (µg/L)                 | 6          | 5          | 6          | 5          | 8          | 4          | LD                | 5          | 2          | LD         | 6          | LD         | 5          | LD         | LD         | 3          | 7          | 1          | 8          | LD         | 10           | 5          | 7          | 2          | 2 μg/L      |
| Total<br>Nitrogen<br>(μg/L)             | 300        | 200        | 300        | 200        | 300        | 200        | 200               | 300        | 300        | 200        | 200        | 300        | 300        | 200        | 200        | 200        | 300        | 200        | 300        | 200        | 200          | 200        | 200        | 300        | 200<br>μg/L |
| Ammonia as<br>N (μg/L)                  | 40         | LD         | 20         | LD         | 20         | LD         | 120               | LD         | 120        | LD         | 40         | LD         | 200        | LD         | LD         | LD         | LD         | LD         | 140        | LD         | 20           | LD         | LD         | LD         | 8 μg/L      |
| Nitrite +<br>Nitrate as N<br>(µg/L)     | 60         | 10         | LD         | 30         | LD         | LD         | LD                | 10         | LD         | 20         | LD         | 20         | LD         | 20         | LD         | 10         | LD         | LD         | 10         | 20         | 20           | 10         | LD         | 10         | 3 μg/L      |
| Total<br>Kjeldahl<br>Nitrogen<br>(μg/L) | 200        | 200        | 300        | 200        | 300        | 200        | 200               | 300        | 300        | 200        | 200        | 300        | 300        | 200        | 200        | 200        | 300        | 200        | 300        | 200        | 200          | 200        | 200        | 300        | NGV         |

### Table 4-3 Physico-chemical Water Quality Indicators- Suspended Solids, Turbidity, and Nutrients



|                                                                                    | MW1                     |                         | MW2                     |                         | MW3                     |                         | MW3-<br>Replicate       |                         | MW4                     |                         | MW5                     |                         | MW6                     |                         | MW7                     |                         | MW8                     |                         | MW9                     |                         | MW9-<br>Replicate       |                         | MW10                    |                         |             |
|------------------------------------------------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------|
|                                                                                    | L                       | н                       | L                       | н                       | L                       | н                       | L                       | н                       | L                       | н                       | L                       | н                       | L                       | н                       | L                       | н                       | L                       | н                       | L                       | н                       | L                       | н                       | L                       | н                       |             |
| Parameter                                                                          | 22<br>July<br>1230<br>h | 23<br>July<br>0740<br>h | 22<br>July<br>1245<br>h | 23<br>July<br>0755<br>h | 22<br>July<br>1310<br>h | 23<br>July<br>0810<br>h | 22<br>July<br>1310<br>h | 23<br>July<br>0810<br>h | 22<br>July<br>1335<br>h | 23<br>July<br>0850<br>h | 22<br>July<br>1355<br>h | 23<br>July<br>1025<br>h | 22<br>July<br>1415<br>h | 23<br>July<br>1040<br>h | 22<br>July<br>1500<br>h | 23<br>July<br>1055<br>h | 22<br>July<br>1545<br>h | 23<br>July<br>0930<br>h | 22<br>July<br>1515<br>h | 23<br>July<br>0950<br>h | 22<br>July<br>1515<br>h | 23<br>July<br>0950<br>h | 22<br>July<br>1610<br>h | 23<br>July<br>0910<br>h | WQO         |
| Organic<br>Nitrogen<br>(Total<br>Kjeldahl<br>Nitrogen –<br>Ammonia as<br>N) (μg/L) | 160                     | 190                     | 280                     | 190                     | 280                     | 190                     | 80                      | 290                     | 290                     | 190                     | 190                     | 290                     | 100                     | 190                     | 190                     | 190                     | 190                     | 190                     | 160                     | 190                     | 180                     | 190                     | 190                     | 290                     | 180<br>μg/L |
| Total<br>Phosphorus<br>as P (μg/L)                                                 | 180                     | 220                     | 160                     | 100                     | 330                     | 90                      | 170                     | 90                      | 80                      | 90                      | 100                     | 140                     | 120                     | 80                      | 120                     | 110                     | 120                     | 160                     | 110                     | 130                     | 120                     | 200                     | 600                     | 90                      | 20 μg/L     |
| Reactive<br>Phosphorus<br>as P (µg/L)                                              | LD                      | 6 μg/L      |

#### Notes (Table 3-3):

WQO's are from Queensland Water Quality Guidelines (QWQG 2006) Table 2.5.2.1, for slightly to moderately disturbed enclosed coastal systems in the Central Coast Queensland region. NGV- stands for No Guideline Value available under QWQG 2006 and ANZECC 2000

L, H – stand for low water survey and high water survey, respectively LD- stands for less than analytical detection limit

Values in bold indicate exceedance to WQO

Organic nitrogen was calculated as the difference between TKN and Ammonia as N.

#### **Detection Limits:**

Ammonia as N: 10 µg/L Reactive Phosphorus as P: 10 µg/L Chlorophyll a: 1 µg/L Nitrite + Nitrate as N : 10  $\mu$ g/L

#### Table 4-4 Total Metal Concentrations

|                     | MW1 MW     |                    | MW2        |            | MW3        |            | MW3-<br>Rep |            | MW4        |            | MW5        |                    | MW6        |            | MW7        |                    | N8         | MW9        |                    | MW9-<br>Rep |            | MW10       |            |                    |              |
|---------------------|------------|--------------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|--------------------|------------|------------|------------|--------------------|------------|------------|--------------------|-------------|------------|------------|------------|--------------------|--------------|
|                     | L          | н                  | L          | н          | L          | н          | L           | н          | L          | н          | L          | н                  | L          | н          | L          | н                  | L          | н          | L                  | н           | L          | н          | L          | н                  |              |
| Parameter           | 22<br>July | 23<br>July<br>0740 | 22<br>July | 23<br>July | 22<br>July | 23<br>July | 22<br>July  | 23<br>July | 22<br>July | 23<br>July | 22<br>July | 23<br>July<br>1025 | 22<br>July | 23<br>July | 22<br>July | 23<br>July<br>1055 | 22<br>July | 23<br>July | 22<br>July<br>1515 | 23<br>July  | 22<br>July | 23<br>July | 22<br>July | 23<br>July<br>0010 | WQO          |
|                     | h          | h                  | h          | h          | h          | h          | h           | h          | h          | h          | h          | h                  | h          | h          | h          | h                  | h          | h          | h                  | h           | h          | h          | h          | h                  |              |
| Aluminium<br>(μg/L) | 500        | 940                | 770        | 980        | 550        | 1210       | 560         | 1020       | 700        | 940        | 170        | 1020               | 1500       | 680        | 950        | 510                | 620        | 1000       | 990                | 700         | 1060       | 900        | 840        | 710                | ID           |
| Arsenic<br>(μg/L)   | LD         | 13                 | LD         | 18         | LD         | 10         | 7           | 9          | LD         | 17         | 17         | 17                 | 12         | 18         | 14         | 15                 | 7          | 16         | 15                 | 17          | 18         | 14         | 15         | 16                 | ID           |
| Cadmium<br>(μg/L)   | LD         | LD                 | LD         | LD         | LD         | LD         | LD          | LD         | LD         | LD         | LD         | LD                 | LD         | LD         | 2.7        | LD                 | LD         | LD         | LD                 | LD          | LD         | LD         | LD         | LD                 | 5.5<br>μg/L  |
| Chromium<br>(μg/L)  | 8          | LD                 | 7          | LD         | LD         | LD         | 9           | LD         | 9          | LD         | LD         | LD                 | LD         | LD         | 10         | LD                 | LD         | LD         | LD                 | LD          | LD         | LD         | LD         | LD                 | 27.4<br>μg/L |
| Copper<br>(µg/L)    | 28         | 6                  | 21         | 10         | 20         | 8          | 21          | 8          | 20         | 9          | 6          | 6                  | 11         | 7          | 12         | LD                 | 15         | 8          | 9                  | 9           | 9          | 19         | 9          | 6                  | 1.3<br>μg/L  |
| Lead (µg/L)         | 8          | LD                 | LD         | LD         | LD         | LD         | LD          | LD         | LD         | LD         | LD         | LD                 | LD         | LD         | LD         | LD                 | LD         | LD         | LD                 | 8           | LD         | LD         | LD         | LD                 | 4.4<br>μg/L  |
| Manganese<br>(μg/L) | 19         | 18                 | 21         | 20         | 18         | 24         | 18          | 23         | 18         | 23         | 5          | 16                 | 31         | 13         | 28         | 11                 | 18         | 24         | 26                 | 17          | 26         | 22         | 20         | 18                 | ID           |
| Mercury<br>(μg/L)   | LD         | LD                 | LD         | LD         | LD         | LD         | LD          | LD         | LD         | LD         | LD         | LD                 | LD         | LD         | LD         | LD                 | LD         | LD         | LD                 | LD          | LD         | LD         | LD         | LD                 | 0.4<br>μg/L  |
| Nickel (µg/L)       | LD         | LD                 | LD         | LD         | LD         | LD         | LD          | LD         | LD         | LD         | LD         | LD                 | LD         | LD         | 7          | LD                 | LD         | LD         | LD                 | LD          | LD         | LD         | LD         | LD                 | 70 μg/L      |
| Zinc (μg/L)         | 39         | 9                  | 23         | 6          | 23         | 13         | 25          | LD         | 20         | 5          | 11         | LD                 | 30         | LD         | 17         | LD                 | 19         | LD         | 15                 | 6           | 24         | 14         | 15         | LD                 | 15 μg/L      |
| Iron (µg/L)         | 1410       | 1350               | 1830       | 1620       | 1400       | 1860       | 1480        | 1640       | 1580       | 1660       | 460        | 1310               | 2030       | 1060       | 1500       | 1100               | 1190       | 1700       | 1590               | 1360        | 1670       | 1510       | 1450       | 1270               | ID           |

#### Notes (Table 3-4):

WQO's are from the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC, ARMCANZ, 2000) NGV- stands for No Guideline Value available under QWQG 2006 and ANZECC 2000 L, H – stand for low water survey and high water survey, respectively LD- stands for less than analytical detection limit Values in bold indicate exceedance to WQO

#### **Detection Limits:**

| Arsenic: 5 µg/L   | Cadmium: 0.5 μg/L |
|-------------------|-------------------|
| Chromium: 5 µg/L  | Copper: 5 µg/L    |
| Lead: 5 µg/L      | Manganese: 5 µg/L |
| Mercury: 0.1 µg/L | Nickel: 5 µg/L    |
| Zinc: 5 µg/L      | Iron: 250 µg/L    |



#### Table 4-5 Dissolved Metal Concentrations

|                     | MW1 I      |            | M          | MW2        |            | MW3        |            | MW3-<br>Rep |            | MW4        |            | MW5        |            | MW6        |            | MW7        |            | MW8        |            | N9         | MW9-<br>Rep |            | MW10       |            |              |
|---------------------|------------|------------|------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|------------|------------|------------|--------------|
|                     | L          | н          | L          | н          | L          | н          | L          | н           | L          | н          | L          | н          | L          | н          | L          | н          | L          | н          | L          | н          | L           | н          | L          | н          |              |
| Parameter           | 22<br>July | 23<br>July | 22<br>July | 23<br>July | 22<br>July | 23<br>July | 22<br>July | 23<br>July  | 22<br>July | 23<br>July | 22<br>July | 23<br>July | 22<br>July | 23<br>July | 22<br>July | 23<br>July | 22<br>July | 23<br>July | 22<br>July | 23<br>July | 22<br>July  | 23<br>July | 22<br>July | 23<br>July | WQO          |
|                     | 1230<br>h  | 0740<br>h  | 1245<br>h  | 0755<br>h  | 1310<br>h  | 0810<br>h  | 1310<br>h  | 0810<br>h   | 1335<br>h  | 0850<br>h  | 1355<br>h  | 1025<br>h  | 1415<br>h  | 1040<br>h  | 1500<br>h  | 1055<br>h  | 1545<br>h  | 0930<br>h  | 1515<br>h  | 0950<br>h  | 1515<br>h   | 0950<br>h  | 1610<br>h  | 0910<br>h  |              |
| Aluminium<br>(μg/L) | 300        | 170        | 150        | 170        | 160        | 250        | 160        | 200         | 170        | 180        | 210        | 180        | 170        | 250        | 180        | 170        | 160        | 190        | 170        | 210        | 200         | 180        | 170        | 180        | ID           |
| Arsenic<br>(μg/L)   | LD          | LD         | LD         | LD         | LD         | LD         | LD         | LD         | LD         | LD         | LD         | LD         | LD         | LD          | LD         | LD         | LD         | ID           |
| Cadmium<br>(μg/L)   | LD         | LD         | LD         | LD         | 0.6        | LD         | LD         | LD          | 0.5        | LD         | LD         | LD         | LD         | LD         | 2.4        | LD         | LD         | LD         | LD         | LD         | LD          | LD         | LD         | LD         | 5.5<br>μg/L  |
| Chromium<br>(μg/L)  | 12         | LD         | 10         | LD         | LD         | LD         | 8          | LD          | 8          | LD         | LD         | LD         | LD         | LD         | 12         | LD         | LD         | LD         | LD         | LD         | LD          | LD         | LD         | LD         | 27.4<br>μg/L |
| Copper<br>(mg/L)    | 15         | 6          | 13         | 10         | 11         | 10         | 10         | LD          | 11         | 12         | 7          | LD         | 12         | LD         | 11         | LD         | 12         | 6          | 12         | 11         | 11          | 12         | 10         | 6          | 1.3<br>μg/L  |
| Lead (µg/L)         | LD          | LD         | LD         | LD         | LD         | LD         | LD         | LD         | LD         | LD         | LD         | LD         | LD         | LD          | LD         | LD         | LD         | 4.4<br>μg/L  |
| Manganese<br>(µg/L) | 8          | 9          | 5          | 7          | 6          | 5          | 6          | 5           | 6          | LD         | LD         | LD         | 8          | 6          | 8          | LD         | 7          | LD         | 9          | LD         | 9           | LD         | 7          | LD         | ID           |
| Mercury<br>(µg/L)   | LD          | LD         | LD         | LD         | LD         | LD         | LD         | LD         | LD         | LD         | LD         | LD         | LD         | LD          | LD         | LD         | LD         | 0.4<br>μg/L  |
| Nickel (µg/L)       | LD          | LD         | LD         | LD         | LD         | LD         | LD         | LD         | LD         | LD         | LD         | LD         | LD         | LD          | LD         | LD         | LD         | 70 μg/L      |
| Zinc (µg/L)         | 29         | 6          | 16         | 7          | 14         | 14         | 12         | LD          | 13         | LD         | 11         | LD         | 15         | LD         | 17         | LD         | 14         | LD         | 17         | LD         | 24          | 15         | 15         | LD         | 15 μg/L      |
| Iron (µg/L)         | LD         | 690        | LD         | 770        | 330        | 760        | 410        | 810         | 510        | 780        | 610        | 740        | 540        | 830        | 570        | 830        | 610        | LD         | 610        | 440        | 690         | 380        | 730        | 420        | ID           |



#### Notes (Table 3-5):

WQO's are from the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC, ARMCANZ, 2000) NGV- stands for No Guideline Value available under QWQG 2006 and ANZECC 2000 L, H – stand for low water survey and high water survey, respectively LD- stands for less than analytical detection limit Values in bold indicate exceedance to WQO

#### **Detection Limits:**

| Arsenic: 5 µg/L   |  |
|-------------------|--|
| Chromium: 5 µg/L  |  |
| Lead: 5 µg/L      |  |
| Mercury: 0.1 µg/L |  |
| Zinc: 5 µg/L      |  |

Cadmium: 0.5 µg/L Copper: 5 µg/L Manganese: 5 µg/L Nickel: 5 µg/L Iron: 250 µg/L



## 4.2.1 Physico-chemical Water Quality Results(*In-situ*)

*In-situ* physicochemical characteristics were recorded on two occasions – low water and high water sampling. Results for temperature, conductivity, salinity, dissolved oxygen, and pH measurements at surface, middle, and near-bottom depths are in Table 3-2.

рН

The pH levels are generally within the QWQG 2006 limits and exhibit pH characteristic of seawater pH. There is no significant difference between pH levels in low water and in high water surveys. There is also limited spatial variation among the locations, with most sampling points having pH levels that vary from 8.0 to 8.4. Only MW1 exhibited levels that are less than the recommended lower pH limit and also showed significant pH variability.





### DO

A significant difference was noted between the low water and the high water DO levels. High water DO levels are generally within the upper and lower limits of the QWQG 2006 (90% - 100% saturation). Low water DO levels, which ranged from 75% to 90% saturation, however, were less than the lower limit of the guideline. Spatial difference among the various locations was also noted to be significant during the low water regime.





#### Figure 4-2 dissolved oxygen measurements, low water (22 July 09) and high water (23 July 09) surveys

#### Conductivity and Salinity

Conductivity and salinity levels were noted to vary significantly between low water and high water sampling surveys. Salinity levels in low water ranged from approximately 32.5 ppt to 35 ppt, more saline than the levels observed during high water, which generally ranged from 30 to 32 ppt. Salinity and conductivity levels also appear to be more variable across the sampling locations during the low water survey.

Typically, salinity levels may be expected to increase during high tide events with more saline water flooding in from the open ocean. The above observation can be further verified in future monitoring events.





Figure 4-3 Conductivity measurements- low water (22 July 09) and high water (23 July 09) surveys



#### Figure 4-4 Salinity - low water (22 July 09) and high water (23 July 09) surveys


### Temperature

No significant difference in temperature was noted between low and high water sampling. Temperature readings ranged between 19.4°C to 21°C. In addition, thermal stratification was not noted to occur based on the readings. The are no temperature guidelines prescribed in QWQG 2006 and it was recommended that local temperature guidelines be developed for a specific locale. A full seasonal cycle of measurements is required to develop temperature guideline values.



Figure 4-5 Temperature- low water (22 July 09) and high water (23 July 09) surveys

### 4.2.2 Turbidity and Nutrient Levels

Table 3-3 provides the high and low water results for suspended solids, turbidity, chlorophyll-a, and nutrient parameters for each of the 10 collection locations. Water quality objectives are included for reference.

### Turbidity and Suspended Solids

The levels of turbidity and suspended solids are greater than the prescribed values under QWQG 2006 which are 6 NTU and 15 mg/L, respectively. Turbidity levels ranged from 3.1 NTU to 13.0 NTU while suspended solids varied from 17 mg/L to 88 mg/L. The elevated levels were consistent with the results of the previous WBM (2008) survey. Such elevated levels were described to be consistent for high energy environments where current-driven sediment resuspension contributes to water column sediment load (WBM, 2008). However, unlike the previous survey results, there was no significant difference found between turbidity and suspended solids levels for high water and low water.





Figure 4-6 Total Suspended Solids- low water (22 July 09) and high water (23 July 09) surveys



Figure 4-7 Turbidity- low water (22 July 09) and high water (23 July 09) surveys

#### **Nutrients**

Total nitrogen levels were elevated (200-300  $\mu$ g/L) compared to the QWQG limit of 200  $\mu$ g/L. Most of the nitrogen present appears to be of the organic form. This is apparent from the levels of Kjeldahl nitrogen, which is the total of organic and ammonium nitrogen, being similar to those of the total nitrogen levels. Ammonium nitrogen levels are comparatively lower with most of the reported concentrations being less than the analytical detection limit. However, detectable concentrations are elevated (20-140  $\mu$ g/L) compared to the limit of 8  $\mu$ g/L. Oxidisable nitrogen levels registered values that are mostly greater than the QWQG limit of 3  $\mu$ g/L.





#### Figure 4-8 Nitrogen Levels- low water (22 July 09) and high water (23 July 09) surveys



Total phosphorus levels were also found to be significantly elevated (80-600  $\mu$ g/L) compared to the QWQG limit of 20  $\mu$ g/L. Reactive phosphorus levels were less than the detection limit of 10  $\mu$ g/L; levels, but could still be greater than the 6  $\mu$ g/L limit.



#### Figure 4-9 Total Phosphorus- low water (22 July 09) and high water (23 July 09) surveys

Elevated total nutrient levels may be associated with suspended solids in the water column with the bedload being the most likely source of the observed nutrient levels. The study area is surrounded by intertidal flats with fringes of mangrove communities. These are potential sources of organic detritus that can significantly contribute to elevated nutrient levels. The elevated nutrient levels are also confirmed by the presence of elevated chlorophyll-a levels (2-10 µg/L); the QWQG limit being 2 µg/L.

Previous studies have also reported the occurrence of elevated total nutrient levels around Port Curtis. The PCIMP Report (2007) reported elevated total nitrogen levels ranging from 200  $\mu$ g/L to 260  $\mu$ g/L. Total phosphorus levels were also elevated ranging from 40  $\mu$ g/L to 60  $\mu$ g/L. Results of the WBM (2008) survey however, indicated total nitrogen levels (110-160  $\mu$ g/L) and total phosphorus levels (9-24  $\mu$ g/L) that may be classified as generally within the limits the QWQG limits.

With respect to variability of nutrient concentrations in high water and lower water, There was no significant difference noted between tidal events.

A review of nutrient water quality objectives may be required considering the elevated levels.



### 4.2.3 Metals with no prescribed guideline values- Aluminum, Iron, Manganese and Arsenic

The QWQG 2006 has no prescribed guidelines with respect to metal levels. For this reason, the ANZECC (2000) guidelines were used for purposes of comparison. ANZECC (2000) however, notes that there is insufficient data to derive a reliable trigger value for aluminium, iron, manganese and arsenic.

Aluminium, iron, and manganese have appreciable levels compared to other metals analysed which generally have levels less than the detection limits. These metals are mostly particulate-bound based on comparative levels of total and dissolved fractions (Figure 3-10 to Figure 3-12). Dissolved levels in individual samples can vary from 14% to 100% of the total levels, averaging about 33%. These results are similar with those of WBM (2008), which found that dissolved levels vary from 10% to 100% of the total fraction. The range of aluminium, iron and manganese levels in this latest survey also did not vary significantly from the findings of WBM (2008).

Previous findings (WBM, 2008) have found trends indicating a higher level of metals during low tide than high tide, this being a factor of sediment dynamics (with metals largely in the particulate fraction). Such a trend was not observed in the survey as there was no significant difference in the metal levels between high and low tide. About 90% of the locations surveyed had depths, at the time of sampling, of less than seven meters and it is possible that the effects of sediment dynamics at this depth would not be as pronounced so as to cause a significant variation on metals levels between tides. In addition, turbidity levels between low tide and high tide surveys did not show a significant difference.













#### Figure 4-12 Manganese-Comparative levels of total and dissolved concentrations for low and high water

Total arsenic levels ranged from <5  $\mu$ g/L to approximately 18  $\mu$ g/L. Dissolved levels were less than detection limits, which suggest that the arsenic levels are mostly sediment bound. Previous findings found similar levels of arsenic within Port Curtis. The PCIMP Report (2007), through biomonitoring of oysters, have found arsenic levels, that ranged from 13 ppb to 18 ppb. The report also noted that estuarine impact zones tended to have lowest concentrations, whereas the reference and oceanic zones (*which are outside Port Curtis*) were among the highest (*arsenic*) concentrations. WBM (2008) reported total and dissolved arsenic levels that are generally less than 20  $\mu$ g/L.







4.2.4 Metals with prescribed guideline values- Cadmium, Chromium, Copper, Lead, Mercury, Nickel and Zinc

### Cadmium

Cadmium levels were mostly less than detection for both the total and dissolved concentrations, with values ranging from <0.5  $\mu$ g/L to 2.7  $\mu$ g/L. Readings are within the ANZECC (2000) trigger level of 5.5  $\mu$ g/L. WBM (2008) reported total and dissolved cadmium levels of <2  $\mu$ g/L. The PCIMP Report (2007) concluded that cadmium levels were also within the ANZECC (2000) guideline.



#### Figure 4-14 Cadmium- Comparative levels of total and dissolved concentrations for low and high water

### Chromium

Chromium levels were mostly less than detection limits for both the total and dissolved concentrations. Readings ranged from <5  $\mu$ g/L to 13  $\mu$ g/L. These values are less than the ANZECC (2000) trigger level of 27.4  $\mu$ g/L for chromium (III). Chromium was also reported by WBM (2008) to be within the



guidelines, with total and dissolved chromium levels mostly at <3  $\mu$ g/L. The PCIMP Report (2007) also concluded that chromium (III) levels were well within the ANZECC (2000) trigger value.



#### Figure 4-15 Chromium- Comparative levels of total and dissolved concentrations for low and high water

#### Copper

Total copper levels ranged from <5  $\mu$ g/L to 28  $\mu$ g/L. Dissolved levels ranged from <5  $\mu$ g/L to 15  $\mu$ g/L and comprised 50% to 100% of the total levels. Results indicate that copper levels generally exceed the 1.3  $\mu$ g/L ANZECC (2000) limit. WBM (2008) previously reported copper levels that were generally less than an analytical detection limit of 5  $\mu$ g/L for both total and dissolved copper levels, but also showed sporadic detectable readings ranging from 5  $\mu$ g/L to 11  $\mu$ g/L.

The PCIMP Report (2007) however, found that copper concentrations around Port Curtis are within the ANZECC (2000) 95% trigger value based on the results of its diffusive gradients in thin films (DGT) labile metals monitoring. Labile copper levels were found to range between 0.06  $\mu$ g/L and 0.36  $\mu$ g/L in various locations around Port Curtis. In the same report, reference sites located in the open coastal waters at the Pacific Ocean side, indicated copper levels ranging from 0.06  $\mu$ g/L to 0.08  $\mu$ g/L.

As the locations surveyed have not been studied in the PCIMP Report (2007), the elevated copper concentrations may represent a localised concentration. Insufficient data exists to conclude the source of elevated levels.





#### Figure 4-16 Copper - Comparative levels of total and dissolved concentrations for low and high water

#### Lead

Both total and dissolved concentrations of lead were mostly less than the analytical detection limit of 5  $\mu$ g/L. However, sporadic detectable readings (<10% of data) of 7  $\mu$ g/L to 8  $\mu$ g/L were also reported. The ANZECC (2000) trigger value for lead is 4.4  $\mu$ g/L, thus, the possibility exists that reported lead levels could still be greater than the trigger value but less than 5  $\mu$ g/L. WBM (2008) reported total and dissolved lead levels that were mostly less than or equal to an analytical detection limit of 40  $\mu$ g/L. Lead concentrations were shown to be within the ANZECC (2000) 95% trigger value as reported by PCIMP Report (2007). DGT labile lead concentrations in various locations around Port Curtis were also found to have lower concentrations which ranged from 0.007  $\mu$ g/L to 0.008  $\mu$ g/L. Oceanic reference points were reported to have a concentration of 0.002  $\mu$ g/L.

#### Mercury

Total and dissolved concentrations of mercury are less than the analytical detection limit of 0.1  $\mu$ g/L. The levels are within the AWQG 95% trigger value for inorganic mercury, 0.4  $\mu$ g/L.

#### Nickel

Nickel levels are well within the 70  $\mu$ g/L ANZECC (2000) trigger value. Total and dissolved concentrations are generally less than the analytical detection limit of 5  $\mu$ g/L. WBM (2008) also reported total and dissolved nickel concentrations that are within the guidelines.

#### Zinc

Exceedance to the 15  $\mu$ g/L ANZECC (2000) trigger value was noted for the total and dissolved zinc levels. Dissolved levels can comprise 50% to 100% of dissolved levels. Elevated values were mostly observed for the low water survey with elevated concentrations ranging from 15  $\mu$ g/L to 39  $\mu$ g/L. WBM (2008) previously reported concentrations that are less than an analytical detection limit of 20  $\mu$ g/L for both total and dissolved zinc levels.





Figure 4-17 Zinc- Comparative levels of total and dissolved concentrations for low and high water



### Conclusion

The following are key findings based on the results of the marine water quality survey of the immediate coastal vicinity of the DMPF:

### **Physical Parameters**

Physical parameters which include pH, temperature, turbidity and TSS did not show significant difference between high water and low water. In addition, pH, DO, temperature, conductivity and salinity did not show significant variation with depth. Turbidity and TSS levels exceed the QWQG.

### **Nutrients**

Nutrient levels are elevated with respect to QWQG. Total nitrogen, total phosphorus and total organic nitrogen levels exceed prescribed concentrations. The presence of high total organic nitrogen levels suggests that likely sources of nutrients are resuspended organic detrital sediments. Oxidisable nitrogen and ammonia as N levels also exhibited readings greater than the prescribed criteria.

Chlorophyll a levels exceed the QWQG prescribed level.

#### Metals

The levels of aluminium, iron, manganese, and arsenic are comparable to other areas of Port Curtis based on results of previous surveys. There are no prescribed limits for these metals. Detectable concentrations however, are mostly sediment bound as shown by the ratio of total to dissolved levels.

Cadmium, chromium, lead, mercury and nickel exhibited concentrations that are within their respective ANZECC (2000) 95% trigger values. Levels were also generally less than analytical detection limits for both total and dissolved concentrations.

Both total and dissolved levels of zinc and copper indicated exceedance to prescribed ANZECC (2000) 95% trigger limits. Insufficient data exists to conclude the source of elevated levels.



### References

Anderson, L. E., Melville, F., Teasdale, P.R., and Story, A.W. (2006) 2005 Port Curtis integrated Monitoring Program (PCIMP): Centre for Environmental Management, Central Queensland University.

Anderson, L.E., Melville, F., Steinberg, A. N., Teasdale, P.R., Storey, A. W., and Fabbro, L.D. (2007) PCIMP Biomonitoring 2006: Port Curtis Integrated Monitoring Program, Centre for Environmental Management, Central Queensland University.

Anderson, L.E., Melville, F., Steinberg, A. N., Teasdale, A. W., and Fabbro, L.D. (2008) PCIMP Biomonitoring 2007: Port Curtis Integrated Monitoring Program, Centre for Environmental Management, Central Queensland University.

ANZECC, ARMCAZZ (2000) National Water Quality Management Strategy. Paper number 4: Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Volume 1. The Guidelines. Chapter 3.

Queensland EPA (2006) Queensland Water Quality Guidelines (Minor Updates March 2007).

WBM (2008) Proposed Santos LNG Facility- Marine Water Quality Assessments. Prepared for URS.



### Limitations

URS Australia Pty Ltd (URS) has prepared this report in accordance with the usual care and thoroughness of the consulting profession. It is based on generally accepted practices and standards at the time it was prepared. No cover warranty, expressed or implied, is made as to the professional advice included in this report. It is prepared in accordance with the scope of work and for the purpose outlined in the Proposal dated 15<sup>th</sup> July 2009.

The methodology adopted and sources of information used by URS are outlined in this report. URS has made no independent verification of this information beyond the agreed scope of works and URS assumes no responsibility for any inaccuracies or omissions. No indications were found during our investigations that information contained in this report as provided to URS was false.

This report was prepared between 22 July and 22 August 2009 and is based on the conditions encountered in the field, laboratory results and information reviewed at the time of preparation. URS disclaims responsibility for any changes that may have occurred after this time.

This report would be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.



Appendix A Certificate of Analysis



Α

### Appendix A

The table shows the locations and the corresponding samples collected to aid in the reading of the certificate of analysis.

| Location ID Description |                           | Sample ID |
|-------------------------|---------------------------|-----------|
| MW1                     | MW1-Low Water             | 1         |
|                         | MW1-High Water            | 11        |
| MW2                     | MW2-Low Water             | 2         |
|                         | MW2-High Water            | 12        |
| MW3                     | MW3-Low Water             | 3         |
|                         | MW3- High Water           | 13        |
|                         | MW3-Low Water-Replicate   | 4A        |
|                         | MW3- High Water-Replicate | 14A       |
| MW4                     | MW4-Low Water             | 4B        |
|                         | MW4- High Water           | 14        |
| MW5                     | MW5-Low Water             | 5         |
|                         | MW5- High Water           | 15        |
| MW6                     | MW6-Low Water             | 6         |
|                         | MW6- High Water           | 16        |
| MW7                     | MW7-Low Water             | 7         |
|                         | MW7- High Water           | 17        |
| MW8                     | MW8-Low Water             | 8         |
|                         | MW8- High Water           | 18        |
| MW9                     | MW9-Low Water             | 9         |
|                         | MW9- High Water           | 19        |
|                         | MW9-Low Water-Replicate   | 10A       |
|                         | MW9- High Water-Replicate | 20A       |
| MW10                    | MW10-Low Water            | 10        |
|                         | MW10-High Water           | 20        |





at Assault

AUSTRALIAN SOIL TESTING PTY LTD. A.B.N. 79 003 493 623

24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

# **ZONE SETTLEMENT TEST REPORT**

US Army engineers - Guidelines for dredging operating and managing dredged materials in containment areas.



File C:\Zone Settlement issue 1 March 2008 CL



24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

# ZONE SETTLEMENT TEST REPORT

US Army engineers - Guidelines for dredging operating and managing dredged materials

in containment areas. **CLIENT:** Santos Ltd 60 Edward St, Brisbane Qld 4000 **PROJECT: GLNG Project : Dredge facility Design** Job Number: 119-229 Date Tested: 03.08.09 Laboratory Number: 53730 Sampled By: Geo Coastal BH 13A 6.0 to 7.0m Sample Source: Sample Description: SILTY SAND: grey, fine to coarse sand, some low plastic clay, some fine gravel(shells) 1200 1000 800 Volume (cc) 600 400 200 0 600 0 200 400 800 1000 1200 1400 1600 Time (mins) Initial Dry Concentration 50 (grams/ litre) Time for Initial Zone 1 (mins) Time for 100% Settlement 1440 (mins) °C Water Temperature: 19 Sea Water Water Type: ile C:\Zone Settlement issue 1 March 2008 CL



ويستعدنا والمقطين الراوميتية مردك

AUSTRALIAN SOIL TESTING PTY LTD. A.B.N. 79 003 493 623

24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

# **ZONE SETTLEMENT TEST REPORT**

US Army engineers - Guidelines for dredging operating and managing dredged materials in containment areas.

in containment a

**CLIENT:** 

Santos Ltd 60 Edward St, Brisbane Qld 4000

**PROJECT:** 

60 Edward St, Brisbane Qld 4000 GLNG Project : Dredge facility Design



24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

Second second second second second

### PARTICLE SIZE DISTRIBUTION TEST REPORT

| Clie   | nt:        | SANTOS Ltd                          |                                        |                                       |                   |           |
|--------|------------|-------------------------------------|----------------------------------------|---------------------------------------|-------------------|-----------|
| Add    | ress:      | ss: 60 Edward St, Brisbane QLD 4000 |                                        |                                       |                   |           |
| Proj   | ect:       | GLNG PROJI                          | CT: DREDGE FAC                         | CILITY DESIG                          | GN                |           |
| Test l | Method:    | AS1289 3.6.1/3                      |                                        |                                       |                   |           |
| Job N  | lumber:    | 119-229                             |                                        |                                       | Lab Number:       | 53729     |
| Samp   | le Source: | BH13A 0 to 1.0m                     | n                                      |                                       | Date Tested:      | 31/07/09  |
| Samp   | led by:    | Geo Coastal                         |                                        |                                       | Checked By:       | CWS       |
|        | 100        |                                     | ·                                      |                                       |                   |           |
|        |            |                                     |                                        |                                       |                   |           |
|        | 90         |                                     |                                        |                                       |                   |           |
|        | 80         |                                     |                                        |                                       |                   |           |
|        |            |                                     |                                        |                                       |                   |           |
|        | 70         |                                     | <u>──┝─╁┼┼</u> ┢ <u>┞</u> ┼── · ··─┼── |                                       |                   |           |
|        |            |                                     |                                        |                                       | ──────┼─┼┼╄┼┼     |           |
| ъņ     | 60         |                                     |                                        |                                       | ╶┼╴┼┼┼┼┼          |           |
| ssin   | 50         |                                     |                                        |                                       |                   |           |
| ° pa   |            |                                     |                                        |                                       |                   |           |
| ~      | 40         | ╶╆┼┼┿┿╴╶┼╌╸                         | /                                      | · · · · · · · · · · · · · · · · · · · |                   |           |
|        |            | ╶┼╶┼┼┼┼┿┥──╌┼─╍                     | ╶┼┽┼┽╟┊╶╼┟╱╶                           | ╺╶┼┼╍╎╎╎┊┥                            | ╶┉┦──┥╴┦╴┤╍┽┟┦┦┆╴ | <u> </u>  |
|        | 30         | ╶┼╾┼┼╃┦╎┾┥╴╴┥╼╸                     |                                        | ╺╌┊┊╼┊┊┊┊                             |                   |           |
|        |            |                                     |                                        | ┝╍┟┟┿┥╽╏┝                             | ╼╁─┼╌┼┼╆┽╎╎╢╴     |           |
|        | 20         |                                     |                                        |                                       |                   |           |
|        | 10         |                                     |                                        |                                       |                   |           |
|        | <b></b>    | ╺╾┼╾╌┊╴╏╶┟┤╎╎╎╴╴╴╴╿                 | ╺╾┊╶╏╺┥╏╎┊╏                            |                                       |                   |           |
|        | 0          |                                     |                                        |                                       |                   |           |
|        | 0.001      | 0.010                               | 0.100                                  | 1.000                                 | 10.00             | U 100.000 |
|        |            |                                     | sieve apo                              | erture mm                             |                   |           |
|        | Clay       | Silt                                |                                        | Sand                                  | Grav              | /el       |

Sample Description:

### SAND:grey, fine to coarse, some silt and clay of low plasticity, some gravel (shells) (Alluvial soil)

| Sieve Size (mm) | % Passing | Sieve Size (mm) | % Passing |
|-----------------|-----------|-----------------|-----------|
| 150.0           | 100       | 1.18            | 81        |
| 75.0            | 100       | 0.600           | 69        |
| 63.0            | 100       | 0.425           | 60        |
| 53.0            | 100       | 0.300           | 50        |
| 37.5            | 100       | 0.150           | 18        |
| 26.5            | 100       | 0.075           | 13        |
| 19.0            | 100       | 0.050           | 11        |
| 13.2            | 99        | 0.020           | 9         |
| 9.5             | 99        | 0.010           | 8         |
| 6.7             | 98        | 0.005           | 7         |
| 4.75            | 95        | 0.002           | 5         |
| 2.36            | 90        |                 |           |

Hydrometer Type:ASTM 152HDispersant Type:Sodium Hexametaphosphate /Pretreatment:NoneLoss on Pretreatment:NoneRemarks:

File C06 File C:\Excel Reports\C06 Particle Size Distribution +19mm No Riffle Issue 2 June 2008 CL



NATA Accredited Number 1459. This document shall not be reproduced except in full, This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. Signed:



24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

### **PARTICLE SIZE DISTRIBUTION TEST REPORT**

| Clier  | nt:        | SANTOS Ltd                                                                                                                                                  |                              |                       |                                        |                                               |
|--------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------|----------------------------------------|-----------------------------------------------|
| Add    | ress:      | 60 Edward St, B                                                                                                                                             | risbane QLD 4000             |                       |                                        |                                               |
| Proj   | ect:       | GLNG PROJEC                                                                                                                                                 | T: DREDGE FAC                | LITY DESIG            | N                                      |                                               |
| Test N | Method:    | AS1289 3.6.1/3                                                                                                                                              |                              |                       |                                        |                                               |
| Job N  | umber:     | 119-229                                                                                                                                                     |                              |                       | Lab Number:                            | 53730                                         |
| Samp   | le Source: | BH13A 6.0 to 7.0n                                                                                                                                           | 1                            |                       | Date Tested:                           | 31.08.09                                      |
| Samp   | led by:    | Geo Coastal                                                                                                                                                 |                              |                       | Checked By:                            | CWS                                           |
| ł      | 00         |                                                                                                                                                             |                              | -                     |                                        | ·····                                         |
|        | · · ·      | ╶┼╍╁┾╬┍╦╬╴                                                                                                                                                  |                              | ╶┟┼┼┾┼┾┼╴╌╴           |                                        |                                               |
|        | 90         |                                                                                                                                                             | ╤┶┼┼┊┼┼╼──┈┼──┼              |                       | ╶┧──╧─┼╸┼╶╄┙╀┶╁┤╸                      | ─ ─┼ <u></u> ─┼┼┼┼╎                           |
|        | 90         | ╮ <b>╶╉╴╢╪╍╂┼┥┼╀╴╌╴╷╁┄╶┼╴</b>                                                                                                                               |                              |                       | ╶┤╍╌┧╌┼╶╄╶╁┷┼╄┦╴                       |                                               |
|        | ou         |                                                                                                                                                             |                              |                       |                                        |                                               |
|        | 70         |                                                                                                                                                             |                              |                       |                                        |                                               |
|        |            | ╶╌╴╄╍┼╌┼╢┽╌╌╌┥╴╴┝╴                                                                                                                                          | ┤┨╷┼╹╎╎                      | <u> </u>              | ╶┥┈╌┦╌┼╴┽╂┠┼┼┿                         |                                               |
|        | 60         | ╶┟╴┾╍╂╁╀╫╁╌╴╌╴┟╴╴┼╴                                                                                                                                         | ┾┼╄┽┼┠╌╴╴┝                   | ╶┼╍┼┼┽┼┾┼╌╴╴          | ╶┥──┥─╋╆┿╇╬                            |                                               |
| sing   |            | ╶┼╍╁┼┼╬╫╓╍╌┦╌╌┢╴                                                                                                                                            | ┼┼┼┼┼                        | <u>╶┼╍┢┼┟┟┟</u> ╡───╌ | <u>╶</u> ┿╍╌╄╶╌╤╺ <del>╄╺┢┍╿┥</del> ┙╴ | <u>─</u> ·─ <del>┟</del> ─ <del>╷</del> ┊╡┊┟╽ |
| pase   | 50         | ╶┾╌┼╶┽┼╓╎┼╀┤╴╴╴┝╶╴┝                                                                                                                                         | ╤╪┼╄┽┼╬╌╌╌┾╱┼┙               | ╶╀╼╉┟┨╃┼┟────         | ╶┼──┼─╁┟╀┦┽╂┥╴                         | <u>─</u> ──┤──┤─┤┍┨┤┩                         |
| %      |            | ╶╂╴┼╶┦┦┽╎┶┦┈╼┈┦┈╺┟╴                                                                                                                                         |                              | ╶┼╼┽╴╀┥┽┼┟┍╌╴╴        | ╶┦──┟─╀╶╀╁┯╂┼┦╴                        | ── <del>┤</del> ─┤─┼╵┼╊┼┼┢┦                   |
|        | 40 +       |                                                                                                                                                             |                              |                       |                                        |                                               |
|        | 30         |                                                                                                                                                             |                              |                       |                                        |                                               |
|        |            | ╺╍╪╶┥┼╍┼┿╎┼┈╶╍╶┼╼╾┼╼                                                                                                                                        |                              |                       | ╶┼╼╌┼╼┼╶┾┨╇╅┠╁╍                        |                                               |
|        | 20         | - <u>↓</u> - <u>↓</u> + <u>↓</u> + <u>↓</u> + <u>↓</u> - | <del>╄╈╪┿╫</del> ╍╌╌┾╼┾      | ╺┤┝┦┦┦╢╌╌╴            | ╶╪╴╌┼╌╄╶╄╶┾╴┝┼┾                        | <u> </u>                                      |
|        | <u>↓</u>   |                                                                                                                                                             | ┼┼┾╆┞╎┼╍╌╺╴┼╼╶┼              | ╾┧┼┼╁╅╂┼╾──╴          | ╶┼╼╶╂╍┽┾┲╂┨╋                           | ╶╼╴╊╾╶┾╍╁╺╁┼┽╁╆┥                              |
|        | 10         | ┥┽┼┼┼┼                                                                                                                                                      | ┼┾╀╆┽╁╌─╌┼╼╌╁╸               | ╾╀╌┨╌╁╄╃┼┨────        | ╶╁╌╌┼╼┼┾┦┦┽╴                           | <u>──┤─┼┼┾┤┼</u>                              |
|        |            | ╶╋╌╆╌╎┽╎┦┼╎╌╴╼╀╌╴╅╴                                                                                                                                         | <del>┨╶╊╍╡┟┩┊╽╶╴╍╌╎╺╸┤</del> | ╶╧╶┾╾┦┖┽┧┼╾╴╍         | ╶┼╌╶┾╌┼╶╂╶┊╼╋┠╪┨╸                      |                                               |
|        | 0.001      | 0.010                                                                                                                                                       | 0.100                        | 1.000                 | 10.00                                  | 0 100.000                                     |
|        |            |                                                                                                                                                             | sieve aper                   | ture mm               |                                        |                                               |
|        | Clay       | Silt                                                                                                                                                        | s                            | and                   | Grav                                   | el                                            |

Sample Description:

SILTY SAND: grey, fine to coarse sand, some low plastic clay, some fine gravel (shells) (Alluvial )

| Sieve Size (mm) | % Passing | Sieve Size (mm) | % Passing |
|-----------------|-----------|-----------------|-----------|
| 150.0           | 100       | 1.18            | 90        |
| 75.0            | 100       | 0.600           | 82        |
| 63.0            | 100       | 0.425           | 73        |
| 53.0            | 100       | 0.300           | 59        |
| 37.5            | 100       | 0.150           | 34        |
| 26.5            | 100       | 0.075           | 28        |
| 19.0            | 100       | 0.050           | 25        |
| 13.2            | 100       | 0.020           | 19        |
| 9.5             | 100       | 0.010           | 17        |
| 6.7             | 99        | 0.005           | 13        |
| 4.75            | 98        | 0.002           | 8         |
| 2.36            | 95        |                 |           |

Hydrometer Type:ASTM 152HDispersant Type:Sodium HexametaphosphatePretreatment:NoneLoss on Pretreatment:NoneRemarks:Some

File C06 File C:

File C06 File C:\Excel Reports\C06 Particle Size Distribution +19mm No Riffle Issue 2 June 2008 CL



ì

NATA Accredited Number 1459. This document shall not be repraduced except in full. This document is issued in accreditation requirements. Accredited for compliance with NSO/IEC 17025.





### AUSTRALIAN SOIL TESTING PTY LTD. A.B.N. 79 003 493 623 24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216

24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel; 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

### PARTICLE SIZE DISTRIBUTION TEST REPORT

| Client:        | SANTOS Ltd         |                                                                |                                             |        |                            |
|----------------|--------------------|----------------------------------------------------------------|---------------------------------------------|--------|----------------------------|
| Address:       | 60 Edward St, B    | risbane QLD 4000                                               | L                                           |        |                            |
| Project:       | GLNG PROJEC        | T: DREDGE FAC                                                  | ILITY DESIGN                                |        |                            |
| Test Method:   | AS1289 3.6.1/3     |                                                                |                                             |        |                            |
| Job Number:    | 119-229            |                                                                | Lab Nu                                      | mber:  | 53731                      |
| Sample Source: | BH13A 11.5 to 12.0 | )m                                                             | Date Te                                     | ested: | 06.08.09                   |
| Sampled by:    | Geo Coastal        |                                                                | Checke                                      | d By:  | CWS                        |
| 100            |                    |                                                                |                                             |        |                            |
| 90             |                    | ╆╍╤╌┽╍╤┼╪╼╌╌╴╸╤╌╸╺╂<br>╄╴╺ <mark>┇╶┼╶╽╶╃┼┟</mark> ╼───╴╹╶╁───┼ | ─┝╪╊╊╪╪╸╼┦╼╸<br>─╎┊┾┊╢┦╼╸ <mark>╶</mark> ┍┥ |        | ╪ <del>╴╶╻╴╹╸┥╸┥╸┥╸┥</del> |
| 80             |                    |                                                                |                                             |        |                            |
| 70             |                    |                                                                |                                             |        |                            |
| 60             |                    |                                                                |                                             |        |                            |
| so bassi       |                    |                                                                |                                             |        |                            |
| 40             |                    |                                                                |                                             |        |                            |
| 30             |                    |                                                                |                                             |        |                            |
| 20             |                    |                                                                |                                             |        |                            |
| 10             |                    |                                                                | ╺╴┝╴┝╴┝                                     |        |                            |
| o              |                    |                                                                |                                             | ╾┚┶╢╢╢ |                            |
| 0.001          | 0.010              | 0.100<br>sieve ape                                             | 1.000<br>rture mm                           | 10.000 | 100.000                    |

| Clay Silt Sand Gravel |      |      |      |        |
|-----------------------|------|------|------|--------|
|                       | Clay | Silt | Sand | Gravel |

Sample Description:

:

 . ... · ...

### SANDY CLAY: grey, medium plasticity, fine to coarse sand, some gravel as shells (Alluvial )

| Sieve Size (mm) | % Passing      | Sieve Size (mm) | % Passing |
|-----------------|----------------|-----------------|-----------|
| 150.0           | 100            | 1.18            | 82        |
| 75.0            | 100            | 0.600           | 69        |
| 63.0            | 100            | 0.425           | 65        |
| 53.0            | 100            | 0.300           | 62        |
| 37.5            | 100            | 0.150           | 54        |
| 26.5            | 100            | 0.075           | 52        |
| 19.0            | 100            | 0.050           | 46        |
| 13.2            | 100            | 0.020           | 41        |
| 9.5             | 100            | 0.010           | 38        |
| 6.7             | <del>9</del> 9 | 0.005           | 35        |
| 4.75            | 95             | 0.002           | 30        |
| 2.36            | 90             |                 |           |

| Hydrometer Type:      | ASTM 152H                |
|-----------------------|--------------------------|
| Dispersant Type:      | Sodium Hexametaphosphate |
| Pretreatment:         | None                     |
| Loss on Pretreatment: | None                     |
| Remarks:              |                          |

File C06 File C:\Excel Reports\C06 Particle Size Distribution +19mm No Riffle Issue 2 June 2008 CL



NATA Accredited Number 1459. This document shall not be reproduced except in full. This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. +19mm No Riffle Issue 2 June 2008 CL Signed:





24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

# ZONE SETTLEMENT TEST REPORT

US Army engineers - Guidelines for dredging operating and managing dredged materials

in containment areas.

CLIENT:

Santos Ltd 60 Edward St, Brisbane Qld 4000 GLNG Project : Dredge facility Design





and the state of the

AUSTRALIAN SOIL TESTING PTY LTD. A.B.N. 79 003 493 623

24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

# ZONE SETTLEMENT TEST REPORT

US Army engineers - Guidelines for dredging operating and managing dredged materials

| in contai | nment areas. |
|-----------|--------------|
| CLIENT:   | Santos Lto   |
|           | 60 Edward S  |
| PROJECT:  | GLNG Pro     |

• •

Santos Ltd 60 Edward St, Brisbane Qld 4000 GLNG Project : Dredge facility Design





CLIENT:

AUSTRALIAN SOIL TESTING PTY LTD. A.B.N. 79 003 493 623

24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

# **ZONE SETTLEMENT TEST REPORT**

US Army engineers - Guidelines for dredging operating and managing dredged materials

| in  | contai | inment     | area   |
|-----|--------|------------|--------|
| 181 | LUIILA | 1111100111 | di bas |

| Santos Ltd                            |
|---------------------------------------|
| 60 Edward St, Brisbane Qld 4000       |
| GLNG Project : Dredge facility Design |
|                                       |



### ,

## AUSTRALIAN SOIL TESTING PTY LTD. A.B.N. 79 003 493 623

24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

### **PARTICLE SIZE DISTRIBUTION TEST REPORT**

| Client       | t:             | SANTOS Ltd                                               |                                           |                                |                                                          |                                   |  |  |
|--------------|----------------|----------------------------------------------------------|-------------------------------------------|--------------------------------|----------------------------------------------------------|-----------------------------------|--|--|
| Addre        | ess:           | 60 Edward St, Br                                         | isbane QLD 400                            | ю                              |                                                          |                                   |  |  |
| Project:     |                | GLNG PROJECT                                             | GLNG PROJECT: DREDGE FACILITY DESIGN      |                                |                                                          |                                   |  |  |
| Test M       | ethod:         | AS1289 3.6.1/3-                                          |                                           |                                |                                                          |                                   |  |  |
| Job Nu       | mber:          | 119-229                                                  |                                           |                                | Lab Number:                                              | 53717                             |  |  |
| Sample       | e Source:      | BH08C 0 to 1.0m                                          |                                           |                                | Date Tested:                                             | 14/08/09                          |  |  |
| Sample       | ed by:         | Geo Coastal                                              |                                           |                                | Checked By:                                              | CWS                               |  |  |
| 10           | 0              |                                                          | <u> </u>                                  |                                |                                                          | <mark>╱╶╺╷╴╸┆╼╸╷┥╷┥╷</mark>       |  |  |
| 9            | o              |                                                          |                                           |                                |                                                          |                                   |  |  |
| 8            | 0 <del>-</del> |                                                          |                                           | ┿╍╢┄╤┿╢╫╋╦╸╼<br>┿╺╎╌┿┿╢╫╫╴╼    |                                                          |                                   |  |  |
| 7            | o +            |                                                          |                                           |                                | ╱┥╍╾╸╵╞┽┥╿┼┽╢╵<br>╍╌┥╵╶╁╌┝┽╾╻╆┽┧                         | ──── <sup>╵</sup> ╡──┤╵┽╶┼┤╵╋╶╤┇┤ |  |  |
| 6            | 0 +            |                                                          |                                           |                                |                                                          |                                   |  |  |
| passing<br>🖉 | o 📜 🖂          |                                                          |                                           |                                |                                                          |                                   |  |  |
| % 4          | 0              | ── <del>╪╼┪╶┊╶</del> ╞╪╪╌┈╴┊──┊<br>──┼┼┽╆┼┟┟┼┟╴╺╌╷│──┾╶┊ |                                           |                                |                                                          |                                   |  |  |
| 30           | 0              |                                                          | ╶╁╶╡╶┼╞╂┾╴────┾───<br>─╉╌┊╶┼┠┼┤╶┈────┝─── | ┤╶┲╪╞╤┿╞╼╼<br>┽┎┫╼╄            | ┙ <del>┫</del> ┈┦ <del>╡╻╡┙╣┍</del> ╕╴<br>╴┽─╌╆╴┼╌┝╧┼╃┽╴ |                                   |  |  |
| 20           | 0              |                                                          |                                           |                                | ── <del>┤</del><br>── <del>│</del><br>── <del>│</del>    |                                   |  |  |
| L.           | 0              |                                                          |                                           | ╪╌╤╤╪╻╤╪╪╆╶═╸<br>┼╴╪╤╪╺┲╤┽╁╿═╸ |                                                          |                                   |  |  |
|              | 0              |                                                          |                                           |                                |                                                          |                                   |  |  |
|              | 0.001          | 0.010                                                    | 0.100                                     | 1.000                          | 10.00                                                    | 0 100.000                         |  |  |
|              |                |                                                          | sieve ar                                  | verture mm                     |                                                          |                                   |  |  |
|              | Clay           | Silt                                                     |                                           | Sand                           | Grav                                                     | rel                               |  |  |

Sample Description:

GRAVELLY SAND: grey, fine to coarse sand, fine to medium gravel, some silt (Alluvial)

| Sieve Size (mm) | % Passing | Sieve Size (mm) | % Passing |
|-----------------|-----------|-----------------|-----------|
| 150.0           | 100       | 1.18            | 71        |
| 75.0            | 100       | 0.600           | 49        |
| 63.0            | 100       | 0.425           | 34        |
| 53.0            | 100       | 0.300           | 22        |
| 37.5            | 100       | 0.150           | 11        |
| 26.5            | 100       | 0.075           | 9         |
| 19.0            | 100       | 0.050           |           |
| 13.2            | 100       | 0.020           |           |
| 9.5             | 92        | 0.010           |           |
| 6.7             | 87        | 0.005           |           |
| 4.75            | 85        | 0.002           |           |
| 2.36            | 80        |                 |           |

ASTM 152H Hydrometer Type: Dispersant Type: Sodium Hexametaphosphate Pretreatment: None Loss on Pretreatment: None **Remarks**:

File C06 File C:\Excel Reports\C06 Particle Size Distribution +19mm No Riffle Issue 2 June 2008 CL



:

NATA Accredited Number 1459. This document shall not be reproduced except In full. This document is issued in occordance with NATA's accreditation requirements. Accredited for compliance with ISO/EC 17025.

Signed: 



t data a a

AUSTRALIAN SOIL TESTING PTY LTD. A.B.N. 79 003 493 623 24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

### **PARTICLE SIZE DISTRIBUTION TEST REPORT**

| Client     | t:                 | SANTOS Ltd                                            |                                      |                    |                |           |                          |  |
|------------|--------------------|-------------------------------------------------------|--------------------------------------|--------------------|----------------|-----------|--------------------------|--|
| Addre      | ess;               | 60 Edward St, Brisb                                   | ane QLD 4                            | 000                |                |           |                          |  |
| Proje      | ct:                | GLNG PROJECT: I                                       | GLNG PROJECT: DREDGE FACILITY DESIGN |                    |                |           |                          |  |
| Test M     | ethod:             | AS1289 3.6.1/3                                        |                                      |                    |                |           |                          |  |
| Job Nu     | mber:              | 119-229                                               | 119-229                              |                    | Lab Number:    | 5371      | 8                        |  |
| Sample     | Source:            | BH08C 3.0 to 4.0m                                     |                                      |                    | Date Tested:   | 14/0      | 8/09                     |  |
| Sample     | ed by:             | Geo Coastal                                           |                                      |                    | Checked By:    | CWS       | 5                        |  |
| 10         | 0                  |                                                       |                                      | · · · · ·          |                | T <b></b> | -+ <u></u> ++            |  |
| 96         |                    |                                                       |                                      |                    |                |           |                          |  |
|            | ·                  | ┝╺╼╋╴╤┍┝╇┿┊┿╋╶╼╸╺╋╍╶┾╸┢╼┿╷                            |                                      | ··-+··             |                | ┦         | ╴┼╴╸┽┑╎┽                 |  |
| 8          | 0                  |                                                       |                                      |                    |                |           |                          |  |
| 70         | o 🕂 📖 -            |                                                       |                                      |                    |                |           |                          |  |
| 61         |                    | ╡ <del>╴╴┢╶┧╶╧╶┥┊╎</del> ╧╌╌╴┥╌╴┽╶┼╴┝╴<br>╕╴└╴╵╷╵┖┖╹╹ |                                      |                    |                |           |                          |  |
| 80<br>E    |                    |                                                       |                                      |                    |                |           |                          |  |
| passi<br>v | 0 +                |                                                       |                                      | - <b>/</b> -/-/-/- | ╶─╁╴┼┼┼┤       |           |                          |  |
| ~<br>~     |                    | ┶╴╶╁╴╞╌┼┊╀┦╇╋╸╴╴╶┾╴╌╌╴┾╌┧╸                            |                                      |                    | ╶╶┾╌┿┽╄┾┤      |           | ─┤─┤─┤ <del>╵</del> ┤┥┥┥ |  |
|            |                    | ╧──╪─┫┥╎┥┥╽                                           | 111-1                                | ╷┯┽╸╇┥┽╉╃╅╸        |                | ╉┟───┼──┟ |                          |  |
| 30         | 0 <del> </del> · · | ┝═╍╄═┿╾╂┙┦╀╃┝╋╌╴╌╴┝═╼┿═╶╉╴╋╸                          |                                      |                    | ╶╍┼╼╌┼╸┼╶┦╍╎┤┨ |           | ╶╌┟╼┼╌╂┝┤                |  |
| 20         |                    |                                                       |                                      |                    |                | ┼┼──┼──┼  |                          |  |
| 20         |                    |                                                       |                                      |                    |                |           |                          |  |
| 10         | 0                  |                                                       |                                      | ╶╌┼╌┟┼┲┼╁┟╀┼╴┄     |                | <u>  </u> |                          |  |
| ,          |                    |                                                       |                                      |                    |                |           |                          |  |
|            | 0.001              | 0.010                                                 | 0.100                                | 1.000              | 1              | 0.000     | 100,000                  |  |
|            |                    |                                                       | sieve                                | aperture mm        |                |           |                          |  |
|            | Clay               | Silt                                                  | 1                                    | Sand               |                | Gravel    |                          |  |

Sample Description:

SILTY SAND: grey, fine to coarse, some gravel (shells) some clay of low plasticity, (Alluvial)

| Sieve Size (mm) | % Passing  | Sieve Size (mm) | % Passing |
|-----------------|------------|-----------------|-----------|
| 150.0           | 100        | 1.18            | 80        |
| 75.0            | 100        | 0.600           | 68        |
| 63.0            | 100        | 0.425           | 57        |
| 53.0            | 100        | 0.300           | 51        |
| 37.5            | 100        | 0.150           | 31        |
| 26.5            | 100        | 0.075           | 26        |
| 19.0            | 100        | 0.050           | 22        |
| 13.2            | 100        | 0.020           | 17        |
| 9.5             | <b>9</b> 7 | 0.010           | 14        |
| 6.7             | 94         | 0.005           | 12        |
| 4.75            | 91         | 0.002           | 9         |
| 2.36            | 86         |                 |           |

| Hydrometer Type:      | ASTM 152H                |
|-----------------------|--------------------------|
| Dispersant Type:      | Sodium Hexametaphosphate |
| Pretreatment:         | None                     |
| Loss on Pretreatment: | None                     |
| Domostre              |                          |



24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

### **PARTICLE SIZE DISTRIBUTION TEST REPORT**

| Clien                                    | t:                                           | SANTOS Ltd         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |          |
|------------------------------------------|----------------------------------------------|--------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|
| Address: 60 Edward St, Brisbane QLD 4000 |                                              |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |          |
| Proje                                    | roject: GLNG PROJECT: DREDGE FACILITY DESIGN |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |          |
| Fest M                                   | lethod:                                      | AS1289 3.6.1/3     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |          |
| lob Nu                                   | mber:                                        | 119-229            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lab Number:  | 53719    |
| Sample                                   | e Source:                                    | BH08C 4.75 to 5.6m |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date Tested: | 14/08/09 |
| Sample                                   | ed by:                                       | Geo Coastal        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Checked By:  | CWS      |
| 10                                       | ю – —                                        |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |          |
| 9                                        | 0                                            |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |          |
| 8                                        | 0                                            |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |          |
| 70                                       | 0                                            |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |          |
| ទីប<br>ទីប                               | 0                                            |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |          |
| ó passi                                  | 0                                            |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |          |
| <u>م</u>                                 | 0                                            |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |          |
| 3                                        | 0                                            |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |          |
| 2                                        | .0                                           |                    |            | · · _ · ] · ] · ] · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·  · · · · · · ·  · ·  · ·  ·  · |              |          |
| 1                                        | 0                                            |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |          |
|                                          | 0.001                                        | 0.010              | 0.100      | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <br>10.000   | 100.000  |
|                                          |                                              |                    | sieve aper | ture mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |
|                                          | Clav                                         | Silt               | S          | and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Gravel       |          |

Sample Description:

#### SANDY CLAY: grey, medium plasticity, fine to coarse sand, with fine to medium gravel as shells (Alluvial)

| Sieve Size (mm) | % Passing | Sieve Size (mm) | % Passing |
|-----------------|-----------|-----------------|-----------|
| 150.0           | 100       | 1.18            | 77        |
| 75.0            | 100       | 0.600           | 68        |
| 63.0            | 100       | 0.425           | 63        |
| 53.0            | 100       | 0.300           | 61        |
| 37.5            | 100       | 0.150           | 50        |
| 26.5            | 100       | 0.075           | 47        |
| 19.0            | 100       | 0.050           | 44        |
| 13.2            | 100       | 0.020           | 38        |
| 9.5             | 94        | 0.010           | 31        |
| 6.7             | 92        | 0.005           | 28        |
| 4.75            | 88        | 0.002           | 24        |
| 2.36            | 83        |                 |           |

| Hydrometer Type:      | ASTM 152H                |
|-----------------------|--------------------------|
| Dispersant Type:      | Sodium Hexametaphosphate |
| Pretreatment:         | None                     |
| Loss on Pretreatment: | None                     |
| Remarks:              |                          |

File C06 File C:\Excel Reports\C06 Particle Size Distribution +19mm No Riffle Issue 2 June 2008 CL



NATA Accredited Number 1459. This document shall not be reproduced except in full. This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. Signed: ...

Z Title: ..... \*

| Name: <b>C.</b> Lla | rd. |
|---------------------|-----|
| Date: 22/8          | 69  |



...

AUSTRALIAN SOIL TESTING PTY LTD. A.B.N. 79 003 493 623

24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

# **ZONE SETTLEMENT TEST REPORT**

US Army engineers - Guidelines for dredging operating and managing dredged materials

in containment areas.

**Santos Ltd** 60 Edward St, Brisbane Ql

**PROJECT:** 

CLIENT:

60 Edward St, Brisbane Qld 4000 GLNG Project : Dredge facility Design





ويحادثك المحادين والواو وحمط أحرر

AUSTRALIAN SOIL TESTING PTY LTD. A.B.N. 79 003 493 623

24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

# ZONE SETTLEMENT TEST REPORT

US Army engineers - Guidelines for dredging operating and managing dredged materials in containment areas.

|         | in | conta |
|---------|----|-------|
| CLIENT: |    |       |

**Santos Ltd** 60 Edward St, Brisbane Qld

**PROJECT:** 

60 Edward St, Brisbane Qld 4000 GLNG Project : Dredge facility Design





24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

# ZONE SETTLEMENT TEST REPORT

US Army engineers - Guidelines for dredging operating and managing dredged materials in containment areas.

**CLIENT:** Santos Ltd 60 Edward St. Brisbane Qld 4000 **PROJECT: GLNG Project : Dredge facility Design** Job Number: 119-229 Date Tested: 04.08.08 Laboratory Number: 53728 Sampled By: Geo Coastal Sample Source: BH 07A 3.0 to 4.0m Sample Description: GRAVELLY SAND:brown,fine to coarse sand,fine to medium gravel, some silt 1200 1000 800 Volume (cc) 600 400 200 0 0 200 400 600 800 1000 1200 1400 1600 Time (mins) **Initial Dry Concentration** 50 (grams/ litre) Time for Initial Zone 1 (mins) Time for 100% Settlement 15 (mins) °C Water Temperature: 19 Sea Water Water Type: ile C:\Zone Settlement issue 1 March 2008 CL

24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

### **PARTICLE SIZE DISTRIBUTION TEST REPORT**

| Clien                     | it:       | SANTOS Ltd           |                   |          |             |                                        |
|---------------------------|-----------|----------------------|-------------------|----------|-------------|----------------------------------------|
| Addr                      | 'ess:     | 60 Edward St, Brisba | ne QLD 4000       |          |             |                                        |
| Project: GLNG PROJECT: DI |           | REDGE FACILITY       | DESIGN            |          |             |                                        |
| Test M                    | fethod:   | AS1289 3.6.1/3       |                   |          |             |                                        |
| Job Ni                    | umber:    | 119-229              |                   | L        | ab Number:  | 53726                                  |
| Sample                    | e Source: | BH07A 0 to 1.0m      |                   | D        | ate Tested: | 06.08.09                               |
| Sample                    | ed by:    | Geo Coastal          |                   | C        | hecked By:  | CWS                                    |
| 10                        |           |                      |                   |          |             | ─ <del>╸</del> ╷╺╷╷ <sup>╸</sup> ╷╸╷╸╷ |
|                           |           |                      |                   | <u> </u> |             |                                        |
| ç                         | 90        |                      |                   |          |             |                                        |
| 5                         | 80        |                      |                   |          |             |                                        |
|                           |           |                      |                   | TH       |             |                                        |
| 7                         | 70        |                      |                   |          |             |                                        |
|                           |           |                      |                   |          |             |                                        |
| ം<br>ഇ                    | 50        |                      |                   |          | ·····       |                                        |
| ssin                      | 50        |                      |                   |          |             |                                        |
| , pa                      |           |                      |                   |          |             |                                        |
| ð 4                       | 40        |                      |                   | ╺┝┤┦╼─── |             |                                        |
|                           |           |                      |                   |          |             |                                        |
| 3                         | 30        |                      |                   | <u> </u> |             |                                        |
| _                         | •         |                      |                   | +++ ~    |             |                                        |
| 2                         | 20        |                      |                   |          |             |                                        |
| 1                         | 10        |                      |                   |          |             |                                        |
|                           |           |                      |                   |          |             |                                        |
|                           | 0         |                      |                   |          |             |                                        |
|                           | 0.001     | 0.010                | 0.100             | 1.000    | 10.000      | 100.000                                |
|                           |           |                      | sieve aperture mm | <b></b>  |             |                                        |
|                           | Clay      | Silt                 | Sand              |          | Gravel      |                                        |

Sample Description:

#### SANDY CLAY/CLAYEY SAND: grey, fine to coarse sand, low plasticity, some fine gravel, shells present (Alluvium)

| Sieve Size (mm) | % Passing | Sieve Size (mm) | % Passing |
|-----------------|-----------|-----------------|-----------|
| 150.0           | 100       | 1.18            | 82        |
| 75.0            | 100       | 0.600           | 77        |
| 63.0            | 100       | 0.425           | 71        |
| 53.0            | 100       | 0.300           | 68        |
| 37.5            | 100       | 0.150           | 54        |
| 26.5            | 100       | 0.075           | 45        |
| 19.0            | 100       | 0.050           | 38        |
| 13.2            | 100       | 0.020           | 34        |
| 9.5             | 98        | 0.010           | 32        |
| 6.7             | 94        | 0.005           | 31        |
| 4.75            | 92        | 0.002           | 26        |
| 2.36            | 87        |                 |           |

| Hydrometer Type:      | ASTM 152H                |
|-----------------------|--------------------------|
| Dispersant Type:      | Sodium Hexametaphosphate |
| Pretreatment:         | None                     |
| Loss on Pretreatment: | None                     |
| Remarks:              |                          |

File C06 File C:\Excel Reports\C06 Particle Size Distribution +19mm No Riffle Issue 2 June 2008 CL



NATA Accredited Number 1459. This document shall not be reproduced except in full. This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.



24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

### PARTICLE SIZE DISTRIBUTION TEST REPORT

| Clie   | nt:        | SANTOS Ltd                |                    |              |                                  |
|--------|------------|---------------------------|--------------------|--------------|----------------------------------|
| Add    | ress:      | 60 Edward St, Brisban     | e QLD 4000         |              |                                  |
| Proj   | ect:       | <b>GLNG PROJECT: DR</b>   | REDGE FACILITY DES | SIGN         |                                  |
| Test I | Method:    | AS1289 3.6.1/3            |                    |              |                                  |
| Job N  | lumber:    | 119-229                   |                    | Lab Number:  | 53727                            |
| Samp   | le Source: | BH07A 2.0 to 2.8m         |                    | Date Tested: | 06.08.09                         |
| Samp   | led by:    | Geo Coastal               |                    | Checked By:  | CWS                              |
| 1      | .00        |                           |                    |              |                                  |
|        |            |                           |                    |              |                                  |
|        | 90         |                           |                    |              |                                  |
|        | 80         |                           |                    |              |                                  |
|        |            | ┼╴╫┄┼╀╎╫┽╖╴╴╎             |                    |              |                                  |
|        | 70         | ┼╴┠╶┥┥┼┼┼┼╴╴╶┼╴┼╴╄╶┼┥     |                    |              | · · <b>├ - · / /</b>   -   -   - |
|        |            |                           |                    |              |                                  |
| සු     | 60         |                           |                    |              |                                  |
| issi   | 50         |                           | ┼┼┨╴───┥╴┨╴┝╶┝╽╽╽╽ |              |                                  |
| å å    |            | ┼╼╌┼╴╏╏╏╎┊╢┽╴╴╴┊╴╶┤╴┝╌┊┨┥ |                    |              |                                  |
| 0.     | 40         |                           |                    |              |                                  |
|        |            |                           |                    |              |                                  |
|        | 30         |                           |                    |              |                                  |
|        | 20         |                           |                    |              |                                  |
|        |            | ╎╴┥╍╎╿╏┛┛┲╍╍╼╇╍╍┼╾┼╪╇┿╇   |                    |              |                                  |
|        | 10         | ┿╍┿┿┿┼┥╎╎╎╴╴╴┤╴╎╴╎╴╎╴╎    |                    |              |                                  |
|        |            |                           |                    |              |                                  |
|        | 0.001      | 0.010                     | 0.100 1.000        | 0 10.000     | 100.000                          |
|        |            |                           | sieve aperture mm  |              |                                  |
|        | Clay       | Silt                      | Sand               | Gravel       |                                  |

Sample Description:

# SANDY GRAVEL:grey,fine to coarse gravel,fine to coarse sand,some silt and clay of low plasticity. (Alluvial)

| Sieve Size (mm) | % Passing | Sieve Size (mm) | % Passing |
|-----------------|-----------|-----------------|-----------|
| 150.0           | 109       | 1.18            | 39        |
| 75.0            | 100       | 0.600           | 32        |
| 63.0            | 100       | 0.425           | 28        |
| 53.0            | 100       | 0.300           | 24        |
| 37.5            | 72        | 0.150           | 19        |
| 26.5            | 57        | 0.075           | 18        |
| 19.0            | 55        | 0.050           | 17        |
| 13.2            | 54        | 0.020           | 16        |
| 9.5             | 52        | 0.010           | 14        |
| 6.7             | 50        | 0.005           | 12        |
| 4.75            | 48        | 0.002           | 10        |
| 2.36            | 43        |                 |           |

Hydrometer Type:ASTM 152HDispersant Type:Sodium HexametaphosphatePretreatment:NoneLoss on Pretreatment:NoneRemarks:

File C06 File C:\Excel Reports\C06 Particle Size Distribution +19mm No Riffle Issue 2 June 2008 CL



NATA Accredited Number 1459. This document shall not be reproduced except in full. This document is issued in accordance with NATA's accredition requirements. Accredited for compliance with ISO/IEC 17025. Signed: ..... Lon Title: .....

| Name: | C-4 | 10.        | <b>ر</b> |  |
|-------|-----|------------|----------|--|
| Date: | 221 | <u>•</u> 1 | 07       |  |

24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

### PARTICLE SIZE DISTRIBUTION TEST REPORT

| Client  | :        | SANTOS Ltd                                          |                           |                                                         |                                        |
|---------|----------|-----------------------------------------------------|---------------------------|---------------------------------------------------------|----------------------------------------|
| Addre   | ss:      | 60 Edward St, Brisba                                | ne QLD 4000               |                                                         |                                        |
| Projec  | t:       | GLNG PROJECT: DI                                    | REDGE FACILITY D          | ESIGN                                                   |                                        |
| Test Me | thod:    | AS1289 3.6.1/3-                                     |                           |                                                         |                                        |
| Job Nur | nber:    | 119-229                                             |                           | Lab Number:                                             | 53728                                  |
| Sample  | Source:  | BH07A 3.0 to 4.0m                                   |                           | Date Tested:                                            | 06.08.09                               |
| Sampleo | l by:    | Geo Coastal                                         |                           | Checked By:                                             | CWS                                    |
| 100     | ·        |                                                     |                           |                                                         | ······································ |
|         | <b> </b> | ┼╌╌┽╶┩╶╀╅╆┽┥╾╸╴╁╸╌┼╶┌╶┤┦                            | ╧╁┼╴──┥──┟┥╁╽╉            | ┼╴╴┼╶┤╶┤╱╎┼┼┤                                           |                                        |
| 90      | T        | ╪┈╧╧╧╪╪╪┤╴╴╴┼╴┼╶╄╶╆╶┤                               | ╶╁┼╁╴───┼──┦──┦─┤┼┼       | ╎──┼╴┼╶┦┼┼┼┼                                            | ╺────┝──┼─╀┼┽┼┙                        |
| 80      |          |                                                     |                           |                                                         |                                        |
| 00      | L        |                                                     |                           |                                                         |                                        |
| 70      | ·        |                                                     | ┊┟╴╴╶╴╸╴╴┥╶╸┝╺┟╽          |                                                         |                                        |
|         | <br>     | ╇╾╦╤╋┹┿╪╢╧╾╌┚╌╢╌╄╺╄╺╆                               | ┦╂╍╍╌┨╺╌┤╸┤╴┤╴┤           | ╎┤──╱╎──┟╴┤╶╽╶┤╿┤┦                                      |                                        |
| 60      | ·        | ╪╌╌╃╴╁╼┟┾╁╀┝╁╴╌┈╁╾┈┡╌┼╍╃┤                           | ┊┧┊╸╴╴┥╴╴┥╴┥╺┥┾╿          | ┼┧╼╱╼┥═╌┼╶╅┝╃┦╢╢                                        | <u>──</u> <del></del> <u></u>          |
| sing    | ļ        | ┟╾╶┼╴╄╌╉╃╬╬╌╌╸╀┈╌┫╺╃╼╆┥╢                            | ╋╬╌╍╌┼╍╌┼╌┼┼┼┼            | ┼┲╌╌┼╌┟┼┟┼╢╢                                            | ── <u></u>                             |
| Sed 50  |          | <del>╎╴┟┟┦┟╅╪╢</del> ╴ <del>╶╽╸╿╶┢╎╄┦</del>         | ┶┽╀┉───┼╼─┼─┼┲┼╼┼┼┼╊      | ┟╱──┼─┼┼┼┼┼┼                                            | ╶──┼┥┼┼┼                               |
| %       | [        | ╁╴┄┼┄┼╍┼┞╀┊┽┞╺───╀╌─┤╶╄╶╁┊┤                         | ┼ <del>╎╴╶┊╶┞╶┊┥╿</del> ╢ | <del>╏╏╴╴┊╴┊╶╏┊</del> ┦┨╡                               | ╾╾─┾╾╌╀╌┼╶╂╍╂╆╂┼┧                      |
| 40      | 1        | ╄ <del>╴╶┧┉╎╶┨┊┩╎╿</del> ┆╴─╴┼╾╄╾╄╶╄╊┨              |                           |                                                         |                                        |
| 30      |          |                                                     |                           |                                                         |                                        |
| 24      | ļ        | ┞╼┼╍┼┼┼┼┼                                           |                           |                                                         |                                        |
| 20      | <u> </u> | ┼╼╄╾╄╾╄┥╄╎╄╎                                        | ╫╴╴┼╌┟┤┽┼╢                | ┢┨═╌═┼╼┼╼┼┽┼┼╀╆                                         |                                        |
|         | <br>     | ┞╾╶┟╸┟╍╎╎╎╽╎╎╍╴╴┝╸╸╿╴┝╸┦╺┫╶┨                        | ┼╢╼╌┲┹╾╎╾╽┥┝╢╽            | <mark>┟<mark>┊╶╸╼┊╺╶┦╶┊┥</mark>┊╿┊<mark>┊</mark></mark> | ───┥─┤┥┤┤┧╽                            |
| 10      |          | ┾ <del>╴╞╺┟╍╏╿╿╿</del> ╸╸┝╸┽╶┠╶┽┦                   | ╺╁╪┼╍╍╍╸┥╶╴┟╸╿╼┦┟┦┦       | ┼ <del>┥╴┈╎╺╎╺╎┥╎╎╎</del>                               | ─╍──╀──╀╼┼┪╁╅╂╄╣                       |
|         | <u> </u> | ╊──╁─╆╁┼┼╁╁╸──╁╶┼╶╁╶╫╴                              | ╶╊┽╂╼──╼╌╁╍╌╁╍╎┼          | ┢┧╴╺┽╺╸╁╶┥┧╍╢╄┩╢                                        | ╾╾╆╼┼╺┽╶┽┦╇┦╢                          |
| 0<br>0  | +        | <u>اللہ ایک ایک ایک ایک ایک ایک ایک ایک ایک ایک</u> | 0.100 I                   | <u></u>                                                 | ———                                    |
|         |          |                                                     | sieve aperture mm         |                                                         |                                        |
| 1       | Clay     | Silt                                                | Sand                      | Gra                                                     | vel                                    |

Sample Description:

بالمتحاد بالمراجع

# GRAVELLY SAND:brown,fine to medium gravel, fine to coarse sand some silt. (Alluvial )

| Sieve Size (mm) | % Passing | Sieve Size (mm) | % Passing |
|-----------------|-----------|-----------------|-----------|
| 150.0           | 100       | 1.18            | 55        |
| 75.0            | 100       | 0.600           | 34        |
| 63.0            | 100       | 0.425           | 26        |
| 53.0            | 100       | 0.300           | 19        |
| 37.5            | 100       | 0.150           | 12        |
| 26.5            | 100       | 0.075           | 11        |
| 19.0            | 100       | 0.050           |           |
| 13.2            | 100       | 0.020           |           |
| 9.5             | 100       | 0.010           |           |
| 6.7             | 98        | 0.005           |           |
| 4.75            | . 94      | 0.002           |           |
| 2.36            | 76        |                 |           |

Hydrometer Type:ASTM 152HDispersant Type:Sodium HexametaphosphatePretreatment:NoneLoss on Pretreatment:NoneRemarks:Kenarks

File C06 File C:\Excel Reports\C06 Particle Size Distribution +19nun No Riffle Issue 2 June 2008 CL

NATA Accredited Number 1459. This document shall not be reproduced except in full. This document is issued in accordance with NATA's accredition requirements. Accredited for compliance with ISO/IEC 17025. Signed:

Name: C. Lloy L Date: 22/ 1/01



1

AUSTRALIAN SOIL TESTING PTY LTD. A.B.N. 79 003 493 623

24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

# **ZONE SETTLEMENT TEST REPORT**

US Army engineers - Guidelines for dredging operating and managing dredged materials in containment areas.

### CLIENT:

**PROJECT:** 

Santos Ltd 60 Edward St, Brisbane Qld 4000 GLNG Project : Dredge facility Design



Offices: NSW, QLD, TAS, INDONESIA.

Laboratory and Field Testing Services for Soil, Rock, Aggregate and Concrete; Instrumentation for Civil Engineering Projects





24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

# **ZONE SETTLEMENT TEST REPORT**

US Army engineers - Guidelines for dredging operating and managing dredged materials in containment areas.

| Santos Ltd                            |
|---------------------------------------|
| 60 Edward St, Brisbane Qld 4000       |
| GLNG Project : Dredge facility Design |
|                                       |



File C:\Zone Settlement issue 1 March 2008 CL



24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

# **ZONE SETTLEMENT TEST REPORT**

US Army engineers - Guidelines for dredging operating and managing dredged materials In containment areas.

### CLIENT: Santos Ltd 60 Edward St, Brisbane Qld 4000 PROJECT: GLNG Project : Dredge facility Design



Offices: NSW, QLD, TAS, INDONESIA,

Laboratory and Field Testing Services for Soil, Rock, Aggregate and Concrete; Instrumentation for Civil Engineering Projects
24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

# **PARTICLE SIZE DISTRIBUTION TEST REPORT**



GRAVELLY (Shells) SAND: grey, fine to coarse sand, some clay of low plasticity (Alluvial soil)

| Sieve Size (mm) | % Passing | Sieve Size (mm) | % Passing |
|-----------------|-----------|-----------------|-----------|
| 150.0           | 100       | 1.18            | 63        |
| 75.0            | 100       | 0.600           | 49        |
| 63.0            | 100       | 0.425           | 35        |
| 53.0            | 100       | 0.300           | 24        |
| 37.5            | 100       | 0.150           | 19        |
| 26.5            | 100       | 0.075           | 18        |
| 19.0            | 91        | 0.050           | 17        |
| 13.2            | 83 '      | 0.020           | 16        |
| 9.5             | 78        | 0.010           | 16        |
| 6.7             | 74        | 0.005           | 15        |
| 4.75            | 71        | 0.002           | 14        |
| 2.36            | 67        |                 |           |

Hydrometer Type:ASTM 152HDispersant Type:Sodium Hexametaphosphate /Pretreatment:NoneLoss on Pretreatment:None

Remarks:

Sample Description:

in the second second

File C06 File C:\Excel Reports\C06 Particle Size Distribution +19mm No Riffle Issue 2 June 2008 CL



NATA Accredited Number 1459. This document shall not be reproduced except in full. This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

> Signed: .... 1 Titie: LA

Name: C.Lieyd Date: 22/ 0/01



24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

# **PARTICLE SIZE DISTRIBUTION TEST REPORT**

| Client                                   | :              | SANTOS Ltd             | SANTOS Ltd |                                         |              |                       |  |
|------------------------------------------|----------------|------------------------|------------|-----------------------------------------|--------------|-----------------------|--|
| Address: 60 Edward St, Brisbane QLD 4000 |                |                        |            |                                         |              |                       |  |
| Proje                                    | et:            | <b>GLNG PROJECT:</b> ] | DREDGE FA  | ACILITY DESI                            | GN           |                       |  |
| Fest M                                   | ethod:         | AS1289 3.6.1/3         |            |                                         |              |                       |  |
| lob Nu                                   | mber:          | 119-229                |            |                                         | Lab Number:  | 53721                 |  |
| Sample                                   | Source:        | BH04A 0.2 to 0.5m      |            |                                         | Date Tested: | 07.08.09              |  |
| Sample                                   | d by:          | Geo Coastal            |            |                                         | Checked By:  | CWS                   |  |
| 100                                      | <b>)</b>       |                        |            | · - [·································· |              | • • • • • • • • • • • |  |
| 9(                                       | ,              |                        |            |                                         |              |                       |  |
| 01                                       | ,              |                        |            |                                         |              |                       |  |
| 61                                       | , [            |                        |            |                                         |              |                       |  |
| 70                                       | ) <u> </u>     |                        |            |                                         |              |                       |  |
| 66<br>50                                 | » <del> </del> |                        |            |                                         |              |                       |  |
| assin 20                                 | <b>,</b>       |                        |            |                                         |              |                       |  |
| 1 %<br>%                                 | ,              |                        |            |                                         |              |                       |  |
|                                          |                |                        |            |                                         |              |                       |  |
| 30                                       | , <u> </u>     |                        |            |                                         |              |                       |  |
| 20                                       | » <u></u>      |                        |            |                                         |              |                       |  |
| 10                                       | • <del> </del> |                        |            |                                         | ··           |                       |  |
| C                                        | ,              |                        |            |                                         |              |                       |  |
| (                                        | 0.001          | 0.010                  | 0.100      | 1.000                                   | 10.000       | 100.000               |  |
|                                          |                |                        | sieve      | aperture mm                             |              |                       |  |
|                                          | Clay           | Silt                   |            | Sand                                    | Grave        | :l                    |  |

Sample Description:

SANDY CLAY: grey, mottled yellow-brown & grey, medium plasticity, fine to coarse sand, some fine to medium gravel. (Residual soil)

| Sieve Size (mm) | % Passing | Sieve Size (mm) | % Passing |
|-----------------|-----------|-----------------|-----------|
| 150.0           | 100       | 1.18            | 82        |
| 75.0            | 100       | 0.600           | 76        |
| 63.0            | 100       | 0.425           | 72        |
| 53.0            | 100       | 0.300           | 68        |
| 37.5            | 100       | 0.150           | 61        |
| 26.5            | 100       | 0.075           | 56        |
| 19.0            | 100       | 0.050           | 49        |
| 13.2            | 100       | 0.020           | 41        |
| 9.5             | 100       | 0.010           | 37        |
| 6.7             | 96        | 0.005           | 33        |
| 4.75            | 91        | 0.002           | 25        |
| 2.36            | 86        |                 |           |

Hydrometer Type:ASTM 152HDispersant Type:Sodium Hexametaphosphate /Pretreatment:NoneLoss on Pretreatment:NoneRemarks:Kone

File C06 File C:\Excel Reports\C06 Particle Size Distribution +19mm No Riffle Issue 2 June 2008 CL



NATA Accredited Number 1459. This document shall not be reproduced except in full. This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.





24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

# PARTICLE SIZE DISTRIBUTION TEST REPORT



SILTY CLAY:mottled yellow-brown & grey, high plasticity,some fine to coarse sand (Residual soil)

| Sieve Size (mm) | % Passing | Sieve Size (mm) | % Passing |
|-----------------|-----------|-----------------|-----------|
| 150.0           | 100       | 1.18            | 98        |
| 75.0            | 100       | 0.600           | 97        |
| 63.0            | 100       | 0.425           | 96        |
| 53.0            | 100       | 0.300           | 95        |
| 37.5            | 100       | 0.150           | 94        |
| 26.5            | 100       | 0.075           | 93        |
| 19.0            | 100       | 0.050           | 91        |
| 13.2            | 100       | 0.020           | 90        |
| 9.5             | 100       | 0.010           | 87        |
| 6.7             | 100       | 0.005           | · 77      |
| 4,75            | 99        | 0.002           | 60        |
| 2.36            | 99        |                 |           |

| Hydrometer Type:      | ASTM   | 152H                  |
|-----------------------|--------|-----------------------|
| Dispersant Type:      | Sodiun | n Hexametaphosphate / |
| Pretreatment:         | None   |                       |
| Loss on Pretreatment: | None   | ŧ                     |
| Remarks:              |        |                       |

File C06 File C:\Excel Reports\C06 Particle Size Distribution +19mm No Riffle Issue 2 June 2008 CL



Sample Description:

NATA Accredited Number 1459, This document shall not be reproduced except in full. This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.







24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

# **ZONE SETTLEMENT TEST REPORT**

US Army engineers - Guidelines for dredging operating and managing dredged materials in containment areas.

| CLIENT:  | Santos Ltd                            |
|----------|---------------------------------------|
|          | 60 Edward St, Brisbane Old 4000       |
| PROJECT: | GLNG Project : Dredge facility Design |



Offices: NSW, QLD, TAS, INDONESIA.

Laboratory and Field Testing Services for Soil, Rock, Aggregate and Concrete; Instrumentation for Civil Engineering Projects



24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bjgpond.com

# **ZONE SETTLEMENT TEST REPORT**

US Army engineers - Guidelines for dredging operating and managing dredged materials in containment areas.

| CLIENT:  | Santos Ltd                            |  |  |  |
|----------|---------------------------------------|--|--|--|
|          | 60 Edward St, Brisbane Qld 4000       |  |  |  |
| PROJECT: | GLNG Project : Dredge facility Design |  |  |  |
|          |                                       |  |  |  |



Sea Water

600

19

Time for 100% Settlement

Water Temperature:

Water Type:

e C:\Zone Settlement issue 1 March 2008 CL

(mins)

°C



24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

# **ZONE SETTLEMENT TEST REPORT**

US Army engineers - Guidelines for dredging operating and managing dredged materials

in containment areas.

CLIENT:

Santos Ltd

**PROJECT:** 

60 Edward St, Brisbane Qld 4000 GLNG Project : Dredge facility Design



# 

AUSTRALIAN SOIL TESTING PTY LTD. A.B.N. 79 003 493 623

. . . . . .

24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

# PARTICLE SIZE DISTRIBUTION TEST REPORT

| Clie   | nt:         | SANTOS Ltd                      |               |                |              |          |  |
|--------|-------------|---------------------------------|---------------|----------------|--------------|----------|--|
| Add    | ress:       | 60 Edward St, Brisbane QLD 4000 |               |                |              |          |  |
| Proj   | ject:       | GLNG PROJE                      | CT: DREDGE FA | CILITY DESI    | GN           |          |  |
| Test   | Method:     | AS1289 3.6.1/ <del>5</del>      |               |                |              |          |  |
| Job N  | lumber:     | 119-229                         |               |                | Lab Number:  | 53735    |  |
| Samj   | ole Source: | BH 02A 0 to 1.0m                |               |                | Date Tested: | 14.08.09 |  |
| Samj   | oled by:    | Geo Coastal                     |               |                | Checked By:  | CWS      |  |
|        | 100         |                                 |               | Ţ, <u>"[]]</u> |              | •••      |  |
|        | 90          |                                 |               |                |              |          |  |
|        | 80          |                                 |               |                |              |          |  |
|        | 70          |                                 |               |                |              |          |  |
| 50     | 60          |                                 |               | ┼┼┼┦╎┼┼╴       |              |          |  |
| assing | 50          |                                 |               |                |              |          |  |
| %      | 40          |                                 |               |                |              |          |  |
|        | 30          |                                 |               |                |              |          |  |
|        | 20          |                                 |               | ¥              |              |          |  |
|        | 10          |                                 |               |                |              |          |  |
|        | 0           |                                 |               |                |              |          |  |
|        | 0.001       | 0.010                           | 0.100         | 1.000          | 10.000       | 100.000  |  |
|        |             |                                 | sieve ap      | erture mm      |              |          |  |
|        | Clay        | Silt                            |               | Sand           | Grave        | el       |  |

Sample Description:

SAND:brown, fine to coarse,trace of silt and trace of gravel (shells)

| Sieve Size (mm) | % Passing | Sieve Size (mm) | % Passing |
|-----------------|-----------|-----------------|-----------|
| 150.0           | 100       | 1.18            | 93        |
| 75.0            | 100       | 0.600           | 64        |
| 63.0            | 100       | 0.425           | 40        |
| 53.0            | 100       | 0.300           | 21        |
| 37.5            | 100       | 0.150           | 6         |
| 26.5            | 100       | 0.075           | 5         |
| 19.0            | 100       | 0.050           |           |
| 13.2            | 100       | 0.020           |           |
| 9.5             | 100       | 0.010           |           |
| 6.7             | 100       | 0.005           |           |
| 4.75            | 100       | 0.002           |           |
| 2.36            | 99        |                 |           |

Hydrometer Type:ASTM 152HDispersant Type:Sodium HexametaphosphatePretreatment:NoneLoss on Pretreatment:NoneRemarks:Kenter State

File C06 File C:\Excel Reports\C06 Particle Size Distribution +19mm No Riffle Issue 2 June 2008 CL



NATA Accredited Number 1459. This document shall not be reproduced except in full. This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. Signed:

Name: ..... **с. .** Date: 22/ 1

# AUSTRALIAN SOIL TESTING PTY LTD. A.B.N. 79 003 493 623, 24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

and the second second

# **PARTICLE SIZE DISTRIBUTION TEST REPORT**

| Client:                                  | SANTOS Ltd          |                 |          |                                    |          |  |
|------------------------------------------|---------------------|-----------------|----------|------------------------------------|----------|--|
| Address: 60 Edward St, Brisbane QLD 4000 |                     |                 |          |                                    |          |  |
| Project:                                 | GLNG PROJECT: D     | REDGE FACILI    | TY DESIG | 'Y DESIGN                          |          |  |
| Test Method:                             | AS1289 3.6.1/3      |                 |          |                                    |          |  |
| Job Number:                              | 119-229             |                 |          | Lab Number:                        | 53736    |  |
| Sample Source:                           | BH 02A 2.0 to 2.75m |                 |          | Date Tested:                       | 14.08.09 |  |
| Sampled by:                              | Geo Coastal         |                 |          | Checked By:                        | CWS      |  |
| 100                                      |                     |                 |          |                                    |          |  |
| 90                                       |                     |                 |          |                                    |          |  |
| 80                                       |                     |                 |          |                                    |          |  |
| 70                                       |                     |                 |          |                                    |          |  |
| 60                                       |                     |                 |          |                                    |          |  |
| ussed 50                                 |                     |                 |          | ╴┼──┼╌┼╎╄┼┼┼┨║──<br>╴╶──┼╶┼╵┼┟┨┟╽╿ |          |  |
| × 40                                     |                     | ╊╪╪╪╼╌╌┝╼╌╪╼╞╍╴ |          |                                    |          |  |
| 30                                       |                     |                 |          |                                    |          |  |
| 20                                       |                     |                 |          |                                    |          |  |
| 10                                       |                     |                 |          |                                    |          |  |
| 0                                        | 0.010               | 0 100           | 1.000    |                                    |          |  |
| 0.001                                    | 0.010               | sieve aperture  | mm       | 10,000                             | 100.000  |  |
| Clay                                     | Silt                | - Sand          |          | Gravel                             |          |  |

Sample Description:

SANDY CLAY/CLAYEY SAND: dark grey, medium plasticity, fine to coarse sand, some fine to medium gravel (shells)(Alluvial)

| Sieve Size (mm) | % Passing | Sieve Size (mm) | % Passing |
|-----------------|-----------|-----------------|-----------|
| 150.0           | 100       | 1.18            | 87        |
| 75.0            | 100       | 0.600           | 76        |
| 63.0            | 100       | 0.425           | 64        |
| 53.0            | 100       | 0.300           | 54        |
| 37.5            | 100       | 0.150           | 49        |
| 26.5            | 97        | 0.075           | 46        |
| 19.0            | 97        | 0.050           | 43        |
| 13.2            | 97        | 0.020           | 38        |
| 9.5             | 97        | 0.010           | 34        |
| 6.7             | 95        | 0.005           | 30        |
| 4.75            | 93        | 0.002           | 25        |
| 2.36            | 91        |                 |           |

| Hydrometer Type:      | АSTM 152Н                |
|-----------------------|--------------------------|
| Dispersant Type:      | Sodium Hexametaphosphate |
| Pretreatment:         | None                     |
| Loss on Pretreatment: | None                     |
| Remarks:              |                          |

File C06 File C:\Excel Reports\C06 Particle Size Distribution +19mm No Riffle Issue 2 June 2008 CL



NATA Accredited Number 1459. This document shall not be reproduced except in full. This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

Signed: ..... Signed: ..... Title:





24 Bermill Street, Rockdale, NSW, 2216 P.O. Box 2014, Rockdale D.C. NSW 2216 Tel: 9597 5599, 9597 3286 Fax: 9597 3442 Email: austst@bigpond.com

# PARTICLE SIZE DISTRIBUTION TEST REPORT

| Clie                                     | nt:        | SANTOS Ltd        |                                     |           |             |          |  |  |  |  |
|------------------------------------------|------------|-------------------|-------------------------------------|-----------|-------------|----------|--|--|--|--|
| Address: 60 Edward St, Brisbane QLD 4000 |            |                   |                                     |           |             |          |  |  |  |  |
| Proj                                     | ect:       | GLNG PROJEC       | LNG PROJECT: DREDGE FACILITY DESIGN |           |             |          |  |  |  |  |
| Test                                     | Method:    | AS1289 3.6.1/3    |                                     |           |             |          |  |  |  |  |
| Job Number: 119-229                      |            |                   |                                     |           | ib Number:  | 53737    |  |  |  |  |
| Samp                                     | le Source: | BH 02A 2.75 to 3. | lm                                  | Da        | ate Tested: | 14.08.09 |  |  |  |  |
| Samp                                     | oled by:   | Geo Coastal       |                                     | Cl        | necked By:  | CWS      |  |  |  |  |
|                                          | 100        |                   |                                     |           |             |          |  |  |  |  |
|                                          | 90         |                   |                                     |           |             |          |  |  |  |  |
|                                          |            |                   |                                     |           |             |          |  |  |  |  |
|                                          | 80         |                   |                                     |           |             |          |  |  |  |  |
|                                          | 70         |                   |                                     |           |             |          |  |  |  |  |
|                                          | 60         |                   |                                     |           |             |          |  |  |  |  |
| ing                                      |            |                   | ╶┼╶┥┥┿┽╄┥╶╌╴╶┥╌╶╸                   |           |             |          |  |  |  |  |
| pass                                     | 50         |                   |                                     |           |             |          |  |  |  |  |
| %                                        | 40         |                   |                                     |           |             |          |  |  |  |  |
|                                          | 30         |                   |                                     |           |             |          |  |  |  |  |
|                                          |            |                   |                                     |           |             |          |  |  |  |  |
|                                          | 20         |                   |                                     |           |             |          |  |  |  |  |
|                                          | 10         |                   |                                     |           |             |          |  |  |  |  |
|                                          |            |                   |                                     |           |             |          |  |  |  |  |
|                                          | 0          |                   | 0.100                               |           |             |          |  |  |  |  |
|                                          | 0.001      | 0.010             | sieve and                           | erture mm | 10.000      | 100.000  |  |  |  |  |
|                                          | Clay       | \$;]+             |                                     | Sand      | General     |          |  |  |  |  |

Sample Description:

SANDY CLAY:brown & grey, medium plasticity,fine to medium sand. (Residual)

| Sieve Size (mm) | % Passing | Sieve Size (mm) | % Passing       |
|-----------------|-----------|-----------------|-----------------|
| 150.0           | 100       | 1.18            | 99 <sup>°</sup> |
| 75.0            | 100       | 0.600           | 98              |
| 63.0            | 100       | 0.425           | 98              |
| 53.0            | 100       | 0.300           | 97              |
| 37.5            | 100       | 0.150           | . 90            |
| 26.5            | 100       | 0.075           | 77              |
| 19.0            | 100       | 0.050           | 73              |
| 13.2            | 100       | 0.020           | 61              |
| 9.5             | 100       | 0.010           | 49              |
| 6.7             | 100       | 0.005           | 39              |
| 4.75            | 100       | 0.002           | 29              |
| 2.36            | 100       |                 |                 |

Hydrometer Type:ASTM 152HDispersant Type:Sodium HexametaphosphatePretreatment:NoneLoss on Pretreatment:NoneRemarks:Kenarks

File C06 File C:\Excel Reports\C06 Particle Size Distribution +19mm No Riffle Issue 2 June 2008 CL



NATA Accredited Number 1459. This document shall not be reproduced except in full. This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

Signed: Title:



B

Appendix B Quality Control



#### Site Replicates- Relative Percent Difference

Site replicates were collected for two sampling locations, MW3 and MW9, for both high and low water surveys. Replicate samples are environmental samples collected twice in rapid succession from the same location and analyzed to determine the variability of the system, the sampling method, and the analytical methods. This comprised about 20% of the samples collected. The samples were analysed for the entire parameter suite which included turbidity, suspended solids, nutrients, total and dissolve metals.



| Total Metals        | MM   | /3-L | RPD  | MW   | /3-H | RPD  | мм   | V9-L | RPD  | MW   | /9-H | RPD  | Median |
|---------------------|------|------|------|------|------|------|------|------|------|------|------|------|--------|
|                     | 1    | 2    |      | 1    | 2    |      | 1    | 2    |      | 1    | 2    |      | RPD    |
| Aluminium (μg/L)    | 550  | 560  | 1.8  | 1210 | 1020 | 17.0 | 990  | 1060 | 6.8  | 700  | 900  | 25.0 | 11.9   |
| Arsenic (µg/L)      | 5    | 7    | 33.3 | 10   | 9    | 10.5 | 15   | 18   | 18.2 | 17   | 14   | 19.4 | 18.8   |
| Cadmium (µg/L)      | 0.5  | 0.5  | 0.0  | 0.5  | 0.5  | 0.0  | 0.5  | 0.5  | 0.0  | 0.5  | 0.5  | 0.0  | 0.0    |
| Chromium (µg/L)     | 5    | 9    | 57.1 | 5    | 5    | 0.0  | 5    | 5    | 0.0  | 5    | 5    | 0.0  | 0.0    |
| Copper (µg/L)       | 20   | 21   | 4.9  | 8    | 8    | 0.0  | 9    | 9    | 0.0  | 9    | 19   | 71.4 | 2.4    |
| Lead (µg/L)         | 5    | 5    | 0.0  | 5    | 5    | 0.0  | 5    | 5    | 0.0  | 8    | 5    | 46.2 | 0.0    |
| Manganese<br>(µg/L) | 18   | 18   | 0.0  | 24   | 23   | 4.3  | 26   | 26   | 0.0  | 17   | 22   | 25.6 | 2.1    |
| Mercury (µg/L)      | 0.1  | 0.1  | 0.0  | 0.1  | 0.1  | 0.0  | 0.1  | 0.1  | 0.0  | 0.1  | 0.1  | 0.0  | 0.0    |
| Nickel (µg/L)       | 5    | 5    | 0.0  | 5    | 5    | 0.0  | 5    | 5    | 0.0  | 5    | 5    | 0.0  | 0.0    |
| Zinc (μg/L)         | 23   | 25   | 8.3  | 13   | 5    | 88.9 | 15   | 24   | 46.2 | 6    | 14   | 80.0 | 63.1   |
| Iron (μg/L)         | 1400 | 1480 | 5.6  | 1860 | 1640 | 12.6 | 1590 | 1670 | 4.9  | 1360 | 1510 | 10.5 | 8.0    |

#### **Relative Percent Difference- Total Metals**



| Dissolved           | MM  | /3-L | RPD  | MW  | /3-H | RPD  | MM  | V9-L | RPD  | MW  | /9-H | RPD   | Median |
|---------------------|-----|------|------|-----|------|------|-----|------|------|-----|------|-------|--------|
| Metals              | 1   | 2    |      | 1   | 2    |      | 1   | 2    |      | 1   | 2    |       | RPD    |
| Aluminium (μg/L)    | 160 | 160  | 0.0  | 250 | 200  | 22.2 | 200 | 170  | 16.2 | 180 | 180  | 0.0   | 8.1    |
| Arsenic (µg/L)      | 5   | 5    | 0.0  | 5   | 5    | 0.0  | 5   | 5    | 0.0  | 5   | 5    | 0.0   | 0.0    |
| Cadmium (µg/L)      | 0.6 | 0.5  | 18.2 | 0.5 | 0.5  | 0.0  | 0.5 | 0.5  | 0.0  | 0.5 | 0.5  | 0.0   | 0.0    |
| Chromium (µg/L)     | 5   | 13   | 88.9 | 5   | 5    | 0.0  | 5   | 5    | 0.0  | 5   | 5    | 0.0   | 0.0    |
| Copper (µg/L)       | 11  | 10   | 9.5  | 10  | 5    | 66.7 | 12  | 11   | 8.7  | 11  | 12   | 8.7   | 9.1    |
| Lead (µg/L)         | 5   | 5    | 0.0  | 5   | 5    | 0.0  | 5   | 5    | 0.0  | 5   | 5    | 0.0   | 0.0    |
| Manganese<br>(µg/L) | 6   | 6    | 0.0  | 5   | 5    | 0.0  | 9   | 7    | 25.0 | 5   | 5    | 0.0   | 0.0    |
| Mercury (µg/L)      | 0.1 | 0.1  | 0.0  | 0.1 | 0.1  | 0.0  | 0.1 | 0.1  | 0.0  | 0.1 | 0.1  | 0.0   | 0.0    |
| Nickel (µg/L)       | 5   | 5    | 0.0  | 5   | 5    | 0.0  | 5   | 5    | 0.0  | 5   | 5    | 0.0   | 0.0    |
| Zinc (μg/L)         | 14  | 12   | 15.4 | 14  | 5    | 94.7 | 17  | 15   | 12.5 | 5   | 15   | 100.0 | 55.1   |
| Iron (μg/L)         | 330 | 410  | 21.6 | 760 | 810  | 6.4  | 690 | 730  | 5.6  | 380 | 420  | 10.0  | 8.2    |

#### **Relative Percent Difference- Dissolved Metals**



| Nutrients and                                                             | MW3-L |     | MW3-H |     | MW9-L |       | MW9-H |     | RPD   | Median<br>RPD |     |       |      |
|---------------------------------------------------------------------------|-------|-----|-------|-----|-------|-------|-------|-----|-------|---------------|-----|-------|------|
| Others                                                                    | 1     | 2   | KFU   | 1   | 2     |       | 1     | 2   | RFD   | 1             | 2   | ארט   |      |
| Suspended Solids<br>(mg/L)                                                | 63    | 69  | 9.1   | 27  | 79    | 98.1  | 69    | 88  | 24.2  | 88            | 63  | 33.1  | 28.7 |
| Turbidity (NTU)                                                           | 7     | 5   | 33.3  | 11  | 3.1   | 112.1 | 12    | 13  | 8.0   | 8             | 9   | 11.8  | 22.5 |
| Chlorophyll a (µg/L)                                                      | 8     | 1   | 155.6 | 4   | 5     | 22.2  | 8     | 10  | 22.2  | 1             | 5   | 133.3 | 77.8 |
| Total Nitrogen (µg/L)                                                     | 300   | 200 | 40.0  | 200 | 300   | 40.0  | 300   | 200 | 40.0  | 200           | 200 | 0.0   | 40.0 |
| Ammonia as N (µg/L)                                                       | 20    | 120 | 142.9 | 10  | 10    | 0.0   | 140   | 20  | 150.0 | 10            | 10  | 0.0   | 71.4 |
| Nitrite + Nitrate as N<br>(μg/L)                                          | 10    | 10  | 0.0   | 10  | 10    | 0.0   | 10    | 20  | 66.7  | 20            | 10  | 66.7  | 33.3 |
| Total Kjeldahl<br>Nitrogen (µg/L)                                         | 300   | 200 | 40.0  | 200 | 300   | 40.0  | 300   | 200 | 40.0  | 200           | 200 | 0.0   | 40.0 |
| Organic Nitrogen<br>(Total Kjeldahl<br>Nitrogen – Ammonia<br>as N) (μg/L) | 280   | 80  | 111.1 | 190 | 290   | 41.7  | 160   | 180 | 11.8  | 190           | 190 | 0.0   | 26.7 |
| Total Phosphorus as P (µg/L)                                              | 330   | 170 | 64.0  | 90  | 90    | 0.0   | 110   | 120 | 8.7   | 130           | 200 | 42.4  | 25.6 |
| Reactive<br>Phosphorus as P<br>(µg/L)                                     | 10    | 10  | 0.0   | 10  | 10    | 0.0   | 10    | 10  | 0.0   | 10            | 10  | 0.0   | 0.0  |

#### **Relative Percent Difference- Nutrients and Other Parameters**







URS Australia Pty Ltd Level 16, 240 Queen Street Brisbane, QLD 4000 GPO Box 302, QLD 4001 Australia T: 61 7 3243 2111 F: 61 7 3243 2199

www.ap.urscorp.com

# Appendix F Site Assessment Notes

#### **Catchment 1**

| Catchment Size:          | 0.137                                                          | km <sup>2</sup> |       |  |  |  |
|--------------------------|----------------------------------------------------------------|-----------------|-------|--|--|--|
| Average Channel Slope:   | 37 m/km                                                        |                 |       |  |  |  |
| Catchment Storage:       | Considerable Surface Depressions, Overland Flow is significant |                 |       |  |  |  |
| Catchment relief:        | Rolling With Slopes 1-4%                                       |                 |       |  |  |  |
|                          | Q2                                                             | Q20             | Q100  |  |  |  |
| Duration (mins)          |                                                                | 16.1            |       |  |  |  |
| Intensity (mm)           | 91.0                                                           | 154.0           | 206.0 |  |  |  |
| Flow (m <sup>3</sup> /s) | 1.3                                                            | 4.0             | 7.0   |  |  |  |

#### Table F-13 Catchment 1 Site Assessment

No site Assessment was undertaken in Catchment 1 as it is out with the facility footprint.



#### **Catchment 2**

| Catchment Size:          | 0.327                                                          | km <sup>2</sup> |       |       |  |  |
|--------------------------|----------------------------------------------------------------|-----------------|-------|-------|--|--|
| Average Channel Slope:   | 44                                                             | m/km            |       |       |  |  |
| Catchment Storage:       | Considerable Surface Depressions, Overland Flow is significant |                 |       |       |  |  |
| Catchment relief:        | Hilly with average slopes 4-8%                                 |                 |       |       |  |  |
|                          | Q2                                                             |                 | Q20   | Q100  |  |  |
| Duration (mins)          |                                                                |                 | 21.9  |       |  |  |
| Intensity (mm)           |                                                                | 80.0            | 135.0 | 181.0 |  |  |
| Flow (m <sup>3</sup> /s) |                                                                | 2.8             | 8.8   | 15.6  |  |  |
| Depth (m)                |                                                                | 0.24            | 0.41  | 0.55  |  |  |

#### Table F-14 Catchment 2 Site Assessment



|                                 | GLNG - DMPF – Surface Water Assessment -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                               |  |  |  |  |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| A STATE AND A STATE AND A STATE | Location A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                               |  |  |  |  |
| - Alexandre                     | Location Unnamed Drain 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nage Feature Catchment                                                                                                                                                                        |  |  |  |  |
|                                 | Northing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7371475                                                                                                                                                                                       |  |  |  |  |
|                                 | <u>Easting:</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 315412                                                                                                                                                                                        |  |  |  |  |
|                                 | Site Description: Located<br>proposed DMPF, Unname<br>01 is a seasonal swampy<br>nature. Numerous small c<br>the swamp, however these<br>and only flow when the sw<br>contains stagnant water a<br>established eucalypts.                                                                                                                                                                                                                                                                                                                                          | on the southern side of the<br>ed Drainage Feature No.<br>area and is unmodified in<br>hannels flow in and out of<br>e are ephemeral in nature<br>/amp fills. The swamp<br>nd large stands of |  |  |  |  |
|                                 | Channel Depth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Up to 1.5m                                                                                                                                                                                    |  |  |  |  |
|                                 | Channel Width:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Up to 80m                                                                                                                                                                                     |  |  |  |  |
|                                 | Floodplain Slope:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L 1:50, R 1:50                                                                                                                                                                                |  |  |  |  |
|                                 | Bank Slope:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LB 1:50, RB 1:50                                                                                                                                                                              |  |  |  |  |
|                                 | Channel Banks: Swamp area is very stable with only<br>small channels flowing in and out of swamp showing<br>minor signs of erosion The swamp profile is<br>approximately convex section, with very mild slopes<br>without undergrowth.<br><u>Substrate Type</u> : The bed substrate is of low<br>compaction with >60% clays and silts present in the<br>swamp. The inflow and outflow channels contain<br>alluvial material with sands and gravels.<br><u>Channel Bed</u> : The channel bed is additionally<br>covered in silt, stagnant water and small and large |                                                                                                                                                                                               |  |  |  |  |
|                                 | <u>Water Quality</u> : Ponded water has a high turbidity<br>and is milky in colour. The site assessment detected<br>neither oils nor odours from the water or associated<br>sediment.                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                               |  |  |  |  |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                               |  |  |  |  |
|                                 | Floodplain: Woodland cur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rently grazed by cattle.                                                                                                                                                                      |  |  |  |  |





#### **Catchment 3**

#### Table F-16 Catchment 3 Site Assessment

| Catchment Size:          | 0.871                                     | km <sup>2</sup> |       |  |  |  |
|--------------------------|-------------------------------------------|-----------------|-------|--|--|--|
| Average Channel Slope:   | 25 m/km                                   |                 |       |  |  |  |
| Catchment Storage:       | Well defined System of small watercourses |                 |       |  |  |  |
| Catchment relief:        | Rolling With Slopes 1-4%                  |                 |       |  |  |  |
|                          | Q2                                        | Q20             | Q100  |  |  |  |
| Duration (mins)          |                                           | 52.9            |       |  |  |  |
| Intensity (mm)           | 51.0                                      | 86.0            | 114.0 |  |  |  |
| Flow (m <sup>3</sup> /s) | 4.2                                       | 13.2            | 23.1  |  |  |  |
| Depth (m)                | 0.30                                      | 0.42            | 0.51  |  |  |  |





| Table F-17 | Surface | Water | Assessment - | Location | В |
|------------|---------|-------|--------------|----------|---|
|------------|---------|-------|--------------|----------|---|

| GLNG - DMPF – Surface Water Assessment -                                                                                                                                         |                        |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|--|
| Location B                                                                                                                                                                       |                        |  |  |  |  |
| Location Name Unnamed Drainage Feature<br>Catchment 3                                                                                                                            |                        |  |  |  |  |
| Northing:                                                                                                                                                                        | 7371614                |  |  |  |  |
| <u>Easting:</u>                                                                                                                                                                  | 317589                 |  |  |  |  |
| Site Description: Ephemeral Drainage line on south<br>east of facility. Part of Un-named catchment 3.<br>Vegetated with native grasses and some reeds,<br>open eucalypt woodland |                        |  |  |  |  |
| Channel Depth:                                                                                                                                                                   | 0.2m                   |  |  |  |  |
| Channel Width:                                                                                                                                                                   | 1 <i>m</i>             |  |  |  |  |
| Floodplain Slope:                                                                                                                                                                | L 1:50, R 1:50         |  |  |  |  |
| Bank Slope:                                                                                                                                                                      | LB 1:50, RB 1:50       |  |  |  |  |
| <u>Channel Banks:</u> Unmodified channels. Fairly<br>undefined mounding along various subtle U-shaped<br>channels. Good bank stability and flat floodplain.                      |                        |  |  |  |  |
| <u>Substrate Type</u> : Clayey Matrix Dominated with greater than 60% fine sediment, interstitial spaces virtually absent. Cobble, pebble and gravel fractions not present.      |                        |  |  |  |  |
| Channel Bed: Stable bed silts and clays.                                                                                                                                         | with low compaction of |  |  |  |  |
| <u>Water Quality</u> : Ephemeral present                                                                                                                                         | stream with no water   |  |  |  |  |
| Floodplain: No distinct floo                                                                                                                                                     | od plain               |  |  |  |  |

Photo 1\_- Looking Upstream

Photo 2 - Looking Upstream

Photo 3 - Looking Downstream

#### Table F-18 Surface Water Assessment Location C

| GLNG - DMPF – Surface Water Assessment -              |                              |  |
|-------------------------------------------------------|------------------------------|--|
| Location C                                            |                              |  |
| Location Name Unnamed                                 | Drainage Feature             |  |
| Catchment 3                                           | 1                            |  |
| Northing:                                             | 7371470                      |  |
| Easting:                                              | 315808                       |  |
| Site Description: Alluvial spla                       | ay at end of defined         |  |
| ephemeral channel/watercol                            | urse. Adjacent existing site |  |
| track in south east of propos                         | sed facility.                |  |
| Channel Depth:                                        | 0.2m                         |  |
| Channel Width:                                        | 10m                          |  |
| Floodplain Slope:                                     | L 1:30, R 1:40               |  |
| Bank Slope:                                           | L 1:30, R 1:40               |  |
| Channel Banks: Generally C                            | oncave bank shape with       |  |
| very low flat banks less than 1:10 slope              |                              |  |
| Substrate Type: Angular sec                           | liment with moderate         |  |
| deposition of well graded gra                         | avel material. 5-32% fine    |  |
| sediment, low availability of interstitial spaces.    |                              |  |
| Channel Bed: Defined channel fans out and sheet flow  |                              |  |
| occurs with some infiltration into ground.            |                              |  |
|                                                       |                              |  |
| <u>Water Quality</u> : Ephemeral stream with no water |                              |  |
| present. Suspected area of groundwater connection     |                              |  |
| and inflitration                                      |                              |  |
| Floodplain: Symmetrical floodplain. Alluvial splay at |                              |  |
| end of watercourse suggest connection with            |                              |  |
| groundwater at this point. Groundwater bore located   |                              |  |
| very close to this vicinity.                          |                              |  |





#### Table F-19 Surface Water Assessment - Location D

| GLNG - DMPF – Surface Water Assessment -                                                             |         |  |
|------------------------------------------------------------------------------------------------------|---------|--|
| Location D                                                                                           |         |  |
| Location Unnamed Drainage Feature Catchment                                                          |         |  |
| 3                                                                                                    |         |  |
| Northing:                                                                                            | 7371360 |  |
| Easting:                                                                                             | 316071  |  |
| Site Description: Wide shallow alluvial channel to south of proposed facility in broad wooded valley |         |  |



| Channel Depth:                                                                           | 0.5m                                                           |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Channel Width:                                                                           | 10m variable                                                   |
| Floodplain Slope:                                                                        | L 1:20, R 1:20                                                 |
| Bank Slope:                                                                              | LB 1:50, RB 1:50                                               |
| <u>Channel Banks:</u> broad va<br>channel, but multiple sma<br>crossover                 | lley with no defined main<br>Il channels with significant      |
| Substrate Type: 5-32% fin<br>availability of interstitial sp<br>sandy gravel with modera | e sediment, low<br>baces. Angular well graded<br>te compaction |
| <u>Channel Bed</u> : vegetated n<br>throughout valley and inte<br>channels               | nid channel bars<br>rdispersed with alluvial                   |
| Water Quality: Ephemeral                                                                 | - none present                                                 |
| <u>Floodplain</u> : Broad woode<br>plain                                                 | d valley no defined flood                                      |
| Photo 1 Looking Upstrea                                                                  | am                                                             |
| Photo 2 - Looking Downst                                                                 | ream                                                           |
| Photo 3 - Substrate                                                                      |                                                                |
|                                                                                          |                                                                |





#### Table 12-1 Surface Water Assessment - Location E



| GLNG - DMPF – Surface Water Assessment -                                                                                                                                                                                                                 |         |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|
| Location E                                                                                                                                                                                                                                               |         |  |  |
| Location Unnamed Drainage Feature Catchment 3                                                                                                                                                                                                            |         |  |  |
| Northing:                                                                                                                                                                                                                                                | 7371506 |  |  |
| <u>Easting:</u>                                                                                                                                                                                                                                          | 316106  |  |  |
| Site Description: Drainage depression<br>approximately 10m downstream of intersection of<br>two small poorly defined drainage depressions.<br>Heavily vegetated banks and surrounding area.<br>Open eucalypt forest. Dense mid storey. In<br>catchment 3 |         |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Channel Depth:                               | 0.25m                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Channel Width:                               | 2m                         |
| A CONTRACTOR OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Floodplain Slope:                            | L 1:50, R 1:50             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bank Slope:                                  | LB 1:15, RB 1:20           |
| A CONTRACTOR OF THE REAL OF TH |                                              |                            |
| The second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                            |
| Toy take Second American Institution of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Channel Banks:<br>Moderate to Good stability | , I ow flat banks, covered |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in leaf litter. Well establish               | ed vegetation in channel   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | C C                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Substrate Type: 32-60% fi                    | ne sediment, low           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | availability of interstitial sp              | aces. Sandy gravel with    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | low compaction                               |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Channel Bed: vegetated a                     | nd poorly defined          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water Quality: Ephemeral                     | - none present             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                            |
| ACTION AND A COMPANY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Floodplain: Poorly defined                   | approximately 10 to 15 m   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | wide                                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Photo 1 Looking Upstrea                      | m 10m                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Photo 2 - Looking Upstrea                    | m                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Photo 3 - Looking Downst                     | ream                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Photo 4 - Substrate                          |                            |



#### **Catchment 4**

| Catchment Size:          | 0.692                                     | km <sup>2</sup> |       |
|--------------------------|-------------------------------------------|-----------------|-------|
| Average Channel Slope:   | 23 m/km                                   |                 |       |
| Catchment Storage:       | Well defined System of small watercourses |                 |       |
| Catchment relief:        | Rolling With Slopes 1-4%                  |                 |       |
|                          | Q2                                        | Q20             | Q100  |
| Duration (mins)          | 35                                        |                 |       |
| Intensity (mm)           | 63.0                                      | 106.0           | 141.0 |
| Flow (m <sup>3</sup> /s) | 4.4                                       | 13.8            | 24.3  |
| Depth (m)                | 0.41                                      | 0.52            | 0.59  |

#### Table F-20 Catchment 4 Site Assessment



#### Table F-21 Surface Water Assessment - Location F

| GLNG - DMPF – Surface                                                                                                                                                                                                   | Water Assessment -                                                                                                                   |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| Location F                                                                                                                                                                                                              |                                                                                                                                      |  |
| Location Unnamed Drainage Feature Catchment                                                                                                                                                                             |                                                                                                                                      |  |
| Northing:                                                                                                                                                                                                               | 7371984                                                                                                                              |  |
| Easting:                                                                                                                                                                                                                | 316313                                                                                                                               |  |
| Site Description: Eroded ephemeral gully in catchment 4                                                                                                                                                                 |                                                                                                                                      |  |
| Channel Depth:                                                                                                                                                                                                          | 2 <i>m</i>                                                                                                                           |  |
| Channel Width:                                                                                                                                                                                                          | 3-4m                                                                                                                                 |  |
| Floodplain Slope:                                                                                                                                                                                                       | Not defined                                                                                                                          |  |
| Bank Slope:                                                                                                                                                                                                             | LB and RB both steeper<br>than 1V:0.5H                                                                                               |  |
| <u>Channel Banks:</u><br>Moderate bank stability wi<br>slopes of conglomerate ar<br>roots.<br><u>Substrate Type</u> : Open Fra<br>sediment, high availability<br>Angular sediment. Well gr<br>deposition and erosion zo | th very steep exposed<br>and clayey soils containing<br>mework: 0-5% fine<br>of interstitial spaces.<br>aded gravel with both<br>nes |  |
| <u>Channel Bed</u> : Well defined channel bed with mid channel bars un-vegetated                                                                                                                                        |                                                                                                                                      |  |
| Water Quality: No water p                                                                                                                                                                                               | resent                                                                                                                               |  |
| <u>Floodplain</u> : No defined floodplain as valley is steep, it is expected that the probability of the channel bank overtopping is very low.                                                                          |                                                                                                                                      |  |



| Photo 1 Looking Upstream       |
|--------------------------------|
| Photo 2 - Looking Downstream 1 |
| Photo 3 - Looking Downstream 2 |
|                                |



#### Table F-22 Surface Water Assessment - Location G



| GLNG - DMPF – Surface Water Assessment -    |         |  |  |
|---------------------------------------------|---------|--|--|
| Location G                                  |         |  |  |
| Location Unnamed Drainage Feature Catchment |         |  |  |
| 4                                           | -       |  |  |
| Easting:                                    | 7371667 |  |  |
| Northing:                                   | 316142  |  |  |
| _                                           |         |  |  |
|                                             |         |  |  |
|                                             |         |  |  |

|             | Site Description: Eroded channel at top of                                                                            |                        |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------|------------------------|--|
|             | catchment gully head. Limited vegetation with                                                                         |                        |  |
|             | channel. Bedrock outcrops. Ephemeral.                                                                                 |                        |  |
|             | Channel Depth:                                                                                                        | 1.5m                   |  |
|             | Channel Width:                                                                                                        | 3-4m                   |  |
|             | Floodplain Slope:                                                                                                     | -                      |  |
|             | Bank Slope:                                                                                                           | LB>1V:0.5H, RB 1V:0.5H |  |
|             | Channel Banks:                                                                                                        |                        |  |
|             | Moderate bank stability with very steep exposed slopes of rock and soils containing roots. Some bank erosion evident. |                        |  |
|             | Substrate Type: Mixture of medium to coarse sediments to rocks 300mm in diameter. Angular gravel and pebbles          |                        |  |
|             |                                                                                                                       |                        |  |
| TA STARA DE |                                                                                                                       |                        |  |
|             | Channel Bed: 5-32% fine sediment, moderate                                                                            |                        |  |
|             | availability of interstitial spaces. Moderate bed                                                                     |                        |  |
|             | compaction. Areas of rock on bed.                                                                                     |                        |  |
|             | Water Quality: Ephemera                                                                                               | al –no water present   |  |
|             |                                                                                                                       |                        |  |
|             |                                                                                                                       |                        |  |
|             |                                                                                                                       |                        |  |
|             |                                                                                                                       |                        |  |
|             | Floodplain: No distinct flo                                                                                           | oodplain in gully      |  |
|             | Photo 1 Looking Upstream                                                                                              |                        |  |
|             | Photo 2 - Looking Downstream                                                                                          |                        |  |
|             | Photo 3 - Looking Substrate                                                                                           |                        |  |
|             |                                                                                                                       |                        |  |



#### Table F-23 Surface Water Assessment - Location H

| GLNG - DMPF – Surface Water Assessment -                                                                                                                         |                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Location H                                                                                                                                                       |                                                   |
| Location Unnamed Drainage Feature Catchment                                                                                                                      |                                                   |
| Northing:                                                                                                                                                        | 7372099                                           |
| Easting:                                                                                                                                                         | 316257                                            |
| Site Description: Confluence of drainage paths in catchment 4, east of facility. Ephemeral stream with incised channel.                                          |                                                   |
| Channel Depth:                                                                                                                                                   | 1.8-2m                                            |
| Channel Width:                                                                                                                                                   | 6m                                                |
| Floodplain Slope:                                                                                                                                                | Not defined                                       |
| Bank Slope:                                                                                                                                                      | LB undercut, RB vertical with step                |
| <u>Channel Banks:</u><br>Moderate bank stability with very steep exposed<br>slopes of rock and soils containing roots. Bank<br>erosion and undercutting evident. |                                                   |
| Substrate Type: Open fran<br>sediment, high availability<br>graded gravel                                                                                        | nework: 0-5% fine<br>of interstitial spaces. Well |
| Channel Bed: Moderate E bed angular gravel preser                                                                                                                | rosion and Deposition in<br>It                    |
| Water Quality: Ephemeral                                                                                                                                         | <ul> <li>no water present</li> </ul>              |
| Floodplain: no distinct floc                                                                                                                                     | dplain in valley                                  |
| Photo 1 Looking Upstream                                                                                                                                         |                                                   |
| Photo 2 - Looking Upstream at tributary                                                                                                                          |                                                   |
| Photo 3 - Looking Downstream                                                                                                                                     |                                                   |

Photo 4 - Substrate



#### **Catchment 5**

| Table F-24 | Catchment 5 Site | Assessment |
|------------|------------------|------------|
|------------|------------------|------------|

| Catchment Size:          | 0.126                          | km <sup>2</sup>   |                              |
|--------------------------|--------------------------------|-------------------|------------------------------|
| Average Channel Slope:   | 59                             | m/km              |                              |
| Catchment Storage:       | Considerable Surface           | ce Depressions, C | Overland Flow is significant |
| Catchment relief:        | Hilly with average slopes 4-8% |                   |                              |
|                          | Q2                             | Q20               | Q100                         |
| Duration (mins)          | 10.7                           |                   |                              |
| Intensity (mm)           | 111.0                          | 189.0             | 254.0                        |
| Flow (m <sup>3</sup> /s) | 1.5                            | 4.7               | 8.5                          |
| Depth (m)                | 0.18                           | 0.29              | 0.37                         |





No site assessment was undertaken in catchment 5. Site observations were that catchment 6 has similar characteristics to catchment 5.

#### **Catchment 6**

#### Table F-25 Catchment 6 Site Assessment

| Catchment Size:          | 0.210                          | km <sup>2</sup>   |                      |
|--------------------------|--------------------------------|-------------------|----------------------|
| Average Channel Slope:   | 69 <i>m/km</i>                 |                   |                      |
| Catchment Storage:       | Considerable So significant    | urface Depressior | ns, Overland Flow is |
| Catchment relief:        | Hilly with average slopes 4-8% |                   |                      |
|                          | Q2                             | Q20               | Q100                 |
| Duration (mins)          |                                | 11.9              |                      |
| Intensity (mm)           | 107.0                          | 182.0             | 244.0                |
| Flow (m <sup>3</sup> /s) | 2.4                            | 7.6               | 13.5                 |
| Depth (m)                | 0.19                           | 0.31              | 0.41                 |





| 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | GLNG - DMPF – Surface Water Assessment -                                                                           |                |  |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------|--|
|                                         | Location I<br>Location Unnamed Drainage Feature Catchment                                                          |                |  |
|                                         |                                                                                                                    |                |  |
|                                         | 6                                                                                                                  |                |  |
|                                         | Northing:                                                                                                          | 7372311        |  |
| de la                                   | Easting:                                                                                                           | 315055         |  |
|                                         | Site Description: Small meandering gully to north of facility in catchment 6. Medium density vegetation Ephemeral. |                |  |
|                                         | Channel Depth:                                                                                                     | Up to 0.5m     |  |
|                                         | Channel Width:                                                                                                     | 1-2m           |  |
|                                         | Floodplain Slope:                                                                                                  | L 1:10, R 1:10 |  |
|                                         | Bank Slope:                                                                                                        | LB 1:2, RB 1:2 |  |
|                                         | Channel Banks:<br>Small mounded banks on hilly area with typical 4-<br>8% slopes. Channel in broad valley.         |                |  |



<u>Substrate Type</u>: Conglomerate rock exposed in patches with some gravel. Generally sub-angular

<u>Channel Bed</u>: Average grassed and timbered land of medium soil texture. 5-32% fine sediment, moderate availability of interstitial spaces.

Water Quality: Ephemeral - no water present

<u>Floodplain</u>: no distinct flood plain, gully collects localised runoff from catchment only, with sheet flow occurring in catchment parallel to gully.

Photo 1\_- Looking Upstream

Photo 2 - Looking Downstream



#### **Catchment 7**

| Catchment Size:          | 0.186                   | km <sup>2</sup>    |                  |
|--------------------------|-------------------------|--------------------|------------------|
| Average Channel Slope:   | 0                       | m/km               |                  |
|                          | Considerable Surfa      | ace Depressions, C | Overland Flow is |
| Catchment Storage:       | significant             |                    |                  |
| Catchment relief:        | Flat with Slopes 0-1.5% |                    |                  |
|                          | Q2                      | Q20                | Q100             |
| Duration (mins)          |                         | 35.0`              |                  |
| Intensity (mm)           | 63.0                    | 106.0              | 141.0            |
| Flow (m <sup>3</sup> /s) | 0.7                     | 2.3                | 4.1              |

#### Table F-27 Catchment 7 Site Assessment

#### Table F-28 Surface Water Assessment - Location J



| GLNG - DMPF – Surface Water                 |                 |  |  |  |
|---------------------------------------------|-----------------|--|--|--|
| Assessment -                                |                 |  |  |  |
| Location J                                  |                 |  |  |  |
| Location Unnamed D                          | rainage Feature |  |  |  |
| Catchment 6                                 |                 |  |  |  |
| Northing:                                   | 7372081         |  |  |  |
| <u>Easting:</u>                             | 315178          |  |  |  |
| Site Description: Flat estuarine            |                 |  |  |  |
| Sanpan/maullat                              |                 |  |  |  |
|                                             |                 |  |  |  |
|                                             |                 |  |  |  |
| Channel Depth:                              | n/a             |  |  |  |
| Channel Width:                              | n/a             |  |  |  |
| Floodplain Slope:                           | <1:500          |  |  |  |
| Bank Slope:                                 | n/a             |  |  |  |
| Channel Banks:                              |                 |  |  |  |
| No Channel.                                 |                 |  |  |  |
|                                             |                 |  |  |  |
|                                             |                 |  |  |  |
| <u> </u>                                    | <u> </u>        |  |  |  |
| Substrate Type: Grey Cracked Clay/estuarine |                 |  |  |  |

Substrate Type: Grey Cracked clay/estuarine mud. Tightly packed sediment, very hard to dislodge. >80% fine sediment no interstitial spaces

Channel Bed: n/a


Water Quality: Tidal – no water present

<u>Floodplain</u>: Flat estuarine flood plain subject to tidal inundation

Photo 1\_- Looking west south west

Photo 2 - Looking south west

# Appendix G Flood Assessment

To approximate the flood depths at the road crossing, a flood assessment of the five main drainage features, as identified in the flood hydrology Appendix F, has been undertaken.

The US Army Corps developed Hydrologic Engineering Centers River Analysis System, known commonly as HEC RAS, is a one-dimensional hydraulic estimation model. The hydraulic model was adopted for flood estimation of the 3 locations. The model inputs include geometry of the channel and floodplain, peak flows (from Table G-29) and representative hydraulic roughness coefficients.

Using a 12D digital terrain model (developed from 1m contour data), channel cross sections were extracted for each watercourse to HEC-RAS to form a simplified hydraulic model. The cross sections were further detailed with information gathered during the site visit, primarily providing channel definition. Once the series of cross-sections were developed for each assessment location, they were then exported to the HEC RAS to form a simple model of the natural channel topography.

Along with the cross-sectional data the geometric file requires a description of the bed, channel wall and floodplain roughness. Hydraulic roughness values (Mannings 'n') were adopted from hydraulic references based on field observations (see Table G-29 below):

| Surface Type                                                                                                | Roughness Value |
|-------------------------------------------------------------------------------------------------------------|-----------------|
| Floodplains                                                                                                 |                 |
| Light brush and trees, in winter                                                                            | 0.06            |
| Heavy stand of timber, a few down trees, little undergrowth                                                 | 0.08 – 0.1      |
| Main Channel                                                                                                |                 |
| Clean, winding, some pools and shoals, some weeds and stones                                                | 0.04- 0.045     |
| Clean, winding, some pools and shoals, some weeds and stones, lower stages, ineffective slopes and sections | 0.05            |
| Sluggish reaches, weedy, deep pools                                                                         | 0.07            |

#### Table G-29 Adopted Mannings 'n' Values

Sources: Chow, 1959, Open Channel Hydraulics, McGraw-Hill Book Company, Inc.

Each model contains two boundary conditions, an upstream flow boundary and a downstream water level boundary. The inflow values were taken from the peak flows determined in the rational method hydrological analysis (Table G-30) at each location. As the downstream environment would be commonly effected by the tidal level within North China Bay, the salt marsh/estuarine flats level was simplified and a normal depth downstream boundary was adopted based on the average gradient of the drainage feature gradient.

#### Table G-30 Predicted peak design flow for drainage features at the edge of the estuarine flat

| Catchment/Drainage<br>Feature | Catchment<br>Area (km²) | 2 Year ARI<br>Peak Flow<br>(m³/s) | <b>20 Year ARI</b><br>Peak Flow<br>(m <sup>3</sup> /s) | <b>100 Year</b><br><b>ARI</b><br>Peak Flow<br>(m <sup>3</sup> /s) |
|-------------------------------|-------------------------|-----------------------------------|--------------------------------------------------------|-------------------------------------------------------------------|
| Catchment 1                   | 0.137                   | 1.3                               | 4.0                                                    | 7.0                                                               |
| Catchment 2                   | 0.327                   | 2.8                               | 8.8                                                    | 15.6                                                              |
| Catchment 3                   | 0.871                   | 4.2                               | 13.2                                                   | 23.1                                                              |



### Appendix G

| Catchment/Drainage<br>Feature                                               | Catchment<br>Area (km²) | 2 Year ARI<br>Peak Flow<br>(m <sup>3</sup> /s) | 20 Year ARI<br>Peak Flow<br>(m <sup>3</sup> /s) | <b>100 Year</b><br><b>ARI</b><br>Peak Flow<br>(m <sup>3</sup> /s) |
|-----------------------------------------------------------------------------|-------------------------|------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------|
| Catchment 4                                                                 | 0.692                   | 4.4                                            | 13.8                                            | 24.3                                                              |
| Catchment 5                                                                 | 0.126                   | 1.5                                            | 4.7                                             | 8.5                                                               |
| Catchment 6                                                                 | 0.210                   | 2.4                                            | 7.6                                             | 13.5                                                              |
| Catchment 7 –estuarine mudflat<br>(to proposed main embankment<br>location) | 0.186                   | 0.7                                            | 2.3                                             | 4.1                                                               |

The HEC RAS model was simulated using steady state conditions, due to the flat topographic nature of all the watercourses identified; subcritical flow conditions were also adopted.

At all locations, for all three events, the model predicted out of channel bank flooding to occur at either the 2year or 20 year ARI. Table G-31 below provides the flood depths and extents for each key watercourse location.

#### Table G-31 Predicted Flood Depths near start of Mudflat

| Name                           | 2yr ARI   | 20yr ARI  | 100yr ARI |
|--------------------------------|-----------|-----------|-----------|
|                                | Depth (m) | Depth (m) | Depth (m) |
| Unnamed Drainage Feature No. 2 | 0.24      | 0.41      | 0.55      |
| Unnamed Drainage Feature No. 3 | 0.30      | 0.42      | 0.51      |
| Unnamed Drainage Feature No. 4 | 0.41      | 0.52      | 0.59      |
| Unnamed Drainage Feature No. 5 | 0.18      | 0.29      | 0.37      |
| Unnamed Drainage Feature No. 6 | 0.19      | 0.31      | 0.41      |

Additionally rational method calculations were undertaken for the proposed catchment modification to catchment 3 and 4 after construction of the facility. These results are displayed in Table G-32 and show that the reduction catchment size causes the peak flows to increase due to the reduction in stream length and time of concentration.

#### Table G-32 Predicted peak design flow for modified catchments 3 and 4 at edge of facility

| Catchment/Drainage<br>Feature | Catchment<br>Area (km²) | <b>2 Year ARI</b><br>Peak Flow | 20 Year ARI<br>Peak Flow | 100 Year<br>ARI                  |
|-------------------------------|-------------------------|--------------------------------|--------------------------|----------------------------------|
|                               |                         | (m <sup>3</sup> /s)            | (m <sup>3</sup> /s)      | Peak Flow<br>(m <sup>3</sup> /s) |
| Modified Catchment 3          | 0.588                   | 5.5                            | 17.6                     | 31.1                             |
| Modified Catchment 4          | 0.431                   | 5.1                            | 16.2                     | 28.9                             |

#### RORB

RORB (version 6) is an Australian hydrological modelling software package used for generating hydrographs, flood volumes and routing for rural and urban catchments. It is widely used in Australia and overseas. The site catchments were broken down into various areas and input into the RORB model. A summary of Key RORB parameters used are shown in Table G-33.

| Parameter             | Value |
|-----------------------|-------|
| kc Value (Weeks –QLD) | 1.40  |
| 'm' coefficient       | 0.8   |
| Initial Loss (mm)     | 15    |
| Continuing Loss (mm)  | 2.5   |

#### Table G-33 RORB model Parameters

RORB was run using an initial/continuing loss model and due to the lack of available stream flow data was un-calibrated. Flows calculated were checked against rational method flows and found to be comparable.

A model was set up of the entire site area in both the existing conditions and with the proposed facility modifications to the site. The catchments were input as per the catchment plan in Figure 9-1 (excluding catchment 1), however the larger catchments were broken into sub areas. Catchment 3 was divided into 3 sub areas and catchment 4 was divided into 2 sub areas. It was found the critical time of concentration for the site as a whole was 1.5 hours and peak flows and flood volumes were generated for a range of return periods. Peak flood volume was generated for the long duration storm of 72 hours.

A summary of RORB results for the existing conditions model is displayed in Table G-34.

|                                  | 1:           | 2yr ARI                            | 1:2  | 0yr ARI                  | 1:100 ARI    |                          |  |
|----------------------------------|--------------|------------------------------------|------|--------------------------|--------------|--------------------------|--|
|                                  | Peak<br>Flow | Peak 72hr Peak<br>Flow Volume (ML) |      | 72hr Peak<br>Volume (ML) | Peak<br>Flow | 72hr Peak<br>Volume (ML) |  |
| Catchment 3                      | 4.5          | 79                                 | 10.1 | 300                      | 14.8         | 514                      |  |
| Catchment 4                      | 5.1          | 63                                 | 11.5 | 238                      | 15.9         | 408                      |  |
| Combined Total<br>Site Catchment | 12.9         | 220                                | 28.7 | 828                      | 41.9         | 1420                     |  |

#### Table G-34 Existing Site Catchment RORB Results

As expected the rational method flows calculated for the catchments are higher and represent a more conservative estimate than the RORB model. The RORB model results provide a good estimation of flood volume across the site.

The proposed model was run with special storages at the locations of the future embankments across catchment 3 and 4 with different sub catchment areas reflecting the facility layout. This allowed an estimate of the flows into the modified catchments 3 and 4 (refer Figure 9-2) and the likely design flows required for the diversion pipe network. It also gave an estimate of flood volumes that will be required to be conveyed by the diversion system. A summary of these results is shown in Table G-35.



### Appendix G

|                      | 1:2yı            | r ARI | 1:20y     | r ARI            | 1:100 ARI |        |  |
|----------------------|------------------|-------|-----------|------------------|-----------|--------|--|
|                      | Peak Flow Volume |       | Peak Flow | Peak Flow Volume |           | Volume |  |
| Modified Catchment 3 | 3.1              | 55    | 7.0       | 208              | 10.2      | 357    |  |
| Modified Catchment 4 | 4.9              | 39    | 10.5      | .5 148           |           | 254    |  |
| Facility Catchment   | 7.10             | 126   | 15.9      | 478              | 23.2      | 821    |  |

#### Table G-35 Proposed Site Catchment RORB Results

These results were used to calculate the 100 year Design Storage Allowance for the Facility for the 72 Hour duration storm. This was calculated to be 0.62 m as the Volume entering the facility is 821 ML and the Area of the facility is  $1,332 \text{ km}^2$ . This allowance does not include the runoff volumes from modified catchments 3 or 4 as these volumes will be stored in these catchments, or diverted around the facility directly into the bay.

# Appendix H Water Supply Dam Yield

An estimate of the potential catchment runoff yield to the future storages in catchment 3 and 4 was made to quantify the volume of water that may be available annually for harvesting and use in facility construction/operations.

The yield assessment is based on rainfall and evaporation statistics from Gladstone Radar Station. The yield assessment assumes the actual evaporation rate from the dam storage surface is 0.6 times the pan evaporation rate and that the runoff from the catchment available for collection and harvesting is 5 % of the actual rainfall on the catchment (Nelson, Design and Construction of Small Earth Dams, 1985).

A summary of the calculations can be seen in Table H-36 and H-37 for the respective catchments. Due to the sizeable catchments and annual rainfall, significant yields are available which would be sufficient for construction and operation of the site.



### Appendix H

|                             |        |        |       | Source  | Source : BOM Climate Data Online |           |           |          |           |           |          |          |         |          |
|-----------------------------|--------|--------|-------|---------|----------------------------------|-----------|-----------|----------|-----------|-----------|----------|----------|---------|----------|
| Proposed Dam Catchment Area | =      | 588    | На    | Evapor  | ation da                         | ta set us | ed for G  | ladstone | Radar S   | tation be | etween 1 | 957-2008 |         |          |
| Proposed Dam Surface Area   | =      | 5      | На    | Rainfal | I data se                        | t used fo | or Gladst | one Rad  | ar Statio | n betwee  | en 1957- | 2009     |         |          |
|                             |        |        |       |         |                                  |           |           |          |           |           |          |          |         |          |
| Month                       | JAN    | FEB    | MAR   | APR     | MAY                              | JUN       | JULY      | AUG      | SEPT      | ОСТ       | NOV      | DEC      | TOTALS  |          |
| Average Rainfall (mm)       | 143.40 | 143.40 | 82.60 | 46.40   | 59.60                            | 38.90     | 34.40     | 31.20    | 26.20     | 62.30     | 74.20    | 128.80   | 871.40  | mm       |
| Mean Pan A Evaporation (mm) | 195.3  | 165.2  | 164.3 | 132     | 105.4                            | 90        | 96.1      | 108.5    | 132       | 170.5     | 183      | 195.3    | 1737.6  | mm       |
| Evaporation Factor          | 0.6    | 0.6    | 0.6   | 0.6     | 0.6                              | 0.6       | 0.6       | 0.6      | 0.6       | 0.6       | 0.6      | 0.6      | 0.6     | unitless |
| Estimated Evaporation (mm)  | 117.18 | 99.12  | 98.58 | 79.2    | 63.24                            | 54        | 57.66     | 65.1     | 79.2      | 102.3     | 109.8    | 117.18   | 1042.56 | mm       |
| Runoff factor for Catchment | 0.05   | 0.05   | 0.05  | 0.05    | 0.05                             | 0.05      | 0.05      | 0.05     | 0.05      | 0.05      | 0.05     | 0.05     | 0.05    | unitless |
| Dam Catchment Runoff (ML)   | 42.16  | 42.16  | 24.28 | 13.64   | 17.52                            | 11.44     | 10.11     | 9.17     | 7.70      | 18.32     | 21.81    | 37.87    | 256.2   | ML       |
| Dam Evaporation Loss (ML)   | 5.86   | 4.96   | 4.93  | 3.96    | 3.16                             | 2.70      | 2.88      | 3.26     | 3.96      | 5.12      | 5.49     | 5.86     | 52.1    | ML       |
| NET YIELD (average)         | 36.30  | 37.20  | 19.36 | 9.68    | 14.36                            | 8.74      | 7.23      | 5.92     | 3.74      | 13.20     | 16.32    | 32.01    | 204.1   | ML       |

#### Table H-36 Catchment 3 Storage yield

### Appendix H

|                             |        |        |       | Source                                               | Source : BOM Climate Data Online |           |           |          |            |            |          |          |         |          |
|-----------------------------|--------|--------|-------|------------------------------------------------------|----------------------------------|-----------|-----------|----------|------------|------------|----------|----------|---------|----------|
| Proposed Dam Catchment Area | =      | 431    | На    | Evapor                                               | ration da                        | ta set us | ed for G  | ladstone | Radar S    | station be | etween 1 | 957-2008 |         |          |
| Proposed Dam Surface Area   | =      | 8      | На    | Rainfa                                               | ll data se                       | t used fo | or Gladst | one Rad  | lar Statio | n betwee   | en 1957- | 2009     |         |          |
|                             |        |        |       |                                                      |                                  |           |           |          |            |            |          |          |         |          |
| Month                       | JAN    | FEB    | MAR   | APR                                                  | MAY                              | JUN       | JULY      | AUG      | SEPT       | ОСТ        | NOV      | DEC      | TOTALS  |          |
| Average Rainfall (mm)       | 143.40 | 143.40 | 82.60 | 46.40                                                | 59.60                            | 38.90     | 34.40     | 31.20    | 26.20      | 62.30      | 74.20    | 128.80   | 871.40  | mm       |
| Mean Pan A Evaporation (mm) | 195.3  | 165.2  | 164.3 | 132                                                  | 105.4                            | 90        | 96.1      | 108.5    | 132        | 170.5      | 183      | 195.3    | 1737.6  | mm       |
| Evaporation Factor          | 0.6    | 0.6    | 0.6   | 0.6                                                  | 0.6                              | 0.6       | 0.6       | 0.6      | 0.6        | 0.6        | 0.6      | 0.6      | 0.6     | unitless |
| Estimated Evaporation (mm)  | 117.18 | 99.12  | 98.58 | 79.2                                                 | 63.24                            | 54        | 57.66     | 65.1     | 79.2       | 102.3      | 109.8    | 117.18   | 1042.56 | mm       |
| Runoff factor for Catchment | 0.05   | 0.05   | 0.05  | 0.05                                                 | 0.05                             | 0.05      | 0.05      | 0.05     | 0.05       | 0.05       | 0.05     | 0.05     | 0.05    | unitless |
| Dam Catchment Runoff (ML)   | 30.90  | 30.90  | 17.80 | 10.00                                                | 12.84                            | 8.38      | 7.41      | 6.72     | 5.65       | 13.43      | 15.99    | 27.76    | 187.8   | ML       |
| Dam Evaporation Loss (ML)   | 9.37   | 7.93   | 7.89  | 6.34 5.06 4.32 4.61 5.21 6.34 8.18 8.78 9.37 83.4 ML |                                  |           |           |          | ML         |            |          |          |         |          |
| NET YIELD (average)         | 21.53  | 22.97  | 9.91  | 3.66                                                 | 7.78                             | 4.06      | 2.80      | 1.52     | -0.69      | 5.24       | 7.21     | 18.38    | 104.4   | ML       |

### Table H-37 Catchment 4 Storage Yield



### Appendix I

# Appendix I Risk Assessment Scale

### Likelihood Scale

Likelihood is defined as a general description of probability and/or frequency (AS/NZ4360, 2004). Applied to this project it is the water quality impact within and surrounding the facility and using the following likelihood scale. The likelihood scale is presented in Table I-38.

| Level | Likelihood     | Description                                |
|-------|----------------|--------------------------------------------|
| 1     | Rare           | Will ONLY occur in exception circumstances |
| 2     | Unlikely       | Could occur but not expected               |
| 3     | Possible       | Could occur at some time                   |
| 4     | Likely         | Will probably occur in most circumstances  |
| 5     | Almost Certain | Expected to occur in most circumstances    |

#### Table I-38 Risk Assessment Likelihood Scale

#### **Consequence Scale**

Consequence is defined as the outcome or impact of an event (AS/NZ4360, 2004). The consequence scale is presented in Table I-39.

| Level | Consequence   | Description                                                                                                    |
|-------|---------------|----------------------------------------------------------------------------------------------------------------|
| 1     | Insignificant | Trivial environmental impact                                                                                   |
| 2     | Minor         | Unreasonable interference with the environment.<br>(Results in minor illness or injury)                        |
| 3     | Moderate      | Clearly visible impact to aquatic ecosystem. Requires localised remediation.<br>(Results in illness or injury) |
| 4     | Major         | Damage to the environment that requires significant remediation.<br>(Results in serious illness or injury)     |
| 5     | Catastrophic  | Environmental damage is irreversible, of high impact or widespread.<br>(Results in death)                      |

#### Table I-39 Risk Assessment Consequence Scale

#### **Risk Rating Matrix**

A combination of the consequences and likelihood assigned to each measure to calculate the overall risk rating. The risk rating matrix is presented in Table I-40.

|                | Consequences  |        |          |         |              |
|----------------|---------------|--------|----------|---------|--------------|
| Likelihood     | Insignificant | Minor  | Moderate | Major   | Catastrophic |
| Almost Certain | High          | High   | Extreme  | Extreme | Extreme      |
| Likely         | Medium        | High   | High     | Extreme | Extreme      |
| Possible       | Low           | Medium | High     | High    | Extreme      |
| Unlikely       | Low           | Low    | Medium   | High    | Extreme      |
| Rare           | Low           | Low    | Medium   | High    | Extreme      |

### Table I-40 Risk Assessment Risk Rating Matrix



# Appendix J Hazard Matrix



J

| Aspect                               | Potential Impact                                                                                                                                                                                                                                                                                                             | Inherent Risk<br>rating | Mitigation Strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Residual Risk<br>Rating |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Construction                         |                                                                                                                                                                                                                                                                                                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| Erosion and Sediment<br>Mobilisation | Sediment from earth moving and<br>stockpiling can enter surface water<br>runoff during rainfall events or blown by<br>wind and discharge to watercourses<br>leading to deleterious effects on water<br>quality and aquatic habitats.<br>Potential presence of high levels of<br>metals in soils that may enter<br>waterways. | High                    | <ul> <li>Appropriate design (erosion and scour protection) for sections of pipeline crossing active floodplain and main channel;</li> <li>Stormwater management (development, implementation and maintenance of plan), to include: <ul> <li>Erosion control and energy dissipation, watercourse stabilisation i.e. matting, riprap and gabions;</li> <li>Stormwater controls and upstream treatment, i.e. infiltration devices and vegetation filters;</li> <li>Stabilisation techniques, i.e. revegetation;</li> <li>Construction to occur in dry season;</li> <li>Crossings to be at right angles to direction of flow;</li> <li>Stockpiling of topsoil located away from watercourses;</li> <li>Vehicle wash bay to be located away from watercourses;</li> <li>Minimise vegetation disturbance;</li> <li>Routine inspections; and</li> <li>Adopt controls to minimise risk of heavy metal runoff to surface waters</li> </ul> </li> </ul> | Low                     |

#### Table J-41 Hazard Matrix



| Aspect                                                         | Potential Impact                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inherent Risk<br>rating | Mitigation Strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Residual Risk<br>Rating |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Pollution                                                      | <ul> <li>Potentially contaminated drainage from<br/>fuel oil storage areas;</li> <li>Diesel and other petroleum-based fuels<br/>and lubricants used by excavation and<br/>construction machinery;</li> <li>Environmental and public health and<br/>safety issue; and</li> <li>Site excavation works may expose<br/>groundwaters which have been found to<br/>have high background levels of<br/>dissolved metals in both near-surface<br/>and deeper aquifers.</li> </ul> | High                    | <ul> <li>Chemical and fuel storage areas to be appropriately bunded;</li> <li>Spill cleanup kits in accordance with Australian Standards (AS1940 and AS3780) to be located in convenient locations, i.e. work vehicles;</li> <li>Refuelling to occur in bunded areas;</li> <li>Should a spill occur, ensure it is contained and does not enter drainage lines or watercourses;</li> <li>Follow all other operational procedures; and</li> <li>Any site dewatering activities will require treatment or other appropriate management controls before discharge to grade is considered</li> </ul> | Medium                  |
| Improper disposal of all<br>construction wastes                | Litter and other construction waste can<br>be washed into watercourses and ocean<br>during rain events or tidal inundation,<br>and impact receiving waters.                                                                                                                                                                                                                                                                                                               | Medium                  | Develop, implement and maintain Waste<br>Management/Disposal Plan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Low                     |
| Works adjacent to/within<br>drainage lines and<br>watercourses | Trenching at watercourse crossings and<br>vehicle access crossings can alter flow<br>characteristics.<br>Potential presence of high levels of<br>metals in soils that may enter<br>waterways.                                                                                                                                                                                                                                                                             | High                    | <ul> <li>Diversion of watercourse either by low flow diversion or coffer dam with pumping;</li> <li>Construction activities that will affect existing drainage channels and control measures must only be carried out after suitable stormwater management infrastructure has been implemented onsite;</li> <li>Minimal disturbance by heavy earth moving equipment;</li> <li>Vehicle crossings should be adequately designed for a range of flow conditions, including under road drainage; and</li> <li>Adopt controls to minimise risk of heavy metal runoff to surface waters</li> </ul>    | Low                     |

| Aspect                   | Potential Impact                                                                                                                                                                                                                                                | Inherent Risk<br>rating | Mitigation Strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Residual Risk<br>Rating |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Flooding                 | Possibility of out-of-bank/flash flood<br>rainfall event and regular tidal inundation<br>of site during construction causing<br>erosion and damage to erosion and<br>sediment control infrastructure.                                                           | High                    | <ul> <li>Schedule construction works appropriately during wet season and where practicable, limit works within the flood plain. However, if not possible, make sure a flood risk assessment has been conducted;</li> <li>Tide times to be monitored and planed for;</li> <li>Stormwater management e.g. drainage diversions and bunding; and</li> <li>Emergency response procedures and flood forecasting.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Medium                  |
| Lack of water supply     | Inadequate dust suppression, soil compaction and washdown.                                                                                                                                                                                                      | High                    | Develop, implement and maintain Water Supply Strategy and Emergency Plan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Medium                  |
| Contaminant Mobilisation | Runoff from potentially contaminated<br>drainage from fuel oil storage areas and<br>general washdown water entering into<br>drainage features and receiving waters,<br>altering the physical and chemical<br>quality of the water and receiving<br>environment. | High                    | <ul> <li>The construction of bunded storage areas for<br/>contaminants are recommended with spill cleanup kits in<br/>accordance with Australian Standards (AS1940 and<br/>AS3780) to prevent the contamination of surrounding<br/>surface runoff;</li> <li>The transfers of fuels and chemicals controlled and<br/>managed to prevent spillage outside bunded areas;</li> <li>Implement control so significant leakage/spillage is<br/>immediately reported and appropriate emergency clean-<br/>up operations implemented to prevent possible<br/>mobilisation of contaminants;</li> <li>Chemically contaminated areas are protected by<br/>rooving from rainfall to reduce the likelihood of<br/>overtopping;</li> <li>Bunds and sumps are frequently drained, and effluent is<br/>treated appropriately; and</li> <li>Any site dewatering activities will require treatment or<br/>other appropriate management controls before discharge<br/>to grade is considered.</li> </ul> | Medium                  |

| Aspect                                      | Potential Impact                                                                                                                                                                                                   | Inherent Risk | Mitigation Strategy                                                                                                                                                                                                                                                                                                                                                                                                              | Residual Risk<br>Rating |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Operation                                   |                                                                                                                                                                                                                    | lating        |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |
| Erosion and Sediment<br>Mobilisation        | Permanent structures and minor earth<br>disturbance can result in localised<br>erosion and sediment mobilisation<br>leading to deleterious effects on water<br>quality and aquatic habitats.                       | Medium        | Stormwater management to include:<br>- Localised erosion control and energy dissipation<br>measures;<br>- Stabilisation techniques.<br>Routine inspection and maintenance of existing erosion<br>and sediment control measures.                                                                                                                                                                                                  | Low                     |
| Discharges from sediment ponds              | It is proposed to have two sediment<br>dams upstream of the DMPF.<br>Uncontrolled releases from these ponds<br>could allow process and contaminated<br>stormwater to enter drainage lines and<br>receiving waters. | Medium        | Sediment dams will be designed to contain up to a10yr<br>ARI. Releases from ponds should be controlled and<br>should occur after the water has been tested and meets<br>license guidelines (which are to be determined)                                                                                                                                                                                                          | Low                     |
| Pollution                                   | Diesel and other petroleum-based fuels<br>and lubricants used by operational<br>vehicles and machinery entering<br>watercourses.                                                                                   | Medium        | <ul> <li>Chemical and fuel storage areas to be appropriately bunded;</li> <li>Spill cleanup kits in accordance with Australian Standards (AS1940 and AS3780) to be located in convenient locations;</li> <li>Refuelling to occur in bunded areas;</li> <li>Should a spill occur, ensure it is contained and does not enter drainage lines or watercourses; and</li> <li>Follow all other site operational procedures.</li> </ul> | Low                     |
| Improper disposal of all operational wastes | Litter and other operational waste can be<br>washed into watercourses during rain<br>events and impact receiving waters.                                                                                           | Low           | Develop, implement and maintain Waste<br>Management/Disposal Plan                                                                                                                                                                                                                                                                                                                                                                | Low                     |

| Aspect                                     | Potential Impact                                                                                                                                                                                                                                                                                                                                  | Inherent Risk<br>rating | Mitigation Strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Residual Risk<br>Rating |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Flooding                                   | Possibility of out-of-bank/flash flood<br>rainfall event causing failure of erosion<br>and sediment control infrastructure.<br>Blockage of Diversion drainage system<br>causing inundation of other<br>properties/catchments.                                                                                                                     | High                    | <ul> <li>Monitoring and maintenance of erosion and sediment<br/>control features and diversion infrastructure; and</li> <li>Emergency Response Procedures and flood forecasting<br/>(where practical).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                    | Medium                  |
| Lack of water supply                       | Inadequate dust suppression, soil compaction and washdown.                                                                                                                                                                                                                                                                                        | High                    | Develop, implement and maintain Water Supply Strategy and Emergency Plan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Medium                  |
| Decommissioning                            |                                                                                                                                                                                                                                                                                                                                                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
| Erosion and Sediment<br>Mobilisation       | <ul> <li>Erosion and movement of sediment<br/>can potentially have adverse impacts on<br/>water quality.</li> <li>Potential presence of high levels of<br/>metals in soils that may enter<br/>waterways.</li> </ul>                                                                                                                               | Medium                  | <ul> <li>Implement and maintain a Decommissioning<br/>Environmental Plan. Apply sediment and erosion control<br/>measures prior to earth moving activities; and</li> <li>Adopt controls to minimise risk of heavy metal runoff to<br/>surface waters</li> </ul>                                                                                                                                                                                                                                                                                                                                      | Low                     |
| Pollution                                  | <ul> <li>Diesel and other petroleum-based fuels<br/>and lubricants used by operational<br/>vehicles and machinery entering<br/>watercourses.</li> <li>Site excavation works may expose<br/>groundwaters which have been found to<br/>have high background levels of<br/>dissolved metals in both near-surface<br/>and deeper aquifers.</li> </ul> | Medium                  | <ul> <li>Chemical and fuel storage areas to be appropriately bunded;</li> <li>Spill cleanup kits in accordance with Australian Standards (AS1940 and AS3780) to be located in convenient locations, i.e. work vehicles;</li> <li>Refuelling to occur in bunded areas;</li> <li>Should a spill occur, ensure it is contained and does not enter drainage lines or watercourses;</li> <li>Follow all other site operational procedures; and</li> <li>Any site dewatering activities will require treatment or other appropriate management controls before discharge to grade is considered</li> </ul> | Low                     |
| Improper disposal of all demolition wastes | Impact to receiving waters.                                                                                                                                                                                                                                                                                                                       | Medium                  | Develop and implement a Waste Management/Disposal Plan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Low                     |



| Aspect                                                         | Potential Impact                                                                                                                                                                                                                                                                                                        | Inherent Risk<br>rating | Mitigation Strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Residual Risk<br>Rating |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Works adjacent to/within<br>drainage lines and<br>watercourses | Infilling on-site surface water bodies or<br>drainage lines can lead to potential loss<br>of water storage and can adversely<br>impact ecological habitats.<br>Potential presence of high levels of<br>metals in soils that may enter<br>waterways.                                                                     | High                    | <ul> <li>Diversion of drainage features before construction commences (for stable vegetated channels);</li> <li>Process area diversion (sediment basins and diversion drains);</li> <li>Decommissioning works that will affect existing drainage channels and control measures must only be carried out after suitable stormwater management infrastructure has been implemented on-site;</li> <li>Minimal number of passes by heavy earth moving equipment;</li> <li>Prior to decommissioning, development and implementation of monitoring program; and</li> <li>Adopt controls to minimise risk of heavy metal runoff to surface waters</li> </ul> | Medium                  |
| Flooding                                                       | Possibility of out-of-bank/flash flood<br>rainfall event exceeding capacity of the<br>storm water management system<br>resulting in non compliant offsite<br>discharges. Also, risk to construction<br>workers (H&S).<br>Blockage of Diversion drainage system<br>causing inundation of other<br>properties/catchments. | Medium                  | <ul> <li>Schedule decommissioning work appropriately during<br/>the wet season and try and work outside the flood plain<br/>to reduce risk from flooding and undertake a flood risk<br/>assessment has been conducted;</li> <li>Stormwater management e.g. drainage diversions and<br/>bunding; and</li> <li>Emergency response procedures and flood forecasting.</li> </ul>                                                                                                                                                                                                                                                                          | Medium                  |
| Lack of water supply                                           | Dust emissions and inadequate soil compaction and washdown, fire water.                                                                                                                                                                                                                                                 | High                    | Develop, implement and maintain Water Supply Strategy and Emergency Plan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Low                     |

| Aspect                    | Potential Impact                                                                                                                                                                                                                                                | Inherent Risk<br>rating | Mitigation Strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Residual Risk<br>Rating |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Contaminant Mobilisation  | Runoff from potentially contaminated<br>drainage from fuel oil storage areas and<br>general washdown water entering into<br>drainage features and receiving waters,<br>altering the physical and chemical<br>quality of the water and receiving<br>environment. | High                    | <ul> <li>The construction of bunded storage areas for<br/>contaminants are recommended with spill cleanup kits in<br/>accordance with Australian Standards (AS1940 and<br/>AS3780) to prevent the contamination of surrounding<br/>surface runoff;</li> <li>The transfers of fuels and chemicals controlled and<br/>managed to prevent spillage outside bunded areas;</li> <li>Implement control so significant leakage/spillage is<br/>immediately reported and appropriate emergency clean-<br/>up operations implemented to prevent possible<br/>mobilisation of contaminants;</li> <li>Chemically contaminated areas are protected by<br/>rooving from rainfall to reduce the likelihood of<br/>overtopping;</li> <li>Bunds and sumps are frequently drained, and effluent is<br/>treated appropriately; and</li> <li>Any site dewatering activities will require treatment or<br/>other appropriate management controls before discharge<br/>to grade is considered.</li> </ul> | Medium                  |
| Incomplete rehabilitation | Erosion and movement of sediment, potential adverse impact to water quality.                                                                                                                                                                                    | High                    | Decommissioning Rehabilitation Plan (including replanting of riparian and other erosion sensitive zones).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Low                     |







URS Australia Pty Ltd Level 16, 240 Queen Street Brisbane, QLD 4000 GPO Box 302, QLD 4001 Australia T: 61 7 3243 2111 F: 61 7 3243 2199

www.ap.urscorp.com

# Appendix E GLNG Marine Water Quality Report

URS

Ε

# Appendix F Site Assessment Notes

### **Catchment 1**

| Catchment Size:          | 0.137 km <sup>2</sup>                                          |     |      |  |  |
|--------------------------|----------------------------------------------------------------|-----|------|--|--|
| Average Channel Slope:   | 37 m/km                                                        |     |      |  |  |
| Catchment Storage:       | Considerable Surface Depressions, Overland Flow is significant |     |      |  |  |
| Catchment relief:        | Rolling With Slopes 1-4%                                       |     |      |  |  |
|                          | Q2                                                             | Q20 | Q100 |  |  |
| Duration (mins)          | 16.1                                                           |     |      |  |  |
| Intensity (mm)           | 91.0 154.0 206.0                                               |     |      |  |  |
| Flow (m <sup>3</sup> /s) | 1.3                                                            | 4.0 | 7.0  |  |  |

#### Table F-13 Catchment 1 Site Assessment

No site Assessment was undertaken in Catchment 1 as it is out with the facility footprint.



### **Catchment 2**

| Catchment Size:          | 0.327                                                             | km <sup>2</sup> |       |       |
|--------------------------|-------------------------------------------------------------------|-----------------|-------|-------|
| Average Channel Slope:   | 44 <i>m/km</i>                                                    |                 |       |       |
| Catchment Storage:       | Considerable Surface Depressions, Overland Flow is<br>significant |                 |       |       |
| Catchment relief:        | Hilly with average slopes 4-8%                                    |                 |       |       |
|                          | Q2                                                                |                 | Q20   | Q100  |
| Duration (mins)          | 21.9                                                              |                 |       |       |
| Intensity (mm)           |                                                                   | 80.0            | 135.0 | 181.0 |
| Flow (m <sup>3</sup> /s) |                                                                   | 2.8             | 8.8   | 15.6  |
| Depth (m)                |                                                                   | 0.24            | 0.41  | 0.55  |

#### Table F-14 Catchment 2 Site Assessment





| GLNG - DMPF – Surface Water Assessment -<br>Location A<br>Location Unnamed Drainage Feature Catchment                                                                                                                                  |                                                                                                                                                                                               |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Northing:                                                                                                                                                                                                                              | 7371475                                                                                                                                                                                       |  |  |  |
| <u>Easting:</u>                                                                                                                                                                                                                        | 315412                                                                                                                                                                                        |  |  |  |
| Site Description: Located<br>proposed DMPF, Unname<br>01 is a seasonal swampy<br>nature. Numerous small c<br>the swamp, however thes<br>and only flow when the sw<br>contains stagnant water a<br>established eucalypts.               | on the southern side of the<br>ed Drainage Feature No.<br>area and is unmodified in<br>hannels flow in and out of<br>e are ephemeral in nature<br>vamp fills. The swamp<br>nd large stands of |  |  |  |
| Channel Depth:                                                                                                                                                                                                                         | Up to 1.5m                                                                                                                                                                                    |  |  |  |
| Channel Width:                                                                                                                                                                                                                         | Up to 80m                                                                                                                                                                                     |  |  |  |
| Floodplain Slope:                                                                                                                                                                                                                      | L 1:50, R 1:50                                                                                                                                                                                |  |  |  |
| Bank Slope:                                                                                                                                                                                                                            | LB 1:50, RB 1:50                                                                                                                                                                              |  |  |  |
| Channel Banks: Swamp area is very stable with only<br>small channels flowing in and out of swamp showing<br>minor signs of erosion The swamp profile is<br>approximately convex section, with very mild slopes<br>without undergrowth. |                                                                                                                                                                                               |  |  |  |
| <u>Substrate Type</u> : The bed substrate is of low<br>compaction with >60% clays and silts present in the<br>swamp. The inflow and outflow channels contain<br>alluvial material with sands and gravels.                              |                                                                                                                                                                                               |  |  |  |
| <u>Channel Bed</u> : The channel bed is additionally<br>covered in silt, stagnant water and small and large<br>pieces of wooden debris.                                                                                                |                                                                                                                                                                                               |  |  |  |
| Water Quality: Ponded wa<br>and is milky in colour. The<br>neither oils nor odours from<br>sediment.                                                                                                                                   | ter has a high turbidity<br>site assessment detected<br>m the water or associated                                                                                                             |  |  |  |
| Floodplain: Woodland cur                                                                                                                                                                                                               | rently grazed by cattle.                                                                                                                                                                      |  |  |  |

#### Table F-15 Surface Water Assessment - Location A



### **Catchment 3**

#### Table F-16 Catchment 3 Site Assessment

| Catchment Size:          | 0.871                    | km <sup>2</sup>                           |       |  |  |
|--------------------------|--------------------------|-------------------------------------------|-------|--|--|
| Average Channel Slope:   | 25                       | m/km                                      |       |  |  |
| Catchment Storage:       | Well defined Syste       | Well defined System of small watercourses |       |  |  |
| Catchment relief:        | Rolling With Slopes 1-4% |                                           |       |  |  |
|                          | Q2                       | Q20                                       | Q100  |  |  |
| Duration (mins)          | 52.9                     |                                           |       |  |  |
| Intensity (mm)           | 51.0                     | 86.0                                      | 114.0 |  |  |
| Flow (m <sup>3</sup> /s) | 4.2                      | 13.2                                      | 23.1  |  |  |
| Depth (m)                | 0.30                     | 0.42                                      | 0.51  |  |  |





| GLNG - DMPF – Surface Water Assessment -                                                                                                                                         |                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Location B                                                                                                                                                                       |                                                                                        |
| Location Name Unnamed Drainage Feature<br>Catchment 3                                                                                                                            |                                                                                        |
| Northing:                                                                                                                                                                        | 7371614                                                                                |
| <u>Easting:</u>                                                                                                                                                                  | 317589                                                                                 |
| Site Description: Ephemeral Drainage line on south<br>east of facility. Part of Un-named catchment 3.<br>Vegetated with native grasses and some reeds,<br>open eucalypt woodland |                                                                                        |
| Channel Depth:                                                                                                                                                                   | 0.2m                                                                                   |
| Channel Width:                                                                                                                                                                   | 1m                                                                                     |
| Floodplain Slope:                                                                                                                                                                | L 1:50, R 1:50                                                                         |
| Bank Slope:                                                                                                                                                                      | LB 1:50, RB 1:50                                                                       |
| <u>Channel Banks:</u> Unmodifi<br>undefined mounding along<br>channels. Good bank stab                                                                                           | ed channels <u>.</u> Fairly<br>y various subtle U-shaped<br>ility and flat floodplain. |
| Substrate Type: Clayey M<br>greater than 60% fine sed<br>virtually absent. Cobble, p<br>not present.                                                                             | atrix Dominated with<br>iment, interstitial spaces<br>ebble and gravel fractions       |
| Channel Bed: Stable bed with low compaction of silts and clays.                                                                                                                  |                                                                                        |
| Water Quality: Ephemeral present                                                                                                                                                 | stream with no water                                                                   |
| Floodplain: No distinct flood plain                                                                                                                                              |                                                                                        |

#### Table F-17 Surface Water Assessment - Location B



Photo 1\_- Looking Upstream

Photo 2 - Looking Upstream

Photo 3 - Looking Downstream

#### Table F-18 Surface Water Assessment Location C

| GLNG - DMPF – Surface Water Assessment -                                                                                                                                                   |                                                                      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|
| Location C                                                                                                                                                                                 |                                                                      |  |
| Location Name Unnamed I<br>Catchment 3                                                                                                                                                     | Drainage Feature                                                     |  |
| Northing:                                                                                                                                                                                  | 7371470                                                              |  |
| Easting:                                                                                                                                                                                   | 315808                                                               |  |
| Site Description: Alluvial spla<br>ephemeral channel/watercou<br>track in south east of propos                                                                                             | ay at end of defined<br>urse. Adjacent existing site<br>ed facility. |  |
| Channel Depth:                                                                                                                                                                             | 0.2m                                                                 |  |
| Channel Width:                                                                                                                                                                             | 10m                                                                  |  |
| Floodplain Slope:                                                                                                                                                                          | L 1:30, R 1:40                                                       |  |
| Bank Slope:                                                                                                                                                                                | L 1:30, R 1:40                                                       |  |
| <u>Channel Banks:</u> Generally <u>Concave bank shape with</u><br>very low flat banks less than 1:10 slope                                                                                 |                                                                      |  |
| <u>Substrate Type</u> : Angular sediment with moderate deposition of well graded gravel material. 5-32% fine sediment, low availability of interstitial spaces.                            |                                                                      |  |
| <u>Channel Bed</u> : Defined channel fans out and sheet flow occurs with some infiltration into ground.                                                                                    |                                                                      |  |
| Water Quality: Ephemeral stream with no water present. Suspected area of groundwater connection and infiltration                                                                           |                                                                      |  |
| Floodplain: Symmetrical floodplain. Alluvial splay at<br>end of watercourse suggest connection with<br>groundwater at this point. Groundwater bore located<br>very close to this vicinity. |                                                                      |  |



#### Table F-19 Surface Water Assessment - Location D

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GLNG - DMPF – Surface Water Assessment -                 |                                                    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|--|
| State of the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Location D                                               |                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Location Unnamed Drainage Feature Catchment              |                                                    |  |
| A REAL PROPERTY AND A REAL | 3                                                        | 7074000                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Northing:                                                | 7371360                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Easting:                                                 | 316071                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Site Description: Wide sha<br>south of proposed facility | allow alluvial channel to<br>n broad wooded valley |  |





| Channel Depth:                                                                                                    | 0.5m                                                            |  |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|
| Channel Width:                                                                                                    | 10m variable                                                    |  |
| Floodplain Slope:                                                                                                 | L 1:20, R 1:20                                                  |  |
| Bank Slope:                                                                                                       | LB 1:50, RB 1:50                                                |  |
| <u>Channel Banks:</u> broad va<br>channel, but multiple smal<br>crossover                                         | Iley with no defined main<br>Il channels with significant       |  |
| Substrate Type: 5-32% fin<br>availability of interstitial sp<br>sandy gravel with modera                          | ne sediment, low<br>baces. Angular well graded<br>te compaction |  |
| <u>Channel Bed</u> : vegetated mid channel bars<br>throughout valley and interdispersed with alluvial<br>channels |                                                                 |  |
| Water Quality: Ephemeral                                                                                          | - none present                                                  |  |
| Floodplain: Broad woode plain                                                                                     | d valley no defined flood                                       |  |
| Photo 1 Looking Upstrea                                                                                           | am                                                              |  |
| Photo 2 - Looking Downstream                                                                                      |                                                                 |  |
| Photo 3 - Substrate                                                                                               |                                                                 |  |



#### Table 12-1 Surface Water Assessment - Location E



| GLNG - DMPF – Surface Water Assessment -                                                                                                                                                                                                                 |                        |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|
| Location E                                                                                                                                                                                                                                               |                        |  |
| Location Unnamed Drain                                                                                                                                                                                                                                   | nage Feature Catchment |  |
| 3                                                                                                                                                                                                                                                        |                        |  |
| Northing:                                                                                                                                                                                                                                                | 7371506                |  |
| <u>Easting:</u>                                                                                                                                                                                                                                          | 316106                 |  |
| Site Description: Drainage depression<br>approximately 10m downstream of intersection of<br>two small poorly defined drainage depressions.<br>Heavily vegetated banks and surrounding area.<br>Open eucalypt forest. Dense mid storey. In<br>catchment 3 |                        |  |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Channel Depth:                               | 0.25m                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------|
| State of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Channel Width:                               | 2m                        |
| The second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Floodplain Slope:                            | L 1:50, R 1:50            |
| AND A DESCRIPTION OF A | Bank Slope:                                  | LB 1:15, RB 1:20          |
| A CARLES CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                           |
| All and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Channel Banks:<br>Mederate to Good stability | ( Low flat banks, covored |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in leaf litter. Well establish               | ed vegetation in channel  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                           |
| AD SUP -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Substrate Type: 32-60% fi                    | ne sediment low           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | availability of interstitial sp              | aces. Sandy gravel with   |
| A CAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | low compaction                               |                           |
| Contraction of the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Channel Bed: vegetated a                     | nd poorly defined         |
| CHARLES SALES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Water Quality: Ephemeral                     | - none present            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                           |
| The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Floodplain: Poorly defined                   | approximately 10 to 15 m  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | wide                                         |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Photo 1 Looking Upstrea                      | ım 10m                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Photo 2 - Looking Upstrea                    | ım                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Photo 3 - Looking Downst                     | ream                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Photo 4 - Substrate                          |                           |

### **Catchment 4**

| Catchment Size:          | 0.692           | km <sup>2</sup>                           |       |  |
|--------------------------|-----------------|-------------------------------------------|-------|--|
| Average Channel Slope:   | 23              | m/km                                      |       |  |
| Catchment Storage:       | Well defined S  | Well defined System of small watercourses |       |  |
| Catchment relief:        | Rolling With SI | Rolling With Slopes 1-4%                  |       |  |
|                          | Q2              | Q20                                       | Q100  |  |
| Duration (mins)          |                 | 35                                        |       |  |
| Intensity (mm)           | 63.0            | 106.0                                     | 141.0 |  |
| Flow (m <sup>3</sup> /s) | 4.4             | 13.8                                      | 24.3  |  |
| Depth (m)                | 0.41            | 0.52                                      | 0.59  |  |

#### Table F-20 Catchment 4 Site Assessment





### Table F-21 Surface Water Assessment - Location F

| Location F         Location Unnamed Drainage Feature Catchment 4         Northing:       7371984         Easting:       316313         Site Description: Eroded ephemeral gully in catchment 4         Channel Depth:       2m         Channel Depth:       2m         Channel Depth:       2m         Channel Depth:       2m         Channel Width:       3-4m         Floodplan Slope:       Not defined         Bank Slope:       LB and RB both steeper than 1V:0.5H         Channel Banks:       Moderate bank stability with very steep exposed slopes of conglomerate and clayey soils containing roots.         Substrate Type: Open Framework: 0-5% fine sediment, high availability of interstital spaces. Angular sediment. Well graded gravel with both deposition and erosion zones         Channel Bed: Well defined channel bed with mid channel bars un-vegetated         Water Quality: No water present         Eloodplan: No defined floodplain as valley is steep, it is expected that the probability of the channel bark one thore.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ····································· | GLNG - DMPF – Surface Water Assessment -                                                                                                                                                                                                                                                                                                                           |                                            |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|
| Location Unnamed Drainage Feature Catchment 4         Northing:       7371984         Easting:       316313         Site Description: Eroded ephemeral gully in catchment 4         Channel Depth:       2m         Channel Depth:       2m         Channel Width:       3-4m         Floodplain Slope:       Not defined         Bank Slope:       LB and RB both steeper than 1V:0.5H         Channel Banks:       Moderate bank stability with very steep exposed slopes of conglomerate and clayey soils containing roots.         Substrate Type: Open Framework: 0-5% fine sediment, high availability of interstitial spaces. Angular sediment. Well graded gravel with both deposition and erosion zones         Channel Bed: Well defined channel bed with mid channel bars un-vegetated         Water Quality: No water present         Eloodplain: No defined floodplain as valley is steep, it is expected that the probability of the channel bars un-vegetated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | Location F<br>Location Unnamed Drainage Feature Catchment<br>4                                                                                                                                                                                                                                                                                                     |                                            |  |
| Northing:       7371984         Easting:       316313         Site Description: Eroded ephemeral gully in catchment 4         Channel Depth:       2m         Channel Width:       3-4m         Floodplain Slope:       Not defined         Bank Slope:       LB and RB both steeper than 1V:0.5H         Channel Banks:       Moderate bank stability with very steep exposed slopes of conglomerate and clayey soils containing roots.         Substrate Type: Open Framework: 0-5% fine sediment, high availability of interstitial spaces. Angular sediment. Well graded gravel with both deposition and erosion zones         Channel Bed: Well defined channel bed with mid channel bars un-vegetated         Water Quality: No water present         Eloodplain: No defined floodplain as valley is steep, it is expected that the probability of the channel bars un-vegetated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                    |                                            |  |
| Easting:       316313         Image: Step Description: Eroded ephemeral gully in catchment 4       Site Description: Eroded ephemeral gully in catchment 4         Image: Step Description: Eroded ephemeral gully in catchment 4       Channel Depth:       2m         Image: Step Description: Eroded ephemeral gully in catchment 4       Channel Depth:       2m         Image: Step Description: Eroded ephemeral gully in catchment 4       Channel Depth:       2m         Image: Step Description: Eroded ephemeral gully in catchment 4       Channel Depth:       2m         Image: Step Description: Eroded ephemeral gully in catchment 4       Channel Depth:       2m         Image: Step Description: Eroded ephemeral gully in catchment 4       Channel Depth:       2m         Image: Step Description: Eroded ephemeral gully in catchment 4       Channel Banks:       Moderate bank stability with very steep exposed slopes of conglomerate and clayey soils containing roots.         Image: Step Expected that high availability of interstitial spaces. Angular sediment, high availability of interstitial spaces. Angular sediment. Well graded gravel with both deposition and erosion zones       Channel Bed: Well defined channel bed with mid channel bars un-vegetated         Image: Step Expected that the probability of the channel bars un-vegetated       Eloodplain: No defined floodplain as valley is steep, it is expected that the probability of the channel bars                                                                                                                                                                                                                                                                                                                                                        |                                       | Northing:                                                                                                                                                                                                                                                                                                                                                          | 7371984                                    |  |
| Site Description: Eroded ephemeral gully in catchment 4         Channel Depth:       2m         Channel Depth:       3-4m         Floodplain Slope:       Not defined         Bank Slope:       LB and RB both steeper than 1V:0.5H         Channel Banks:       Moderate bank stability with very steep exposed slopes of conglomerate and clayey soils containing roots.         Substrate Type: Open Framework: 0-5% fine sediment, high availability of interstitial spaces. Angular sediment. Well graded gravel with both deposition and erosion zones         Channel Bed: Well defined channel bed with mid channel bars un-vegetated         Water Quality: No water present         Eloodplain: No defined floodplain as valley is steep, it is expected that the probability of the channel bars un-vegetated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | <u>Easting:</u>                                                                                                                                                                                                                                                                                                                                                    | 316313                                     |  |
| Channel Depth:       2m         Channel Width:       3-4m         Floodplain Slope:       Not defined         Bank Slope:       LB and RB both steeper<br>than 1V:0.5H         Channel Banks:       Moderate bank stability with very steep exposed<br>slopes of conglomerate and clayey soils containing<br>roots.         Substrate Type: Open Framework: 0-5% fine<br>sediment, high availability of interstitial spaces.<br>Angular sediment. Well graded gravel with both<br>deposition and erosion zones         Channel Bed:       Well defined channel bed with mid<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | Site Description: Eroded e catchment 4                                                                                                                                                                                                                                                                                                                             | ription: Eroded ephemeral gully in<br>It 4 |  |
| Channel Width:       3-4m         Floodplain Slope:       Not defined         Bank Slope:       LB and RB both steeper than 1V:0.5H         Channel Banks:       Moderate bank stability with very steep exposed slopes of conglomerate and clayey soils containing roots.         Substrate Type: Open Framework: 0-5% fine sediment, high availability of interstitial spaces. Angular sediment. Well graded gravel with both deposition and erosion zones         Channel Bed: Well defined channel bed with mid channel bars un-vegetated         Water Quality: No water present         Floodplain: No defined floodplain as valley is steep, it is expected that the probability of the channel bards up of th | Contraction of the second             | Channel Depth:                                                                                                                                                                                                                                                                                                                                                     | 2 <i>m</i>                                 |  |
| Floodplain Slope:       Not defined         Bank Slope:       LB and RB both steeper than 1V:0.5H         Channel Banks:       Moderate bank stability with very steep exposed slopes of conglomerate and clayey soils containing roots.         Substrate Type: Open Framework: 0-5% fine sediment, high availability of interstitial spaces. Angular sediment. Well graded gravel with both deposition and erosion zones         Channel Bed: Well defined channel bed with mid channel bars un-vegetated         Water Quality: No water present         Floodplain: No defined floodplain as valley is steep, it is expected that the probability of the channel back overtensing is unsylaw.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | Channel Width:                                                                                                                                                                                                                                                                                                                                                     | 3-4m                                       |  |
| Bank Slope:       LB and RB both steeper than 1V:0.5H         Channel Banks:       Moderate bank stability with very steep exposed slopes of conglomerate and clayey soils containing roots.         Substrate Type: Open Framework: 0-5% fine sediment, high availability of interstitial spaces. Angular sediment. Well graded gravel with both deposition and erosion zones         Channel Bed: Well defined channel bed with mid channel bars un-vegetated         Water Quality: No water present         Floodplain: No defined floodplain as valley is steep, it is expected that the probability of the channel bars un-vegetated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | Floodplain Slope:                                                                                                                                                                                                                                                                                                                                                  | Not defined                                |  |
| Channel Banks:<br>Moderate bank stability with very steep exposed<br>slopes of conglomerate and clayey soils containing<br>roots.Substrate Type: Open Framework: 0-5% fine<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | Bank Slope:                                                                                                                                                                                                                                                                                                                                                        | LB and RB both steeper<br>than 1V:0.5H     |  |
| <u>Water Quality</u> : No water present<br><u>Floodplain</u> : No defined floodplain as valley is steep,<br>it is expected that the probability of the channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | Channel Banks:Moderate bank stability with very steep exposedslopes of conglomerate and clayey soils containingroots.Substrate Type: Open Framework: 0-5% finesediment, high availability of interstitial spaces.Angular sediment. Well graded gravel with bothdeposition and erosion zonesChannel Bed: Well defined channel bed with midchannel bars un-vegetated |                                            |  |
| j Dank Overlopping is very low.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | <u>Water Quality</u> : No water present<br><u>Floodplain</u> : No defined floodplain as valley is steep<br>it is expected that the probability of the channel<br>bank overtopping is very low.                                                                                                                                                                     |                                            |  |

Photo 1\_- Looking Upstream Photo 2 - Looking Downstream 1 Photo 3 - Looking Downstream 2



### Table F-22 Surface Water Assessment - Location G



| GLNG - DMPF – Surface Water Assessment -    |         |  |
|---------------------------------------------|---------|--|
| Location G                                  |         |  |
| Location Unnamed Drainage Feature Catchment |         |  |
| 4                                           |         |  |
| <u>Easting:</u>                             | 7371667 |  |
| Northing:                                   | 316142  |  |
|                                             |         |  |
|                                             |         |  |
|                                             |         |  |



| N. AMPA |   |
|---------|---|
| ASCING  |   |
|         | M |
|         |   |

Site Description: Eroded channel at top of catchment gully head. Limited vegetation with channel. Bedrock outcrops. Ephemeral.

|                  | Channel Depth:                                                                                                                                | 1.5m                                           |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|
|                  | Channel Width:                                                                                                                                | 3-4m                                           |  |
| T.               | Floodplain Slope:                                                                                                                             | -                                              |  |
|                  | <u>Bank Slope:</u>                                                                                                                            | LB>1V:0.5H, RB 1V:0.5H                         |  |
| A NUMBER OF A    | Channel Banks:<br>Moderate bank stability with very steep exposed<br>slopes of rock and soils containing roots. Some<br>bank erosion evident. |                                                |  |
| ALL STARY IN ALL | Substrate Type: Mixture sediments to rocks 300n gravel and pebbles                                                                            | of medium to coarse<br>nm in diameter. Angular |  |
|                  | <u>Channel Bed</u> : 5-32% fine sediment, moderate<br>availability of interstitial spaces. Moderate bed<br>compaction. Areas of rock on bed.  |                                                |  |
|                  | Water Quality: Ephemer                                                                                                                        | al –no water present                           |  |
|                  | Floodplain: No distinct fl                                                                                                                    | oodplain in gully                              |  |
|                  | Photo 1 Looking Upstre                                                                                                                        | eam                                            |  |
|                  | Photo 2 - Looking Downstream                                                                                                                  |                                                |  |
|                  | Photo 3 - Looking Subst                                                                                                                       | rate                                           |  |
|                  |                                                                                                                                               |                                                |  |

#### Table F-23 Surface Water Assessment - Location H

|                     | GLNG - DMPF – Surface Water Assessment -                                                                                                                                                                                                                                                           |                                                     |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|                     | Location H<br>Location Unnamed Drainage Feature Catchment<br>4                                                                                                                                                                                                                                     |                                                     |
|                     |                                                                                                                                                                                                                                                                                                    |                                                     |
| the second second   | Northing:                                                                                                                                                                                                                                                                                          | 7372099                                             |
|                     | Easting:                                                                                                                                                                                                                                                                                           | 316257                                              |
|                     | Site Description: Confluen<br>catchment 4, east of facilit<br>incised channel.                                                                                                                                                                                                                     | ce of drainage paths in<br>y. Ephemeral stream with |
|                     | Channel Depth:                                                                                                                                                                                                                                                                                     | 1.8-2m                                              |
|                     | Channel Width:                                                                                                                                                                                                                                                                                     | 6m                                                  |
| alterna alternation | Floodplain Slope:                                                                                                                                                                                                                                                                                  | Not defined                                         |
|                     | Bank Slope:                                                                                                                                                                                                                                                                                        | LB undercut, RB vertical<br>with step               |
|                     | <u>Channel Banks:</u><br>Moderate bank stability with very steep exposed<br>slopes of rock and soils containing roots. Bank<br>erosion and undercutting evident.<br><u>Substrate Type</u> : Open framework: 0-5% fine<br>sediment, high availability of interstitial spaces. Well<br>graded gravel |                                                     |
|                     | <u>Channel Bed</u> : Moderate E<br>bed angular gravel presen                                                                                                                                                                                                                                       | rosion and Deposition in<br>It                      |
|                     | Water Quality: Ephemeral                                                                                                                                                                                                                                                                           | <ul> <li>no water present</li> </ul>                |
|                     | Floodplain: no distinct floo                                                                                                                                                                                                                                                                       | dplain in valley                                    |
|                     | Photo 1 Looking Upstream                                                                                                                                                                                                                                                                           |                                                     |
|                     | Photo 2 - Looking Upstream at tributary                                                                                                                                                                                                                                                            |                                                     |
|                     | Photo 3 - Looking Downstream                                                                                                                                                                                                                                                                       |                                                     |


# Appendix F

Photo 4 - Substrate



# **Catchment 5**

| Table F-24 | Catchment 5 Site | e Assessment |
|------------|------------------|--------------|
|------------|------------------|--------------|

| Catchment Size:          | 0.126                          | km <sup>2</sup>   |                              |  |  |
|--------------------------|--------------------------------|-------------------|------------------------------|--|--|
| Average Channel Slope:   | 59                             | m/km              |                              |  |  |
| Catchment Storage:       | Considerable Surface           | ce Depressions, C | Overland Flow is significant |  |  |
| Catchment relief:        | Hilly with average slopes 4-8% |                   |                              |  |  |
|                          | Q2                             | Q20               | Q100                         |  |  |
| Duration (mins)          | 10.7                           |                   |                              |  |  |
| Intensity (mm)           | 111.0                          | 189.0             | 254.0                        |  |  |
| Flow (m <sup>3</sup> /s) | 1.5                            | 4.7               | 8.5                          |  |  |
| Depth (m)                | 0.18                           | 0.29              | 0.37                         |  |  |



No site assessment was undertaken in catchment 5. Site observations were that catchment 6 has similar characteristics to catchment 5.

## **Catchment 6**

#### Table F-25 Catchment 6 Site Assessment

| Catchment Size:          | 0.210                                                          | km <sup>2</sup> |       |  |
|--------------------------|----------------------------------------------------------------|-----------------|-------|--|
| Average Channel Slope:   | 69 <i>m/km</i>                                                 |                 |       |  |
| Catchment Storage:       | Considerable Surface Depressions, Overland Flow is significant |                 |       |  |
| Catchment relief:        | Hilly with average slopes 4-8%                                 |                 |       |  |
|                          | Q2                                                             | Q20             | Q100  |  |
| Duration (mins)          |                                                                | 11.9            |       |  |
| Intensity (mm)           | 107.0                                                          | 182.0           | 244.0 |  |
| Flow (m <sup>3</sup> /s) | 2.4                                                            | 7.6             | 13.5  |  |
| Depth (m)                | 0.19                                                           | 0.31            | 0.41  |  |



# Appendix F





|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GLNG - DMPF – Surface Water Assessment -                                                                           |                |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Location I                                                                                                         |                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Location Unnamed Drainage Feature Catchment                                                                        |                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                  |                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>Northing:</u>                                                                                                   | 7372311        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Easting: 315055                                                                                                    |                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Site Description: Small meandering gully to north of facility in catchment 6. Medium density vegetation Ephemeral. |                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Channel Depth:                                                                                                     | Up to 0.5m     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Channel Width:                                                                                                     | 1-2m           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Floodplain Slope:                                                                                                  | L 1:10, R 1:10 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bank Slope:                                                                                                        | LB 1:2, RB 1:2 |  |  |  |
| and the second sec                                                                                                                                                                                                                                             | Channel Banks:                                                                                                     |                |  |  |  |
| A CONTRACTOR OF A CONTRACTOR O | Small mounded banks on hilly area with typical 4-                                                                  |                |  |  |  |
| A CARLES AND A CAR | 8% slopes. Channel in broad valley.                                                                                |                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |                |  |  |  |

<u>Substrate Type</u>: Conglomerate rock exposed in patches with some gravel. Generally sub-angular

<u>Channel Bed</u>: Average grassed and timbered land of medium soil texture. 5-32% fine sediment, moderate availability of interstitial spaces.

Water Quality: Ephemeral - no water present

<u>Floodplain</u>: no distinct flood plain, gully collects localised runoff from catchment only, with sheet flow occurring in catchment parallel to gully.

Photo 1\_- Looking Upstream

Photo 2 - Looking Downstream



## Appendix F

## **Catchment 7**

| Catchment Size:          | 0.186                                              | km <sup>2</sup>         |       |  |  |
|--------------------------|----------------------------------------------------|-------------------------|-------|--|--|
| Average Channel Slope:   | 0                                                  | m/km                    |       |  |  |
|                          | Considerable Surface Depressions, Overland Flow is |                         |       |  |  |
| Catchment Storage:       | significant                                        |                         |       |  |  |
| Catchment relief:        | Flat with Slopes 0-7                               | Flat with Slopes 0-1.5% |       |  |  |
|                          | Q2                                                 | Q20                     | Q100  |  |  |
| Duration (mins)          |                                                    | 35.0`                   |       |  |  |
| Intensity (mm)           | 63.0                                               | 106.0                   | 141.0 |  |  |
| Flow (m <sup>3</sup> /s) | 0.7                                                | 2.3                     | 4.1   |  |  |

### Table F-27 Catchment 7 Site Assessment

#### Table F-28 Surface Water Assessment - Location J



<u>Substrate Type</u>: Grey Cracked clay/estuarine mud. Tightly packed sediment, very hard to dislodge. >80% fine sediment no interstitial spaces

Channel Bed: n/a



<u>Water Quality</u>: Tidal – no water present

<u>Floodplain</u>: Flat estuarine flood plain subject to tidal inundation

Photo 1\_- Looking west south west

Photo 2 - Looking south west



# Appendix G Flood Assessment

To approximate the flood depths at the road crossing, a flood assessment of the five main drainage features, as identified in the flood hydrology Appendix F, has been undertaken.

The US Army Corps developed Hydrologic Engineering Centers River Analysis System, known commonly as HEC RAS, is a one-dimensional hydraulic estimation model. The hydraulic model was adopted for flood estimation of the 3 locations. The model inputs include geometry of the channel and floodplain, peak flows (from Table G-29) and representative hydraulic roughness coefficients.

Using a 12D digital terrain model (developed from 1m contour data), channel cross sections were extracted for each watercourse to HEC-RAS to form a simplified hydraulic model. The cross sections were further detailed with information gathered during the site visit, primarily providing channel definition. Once the series of cross-sections were developed for each assessment location, they were then exported to the HEC RAS to form a simple model of the natural channel topography.

Along with the cross-sectional data the geometric file requires a description of the bed, channel wall and floodplain roughness. Hydraulic roughness values (Mannings 'n') were adopted from hydraulic references based on field observations (see Table G-29 below):

| Surface Type                                                                                                | Roughness Value |  |  |
|-------------------------------------------------------------------------------------------------------------|-----------------|--|--|
| Floodplains                                                                                                 |                 |  |  |
| Light brush and trees, in winter                                                                            | 0.06            |  |  |
| Heavy stand of timber, a few down trees, little undergrowth                                                 | 0.08 – 0.1      |  |  |
| Main Channel                                                                                                |                 |  |  |
| Clean, winding, some pools and shoals, some weeds and stones                                                | 0.04- 0.045     |  |  |
| Clean, winding, some pools and shoals, some weeds and stones, lower stages, ineffective slopes and sections | 0.05            |  |  |
| Sluggish reaches, weedy, deep pools                                                                         | 0.07            |  |  |

#### Table G-29 Adopted Mannings 'n' Values

Sources: Chow, 1959, Open Channel Hydraulics, McGraw-Hill Book Company, Inc.

Each model contains two boundary conditions, an upstream flow boundary and a downstream water level boundary. The inflow values were taken from the peak flows determined in the rational method hydrological analysis (Table G-30) at each location. As the downstream environment would be commonly effected by the tidal level within North China Bay, the salt marsh/estuarine flats level was simplified and a normal depth downstream boundary was adopted based on the average gradient of the drainage feature gradient.

#### Table G-30 Predicted peak design flow for drainage features at the edge of the estuarine flat

| Catchment/Drainage<br>Feature | Catchment<br>Area (km²) | 2 Year ARI<br>Peak Flow<br>(m³/s) | <b>20 Year ARI</b><br>Peak Flow<br>(m <sup>3</sup> /s) | <b>100 Year</b><br><b>ARI</b><br>Peak Flow<br>(m <sup>3</sup> /s) |
|-------------------------------|-------------------------|-----------------------------------|--------------------------------------------------------|-------------------------------------------------------------------|
| Catchment 1                   | 0.137                   | 1.3                               | 4.0                                                    | 7.0                                                               |
| Catchment 2                   | 0.327                   | 2.8                               | 8.8                                                    | 15.6                                                              |
| Catchment 3                   | 0.871                   | 4.2                               | 13.2                                                   | 23.1                                                              |



| Catchment/Drainage<br>Feature                                               | Catchment<br>Area (km²) | 2 Year ARI<br>Peak Flow<br>(m <sup>3</sup> /s) | 20 Year ARI<br>Peak Flow<br>(m <sup>3</sup> /s) | <b>100 Year</b><br><b>ARI</b><br>Peak Flow<br>(m <sup>3</sup> /s) |
|-----------------------------------------------------------------------------|-------------------------|------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------|
| Catchment 4                                                                 | 0.692                   | 4.4                                            | 13.8                                            | 24.3                                                              |
| Catchment 5                                                                 | 0.126                   | 1.5                                            | 4.7                                             | 8.5                                                               |
| Catchment 6                                                                 | 0.210                   | 2.4                                            | 7.6                                             | 13.5                                                              |
| Catchment 7 –estuarine mudflat<br>(to proposed main embankment<br>location) | 0.186                   | 0.7                                            | 2.3                                             | 4.1                                                               |

The HEC RAS model was simulated using steady state conditions, due to the flat topographic nature of all the watercourses identified; subcritical flow conditions were also adopted.

At all locations, for all three events, the model predicted out of channel bank flooding to occur at either the 2year or 20 year ARI. Table G-31 below provides the flood depths and extents for each key watercourse location.

#### Table G-31 Predicted Flood Depths near start of Mudflat

| Name                           | 2yr ARI   | 20yr ARI  | 100yr ARI |
|--------------------------------|-----------|-----------|-----------|
|                                | Depth (m) | Depth (m) | Depth (m) |
| Unnamed Drainage Feature No. 2 | 0.24      | 0.41      | 0.55      |
| Unnamed Drainage Feature No. 3 | 0.30      | 0.42      | 0.51      |
| Unnamed Drainage Feature No. 4 | 0.41      | 0.52      | 0.59      |
| Unnamed Drainage Feature No. 5 | 0.18      | 0.29      | 0.37      |
| Unnamed Drainage Feature No. 6 | 0.19      | 0.31      | 0.41      |

Additionally rational method calculations were undertaken for the proposed catchment modification to catchment 3 and 4 after construction of the facility. These results are displayed in Table G-32 and show that the reduction catchment size causes the peak flows to increase due to the reduction in stream length and time of concentration.

#### Table G-32 Predicted peak design flow for modified catchments 3 and 4 at edge of facility

| Catchment/Drainage<br>Feature | Catchment<br>Area (km²) | 2 Year ARI<br>Peak Flow | 20 Year ARI<br>Peak Flow | 100 Year<br>ARI                  |
|-------------------------------|-------------------------|-------------------------|--------------------------|----------------------------------|
|                               |                         | (m³/s)                  | (m³/s)                   | Peak Flow<br>(m <sup>3</sup> /s) |
| Modified Catchment 3          | 0.588                   | 5.5                     | 17.6                     | 31.1                             |
| Modified Catchment 4          | 0.431                   | 5.1                     | 16.2                     | 28.9                             |



### Appendix G

### RORB

RORB (version 6) is an Australian hydrological modelling software package used for generating hydrographs, flood volumes and routing for rural and urban catchments. It is widely used in Australia and overseas. The site catchments were broken down into various areas and input into the RORB model. A summary of Key RORB parameters used are shown in Table G-33.

| Parameter             | Value |
|-----------------------|-------|
| kc Value (Weeks –QLD) | 1.40  |
| 'm' coefficient       | 0.8   |
| Initial Loss (mm)     | 15    |
| Continuing Loss (mm)  | 2.5   |

### Table G-33 RORB model Parameters

RORB was run using an initial/continuing loss model and due to the lack of available stream flow data was un-calibrated. Flows calculated were checked against rational method flows and found to be comparable.

A model was set up of the entire site area in both the existing conditions and with the proposed facility modifications to the site. The catchments were input as per the catchment plan in Figure 9-1 (excluding catchment 1), however the larger catchments were broken into sub areas. Catchment 3 was divided into 3 sub areas and catchment 4 was divided into 2 sub areas. It was found the critical time of concentration for the site as a whole was 1.5 hours and peak flows and flood volumes were generated for a range of return periods. Peak flood volume was generated for the long duration storm of 72 hours.

A summary of RORB results for the existing conditions model is displayed in Table G-34.

|                                  | 1:           | 2yr ARI                  | 1:20yr ARI   |                          | 1:100 ARI    |                          |
|----------------------------------|--------------|--------------------------|--------------|--------------------------|--------------|--------------------------|
|                                  | Peak<br>Flow | 72hr Peak<br>Volume (ML) | Peak<br>Flow | 72hr Peak<br>Volume (ML) | Peak<br>Flow | 72hr Peak<br>Volume (ML) |
| Catchment 3                      | 4.5          | 79                       | 10.1         | 300                      | 14.8         | 514                      |
| Catchment 4                      | 5.1          | 63                       | 11.5         | 238                      | 15.9         | 408                      |
| Combined Total<br>Site Catchment | 12.9         | 220                      | 28.7         | 828                      | 41.9         | 1420                     |

#### Table G-34 Existing Site Catchment RORB Results

As expected the rational method flows calculated for the catchments are higher and represent a more conservative estimate than the RORB model. The RORB model results provide a good estimation of flood volume across the site.

The proposed model was run with special storages at the locations of the future embankments across catchment 3 and 4 with different sub catchment areas reflecting the facility layout. This allowed an estimate of the flows into the modified catchments 3 and 4 (refer Figure 9-2) and the likely design flows required for the diversion pipe network. It also gave an estimate of flood volumes that will be required to be conveyed by the diversion system. A summary of these results is shown in Table G-35.

|                      | 1:2yr ARI |        | 1:20y     | r ARI  | 1:100 ARI |        |  |
|----------------------|-----------|--------|-----------|--------|-----------|--------|--|
|                      | Peak Flow | Volume | Peak Flow | Volume | Peak Flow | Volume |  |
| Modified Catchment 3 | 3.1       | 55     | 7.0       | 208    | 10.2      | 357    |  |
| Modified Catchment 4 | 4.9       | 39     | 10.5      | 148    | 14.0      | 254    |  |
| Facility Catchment   | 7.10      | 126    | 15.9      | 478    | 23.2      | 821    |  |

#### Table G-35 Proposed Site Catchment RORB Results

These results were used to calculate the 100 year Design Storage Allowance for the Facility for the 72 Hour duration storm. This was calculated to be 0.62 m as the Volume entering the facility is 821 ML and the Area of the facility is  $1,332 \text{ km}^2$ . This allowance does not include the runoff volumes from modified catchments 3 or 4 as these volumes will be stored in these catchments, or diverted around the facility directly into the bay.



# Appendix H Water Supply Dam Yield

An estimate of the potential catchment runoff yield to the future storages in catchment 3 and 4 was made to quantify the volume of water that may be available annually for harvesting and use in facility construction/operations.

The yield assessment is based on rainfall and evaporation statistics from Gladstone Radar Station. The yield assessment assumes the actual evaporation rate from the dam storage surface is 0.6 times the pan evaporation rate and that the runoff from the catchment available for collection and harvesting is 5 % of the actual rainfall on the catchment (Nelson, Design and Construction of Small Earth Dams, 1985).

A summary of the calculations can be seen in Table H-36 and H-37 for the respective catchments. Due to the sizeable catchments and annual rainfall, significant yields are available which would be sufficient for construction and operation of the site.



# Appendix H

|                             |        |        |       | Source  | Source : BOM Climate Data Online                                        |       |       |       |       |       |       |        |         |          |
|-----------------------------|--------|--------|-------|---------|-------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|--------|---------|----------|
| Proposed Dam Catchment Area | =      | 588    | На    | Evapor  | Evaporation data set used for Gladstone Radar Station between 1957-2008 |       |       |       |       |       |       |        |         |          |
| Proposed Dam Surface Area   | =      | 5      | На    | Rainfal | Rainfall data set used for Gladstone Radar Station between 1957-2009    |       |       |       |       |       |       |        |         |          |
|                             |        |        |       |         |                                                                         |       |       |       |       |       |       |        |         |          |
| Month                       | JAN    | FEB    | MAR   | APR     | MAY                                                                     | JUN   | JULY  | AUG   | SEPT  | ОСТ   | NOV   | DEC    | TOTALS  |          |
| Average Rainfall (mm)       | 143.40 | 143.40 | 82.60 | 46.40   | 59.60                                                                   | 38.90 | 34.40 | 31.20 | 26.20 | 62.30 | 74.20 | 128.80 | 871.40  | mm       |
| Mean Pan A Evaporation (mm) | 195.3  | 165.2  | 164.3 | 132     | 105.4                                                                   | 90    | 96.1  | 108.5 | 132   | 170.5 | 183   | 195.3  | 1737.6  | mm       |
| Evaporation Factor          | 0.6    | 0.6    | 0.6   | 0.6     | 0.6                                                                     | 0.6   | 0.6   | 0.6   | 0.6   | 0.6   | 0.6   | 0.6    | 0.6     | unitless |
| Estimated Evaporation (mm)  | 117.18 | 99.12  | 98.58 | 79.2    | 63.24                                                                   | 54    | 57.66 | 65.1  | 79.2  | 102.3 | 109.8 | 117.18 | 1042.56 | mm       |
| Runoff factor for Catchment | 0.05   | 0.05   | 0.05  | 0.05    | 0.05                                                                    | 0.05  | 0.05  | 0.05  | 0.05  | 0.05  | 0.05  | 0.05   | 0.05    | unitless |
| Dam Catchment Runoff (ML)   | 42.16  | 42.16  | 24.28 | 13.64   | 17.52                                                                   | 11.44 | 10.11 | 9.17  | 7.70  | 18.32 | 21.81 | 37.87  | 256.2   | ML       |
| Dam Evaporation Loss (ML)   | 5.86   | 4.96   | 4.93  | 3.96    | 3.96 3.16 2.70 2.88 3.26 3.96 5.12 5.49 5.86 52.1 ML                    |       |       |       |       |       |       |        |         |          |
| NET YIELD (average)         | 36.30  | 37.20  | 19.36 | 9.68    | 14.36                                                                   | 8.74  | 7.23  | 5.92  | 3.74  | 13.20 | 16.32 | 32.01  | 204.1   | ML       |

### Table H-36 Catchment 3 Storage yield



# Appendix H

|                             |        |        |       | Source | Source : BOM Climate Data Online                                        |       |       |       |       |       |       |        |         |          |
|-----------------------------|--------|--------|-------|--------|-------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|--------|---------|----------|
| Proposed Dam Catchment Area | =      | 431    | На    | Evapor | Evaporation data set used for Gladstone Radar Station between 1957-2008 |       |       |       |       |       |       |        |         |          |
| Proposed Dam Surface Area   | =      | 8      | На    | Rainfa | Rainfall data set used for Gladstone Radar Station between 1957-2009    |       |       |       |       |       |       |        |         |          |
|                             |        |        |       |        |                                                                         |       |       |       |       |       |       |        |         |          |
| Month                       | JAN    | FEB    | MAR   | APR    | MAY                                                                     | JUN   | JULY  | AUG   | SEPT  | ОСТ   | NOV   | DEC    | TOTALS  |          |
| Average Rainfall (mm)       | 143.40 | 143.40 | 82.60 | 46.40  | 59.60                                                                   | 38.90 | 34.40 | 31.20 | 26.20 | 62.30 | 74.20 | 128.80 | 871.40  | mm       |
| Mean Pan A Evaporation (mm) | 195.3  | 165.2  | 164.3 | 132    | 105.4                                                                   | 90    | 96.1  | 108.5 | 132   | 170.5 | 183   | 195.3  | 1737.6  | mm       |
| Evaporation Factor          | 0.6    | 0.6    | 0.6   | 0.6    | 0.6                                                                     | 0.6   | 0.6   | 0.6   | 0.6   | 0.6   | 0.6   | 0.6    | 0.6     | unitless |
| Estimated Evaporation (mm)  | 117.18 | 99.12  | 98.58 | 79.2   | 63.24                                                                   | 54    | 57.66 | 65.1  | 79.2  | 102.3 | 109.8 | 117.18 | 1042.56 | mm       |
| Runoff factor for Catchment | 0.05   | 0.05   | 0.05  | 0.05   | 0.05                                                                    | 0.05  | 0.05  | 0.05  | 0.05  | 0.05  | 0.05  | 0.05   | 0.05    | unitless |
| Dam Catchment Runoff (ML)   | 30.90  | 30.90  | 17.80 | 10.00  | 12.84                                                                   | 8.38  | 7.41  | 6.72  | 5.65  | 13.43 | 15.99 | 27.76  | 187.8   | ML       |
| Dam Evaporation Loss (ML)   | 9.37   | 7.93   | 7.89  | 6.34   | 6.34 5.06 4.32 4.61 5.21 6.34 8.18 8.78 9.37 83.4 ML                    |       |       |       |       |       |       |        |         |          |
| NET YIELD (average)         | 21.53  | 22.97  | 9.91  | 3.66   | 7.78                                                                    | 4.06  | 2.80  | 1.52  | -0.69 | 5.24  | 7.21  | 18.38  | 104.4   | ML       |

### Table H-37 Catchment 4 Storage Yield

# Appendix I Risk Assessment Scale

### Likelihood Scale

Likelihood is defined as a general description of probability and/or frequency (AS/NZ4360, 2004). Applied to this project it is the water quality impact within and surrounding the facility and using the following likelihood scale. The likelihood scale is presented in Table I-38.

| Level | Likelihood     | Description                                |
|-------|----------------|--------------------------------------------|
| 1     | Rare           | Will ONLY occur in exception circumstances |
| 2     | Unlikely       | Could occur but not expected               |
| 3     | Possible       | Could occur at some time                   |
| 4     | Likely         | Will probably occur in most circumstances  |
| 5     | Almost Certain | Expected to occur in most circumstances    |

#### Table I-38 Risk Assessment Likelihood Scale

### **Consequence Scale**

Consequence is defined as the outcome or impact of an event (AS/NZ4360, 2004). The consequence scale is presented in Table I-39.

| Level | Consequence   | Description                                                                                                    |
|-------|---------------|----------------------------------------------------------------------------------------------------------------|
| 1     | Insignificant | Trivial environmental impact                                                                                   |
| 2     | Minor         | Unreasonable interference with the environment.<br>(Results in minor illness or injury)                        |
| 3     | Moderate      | Clearly visible impact to aquatic ecosystem. Requires localised remediation.<br>(Results in illness or injury) |
| 4     | Major         | Damage to the environment that requires significant remediation.<br>(Results in serious illness or injury)     |
| 5     | Catastrophic  | Environmental damage is irreversible, of high impact or widespread.<br>(Results in death)                      |

#### Table I-39 Risk Assessment Consequence Scale

#### **Risk Rating Matrix**

A combination of the consequences and likelihood assigned to each measure to calculate the overall risk rating. The risk rating matrix is presented in Table I-40.



# Appendix I

|                | Consequences  |        |          |         |              |  |  |  |
|----------------|---------------|--------|----------|---------|--------------|--|--|--|
| Likelihood     | Insignificant | Minor  | Moderate | Major   | Catastrophic |  |  |  |
| Almost Certain | High          | High   | Extreme  | Extreme | Extreme      |  |  |  |
| Likely         | Medium        | High   | High     | Extreme | Extreme      |  |  |  |
| Possible       | Low           | Medium | High     | High    | Extreme      |  |  |  |
| Unlikely       | Low           | Low    | Medium   | High    | Extreme      |  |  |  |
| Rare           | Low           | Low    | Medium   | High    | Extreme      |  |  |  |

### Table I-40 Risk Assessment Risk Rating Matrix

# Appendix J Hazard Matrix



J

### Table J-41 Hazard Matrix

| Aspect                               | Potential Impact                                                                                                                                                                                                                                                                                                             | Inherent Risk<br>rating | Mitigation Strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Residual Risk<br>Rating |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Construction                         |                                                                                                                                                                                                                                                                                                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| Erosion and Sediment<br>Mobilisation | Sediment from earth moving and<br>stockpiling can enter surface water<br>runoff during rainfall events or blown by<br>wind and discharge to watercourses<br>leading to deleterious effects on water<br>quality and aquatic habitats.<br>Potential presence of high levels of<br>metals in soils that may enter<br>waterways. | High                    | <ul> <li>Appropriate design (erosion and scour protection) for sections of pipeline crossing active floodplain and main channel;</li> <li>Stormwater management (development, implementation and maintenance of plan), to include: <ul> <li>Erosion control and energy dissipation, watercourse stabilisation i.e. matting, riprap and gabions;</li> <li>Stormwater controls and upstream treatment, i.e. infiltration devices and vegetation filters;</li> <li>Stabilisation techniques, i.e. revegetation;</li> </ul> </li> <li>Construction to occur in dry season;</li> <li>Crossings to be at right angles to direction of flow;</li> <li>Stockpiling of topsoil located away from watercourses;</li> <li>Vehicle wash bay to be located away from watercourses;</li> <li>Minimise vegetation disturbance;</li> <li>Routine inspections; and</li> <li>Adopt controls to minimise risk of heavy metal runoff to surface waters</li> </ul> | Low                     |

| Aspect                                                         | Potential Impact                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inherent Risk<br>rating | Mitigation Strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Residual Risk<br>Rating |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Pollution                                                      | <ul> <li>Potentially contaminated drainage from<br/>fuel oil storage areas;</li> <li>Diesel and other petroleum-based fuels<br/>and lubricants used by excavation and<br/>construction machinery;</li> <li>Environmental and public health and<br/>safety issue; and</li> <li>Site excavation works may expose<br/>groundwaters which have been found to<br/>have high background levels of<br/>dissolved metals in both near-surface<br/>and deeper aquifers.</li> </ul> | High                    | <ul> <li>Chemical and fuel storage areas to be appropriately bunded;</li> <li>Spill cleanup kits in accordance with Australian Standards (AS1940 and AS3780) to be located in convenient locations, i.e. work vehicles;</li> <li>Refuelling to occur in bunded areas;</li> <li>Should a spill occur, ensure it is contained and does not enter drainage lines or watercourses;</li> <li>Follow all other operational procedures; and</li> <li>Any site dewatering activities will require treatment or other appropriate management controls before discharge to grade is considered</li> </ul> | Medium                  |
| Improper disposal of all construction wastes                   | Litter and other construction waste can<br>be washed into watercourses and ocean<br>during rain events or tidal inundation,<br>and impact receiving waters.                                                                                                                                                                                                                                                                                                               | Medium                  | Develop, implement and maintain Waste<br>Management/Disposal Plan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Low                     |
| Works adjacent to/within<br>drainage lines and<br>watercourses | Trenching at watercourse crossings and<br>vehicle access crossings can alter flow<br>characteristics.<br>Potential presence of high levels of<br>metals in soils that may enter<br>waterways.                                                                                                                                                                                                                                                                             | High                    | <ul> <li>Diversion of watercourse either by low flow diversion or coffer dam with pumping;</li> <li>Construction activities that will affect existing drainage channels and control measures must only be carried out after suitable stormwater management infrastructure has been implemented onsite;</li> <li>Minimal disturbance by heavy earth moving equipment;</li> <li>Vehicle crossings should be adequately designed for a range of flow conditions, including under road drainage; and</li> <li>Adopt controls to minimise risk of heavy metal runoff to surface waters</li> </ul>    | Low                     |

| Aspect                   | Potential Impact                                                                                                                                                                                                                                                | Inherent Risk<br>rating | Mitigation Strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Residual Risk<br>Rating |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Flooding                 | Possibility of out-of-bank/flash flood<br>rainfall event and regular tidal inundation<br>of site during construction causing<br>erosion and damage to erosion and<br>sediment control infrastructure.                                                           | High                    | <ul> <li>Schedule construction works appropriately during wet season and where practicable, limit works within the flood plain. However, if not possible, make sure a flood risk assessment has been conducted;</li> <li>Tide times to be monitored and planed for;</li> <li>Stormwater management e.g. drainage diversions and bunding; and</li> <li>Emergency response procedures and flood forecasting.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Medium                  |
| Lack of water supply     | Inadequate dust suppression, soil compaction and washdown.                                                                                                                                                                                                      | High                    | Develop, implement and maintain Water Supply Strategy and Emergency Plan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Medium                  |
| Contaminant Mobilisation | Runoff from potentially contaminated<br>drainage from fuel oil storage areas and<br>general washdown water entering into<br>drainage features and receiving waters,<br>altering the physical and chemical<br>quality of the water and receiving<br>environment. | High                    | <ul> <li>The construction of bunded storage areas for<br/>contaminants are recommended with spill cleanup kits in<br/>accordance with Australian Standards (AS1940 and<br/>AS3780) to prevent the contamination of surrounding<br/>surface runoff;</li> <li>The transfers of fuels and chemicals controlled and<br/>managed to prevent spillage outside bunded areas;</li> <li>Implement control so significant leakage/spillage is<br/>immediately reported and appropriate emergency clean-<br/>up operations implemented to prevent possible<br/>mobilisation of contaminants;</li> <li>Chemically contaminated areas are protected by<br/>rooving from rainfall to reduce the likelihood of<br/>overtopping;</li> <li>Bunds and sumps are frequently drained, and effluent is<br/>treated appropriately; and</li> <li>Any site dewatering activities will require treatment or<br/>other appropriate management controls before discharge<br/>to grade is considered.</li> </ul> | Medium                  |

| Aspect                                      | Potential Impact                                                                                                                                                                                                   | Inherent Risk<br>rating | Mitigation Strategy                                                                                                                                                                                                                                                                                                                                                                                                              | Residual Risk<br>Rating |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Operation                                   |                                                                                                                                                                                                                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |
| Erosion and Sediment<br>Mobilisation        | Permanent structures and minor earth<br>disturbance can result in localised<br>erosion and sediment mobilisation<br>leading to deleterious effects on water<br>quality and aquatic habitats.                       | Medium                  | <ul> <li>Stormwater management to include:</li> <li>Localised erosion control and energy dissipation measures;</li> <li>Stabilisation techniques.</li> <li>Routine inspection and maintenance of existing erosion and sediment control measures.</li> </ul>                                                                                                                                                                      | Low                     |
| Discharges from sediment ponds              | It is proposed to have two sediment<br>dams upstream of the DMPF.<br>Uncontrolled releases from these ponds<br>could allow process and contaminated<br>stormwater to enter drainage lines and<br>receiving waters. | Medium                  | Sediment dams will be designed to contain up to a10yr<br>ARI. Releases from ponds should be controlled and<br>should occur after the water has been tested and meets<br>license guidelines (which are to be determined)                                                                                                                                                                                                          | Low                     |
| Pollution                                   | Diesel and other petroleum-based fuels<br>and lubricants used by operational<br>vehicles and machinery entering<br>watercourses.                                                                                   | Medium                  | <ul> <li>Chemical and fuel storage areas to be appropriately bunded;</li> <li>Spill cleanup kits in accordance with Australian Standards (AS1940 and AS3780) to be located in convenient locations;</li> <li>Refuelling to occur in bunded areas;</li> <li>Should a spill occur, ensure it is contained and does not enter drainage lines or watercourses; and</li> <li>Follow all other site operational procedures.</li> </ul> | Low                     |
| Improper disposal of all operational wastes | Litter and other operational waste can be<br>washed into watercourses during rain<br>events and impact receiving waters.                                                                                           | Low                     | Develop, implement and maintain Waste<br>Management/Disposal Plan                                                                                                                                                                                                                                                                                                                                                                | Low                     |



| Aspect                                     | Potential Impact                                                                                                                                                                                                                                                                                                                                  | Inherent Risk<br>rating | Mitigation Strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Residual Risk<br>Rating |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Flooding                                   | Possibility of out-of-bank/flash flood<br>rainfall event causing failure of erosion<br>and sediment control infrastructure.<br>Blockage of Diversion drainage system<br>causing inundation of other<br>properties/catchments.                                                                                                                     | High                    | <ul> <li>Monitoring and maintenance of erosion and sediment<br/>control features and diversion infrastructure; and</li> <li>Emergency Response Procedures and flood forecasting<br/>(where practical).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                    | Medium                  |
| Lack of water supply                       | Inadequate dust suppression, soil compaction and washdown.                                                                                                                                                                                                                                                                                        | High                    | Develop, implement and maintain Water Supply Strategy and Emergency Plan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Medium                  |
| Decommissioning                            |                                                                                                                                                                                                                                                                                                                                                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
| Erosion and Sediment<br>Mobilisation       | <ul> <li>Erosion and movement of sediment<br/>can potentially have adverse impacts on<br/>water quality.</li> <li>Potential presence of high levels of<br/>metals in soils that may enter<br/>waterways.</li> </ul>                                                                                                                               | Medium                  | <ul> <li>Implement and maintain a Decommissioning<br/>Environmental Plan. Apply sediment and erosion control<br/>measures prior to earth moving activities; and</li> <li>Adopt controls to minimise risk of heavy metal runoff to<br/>surface waters</li> </ul>                                                                                                                                                                                                                                                                                                                                      | Low                     |
| Pollution                                  | <ul> <li>Diesel and other petroleum-based fuels<br/>and lubricants used by operational<br/>vehicles and machinery entering<br/>watercourses.</li> <li>Site excavation works may expose<br/>groundwaters which have been found to<br/>have high background levels of<br/>dissolved metals in both near-surface<br/>and deeper aquifers.</li> </ul> | Medium                  | <ul> <li>Chemical and fuel storage areas to be appropriately bunded;</li> <li>Spill cleanup kits in accordance with Australian Standards (AS1940 and AS3780) to be located in convenient locations, i.e. work vehicles;</li> <li>Refuelling to occur in bunded areas;</li> <li>Should a spill occur, ensure it is contained and does not enter drainage lines or watercourses;</li> <li>Follow all other site operational procedures; and</li> <li>Any site dewatering activities will require treatment or other appropriate management controls before discharge to grade is considered</li> </ul> | Low                     |
| Improper disposal of all demolition wastes | Impact to receiving waters.                                                                                                                                                                                                                                                                                                                       | Medium                  | Develop and implement a Waste Management/Disposal Plan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Low                     |

| Aspect                                                         | Potential Impact                                                                                                                                                                                                                                                                                                        | Inherent Risk<br>rating | Mitigation Strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Residual Risk<br>Rating |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Works adjacent to/within<br>drainage lines and<br>watercourses | Infilling on-site surface water bodies or<br>drainage lines can lead to potential loss<br>of water storage and can adversely<br>impact ecological habitats.<br>Potential presence of high levels of<br>metals in soils that may enter<br>waterways.                                                                     | High                    | <ul> <li>Diversion of drainage features before construction commences (for stable vegetated channels);</li> <li>Process area diversion (sediment basins and diversion drains);</li> <li>Decommissioning works that will affect existing drainage channels and control measures must only be carried out after suitable stormwater management infrastructure has been implemented on-site;</li> <li>Minimal number of passes by heavy earth moving equipment;</li> <li>Prior to decommissioning, development and implementation of monitoring program; and</li> <li>Adopt controls to minimise risk of heavy metal runoff to surface waters</li> </ul> | Medium                  |
| Flooding                                                       | Possibility of out-of-bank/flash flood<br>rainfall event exceeding capacity of the<br>storm water management system<br>resulting in non compliant offsite<br>discharges. Also, risk to construction<br>workers (H&S).<br>Blockage of Diversion drainage system<br>causing inundation of other<br>properties/catchments. | Medium                  | <ul> <li>Schedule decommissioning work appropriately during<br/>the wet season and try and work outside the flood plain<br/>to reduce risk from flooding and undertake a flood risk<br/>assessment has been conducted;</li> <li>Stormwater management e.g. drainage diversions and<br/>bunding; and</li> <li>Emergency response procedures and flood forecasting.</li> </ul>                                                                                                                                                                                                                                                                          | Medium                  |
| Lack of water supply                                           | Dust emissions and inadequate soil compaction and washdown, fire water.                                                                                                                                                                                                                                                 | High                    | Develop, implement and maintain Water Supply Strategy and Emergency Plan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Low                     |



| Aspect                    | Potential Impact                                                                                                                                                                                                                                                | Inherent Risk<br>rating | Mitigation Strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Residual Risk<br>Rating |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Contaminant Mobilisation  | Runoff from potentially contaminated<br>drainage from fuel oil storage areas and<br>general washdown water entering into<br>drainage features and receiving waters,<br>altering the physical and chemical<br>quality of the water and receiving<br>environment. | High                    | <ul> <li>The construction of bunded storage areas for<br/>contaminants are recommended with spill cleanup kits in<br/>accordance with Australian Standards (AS1940 and<br/>AS3780) to prevent the contamination of surrounding<br/>surface runoff;</li> <li>The transfers of fuels and chemicals controlled and<br/>managed to prevent spillage outside bunded areas;</li> <li>Implement control so significant leakage/spillage is<br/>immediately reported and appropriate emergency clean-<br/>up operations implemented to prevent possible<br/>mobilisation of contaminants;</li> <li>Chemically contaminated areas are protected by<br/>rooving from rainfall to reduce the likelihood of<br/>overtopping;</li> <li>Bunds and sumps are frequently drained, and effluent is<br/>treated appropriately; and</li> <li>Any site dewatering activities will require treatment or<br/>other appropriate management controls before discharge<br/>to grade is considered.</li> </ul> | Medium                  |
| Incomplete rehabilitation | Erosion and movement of sediment, potential adverse impact to water quality.                                                                                                                                                                                    | High                    | Decommissioning Rehabilitation Plan (including replanting of riparian and other erosion sensitive zones).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Low                     |





URS Australia Pty Ltd Level 16, 240 Queen Street Brisbane, QLD 4000 GPO Box 302, QLD 4001 Australia T: 61 7 3243 2111 F: 61 7 3243 2199

www.ap.urscorp.com