Attention Ajay Kapur
From Silver Yance
Date June 2021
Copies to Kiet Thai

1. Introduction

Jacobs has been engaged by UGL to undertake a desktop study to assess the existing flood conditions of the UGL Copperstring_2 (CS-2) Powerline. The main powerline alignment is between Mount Isa and Mulgrave and includes two spurs between Chumvale to Selwyn and from Mt James to Hughenden as shown in **Figure 1-1**.

Detailed CS-2 alignment maps are shown in **Appendix A**, including chainages and proposed tower locations.

Figure 1-1: UGL Coperstring-2 Powerline alignment

• The proposed main Powerline alignment from Mount Isa to Mulgrave is approximately parallel to the Flinders Highway and crosses several major and minor waterways. The length of this section is about 914 km.

- The Chumvale to Selwyn spur starts near Phosphate Hill and joins the Mt Isa to Mulgrave line at Chainage 98 km. This alignment covers a length of about 85 km.
- The Mt James to Hughenden spur starts near Porcupine and joins the main line at Chainage 491 km. This alignment covers and length of about 153 km.

The proposed powerline alignments traverse major floodplains, including the Leichardt River, Flinders River and Burdekin River basin floodplains.

This high-level assessment of existing flood risk is based on existing and publicly available data, in combination with simplified regional methods. The outputs of this study include approximate flood extents and hydraulic parameters such as peak flood depth and velocity for the 1% and 0.5% Annual Exceedance Probability (AEP) along the proposed alignment.

1.1 Hydraulic Limitations/ Assumptions

The desktop study has the following limitations and assumptions:

- The assessment is a high-level, desktop study based on regional relationships. The estimations of peak flows and resulting peak levels therefore carry significant uncertainty.
- The study uses the relatively course topographic data (SRTM 1 Sec DEM), which limits the accuracy of the estimation of peak flood depths and flow velocities.
- No hydrological and hydraulic modelling has been undertaken as part of this assessment.

1.2 Available information

Data used for this assessment is listed in Table 1-1.

No.	Data type	Description
1	30m DEM	Publicly available data, downloaded from ELVIS
		This was used to delineate catchments boundaries
2	SRTM Hydro_Enforced_1_Second	Publicly available, downloaded from AusMap
3	Legacy XYZ LiDAR data	Provided by UGL as XYZ data. That can be used to extract the river/creek cross-sections for hydraulic parameter calculations. This data was provided after the hydraulic calcs has been finalised.
4	Powerline Alignment	Provided by UGL, that included the alignment and the proposed powerline tower locations.
5	Streamflow Data	Extracted from QLD Government website (https://water- monitoring.information.qld.gov.au/) to undertake flood frequency analysis.
6	QLD Globe Aerial Imagery 2019	Used to derive the Manning's for each river crossing
6	Flood Maps	Queensland Recovery Authority (QRA) flood risk mapping

Table 1-1: Available data

2. Hydrological Assessment

2.1 General

A high-level hydrological assessment was undertaken to generate an approximate estimate of peak flood flows for 1%AEP and 0.5%AEP flood events.

2.2 Catchment Delineation

The proposed powerline alignment crosses numerous watercourses with a large range in catchment area upstream of the proposed crossing. The relevant waterway catchments were delineated based on 30m DEM obtained from Elevation Information System (ELVIS) data. An automated GIS technique was used to delineate the catchment boundaries, with some minor manual adjustments.

The waterway crossings were parametrised with catchment areas, river stream slopes at the location of the proposed crossing, and Manning's n roughness values. The relevant waterway catchment areas, ranging from 2km² up to approximately 36,000km², and the locations of major waterway streams are shown in **Figure 2-1**. The catchment details are summarised in **Table 2-1** for Mt Isa to Mulgrave Powerline alignment. **Table 2-2** shows the catchment parameters for Chumvale to Selwyn Powerline alignment, and **Table 2-3** shows the catchment parameters for Mt James to Hughenden Powerline alignment.

No	Powerline Chainage (m)	Waterway Name	Total Area (km²)	Stream Slope (%)	Manning's n
1	900	Creek Crossing	66	0.36	0.04
2	1,400	Leichhardt River	432	0.23	0.04
3	4,800	Creek Crossing	15	0.50	0.04
4	6,700	Creek Crossing	5	1.43	0.04
5	7,600	Creek Crossing	2	1.83	0.04
6	32,900	Leichhardt River (East Branch)	572	0.45	0.04
7	64,900	Creek Crossing	15	0.97	0.04
8	67,200	Corella River	475	0.28	0.04
9	101,500	Creek Crossing	4	0.38	0.04
10	108,500	Cloncurry River	1,431	0.10	0.04
11	148,300	Creek Crossing	290	0.05	0.04 - 0.05
12	152,500	Williams River	503	0.17	0.04
13	160,500	Creek Crossing	333	0.12	0.04 - 0.05
14	173,400	Fullarton River	683	0.12	0.04
15	184,100	Creek Crossing	50	0.18	0.04 - 0.05
16	194,700	Holy Joe Creek	363	0.12	0.04
17	199,800	Gidya Creek	1,535	0.08	0.04
18	208,700	Gilliat River	5,813	0.08	0.04
19	224,800	Sadowa Creek	909	0.02	0.04
20	235,200	Eastern Creek	2,090	0.04	0.04

Table 2-1: Catchment parameters for Mt Isa to Mulgrave Powerline waterway crossings

No	Powerline Chainage (m)	Waterway Name	Total Area (km²)	Stream Slope (%)	Manning's n
21	248,000	Julia Creek	842	0.04	0.04
22	253,700	Floodplain	20	0.17	0.04 - 0.05
23	290,665	Alick Creek	6,587	0.04	0.04 - 0.05
24	308,473	Alick Creek	1,224	0.04	0.04 - 0.05
25	346,810	Alick Creek	2,378	0.04	0.04 - 0.05
26	386,088	O'Connell Creek	1,269	0.08	0.04 - 0.05
27	428,600	Tributary Creek Crossing	42	0.18	0.04 - 0.05
28	431,714	Sloane Creek	784	0.06	0.04 - 0.05
29	450,861	Warianna Creek	1,252	0.06	0.04
30	451,098	Walker Creek	1,489	0.07	0.04
31	465,300	Tributary Creek Crossing	186	0.13	0.04 - 0.05
32	468,300	Tributary Creek Crossing	57	0.02	0.04 - 0.05
33	533,688	Skeleton Creek	51	0.10	0.04
34	542,557	Prairie Creek	120	0.13	0.04
35	560,714	Bullock Creek	964	0.13	0.04
36	584,802	Torrens Creek	755	0.18	0.04
37	620,200	Tributary Creek Crossing	416	0.25	0.04
38	626,000	Tributary Creek Crossing	547	0.25	0.04
39	631,143	Warrigal Ck	367	0.15	0.04
40	651,828	Cape River	1,242	0.14	0.04 - 0.05
41	670,918	Campaspe River	570	0.16	0.04 - 0.05
42	693,736	Homestead Creek	1,995	0.08	0.04 - 0.05
43	693,976	Balfe Creek	1,995	0.06	0.04 - 0.05
44	707,200	Creek Crossing	23	0.75	0.04 - 0.05
45	708,000	Creek Crossing	178	0.29	0.04 - 0.05
46	760,475	Burdekin River	36,381	0.02	0.04 - 0.05

Table 2-2: Catchment parameters for	or Chumvale to Selwyn Po	owerline waterway crossings
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·

No	Powerline Chainage (m)	Waterway Name	Total Area (km²)	Stream Slope (%)	Manning's n
1	16,000	Floodplain	-	-	-
2	17,100	Creek Crossing	213	0.26	0.04 - 0.05
3	21,500	Creek Crossing	43	0.31	0.04 - 0.05
4	24,400	Creek Crossing	11	0.43	0.04
5	32,300	Creek Crossing	6	1.00	0.04
6	39,712	Cloncurry River	3,255	0.13	0.04 - 0.05
7	49,800	Creek Crossing	254	0.20	0.04 - 0.05
8	68,700	Creek Crossing	77	0.18	0.04 - 0.05

No	Powerline Chainage (m)	Waterway Name	Total Area (km²)	Stream Slope (%)	Manning's n
9	71,169	Cloncurry River	969	0.16	0.04
10	124,900	Creek Crossing	93	0.25	0.04 - 0.05
11	133,883	Burke River	2,584	0.10	0.04 - 0.05
12	149,100	Creek Crossing	13	0.28	0.04

Table 2-3: Catchment	parameters for Mt	James to Huc	henden Powerlin	e waterwav	crossinas
	puruniceers for the	Sumes to mag	gilenaen i oneian	c matching	crossings

No	Powerline Chainage (m)	Waterway Name	Total Area (km²)	Stream Slope (%)	Manning's n
1	5,473	Dutton River	123	0.56	0.045
2	50,220	Betts Gorge Creek	714	0.30	0.045
3	56,792	Horse Creek	122	0.28	0.045
4	73,825	Porcupine Creek	2,144	0.09	0.045
5	78,704	Flinders River	2,543	0.15	0.045

Figure 2-1: UGL Coperstring_2 Powerline alignment Catchment areas

Detailed catchment maps by segments are shown in Appendix B.

2.3 Design rainfall

The Intensity-Frequency-Duration (IFD) rainfall intensities (ARR2019) were extracted from the ARR Data Hub for the project area at several locations along the SC-2 Powerline alignment as this will vary with the catchment geographic location. **Appendix E** shows the design rainfall intensities (mm/hr) for comparison at three locations along the CS-2 alignment.

The **Appendix E** tables show that the design rainfall intensities vary greatly along the CS-2 Powerline alignment; therefore it is recommended to extract the design rainfall parameters for each specific location, when the design rainfall IFD is required for power tower pad stormwater drainage design.

2.4 Design Discharge Estimation

Taking into consideration the high-level nature of this flood risk assessment, a regional method has been used to estimate the design peak discharges for the 1%AEP and 0.5%AEP flood events. The 1%AEP flood peak was estimated using the Bill Weeks (Jan 2011) 1%AEP regional flood frequency estimate. This method correlates the catchment area and the peak discharge for 1%AEP flood event as shown in **Figure 2-2**.

Queensland Regional Flood Frequency Curve for 1% AEP (Bill Weeks)

Figure 2-2: Queensland Regional flood frequency curve for 1%AEP event

The 0.5%AEP flood peak was estimated by factoring the 1%AEP flood peak by 1.2. This growth factor was estimated by comparing the 0.5%AEP flood peak to 1%AEP flood peak from the flood frequency analysis of recorded long-term annual flood peak data within the Cloncurry River, Flinders River and Burdekin River basins. However, it is strongly recommended that the design flood events should be estimated with proper hydrological model to reduce the uncertainty due to regional relationships.

Table 2-4 shows the design peak discharge estimates for the river basins along the Mt Isa to Mulgrave Powerline alignment.

No	Chainage	Waterway Name	Catchment Area	Peak Flow (m ³ /s)	
	(m)	-	(km²)	1% AEP	0.5% AEP
1	900	Creek Crossing	66	624	749
2	1,400	Leichhardt River	432	1,793	2,152
3	4,800	Creek Crossing	15	218	262
4	6,700	Creek Crossing	5	83	100
5	7,600	Creek Crossing	2	37	45
6	32,900	Leichhardt River (East Branch)	572	2,101	2,521
7	64,900	Creek Crossing	15	218	262
8	67,200	Corella River	475	1,892	2,271
9	101,500	Creek Crossing	4	68	82
10	108,500	Cloncurry River	1,431	3,517	4,220
11	148,300	Creek Crossing	290	1,434	1,721
12	152,500	Williams River	503	1,954	2,345
13	160,500	Creek Crossing	333	1,550	1,860
14	173,400	Fullarton River	683	2,321	2,785
15	184,100	Creek Crossing	50	534	641
16	194,700	Holy Joe Creek	363	1,626	1,951
17	199,800	Gidya Creek	1,535	3,658	4,390
18	208,700	Gilliat River	5,813	7,732	9,278
19	224,800	Sadowa Creek	909	2,725	3,269
20	235,200	Eastern Creek	2,090	4,351	5,221
21	248,000	Julia Creek	842	2,610	3,133
22	253,700	Floodplain	20	281	338
23	290,665	Alick Creek	6,587	8,295	9,953
24	308,473	Alick Creek	1,224	3,222	3,866
25	346,810	Alick Creek	2,378	4,679	5,614
26	386,088	O'Connell Creek	1,269	3,288	3,945
27	428,600	Tributary Creek Crossing	42	484	581
28	431,714	Sloane Creek	784	2,507	3,009
29	450,861	Warianna Creek	1,252	3,263	3,916
30	451,098	Walker Creek	1,489	3,596	4,315
31	465,300	Tributary Creek Crossing	186	1,117	1,341
32	468,300	Tributary Creek Crossing	57	575	690
33	533,688	Skeleton Creek	51	542	651
34	542,557	Prairie Creek	120	872	1,047
35	560,714	Bullock Creek	964	2,817	3,380
36	584,802	Torrens Creek	755	2,455	2,946

Table 2-4: Design Flood Peaks for Mt Isa to Mulgrave CS-2 powerline alignment

No	Chainage	Waterway Name	Catchment Area	Peak Flow (m³/s)	
	(m)		(km²)	1% AEP	0.5% AEP
37	620,200	Tributary Creek Crossing	416	1,756	2,108
38	626,000	Tributary Creek Crossing	547	2,048	2,458
39	631,143	Warrigal Ck	367	1,638	1,966
40	651,828	Cape River	1242	3,247	3,897
41	670,918	Campaspe River	570	2,097	2,516
42	693,736	Homestead Creek	1995	4,239	5,087
43	693,976	Balfe Creek	1995	4,239	5,087
44	707,200	Creek Crossing	23	318	382
45	708,000	Creek Crossing	178	1,090	1,308
46	760,475	Burdekin River	36,381	21,672	26,006

Table 2-5 shows the design peak discharge estimates for the river basins along the Chumvale to Selwyn Powerline alignment.

No	Chainage	Waterway Name	Catchment Area	Peak Flow (m³/s)	
	(m)	-	(km²)	1% AEP	0.5% AEP
1	16,000	Floodplain	-	-	-
2	17,100	Creek Crossing	213	1,206	1,447
3	21,500	Creek Crossing	43	491	589
4	24,400	Creek Crossing	11	166	200
5	32,300	Creek Crossing	6	98	117
6	39,712	Cloncurry River	3,255	5,581	6,697
7	49,800	Creek Crossing	254	1,331	1,597
8	68,700	Creek Crossing	77	681	817
9	71,169	Cloncurry River	969	2,825	3,390
10	124,900	Creek Crossing	93	757	908
11	133,883	Burke River	2,584	4,903	5,883
12	149,100	Creek Crossing	13	193	231

Table 2-5: Design Flood Peaks for Chumvale to Selwyn CS-2 powerline alignment

Table 2-6 shows the design peak discharge estimates for the river basins along the Chumvale to Selwyn Powerline alignment.

Table 2-6: Design Flood Peaks for ML James to Hughenden CS-2 powerline aughment	Table 2-6: Design	Flood Peaks for Mt	James to Hugh	enden CS-2 p	powerline alignment
---	-------------------	--------------------	---------------	--------------	---------------------

No	Chainage	Waterway Name	Catchment Area	Peak Flow (m ³ /s)		
	(m)		(km²)	1% AEP	0.5% AEP	
1	5,473	Dutton River	123	885	1,062	

No	Chainage	Waterway Name	Catchment Area Peak Flor		<i>w</i> (m³/s)	
	(m)		(km²)	1% AEP	0.5% AEP	
2	50,220	Betts Gorge Creek	714	2,379	2,854	
3	56,792	Horse Creek	122	880	1,056	
4	73,825	Porcupine Creek	2,144	4,415	5,297	
5	78,704	Flinders River	2,543	4,858	5,830	

3. Flood Risk Assessment

3.1 General

The flood risk assessment for the CS-2 powerline alignment was based on existing flood maps of the river systems that traverse the proposed power line and by estimating the flood depths and flow velocities for river/creek crossings along the powerline alignment.

The hydraulic analysis for the river crossings was undertaken to provide an indication of key flood parameters such as peak depth and peak velocity. However, it should be noted that there is significant uncertainty within these estimates, and more detailed hydrological and hydraulic modelling works are recommended for areas where increased accuracy is required.

3.2 Existing flood maps

QRA flood risk mapping was readily available for major rivers across the project area. The flood risks presented in these maps are in some locations based on flood modelling studies, such as the Burdekin River. However, the majority of the data presented in the mapping is based on anecdotal flood marks and satellite images of historical flood events. It should be noted that the flood risks presented in these maps have not been assigned a statistical likelihood (i.e. an AEP). Therefore, limited reliance should be placed on these maps. For the purpose of this assessment, the following has been used:

- For the SC-2 Powerline alignment across the Burdekin River floodplain, the Burdekin River 1% AEP flood map was used.
- For crossings outside the Burdekin River floodplain, anecdotal and/or GIS based flood maps without AEP was used. These included the floodplains of Flinders River, Suttor River and Leichhardt Rivers.

Figure 3-1 shows the QRA flood risk maps (<u>https://www.business.qld.gov.au/running-business/support-assistance/mapping-data-imagery/maps/flood-mapping</u>) for each major river/creek crossing along the powerline crossing. These are presented by segments in **Appendix C** to show with more detailed the flood extents.

Figure 3-1: QRA flood risk maps along the CS-2 powerline alignment

3.3 Hydraulic parameter calculations

The project scope required to estimate the hydraulic parameters including the water depth, average flow velocity and critical flow depth for 1%AEP and 0.5%AEP flood events. This was undertaken with the USA Federal Highways Administration (FMA) Hydraulic Toolbox Ver 5.1.1.0, Channel Analysis module. The critical depth is the depth of flow where energy is at a minimum for a particular discharge.

This module is the Manning Equation solver using as input data the river channel cross-section geometry, river reach slope at crossing, the channel and floodplain Manning's n values and the design discharges for required AEPs.

3.3.1 River Cross-section

The river cross-sections were extracted using the best available LiDAR data provided by UGL. **Figure 3-2** shows an example of river cross-section extracted for Burdekin River at CS-2 Powerline crossing.

Tailwater/Channel Cross Section

Figure 3-2: River Cross-section for Burdekin River at Powerline crossing

3.3.2 Manning's n Roughness

The Manning's 'n' roughness values were based upon land use in the area. The aerial photography from Queensland government (2019) was used to visually estimate the Manning's n values for each river/creek crossing. These varied usually between 0.04 in the river channel and 0.05 to 0.06 in the floodplain or overbank areas.

Table 3-1 shows the roughness "n" applied to each land use. The chosen Manning's (n) value for the watercourse was based on Brisbane City Council's Natural Channel Design guidelines.

No	Manning's n	Description
1	0.035	Kept grass / Parkland / Cleared
2	0.045	Unkept grass / Cleared / Very sporadic shrubs
3	0.06	Waterways / channels – minimal vegetation
4	0.07	Open pervious areas, minimal vegetation (grassed)
5	0.09	Heavy density vegetation
6	0.05	Roadside open drains

Table 3-1: Manning's n surface roughness values

3.4 Hydraulic analysis results

3.4.1 Hydraulic Toolbox results

Figure 3-3 shows the Hydraulic calculations results as an example for Burdekin River crossing. **Figure 3-3** shows the hydraulic analysis calculation example for Burdekin River crossing for 1%AEP flood event.

H - Aranie Institue Kungelin Envoluent (H) File Doplay Calculators Profiles Ex J J A (P) St Unite (Melinc) Fitwis Profile (socionely) Kitwa Portie (socionely) Kitwa Por	Rome, realize Provid) P	ac		- 0
		Judga lie Toolhee P		
Project - Unthled Burdskin River 100V Burdskin River 200V Grannel Analysis		Gardinas, Bolibox e	J.	
85.ndekin 810.67 100 (1482	28 // // //	Energia Contra - Usidate che la più fui optione	- 10° ×
Type: Discer Socien Deline Sing Stopp, 12 (1) 0.0 H. 7V Sing Stopp, 12 (1) 0.00 H. 7V France Classical H. 7V Harrowski (100) Uning Toto, 12 (200) Uning Toto, 12 (200) Line If Class France 12 (572.00) (cma)	Pearmeter Pery Deph Jeep C Tow Weited Pranteer Hocket Pradou Average Velocity TrapAdm(1) Procek Numbe Dince Depth Dince Spep Dince Spep Discus Spep Discus Spep Discus Spep Discus Spep Discus Spep Discus Spep Discus Avg Shee Stress Discus Avg Shee Stres	Vabe Uol 21572 cms 21142 m 13313 m 2 1720.9. m 3085 m 1590 m/5 17190 m 1590 m/5 17190 m 175 10681 m 3388 m/s 300000 m/m 84.814 m 07.005 N/m 2 18.228 M/m 2 Uolfer	240 235 225 225 210 210 210 210 210 210 210 210 210 210	
C Enter Depth: 21,742 Im)	Antikas Hougeness	3052		
Plet Consult Causes) DK	1 Care		

Figure 3-3: Hydraulic analysis results for Burdekin River at Powerline crossing

3.4.2 Hydraulic analysis results for CS-2 Powerline alignment

Table 3-2 below shows the hydraulic analysis results for the CS-2 Powerline alignment from Mt Isa to Mulgrave.

No	Chainage	Waterway Name	Water l (m	Depth ı)	Ave fl vel (n	erage low ocity n/s)	Critica (al Depth (m)	Flood Extent	Number of Affected Towers
	(m)		1% AEP	0.5% AEP	1% AEP	0.5% AEP	1% AEP	0.5% AEP	(m)	(-)
1	900	Creek Crossing	1.8	1.9	1.7	1.8	1.2	1.4	400	1
2	1,400	Leichhardt River	3.4	3.6	1.6	1.8	2.4	2.6	500	2
3	4,800	Creek Crossing	1.2	1.3	1.3	1.4	1.0	1.0	800	2
4	6,700	Creek Crossing	0.6	0.7	1.7	1.8	0.5	0.6	900	2
5	7,600	Creek Crossing	0.7	0.8	1.8	1.8	0.7	0.8	300	1
6	32,900	Leichhardt River (East Branch)	5.0	5.2	2.5	2.6	4.4	4.6	500	1
7	64,900	Creek Crossing	1.5	1.7	2.2	2.3	1.4	1.5	800	1
8	67,200	Corella River	3.7	4.0	2.1	2.2	2.6	2.8	800	3
9	101,500	Creek Crossing	0.6	0.6	0.8	0.9	0.4	0.4	2,500	5
10	108,500	Cloncurry River	6.6	7.1	1.8	1.9	4.0	4.3	6,900	13
11	148,300	Creek Crossing	3.1	3.3	0.8	0.8	1.6	1.8	2,600	6
12	152,500	Williams River	4.1	4.2	1.0	1.1	3.0	3.2	1,500	4

Table 3-2: Hydraulic parameters for CS-2 Power Alignment from Mt Isa to Mulgrave

No	Chainage	Waterway Name	Water Depth (m)		Average flow velocity (m/s)		Critical Depth (m)		Flood Extent	Number of Affected Towers
	(m)	-	1% AEP	0.5% AEP	1% AEP	0.5% AEP	1% AEP	0.5% AEP	(m)	(-)
13	160,500	Creek Crossing	3.0	3.2	0.9	0.9	2.2	2.3	1,800	4
14	173,400	Fullarton River	2.7	2.8	0.9	1.0	1.9	1.9	3,500	6
15	184,100	Creek Crossing	1.6	1.8	1.0	1.0	1.2	1.2	1,700	4
16	194,700	Holy Joe Creek	2.5	2.6	1.0	1.1	1.7	1.8	1,400	3
17	199,800	Gidya Creek	2.6	2.7	0.7	0.7	1.7	1.8	7,100	13
18	208,700	Gilliat River	3.5	3.7	1.1	1.1	2.0	2.1	8,000	14
19	224,800	Sadowa Creek	3.8	4.0	0.5	0.5	1.9	2.1	9,700	16
20	235,200	Eastern Creek	4.3	4.6	0.8	0.9	2.3	2.5	4,300	10
21	248,000	Julia Creek	3.3	3.4	0.7	0.7	1.8	2.0	3,200	6
22	253,700	Floodplain	1.6	1.7	0.8	0.8	1.1	1.2	2,400	4
23	290,665	Alick Creek	4.7	4.9	0.8	0.8	2.6	2.8	20,300	29
24	308,473	Alick Creek	0.6	2.9	0.6	0.6	1.6	1.7	2,100	10
25	346,810	Alick Creek	3.9	4.1	0.8	0.8	2.1	2.2	8,200	15
26	386,088	O'Connell Creek	4.2	4.4	1.0	1.1	2.9	3.0	12,100	14
27	428,600	Tributary Creek Crossing	1.5	1.6	0.8	0.9	1.1	1.1	600	1
28	431,714	Sloane Creek	3.5	3.7	0.8	0.8	2.4	2.4	3,200	5
29	450,861	Warianna Creek	3.5	3.6	0.8	0.9	2.2	2.3	2,700	5
30	451,098	Walker Creek	3.4	3.7	0.9	0.9	2.3	2.4	8,300	15
31	465,300	Tributary Creek Crossing	2.7	2.9	1.2	1.3	1.6	1.7	600	2
32	468,300	Tributary Creek Crossing	2.8	3.0	0.5	0.5	1.2	1.3	2,700	6
33	533,688	Skeleton Creek	2.3	2.5	0.8	0.9	1.2	1.3	400	2
34	542,557	Prairie Creek	1.7	1.8	0.8	0.8	1.1	1.1	1,640	4
35	560,714	Bullock Creek	6.1	6.6	1.9	2.0	3.9	4.2	500	1
36	584,802	Torrens Creek	5.8	6.1	1.9	2.0	3.7	4.0	1,400	1
37	620,200	Tributary Creek Crossing	4.0	4.4	2.2	4.2	2.9	3.1	1,800	2
38	626,000	Tributary Creek Crossing	3.9	4.3	2.2	2.3	2.7	3.0	2,500	4
39	631,143	Warrigal Ck	4.1	4.2	1.3	1.3	3.0	3.1	2,100	5
40	651,828	Cape River	4.1	4.3	1.3	1.4	3.0	3.2	2,400	5
41	670,918	Campaspe River	2.6	2.7	1.2	1.2	1.8	1.9	1,800	6
42	693,736	Homestead Creek	2.8	3.0	0.9	0.9	1.7	1.8	8,900	17
43	693,976	Balfe Creek	2.9	3.1	0.8	0.8	1.7	1.8	2,900	6

No	Chainage	Waterway Name	Water I (m	Depth I)	Ave fi vel (n	erage low ocity n/s)	Critica	al Depth (m)	Flood Extent	Number of Affected Towers
	(m)		1% AEP	0.5% AEP	1% AEP	0.5% AEP	1% AEP	0.5% AEP	(m)	(-)
44	707,200	Creek Crossing	1.2	1.2	1.5	1.6	1.0	1.0	600	2
45	708,000	Creek Crossing	3.2	3.4	1.6	1.7	2.6	2.8	2,100	3
46	760,475	Burdekin River	21.1	22.3	1.6	1.6	10.7	11.7	12,400	90

Table 3-3 below shows the hydraulic analysis results for the CS-2 Powerline alignment from Chumvale to Selwyn.

No	Chainage	Waterway Name	Wa Dep	ater th (m)	Average Water Depth (m/s)		Critical	Depth (m)	Flood Extent	Affected Towers
(-)	(m)		1% AEP	0.5% AEP	1% AEP	0.5% AEP	(-)	0.5% AEP	(m)	(-)
1	16,000	Floodplain	0.0	0.0	0.0	0.0	0.0	0.0	400	1
2	17,100	Creek Crossing	3.4	3.6	1.8	1.9	2.4	2.8	500	1
3	21,500	Creek Crossing	1.8	1.9	1.4	1.5	1.3	1.4	370	1
4	24,400	Creek Crossing	1.6	1.7	1.4	1.4	1.2	1.3	170	1
5	32,300	Creek Crossing	0.8	0.9	1.5	1.6	0.7	0.8	140	1
6	39,712	Cloncurry River	6.6	7.1	2.1	2.2	4.5	4.8	4,200	7
7	49,800	Creek Crossing	4.4	4.7	1.9	2.0	3.1	3.3	400	1
8	68,700	Creek Crossing	1.5	1.6	1.0	1.0	0.9	1.0	3,000	4
9	71,169	Cloncurry River	4.0	4.4	2.0	2.1	2.4	2.7	1,600	2
10	124,900	Creek Crossing	1.7	1.9	1.3	1.4	1.2	1.3	590	2
11	133,883	Burke River	4.0	4.2	1.0	1.0	2.9	3.0	3,900	8
12	149,100	Creek Crossing	1.1	1.2	0.9	0.9	0.7	0.8	422	1

Table 3-3: Hydraulic parameters for CS-2 Power Alignment from Chumvale to Selwyn

Table 3-4 below shows the hydraulic analysis results for the CS-2 Powerline alignment from Mt James to Hughenden.

No	Chainage	Waterway Name	Wa Dept	ater th (m)	Average Water Depth (m/s)		Critical Depth (m)		Flood Extent	Affected Towers
(-)	(m)	-	1% AEP	0.5% AEP	1% AEP	0.5% AEP	1% AEP	0.5% AEP	(m)	(-)
1	16,000	Floodplain	2.9	3.1	2.2	2.3	2.3	2.5	550	1
2	17,100	Creek Crossing	6.9	7.2	2.4	2.5	5.3	5.6	400	2
3	21,500	Creek Crossing	2.3	2.6	1.6	1.7	1.5	1.6	350	2
4	24,400	Creek Crossing	3.3	3.4	2.0	2.1	2.8	3.0	1,710	6
5	32,300	Creek Crossing	4.0	4.1	1.0	1.1	2.9	3.1	3,890	15

Table 3-4: Hydraulic	narameters for CS-2 Powe	or Alianment from I	At James to Hughenden
Table 5-4. Hyuraulic	parameters for CS-2 Powe	er Augnment from r	MC James to Hughenden

4. Flood risk analysis

4.1 General

The flood risk for specific infrastructure is quantified by considering both peak flood depth and velocity. It is important to understand the relative degree of hazard and the underlaying flood behaviour causing the hazard (e.g. high depth, high velocity, depth and velocity combined), as these may require different mitigation management approaches and applicable design standards. **Table 4-1** shows the risk categories based on flow velocities (Australian Institute for Disaster Resilience, 2014). This table is indicative only for flood risk matrix assessment and cannot be used for design.

Table	4-1:	Flood	risk	categories
-------	------	-------	------	------------

No	Velocity Range (m/s)	Risk Category
1	0 - 1	Low
2	1 - 2	Medium
3	2 - 3	High
4	>3	Very high

ARR 2019 recommends considering constructing a purpose-built structure that is an appropriately engineered structure specifically designed to withstand the full range of anticipated flood forces including:

- Hydrostatic forces: resulting from standing water or slow-moving flow around the structure.
- **Buoyant forces**: due to displaced volume of water.
- Hydrodynamic forces: arising from moderate-to-high-velocity water flow around the structure.
- Impulsive Forces: caused by the leading edge of the water impacting the structure.

- **Uplift forces**: on elevated floors of a structure that are submerged during a flood event.
- Debris Impact Forces: generated by floating debris colliding with the structure.
- **Damming of Waterborne Debris**: due to the accumulation of debris on the upstream side of the structure, which results in an increase in the hydrodynamic force.
- Wave actions: from wind and waves; and
- Erosion and Scour: due to flood actions such as flow velocities and shear stresses.

4.2 CS-2 powerline towers flood risk assessment

A vast area along the study corridor is inundated by overland flows even during the frequent flood events. A typical flood extent for the study area is presented in Figure 4-1, for 1% AEP flood event for the Burdekin River. The flood extents for the existing conditions from QRA are provided in Appendix D in several segments to appreciate better the flood risk areas.

The results of hydraulic analysis show that the average flow velocities for 1%AEP event can vary from less than 1m/s to 2.5m/s whereas for the 0.5%AEP event can vary up to 4.2m/s. The highest average flow velocities are localised in the main river channels whereas in the floodplain/overbank velocities are generally less than 1m/s.

To undertake a proper flood risk analysis for the powerline towers a flood modelling work is required using 1d/2d models such as TUFLOW. At this stage the nominated flood risk areas were defined taking into consideration the flood extent across the floodplains. For example, the powerline corridor across the Burdekin River floodplain is considered as high flood risk area as show in **Figure 4-1**.

Figure 4-1: 1% AEP flood extent for the Burdekin River (QRA)

The areas in between the flood extents has been classified as low flood risk areas, the flood risk maps are shown in **Appendix D**.

This flood risk classification will identify locations with a higher flood risk which may benefit from a detailed flood risk investigation. More detailed flood modelling study would also allow to assess the

flooding impact of the proposed CS-2 Powerline tower impact on the existing conditions. The results may be required for the environmental impact assessment and the relevant government approvals.

5. Conclusion and Recommendations

5.1 Conclusions

The UGL Copperstring-2 Powerline project traverses major river basin floodplain including the Leichhardt River, Cloncurry River, Flinders River and Burdekin River.

- The proposed main Powerline alignment from Mount Isa to Mulgrave is approximately parallel to the Flinders Highway and crosses about 46 major and medium size waterways. The number of affected towers is about 371.
- The Chumvale to Selwyn section starts near Phosphate Hill and joins the Mt Isa to Mulgrave line at Chainage 98 km and crosses about 12 major and medium size waterways. The number of affected towers is about 30.
- The Mt James to Hughenden section starts near Porcupine and joins the main line at Chainage 491 km and crosses about 5 major and medium size waterways. The number of affect towers are about 26.

The high-level hydraulic analysis identified about 63 major and medium size watercourse crossings and provided indicative flood depths and average flow velocities for each crossing.

Due to the significant uncertainty around the provided estimate, all river crossings have been classified to fall within the high-risk area, and the areas in between those to be within the low risk area. The current level of study does not permit to identify areas that are at no risk of flooding.

This report is a high-level flood risk assessment only that can be used to assess the relative risks and safety matrix of powerline towers located within the floodplain areas.

5.2 Recommendations

The following are the recommendations for next stage:

- Update the high-level assessment hydraulic calculations (Table 3-2, Table 3-3 and Table 3-4) using the UGL latest LiDAR data.
- Review the existing TMR Flinders Highway flood models to assess the model area of coverage that can be used in the next stage of the project.
- Undertake targeted hydrological and 2d hydraulic modelling for high flood risk areas.
- Assess the scour depts for each tower located within the high flood risk area. This task can only be completed when the flood modelling works are commissioned.
- Assess the flooding impacts of the proposed powerline towers for environmental approvals. This task can only be completed when the flood modelling works are commissioned.

6. References

AusMap - http://services.ga.gov.au/gis/services/DEM_SRTM_1Second_Hydro_Enforced/MapServer/WCSServer?

Australian Institute for Disaster Resilience. Australian Disaster Resilience Handbook – Technical flood risk management guideline: Flood Hazard, 2014.

Ball J, Babister M, Nathan R, Weeks W, Weinmann E, Retallick M, Testoni I, (Editors). 2019. Australian Rainfall and Runoff: A Guide to Flood Estimation, Commonwealth of Australia. Guideline 6-7.

Bureau of Meteorology (BOM) Design Rainfall Data System. 2021. Accessed online at: http://www.bom.gov.au/water/designRainfalls/revised-ifd/ on 24/03/2021.

ELVIS – https://elevation.fsdf.org.au/

Palmen LB, Weeks W.D, Regional Flood Frequency for Queensland the Quantile Regression Technique. Australian Journal of Water Resources, Jan 2011.

Queensland Government Imagery

qldspatial.information.qld.gov.au/catalogue/custom/search.page?q="Queensland%20floodplain%20 assessment%20overlay" (2019).

Queensland Reconstruction Authority (QRA) website - https://www.business.qld.gov.au/running-business/support-assistance/mapping-data-imagery/maps/flood-mapping.

USA Federal Highways Administration (FMA), Hydraulic Toolbox Ver 5.1.1.0, May 2021.

Appendix A: UGL CS-2 Powerline Alignment

	A UGL Coperstring 2
	Powerline Alignment
NESIA Projec Locatio	SITE LOCATION
LEGEND	1
— Wa	atercourse
• To	wer Locations
— Мо	ount Isa to Mulgrave
Ch	uvale to Selwyn
— Mt	James to Hughenden
Ch	ainage at 20 KM Interval
	$1 \operatorname{cm} = 8,110 \operatorname{m}$ $0 6,000 \ 12,000 \ \mathrm{m}$
F	Coordinate System: GDA 1994 MGA Zone 55 Projection: Transverse Mercator Datum: GDA 1994
PROJECT NAME PROJECT # DRAWING NO DATE CREATED BY PAGE SIZE	UGL Powerline 18373700 1 5/26/2021 KavanekarR A3
SOURCES: 1. Localities, Roa Queensland (Depar	I ds, LGA, Waterways, Waterbody ◎ QLD Spatial Catalogue, State of rtment of Natural Resources, Mines and Energy) 2018
DISCLAIMER: Jacobs All Rights R contained on this is sources - no warrar Any reliance place accuracy of all infor	teserved. While all reasonable care has been taken to ensure the information map is up to date and accurate, this map contains data from a number of thy is given that the information contained on this is free from error or omission. d on such information shall be at the sole risk of the user. Please verify the mation prior to using it. This map is not a design document.

С
UGL Coperstring 2
Powerline Alignment
SITE LOCATION
Project
Location Coral Sea
AUSTRALIA
Sydney
d
EGEND
Watercourse Tower Locations
Mount Isa to Mulgrave
Chuvale to Selwyn
 Mt James to Hughenden
Chainage at 20 KM Interval
1 cm = 6,000 m
0 4,600 9,200 m
Coordinate System: GDA 1994 MGA Zone 55 Projection: Transverse Mercator Datum: GDA 1994
PROJECT NAME UGL Powerline ROJECT # IS373700 BRAWING NO 1
ATE SZCAJED BY AGE SIZE A3
I SOURCES: Localities, Roads, LGA, Waterways, Waterbody © QLD Spatial Catalogue, State of
Queensland (Department of Natural Resources, Mines and Energy) 2018
lacobs All Rights Reserved. While all reasonable care has been taken to ensure the information ontained on this map is up to date and accurate, this map contains data from a number of ources - no warranty is given that the information contained on this is free from error or omission.

	UGL Coperstring 2 Powerline Alignment
ESIA Projec Locatio	SITE LOCATION Coral Sea US TRALIA Sydney Melbourne
EGEND Wa To Mo Ch Ch Ch	atercourse wer Locations ount Isa to Mulgrave nuvale to Selwyn c James to Hughenden nainage at 20 KM Interval
F	1 cm = 6,000 m 0 4,600 9,200 m Coordinate System: GDA 1994 MGA Zone 55 Projection: Transverse Mercator Datum: GDA 1994
OJECT NAME OJECT # AWING NO TE EATED BY GE SIZE	UGL Powerline IS373700 1 5/26/2021 KavanekarR A3
URCES: Localities, Roa eensland (Depal SCLAIMER: cobs All Rights F ntained on this	ds, LGA, Waterways, Waterbody © QLD Spatial Catalogue, State of triment of Natural Resources, Mines and Energy) 2018 Reserved. While all reasonable care has been taken to ensure the information map is out to date and accurate, this map contains data from a number of the back of the information
rces - no warrai	ty is given that the information contained on this is free from error or omission.

П

E UGL Coperstring 2 Powerline Alignment
NESIA Project Location AUSTRALIA Sydney Melbourne
LEGEND Watercourse Tower Locations Mount Isa to Mulgrave Chuvale to Selwyn Mt James to Hughenden Chainage at 20 KM Interval
1 cm = 6,000 m 0 4,600 9,200 m Coordinate System: GDA 1994 MGA Zone 55 Projection: Transverse Mercator Datum: GDA 1994 PROJECT NAME UG. Powerline 1333700 1 DATE 1526/2021 KavanekarR 3
SOURCES: 1. Localities, Roads, LGA, Waterways, Waterbody © QLD Spatial Catalogue, State of Queensland (Department of Natural Resources, Mines and Energy) 2018 DISCLAIMER: Jacobs All Rights Reserved. While all reasonable care has been taken to ensure the information contained on this map is up to date and accurate, this map contains data from a number of sources - no warrantly is given that the information contained on this tip the information shall be at the sole risk of the user. Please verify the accuracy of all information prior to using it. This map is not a design document.

F
UGL Coperstring 2 Powerline Alignment
Project Location AUSTRALIA Sydney Melbourne
EGEND
 Watercourse Tower Locations Mount Isa to Mulgrave Chuvale to Selwyn Mt James to Hughenden Chainage at 20 KM Interval
1 cm = 6,000 m 0 4,600 9,200 m Coordinate System: GDA 1994 MGA Zone 55 Projection: Transverse Mercator Datum: GDA 1994 PROJECT RAME VGL Powerline Star Zaro Star Zaro Date Star Zaro Date Star Zaro Date Star Zaro Date Star Zaro Star Zaro Star Zaro Star Zaro Star Zaro Staro Staro
DISCLAIMER: Jacobs All Rights Reserved. While all reasonable care has been taken to ensure the information contained on this map is up to date and accurate, this map contains data from a number of sources. no warrantly is given that the information contained on this is free from error or or mission

Appendix B: UGL CS-2 Powerline – Catchment Maps

A UGL Coperstring 2 Powerline Alignment Catchment Maps	
NESIA Project Location	SITE LOCATION Coral Sea STRALIA Sydney Melbourne
LEGEND Wat Tow Mou Chu Mt Cha Cat	tercourse ver Locations unt Isa to Mulgrave uvale to Selwyn James to Hughenden ainage at 20 KM Interval chments
Prc	1 cm = 6,000 m 0 4,600 9,200 m Coordinate System: GDA 1994 MGA Zone 55 sjection: Transverse Mercator Datum: GDA 1994
PROJECT NAME L PROJECT # DRAWING NO DATE CREATED BY PAGE SIZE / SOURCES: 1. Localities, Roads Queensland (Departm DISCLAIMER: Jacobs All Rights Res contained on this ma sources - no warrantly Any reliance placed call informs	IGL Powerline S373700 126/2021 avanekarR 3 LGA, Waterways, Waterbody © QLD Spatial Catalogue, State of ent of Natural Resources, Mines and Energy) 2018 Herved. While all reasonable care has been taken to ensure the information p is up to date and accurate, this map contains data from a number of big worh atth the information contained on this is free from error or omission. on such information shall be at the sole risk of the user. Please verify the ting notice fusion it This map is on a design document

	C
	UGL Coperstring 2 Powerline Alignment
	Cotobmont Mono
	Catchinent waps
NESIA	SITE LOCATION
Projec Locatio	t Coral Sea
AU	JSTRALIA
	Melbourne
) atercourse
• To	wer Locations
— Mo	ount Isa to Mulgrave
Ch	uvale to Selwyn
— Mt	James to Hughenden
Ch	ainage at 20 KM Interval
Ca	tchments
	A
	1 cm = 6,000 m
	0 4,600 9,200 m I
F	rojection: Transverse Mercator Datum: GDA 1994
PROJECT NAME PROJECT # DRAWING NO	UGL Powerline IS373700 1
DATE CREATED BY PAGE SIZE	5/26/2021 KavanekarR A3
SOURCES: 1. Localities, Roar Queensland (Depar	is, LGA, Waterways, Waterbody $\textcircled{\sc 0}$ QLD Spatial Catalogue, State of timent of Natural Resources, Mines and Energy) 2018
Jacobs All Rights R contained on this r sources - no warrar Any reliance placed accuracy of all infor	eserved. While all reasonable care has been taken to ensure the information nap is up to date and accurate, this map contains data from a number of ty is given that the information contained on this is free from error or omission. J on such information shall be at the sole risk of the user. Please verify the mation prior to using it. This map is not a design document.

D UGL Coperstring 2 Powerline Alignment Catchment Maps
Project Location AUSTRALIA Sydney Melbourne
LEGEND Watercourse Tower Locations Mount Isa to Mulgrave Chuvale to Selwyn Mt James to Hughenden Chainage at 20 KM Interval Catchments
1 cm = 6,000 m 0 4,600 9,200 m Coordinate System: GDA 1994 MGA Zone 55 Projection: Transverse Mercator Datum: GDA 1994 PROJECT #ME USL Powerline IS37370 1 SZ62021 KavanekarR 3 SOURCES 1. Localities, Roads, LGA, Waterways, Waterbody © QLD Spatial Catalogue, State of Gueensland (Department of Natural Resources, Mines and Energy) 2018 DISCLAMEE Jacobs All Rights Reserved. While all reasonable care has been taken to ensure the information contained on this in the information contained on this in the prior more roor omission.

E	
UGL Coperstring 2	
Powerline Alignment	
Catchment Maps	
NESIA Project Location AUSTRALIA Sydney Melbourne	
LEGEND	
Watercourse	
Tower Locations	
Mount Isa to Mulgrave Chuvale to Selware	
Mt James to Hughenden	
 Chainage at 20 KM Interval 	
Catchments	
1 cm = 10,000 m	
0 7,400 14,800 m	
Projection: Transverse Mercator Datum: GDA 1994 PROJECT NAME UGL Powerline	
PROJECT # IS373700 DRAWING NO 1 DATE 5/26/2021 CPEATER BY IACODES'	
PAGE SIZE A3	
Localities, Roads, LGA, Waterways, Waterbody © QLD Spatial Catalogue, State of Queensland (Department of Natural Resources, Mines and Energy) 2018 DISCLAIMER:	
Jacobs AII Rights Reserved. While all reasonable care has been taken to ensure the information contained on this map is up to date and accurate, this map contains data from a number of sources - no warranhy signed that the information contained on this is free from error or ornission. Any reliance placed on such information shall be at the sole risk of the user. Please verify the	

Appendix C: UGL CS-2 Powerline – QRA Flood Maps

•
UGL Coperstring 2 Powerline Alignment QRA Flood Maps
NESIA Project Location AUSTRALIA Sydney Melbourne
LEGEND Watercourse Tower Locations Mount Isa to Mulgrave Chuvale to Selwyn Mt James to Hughenden Chainage at 20 KM Interval QRA Flood Extent Burdekin 1% AEP Flood Extent
1 cm = 6,000 m 0 4,600 9,200 m Coordinate System: GDA 1994 MGA Zone 55 Projection: Transverse Mercator Datum: GDA 1994 PROJECT AMME PROJECT # U.G. Powerline 1373700 1 256/2021 KavanekarR A SUBJECT # 1. Locallies, Roads, LGA, Waterways, Waterbody © QLD Spatial Catalogue, State of Queensland (Department of Natural Resources, Mines and Energy) 2018 Date Substance 1. Locallies, Roads, LGA, Waterways, Waterbody © QLD Spatial Catalogue, State of Queensland (Department of Natural Resources, Mines and Energy) 2018 Dates All Rights Reserved. While all reasonable care has been taken to ensure the information ornatined on this ins pis up to date and accurate, this map contains data from a number of sources - no warranty is given that the information ontained on this ins free from error or omission. Any reliance paced on such information shall be at the sole risk of the user. Please verify the

UGL Coperstring 2 Powerline Alignment **QRA Flood Maps** SITE LOCATION Coral Sea Sydney Melbourne Mount Isa to Mulgrave Mt James to Hughenden Chainage at 20 KM Interval Burdekin 1% AEP Flood 0 4,600 9,200 m Coordinate System: GDA 1994 MGA Zone 55 Projection: Transverse Mercator Datum: GDA 1994 **JACOBS** SOURCES: 1. Localities, Roads, LGA, Waterways, Waterbody © QLD Spatial Catalogue, State of Queensland (Department of Natural Resources, Mines and Energy) 2018

	D
	UGL Coperstring 2
	OBA Flood Maps
NESIA Projec Locatio	SITE LOCATION
LEGENI)
— Wa	atercourse
• To	wer Locations
— Mo	ount Isa to Mulgrave
— Ch	uvale to Selwyn
Mt	James to Hughenden
	ainage at 20 Kivi interval
Bu	rdekin 1% AEP Flood
Ex	tent
	•
	1 cm = 6,000 m
	0 4,600 9,200 m
PRO IF of House	Projection: Transverse Mercator Datum: GDA 1994
PROJECT NAME PROJECT # DRAWING NO	USL Fowenine IS373700 1
DATE CREATED BY PAGE SIZE	KavanekarR A3
SOURCES: 1. Localities, Roa Queensland (Depar	ds, LGA, Waterways, Waterbody © QLD Spatial Catalogue, State of trment of Natural Resources, Mines and Energy) 2018
DISCLAIMER: Jacobs All Rights R contained on this r sources - no warrar	Reserved. While all reasonable care has been taken to ensure the information map is up to date and accurate, this map contains data from a number of hty is given that the information contained on this is free from error or omission.
Any reliance place	a on such information shall be at the sole risk of the user. Please verify the

Appendix D: UGL CS-2 Powerline – Flood Risk Map

UGL Coperstring 2 Powerline Alignment Flood Risk Map								
Projec Location	SITE LOCATION							
LEGEND								
— Wa	atercourse							
— Мо	ount Isa to Mulgrave							
Ch	uvale to Selwyn							
— Mt	James to Hughenden							
• Ch	ainage at 20 KM Interval							
QF	RA Flood Extent							
Bu	rdekin 1% AEP Flood							
Ex	tent							
Flood F	Risk Zone							
Hig	∥h Risk							
Lo	w Risk							
	1 cm = 26,000 m							
	0 19,00038,000 m							
	Projection: Transverse Mercator Datum: GDA 1994							
PROJECT # DRAWING NO	IS373700 1 5/06/0021							
CREATED BY PAGE SIZE	KavanekarR A3							
1. Localities, Roa Queensland (Depar	ds, LGA, Waterways, Waterbody © QLD Spatial Catalogue, State of tment of Natural Resources, Mines and Energy) 2018							
DISCLAIMER: Jacobs All Rights R	eserved. While all reasonable care has been taken to ensure the information							
contained on this i sources - no warrar Any reliance place accuracy of all infor	map is up to date and accurate, this map contains data from a number of ity is given that the information contained on this is free from error or omission. If on such information shall be at the sole risk of the user. Please verify the mation prior to using it. This map is not a design document.							

	Α						
UGL Coperstring 2							
	Powerline Alignment						
NESIA Projec Locatio	SITE LOCATION SITE LOCATION Coral Sea JS TRALIA Sydney Melbourne						
Wa To To Ch Ch Ch QF QF	atercourse wer Locations ount Isa to Mulgrave uvale to Selwyn James to Hughenden ainage at 20 KM Interval RA Flood Extent rdekin 1% AEP Flood						
Ex Flood F	^{tent} Risk Zones						
Hig	jh Risk						
Lov	w Risk						
	1 cm = 6.000 m						
	0 4,600 9,200 m						
F	Coordinate System: GDA 1994 MGA Zone 55 Projection: Transverse Mercator Datum: GDA 1994						
PROJECT NAME PROJECT # DRAWING NO DATE CREATED BY	UGL Powerline IS373700 1 5/26/2021 KavanekarR JACOBS '						
PAGE SIZE SOURCES: 1. Localities, Roa Queensland (Depart	A3 ds, LGA, Waterways, Waterbody © QLD Spatial Catalogue, State of tment of Natural Resources. Mines and Fnerrov) 2018						
DISCLAIMER: Jacobs All Rights R contained on this sources - no warrar Any reliance place accuracy of all infor	teserved. While all reasonable care has been taken to ensure the information map is up to date and accurate, this map contains data from a number of thy is given that the information contained on this is free from error or omission. d on such information shall be at the sole risk of the user. Please verify the mation prior to using it. This map is not a design document.						

В							
UGL Coperstring 2							
Powerline Alignment							
Flood Risk Map							
NESIA Project Location AUSTRALIA Sydney Melbourne							
 Watercourse Tower Locations Mount Isa to Mulgrave Chuvale to Selwyn Mt James to Hughenden Chainage at 20 KM Interval QRA Flood Extent Burdekin 1% AEP Flood Extent Flood Risk Zones High Risk Low Risk 							
1 cm = 6,000 m 0 4,600 9,200 m Coordinate System: GDA 1994 MGA Zone 55 Projection: Transverse Mercator Datum: GDA 1994	_						
PROJECT # IS3/3/00 DRAWING NO DATE CREATED BY PAGE SIZE A3 JACOBS							
SOURCES: 1. Localities, Roads, LGA, Waterways, Waterbody © QLD Spatial Catalogue, State of Queensland (Department of Natural Resources, Mines and Energy) 2018	;						
DISCLAIMER: Jacobs All Rights Reserved. While all reasonable care has been taken to ensure the information contained on this map is up to date and accurate, this map contains data from a number o sources - no warranty is given that the information contained on this is free from error or omission Any reliance placed on such information shall be at the sole risk of the user. Please verify the accuracy of all information prior to using it. This map is not a design document.	F -						

	D
	UGL Coperstring 2
	Powerline Alignment
	Flood Risk Map
NESIA Proje Locatio	SITE LOCATION
Wa To To Mc Ch Mt Ch QF Bu Ex	atercourse wer Locations bunt Isa to Mulgrave nuvale to Selwyn James to Hughenden nainage at 20 KM Interval RA Flood Extent rdekin 1% AEP Flood tent
Flood F	Risk Zones
Hig	gh Risk
Lo	w Risk
	1 cm = 6,000 m
	0 4,600 9,200 m T
PROJECT NAME	Projection: Transverse Mercator Datum: GDA 1994
PROJECT # DRAWING NO DATE CREATED PY	IS373700 1 5/26/2021 Kavanekar _ IACORS'
PAGE SIZE SOURCES:	
1. Localities, Roa Queensland (Depar DISCLAIMED	os, LGA, Waterways, Waterbody © QLD Spatial Catalogue, State of trment of Natural Resources, Mines and Energy) 2018
Jacobs All Rights F contained on this sources - no warran Any reliance place accuracy of all infor	Reserved. While all reasonable care has been taken to ensure the information map is up to date and accurate, this map contains data from a number of nty is given that the information contained on this is free from error or omission. d on such information shall be at the sole risk of the user. Please verify the mation prior to using it. This map is not a design document.

E							
UGL Coperstring 2							
Powerline Alignment							
SITE LOCATION Project Location AUS TRALIA Sydney Melbourne							
 Watercourse Tower Locations Mount Isa to Mulgrave Chuvale to Selwyn Mt James to Hughenden Chainage at 20 KM Interval QRA Flood Extent Burdekin 1% AEP Flood Extent Flood Risk Zones High Risk							
Low Risk							
1 cm = 6,000 m							
1 1 1 0 4,600 9,200 m							
Coordinate System: GDA 1994 MGA Zone 55 Projection: Transverse Mercator Datum: GDA 1994							
PROJECT NAME UGL Powerline PROJECT # IS373700 DRAWING NO 1 DATE 526/2021 CREATED BY Kavanekar JACOBS							
SOURCES: Localities, Roads, LGA, Waterways, Waterbody © QLD Spatial Catalogue, State of Queensland (Department of Natural Resources, Mines and Enerron) 2018							
DISCLAIMER: Jacobs All Rights Reserved. While all reasonable care has been taken to ensure the information contained on this map is up to date and accurate, this map contains data from a number of sources - no warrank is given that the information contained on this is free from error or omission. Any reliance pleced on such information shall be at the sole risk of the user. Please verify the							

Appendix E: Design Rainfall IFDs

Duration	Annual Exceedance Probability (AEP)							
(-)	63.20%	50%	20%	10%	5%	2%	1%	
1 min	117	136	195	233	271	319	356	
2 min	99	116	166	199	230	268	297	
3 min	93.2	109	156	187	216	253	280	
4 min	89.2	104	149	178	206	242	269	
5 min	85.7	99.8	143	171	198	233	260	
10 min	72.0	83.6	120	144	167	197	220	
15 min	62.0	72	103	124	144	170	189	
20 min	54.4	63.3	90.6	109	126	149	166	
25 min	48.6	56.5	80.9	97.2	113	133	148	
30 min	43.9	51.1	73.2	87.9	102	120	134	
45 min	34.3	39.9	57.1	68.6	79.6	93.8	104	
1 hour	28.2	32.8	47.1	56.5	65.5	77.2	85.9	
1.5 hour	21.1	24.5	35	42.1	48.8	57.6	64.1	
2 hour	16.9	19.6	28.1	33.8	39.2	46.3	51.6	
3 hour	12.3	14.3	20.4	24.5	28.5	33.8	37.7	
4.5 hour	8.93	10.3	14.7	17.7	20.7	24.6	27.6	
6 hour	7.11	8.21	11.7	14.1	16.5	19.7	22.1	
9 hour	5.18	5.98	8.53	10.3	12	14.5	16.3	
12 hour	4.16	4.8	6.85	8.28	9.7	11.7	13.3	
18 hour	3.07	3.55	5.09	6.16	7.23	8.78	10	
24 hour	2.49	2.89	4.16	5.04	5.92	7.2	8.22	
30 hour	2.12	2.47	3.56	4.32	5.08	6.2	7.08	
36 hour	1.86	2.17	3.14	3.82	4.49	5.48	6.28	
48 hour	1.52	1.77	2.58	3.14	3.69	4.52	5.18	
72 hour	1.12	1.32	1.94	2.36	2.78	3.41	3.91	
96 hour	0.895	1.06	1.56	1.91	2.24	2.75	3.16	
120 hour	0.742	0.876	1.3	1.59	1.87	2.3	2.64	
144 hour	0.63	0.744	1.1	1.35	1.6	1.97	2.26	
168 hour	0.544	0.641	0.952	1.17	1.38	1.71	1.96	

Table E1: Design IFDs for Mt Isa area (mm/hr)

Table E2 Design IFDs for Cloncurry area (mm/hr)

Duration	Annual Exceedance Probability (AEP)						
	63.20%	50%#	20%*	10%	5%	2%	1%
1 min	131	151	214	254	292	340	375
2 min	114	133	190	226	259	298	325
3 min	107	125	178	211	242	279	305
4 min	102	119	168	200	229	265	291
5 min	97.5	113	160	190	218	253	278

Copperstring 2 High-Level Flood Risk Assessment

Duration	Annual Exceedance Probability (AEP)						
	63.20%	50%#	20%*	10%	5%	2%	1%
10 min	80.3	92.9	131	155	178	208	230
15 min	68.8	79.5	112	133	153	178	197
20 min	60.5	70	98.7	117	135	157	174
25 min	54.2	62.7	88.5	105	121	141	156
30 min	49.2	57	80.6	95.8	110	128	142
45 min	39	45.3	64.1	76.3	87.8	102	113
1 hour	32.6	37.9	53.8	64.1	73.7	85.7	94.5
1.5 hour	24.9	29	41.3	49.3	56.7	66.1	72.9
2 hour	20.4	23.8	33.9	40.5	46.7	54.5	60.2
3 hour	15.2	17.8	25.5	30.4	35.2	41.2	45.7
4.5 hour	11.3	13.2	18.9	22.7	26.3	31.1	34.7
6 hour	9.08	10.6	15.3	18.4	21.4	25.4	28.5
9 hour	6.66	7.78	11.3	13.7	16	19.2	21.6
12 hour	5.34	6.24	9.12	11.1	13.1	15.7	17.8
18 hour	3.9	4.56	6.74	8.3	9.89	11.9	13.5
24 hour	3.11	3.65	5.45	6.76	8.12	9.81	11.1
30 hour	2.61	3.07	4.62	5.77	6.98	8.43	9.56
36 hour	2.26	2.67	4.04	5.08	6.17	7.45	8.44
48 hour	1.8	2.13	3.27	4.14	5.08	6.12	6.92
72 hour	1.3	1.55	2.42	3.09	3.83	4.60	5.19
96 hour	1.03	1.23	1.94	2.49	3.1	3.73	4.20
120 hour	0.861	1.03	1.63	2.1	2.61	3.14	3.55
144 hour	0.742	0.89	1.41	1.81	2.25	2.72	3.08
168 hour	0.655	0.786	1.24	1.59	1.97	2.39	2.72

Table E3 Design IFDs for Hughenden area (mm/hr)

Duration	Annual Exceedance Probability (AEP)						
	63.20%	50%	20%	10%	5%	2%	1%
1 min	126	146	205	244	280	326	360
2 min	109	126	178	212	244	285	314
3 min	102	118	166	198	228	265	292
4 min	96.9	112	158	188	216	251	277
5 min	92.8	107	151	179	206	240	264
10 min	77.3	89.3	126	149	171	199	220
15 min	66.6	77	108	128	147	172	190
20 min	58.7	67.8	95.4	113	130	152	168
25 min	52.5	60.7	85.5	102	117	136	150
30 min	47.6	55.1	77.6	92.1	106	123	136
45 min	37.4	43.3	60.9	72.4	83.3	97.1	107
1 hour	31	35.8	50.4	59.9	68.9	80.3	88.7
1.5 hour	23.3	26.9	37.7	44.8	51.5	60	66.2
2 hour	18.8	21.6	30.3	36	41.4	48.1	53.1
3 hour	13.7	15.8	22	26.1	30	34.8	38.4

Duration	Annual Exceedance Probability (AEP)						
	63.20%	50%	20%	10%	5%	2%	1%
4.5 hour	9.95	11.4	15.9	18.8	21.5	25	27.6
6 hour	7.91	9.07	12.6	14.9	17	19.8	21.9
9 hour	5.75	6.58	9.1	10.7	12.3	14.4	15.9
12 hour	4.6	5.26	7.28	8.6	9.87	11.5	12.8
18 hour	3.38	3.87	5.38	6.37	7.32	8.61	9.59
24 hour	2.74	3.14	4.38	5.2	6	7.08	7.92
30 hour	2.33	2.67	3.75	4.47	5.17	6.13	6.87
36 hour	2.04	2.35	3.31	3.96	4.59	5.46	6.14
48 hour	1.66	1.92	2.73	3.28	3.82	4.57	5.16
72 hour	1.24	1.44	2.08	2.52	2.95	3.55	4.02
96 hour	0.998	1.17	1.7	2.07	2.43	2.93	3.32
120 hour	0.835	0.98	1.44	1.75	2.06	2.48	2.81
144 hour	0.716	0.842	1.24	1.51	1.78	2.13	2.41
168 hour	0.624	0.735	1.08	1.32	1.55	1.85	2.08