

Adani Mining Pty Ltd

adani

Adani Mining Pty Ltd

Report for Carmichael Coal Mine and Rail Project: Mine Technical Report Hydrogeology Report 25215-D-RP-0026

15 November 2012

Revision 2

This Carmichael Coal Mine and Rail Project: Hydrogeology Report ("the Report") has been prepared by GHD Pty Ltd ("GHD") on behalf of and for Adani Mining Pty Ltd ("Adani") in accordance with an agreement between GHD and Adani.

The Report may only be used and relied on by Adani for the purpose of informing environmental assessments and planning approvals for the proposed Carmichael Coal Mine and Rail Project (Purpose) and may not be used by, or relied on by any person other than Adani.

The services undertaken by GHD in connection with preparing the Report were limited to those specifically detailed in Section 1 of the Report and did not include GHD undertaking testing at some parts of the site.

The Report is based on conditions encountered and information reviewed, including assumptions made by GHD, at the time of preparing the Report. Assumptions made by GHD are contained through the Report.

To the maximum extent permitted by law GHD expressly disclaims responsibility for or liability arising from:

- any error in, or omission in connection with assumptions, or
- reliance on the Report by a third party, or use of this Report other than for the Purpose.

Contents

Abbi	Abbreviations and Glossaryvii				
1	Intro	duction1-1			
	1.1	Background 1-1			
	1.2	Report Purpose			
	1.3	Scope 1-5			
	1.4	Study Area 1-5			
2	Meth	nodology2-1			
	2.1	Overview			
	2.2	Desktop Review			
	2.3	Field Investigations2-6			
3	Rele	evant Legislation3-1			
	3.1	Queensland Environmental Protection Act 1994 3-1			
	3.2	Environmental Protection (Water) Policy 2009 3-1			
	3.3	Sustainable Planning Act 2009 3-1			
	3.4	Water Act (2000)			
	3.5	Water Regulation (2002)			
	3.6	Groundwater Related Licensing and Permits Relevant to the Project (Mine)			
4	Des	cription of Environmental Values4-1			
	4.1	' Topography and Drainage 4-1			
	4.2	Hydrogeological Units			
	4.3	Groundwater Levels and Flows			
	4.4	Groundwater Quality			
	4.5	Groundwater Suitability for Use			
	4.6	Aquifer Properties			
	4.7	Interaction between Surface Water and Groundwater			
	4.8	Groundwater Dependent Ecosystems 4-31			
5	Grou	undwater Modelling5-1			
	5.1	Conceptual Model 5-1			
	5.2	Geological Layers and Distribution			
	5.3	Groundwater Flow Systems 5-4			

adani

	5.4	Groundwater Model Design and Construction	5-7
	5.5	Model Calibration	5-12
	5.6	Model Predictions	5-19
	5.7	Post Closure Impacts	5-28
	5.8	Sensitivity Analysis	5-39
6		ntial Impacts and Mitigation Measures – Construction	6-1
	6.1	Overview	6-1
	6.2	Potential Impacts of Construction Activities	6-2
	6.3	Management, Mitigation and Monitoring Activities – Construction Phase	6-3
7		ntial Impacts and Mitigation Measures – Operational	7-1
	7.1	Overview	7-1
	7.2	Potential Impacts related to Mine Dewatering	
	7.3	Potential Impacts of Spoil and Tailings Disposal	
	7.4	Potential Impacts Related to Operation of Plant and Storage Facilities	
	7.5	Potential Impacts Related to Stream Diversions	7-6
	7.6	Potential Impacts Related to Operation of a General Waste Landfill	7-7
	7.7	Potential Impacts Related to Longwall Mining	7-7
	7.8	Management, Mitigation and Monitoring Activities – Operational Phase	7-8
8		ntial Impacts and Mitigation Measures – Post Closure .	
	8.1	Overview	8-1
	8.2	Potential Impacts Related to Creation of Voids	8-1
	8.3	Potential Impacts Related to Tailings and Spoil Disposal and General Waste Landfill	8-3
	8.4	Management, Monitoring and Mitigation Measures – Post Closure	8-3
9	Refe	rences	9-1

Table Index

Table 1-1	Terms of Reference Cross Reference	1-3	
Table 2-1	Groundwater Monitoring Network Summary	2-7	
Table 2-2	Summary of Slug and Packer Testing	2-10	
Table 2-3	Summary of Pumping Tests		
Table 4-1	Summary of Hydrogeological Units Identified for the		
	Study Area	4-5	
Table 4-2	Carmichael River Monitoring Bore Summary	4-12	
Table 4-3	Summary of Estimated Hydraulic Conductivity from Slug Tests	4-25	
Table 4-4	Summary of Hydraulic Conductivity from Packer Tests	4-26	
Table 4-5	Summary of Estimated Transmissivity, Storage and Hydraulic Conductivity from Pumping Tests	4-28	
Table 4-6	Summary of Estimated Hydraulic Conductivity by Formation Tested	4-28	
Table 5-1	Groundwater Model Layering	5-2	
Table 5-2	Estimates of Groundwater Recharge using the		
	Water table Fluctuation Method	5-6	
Table 5-4	4 Initial Values and Permissible Ranges		
Table 5-5	Calibrated Model Parameters vs Measured Parameters	5-18	
Table 5-6	Predictive Modelling – adopted Storage values	5-21	
Table 5-7	Predicted Water Table Impacts at Spring Locations – Operational Phase	5-24	
Table 5-8	Predicted Groundwater Level Impacts at Licensed	0 24	
	Extraction Bores – Operational Phase	5-25	
Table 5-9			
Table 5-10	- ·		
Table 5-11	Predicted Groundwater Level Impacts at Licensed Bores – Post Closure	5-31	
Table 5-12	Predicted Groundwater Level Impacts at Other Registered Bores – Post Closure		
Table 5-13	Sensitivity Analysis– Parameters and Multipliers	5-40	
Table 5-14	Sensitivity Analysis- Significance Definition	5-41	
Table 7-1	Summary of Significant Impacts at Registered Groundwater Bores	7-3	

Figure Index

Figure 1-1	Project Location	1-2	
Figure 1-1	Hydrogeology Study Area	1-6	
-		1-0	
Figure 2-1	Geological Cross-section through the Project (Mine) Lease	2-3	
Figure 2-2	Stratigraphic Column (Runge, May 2011)	2-4	
Figure 2-3	Monitoring and Test Locations		
Figure 4-1	Topography, Drainage and Wetlands	4-2	
Figure 4-2	Mapped Geology (1:250,000)	4-6	
Figure 4-3	Published Digital Mapped Geology and Registered Groundwater Bores	4-7	
Figure 4-4	Published Digital Mapped Geology and Monitoring/Test Locations	4-8	
Figure 4-5	Geology Index Sheet	4-9	
Figure 4-6	Groundwater Management	4-10	
Figure 4-7	Groundwater Levels	4-14	
Figure 4-8	Interpreted Groundwater Contours, Dunda Beds	4-15	
Figure 4-9	Groundwater Contours, Rewan Group	4-16	
Figure 4-10	Groundwater Contours, Permian-age strata (excluding coal seams)	4-17	
Figure 4-11	Groundwater Contours, AB Seam	4-18	
Figure 4-12	Groundwater Contours, D Seam	4-19	
Figure 4-13	Piper Diagram – Groundwater	4-21	
Figure 4-14	Piper Diagram – Groundwater and Carmichael River	4-22	
Figure 4-15	Surface Water Flows and Losses, Carmichael River	4-30	
Figure 5-1	Zonation between Permian –Triassic and Tertiary Geology	5-3	
Figure 5-2	Groundwater Model Grid and Boundary Conditions	5-10	
Figure 5-3	Modelled Outcrop	5-11	
Figure 5-4	Steady State Groundwater Level Calibration Statistics	5-16	
Figure 5-5	Groundwater Model Parameterisation	5-10	
Figure 5-6	Predicted Maximum Water Table Drawdowns –	5-17	
rigure 5-0	Operational Phase	5-34	
Figure 5-7	Predicted Doongmabulla Spring Impacts – Operational Phase	5-35	
Figure 5-8	Predicted Mellaluka Spring Impacts – Operational Phase	5-36	

Figure 5-9	Predicted Base Flow Impacts – Operational Phase	5-37
Figure 5-10	Predicted Long Term Water Table Drawdowns – Post Closure	5-38
Figure 5-11	Predicted Base Flow Impacts – Post Closure	5-39
Figure 5-12	Sensitivity Analysis Results – Doongmabulla	
	Springs	5-44
Figure 5-13	Sensitivity Analysis Results – Mellaluka Springs	5-44
Figure 5-14	Sensitivity Analysis Results – Baseflow Impact	5-45
Figure 5-15	Sensitivity Analysis Results – Mine Inflows	5-45
Figure 6-1	Summary of Potential Impacts, Construction Phase	6-1
Figure 7-1	Overview of Potential Impacts on Groundwater	7.0
	Resources, Operational Phase	7-2
Figure 8-1	Overview of Potential Impacts on Groundwater,	
	Post-Closure Phase	8-1

Appendices

- A Terms of Reference Cross Reference
- B Registered Groundwater Bores
- C Survey Data and Borehole Logs
- D Groundwater Levels
- E Groundwater Quality
- F Slug Testing
- G Pumping Test Results
- H Revised Geological Interpretation Memo

Abbreviations and Glossary

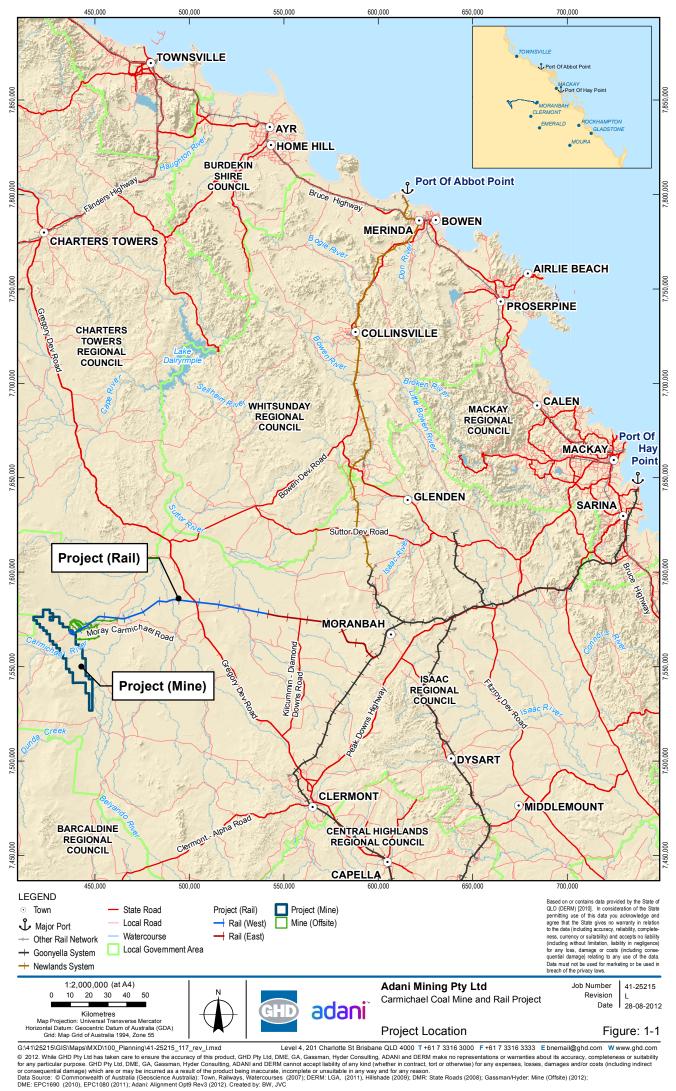
Project Specific Terminology			
Abbreviation	Term		
the EIS	Carmichael Coal Mine and Rail Project Environmental Impact Statement		
the Proponent Adani Mining Pty Ltd			
the Project	Carmichael Coal Mine and Rail Project		
Generic Terminolog	ау		
Abbreviation Term			
ADWG	Australian Drinking Water Guidelines		
ANZECC	Australian and New Zealand Environment and Conservation Council		
ARMCANZ	Agriculture and Resource Management Council of Australia and New Zealand		
BOM	Bureau of Meteorology		
BTEX	Benzene, Toluene, Ethylbenzene, Xylene		
CEMP	Construction Environmental Management Plan		
CSG	CSG Coal Seam Gas		
DEHP	Department of Environment and Heritage Protection (Qld)		
DERM Department of Environment and Resource Management (Qld) – now superseded by DEHP and DNRM			
DNRM	Department of Natural Resources and Mines (Qld)		
DO	Dissolved Oxygen		
DRN	Drain boundary		
EC	Electrical Conductivity		
EIS Environmental Impact Statement			
EMP	Environmental Management Plan		
EPC	Exploration Permit for Coal		
EPP (Water)	Queensland Environmental Protection (Water) Policy 2009		
EVs	Environmental Values		
FWL	Fracture well		
GAB	Great Artesian Basin		

GABCC	Great Artesian Basin Consultative Council				
GDE	Groundwater Dependent Ecosystem				
GHB	General head boundary				
Generic Terminolog	Generic Terminology				
Abbreviation	Term				
GMA	Groundwater Management Area				
GMU	Groundwater Management Unit				
GWMP	Groundwater Management Plan				
LIDAR	Light Detection and Ranging				
LTV	Long-term trigger value				
LoR	Limit of Reporting				
mAHD	Metres Australian Height Datum				
mBGL	Metres below ground level				
MIA	Mine Infrastructure Area				
Mtpa	Million tonnes per annum				
PAHs	Polycyclic Aromatic Hydrocarbons				
ROP	Resource Operations Plan				
RSF	Recharge-seepage face				
SPA	PA Sustainable Planning Act 2009				
STV	Short-term trigger value				
SWMP	Surface Water Management Plan				
TDS	Total dissolved solids				
ТОС	Total organic carbon				
ToR	Terms of reference				
ТРН	Total Petroleum Hydrocarbon				
QWQG	Queensland Water Quality Guidelines				
WERD	Water Entitlements Registered Database				
WQGs	Water Quality Guidelines				
WQOs	Water Quality Objectives				
WRP	Water Resource Plan				

1. Introduction

1.1 Background

Adani Mining Pty Ltd (Adani) is proposing to develop a 60 million tonne (product) per annum (Mtpa) thermal coal mine in the north Galilee Basin approximately 160 kilometres (km) north-west of the town of Clermont, Central Queensland. All coal will be railed via a privately owned rail line connecting to the existing QR National rail infrastructure, and shipped through coal terminal facilities at the Port of Abbot Point and the Port of Hay Point (Dudgeon Point expansion). The Carmichael Coal Mine and Rail Project (the Project) will have an operating life of approximately 90 years.


The Project comprises of two major components:

- The Project (Mine): a greenfield coal mine over EPC1690 and the eastern portion of EPC1080, which includes both open cut and underground mining, on mine infrastructure and associated mine processing facilities (the Mine) and the Mine (offsite) infrastructure including:
 - A workers accommodation village and associated facilities
 - An industrial development area and airport site
 - Water supply infrastructure
- The Project (Rail): a greenfield rail line connecting the Mine to the existing Goonyella and Newlands rail systems to provide for the export of coal via the Port of Hay Point (Dudgeon Point expansion) and the Port of Abbot Point, respectively; including:
 - Rail (west): a 120 km dual gauge portion from the Mine site running west to east to Diamond Creek
 - Rail (east): a 69 km narrow gauge portion running east from Diamond Creek connecting to the Goonyella rail system south of Moranbah

The Project has been declared a 'significant project' under the *State Development and Public Works Organisation Act 1971* (SDPWO Act) for which, an Environmental Impact Statement (EIS) is required for. The Project is also a 'controlled action' and requires assessment and approval under the *Environment Protection and Biodiversity Conservation Act 1999* (EPBC Act).

The Project EIS has been developed with the objective of avoiding or mitigating all potential adverse impacts to environmental, social and economic values and enhancing positive impacts. Detailed descriptions of the Project are provided in Volume 2 Section 2 Project Description (Mine) and Volume 3 Section 2 Project Description (Rail).

Figure 1-1 shows the Project location.

1.2 Report Purpose

This hydrogeological study has been prepared as part of the Environmental Impact Statement (EIS) for the proposed Carmichael Coal Mine Project (the Project (Mine)). The primary purpose of this hydrogeological study is to:

- Address groundwater related parts of Section 3.4 (Water Resources) of the terms of reference (ToR) for the Project EIS, and specifically to:
 - Describe the existing environmental values of local groundwater resources using pre-existing published data and information collected from site specific field investigations
 - Assess the potential impacts of the proposed development on local groundwater resources
 - Identify mitigation and management options and ongoing groundwater monitoring requirements

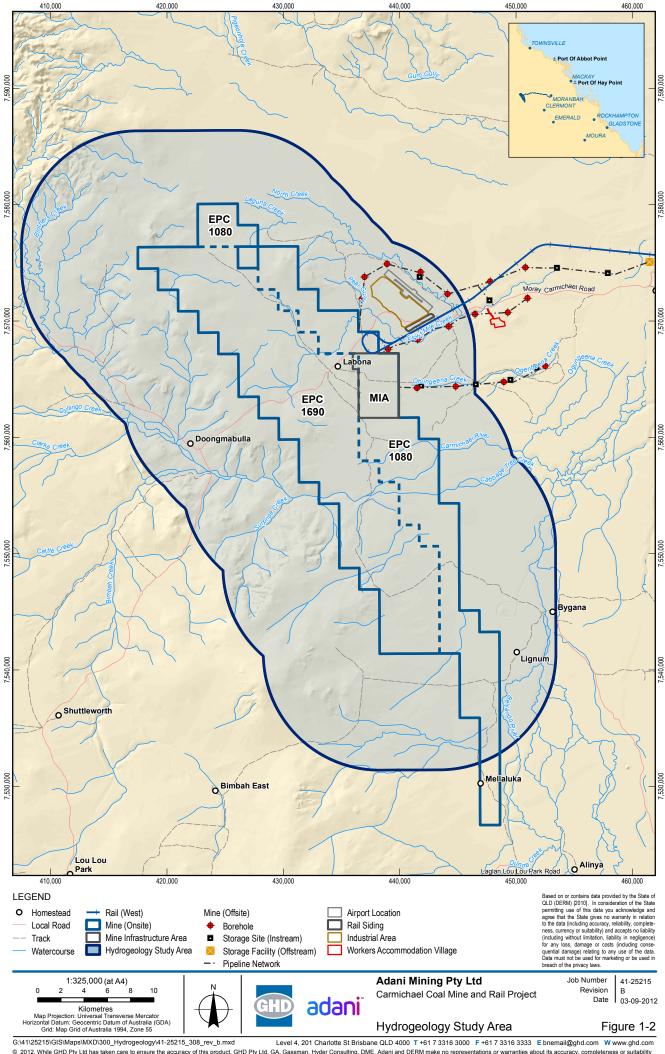
Table 1-1 provides a summary of the terms of reference cross reference. Full details of each section are provided in Appendix A.

Table 1-1	Terms of Reference Cross Reference

Terms or Reference Section	Report Section
3.4. Water Resources	
3.4.1 Description of Environmental Values	
Describe the existing water resources that may be affected by the project in the context of environmental values as defined in such documents as the EP Act, Environmental Protection (Water) Policy 2009 (EPP (Water)), Australia and New Zealand Guidelines for Fresh and Marine Water Quality and the Queensland Water Quality Guidelines.	Volume 4 Appendix P
Describe present and potential users and uses of water in areas potentially affected by the project, including municipal, agricultural, industrial and recreational uses of water, and reference to any licences held by users.	Sections 2.2.4, 2.3.1
Describe the environmental values of the groundwater of the affected area in terms of existing and other potential surface and groundwater users	Section 4.5
Provide a detailed description of the quality and quantity of groundwater resources in the area potentially affected by the project.	Sections 4.4, 4.5
Describe the groundwater quality considering seasonal variations in depth and flow.	Sections 4.3, 4.4, Appendix E, Appendix D
All sampling should be performed in accordance with the Monitoring and Sampling Manual 2009 or the most current edition.	Section 2
Investigate the relationship between groundwater and surface water to assess the nature of any interaction between the two resources and any implications of the proposed mine that would affect the interaction. If the project is likely to use or affect local sources of groundwater, describe the groundwater resources in the area in terms of interaction with surface water	Sections 4.3, 4.7

Terms or Reference Section	Report Section
3.4. Water Resources	
Describe the environmental values of the groundwater of the affected areas.	Sections 4, 6, 7
If the project is likely to use or affect local sources of groundwater, describe the groundwater resources in the area in terms of, current user, aquifer type, groundwater flows etc.	Section 4
The groundwater assessment should also be consistent with relevant guidelines for the assessment of acid sulphate soils, including spatial and temporal monitoring, to accurately characterise baseline groundwater characteristics.	Not Applicable (Acid Sulphate Soils are not anticipated) Volume 2 Section 4.2
For the taking of groundwater, the EIS should review the significance of groundwater in the project area, together with groundwater use in neighbouring areas. Specific reference should be made to relevant legislation or water resource plans for the region. The review should also assess the potential take of water from the aquifer and how current users and the aquifer itself and any connected aquifers will be affected.	(In relation to take of water from dewatering) Sections 2.2.4, 3.6, 4.5, 4.7, 4.8
The review should include a survey of existing groundwater supply facilities (bores, wells, or excavations) to the extent of any environmental harm.	Sections 2.2.4, 4.5
Develop a network of observation points that would satisfactorily monitor groundwater resources both before and after commencement of operations.	Section 2.3
The data obtained from the groundwater survey should be sufficient to enable specification of the major ionic species present in the groundwater, pH, electrical conductivity and total dissolved solids.	Sections 2.3, 4.4
3.4.2 Potential Impacts and Mitigation Measures	
Assess potential impacts, including long-term indirect impacts of the project on water resource environmental values identified in	Section 5.6, 7.2, 7.3, 7.6, 7.8.6, 7.8.11, 8.2
the previous section. Define and describe the objectives and practical measures for protecting or enhancing water resource environmental values, to describe how nominated quantitative standards and indicators may be achieved, and how the achievement of the objectives will be monitored, audited and managed.	Volume 2 Section 10 and Section 12, Volume 4 Appendix P
Describe and address the impacts of subsidence in relation to groundwater.	Sections 7.1, 7.7
Assess any potential surface water and groundwater interaction as a result of subsidence of a watercourse. Also assess the potential impacts on the groundwater regime in alluvial and deeper aquifers due to altered porosity, permeability and interconnectivity from any land disturbance, including subsidence.	Section 7.7
Detail measures that would mitigate the impacts of subsidence.	Section 7.8.12

1.3 Scope


The following scope of works was undertaken, the results of which are summarised in this report:

- Desktop review of geology, hydrogeology and groundwater bores
- Installation of a groundwater monitoring bore network
- Groundwater monitoring and hydrogeological testing of the installed monitoring bores
- Description of the existing hydrogeological conditions and environmental values
- Development of a numerical groundwater model
- Identification of potential impacts and management and mitigation measures

1.4 Study Area

A 10 km radius extending outwards from the boundary of exploration lease EPC 1690 and the eastern portion of EPC 1080 defines the Hydrogeology Study Area (the Study Area).

Figure 1-2 shows the Study Area.

G:4125215GISMapsIMXD/300_Hydrogeology/41-25215_308_rev_b.mxd Level 4, 201 Charlotte St Brisbane QLD 4000 T +61 7 3316 3000 F +61 7 3316 3033 E bnemail@ghd.com W www.ghd.com © 2012. While GHD Pty Ltd has taken care to ensure the accuracy of this product, GHD Pty Ltd, GA, Gassman, Hyder Consulting, DME, Adani and DERM make no representations or warranties about its accuracy, completeness or suitability for any particular purpose. GHD Pty Ltd, GA, Gassman, Hyder Consulting, DME, Adani and DERM make no representations or warranties about its accuracy, completeness or suitability of any kind (whether in contract, tor for otherwise) for any persense, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred as a result of the product being inaccurate, incomplete or unsuitable in any way and for any reason. Data Source: DME: EPC 1609 (2010)(EPC 1608 (2011)) © Convight Commonwealth of Australia - Geoscience Australia: Alianand, Homestead, Locality, Road, Watercourse (2007); GHD: Hydrogeology Study Area (2011); Adani: Alignment Opt9 Rev3 (2012); Gassman/Hyder: Mine (Offsite) (2012). Created by: BW, CA

2. Methodology

2.1 Overview

Figure 1-2 shows the Hydrogeology Study Area (the Study Area), encompassing the adjacent exploration leases EPC 1690 and the eastern portion of EPC 1080 and nearby surrounding areas.

Information and data obtained from a desktop review and hydrogeological field investigations have been used to appraise the hydrogeological conditions in the Study Area and to define the environmental values for groundwater resources. The potential impacts of the Project (Mine) on groundwater resources have been assessed in relation to the current baseline hydrogeological conditions as identified from the desktop review and field investigations. Mitigation measures and monitoring strategies have been identified to confirm any impacts of the proposed Project (Mine) on groundwater resources.

2.2 Desktop Review

The following activities have been carried out as part of the desktop review:

- Collation and review of existing reports, maps and data
- Review of records held on the Queensland Groundwater Bore Database (DERM, December 2010)
- Communications with DNRM (Rockhampton) and Isaac Regional Council

2.2.1 Data Review

The following published information has been used in the preparation of this report:

- Carmichael Macro-Conceptual Mine Study report (Runge Ltd, May 2011)
- Galilee Project In situ Coal Resources Estimate report (Xenith Consulting Pty Ltd, November 2009)
- Galilee Project Technical Due Diligence report (GHD, August 2010)
- Borehole logs from previous exploration programs (Linc Energy, not dated and Carr, 1974)
- North Eromanga Basin map sheet (1:1 000 000) digital version (Queensland Department of Natural Resources, Mines and Energy, 2004)
- Geology map sheet SF55-10, Galilee, (1:250 000) (Bureau of Mineral Resources, Geology and Geophysics, 1972)
- Geology map sheet SF55-6, Buchanan, (1:250 000) (Bureau of Mineral Resources, Geology and Geophysics, 1982)
- Selected information from the Queensland Groundwater Database (DNRM), data extracted December 2010
- Australian Groundwater Management Units, Unincorporated Areas and Provinces (Geoscience Australia, 2000)
- Great Artesian Basin Resource Study (Great Artesian Basin Consultative Council, 1998)

In addition, the following data from Project (Mine) specific field investigations has been collated and reviewed:

• Geological data (borehole logs and mine geological model)

- Groundwater levels and quality (monitoring data)
- Hydrogeological testing results

2.2.2 Geology Overview

The following overview of geology has been compiled from a review of:

- ▶ The Galilee Project In situ Coal Resources Estimate (Xenith Consulting, 2009) report
- The Galilee Project Technical Due Diligence report (GHD, 2010)
- Borehole logs from previous exploration programs within EPC 1690 (Linc Energy, not dated)
- The Galilee Basin Exploratory Coal Drilling Moray Downs Area report (Carr, 1974)
- Published geological maps for the area

Published 1:250,000 scale geological mapping is shown in Figure 4-2.

Available digital geological mapping is shown in Figure 4-3 and Figure 4-4. Figure 4-5 provides the legend for the geological mapping and includes further information on each of the mapped units. A sketch cross section illustrating the stratigraphy within EPC 1690 is shown in Figure 2-1.

The Project (Mine) lies within the Galilee Basin, an intracratonic sedimentary basin deposited in the Permian and Triassic Periods.

Tertiary-age strata (including sandstones, mudstones and conglomerates) are mapped at outcrop over much of EPC 1690 and EPC 1080 and based on geological information available from the initial exploration program were typically thought to range in thickness from 45 to 100 m thick (Xenith Consulting, 2009) over EPC 1690. However, an extensive drilling program has continued throughout the EIS period which culminated in a detailed review of all the available geological information by Xenith Consulting and Geotechnical Consulting Services. The results of this review are summarised in Appendix H and suggest that the Tertiary cover is not as laterally extensive or as thick as previously thought. Based on the detailed geological information now available for the site it appears likely that the published mapping under-estimates the extent of the underlying Dunda Beds towards the western margin of the lease. This is broadly consistent with the results of soils mapping undertaken for the current study (see Volume 4 Appendix L, Section 2.2) which also suggest that:

- The extent of the Quaternary and underlying Tertiary units is over-estimated in the mapping; and
- That soils formed on the fine grained sandstones of the Dunda Beds (unit Rld) occupy the largest portion of the EPC1690 area.

The recent review of the available geological information also suggests that where they are present the Tertiary strata are typically thinner than previously thought since the lower Tertiary horizons have now been re-interpreted as weathered Permian age strata.

Along the Carmichael River and over much of the Belyando River system to the east of the Project (Mine) area, the Tertiary strata are indicated to be overlain by Quaternary-aged floodplain alluvium (sands, silts, gravels and clays). An unconformity defines the boundary between the Tertiary-age strata and the underlying Late Permian-age coal bearing strata (a sequence of siltstones, mudstones, sandstones, shales and coal of the Bandana Formation and Colinlea Sandstone). Geological cross sections (Geological Survey of Queensland) and modelled cross sections of the geology (GHD, 2010) indicate that the Late Permian-age strata dip at approximately 2-4° to the west, steepening slightly in the southern half of the lease.

Along the western margins of EPC 1690 a sequence of Triassic-age strata forms an angular unconformity with the overlying Tertiary-age strata and is mapped at outcrop as the Dunda Beds (predominantly sandstone). The Rewan Group (mudstone and sandstone) underlies the Dunda Beds (as shown in cross section and exploration borehole log NS16, BS17 and NS21, Geological Survey of Queensland, 1974) and overlies the Late Permian-age strata.

It has been reported that a fault has been interpreted through the middle of the lease but requires further drilling to confirm (Xenith Consulting, 2009).

A stratigraphic column to illustrate the main geological units within the lease area is summarised in Figure 2-2 from the *Carmichael Macro-Conceptual Mine Study* (Runge, May 2011). Quaternary-age strata (which lie stratigraphically above Tertiary-age strata) are not shown.

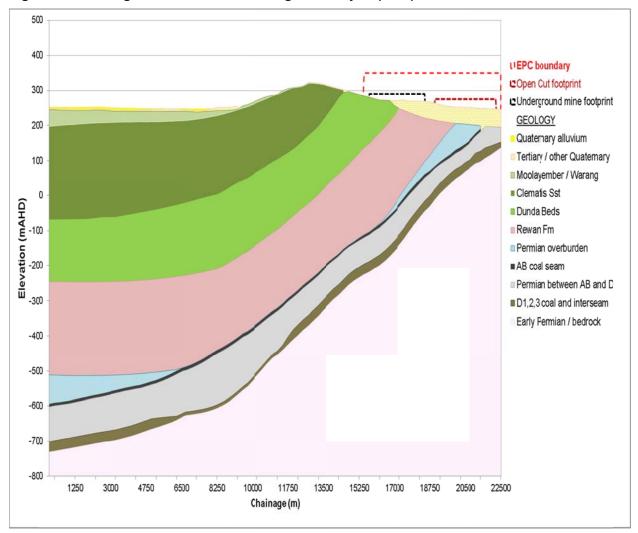


Figure 2-1 Geological Cross-section through the Project (Mine) Lease

Figure 2-2 Stratigraphic Column (Runge, May 2011)

Age	Lithology	Stratigraphy	Thickness
Tertiary	Clays / Mudstones		40 - 100m
Triassic	Mudstone / Siltstone Rewan Formation		
	Sandstone		
	COAL - AB Seam		12 - 18m Resource Seam
	Sandstone / Siltstone	Bandanna Formation	10m
	COAL - B splits		1 - 2m
	Siltstone / Mudstone		60 - 70m
	COAL - C Seam (carbonaceous)		3 - 4m
Late Permian	Siltstone / Sandstone		2 - 20m
	COAL - D1 Seam		4 - 6m Resource Seam
	Sandstone		5 - 30m
	COAL D2/D3 Seam	Colinlea Sandstone	8 - 10m Resource Seam
	Siltstone / Mudstone		10 - 20m
	COAL - E Seam		1 - 3m Resource Seam
	Sandstone / Siltstone		5 - 10m
	COAL - F Seam		1 - 5m Resource Seam
Early Permian	Sandstone		

2.2.3 Hydrogeology Overview

The Project (Mine) lies close to the eastern margin of the Great Artesian Basin (GAB). The GAB comprises Late Triassic to Middle Cretaceous-age strata which are bound by the Triassic-age Rewan Group at the bottom and the Winton Formation at the top (GABCC, 1998).

The coal resources of the Project (which occur within Permian-age strata) are therefore not part of the GAB; however the base of the GAB is defined by the top of the Rewan Group which is present within the EPC 1690 lease area. Definition of the precise boundaries of the GAB in the Project area is made difficult by the presence of younger Quaternary and Tertiary-age units at outcrop and this situation is complicated further by the delineation of a number of overlapping groundwater resource planning and management units which include different interpretations of the limit of the GAB. These different management units are shown in Figure 4-6. This mapping suggests that the boundary between the GAB Eastern Recharge Groundwater Management Unit and the Bowen Unincorporated area lies to the west of EPC 1690 and hence that the lease lies outside of the GAB. However, other mapping of the extent of the Great Artesian Basin Declared Sub-artesian Area and the Great Artesian Basin Water Resource Plan (GABWRP) boundary suggests that the northern part of the Project (Mine) lies within the GAB management areas.

Irrespective of where the precise boundary of the GAB lies it should be noted that:

- None of the main GAB aquifer units are understood to be present within the EPC 1690 or EPC 1080. The Clematis Sandstone is mapped at outcrop to the west of the Project site and dips to the west.
- No direct impacts on any GAB aquifer units are anticipated since the Permian aged Bandana Coal Formation and Colinlea Sandstone which represent the target coal resources for the Project (Figure 2-2) are separated from the Clematis Sandstone GAB aquifer by the intervening aquitards of the Rewan Group.

Areas where the outcrop geology is dominated by the Clematis Sandstone and other permeable units along the northern and eastern margins of the GAB act as recharge areas to the main body of the GAB to the south and west. The Project (Mine) therefore lies immediately east of one such recharge area, identified as the 'GAB Eastern Recharge A – Queensland' groundwater management unit (GMU) delineated by the GABCC in 1999 (Australian National Resources Atlas (ANRA) website, Australian Government).

2.2.4 Registered Groundwater Bore Review

A search of the Queensland Groundwater Database (DERM, 2010) identified 26 registered groundwater bores located within the Hydrogeology Study Area (i.e. within a 10 km radius of the EPC 1690 boundary). The locations of these registered bores are shown in Figure 4-3. Selected information (including facility type, facility role, yield, water level and selected water quality data) for these bores, from the database, is summarised in Appendix B.

In summary, 23 of the registered bores were recorded as existing (facility status) of which 11 were recorded as being for water supply (facility role). Four of the water supply bores were indicated to be for stock use (RN 17981, RN 90256, RN 90258 and RN 90259) and three bores were recorded as abandoned and destroyed. The use of the other four water supply bores was not recorded in the database.

A search of the Queensland Government Water Entitlements Registered Database (WERD) was also conducted for the registered bores identified to obtain any additional available information including

groundwater abstraction rates and purpose of abstraction (such as stock watering). The search was conducted in December 2010. Records identified three of the registered bores at having a licence to take water (RN 62623, RN 67627 and RN 90255); although no allocation quantity is recorded in the database.

The proposed Carmichael Coal mining lease is located within the area administered by the Isaac Regional Council (IRC) (with the exception of 167 ha within the north-western corner of EPC1690, which is located within the Charters Towers Regional Council local government area). Communications with IRC confirmed that they do not hold information regarding privately owned unregistered bores and/or extraction rates.

Publically available groundwater data (such as groundwater levels, groundwater quality, yield estimates) are therefore limited to information extracted from the Queensland Groundwater Database (DERM, 2010) relating to registered bores within the Study Area. In summary these data indicate:

- Where geological and bore construction information are available, the registered bores typically intersect sandstone units (interpreted as being Tertiary, Triassic or Permian-age) with a smaller proportion intersecting alluvial deposits.
- Groundwater in the alluvium in the south of the Study Area appear to be generally brackish (electrical conductivity (EC) in the range 3,700 to 8,100 µS/cm) and slightly alkaline (pH in the range 8 to 9.4 pH units).
- Groundwater in sandstone units ranges from fresh to brackish (recorded EC in the range 155 to 3,800 µS/cm) and typically neutral pH (7.1 to 8.1 pH units).
- Groundwater levels in alluvial areas towards the south of the study area may be relatively close to ground surface, based on data for RN 44489 (interpreted to intersect alluvium) where groundwater was recorded at five metres below ground level (mBGL).

Conversely available records for the single bore with groundwater data completed in Permian age sandstone units (RN 90258) towards the west of EPC 1690 indicates a static groundwater water level of around 40 mBGL.

2.3 Field Investigations

2.3.1 Registered Bore Site Inspection

An attempt was made to visit each of the ten DNRM registered bores thought to be located within EPC 1690. Of these bores, only seven bores could be located and all were situated within fenced off areas on private property to which access could not be negotiated with the land owner. These bores could therefore only be observed from the fence line. Similarly registered bores outside of the areas of EPC 1690 and EPC 1080 were not visited because they are located on properties controlled by the same landowner.

The limited information collected from the bore site inspection is summarised in Appendix B. Headworks were observed on six out of seven of the bores (one of the bores was hidden by the bore shed), with infrastructure in place for operation of a pump (diesel, electric or solar) and pipes for transfer of pumped water to storage tanks or a dam. All of the bores sighted looked to be maintained and the presence of troughs at each location suggested that the primary use of the water was for stock watering.

2.3.2 Groundwater Monitoring Network Installation

Given the limited publically available groundwater level and quality data available for the site, a groundwater monitoring network was established within EPC 1690 to collect hydrogeological data for the purposes of the EIS comprising:

- 33 standpipe bores at 21 sites
- 15 nested vibrating wire piezometers (VWP) at five sites

Figure 2-3 shows the monitoring bore and VWP locations. Relevant information including the purpose of monitoring at each site is summarised in Table 2-1.

Groundwater	Monitored Unit	Monitoring Purpose	
Monitoring Sites			
C006P1	Interburden	Levels and quality, vertical gradients between strata	
C006P3r	D Seam		
C007P2	AB Seam	Levels and quality, vertical gradients between strata	
C007P3	D Seam		
C008P1	Permian Overburden	Levels and quality, vertical gradients between strata	
C008P2	AB Seam		
C011P1	Interburden	Levels and quality, vertical gradients between strata	
C011P3	D Seam		
C012P1	Permian Overburden	Levels and quality, vertical gradients between strata	
C012P2	Tertiary/Permian		
C014P2	AB Seam	Levels and quality (no groundwater encountered in Tertiary- age strata)	
C016P2	AB Seam	Levels and quality	
C018P1	Permian Overburden	Levels and quality, vertical gradients between strata	
C018P2	AB Seam		
C018P3	D Seam		
C020P2	AB Seam	Levels and quality	
C022P1	Dunda Beds	Levels and quality, geological unit within the Great Artesian Basin	
C024P3	D Seam	Levels and quality	
C025P1	Tertiary	Levels and quality, potential connectivity between	
C025P2	Tertiary	groundwater and the Carmichael River, vertical gradients	
C027P1	Alluvium	Levels and quality, potential connectivity between	
C027P2	Dunda Beds	groundwater and the Carmichael River, vertical gradients	

Table 2-1 Groundwater Monitoring Network Summary

Groundwater Monitoring Sites	Monitored Unit	Monitoring Purpose
C029P1 C029P2	Alluvium Tertiary	Levels and quality, potential connectivity between groundwater and the Carmichael River, vertical gradients
C032P2	AB Seam	Levels and quality
C034P1 C034P3	Interburden D Seam	Levels and quality, vertical gradients between strata
C035P1 C035P2	Rewan Group AB Seam	Levels and quality, vertical gradients between strata
C9553P1R C553P_V01 C553P_V02 C553P_V03	Dunda Beds D1 Seam AB1 Seam Permian Overburden	Levels, vertical gradients between strata
C555P1 C555P_V01 C555P_V02 C555P_V03	Rewan Group D Seam AB1 Seam Rewan Group	Levels, vertical gradients between strata
C556P1 C9556P_V01 C9556P_V02 C9556P_V03	Rewan Group D2 Seam AB1 Seam Rewan Group	Levels, vertical gradients between strata
C558P1 C558P_V01 C558P_V02 C558P_V03	Permian Overburden D1 Seam Interburden AB1 Seam	Levels, vertical gradients between strata
C056C_V01 C056C_V02 C056C_V03	D1 Seam AB1 Seam Rewan Group	Levels, vertical gradients between strata
HD01	Dunda Beds	Levels (west of EPC 1690)
HD02	Clematis Sandstone	Levels (between EPC 1690 and Doongmabulla Springs)
HD03A HD03B	Dunda Beds Alluvium	Levels, vertical gradients between strata (between EPC 1690 and Doongmabulla Springs)

A Bourne Drill 1000 rig and a combination of Rotary Wash Bore and Percussion Air-hammer drilling techniques were used to advance the monitoring bores and the VWPs. Each standpipe monitoring bore was installed with 50 mm diameter uPVC casing (glued and/or screwed), machine slotted screen and fitted with a lockable monument cover. The bore annulus of the screened interval was filled with washed two millimetre silica sand, sealed with a bentonite plug and grouted to surface with a cement-bentonite grout mix. Each bore was developed by airlifting.

Each group of VWPs were installed into a 32 mm diameter pvc carrier pipe and grouted into place with bentonite-cement grout. Borehole logs and a summary of survey data are included in Appendix C.

2.3.3 Groundwater Monitoring

Three rounds of groundwater monitoring have been conducted (October and November 2011 and June 2012), to measure groundwater levels and to collect groundwater samples for water quality analysis (October and November 2011 only). In addition, automatic level loggers have been installed in all of the monitoring bores across EPC 1690 to provide a more continuous record of groundwater levels. Groundwater level data collected to date are summarised in Section 4.3 and in Appendix D and groundwater quality results are summarised in Section 4.4 and presented in Appendix E.

The first round of groundwater monitoring was conducted prior to the stygofauna survey (which used a selection of the groundwater monitoring bores) conducted by ALS Water Resources Group (refer to Volume 2, Section 5.4). In order to meet the minimal disturbance criteria for the stygofauna survey, a passive sampling technique using HydraSleeves to collect samples from the screened interval of each borehole was used for the October 2011 round. This had the added benefit of leaving the monitoring bores free of sampling equipment for the stygofauna survey. Low-flow sampling was used to collect the groundwater samples for the second monitoring round (November 2011) and included collection of six duplicate samples using the HydraSleeve technique in order to validate the consistency of results between the two sampling methods. Again, sampling equipment was removed from the monitoring bores in preparation for another round of stygofauna sampling.

Duplicate samples were collected from randomly selected monitored sites at a rate of approximately 10 per cent for quality assurance purposes.

All groundwater samples were stored on ice in an insulated container immediately after collection and air freighted under chain of custody to a NATA accredited laboratory, Australian Laboratory Services (ALS) Brisbane, for analysis.

Groundwater samples were tested for a range of parameters in accordance with the ToR for the Project EIS and are summarised below. In addition, samples were collected from surface water sampling sites WQ1 and WQ3 on the Carmichael River at the same time as the groundwater monitoring samples to inform the assessment of groundwater – surface water interactions.

Field Parameters (measured at the bore prior to collection of samples for laboratory testing):

Dissolved oxygen (DO), electrical conductivity (EC), pH, temperature, Total dissolved solids (TDS).

Laboratory Analysis:

- EC, pH, total organic carbon (TOC)
- Dissolved metals: Aluminium, arsenic, boron, cadmium, cobalt, copper, chromium, iron, manganese, mercury, molybdenum, nickel, lead, selenium, silver, uranium, vanadium, zinc
- Nutrients: Ammonia as N, nitrate as N, nitrite as N, total phosphorous as P

- Major and minor ions: Calcium, magnesium, sodium, potassium, chloride, sulphate, alkalinity (carbonate and bi-carbonate)
- Fluoride, sulphide
- BTEX (benzene, toluene, xylene, ethylbenzene)
- TPH (total petroleum hydrocarbons C6 C36)

2.3.4 Hydraulic Testing

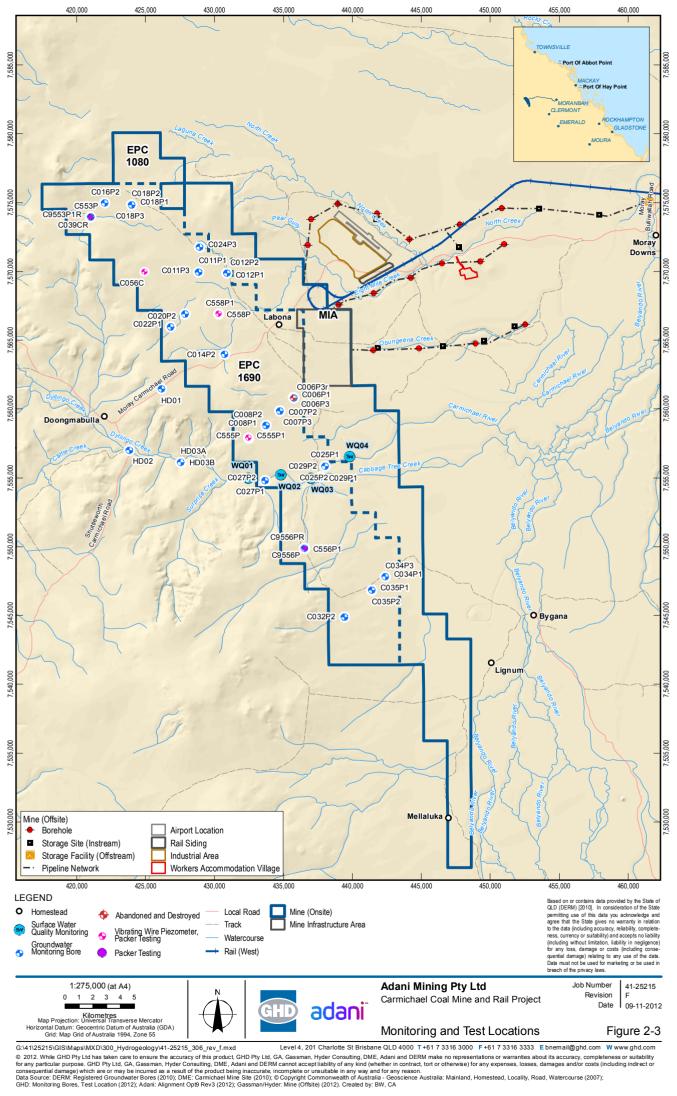
A combination of rising and falling head tests (also known as slug tests) have been conducted on 22 of the groundwater monitoring bores and packer testing has been conducted at five locations, to estimate the hydraulic conductivity of key hydrogeological units including the alluvium, Tertiary-age strata, AB seam, D seam, interburden, overburden, Rewan Group and Dunda Beds. Pumping tests have also been conducted at three locations within EPC 1690, to estimate bulk aquifer properties of the AB seam and the D seam.

For the rising and falling head tests, the standing water level (SWL) was displaced and level loggers were used to measure and record the recovery rate. Analysis of these data was carried out using the Bouwer-Rice analytical solution using AQTESOLV software (developed by HydroSOLVE Incorporated). The packer testing was carried out using a combination of single packer tests (downstage test method) and straddle packer tests (GHD, 2012) and interpreted using methods described in 'Routine Interpretation of the Lugeon Water-Test' (Houlsby, 1976). Each pumping test comprised a 48 hour constant rate test followed by a period of monitored recovery. Analyses were carried out for the appropriate analytical solutions using AQTESOLV software.

The locations tested are summarised in Table 2-2 (slug and packer tests) and in Table 2-3 (pumping tests). Refer to Figure 2-3 for the test locations. The results of the testing are summarised in Section 4.6.

Strata Tested	Location ID	Total Number of Tests (by Strata and Test Type)	Test Type
Alluvium	C027P1 C029P1 HD03B	6	Falling head slug (4) Rising head slug (2)
Tertiary	C025P2 C029P2 C558P1	6	Falling head slug (4) Rising head slug (2)
Clematis Sandstone	HD02	2	Rising head slug
Dunda Beds	C22P1 C027P2 C9553P1R	6	Falling head slug (4) Rising head slug (2)
Overburden (Triassic)	C056	1	Packer

Table 2-2 Summary of Slug and Packer Testing



Strata Tested	Location ID	Total Number of Tests (by Strata and Test Type)	Test Type
Rewan Group	C035P1 C555P1 C556P1	12	Falling head slug (6) Rising head slug (6)
	C056 C9956PR	2	Packer
Overburden (Permian)	C008P1 C012P1 C012P2 C018P1	9	Falling head slug (6) Rising head slug (3)
	C039 C056 C555P C9556PR	4	Packer
AB Seam (Permian)	C007P2 C016P2	2	Rising head slug (1) Falling head slug (1)
	C039 C056 C555P C558P C9556PR	7	Packer
Interburden (Permian)	C006P1 C011P1	7	Falling head slug (4) Rising head slug (3)
	C056 C558P	3	Packer
Interburden, D Seam (Permian) and older Permian strata	C056 C555P C558P C9556PR	4	Packer
D Seam (Permian)	C007P3	1	Falling head slug
	C056 C555P C558P C9556PR	4	Packer
D Seam (Permian) and older strata	CC558P	1	Packer
Older Permian strata	C056 C555P C558P C9556PR	4	Packer

Table 2-3 Summary of Pumping Tests

Strata Tested	Pumping Test Site	Observation Bore ID	Test Flow Rate	Test Type
D Seam	C006	C006P1 C006P3r	0.3 L/s increased to 0.5 L/S after 24 hours	48 hour constant rate test, monitored recovery
D Seam	C018	C018P1 C018P2 C018P3	1 L/s	48 hour constant rate test, monitored recovery
AB Seam	C035	C035P1 C035P2	2.5 L/s	48 hour constant rate test, monitored recovery

3. Relevant Legislation

3.1 Queensland Environmental Protection Act 1994

The *Environment Protection Act 1994* (EP Act) provides a regulatory framework for the protection and management of the Queensland environment. The objective of the EP Act is to protect Queensland's environment while allowing for development that is ecologically sustainable. The environmental values of Queensland's waterways are protected under the EP Act and the subordinate Environmental Protection (Water) Policy 2009 (Section 3.2). Among other things, the EP Act provides for the authorisation of mining activities and an Environmental Authority (Mining Lease) will be required for the proposed mining activity.

3.2 Environmental Protection (Water) Policy 2009

The *Environmental Protection (Water) Policy 2009* (EPP (Water)) seeks to protect Queensland's waters while allowing for development that is ecologically sustainable, the objective identified by the *Environmental Protection Act 1994*.

This purpose is achieved within a framework that includes identifying environmental values (EVs) for Queensland waters (such as aquatic ecosystems, water for drinking, water supply, water for agriculture, industry and recreational use) and deciding and stating water quality guidelines (WQGs) and water quality objectives (WQOs) to enhance or protect the environmental values.

The EVs to be enhanced or protected under the EPP (Water), considered applicable to the Project in relation to groundwater are:

- Biological integrity of an aquatic ecosystem;
- Suitability for minimal treatment before supply as drinking water;
- Suitability for agricultural use; and
- The cultural and spiritual values of the water.

Groundwater resources within the Study Area are not listed in Schedule 1 of the EPP (Water) and therefore the EVs relevant to the study area are as described in Part 3 - 6 (2) of the EPP (Water). Site specific WQOs in order to enhance or protect the EVs can then be derived from relevant water quality guidelines, such as the *Queensland Water Quality Guidelines* 2009 (QWQG) and the *Australia and New Zealand Fresh and Marine Water Quality Guidelines* 2000 (ANZECC 2000).

3.3 Sustainable Planning Act 2009

The *Sustainable Planning Act 2009* (SPA) manages the process of development and the effects of development on the environment. Under SPA, construction works to take water (i.e. extraction of groundwater or dewatering) require a Development Permit (DP) and will be applicable if groundwater is to be taken for any purpose (other than groundwater monitoring) for the Project.

3.4 Water Act (2000)

The *Water Act 2000* provides a framework under which catchment based Water Resource Plans (WRPs) are developed in Queensland. The WRPs are then activated through related Resource

Operations Plans (ROPs) which provide detail on how the water resources will be managed to implement the strategies and objectives as set out in the WRP.

A WRP provides a framework for sustainable management of water resources in the plan area including establishment of Groundwater Management Areas (GMAs) and Groundwater Management Units (GMUs) which can be sub-divisions of a GMA. WRPs also define the availability of water and define water licensing and development permit requirements.

In Queensland, regulated groundwater areas, which is a general term used to include declared subartesian areas, sub-artesian areas, sub-artesian management areas and groundwater management areas, have been established by the Queensland Government to protect groundwater resources. The water resources in these regulated groundwater areas are subject to management and are either established through a WRP, a Local Water Management Policy or as defined by Schedule 11 of the Water Regulation 2002.

In order to take water from a regulated groundwater area for certain purposes, authorisation (such as a licence or development permit) is required. These purposes are defined under a WRP, Local Water Management Policy or by the Water Regulation 2002.

Water resources within the central and southern parts of EPC 1690 and within EPC 1080 are managed under the *Water Resource (Burdekin Basin) Plan 2007* however; this WRP does not include management of groundwater. The groundwater resources within central and southern parts of EPC 1690 and 1080 fall within and are therefore managed as part the Highlands Declared Sub-Artesian Area as shown in Figure 4-6. The groundwater resources within the far northern part of EPC 1690 and along its western margins (the Rewan Group and Dunda Beds) are not classed as GAB aquifers for management purposes and therefore fall within and are managed as part of the Great Artesian Basin Declared Sub-Artesian Area (refer to Figure 4-6). However, the Clematis Sandstone and Moolayember Formation are defined as GAB aquifers and are managed under the GAB WRP.

3.5 Water Regulation (2002)

The Water Regulation 2002 is subordinate to the *Water Act 2000* and defines sub artesian groundwater declared areas (i.e. regulated groundwater areas). It also details the purpose of use (such as stock / domestic use) that do not require authorisation to take water in regulated groundwater areas and, by omission, those purposes that do require authorisation.

As detailed in Section 3.3 the majority of EPC 1690 (and EPC 1080) lie within the Highlands Declared Sub-Artesian Area and the northern end and western margins lie within the Great Artesian Basin Declared Sub-Artesian Area (Figure 4-6). An authorisation to take water (a groundwater licence) is required for any purpose of use, with the exception of stock and domestic use, in both of these areas.

3.6 Groundwater Related Licensing and Permits Relevant to the Project (Mine)

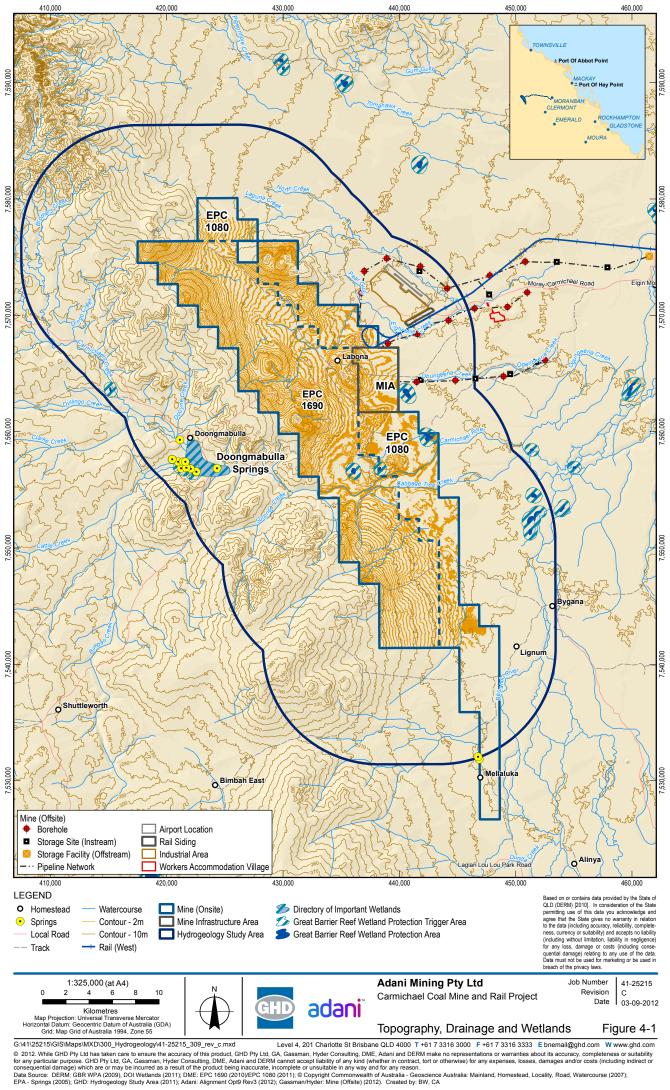
As discussed in Section 3.3 and Section 3.5, groundwater resources within Project (Mine) site are managed within the Highlands Declared Sub-Artesian Area and the GAB Declared Sub-Artesian Area. Under these management regimes a licence will be required for any activity involving the take

of groundwater for the Project (Mine) such as for the purposes of mine dewatering, extraction of groundwater for construction or consumption, or conducting pumping tests. A licence is applied for under Section 206 of the *Water Act 2000* and submitted to the Department of Natural Resources and Mines (DNRM) for assessment under the provisions of the *Water Act 2000*. Each application is assessed on its merits. Currently there is no limit to the volume of water that can be applied for, to take from aquifers managed under the Highlands Declared Sub-Artesian Area and the GAB Declared Sub-Artesian Area.

The likely timeline indicated by DNRM for granting a licence under Section 206 of the *Water Act* 2000 and a DP under *SPA* 2009 is a minimum of six months.

Take of any groundwater from aquifers managed under the GAB WRP and ROP is subject to different permits and approvals. However, no aquifers managed under the GAB WRP are present within the Project (Mine) site and hence no direct extraction from such aquifers for dewatering or other purposes is proposed as part of the Project. The permitting requirements under the GAB WRP and ROP are therefore not considered to be relevant in this case.

4. Description of Environmental Values


4.1 Topography and Drainage

Topography across the Study Area typically slopes towards the east and north-east from a northwest to south-east trending ridge line, west of the EPC1690 lease (lease) boundary and running parallel to it (Figure 4-1). The topographic gradient flattens out in the vicinity of the Carmichael River and in eastern parts of the Study Area.

The ridgeline is bisected by the Carmichael River, which flows west to east through the southern half of the Study Area. A number of tributaries to the west of the lease feed into the Carmichael River (including Surprise Creek, Carmichael Creek, Dingo Creek, Cattle Creek and Dooyne Creek) and the Carmichael River also receives discharge from the Doongmabulla Spring complex. Other ephemeral drainage lines also cross EPC 1690, north and south of the Carmichael River, and typically fall towards the east. The Carmichael River is a tributary of the Belyando River, which flows south to north past Study Area and lies approximately 8 to 10 km to the east of the exploration lease boundary.

The closest DNRM river gauging station to the Study Area is the Gregory Developmental Road Gauge on the Belyando River (No. 120301B) around 70 km to the northeast of the Project (Mine) (refer to Mine Hydrology Report, Volume 4, Appendix P, Section 3.3.1 and 3.3.2).

Two surface water monitoring stations have been established as part of the current study within the Study Area on the Carmichael River, one close to the upstream boundary of the lease (Station No. 333301) and one close to the downstream boundary (Station No. 333302). These stations provide information on surface water levels (or river stage) and estimated flows (or discharge) which have been used for various technical studies undertaken as part of the EIS. These gauging stations have been operational since July 2011, however no data for the upstream gauge has been recorded since 4 February 2012 due to damage. The current flow estimates for these gauges are understood to have been developed from a stage-discharge relationship based on a single flow gauging event. Flow gauging over a wide range of flows is typically required to develop an accurate stage-discharge relationship, as the cross sectional flow area at different river stages can vary significantly in natural channels. As such, the estimated flow data for these gauges should be treated with some caution.

4.2 Hydrogeological Units

Published 1:250,000-scale geology mapping for the Hydrogeology Study Area is shown in Figure 4-2 and the digital published geology in Figure 4-3 and Figure 4-4. Figure 4-5 provides the legend for each of the units mapped at outcrop. A description of the geology is also included in Volume 2, Section 4.3 of the Carmichael Coal Mine and Rail Project EIS.

Based on the current understanding of the geology for Project (Mine) site and Study Area the following hydrogeological units are considered of relevance to the Project:

- Cainozoic and Quaternary unconsolidated alluvial and colluvial deposits associated with the Carmichael River and other local water courses (map symbols Cz, Q, Q>T, Q>Rw, and TQw, Figure 4-3)
- Tertiary-age clay, sandstones and siltstones (map symbol T, Figure 4-3)
- Numerous underlying Triassic-age units which form part of the GAB including the Warang Sandstone (map symbol Rw), the Moolayember Formation (map symbol Rm), the Clematis Sandstone (map symbol Re), the Dunda Beds (map symbol Rd) and the Rewan Group (not mapped at outcrop)
- Permian-age siltstones, mudstones, sandstones and coals of the Bandanna Formation and the Colinlea Sandstone which form the target of the proposed mining operations (not mapped at outcrop)

Each of these units is described in Sections 4.2.1 to 4.2.4 below. Summary information on each unit is presented in Table 4-1.

4.2.1 Unconsolidated Alluvial and Colluvial Deposits

The unconsolidated alluvium and colluvium of Cainozoic and Quaternary typically form the uppermost hydrogeological unit within and in the vicinity of the Project (Mine). Along the Carmichael River these strata include sands, gravels and clay-dominated layers of variable thickness and lateral extent which form an unconfined aquifer, indicated to be between around 10 to 12 m thick. Alluvial aquifers are also likely to be associated with other main watercourses in the area, such as the Belyando River to the east of Study Area.

The permeability of these units will be governed primarily by the proportion of sands and gravels and the connectivity of the various materials, which is likely to vary both laterally and vertically. Yields appear to be in the region of 1 to 3 L/s, based on available records for two registered bores in the Study Area.

4.2.2 Tertiary-age Clay, Sandstones and Siltstones

Layered clay, sandstones and siltstones of Tertiary-age are mapped at outcrop and underlie the younger unconsolidated deposits over much of the Study Area.

Geological logging of the Tertiary-age units encountered during drilling of the monitoring network bores suggests a typical profile including around 16 m of clay overlying around 55 m of sandstones and siltstones which are often highly weathered and include significant clay-dominated material. These weathered sandstones and siltstones were originally interpreted as Tertiary-age strata, although they are typically difficult to differentiate from both the overlying Quaternary strata and underlying weathered Triassic and Permian-age strata. A more recent review of the available geological information (see Appendix H) suggests that these lower Tertiary horizons are in fact typically weathered Permian age strata.

Falling head test results for the three monitoring bores installed in Tertiary deposits suggest hydraulic conductivity values as low as 2.1×10^{-4} m/d for the Tertiary-age clay strata (see Table 4-3). Assuming that these results are typical of the wider study area and given the, often, significant thickness of clayey strata then it is considered unlikely that the Tertiary-age strata represent a locally important groundwater resource.

4.2.3 Triassic-age Great Artesian Basin Units

Triassic-age GAB units comprising, from oldest to youngest, the Rewan Group, Dunda Beds, Clematis Sandstone and Moolayember Formation lie within and to the west of Study Area. The Rewan Group (comprising layers of sandstone, mudstone and conglomerate) is considered to be a major confining bed of the GAB and bounds the base of the GAB aquifers (GABCC, 1998). Within Study Area the Rewan Group is indicated to be dominated by clays and mudstones with some interbeds of sandier lithology and is considered to be an aquitard. It separates the Project coal resource within the underlying Permian-age strata from the stratigraphically younger Dunda Beds (predominantly sandstones) and Clematis Sandstone (a GAB aquifer) to the west.

In the vicinity of the Project (Mine) the permeability of these sandstone aquifers is likely to be variable and dependent on the degree of fracturing and/or grain sizes. This is supported by the available yield data, which suggests yields from as low as 0.1 L/s to as high as 4 L/s for registered bores thought to be completed in Triassic-age units within the Study Area.

4.2.4 Permian-age Coal Measures

The coal resource of the proposed Project lies within the Late Permian-age Bandanna Formation and Colinlea Sandstone, which form part of the Galilee Basin. The coals dip from east to west across the Project area. Hence, towards the eastern boundary of EPC 1690 the coal seams can be present at subcrop directly beneath the Quaternary and Tertiary units, which dominate the outcrop geology. Conversely, towards the west of the Study Area, the Triassic-age sandstones and mudstones of the Rewan Group overlie the coals. Both the Triassic and Permian-age strata typically dip with a shallow gradient (2 to 4 degrees) towards the west and are unconformably overlain by Tertiary and Quaternary-age strata.

The Permian Coal Measures within the Bandanna Formation typically comprise a varied sequence of sandstones, siltstones, mudstones and coals. Primary porosity and permeability in each of these units is typically low and hence yields are generally governed by the degree to which secondary porosity and permeability has developed. Experience at locations within the nearby Bowen Basin suggests that coal seams are often the highest yielding and most permeable part of the sequence. This probably reflects the relatively low strength and hence high fracture potential of the coal seams, in comparison to other units present.

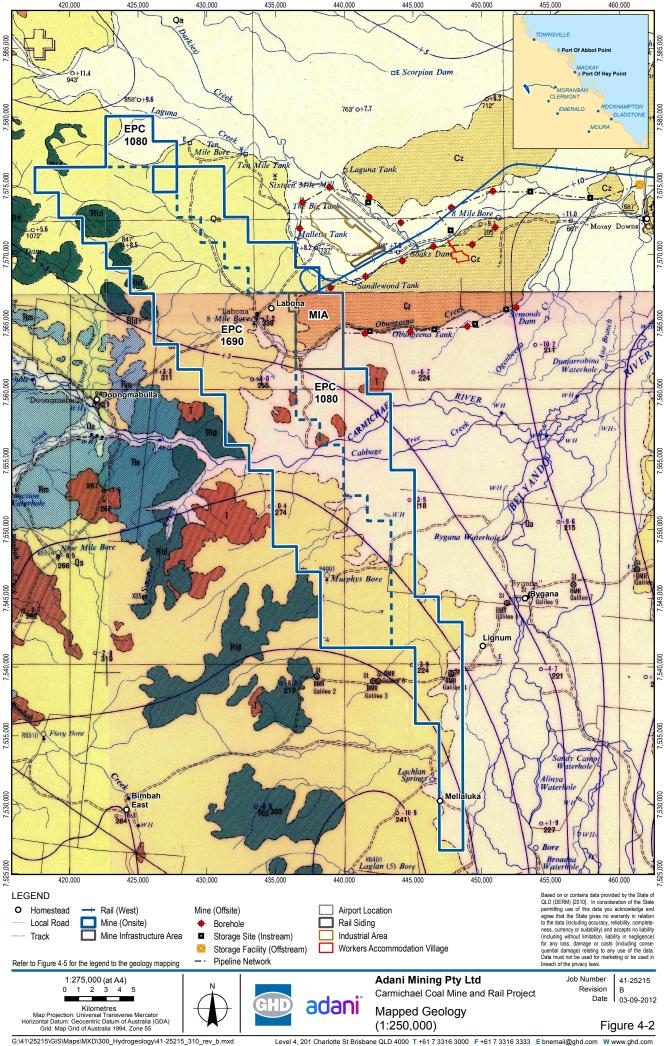
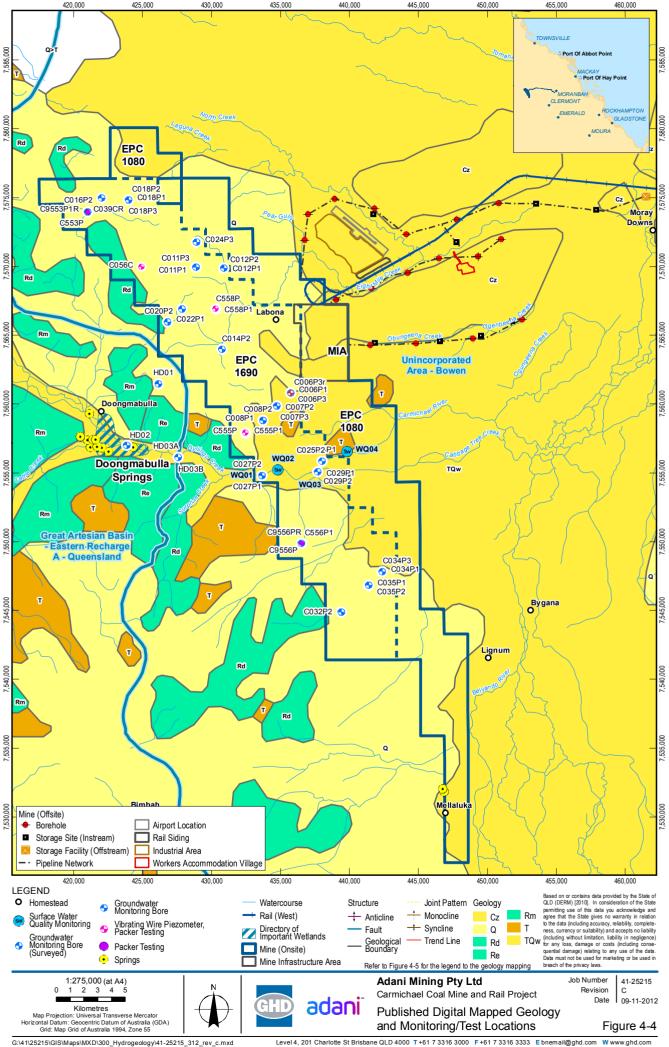

Yield estimates from short periods of airlifting (1 to 2 hours in length) conducted on the Project (Mine) groundwater monitoring network installed in coal seams ranged from <0.1 to 1.0 L/s (with a mean of 0.2 L/s and median of 0.12 L/s) and suggests that in general, relatively low yields should be anticipated from the coal seams. No publically available information on groundwater yields which can be attributed to Permian-age units within the Study Area was identified in the desktop review which suggests that the Bandanna Formation and/or the Colinlea Sandstone do not represent a locally important water resource.

Table 4-1 Summary of Hydrogeological Units Identified for the Study Area


Description	Map Symbol	Age	Туре	Typical Thickness ¹	Comments
Alluvium (lenses of sand, sand and gravel, and clay)	Q, Cz	Quaternary/ Cainozoic	Unconfined local aquifer(s)	2 – 12 m (where present)	Predominantly in the vicinity of the Carmichael River within EPC 1690 and the Belyando River to the east of the Study Area.
Weathered sandstones and siltstones (often weathered to clays and sandy clays, including yellow, red, orange colourations)	T, TQw	Tertiary	Unconfined limited resources	20 - 50 m (where present), up to ~80 m in SE of EPC	Thought to occur at outcrop over central and eastern parts of EPC 1690 and the Study Area.
Moolayember Formation (sandstone	Rm Triassic	Triassic	Aquitard / limited resources	Not present in EPC.	Mapped at outcrop approximately 2 km west of EPC 1690.
and siltstone) and Warang Sandstone (sandstone, conglomerate, mudstone and siltstone)				~50 m near Doongmabulla; and > 100 m further west	
Clematis Sandstone (sandstone)	Re Triassic	Triassic	Confined GAB	Not present in EPC.	Mapped at outcrop approximately 2 km west
		artesian aquifer	~200 m near Doongmabulla; and > 250 m further west	of EPC 1690.	
Dunda Beds (typically orange-brown and red-brown quartzose sandstone)	Rd	Lower Triassic	Confined local aquifer	Up to 100 m at western limit of lease, typically ~150-200 m further west	Mapped at outcrop in western parts of EPC 1690, separated from the underlying Late Permian-age strata (bearing the coal) by the underlying Rewan Group
Rewan Group (typically red-brown and grey-green mudstone and green-grey sandstone)	NA	Lower Triassic	Aquitard	Up to 250 m at western limit of lease	Defined as the base of the Great Artesian Basin, separating the Dunda Beds (above) from the Permian-age (coal–bearing) strata below
Permian Coal Measures. Variable sequences of mudstone, siltstones, coals and sandstones including the target coal seams of the Bandanna Formation and Colinlea Sandstone.	NA	Late Permian	Variable. Aquitards / limited resources and confined local aquifers	90 to 180 m to base of target coals	Aquitard layers (typically siltstone, mudstone and clays) in central and western pars of EPC 1690; Sandstone and coal seams yield estimates <0.1 to 1 L/s

¹ Within EPC 1690 lease area

G:\4125215GIS\MapsiMXD\300_Hydrogeology\41-25215_310_rev_b.mxd Level 4, 201 Charlotte St Brisbane QLD 4000 T +61 7 3316 3000 F +61 7 3316 3333 E bnemail@ghd.com W www.ghd.com 0 2012. While GND Pty Ltd, GA, Gassman, Hyder Consulting, DME, Adani and DERM make no representations or warranties about its accuracy, completeness or suitability for any particular purpose. GHD Pty Ltd, GA, Gassman, Hyder Consulting, DME, Adani and DERM make no representations or warranties about its accuracy, completeness or suitability of any kind (whether in contract, tor or otherwise) for any performs. Other Adami and DERM cannot accept liability of any kind (whether in contract, tor or otherwise) for any expenses, losses, damages and/or costs (including indirect or Data Source: DME: Mapped Geology 2564 (2001); EPC 1080 (2011); © Copyright Commonwealth of Australia - Geoscience Australia: Mainland, Homestead (2007); Adani: Alignment Opt9 Rev3 (2012); Gassman/Hyder: Mine (Offsite) (2012). Created by: BW, CA

G:\41\25215\GIS\Maps\MXD\300_Hydrogeolog\y41-25215_312_rev_c.mxd Level4, 201 Charlotte St Brisbane QLD 4000 T+61 7 3316 3000 F+61 7 3316 3333 E bnemail@ghd.com Www.ghd.cor © 2012. While GHD Pty Ltd has taken care to ensure the accuracy of this product, GHD Pty Ltd, GA, Gassman, Hyder Consulting, DME, Adani and DERM make no representations or warranties about its accuracy, completeness or suitability for any particular purpose. GHD Pty Ltd, GA, Gassman, Hyder Consulting, DME, Adani and DERM cannot accept liability of any kind (whether in contract, tot or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which more may be incurred as a result of the product being inaccurate, incomplete or nuslable in any way and for any way and for any way and for any expenses. Costs (including indirect or consequential damage) which Withy. Watercourse (2007); BRS: GMU Boundary (2009); EPA - Springs (2005); GHD: Hydrogeology Study Area, Groundwater Monitoring Bores, Test Locations (2012); Adani: Alignment Opt9 Rev3 (2012); Gassman/Hyder. Mine (Offsite) (2012). Created by: BW, CA, MS

1:2	250.00	0 North Eroma	inga Regional Geo	loav Symbol Kev		
		Formation	Age	Lithology Summary		
Cz	logy onit	1 officiation	CAINOZOIC	Sand, silt, gravel: alluvial, colluvial and residual		
Q			QUATERNARY	Alluvium of older flood plains, sand, gravel, soil		
Q>R Q>T	w	Warang Sandstone	QUATERNARY QUATERNARY	Alluvium of older flood plains, sand, gravel, soil Alluvium of older flood plains, sand, gravel, soil		
	TERTIARY -		TERTIARY -			
TQw			QUATERNARY TERTIARY	Silt, clay, sandy clay; minor sand and gravel; fluvial Quartzose sandstone, conglomerate, siltstone		
Rw		Warang Sandstone	TRIASSIC	Kaolinitic quartz sandstone, conglomerate, variegated mudstone and siltstone		
Rm		Moolayember Format	ion TRIASSIC	Micaceous lithic sandstone, micaceous siltstone Medium to coarse-grained quartzose to sublabile, micaceous sandstone, siltstone, mudstone and granule to pebble		
Re		Clematis Sandstone	TRIASSIC	conglomerate		
Rd		Dunda beds	EARLY TRIASSIC	Lithic to quartzose sandstone, siltstone, mudstone Fine to medium feldspathic quartz sandstone; minor olive mudstone, pebbl	v feldspathic quartz sandstone and algal	
Cb	Bulliwallah Formation CARBONIFEROUS			limestone; poorly preserved plant fossils		
Cu		Ducabrook Formation		Feldspatholithic sandstone, mudstone, siltstone (commonly tuffaceous), mi Lithic conglomerate, feldspatholithic sandstone, rhyolitic to dacitic ignimbrit		
Cs Cr		Star of Hope Formation Raymond Sandstone	DN CARBONIFEROUS CARBONIFEROUS	sinter Flaggy quartzose sandstone, siltstone and minor limestone		
Ch		Mount Hall Formation		Quartzose to feldspathic sublabile sandstone, quartz-pebble conglomerate	, mudstone and red siltstone	
Cn		Natal Formation	CARBONIFEROUS	Alternating fine feldspathic quartz sandstone and olive siltstone; poorly pre-	served plant fossils	
1:2	250,00	0 Mapped Geo	ology Symbol Key			
E.					10	
				Qa Alluvium: sand, silt, clay		
	QU	ATERNARY				
2				Os Sand, soil, gravel, rubble		
AINOZOIC				Cz Undivided sandy deposits		
2				Chlowided sandy deposits		
AIP				Duricrust: ferruginized and silicified leached sediments		
U					· · · · · · · · · · · · · · · · · · ·	
	ТЕ	RTIARY?				
	(''	ATTAKT :		Argillaceous sandstone, sandy mudstone, clay, some ferricrete		
	,				·	
		LOWER	Wallumbilla Formation Doncaster Member	Kid Mudstone, minor siltstone, sandstone, limestone; calcareous in part,		
	CRE	TACEOUS	Doncaster Member	some beds glauconitic		
		SIC TO LOWER	Ronlow Beds	J Kt Quartz and sublabile sandstone, siltstone, minor conglomerate		
	CRE	TACEOUS				
SIC			ſ	·····································		
ZC				R Undivided (section only)		
MESOZOIC	MIDDU	E TO UPPER S				
ME		E TO UPPER	Moolayember Formation	Rm Mudstone, labile to guartz sandstone, siltstone		
	LOWER	g		AND NUMBER OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIP		
		TO MIDDLE	Clematis Sandstone	He Quartz sandstone, conglomerate, minor siltstone and mudstone		
	LOWE	R TRIASSIC	Dunda Beds	Rid Labile to quartz sandstone, siltstone, mudstone		
			`			
		? TO UPPER		Dr. I		
		ERMIAN		Shale, coal, quartz to labile sandstone		
here		UPPER ONIFEROUS		C-P Shale, quartz to labile sandstone, lesser siltstone and coal,		
		VER PERMIAN		minor mudstone and limestone (section only)		
		[Ducabrook Formation	Clu Mudstone fine feldspathic sandstone tuffaceous sandstone		
				UN Mudstone, fine feldspathic sandstone, luffaceous sandstone		
010		Group	Star of Hope Formation	Els Pebbly feldspathic sandstone and conglomerate		
EOZ	CARB	OWER ONIFEROUS	Raymond Formation	Cir. Mudstone, fine feldspathic sandstone, minor tuff, calcarenite and calcareous sandstone		
PALAEOZOIC			Mount Hall Formation	Quartz pebble conglomerate, mudstone, quartz sandstone, minor siliceous sandstone		
PA						
			Telemon Formation	Cit Quartz sandstone, mudstone, tuff and tuffaceous sandstone, minor limestone and feldspathic sandstone		
	MIDDL			[Texture second]		
	DE	E TO UPPER EVONIAN		D Quartz to labile sandstone, shale, siltstone, minor calcareous siltstone		
				Language and the second s	(section only)	
	BAL	OWER		Pz Low grade metamorphics and acid igneous rocks		
l	PAL	AEOZOIC?		tom grave metamorphics and actu igneous focks		

NOTE

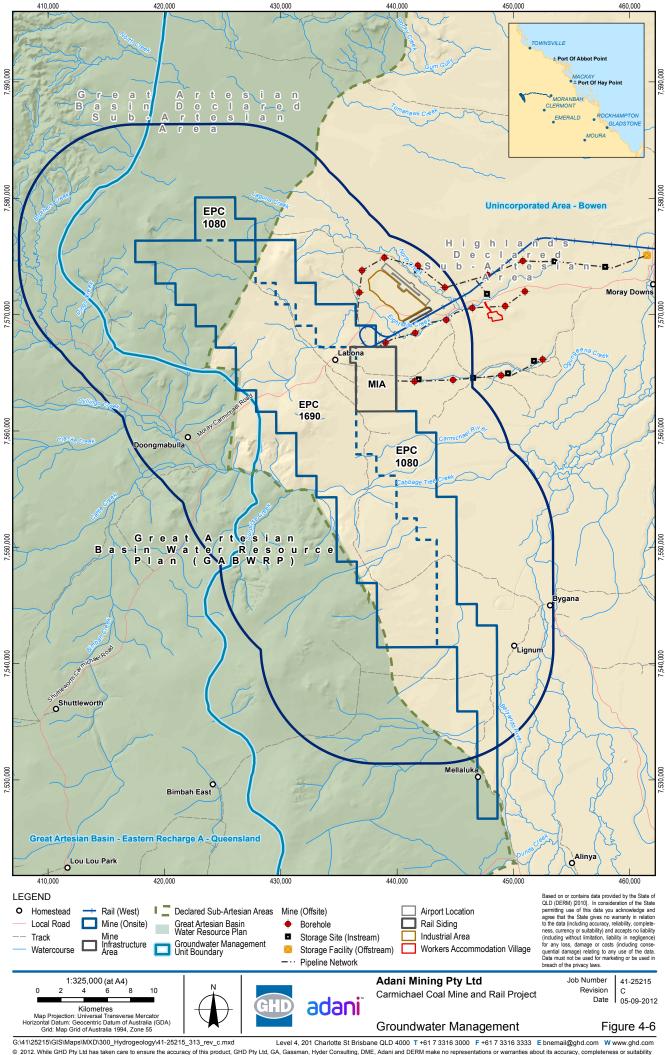
Geological unit descriptions are limited to those shown in the map extent. Additional geological units not described here may be present in surrounding areas.

Based on or contains data provided by the State of OLD (DERM) [2010]. In consideration of the State permitting use of this data you acknowledge and gare that the State gives no warrantly in relation to the data (including accuracy, reliability, complete-ness, currency or subability) and cacepts no lisality (including without limitation, lisality in neglegence) for any loss, damage or costs (including corre-quential damage) relating to any use of the data. Data must not bused for marketing or bused in breach of the privacy laws.

Adani Mining Pty Ltd

Carmichael Coal Mine and Rail Project

Job Number 41-25215 Revision B Date 03-09-2012 Figure 4-5


Geology Index Sheet

G/41/25215/GIS/Maps/MXD/300_Hydrogeology/41-25215_314_rev_b.mxd Level 4, 201 Charlotte St Brisbane QLD 4000 T+617 3316 3000 F+617 3316 3333 E © 2012. While GHD Pty Ltd has taken care to ensure the accuracy of this product, GHD Pty Ltd, DME and Adami make no representations or warranties about its accuracy, completeness or suitability for any particular purpose. GHD Pty Ltd, DME and Adami cannot accept liability of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred as a result of the product being inaccurate, incomplete or unsuitable in any way and for any reason. Data Source: DME: Regional Geology 250K (2007). Created by: BW, CA Level 4, 201 Charlotte St Brisbane QLD 4000 T+61 7 3316 3000 F+61 7 3316 3333 E bnemail@ghd.com W www.ghd.com

adani

GHD

(+

C341C5215GISUMB9SIMXDU30U_Hydr0geology41-25215_31_eVI_E.mxa
Level 4, 201 Charlotte St Brisbane QLD 4000 1 + 61 7 3316 3000 F + 61 7 3316 3333 E bnemail@gdh.com W www.gha.com
2 012. While GAD Pty Ltd has taken care to ensure the accuracy of this product, GHD Pty Ltd, GA, Gassman, Hyder Consulting, DME, Adani and DERM make no representations or warranties about its accuracy, completeness or suitability of any kind (whether in contract, tort or otherwise) for any particular purpose. GHD Pty Ltd, GA, Gassman, Hyder Consulting, DME, Adani and DERM make no representations or warranties about its accuracy, completeness or suitability of any kind (whether in contract, tort or otherwise) for any persense, losses, damages and/or costs (including indirector or consequential damage) which are or may be incurred as a result of the product being inaccurate, incomplete or unsuitable in any way and for any reason.
Data Source: GABWRP, Declared Subartesian Area (2009); DME: EPC 16900 (2011); © Copyright Commonwealth of Australia: Geoscience Australia: Mainland, Homestead, Locality, Road, Watercourse
(2007); BRS: Groundwater Management Unit Boundary (2009); GHD: Hydrogeology Study Area (2011; Adani: Alignment Opt9 Rev3 (2012); Gassman/Hyder: Mine (Offsite) (2012). Created by: BW, CA

4.3 Groundwater Levels and Flows

4.3.1 Overview

Groundwater levels collected from the groundwater monitoring network established within Study Area in November 2011 are shown in plan view in Figure 4-7. Interpreted groundwater level contours and groundwater flow directions for the Tertiary-age strata, AB seam and D seam are shown in Figure 4-8, Figure 4-9 and Figure 4-10 respectively. Insufficient data are available to develop meaningful groundwater level contours for the Quaternary alluvium and Tertiary-age strata although as would be expected the available data from the monitoring bores along the Carmichael River (Figure 4-7) suggests flow from west to east (i.e. downriver). Time series of groundwater elevations are included in Charts 1 to 23 in Appendix D.

4.3.2 Depth to Groundwater

The monitored piezometric head in the Permian-age strata including the coal seams generally falls within the range 20 to 47 m below ground level (BGL). Exceptions to this general rule include the far south of EPC 1690 where the piezometric head has been measured close to ground surface at around 3 mBGL at borehole C035P2 and almost 3 m above ground level (AGL) at nearby monitoring bores C034P3 (D seam) and C034P1 (which monitors overlying sandstone interburden). Piezometric heads above ground were also encountered in exploration bore C066 (at exploration site 180-35) just north of the Carmichael River close to the western boundary of the exploration lease.

Measured groundwater levels in the Dunda Beds at the two monitored locations in the north of EPC 1690 are within the range 27 to 42 mBGL (C022P1 and C9553P1R). Depth to groundwater at monitored locations within the Rewan Group are between around 11 and 26 m BGL in the north of EPC 1690 (C555P1 and C555P1) and around 3 to 4 mBGL in the south (C035P1).

Groundwater levels measured within the Tertiary-age strata in the vicinity of the Carmichael River range from around 2 mBGL at C029P2 to around 11 mBGL at C025P1. Groundwater levels have also been measured close to ground surface in the alluvium (ranging between ground surface and up to around 11 mBGL at C027P1 and C029P1 respectively) and in the Dunda Beds (from around 0.7 mAGL to around 3.6 mBGL at C027P2). These shallower depths to groundwater in the Tertiary-age strata and Dunda Beds are thought to be at least partly as a result of a lower topographic profile close to the river.

4.3.3 Groundwater Flow Directions

Interpretation of the groundwater elevation data for the monitoring network, collected in September 2012, for selected monitored units is shown in Figure 4-8, Figure 4-9, Figure 4-10, Figure 4-11 and Figure 4-12. It suggests that groundwater flow is typically towards the south-east across the northern and central parts of EPC 1690 in the Dunda Beds, Rewan Group, Permian-age sandstones and siltstones, the AB seam and the D seam. The groundwater level data typically show minimum groundwater level elevations at monitoring sites C006, C007, C008 and C555 rather than in the vicinity of the topographic low point the Carmichael River. Across southern areas of EPC 1690, interpretation of the data suggests groundwater flow is typically towards the north west in the Permian-age sandstones and siltstones and the AB and D seams (refer to Figure 4-10, Figure 4-11 and Figure 4-12).

ada

The groundwater elevation calculated for the D seam at vibrating wire piezometer C056 (136.73 mAHD, 7 September 2012) is considered to be erroneous since it is around 80 m lower than levels recorded in nearby monitoring bores. Groundwater level data from this piezometer have therefore been excluded from all subsequent analysis although monitoring of groundwater level pressures data at C056 is ongoing.

4.3.4 Vertical Gradients

A comparison of observed groundwater levels and river bed elevations (note, survey of bed elevation may be +/- 2 m due to tree cover) at three locations where monitoring bores have been installed close to the Carmichael River are provided in Table 4-2. This data suggest an upward gradient of up to around six metres from the Tertiary-age strata, where present, to the overlying alluvium. Groundwater levels in the alluvium at C027P1 close to the western boundary of the lease are also above the bed of the adjacent Carmichael River, which suggests the potential for groundwater discharge to the river in this area. Data for sites C025 and C029 which are located closer to the eastern boundary of EPC 1690 suggest that the bed of the river is typically above the observed groundwater level in the alluvium, which suggests the potential for leakage from the river to groundwater in this area. Further discussion on groundwater and surface water interactions based on this and other data can be found in Section 4.7.

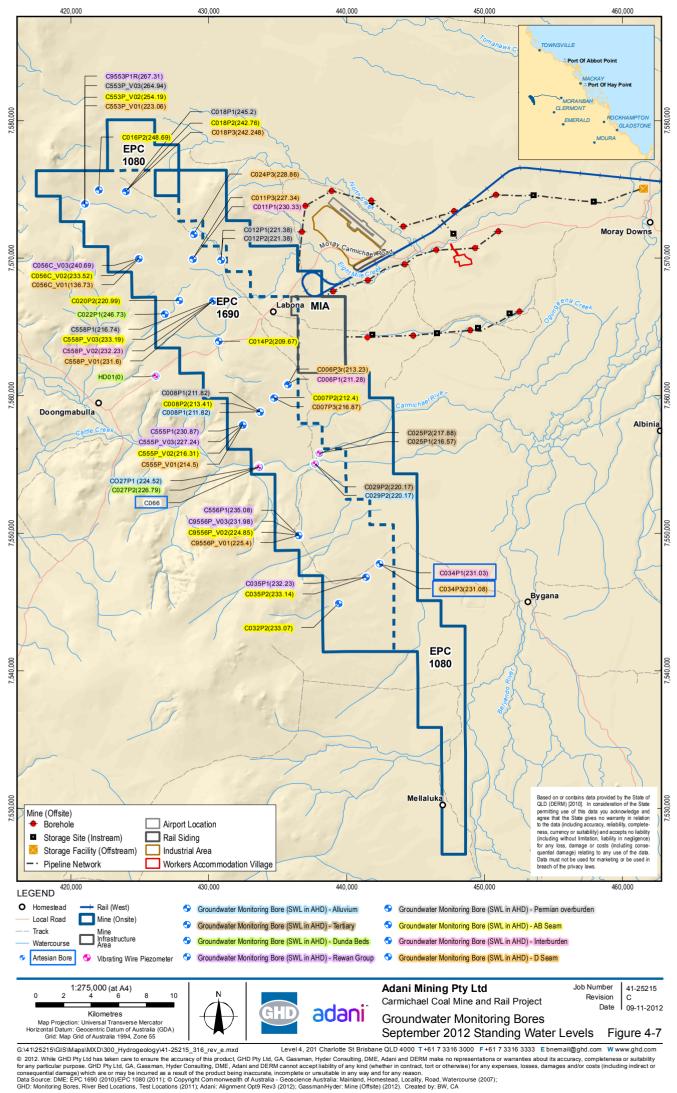
Site	Borehole	Strata Monitored	Average Groundwater / River Bed Level (mAHD)
C027	NA	River Bed	224.0*
	P1 Alluvium 2		224.5
	P2	Dunda Beds	226.6
C029	NA	River Bed	220.0*
	P1	Alluvium	214.6
	P2	Tertiary	220.2
C025	NA	River Bed	221.0*
	P1	Tertiary	216.6
	P2	Tertiary	217.9

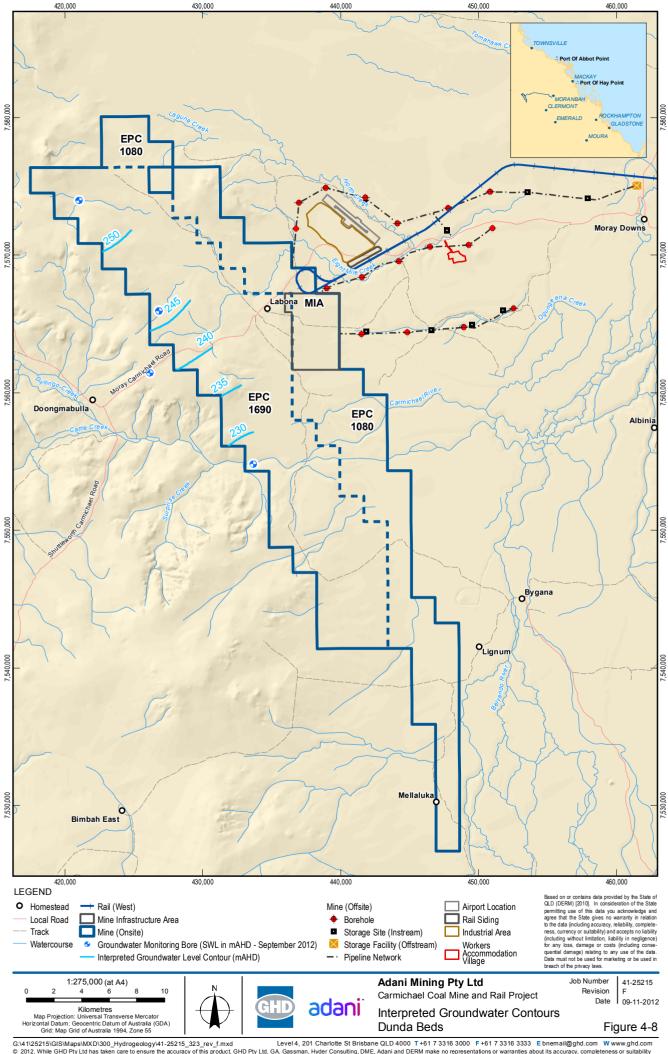
Table 4-2 Carmichael River Monitoring Bore Summary

Note: * Survey of bed level may be +/- 2 m due to tree cover

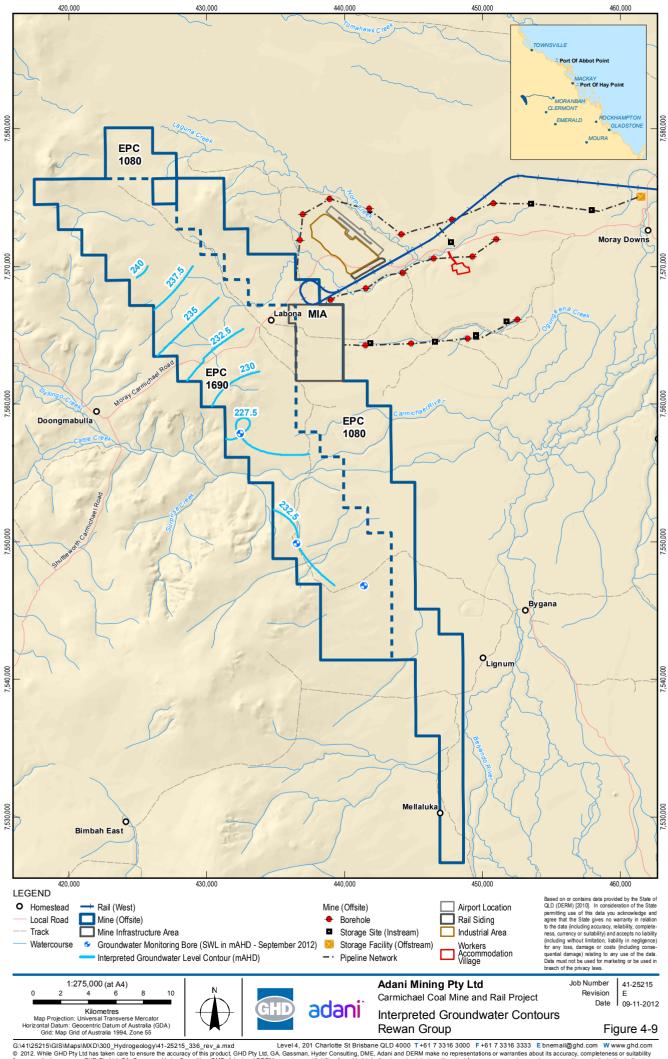
Upward piezometric head gradients also appear to be present in central and southern parts of EPC 1690 within the Permian-age strata (as indicated by data for monitoring bore pairs C006P1 and C006P3r, C007P2 and C007P3, C008P1 and C008P2, C034P1 and C034P2, refer to Appendix D) and between the Permian-age strata and overlying Rewan Group (monitoring bore pair C035P1 and C035P2). The data for the VWPs installed at C9556P are also consistent with this upward gradient. However the data for the VWPs at C555P also within the central part of EPC 1690 show a downward gradient within the Permian-age strata and also from the Rewan Group to the Permian-age strata at this location.

In northern parts of the Study Area water level data for monitoring bores and VWPs indicate a downward gradient within the Permian-age strata and from the Rewan Group to the underlying Permian-age strata (Refer to Charts 5, 9, 19, 20 and 22 in Appendix D which related to monitoring bores C011P1 and C011P3, C018P1, C018P2 and C018P3 and VWPs at C553P, C056C and C558P).

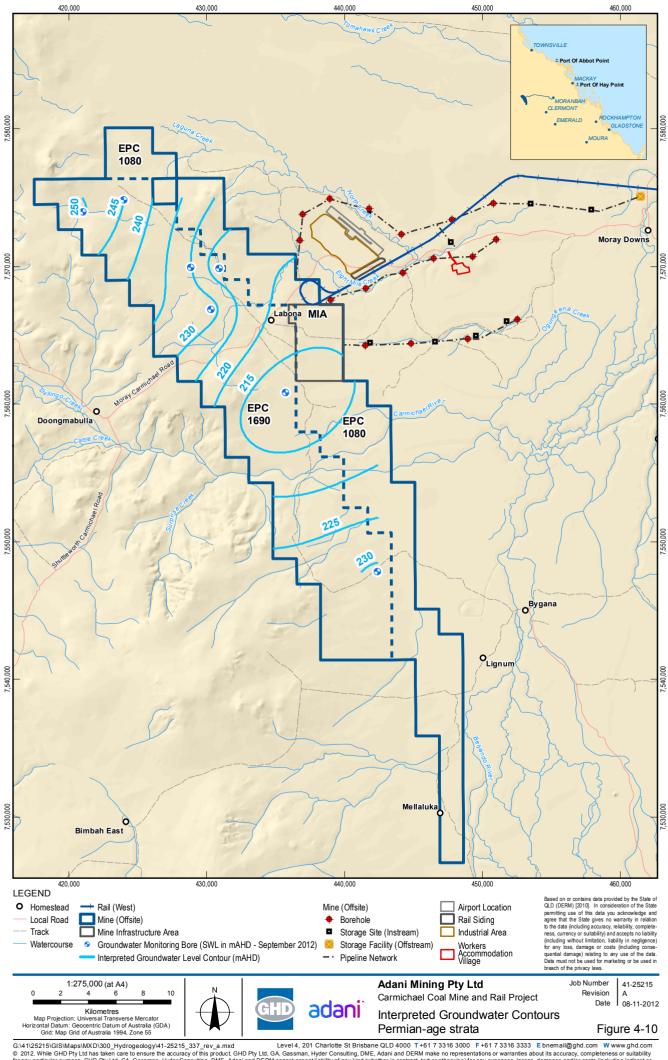

4.3.5 Seasonal Fluctuations

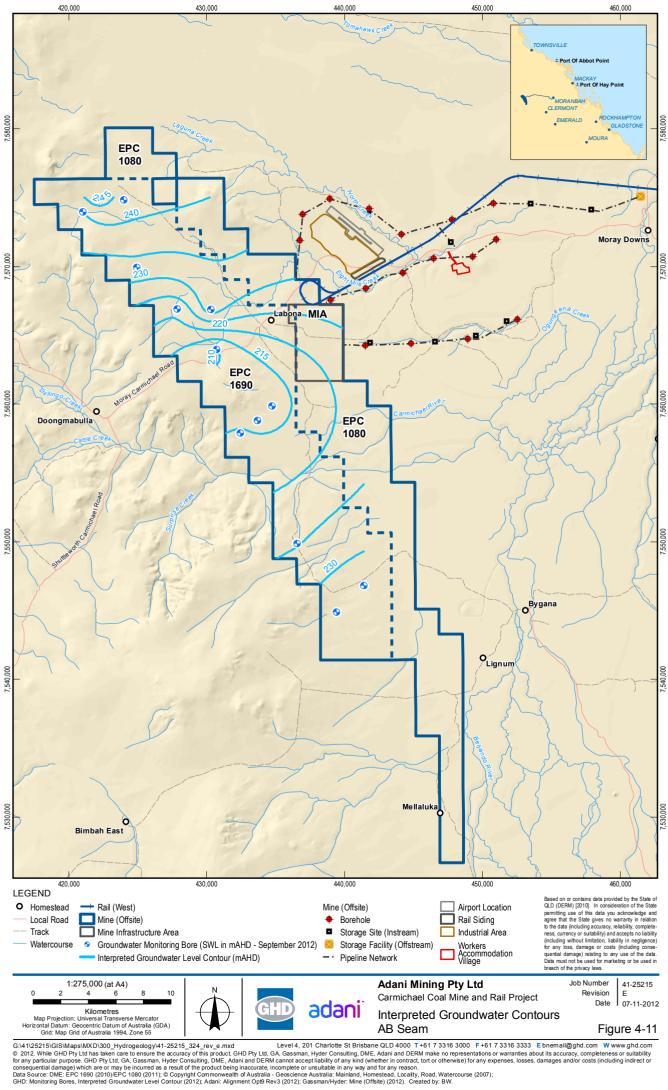

Groundwater level data for the installed monitoring network bores are currently available for July 2011 to September 2012. Monitoring data are not yet available for HD02, HD03A and HD03B which were installed in late October 2012.

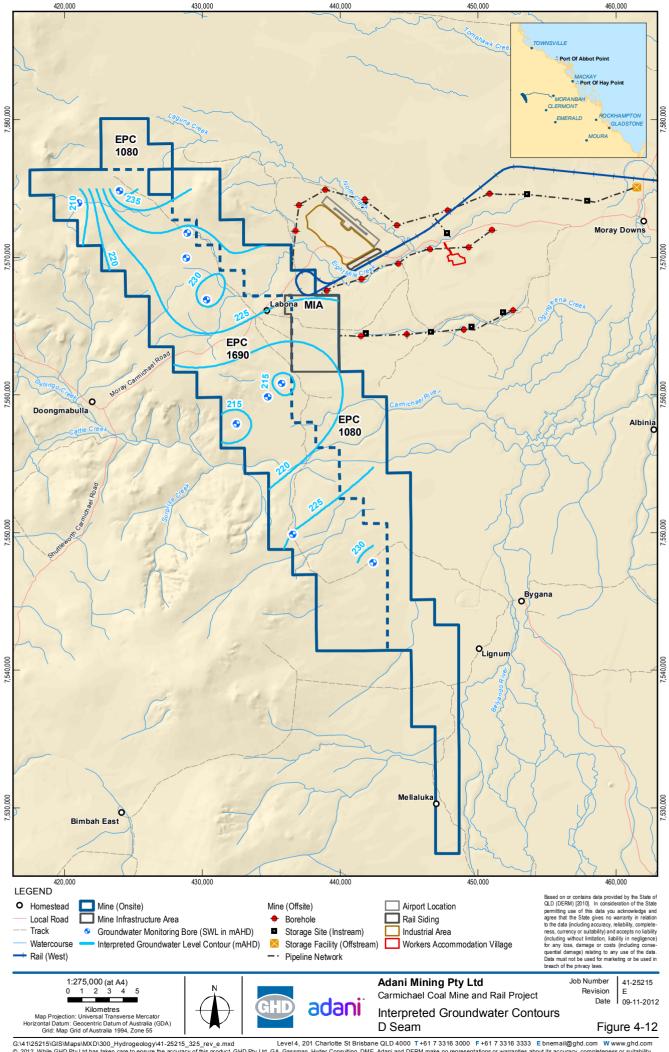
The available data suggest that across the majority of EPC 1690, at monitored locations away from the Carmichael River, groundwater levels fluctuate between around 0.1 and 0.2 m in response to individual rainfall events with annual variations in groundwater levels of up to around 0.3 m. The degree of fluctuation is similar for all of the geological units monitored.


In the vicinity of the Carmichael River, groundwater levels typically fluctuate much more widely in response to rainfall events than observed for the rest of the monitoring network. In the alluvium, measured groundwater level increases of up to around 2 m were measured (C027P1) whereas further east at C029P1 response to rainfall was significantly less with an increase of up to around 0.6 m for the same two rainfall events. This may be due to the more clayey nature of the alluvium encountered at C029P1 in comparison to the sandier deposits encountered at C027P1. In the underlying Dunda Beds (C027P2) and Tertiary-age strata (C029P2) groundwater levels fluctuated between around 0.2 and 3 m in response to the same rainfall events.

Across EPC 1690, the lowest groundwater levels were typically recorded during August to October 2011 before the onset of the wet season and the highest groundwater levels recorded during February and March 2012 during the wet season. Since March 2012 groundwater levels have typically remained relatively steady (for example C011P3, C007P2, C007P3 and C029P2) or declined slightly (for example C014P2, C016P2, C020P2 and C025P2).




G:\41\251\GISIMaps\KD1300_Hyldrogeolog\\41-25215_323_rev_f.mxd Level4, 201 Charlotte St Brisbane QLD 4000 T+61 7 3316 3000 F+61 7 3316 3333 Ebnemail@ghd.com W www.ghd.com @ 2012_While GHD PHy Lid, BA, Gassman, Hyder Consulting, DME, Adani and DERM make no representations or warranties about its accuracy, completeness or suitability for any particular purpose. GHD PHy Lid, GA, Gassman, Hyder Consulting, DME, Adani and DERM make no representations or warranties about its accuracy, completeness or suitability for any particular purpose. GHD PHy Lid, GA, Gassman, Hyder Consulting, DME, Adani and DERM make no representations or warranties about its accuracy, completeness or suitability for any particular purpose. GHD PHy Lid, GA, Gassman, Hyder Consulting, DME, Adani and DERM cannot acceptiability of any reason. Data Scree: DME EPO 1690 (2010)EPC 1080 (2011); @ Copyright Commonvesidi - Gussetian - Gusseti



G:\41\2215\G(S)Maps\MXD)300_Hytrogeology\41-25215_336_rev_a.mxd Level 4, 201 Charlotte St Brisbane QLD 4000_T+61 7 3316 3000_F+61 7 3316 3333_E bnemail@ghd.com_Www.ghd.com @ 2012_While GHD Ply Ltd Aa Sasman, Hyter Consulting, DME, Adani and DERM make no representations or warrantes about its accuracy, completeness or suitability for any particular purpose. GN Gassman, Hyter Consulting, DME, Adani and DERM cannot acceptibility of any warrantes. Bout its accuracy, completeness or suitability for any particular purpose. GN Gassman, Hyter Consulting, DME, Adani and DERM cannot acceptibility of any reason. Data Source: DME: EPC 1980 (2010) EPC 1080 (2011); @ Copyright Commowealth of Australia. Adaniand, Homestead, Locatiy, Road, Watercourse (2007); GHD: Monitoring Bores, Interpreted Groundwater Level Contour (2012); Adani: Alignment Opt9 Rev3 (2012); Gassman/Hyder: Mine (Offsite) (2012). Created by: BW.

G:\41\22515\GIS\Maps\MZD\300_Hytogeology\41-25215_337_rev_a.mxd Level 4, 201 Charlotte St Brisbane QLD 4000 T+61 7 3316 3000 F+61 7 3316 3333 E bnemail@ghd.com W www.ghd.com @ 2012_While GHD Ply Ltd Aa Sasman, Hytore Consulting, DME, Adani and DERM make no representations or warrantes about its accuracy, completeness or suitability for any particular purpose. GHD Ply Ltd GA, Gasman, Hytore Consulting, DME, Adani and DERM make no representations or warrantes about its accuracy, completeness or suitability for any particular purpose. GHD Ply Ltd GA, Gasman, Hytore Consulting, DME, Adani and DERM make no representations or warrantes about its accuracy, completeness or suitability or consequential damage) which are or may be incurred as a result of the product being inaccurate, incomplete or unsuitable in any way and for any reason. Data Source: DME: EPC 1980 (2011) (2PC Copyright Commowealth of Australia - Geoscience Australia: Adaniand, Homestead - Locatity, Road, Watercourse (2007); GHD: Monitoring Bores, Interpreted Groundwater Level Contour (2012): Adani: Alignment Opt9 Rev3 (2012); Gassman/Hyder: Mine (Offsite) (2012). Created by: BW, MS

G:\41\22515\GislMaps\MXD\300_Hytrogeology\41-25215_325_rev_e.mxd Level 4, 201 Charlotte St Brisbane QLD 4000 T+61 7 3316 3000 F+61 7 3316 3333 E bnemail@ghd.com W www.ghd.com @ 2012_While GHD Pty Ltd Aas taken care to ensure the accuracy of this product. GHD Pty Ltd, GA, Gassman, Hyder Consulting, DME, Adani and DERM make no representations or warrantes about its accuracy, completeness or suitability for any particular purpose. GHD Pty Ltd GA, Gassman, Hyder Consulting, DME, Adani and DERM cannot acceptibility of any reason. Data Source: DME: EPC 1980 (2011); EPC 1980 (2011); EC Goryight Commwealth d Australia - Geoscience Australia: Adminal, Homestead - Locatiy, Road, Watercourse (2007); GHD: Monitoring Bores, Interpreted Groundwater Level Contour, Test Locations (2012); Adani: Alignment Opt9 Rev3 (2012); Gassman/Hyder: Mine (Offsite) (2012). Created by: BW, CA

4.4 Groundwater Quality

4.4.1 Overview

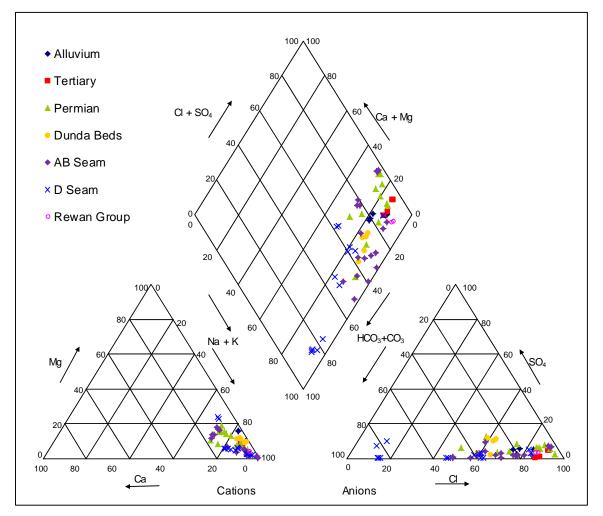
Groundwater samples were collected from 28 of the 29 monitoring bores installed at the time of sampling on two separate occasions for field testing and laboratory analysis (for further information on groundwater sampling refer to Section 2.3.3). Sampling of one of the bores (C025P1) was not possible since this bore was observed to be dry during both sampling rounds. The groundwater quality analysis results for samples collected from the monitoring network bores are summarised in Appendix E.

The laboratory analysis results for dissolved metals have been corrected for hardness where appropriate.

The major ion data are also shown on Piper diagrams (Figure 4-13 and Figure 4-14) in order to identify and make comment on differences in the major ion chemistry of the samples collected. As part of the review groundwater quality results have been compared to ANZECC (2000) fresh water quality guidelines (95 per cent level of protection) in order to identify any anomalous concentrations. Concentrations have also been compared to Australian Drinking Water Guidelines (ADWG, 2011) and ANZECC (2000) guidelines for livestock and for long-term irrigation in order to comment on potentially suitable uses for the groundwater.

4.4.2 Major lons and Inorganics

A piper plot of the major ion chemistry for the sampled bores indicates that the groundwater is typically of sodium-chloride type in each of the strata monitored (Figure 4-13). For the most part there appears to be no clear difference between the major ion chemistry of the strata monitored, although the proportion of chloride and hence the final plotting position in most units is highly variable. A possible exception to this general rule is the D seam where some samples contain proportionally less chloride and more bicarbonate when compared to the overlying monitored units, i.e. some of the samples suggest a sodium-bicarbonate-chloride type rather than sodium-chloride type water.


Figure 4-14 shows a comparison of major ion chemistry for four surface water sampling sites along the Carmichael River (WQ1, WQ2, WQ3 and WQ4,) and two groundwater monitoring bores (C025P2 and C027P1) which are completed into the Quaternary/Tertiary alluvium close to the river (see Figure 4-4 for monitoring site locations). Information on surface water quality data for a number of still water bodies, predominantly local farm dams are also shown. Comparison of these data sets suggests that both the Carmichael River and groundwater samples can be classified as sodium-chloride type waters. In fact the Carmichael River samples appear to become progressively more similar to the groundwater samples as the dry season progresses. Hence, some difference can be observed between the major ion chemistry of the May surface water samples and the groundwater samples.

The main point of difference is the relatively low proportion of chloride present in the surface water samples, which suggests a higher rainfall/runoff component. However, by July the proportion of chloride in the surface water samples had increased to 70-80 per cent such that there is little apparent difference between the major ion chemistry of the groundwater and surface water samples. This suggests that groundwater discharge becomes an increasingly important component of flow in the river as the dry season progresses. This observation is supported by the groundwater level data, which suggest an upward gradient from the Tertiary units to the alluvium, throughout the EPC 1690 area, and from the alluvium to the Carmichael River towards the west of the lease.

Concentrations of sodium in groundwater samples detected above the laboratory LoR ranged from 55 to 5,960 mg/L and exceeded the long-term irrigation guidelines (ANZECC 2000) in 24 samples, collected from the alluvium, Tertiary-age strata and the AB seam. Concentrations of chloride in groundwater ranged from 49 to 8,430 mg/L also exceeded the long-term irrigation guidelines in 23 samples tested (collected from the alluvium, Tertiary-age strata and the AB seam). Sulphate concentrations in groundwater only exceeded the drinking water guideline (500 mg/L) in one sample with a concentration of 686 mg/L.

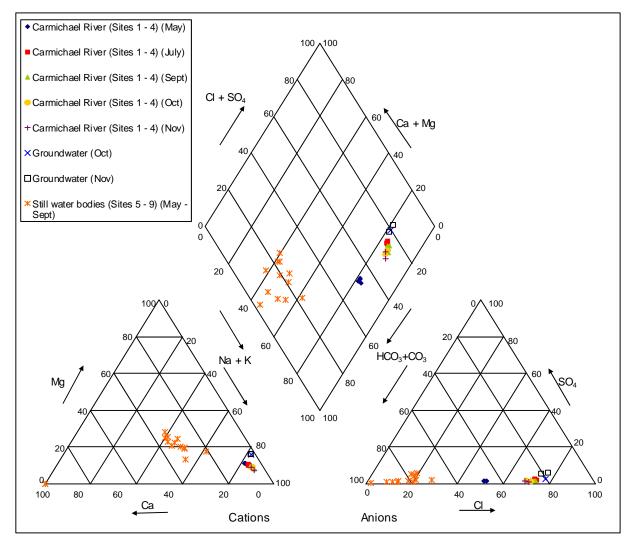

Fluoride concentrations ranged from 0.1 to 2.6 mg/L and exceeded the drinking water guideline (1.5 mg/L) and livestock guideline (2 mg/L) in five samples collected from two bores monitoring the D seam.

Figure 4-13 Piper Diagram – Groundwater

Figure 4-14 Piper Diagram – Groundwater and Carmichael River

4.4.3 Nutrients

Concentrations of ammonia in groundwater exceeded the ANZECC (2000) fresh water (95 per cent level of protection) guideline value of 0.9 mg/L in 10 samples and exceeded the drinking water guidelines of 0.5 mg/L in 18 samples. These exceedences of ammonia were identified in samples taken from monitoring bores installed in the alluvium, Tertiary-age strata and the AB seam. Samples collected from bores completed in the Dunda Beds and the D seam did not exceed these guideline values. Concentrations of total nitrogen, total dissolved nitrogen and phosphorous were also identified above the laboratory limit of reporting (LoR) in all of the monitored strata (i.e. the alluvium, Tertiary-age strata, Dunda Beds, AB seam and D seam).

Nitrate concentrations of up to 0.2 mg/L and nitrite concentrations of up to 0.06 mg/L were detected, which are below the guideline values for drinking water and livestock. Concentrations of total nitrogen (up to 12 mg/L) and phosphorous (up to 1.99 mg/L) were detected in the samples tested and exceeded the long-term irrigation guideline value.

4.4.4 Dissolved Metals

Concentrations of dissolved metals in all units tested were generally below the guideline concentrations for livestock, with the exception of manganese. Manganese concentrations in 48 out of 52 samples tested exceeded the guideline value (0.1 mg/L) with concentrations in groundwater detected up to 4.81 mg/L.

Guidelines for long-term irrigation were exceeded for aluminium (1 sample), boron (22 samples), iron (52 samples), manganese (32 samples), molybdenum (6 samples), selenium (1 sample) and uranium (6 samples). Exceedences of one or more of these metals species were detected in all of the units monitored (i.e. the alluvium, Tertiary-age strata, Dunda Beds, AB seam and D seam).

Drinking water guidelines were exceeded for arsenic (11 samples), manganese (14 samples), selenium (2 samples) and uranium (3 samples). Exceedences of one or more of these metals species were detected in all units monitored with the exception of the D seam.

4.4.5 Hydrocarbons

Low concentrations of BTEX (benzene, toluene, ethylbenzene and xylene), comprising toluene (nine samples with the range 3 to 17 μ g/L) and benzene (one sample at 2 μ g/L), were detected just above the laboratory LoR (2 μ g/L toluene and 1 μ g/L benzene) at six locations. Exceedences of the LoR were detected in Tertiary-age strata, the AB seam and the D seam.

Low concentrations of total petroleum hydrocarbons (TPH) in the fraction range C6 to C14 were detected above the laboratory LoR (i.e. the lighter more volatile fractions of TPH) in each of the monitored units (i.e. the alluvium, Tertiary-age strata, Dunda Beds, AB seam and D seam).

The guidelines for drinking water, livestock and long-term irrigation for benzene (1 μ g/L) were exceeded in one sample (with a concentration of 2 μ g/L) collected from monitoring in the AB seam. The guideline values for ethylbenzene (300 μ g/L), toluene (800 μ g/L) and total xylene (600 μ g/L) were not exceeded.

4.5 Groundwater Suitability for Use

A review of the available data from the groundwater bore database (DERM, 2010) and site visits to registered bores within the EP 1690 lease area indicated the following:

- Local groundwater is dominated by extraction for Stock & Domestic and Irrigation use.
- To the west of Study Area, extraction is predominantly from the Triassic-age units of the GAB including the Moolayember Formation and the Clematis Sandstone.
- Within and to the east of EPC 1690 extraction is thought to occur from Tertiary, Triassic and/or Permian-age sandstone units.

Based on comparison of the available groundwater chemistry data collected for the current study with relevant groundwater quality guidelines (for long term irrigation, livestock and drinking water (health)) potential uses for groundwater from each hydrogeological unit tested are as follows:

Alluvium. Potential for use for industrial purposes only. Monitoring results suggest that groundwater drawn from the Quaternary alluvium may not suitable be for drinking (based on the elevated observed concentrations of arsenic, manganese and uranium detected), not suitable for long term irrigation (based elevated on concentrations of chloride, sodium, dissolved boron, iron and manganese) and also not suitable for livestock (on the basis of the observed elevated manganese concentrations).

- Tertiary-age strata. Potentially only suitable for industrial purposes. TDS concentrations typically fall within the 'poor' (900 to 1,200 mg/L) and 'unacceptable' (>1,200 mg/L) palatability categories for drinking water making it generally not suitable for drinking. Groundwater in some areas does not appear to be suitable for long-term irrigation given significantly elevated concentrations of dissolved iron (0.29 to 24.9 mg/L), manganese (0.45 to 0.89 mg/L) and boron (0.9 to 1.29 mg/L) above the guideline values in some of the bores. TDS concentrations are also elevated above 8,100 mg/L (the guideline maximum TDS for irrigation) in some areas. The concentration of manganese is also generally above the guideline value for livestock (0.1 mg/L) and, in combination with elevated TDS in some areas, suggests that the water is generally unsuitable for livestock.
- Dunda Beds. Potentially suitable for use as drinking water and/or industrial purposes. The measured TDS concentration for the single bore tested falls into the 'good' palatability category (0 to 600 mg/L TDS) for drinking water (ADWG, 2011) and all other parameters tested are below guideline level. However, the elevated iron concentrations present in the samples taken would make the groundwater unsuitable for long term irrigation and the results also indicate borderline suitability for livestock on the basis of dissolved manganese and pH.
- AB seam. Potential for industrial use only. Generally not suitable for drinking water on the basis of palatability (aesthetic), given the measured TDS concentrations typically fall within the 'poor' (900 to 1,200 mg/L) and 'unacceptable' (>1,200 mg/L) palatability categories. The elevated observed concentrations of manganese (up to 0.9 mg/L) in somee bores suggest that in some areas groundwater could also be unsuitable for livestock. Elevated concentrations of sodium (up to >2000 mg/L) and chloride (>5000 mg/L) in some monitoring bores suggest that the groundwater from some areas would also be unsuitable for irrigation.
- D seam. Potential for industrial use only. Generally potentially suitable for drinking water, however fluoride concentrations exceeded drinking water guideline values at two monitoring bores sampled indicating localised areas could be unsuitable for drinking. TDS concentrations typically fall into the 'good' and 'fair' (600 to 900 mg/L TDS) palatability categories for aesthetic quality. Concentrations of iron (up to 14.8 mg/L) indicate the groundwater would not be suitable for long term irrigation. The elevated observed concentrations of manganese and fluoride suggest that the water would also be generally unsuitable for livestock.

4.6 Aquifer Properties

Hydraulic conductivity values estimated from slug tests, packer tests and pumping tests are summarised in Table 4-3, Table 4-4, and Table 4-5 respectively. Summary statistics are presented in Table 4-6. Slug test analysis data sheets are included in Appendix F and a summary of the pumping test analysis is included in Appendix G.

The majority (45 out of 58) of tests undertaken in the lease area were completed in Permian age strata since these units dominate the sub-surface geology and will largely control inflows to and the impacts of the proposed mine workings. The results of these tests suggest that the Permian strata are typically characterised by:

- Relatively low hydraulic conductivity and hence the median hydraulic conductivity for the different strata tested vary between 5.6x10-3 m/d for the D Seams to 5.0x10-4 m/d for the 'interburden' units between the AB and D seams;
- A relatively high degree of variability. Test results vary across 5 orders of magnitude from 3.5 m/d to 5.8x10-5 m/d;

 Generally higher hydraulic conductivity values are returned by tests undertaken in the coal seams, hence the highest median values are recorded in the AB and D Seams;

These observations are considered to be consistent with the findings of other similar analyses of similar Permian strata elsewhere in Queensland including summary statistics for Triassic and Permian age strata in the Surat and Bowen basin recently published by the Queensland Water Commission (QWC, 2012).

Only a small number of test results are available for the remaining strata present within the lease area and hence the results should be treated with some caution.

For instance tests undertaken on the Rewan Group within the site suggest a relatively high median hydraulic conductivity of 2.3×10^{-2} m/d. However, whilst it is recognised that the Rewan Group is highly variable, it is typically considered to be an aquitard (QWC, 2012). Regional data sets indicate a median hydraulic conductivity of 3.6×10^{-4} m/d and suggest that 95% of tests return values of less than 5.1×10^{-2} m/d (QWC, 2012).

Similarly based on the observed sandy lithology of the Quaternary alluvium the results of the two tests undertaken, which suggest hydraulic conductivity values of between 2.3×10^{-2} and 1.2×10^{-1} m/d, seem too low to be representative.

Conversely the hydraulic conductivity values returned by the three tests undertaken in Tertiary units, which suggest a median value of 5.3×10^{-2} m/d, seem relatively high given the clay dominated nature of this unit.

Results for the Dunda Beds suggest that the hydraulic conductivity of this unit is highly variable and vary from 2.2×10^{-3} to 3 m/d. This is considered to be consistent with the variable lithological nature of strata attributed to the Dunda Beds in borehole logs.

Bore ID	Hydraulic Conductivity K (m/d)	Hydraulic Conductivity K (m/s)	Tested Unit
C027P1	2.5x10 ⁻⁰²	2.7x10 ⁻⁰⁷	Alluvium (sand with gravel)
C029P1	1.2x10 ⁻⁰¹	1.4x10 ⁻⁰⁶	Alluvium (sand and clayey sand)
HD03B	1.1x10 ⁺⁰⁰	1.3x10 ⁻⁰⁵	Alluvium (clay)
C025P2	1.7x10 ⁻⁰¹	2.0x10 ⁻⁰⁶	Tertiary (leached, fine grained rock)
C029P2	5.3x10 ⁻⁰²	6.1x10 ⁻⁰⁷	Tertiary (ferricrete)
C558P1	2.1x10 ⁻⁰⁴	2.5x10 ⁻⁰⁹	Tertiary and Rewan Group (sandy clay)
HD02	1.5x10 ⁺⁰¹	1.7x10 ⁻⁰⁴	Clematis Sandstone
C022P1	3.0x10 ⁺⁰⁰	3.4x10 ⁻⁰⁵	Dunda Beds (weathered sandstone)
C027P2	2.5x10 ⁻⁰¹	2.9x10 ⁻⁰⁶	Dunda Beds (ferricrete)
C035P1	2.3x10 ⁻⁰²	2.7x10 ⁻⁰⁷	Rewan Group (weathered sandstone)

Table 4-3	Summary of Estimated Hydraulic Conductivity from Slug Tests
-----------	---

Bore ID	Hydraulic Conductivity K (m/d)	Hydraulic Conductivity K (m/s)	Tested Unit
C553P1	2.2x10 ⁻⁰³	2.6x10 ⁻⁰⁸	Rewan Group (clayey sand)
C555P1	1.0x10 ⁻⁰¹	1.2x10 ⁻⁰⁶	Rewan Group (sandy clay)
C556P1	2.9x10 ⁻⁰¹	3.4x10 ⁻⁰⁶	Rewan Group (sandy clay)
C008P1	2.3x10 ⁻⁰³	2.7x10 ⁻⁰⁸	Permian overburden (weathered siltstone)
C012P1	4.1x10 ⁻⁰¹	4.7x10 ⁻⁰⁶	Permian overburden (weathered sandstone and siltstone)
C012P2	2.5x10 ⁻⁰³	2.9x10 ⁻⁰⁸	Permian overburden (weathered sandstone)
C018P1	1.9x10 ⁻⁰²	2.2x10 ⁻⁰⁷	Permian overburden (weathered sandstone)
C007P2	5.6x10 ⁻⁰²	6.5x10 ⁻⁰⁷	AB Seam (coal)
C016P2	4.0x10 ⁻⁰³	4.6x10 ⁻⁰⁸	AB Seam (coal and carbonaceous siltstone)
C006P1	$1.4 \times 10^{+00}$	1.6x10 ⁻⁰⁵	Permian interburden (siltstone)
C011P1	1.0x10 ⁻⁰³	1.2x10 ⁻⁰⁸	Permian interburden (weathered sandstone)
C007P3	6.9x10 ⁻⁰²	7.9x10 ⁻⁰⁷	D Seam (coal with siltstone)

Table 4-4 Summary of Hydraulic Conductivity from Packer Tests

Bore	Test Type	Test Interval (mbgl)	Formation Tested	Estimated Hydraulic Conductivity (m/d)
C056 Test 1	Single	302.8 - 315	AB1/AB2 Seam (Coal)	1.7x10 ⁻⁰²
C056 Test 2	Single	352 - 363	AB3 Seam (Coal)	1.2x10 ⁻⁰²
C056 Test 3	Single	402.8 - 420	D Seam (Coal)	6.5x10 ⁻⁰³
C056 Test 4	Single	368.8 - 420	D Seam & Interburden (Coal, siltstone & sandstone)	5.6x10 ⁻⁰³
		368.8 - 402.8	Calculated K value Interburden only	5.2x10 ⁻⁰³
C056 Test 5	Straddle	423.8 - 432.5	Below D Seam (Med-coarse sandstone, no fractures)	6.3x10 ⁻⁰⁴
C056 Test 6	Straddle	376 - 384	Interburden (Coarse sandstone)	6.8x10 ⁻⁰⁴
C056 Test 7	Straddle	331 - 341.5	Interburden (Coarse sandstone, no fractures)	9.5x10 ⁻⁰⁵
C056 Test 8	Straddle	278.8 - 292.5	Permian overburden (Siltstone, jointed)	5.4x10 ⁻⁰⁴
C056 Test 9	Straddle	268 - 276.5	Base of Rewan Group (Siltstone, fractured)	1.7x10 ⁻⁰⁴

Bore	Test Type	Test Interval (mbgl)	Formation Tested	Estimated Hydraulic Conductivity (m/d)
C039 Test 1	Straddle	429.3 - 433.4	AB3 Seam lower split (Coal)	5.4x10 ⁻⁰⁴
C039 Test 2	Straddle	417.8 - 422.8	AB3 Seam upper split (Coal)	1.4x10 ⁻⁰⁴
C039 Test 3	Straddle	306 - 314.7	Permian overburden (Sandstone & siltstone, fractured zone 306 to 308 m)	8.6x10 ⁻⁰⁵
C558P Test 1	Single	182 - 222	Below D Seam (Sandstone, some siltstone)	1.2x10 ⁻⁰³
C558P Test 2	Straddle	161.7 - 167.7	D Seam (Coal)	1.6x10 ⁻⁰²
C558P Test 3	Single	161.7 - 222	D Seam & below D Seam (Coal & sandstone)	8.7x10 ⁻⁰³
C558P Test 4	Straddle	104.7 - 110.7	Interburden (Sandstone, some siltstone)	8.6x10 ⁻⁰⁵
C558P Test 5	Single	83.8 - 222	Interburden, D Seam, below D Seam (Sandstone, some siltstone)	9.7x10 ⁻⁰⁴
C558P Test 6	Straddle	77.4 - 82.4	AB2 & AB3 Seam (Coal)	1.4x10 ⁻⁰²
C555P Test 1	Single	441.5 - 473	Below D Seam (Sandstone, some siltstone)	1.3x10 ⁻⁰³
C555P Test 2	Straddle	435 - 441	D1 & D2 Seam (Coal & siltstone)	2.8x10 ⁻⁰³
C555P Test 3	Single	360 - 473	Interburden to below D Seam (Sandstone with siltstone, coal)	3.3x10 ⁻⁰⁴
C555P Test 4	Straddle	342 - 348	AB Seam (Coal)	1.2x10 ⁻⁰³
C555P Test 5	Straddle	330 - 336	Permian overburden (Sandstone)	5.8x10 ⁻⁰⁵
C9556PR Test 1	Single	410.7 - 444.7	Below D Seam (Sandstone)	7.0x10 ⁻⁰⁴
C9556PR Test 2	Straddle	404.5 - 410.5	D Seam (Coal)	1.3x10 ⁻⁰⁴
C9556PR Test 3	Single	329.7 - 444.7	Interburden to below D Seam (Sandstone, coal)	1.3x10 ⁻⁰³
C9556PR Test 4	Straddle	311.7 - 318.7	AB Seam (Coal)	1.5x10 ⁻⁰⁴
C9556PR Test 5	Straddle	303.1 - 309.1	Permian overburden (Sandstone)	2.3x10 ⁻⁰⁴
C9556PR Test 6	Straddle	243.1 - 249.1	Rewan Group (Sandstone & siltstone)	2.3x10 ⁻⁰⁴

Table 4-5Summary of Estimated Transmissivity, Storage and Hydraulic Conductivity from
Pumping Tests

Pumping Test Site ID	Formation Tested	Adopted Transmissivity ¹ (m²/d)	Adopted Storativity ¹ (Dimensionless)	Estimated Hydraulic Conductivity ¹ (m/d)
C006	D Seam	12	0.005	2.0x10 ⁻⁰¹
C018	D Seam	9	0.001	1.0x10 ⁻⁰¹
C035	AB Seam	60	0.005	3.5x10 ⁺⁰⁰

Note ¹ – Refer to Appendix G for a more detailed summary of results

Table 4-6 Summary of Estimated Hydraulic Conductivity by Formation Tested

		Estimated H	ydraulic Con	ductivity (m/d)	
Formation	Dominant Lithology	Minimum	Median	Maximum	Number of tests
Quaternary Alluvium	Sand and Clayey Sand	2.3x10 ⁻⁰²	7.1x10 ⁻⁰²	1.2x10 ⁻⁰¹	2
Tertiary	Sandy Clay	2.1x10 ⁻⁰⁴	5.3x10 ⁻⁰²	1.7x10 ⁻⁰¹	3
Dunda Beds	Sandstone / Siltstone / Mudstone	2.2x10 ⁻⁰³	2.5x10 ⁻⁰¹	3.0x10 ⁺⁰⁰	3
Rewan Group	Mudstone / Siltstone	1.7x10 ⁻⁰⁴	2.3x10 ⁻⁰²	2.9x10 ⁻⁰¹	5
Permian overburden	Weathered Sandstone / Siltstone	5.8x10 ⁻⁰⁵	2.3x10 ⁻⁰³	1.4x10 ⁺⁰⁰	9
AB Seam	Coal and Siltstone	8.6x10 ⁻⁰⁵	4.0x10 ⁻⁰³	3.5x10 ⁺⁰⁰	11
Permian interburden	Sandstone / Siltstone	8.6x10 ⁻⁰⁵	5.0x10 ⁻⁰⁴	1.3x10 ⁻⁰³	6
D Seam	Coal and Siltstone	1.3x10 ⁻⁰⁴	5.6x10 ⁻⁰³	2.0x10 ⁻⁰¹	11
Older Permian strata	Sandstone / Siltstone	3.3x10 ⁻⁰⁴	1.1x10 ⁻⁰³	8.7x10 ⁻⁰³	8

4.7 Interaction between Surface Water and Groundwater

4.7.1 Overview

A number of strands of evidence suggest that interaction between groundwater and surface water resources in the Carmichael River is likely to be occurring, including:

- An upward gradient from the underlying deposits (Tertiary-age strata and Dunda Beds) to the overlying alluvium next to the river (recorded at all three nested monitoring bore sites along the Carmichael River);
- Groundwater levels in the alluvium above the level of the river bed (recorded at one nested monitoring bore site, C027, next to the Carmichael River) showing a typical exponential decline in groundwater levels following a significant rainfall event;

- Similarities in major ion chemistry between groundwater next to the Carmichael River and surface water;
- Continuous flow recorded at the upstream gauge installed on the Carmichael River suggests groundwater discharge is occurring upstream of the gauge location; and
- Apparent flow losses between the upstream and downstream gauges suggest surface water leakage to groundwater is also occurring.

Further details are outlined in the Sections 4.7.2 to 4.7.4.

4.7.2 Groundwater Levels and Gradients

As described previously in Section 4.3.4 groundwater level data collected from monitoring boreholes located close to the Carmichael River confirm the potential for groundwater to discharge to the river upstream of the Study Area but potential losses to groundwater within and downstream of the lease.

Data for the riverside monitoring location C027 that includes monitoring in the Quaternary alluvium (C027P1) and underlying Dunda Beds (C027P2) and is located close to the western limit of the EPC 1690 lease suggests:

- An upward gradient from the Dunda Beds to the overlying alluvium; and
- Groundwater levels in the alluvium which are typically above the bed of the adjacent Carmichael River (based on a survey of the river bed elevation close to monitoring location C027 (refer to Table 4-2 and also to Chart 14 of Appendix D))

This suggests the potential for groundwater discharge from the underlying deposits to the Carmichael River in this area. Conversely, however, data for two further nested riverside monitoring sites further east, C025 and C029, show:

- Upward gradients from the Tertiary deposits to the overlying alluvium at C029 (i.e. between C029P1 and C029P2) and within the Tertiary deposits (i.e. between C025P1 and C025P2); but
- Groundwater levels in the alluvium at C029P1 and shallow Tertiary deposits at C025P1 which appear to be below the bed of the adjacent Carmichael River.

This suggests the potential for leakage from the river to groundwater in these areas.

Based on the groundwater level data alone it appears that the Carmichael River may switch from gaining flow from groundwater to losing flow to groundwater at or around the western limit of the site.

4.7.3 Groundwater and Surface Water Quality

As discussed in Section 4.4.2 analysis of the major ion chemistry of groundwater samples taken from the Quaternary alluvium and surface water samples taken from the Carmichael River suggests that groundwater discharge becomes an increasingly important component of flow in the river as the dry season progresses. This is considered to be consistent with the upward gradients from the alluvium to the river close to and potentially upstream of the western boundary of the Study Area.

4.7.4 Surface Water Flows

As discussed in Section 4.1 two surface water monitoring stations have been established as part of the current study within Study Area on the Carmichael River, one close to the upstream boundary of the lease (Station No. 333301) and one close to the downstream boundary (Station No. 333302). These stations

provide information on surface water levels and flows for various technical studies for the EIS. A hydrograph of the flow data collected to date, 28 July to 15 August 2012, is shown in Figure 4-15. It should be noted, however, that the estimates of flow are understood to be based on a stage-discharge relationship derived from a single flow gauging event. Gauging over a range of flow events is typically required for accurate flow estimation. As such, observed flow data for these gauges should be treated with some caution.

Nevertheless, the limited available flow data are considered to suggest the following:

- Continuous flow has been recorded at the upstream gauge, except for the period 10 November to 25 November 2011 despite rainfall being limited to one event in mid-July, two events in late August and one event in mid-October 2011 prior to the onset of more significant rainfall from late November 2011. This suggests that groundwater discharge to the Carmichael River upstream of the Study Area is occurring and is consistent with the upward gradient observed at site C027 close to the western margin of the lease.
- Apparent flow losses between the upstream and downstream gauges during dry periods. This is consistent with the downward gradient observed from river bed to groundwater at sites C025 to C029 closer to the eastern margin of the lease.

One possible explanation for the observations is that dry season flows in the Carmichael River are supported primarily by discharges from the Doongmabulla Springs and potentially by direct groundwater discharge to the river upstream of EPC 1690 but that direct groundwater discharge to the river itself on and in the near vicinity of EPC 1690 is negligible. Further monitoring of flows and water quality discharging from the springs is required to further explore this hypothesis.

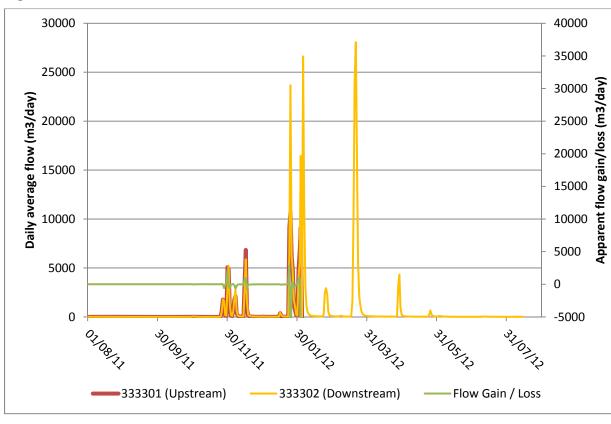


Figure 4-15 Surface Water Flows and Losses, Carmichael River

ada

4.8.1 Doongmabulla Springs

Doongmabulla Springs are listed on the Directory of Important Wetlands. They are a group of permanent artesian, fresh water springs (based on information provided in the *Directory of Important Wetlands - Information Sheet* for Doongmabulla Springs, Australian Government Department of Sustainability, Environment, Water, Population and Communities), located approximately 8 km west of Study Area. Doongmabulla Springs are part of the Barcaldine spring supergroup (regional clusters of springs associated with the GAB), located on the eastern margin of the GAB within a recharge area to the GAB, the 'GAB Eastern Recharge A – Queensland' GMA. Reference to information held within the Queensland Spring Database which is understood to be largely based on the work of Fensham and Fairfax (2005) suggests that the Doongmabulla complex comprises 11 separate springs (Figure 4-1).

Based on a review of the mapped geology, the springs are likely to be a result of discharge from the Triassic-age Moolayember Formation and/or Clematis Sandstone which form part of the GAB.

Water sampling of the Doongmabulla Spring complex has been carried out as part of a separate study (see Volume 4 Appendix Q Mine Water Quality Report), in order to provide further information on potential water sources to the springs and to identify any similarities and/or variations in the water quality between:

- Individual springs of the springs complex
- Springs and nearby creeks

Fourteen springs and two nearby creeks were sampled and analysed for major ions, alkalinity and selected dissolved metals.

The results of the sampling are reported in Volume 4 Appendix Q Mine Water Quality Report and summarised here.

The mapped geology in the vicinity of the Doongmabulla Springs complex suggests that all of the springs are likely fed by groundwater from the Clematis Sandstone aquifer which in the case of most of the springs discharges through the overlying Moolayember Formation and/or Quaternary alluvium. This is consistent with available information on the physical features of Doongmabulla Springs (reference QLD081) which are described as 'derived from faults allowing water to flow from thin confining beds of the Great Artesian Basin aquifer' (in the *Australian Wetlands Database – Directory Wetland Information* (http://www.environment.gov.au/cgi-bin/wetlands/report.pl?smode=DOIW&doiw_refcodelist=QLD081).

Despite the apparent single aquifer source some potentially significant differences can be observed in the hydrochemistry of samples taken from the springs. Based on the limited geological and major ion data currently available these observed differences could be related to:

- The proximity of the source aquifer to the surface and/or thickness of the overlying confining layer
- The discharge rate of the individual springs and hence potentially differences in flow pathways to the surface
- Differences in the degree of post discharge evaporation occurring between the various spring heads

ada

4.8.2 Mellaluka Springs

Reference to the Queensland Spring Database also suggest the presence of two further springs around 10 km south of the Study Area lease area to the north of Mellaluka (Figure 4-1). These springs are identified as non-GAB Eastern Desert Upland springs typically associated with outcropping Dunda Beds. In this case, however, it is considered unlikely that the Dunda Beds are present in the vicinity of the Mellaluka Springs. The springs are mapped around 10 km east of the nearest area of Dunda Beds outcrop and the geology typically dips from east to west. However, groundwater modelling of the area to the south of the Carmichael River suggests groundwater flow typically in an easterly direction. It is therefore possible that these springs are fed by recharge to outcropping Dunda Beds close to the western margin of the lease which then discharges through the overlying Permian and Tertiary strata at the Mellaluka springs.

4.8.3 Riparian Vegetation

Much of the landscape surrounding the Study Area has experienced broad-scale vegetation clearing, and as such, remnant vegetation coverage is fragmented. Connectivity of remnant vegetation at a landscape level is maintained by tracts of remnant vegetation including mature River Red Gum (*Eucalyptus camaldulensis*) and Paper Bark (*Melaleuca leucadendra*) associated with major watercourses, including the Carmichael and Belyando Rivers. The open forest and woodland (remnant vegetation) fringing the Carmichael River is considered to be groundwater dependent (refer to the Mine Terrestrial Ecology Report, Volume 4, Appendix N).

Open cleared land is the most common and widespread fauna habitat type within the study area. This habitat type typically provides a low diversity of suitable resources for fauna (including threatened species), as compared to the higher ecological value of remnant vegetation.

Flows in the major watercourses including the Carmichael and Belyando River are understood to be relatively persistent, supported by flow data for the site (refer to the Mine Hydrology Report, Volume 4, Appendix P). Even during extended dry periods these systems are thought to maintain a series of semipermanent to permanent waterholes. This suggests that the major water courses and the associated remnant riparian vegetation are groundwater dependent to a degree. Consequently the fauna which are attracted to these areas are also thought likely to be dependent on groundwater to a degree, albeit indirectly.

Outside of the riparian areas associated with the Carmichael River groundwater dependant ecosystems (GDEs) are unlikely to be present within the Study Area, although River Red Gums have also been identified next to an un-named ephemeral creek passing through the southern end of Study Area. The other minor creeks and rivers within the Study Area are understood to be ephemeral (refer to the Mine Hydrology Report, Volume 4, Appendix P1) and are not associated with areas of remnant vegetation. This lack of remnant vegetation around the ephemeral water courses is likely to be due to the greater depths to the water table away from the main river systems (which have been measured between around 20 and 40 m BGL away from the Carmichael River) and little or no groundwater contribution to vegetation demands and/or river flows.

5. Groundwater Modelling

5.1 Conceptual Model

A conceptual groundwater model is a representation of the behaviour of the groundwater system and its interactions with surface water within the catchment. Development of a conceptual model requires the compilation of detailed information on the geology, water quality, recharge, rivers, water levels, hydraulic parameters and groundwater usage. The key elements in a conceptual model are:

- The definition of the extent and hydraulic properties of the aquifers and aquitards;
- An understanding the groundwater flow directions; and
- An understanding of the groundwater recharge and discharge processes.

5.2 Geological Layers and Distribution

A conceptual hydrogeological model has been developed based on the current understanding of the distribution of the various geological formations, aquifer testing (packer, slug and pumping tests) and groundwater monitoring completed to date. Further discussion on the hydrogeological investigations, from which the conceptual model has been developed, is contained in Sections 2 and 4.

The stratigraphy has been divided into eleven layers for groundwater modelling purposes as shown in Table 5-1. These layers are based in part on the Xenith geological model, developed initially using exploration information available to October 2011 and then revised using exploration information available in September 2012. The 2011 version of the geological model focused on the detail of the coal units and only covered the lease area and hence some further work was required to extend and refine the model for groundwater impact assessment modelling purposes. The revised (2012) geological model used the same extent, i.e. effectively restricted to the lease area, however included additional surfaces defining the top of the Rewan Group and Dunda Beds in addition to the underlying Permian strata. The base of the Tertiary age strata was also revised based on the updated understanding on the thickness and extent of the Tertiary and is outlined in Appendix H.

The spatial extent of each of the geological units within the mine lease area was defined using the Xenith geological model, and extrapolated to areas outside of the lease area with reference to the regional geological structure and mapped outcrop. This extrapolation into the region surrounding the mine lease area used the following data:

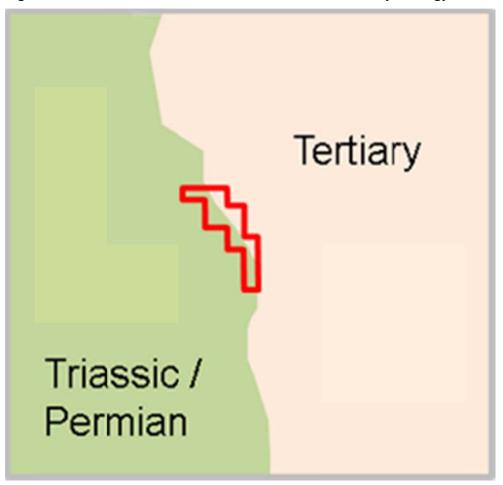
- Previously existing stratigraphic interpretations in the DNRM Bore Database;
- Stratigraphic interpretation of lithological records in the DNRM Bore Database undertaken by GHD.

Where there were few data on coal seam extent and geometry outside the mine lease area, the Xenith geological model layers were extrapolated outward. The primary extrapolations in this regard were:

The AB Coal unit was extrapolated towards the west assuming a constant thickness of eight metres, based on the Xenith geological model average thickness along the western edge of the model. The thickness of this layer was further revised in October 2012 to restrict it to a maximum thickness of 20 m; and

- The Permian 'interburden' between the AB Coal to D1 Coal was extrapolated towards the west using the average 70 m thickness of this unit in the Xenith geological model along the western edge of model;
- The D1, D2 and D3 coals and the respective interseams were modelled as a single layer in the model. The thickness of this layer was revised in October 2012 to restrict it to a maximum thickness of 30 m, as well as setting a minimum thickness of 10 m (except along the eastern edge where this layer is present at subcrop here the thickness was allowed to follow the mapping and interpolation).

The hydrogeological conceptual model, geological model surfaces and aquifer test data have been used to develop a MODFLOW-SURFACT (HydroGeoLogic, 1996) groundwater model for the site. A geological cross section from the groundwater model is shown in Figure 2-1.


Layer Formation	Groundwater Model Layer No.	Geological Model layer Code
Quaternary Alluvium	1	-
Tertiary age units and older Quaternary deposits	2	BUTE
Moolayember Formation / Warang Sandstone	3	-
Clematis Sandstone	4	-
Dunda Beds	5	BUDE
Rewan Formation	6	BURE
Permian units overlying AB Seam coals	7	-
AB Seam Coal	8	AB1/AB2/AB3 Roof/Floor
Permian units between the AB and D1 Seam Coals	9	C1/C2/C3/C4 Roof/Floor
D1 Seam Coal	_	D1 Roof/Floor
Permian units between the D1 and D2/D3 Seam Coals	10	D23 Roof/Floor
D2/D3 seam Coal	-	D2/D3/D2L/D2U/ D3L/D3U Roof/Floor
Permian units underlying the D2/D3 seams		E/F Roof/Floor
Early Permian and older units	- 11	-

The most significant simplifying difference between the Xenith geological model and groundwater impact assessment model is the simplified representation of the D seam coals and interburden adopted for the groundwater model. Because of the intermittent presence of the individual D seams and interbeds (particularly the D1 seam coals and D2-D3 interburden), all D seam coal and interburden horizons have been grouped into a single groundwater model layer (Layer 10). The top and bottom of groundwater model Layer 10 are therefore defined by the roof of the D1 seam and the floor of the D3U seam respectively.

The other major difference is the groundwater model's subdivision of the units overlying the AB Coal into the overlying Permian units (Layer 7), Rewan Formation (Layer 6), Dunda Beds (Layer 5), Clematis Sandstone (Layer 4), and the Moolayember Formation / Warang Sandstone (Layer 3). These are significant hydrogeological units (aquifers/aquitards) with respect to predicting the impacts of the proposed mining development on regional groundwater levels and flows.

The Late Permian to Triassic aged units primarily occur within and to the west of the mine lease area – their eastern extent corresponds roughly with the north-south trending geological outcrop of the Clematis Sandstone, Dunda Beds and Moolayember Formation (Figure 4-2), and the eastern edge of the mine lease area. Hence, in the east, the Tertiary geological unit is subdivided evenly across nine numerical model layers (2 through 10), all of which are parameterised with Tertiary properties. In the west, these layers are parameterised as the aquifers/aquitards that they represent as specified in Table 5-1. Figure 5-1 illustrates the zonation between Permian-Triassic and Tertiary geology within each of model layers 3-10.

In an earlier version of the groundwater flow model, all Quaternary and Tertiary units were considered in a single layer. In the current version of the model these have been split into two layers, as shown in Table 5-1. The Quaternary alluvium has been split out from the Tertiary units due to an observed contrast in the lithology encountered within boreholes within the EPC, for instance.

- Borehole logs for site C027 suggest around 12 m of sandy alluvium (interpreted to be of Quaternary in age) overlying sandy clay to around 33 mBGL (interpreted to be of Tertiary age);
- Similarly logs for site C029 indicate around 12 m of Quaternary sand overlying Tertiary sandy clay to 39 mBGL;

Therefore some simple rules for the defining the extent and thickness of this relatively permeable (sandy) Quaternary alluvium were developed as follows:

- The extent of the Quaternary alluvium was assumed to coincide with the mapped extent of the Wondoola Beds, which lie along the current drainage lines, including the Carmichael River. The Wondoola Beds are recorded as being Tertiary to Quaternary, however for the purposes of this study they have been modelled as sandy Quaternary alluvium.
- For modelling purposes a minimum thickness of 2 m has been assumed around the mapped margins of the Wondoola Beds, and a maximum thickness of 12 m assumed at the two bore sites described above. This maximum thickness has been reduced to 7 metres to the west of the EPC (i.e. in the upper parts of the Carmichael River catchment) based on an assumption that the thickness of such deposits will increase as one moves downslope away from the top of a catchment. Interpolation has been used to derive the layer thickness between the edge of the extent and the areas defined as having the maximum thickness.

The Tertiary unit (which could also include other Quaternary deposits not falling within the extent of the Wondoola Beds) has then been mapped as all other Tertiary or younger deposits, using information on the base of the Tertiary strata supplied by Xenith (within the EPC).

Layer 11 (Early Permian and older units) are simulated throughout the entire model domain with its base set at a constant elevation of -1,000 mAHD. The layer is therefore 'flat-bottomed' and roughly 100 m thick in the deepest part of the basin. Due to the layer's flat bottom and hence variable thickness it has parameterised with variable hydraulic conductivity (k_h) so as to maintain a constant transmissivity, which was then adjusted during model calibration.

5.3 Groundwater Flow Systems

5.3.1 Flow Direction

Groundwater flow through the Permian-Triassic rock units is expected to be primarily via fractures and fissures, whereas flow through the overlying Tertiary and Quaternary units will be predominantly via pore spaces in these unconsolidated to poorly-consolidated sedimentary deposits.

Mapping of groundwater levels from the DNRM Bore Database indicates that the regional water table flow field forms a subdued replica of land surface elevations, with flow typically from the south-west to the north-east. Localised flow directions appear to vary, with a notable south-eastward flow direction in the north-west of the lease area. This latter flow direction appears to be related to the local land surface topography and surface drainage, particularly drainage towards the Carmichael River.

In the southern two-thirds of the mine lease area, vertical hydraulic gradients with the Permian-Triassic sequence are consistently upward from the older rocks into the Tertiary and Quaternary deposits, and this upward gradient is also observed between the Tertiary units and Quaternary-Recent alluvium in the southern area. Conversely, gradients are consistently downward in the northern third of the lease area.

The strongest upward head gradients are observed around the Carmichael River, with a maximum upward gradient of around 4.9 m from the Tertiary deposits into the Quaternary alluvials in bore C029, which is located immediately adjacent to the river channel. A similar situation and a 3.0 m upward gradient is observed slightly further upstream at bore C027. There is also a large upward gradient (4.1 m) observed in bore C007 from the D Seam into the AB Seam.

The downward gradients in the northern third of the lease area are typically in the range one to three metres. Interestingly, the downward gradient is maintained in this area even between deeper units: bore C018 (on the northern margin of the lease area) shows consistent downward gradients from the Tertiary into the AB Seam (around 1.0 m) and from the AB Seam into the D Seam (around 1.8 m).

5.3.2 Groundwater Recharge

Groundwater recharge appears to be minimal. Analysis of nearby bore hydrographs from the Queensland Bore Database (DNRM) and data for monitoring network bores installed within the lease show little fluctuation in groundwater levels (based on two to four records per year), including during wetter periods in the late 1970s and early 1980s. Typical recharge peaks are in the order of 0.2 m, but occur relatively infrequently and may represent a response to higher rainfall periods that is lagged and attenuated over multiple years if not longer. The apparent attenuation of recharge events and the relatively minor seasonal fluctuations suggests that the aquifers underlying the region are typically of low permeability and/or that there is little recharge to the groundwater system. This is consistent with the relatively high salinity recorded in many of the observation bores installed in the Project (Mine) area. Recharge rates estimated using the water table fluctuation method (Healy and Cook, 2002) using data for seven bores around 30 km east of the lease area suggest typical rates of one to 5 mm/year (Table 5-2). These bores monitor the Tertiary-Quaternary aquifer along the Belyando River floodplain. Hence these recharge estimates are considered likely to be at the higher end of the spectrum for the lease area and surrounds due to the dominance of low permeability bedrock at outcrop and shallow subcrop in this area.

A further estimate of groundwater recharge has been made using the chloride mass balance method described by Cook and Healy (2002). This method requires measurements of chloride in groundwater and chloride deposition rates from rainfall. Chloride mass balance recharge estimates are made assuming that:

- There is no 'dry' deposition of chloride (i.e. chloride is only deposited by rain, not by wind);
- Steady state conditions exist;
- All chloride in groundwater is derived from rainfall, and not from weathering of host rock or soil; and
- Chloride borne in runoff or from stream leakage will contain chloride, and this should be accounted for in any assessment.

Bore ID	Recharge² (range)	Specific Yield (Sy) ¹ (best estimate)	Recharge ² (best estimate)
12030090_A	N/A	0.01- 0.05	2 to 11
12030120_A	1 to 14	0.01- 0.05	2 to 11
12030124_A	0.7 to 10	0.01- 0.05	1 to 7
12030133_A	N/A	0.01- 0.05	1 to 5
12030158_A	N/A	0.01- 0.05	1 to 5
12030170_A	0.7 to 3	0.01- 0.05	0.7 to 3
12030175_A	N/A	0.01- 0.05	0.8 to 4
		Median	1 to 5

 Table 5-2
 Estimates of Groundwater Recharge using the Water table Fluctuation Method

¹ Sy is dimensionless; ² Recharge estimates in millimetres / year

Chloride deposition is the factor with the greatest associated uncertainty (it varies spatially, and can vary seasonally or year-to-year), however recent work by the CSIRO provides Australia-wide estimates and an uncertainty assessment based on the available data (Crosby *et al*, 2009). From this paper, it is estimated that chloride deposition in rainfall for the Carmichael lease area may vary between approximately nil and 12 kg/ha/year, with a best estimate of 3 kg/ha/year. These deposition rates result in estimated recharge rates of 0.1 to 4 mm/year. These estimates are based upon median and average concentrations of chloride in groundwater of 1,397 and 3,283 mg/L, as derived from bores in and surrounding the lease area in the DNRM Bore Database.

Baseflow to streams can also be used as a proxy estimate of groundwater recharge minima in a given catchment. Baseflow analysis of the Belyando River gauge at Gregory Developmental Road using the Hysep method (Sloto and Crouse, 1996) indicates average annual base flow rates of around 1 mm/year. It is well known however that digital baseflow filters typically overestimate baseflows, when compared with chemical methods and numerical models, and therefore this recharge minima estimate is likely to also be an over-estimate.

These three independent chemical and physical estimates of baseflow all indicate average annual recharge rates of less than 1 to 5 mm/year for the Carmichael area and surrounds. This equates to around one per cent of the average annual rainfall for the region (550 mm, Bureau of Meteorology, 2011).

These recharge estimates were confirmed through recharge-runoff modelling using PERFECT (Littleboy *et al*, 1989). This relied on the following data:

- DNRM soils mapping and Northcote principal profile soil classifications;
- The Soil Hydrologic Properties of Australia database (Western and Mackenzie, 2006);
- Daily climatic data (rainfall and pan evaporation) from the SILO / Bureau of Meteorology gauge at Bulliwallah for the period 1950 to 2011;
- Interflow estimation using the method of Rassam and Littleboy (2003); and

Leaf Area Indices from the mapping of Lu et al, (2001)

A low permeability bedrock layer was simulated in the soil profiles in areas of bedrock outcrop and shallow subcrop. The recharge-runoff modelling suggests recharge rates varying from 0 to as high as 44 mm/year, with an average of 6 mm/year and a median of 0 mm/year. The higher recharge rates are modelled for the more permeable soil types in areas where the Tertiary and Quaternary deposits occur at outcrop, whilst the lower rates were generally modelled for the Permian-Triassic bedrock outcrop areas.

5.4 Groundwater Model Design and Construction

5.4.1 Choice of Modelling Code

The numerical code selected for this model is MODFLOW-SURFACT v4 (HydroGeoLogic, 1996), a proprietary modification to the United States Geological Survey's open source MODFLOW-96 (finite difference) code. MODFLOW-SURFACT v4 provides several useful enhancements to MODFLOW-96 including:

- A more robust and flexible numerical solver (PCG5);
- Simulation of saturated and unsaturated zone flow, resolving many of the issues with cell drying and rewetting and associated numerical instabilities of standard MODFLOW;
- A more flexible and robust well boundary package (FWL4/5);
- A more flexible recharge package (RSF4), which allows for simulation of recharge rejection when groundwater levels are shallow; and
- A capability to model changing hydraulic conductivity with time using the Time-varying Properties (TMP) package which was used in this case to simulate the hydrogeological impacts of collapse into abandoned underground mine goaf areas. More detail on this aspect of the modelling work is provided in Section 5.6.

5.4.2 Model Extent and Boundary Conditions

The spatial extent of the numerical model and its specified boundary conditions are shown in Figure 5-2, and the modelled geological (model layer) outcrop is shown in Figure 5-3. For the most part modelled outcrop corresponds with the mapped geological outcrop (Figure 4-2). However, as discussed previously in Section 2.2.2 a revised interpretation of the extent of the Tertiary deposits was assumed for the modelled based on information provided by Xenith and summarised in Appendix H.

The model grid varies in resolution, with refinement down to 50 m cell sizes over the entire Carmichael lease area, and gradual coarsening outward to a maximum of one kilometre at the margins of the modelled area. Given that there are nine model layers, and the grid extends 93 km in the east-west direction, and 108 km in the north-south direction, there are 3,017,466 model cells, 2,720,066 of which are set as active (flow) cells. This is a relatively large model.

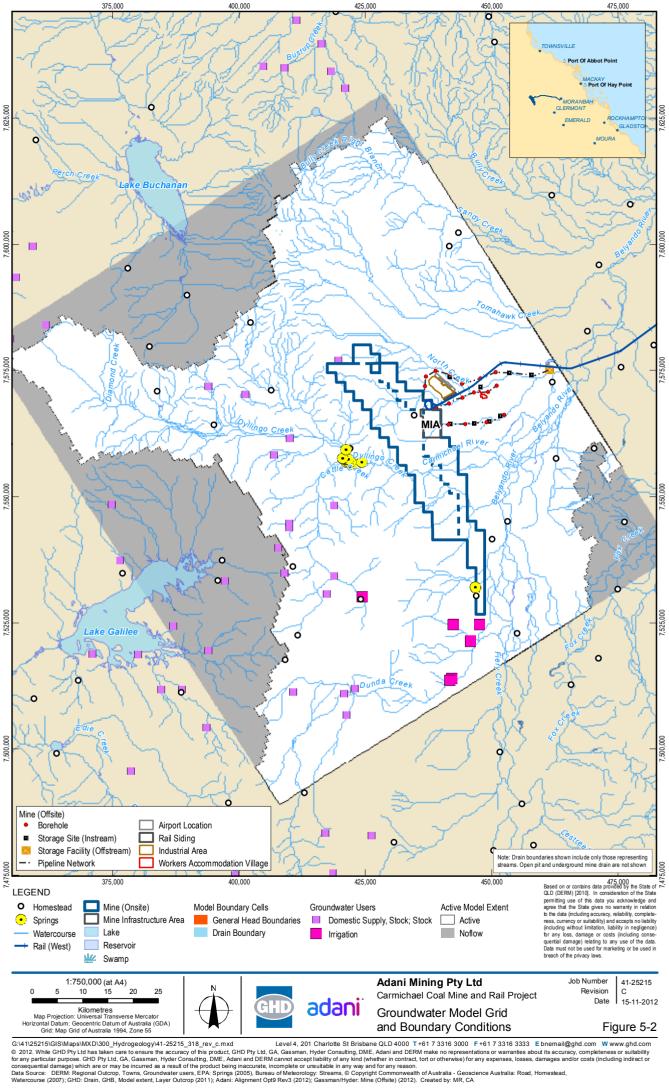
Figure 5-2 also shows the active and inactive extents of the model grid. The active extent has been specified as the surface water catchment flowing into the Carmichael River and Belyando River.

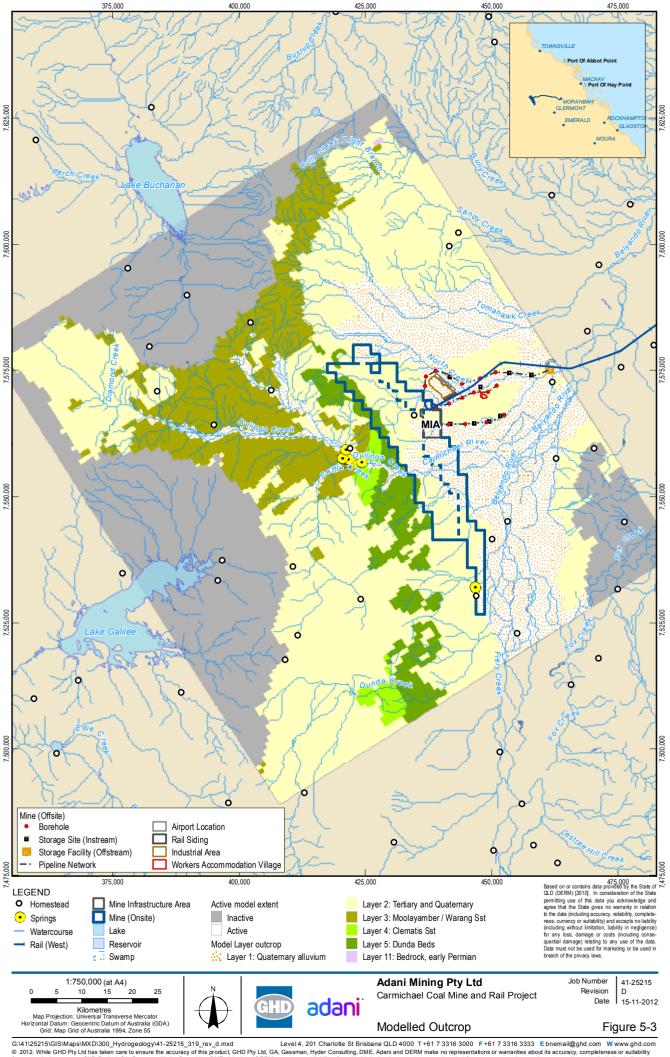
Modelled boundary conditions comprise:

 Rivers (RIV) Boundaries - Representing surface drainage (creeks and rivers), all of which are mapped as ephemeral in the Bureau of Meteorology's Geospatial Hydrology Fabric (Figure 5-2). River conductance has been set to 1000 m²/d – high enough so that the aquifer properties control baseflows rather than the River boundary itself. The River bed has been set to have a zero thickness, meaning that these River boundaries act in the same fashion as MODFLOW Drain boundaries, i.e. allowing baseflow out of the aquifer, but not allowing leakage from watercourse to aquifer. River elevation was set to the minimum of the 50 m DEM within each model grid cell, with some manual modification to certain areas of the drainage network, particularly near bores within the EPC, in order to better represent unconfined water levels near watercourses.

- Drains (DRN) were used in the predictive model to represent both the underground mine workings and open pits, according to the current mine plan regarding the location, timing, depth and methods of extraction to be adopted in the proposed open cut and underground mine workings.
- General Head Boundaries (GHB) GHBs have been applied around the outer edge of the active model grid (Figure 5-2), with the attribution of GHBs to particular layers based on whether the layer is classified as one of the main aquifer units (see Table 5-3), and only where mapped groundwater levels indicated inflow (i.e. typically along much of the northern and western model margin, and parts of the southern margin) or outflow (along much of the eastern margin).

Inflow GHBs	Outflow GHBs
North, west – GHBs in the Triassic/Permian units. South – GHBs primarily located in the Tertiary horizons.	East –GHBs located within the Tertiary horizons, except for Layer 11 (early Permian/bedrock).
Layer 2, 3, 6, 7, 9 and 11 (south only) – 'aquitards'	
Layer 4, 5, 8, and 10 (north, west, south) – 'aquifers'	Layer 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 (east)


Table 5-3 General Head Boundaries


- The specified head of these boundaries has been derived from the interpolated watertable potentiometric surface (i.e. based on existing bore data). If the mapped head was below a cell base in any given layer, a GHB was not specified for that cell. GHB conductance was set to 1000 m²/d.
- GHBs have not been set in Layer 1 (Quaternary alluvium) as discharge from the modelled alluvium will be primarily via baseflow to watercourses, rather than as groundwater throughflow out of the model domain.
- Recharge-Seepage Faces (RSF) RSFs were specified as active in the MODFLOW-SURFACT RSF package. Seepage face elevations were set to the top of the layer that is at outcrop in the model. Recharge rates to groundwater were initially set to a flat rate of 1 mm/year based upon the analysis presented in Section 5.3.2. This was later revised down during the calibration process, which suggested that a significantly better fit between observed and modelled heads could be achieved using lower recharge values of around 0.1 mm/yr (this reduced value remains consistent with the analysis of recharge, particularly the baseflow estimates, presented in Section 5.3.2).
- Fracture Wells (FWL4) FWLs were specified according to the DNRM licensed groundwater bore data. It has been assumed that 30 per cent of the total licensed volumes is utilised on average (for irrigation bores), and that 2 ML/year is utilised from stock and domestic bores. All licensed volumes were apportioned equally across all bores associated with any given licence. Bores were assigned

ada

to model layers based upon the aquifer unit noted for each bore in the DNRM licence database. FWL bore storage was set to 0.1 in all cases. Total estimated extraction from these bores is 0.195 ML/d which equates to less than one per cent of the total recharge applied to the modelled area. Extractions therefore represent a minor component of the modelled water balance.

G:\41125215\GIS\Maps\MXD1300_Hydrogeolog\\41-25215_319_rev_d.mxd Level 4, 201 Charlotte St Brisbane QLD 4000 T+61 7 3316 3030 F+61 7 3316 3333 E bnemail@ghd com W www.ghd.cor @ 2012_While GHD Pty Ltd, As astaen care to ensure the accuracy of this product GHD Pty Ltd, As assman, Hyder Consulting, DME, Adani and DERM make no representations or warrantes about its accuracy, completeness or suitability for any particular purpose. GHD Pty Ltd, As assman, Hyder Consulting, DME, Adani and DERM make no representations or warrantes about its accuracy, completeness or suitability for any particular purpose. GHD Pty Ltd, GA, Gasman, Hyder Consulting, DME, Adani and DERM make no representations or warrantes about its accuracy, completeness or suitability of any way and for any reason. Data Source: DERM: Regional outcorp, towns, Groundwater users, EPA: Springs (2005), Bureau of Meteorology: Streams, © Copyright Commonwealth of Australia - Geoscience Australia: Road, Homestead, Watercourse (2007); GHD: Drain, GHB, Model extent, Layer Outcrop (2012); Adani: Alignment Opt9 Rev3 (2012); Gassman/Hyder: Mine (Offsite) (2012). Created by: MR, MS

5.5 Model Calibration

Calibration of the groundwater flow model was undertaken in steady state through comparison of observed and modelled groundwater levels at 88 borehole locations (43 bores within the Carmichael mine lease area, six DNRM State Observation bores with transient historical water level records, and 39 bores with time of drilling water levels recorded in the DNRM Bore Database). Time series data from the Carmichael lease bores and the DNRM State Observation bores were averaged for the purposes of the steady state model calibration.

Calibration in transient mode would have been preferable but it is currently considered that there is insufficient time series groundwater level data to make this worthwhile. Data loggers have however been installed at all of the monitoring network bores onsite in order to fill this data gap as soon as possible. The most reliable calibration data are provided by bores drilled specifically for this project within the lease area, whilst the least reliable are the time of drilling records from the DNRM database. The Carmichael lease bores were assigned to model layers according to the available detailed drilling and bore construction information, whereas the DNRM bores were assigned according to the bore construction or depth information where available. Where this information was not available in the DNRM database, bores were assumed to screen the model layer (aquifer) that is at outcrop at the supplied bore location.

A reasonable match between modelled and observed groundwater levels has been achieved (Figure 5-4) via automated calibration using PEST (Doherty, 2010). PEST was instructed to adjust either the horizontal or vertical hydraulic conductivity in each layer within specified limits depending on whether a layer was considered to be an aquifer or an aquitard. PEST was also allowed to vary recharge on a layer by layer basis. Modelled hydraulic conductivity values for each layer were assigned in the following manner:

- A single hydraulic conductivity value was assumed for the entire extent of model layers 1, 3, 5 and 6 i.e. the Quaternary and Triassic age units;
- Two hydraulic conductivity zones, one for outcrop areas and one for subcrop areas, was assigned to Tertiary age units modelled as Layer 2;
- Single hydraulic conductivity values were assumed for the Tertiary where it is represented as multiple model layers to the east of the proposed mining area; and
- For layers 7-10 (including the coal seams) single hydraulic conductivity values were applied outside of the mine lease, whilst within the lease the calibration software was allowed to assign interpolated hydraulic conductivity values (based on pilot points) in order to maximise the data 'worth' of the multiple monitoring bores installed within these strata.

Parameters used in the model calibration including the initial values and selected lower and upper bounds are listed in Table 5-4. Initial values were predominantly taken from a previous iteration of the modelling work completed in March 2012.

Various calibration statistics are presented in Figure 5-4. The normalised root mean square error (nRMS) is less than five per cent, which is within the typically accepted limits, as suggested in the Murray Darling Basin Commission's Groundwater Flow Modelling Guideline (Middlemis, Merrick and Ross, 2002). Calibrated model water balance errors are well below one per cent, which is also within the guidelines' suggested limits. The statistical distribution of modelled head error is approximately normal, with the greatest density of errors within the +/- 5 m error band (Figure 5-4), and relatively evenly spread

positive and negative head errors either side of that. The mean absolute head error is 7.96 m, with the majority of the Carmichael lease bores showing head errors of less than 10 m (Figure 5-4).

The bigger head errors are typically associated with bores screened in the superficial units, specifically in model layers 1 and 2 (Quaternary and Tertiary units).

Given the limited monitoring data of variable quality, the steady state (rather than transient) model, complex geology and simple model parameter zonation, the overall level of modelled head error is considered reasonable. The calibrated model parameters and the corresponding field measurements are presented in Figure 5-5 and Table 5-5.

Most calibrated hydraulic conductivity parameters are within observed ranges from the combined slug, packer and pumping test results. In some cases wider ranges were adopted for model calibration purposes than evidenced by the site specific hydraulic test data e.g. where:

- Relatively few site test results were available; and/or
- A comparison of the test data for the site with regional data sets (e.g. QWC, 2012) suggested that the site specific data was considered likely to under-estimate likely ranges and hence potentially bias the calibration.

The original intention was to vary modelled hydraulic conductivity values only during the calibration process, and hence to leave recharge at 1 mm/year based on the recharge calculations described in Section 5.3.2. However, initial attempts to calibrate the model suggested that the recharge value adopted was significantly limiting the quality of the calibration, such that the SRMS of the calibration could not be improved below around 10% by altering the hydraulic conductivity values alone. Modelled recharge was therefore also allowed to vary between 0.1 and 5 mm/year or 2.74×10^{-7} and 1.37×10^{-5} m/d as shown in Table 5-5.

A two step calibration process was then adopted whereby modelled recharge only was optimised in the first instance before fixing recharge at the calibrated values and optimising the modelled hydraulic conductivity values. The final calibrated recharge values are generally towards the lower bound of the calibration permissible range and range between 0.1 and 0.6 mm/yr.

Modelled results suggest an upward head gradient from the Permian-aged units to the overlying Quaternary/Tertiary-aged units in the vicinity of the Carmichael River and upstream of the proposed mining area. This is consistent with observed groundwater data for the riverside monitoring bores installed in the lease area (see Section 4.3.4). In response to these upward gradients modelled results suggest around 15,300 m³/d of groundwater discharges to surface water courses in the area. The majority of the baseflow is intercepted by the Carmichael River and tributaries upstream of the mine lease. This general modelled pattern of discharge to the Carmichael River upstream of the lease is considered to be consistent with a number of information sources including:

- Observed groundwater levels in the Quaternary alluvium which are above estimated river bed levels towards the upstream boundary of the Study Area;
- Field observations which confirm active flow in the Carmichael River throughout much of the dry period from June to November 2011;
- Major ion data for groundwater and surface samples which shows a tendency for surface water samples from the Carmichael River to become progressively more similar to groundwater samples during the dry period from June to November 2011;

• The presence of mature river red gum trees and other riparian zone vegetation along the banks of the Carmichael Creek.

However, based on the limited surface water flow data available for flow gauges installed at the upstream and downstream (see Section 4.7.4) it is possible that the model is currently over-estimating the magnitude of baseflow to the upstream area. Further reliable flow data at the upstream boundary of the site and for the Doongmabulla Springs would be required to refine this. Once this additional flow data was available it could also be used as an additional target for re-calibration of the model to ensure that modelled baseflows were consistent with observations.

Dominant Unit / Zone	Calibrated Parameter	Initial Value (m/d)	Lower Bound (m/d)	Upper Bound (m/d)	Source
Quaternary Alluvium	Recharge	2.74x10 ⁻⁰⁶	2.74x10 ⁻⁰⁷	1.37x10 ⁻⁰⁵	Recharge modelling and previous studies
Tertiary / Old Quaternary	Recharge	2.74x10 ⁻⁰⁶	2.74x10 ⁻⁰⁷	1.37x10 ⁻⁰⁵	Recharge modelling and previous studies
Moolayember Formation	Recharge	2.74x10 ⁻⁰⁶	2.74x10 ⁻⁰⁷	1.37x10 ⁻⁰⁵	Recharge modelling and previous studies
Clematis SSt	Recharge	2.74x10 ⁻⁰⁶	2.74x10 ⁻⁰⁷	1.37x10 ⁻⁰⁵	Recharge modelling and previous studies
Dunda Beds	Recharge	2.74x10 ⁻⁰⁶	2.74x10 ⁻⁰⁷	1.37x10 ⁻⁰⁵	Recharge modelling and previous studies
Quaternary Alluvium	Kx	1.00x10 ⁻⁰¹	1.00x10 ⁻⁰²	1.00x10 ⁺⁰²	Literature values
Tertiary_L2 (outcrop)	Kz	1.00x10 ⁻⁰⁴	1.00x10 ⁻⁰⁵	1.00x10 ⁻⁰³	Literature values
Tertiary_L2 (sub-crop)	Kz	1.00x10 ⁻⁰⁴	1.00x10 ⁻⁰⁵	1.00x10 ⁻⁰³	Literature values
Moolayember Formation	Kx	3.09x10 ⁻⁰¹	4.00x10 ⁻⁰⁵	1.00x10 ⁺⁰⁰	Regional summary stats (QWC, 2012)
Clematis SSt	Kx	4.77x10 ⁻⁰²	4.00x10 ⁻⁰⁵	5.00x10 ⁺⁰⁰	Site tests and regional summary stats (QWC, 2012)
Dunda Beds	Кх	4.77x10 ⁻⁰²	4.00x10 ⁻⁰⁵	5.00x10 ⁺⁰⁰	Site tests and regional summary stats (QWC, 2012)
Rewan Formation	Kz	1.00x10 ⁻⁰⁵	2.00x10 ⁻⁰⁷	1.00x10 ⁻⁰³	Site tests and regional summary stats (QWC, 2012)

Table 5-4 Initial Values and Permissible Ranges

Dominant Unit / Zone	Calibrated Parameter	Initial Value (m/d)	Lower Bound (m/d)	Upper Bound (m/d)	Source
Permian Overburden	Kz	1.70x10 ⁻⁰⁴	4.00x10 ⁻⁰⁶	1.00x10 ⁻⁰¹	Site tests and regional summary stats (QWC, 2012)
Coal Seam AB	Кх	2.04x10 ⁻⁰²	1.00x10 ⁻⁰⁴	5.00x10 ⁺⁰⁰	Site tests and regional summary stats (QWC, 2012)
Permian Interburden	Kz	8.48E-05	4.00E-06	1.00x10 ⁻⁰³	Site tests and regional summary stats (QWC, 2012)
Coal Seam D	Кх	6.50E-03	1.00E-04	1.00x10 ⁺⁰⁰	Site tests and regional summary stats (QWC, 2012)
Early Permian	Кх	3.50E-05	3.50E-07	3.50x10 ⁻⁰³	Site tests and regional summary stats (QWC, 2012)

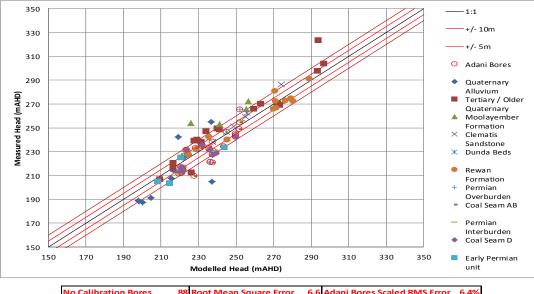
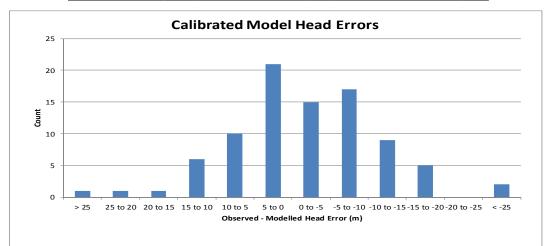
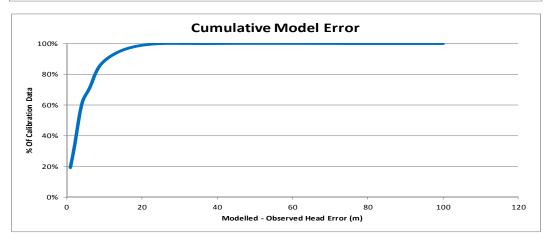
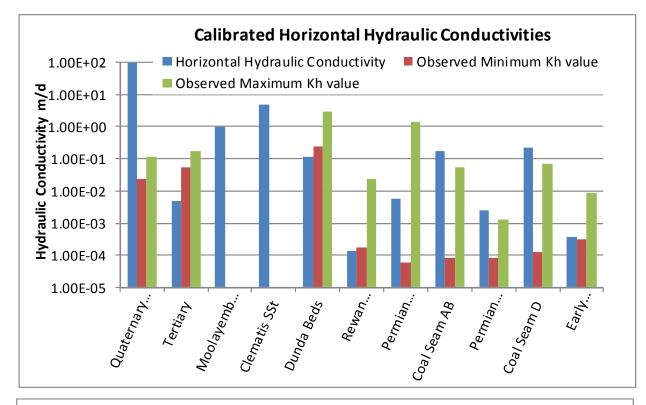




Figure 5-4 Steady State Groundwater Level Calibration Statistics

 No Calibration Bores
 88
 Root Mean Square Error
 6.6
 Adani Bores Scaled RMS Error
 6.4%


 Sum of Square Errors
 3824.6
 Correlation Coefficient
 0.93
 Overall Scaled RMS Error
 4.9%

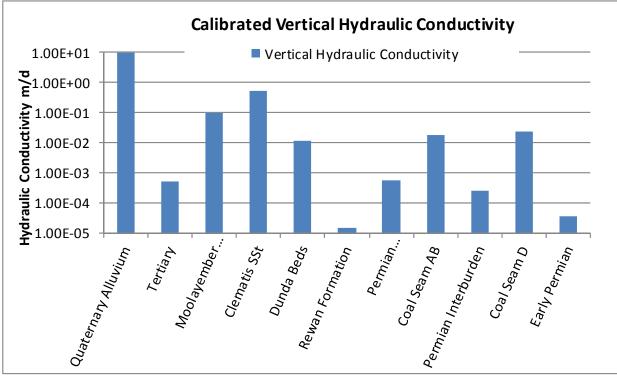


Table 5-5 Calibrated Model Parameters vs Measured Parameters

Zone / Dominant geological Layer unit		Calibrated Parameter Values (m/d)		Measured Parameter values (m/d)			
Layer	unit	Kh	Kz	Minimum	Median	Maximum	Count
1	Quaternary alluvium	1.0x10 ⁺⁰²	1.0x10 ⁺⁰¹	2.3x10 ⁻⁰²	7.1x10 ⁻⁰²	1.2x10 ⁻⁰¹	2
2	Tertiary units	1.66x10 ⁻⁰⁴ to 1.00x10 ⁻⁰²	1.66x10 ⁻⁰⁵ to 1.00x10 ⁻⁰³	0.4.4.0-04	5 0 4 0 ⁻⁰²	4 - 4 0-01	0
*3-10	Tertiary units in lower model layers	1.82x10 ⁻⁰⁴ to 1.00x10 ⁻⁰²	1.82x10 ⁻⁰⁵ to 1.00x10 ⁻⁰³	[—] 2.1x10 ⁻⁰⁴	D ⁻⁰⁴ 5.3x10 ⁻⁰²	1.7x10 ⁻⁰¹	3
3	Moolayember Formation	9.99x10 ⁻⁰¹	9.99x10 ⁻⁰²	-	-	-	-
4	Clematis Sandstone	5.00x10 ⁺⁰⁰	5.00x10 ⁻⁰¹	-	-	-	-
5	Dunda Beds	1.15x10 ⁻⁰¹	1.15x10 ⁻⁰²	2.2x10 ⁻⁰³	2.5x10 ⁻⁰¹	3.0	3
6	Rewan Formation	1.38x10 ⁻⁰⁴	1.38x10 ⁻⁰⁵	1.7x10 ⁻⁰⁴	2.3x10 ⁻⁰²	2.9x10 ⁻⁰¹	5
7	Upper Permian	5.62x10 ⁻⁰³	5.62x10 ⁻⁰⁴	5.8x10 ⁻⁰⁵	2.3x10 ⁻⁰³	1.4	9
8	AB Coal Seam	1.70x10 ⁻⁰¹	1.70x10 ⁻⁰²	8.6x10 ⁻⁰⁵	4.0x10 ⁻⁰³	3.5	11
9	Interburden	2.41x10 ⁻⁰³	2.41x10 ⁻⁰⁴	8.6x10 ⁻⁰⁵	5.0x10 ⁻⁰⁴	1.3x10 ⁻⁰³	6
10	D Coal Seams and Interburden	2.23x10 ⁻⁰¹	2.23x10 ⁻⁰²	1.3x10 ⁻⁰⁴	5.6x10 ⁻⁰³	2.0x10 ⁻⁰¹	11
11	Early Permian & Older Basement	Variable <i>k</i> , constant T = 0.015m ² /d)	3.60x10 ⁻⁰⁵	3.3x10 ⁻⁰⁴	1.1x10 ⁻⁰³	8.7x10 ⁻⁰³	8

NOTES: Kh = horizontal hydraulic conductivity; Kz = Vertical hydraulic conductivity

5.6 Model Predictions

5.6.1 Overview

The primary purpose of developing a groundwater flow model for the Carmichael Coal Mine area is to provide a tool to predict:

- Groundwater inflows to the proposed open cut and underground mine workings for mine planning and water balance purposes;
- Groundwater level changes in the various hydrogeological units present within the area in response to dewatering of the proposed mine workings; and
- Potential baseflow impacts on local water courses.
- Impacts on local hydrological features of environmental or economic importance and which may be sensitive to groundwater level decline including:
 - The Carmichael River which bisects the site and other local watercourses;
 - A Great Artesian Basin spring system close to Doongmabulla around eight kilometres west of the lease area, which supports flow in the Carmichael River particularly during dry periods;
 - The two non-GAB springs which are mapped to the north of Mellaluka around 10 km south of the Study Area ;
 - The Clematis Sandstone which occurs at outcrop to the west of the site and as one of the main aquifers of the GAB forms an important regional aquifer;
 - 21 licensed extraction bores within the modelled area; and
 - A further 25 other registered bores which are within 10 km of the Study Area.

More details on the numerical representation of the mine workings are given below. It should be noted that currently only a limited amount of information is available regarding the development plans for the open cut and underground mines. For instance annual mine plans are available for the period 2013 to 2018 but are only available at ten year increments for the remainder of the 90 year mine life (i.e. 2027, 2037, 2047 etc.). Hence, although the predictive modelling is largely based on the Carmichael Macro-Conceptual Mining Study report (Runge, 2011) some assumptions were necessary to develop the complete mine development time series required for modelling purposes.

5.6.2 Predictive Model Setup

The predictive model simulates a 90 year period from the commencement of mining activities in the lease during early 2013 (nominally Year 1, but specified as 2013 in the Macro Conceptual Plan (Runge 2011)) until the completion of mining work in 2102 (Year 90). Open cut mining will proceed throughout this period whilst the underground mining operations are scheduled to start in 2014 (Year 2) and be completed in 2065 (Year 51).

Two key changes were made between the finalising the historic/calibration model and running the predictive model:

- Upgrading software from MODFLOW-SURFACT v3 to v4 in order to be able to implement the Time-Verying Properties (TMP) package. See Section 5.4.1. This upgrade in software required no other changes to the groundwater model.
- Splitting Layer 6 (primarily representing the Rewan Formation) in the historic model into two layers for the predictive scenarios. This was to allow better representation of the horizons within the Free Draining Zone which develops above longwall panels (MSEC, 2012). Because of the addition of a new layer (a new Layer 7), properties and boundary conditions were copied from Layer 6 to the new Layer 7, and boundary conditions pushed down a layer in all lower layers.

A further steady state model, this time using the 12-layer configuration of the predictive model was run using the relevant heads from the historic model (accounting for the additional layer), and this then represented long-term average pre-development conditions i.e. before the commencement of the mining activities. The starting conditions (initial groundwater levels) for the predictive simulation. were extracted from the 12-layer steady state model. Annual stress periods were adopted for the predictive simulation based on the frequency of the mine planning drawings available which are annual for the period 2013 to 2018 and every ten years thereafter (Runge, 2011).

The extension of boundary conditions developed for the steady state model for use in the transient predictive model was generally straight forward. Modelled GHB boundary cell elevations have been assumed to remain at the same level for the duration of the predictive simulation. The same conductance values used in the steady state model were used in the predictive simulation.

Modelled recharge has been assumed to remain constant at the calibrated model values shown in Table 5-5 for the duration of the predictive simulation. Modelled river elevations and riverbed conductance used to simulate major as well as minor watercourses were also assumed to be constant for the duration of the predictive simulation.

5.6.3 Predictive Model Parameterisation

5.6.3.1 Hydraulic Conductivity

Horizontal and vertical hydraulic conductivity values for predictive modelling purposes were taken from the final calibration run of the steady state model (see Table 5-5). Hydraulic conductivity changes to the Permian overburden and interburden associated with induced sub-surface fracturing caused by the underground mining were simulated using the TMP package.

A separate study of subsidence by MSEC (MSEC, 2012) suggests that a free draining fractured zone with a maximum height of approximately 150 meters above each of the mined seams is likely to develop above the underground longwall mine workings. This free draining fractured zone is characterized by intense vertical fracturing thus creating potential for direct groundwater inflows from the overburden to the workings. Conceptual models for the free draining fractured zone (MSEC, 2012; Guo et al., 2007) suggest an increase in vertical hydraulic conductivity whilst variation in horizontal hydraulic conductivity is generally considered likely to be negligible. Guo et al. (2007) suggest that the vertical hydraulic conductivity in the free draining fracture zone may be increased by a factor of up to 50. Furthermore the relative change in vertical hydraulic conductivity is likely to higher towards the base of the fracture zone that at the top.

For modelling purposes the free draining fractured zone has been simulated by increasing the natural (pre-mining) vertical hydraulic conductivity by a factor of fifty for the lower 50% of the zone and by a factor of 10 in the upper 50%. This is considered to be consistent with the factors suggested by Guo et al. (2007) and with the conceptual model of reducing hydraulic conductivity enhancement with vertical distance from the mined areas. The development of the free draining fractured zones in the Permian overburden and Rewan Formation (model layers 7 and 8) and in the Permian interburden (model layer 10) follow the underground mining schedule (as described in Section 5.6.4.2) for coal seam AB and D, respectively.

5.6.3.2 Storage

Modelled storage values adopted for predictive modelling purposes are summarised in Table 5-6. It should be noted that given that a transient calibration of the groundwater model was not possible at this stage then the adopted storage values are essentially assumed. The adopted values are however consistent with other modelling studies carried out for similar coal resource areas in the Surat and Bowen Basins (e.g. QWC, 2012).

Confined storage values for each model layer are input to MODFLOW-SURFACT in the form of total storativity (i.e. specific storage multiplied by the layer thickness). A further check was therefore applied on the input storativity values for relatively thick layers, including Layer 12 (early Permian/bedrock), to ensure that the modelled confined storage value (i.e. storativity) did not approach the modelled unconfined storage value (i.e. specific yield). A maximum storativity value of 1×10^{-4} was assumed i.e. two orders of magnitude less than the specific yield value of 1×10^{-2} .

Dominant Unit	Layer / Zone*	Specific Storage (per m)	Storativity	Specific Yield
Quaternary	1	NA	NA	1.0x10 ⁻⁰¹
Tertiary	2	3.0x10 ⁻⁰³	2.0x10 ⁻⁰²	5.0x10 ⁻⁰²
Moolayember Formation	3	1.0x10 ⁻⁰⁵	1.0x10 ⁻⁰⁵ - 1.0x10 ⁻⁰³	1.0x10 ⁻⁰²
Clematis Sandstone	4	1.0x10 ⁻⁰⁵	1.0x10 ⁻⁰⁵ - 1.0x10 ⁻⁰³	1.0x10 ⁻⁰²
Dunda Beds	5	1.0x10 ⁻⁰⁵	1.0x10 ⁻⁰⁵ - 1.0x10 ⁻⁰³	1.0x10 ⁻⁰²
Rewan Formation	6-7*	1.0x10 ⁻⁰⁶	$1.0 \times 10^{-06} - 4.3 \times 10^{-04}$	1.0x10 ⁻⁰²
Upper Permian	8	1.0x10 ⁻⁰⁶	$1.0 \times 10^{-06} - 2.3 \times 10^{-04}$	1.0x10 ⁻⁰²
Coal Seam AB	9	1.0x10 ⁻⁰⁵	$1.0 \times 10^{-05} - 2.5 \times 10^{-04}$	1.0x10 ⁻⁰²
Coal AB – D interburden	10	1.0x10 ⁻⁰⁶	$1.0 \times 10^{-06} - 2.2 \times 10^{-04}$	1.0x10 ⁻⁰²
Coal Seam D	11	1.0x10 ⁻⁰⁵	$1.0 \times 10^{-05} - 3.0 \times 10^{-04}$	1.0x10 ⁻⁰²
Older Units	12	1.0x10 ⁻⁰⁷	1.0x10 ⁻⁰⁴	1.0x10 ⁻⁰²
	* the predicti	ve model has two layers for	Rewan Formation, where historic r	nodel only has one.

Table 5-6 Predictive Modelling – adopted Storage values

5.6.4 Simulation of Mine Workings

The proposed open cut and underground mine workings have both been simulated in the model using the MODFLOW DRAIN package but in slightly different ways as described below.

5.6.4.1 Open Cut Mine Workings

The open cut stage plans included in Appendix H of the Runge report (Runge 2011) provide a yearly snapshot of the open cut mine development for the period 2013 to 2018 and every ten years thereafter. These plans were used to define the active mining areas in the numerical model at each corresponding model stress period.

Given that the mine develops incrementally between the decadal snapshots from 2018 onwards it was also necessary to estimate the extent of the open cut mine workings for each year. This was achieved by assuming a constant active area which gradually moved from the area shown in one decadal plan to the next. This methodology produced the continuous open cut mine development time series required for numerical modelling purposes.

Drain cells covering the full extent of the estimated open cut mine footprint in each year were assigned to all layers of the numerical model down to the base of Layer 11 i.e. Coal Seam D. Drain conductance for each drain cell was set to a relatively large value of 1000 m²/d, which is equivalent to a vertical hydraulic conductivity value of 0.4 m/d. Thus the equivalent hydraulic conductivity value used for parameterisation of the MODFLOW drain cells is greater than the expected vertical hydraulic permeability of the modelled layers; hence the material properties of the modelled layer will tend to control the modelled flow to drain cells rather than the drain properties.

Open cut mining commences in 2013 with the excavation of pits G and J. As time progresses drain cells are turned on and off gradually depending on the areal extent of the active mined area in any specific stress period. Years with a relatively large number of active pits include:

- 2037, where six active mine areas are present in the northern part of the lease;
- > 2067 with seven active areas in the southern part of the lease.

Open cut mining activities terminate in 2102.

Based on the modelled depth of the base of the D seam, at the western limit of the proposed open cut mining areas, the open cut pits will extend to depths of up to around 360 m below ground level. The model assumes no partial back fill of the voids so this is considered to a worst case scenario for post closure impacts.

5.6.4.2 Underground Longwall Mining Operations

Only very limited information on the proposed underground mine development are available from the Runge report (Runge, 2011). To create a time series of active drains spanning the whole model simulation period, the following data were used:

- Figures 6.8 and 6.9 Appendix D from the Runge (2011) report were used to define the start and end years for mining operations from the North, Central and South underground mines;
- Longwall production commences in Layer 9 (Seam AB) and is followed by production in Layer 11 (Seam D) with a lag time of up to five years;
- Mine layouts for Seam AB and Seam D are understood to be identical;

Production from the Central mine will lag the starting operations from the North mine by one year. Operations in the South mine will not start before 2039 as per Figure 6.9 in the Runge report (Runge, 2011).

Information on the underground mine workings is therefore largely limited to the planned final extent of the workings and the start and end date of each mine. No information is therefore available on the extent of the active underground mine workings in any of the intervening years. Hence for modelling purposes it was necessary to estimate the extent of the active working area at any time assuming that the panels are worked from north-east to south-west and at a constant rate. Model drain cells defining each longwall panel are turned on and off as production from the underground mines progresses.

Drain cells are only assigned to modelled layers 9 and 11 (i.e. the AB and D coal seams) since the other under and overlying units are unlikely to be actively drained. Based on the modelled depth of the base of the D seam, at the western limit of the proposed underground mining areas, the underground mine workings will extend to depths of up to around 600 m below ground level. With reference to Runge (2011) the E and F seams are not planned to be mined and therefore simulation of dewatering of these seams has not been included in the model.

Drain conductance was assigned a value of $1,000 \text{ m}^2/\text{d}$ as for the open cut mining area. The sensitivity of model predictions to this assumed value is discussed in Section 5.8.

5.6.5 Predicted Groundwater Level Impacts

5.6.5.1 Water Table Impacts

Maximum predicted water table impact in response to the proposed open cut and underground mine workings are shown in Figure 5-6. It should be stressed that this is a composite plot showing maximum predicted drawdown in the water table at each location. Due to the transient nature of the mining operations maximum impacts will occur at different times at different locations.

As expected the largest water table impacts occur within the mine lease and maximum impacts of up to 350 m are predicted towards the west of the proposed open cut mining areas. Predicted impacts in the open cut mining areas increase from north-east to south-west in line with the observed dip of the coal seams to be mined, again this assumes no partial back fill of the pits or any other remediation.

Predicted maximum water table impacts in the underground mining area (i.e. towards the west of the lease) and outside of the proposed open cut areas are less pronounced since the near surface units will not be drained directly. Maximum water table impacts outside of the proposed open cut areas are typically between 20 and 50 m.

5.6.4.2 Groundwater Level Impacts at Sites of Specific Interest

Predicted groundwater level impacts at specific sites of environmental or economic interest are listed in Table 5-7, Table 5-8 and Table 5-9.

Given the proximity of the Carmichael River to the proposed open cut and underground mine workings significant impacts on groundwater levels in the vicinity of the river are anticipated. Groundwater model predictions suggest water table drawdowns of up to around 30 m in the vicinity of the river under the post closure scenario. It should be noted that these impacts are considered to be a conservative assessment since actual impacts are likely to be attenuated to some extent by the likely presence of clay or other low permeability strata underlying the river. The full detail of these strata are not represented in the

numerical model, which includes two layers to represent the sandy near surface Quaternary strata and the underlying sandy clay dominated Tertiary strata. Where further layers were included then the predicted impacts on the water table would be reduced, although considering the scale of the impacts at this location even where this additional detail was modelled then significant groundwater level impacts are likely to remain.

The Doongmabulla springs are located around eight kilometres west of the mining lease and are permanent artesian springs which provide baseflow to the adjacent Carmichael River. Predicted maximum drawdown impacts in the Clematis Sandstone which is thought to represent the source aquifer for these springs range from <0.05 to 0.1 m (Table 5-7). Figure 5-7 shows a time series plot of predicted impacts at each spring site.

The Mellaluka springs are located approximately ten kilometres south of the mining lease. Little is known about the Mellaluka spring system and geological data is generally more limited at the southern extent of the proposed mine footprint. The geology at the spring location is thought likely to comprise shallow near surface Quaternary and or Tertiary age strata (i.e. model layers 1 and 2) overlying the older Permian units (i.e. model layer 12 in the predictive model). Thus the older Permian units have been assumed to be source aquifer in this case and predicted maximum drawdown impacts calculated by extracting modelled in groundwater levels in this unit. Model results suggest predicted maximum drawdowns at the Mellaluka Springs of between 0.7 and 0.8 m (Table 5-7).

Based on recent assessments of the potential for impacts on GAB springs in response to Coal Seam Gas (CSG) extractions carried out by DNRM and the Queensland Water Commission, drawdowns of over 0.2 m are considered to be potentially significant. Predicted drawdowns therefore exceed this 0.2 m threshold after around 60 years at the two mapped Mellaluka springs (Figure 4-1). Predicted drawdowns at all springs in the Doongmabulla system are less than 0.2 m throughout the operational period with the majority of predicted impacts lower than 0.05 m.

Predicted groundwater level impacts at each of the 21 licensed extractions understood to be present within the modelled area are summarised in Table 5-8. For the most part little or no impact is predicted at these locations, less than 0.05 m of drawdown is predicted at 14 of the 21 locations. Minor impacts of 0.1 m are predicted at RN 16896, RN 16895, RN 67626 and RN 62754 which are located to the west of the lease area. Impacts of over 1 m are predicted at a single bore RN 90255 which is located close to the northern lease boundary. Given the proximity of this bore to the underground mine workings it is not surprising that a significant impact is recorded at this location.

		-
Spring Number and Name	Spring System	Predicted Drawdown (m)
1031_Moses4	Doongmabulla	<0.05 *
1032_Moses3	Doongmabulla	<0.05 *
1033_Moses2	Doongmabulla	<0.05 *
1034_Littmose	Doongmabulla	0.1 *
1035_Moses1	Doongmabulla	<0.05 *
1036_75E	Doongmabulla	<0.05 *

Table 5-7	Predicted Water	Table Impacts at Sprir	na Locations – O	nerational Phase
	Fredicted Water	Table inipacts at opin	iy Locations – O	

Spring Number and Name	Spring System	Predicted Drawdown (m)				
1037_75A	Doongmabulla	<0.05 *				
1038_75D	Doongmabulla	<0.05 *				
1039_75B	Doongmabulla	<0.05 *				
1040_75C	Doongmabulla	<0.05 *				
1041_Doongma	Doongmabulla	0.1 *				
41_(no name recorded)	Mellaluka?	0.7 **				
42_(no name recorded)	Mellaluka?	0.8 **				
* predicted drawdown in the Clematis Sandstone						

** predicted drawdown in the Older Permian units

Table 5-8 Predicted Groundwater Level Impacts at Licensed Extraction Bores – Operational Phase

Site	Feature Type	Model Layer	Target Formation	Maximum Predicted Drawdown (m)
RN 62798	Irrigation Extraction	2	Unconsolidated Tertiary Units	<0.05
RN 57660	Irrigation Extraction	2	Unconsolidated Tertiary Units	<0.05
RN 57661	Irrigation Extraction	2	Unconsolidated Tertiary Units	<0.05
RN 44398	Irrigation Extraction	2	Unconsolidated Tertiary Units	<0.05
RN 6404	Irrigation Extraction	2	Unconsolidated Tertiary Units	<0.05
RN 62753	Stock Extraction	3	Moolayember Formation	<0.05
RN 39802	Stock Extraction	3	Moolayember Formation	<0.05
RN 39801	Stock Extraction	3	Moolayember Formation	0.1
RN 16896	Stock Extraction	3	Moolayember Formation	0.1
RN 16895	Stock Extraction	3	Moolayember Formation	0.1
RN 90261	Stock Extraction	4	Clematis Sandstone	<0.05
RN 90255	Stock Extraction	4	Clematis Sandstone / Dunda Beds	3.6
RN 69443	Stock Extraction	4	Clematis Sandstone	<0.05
RN 69442	Stock Abstraction	4	Clematis Sandstone	<0.05

Site	Feature Type	Model Layer	Target Formation	Maximum Predicted Drawdown (m)
RN 69441	Stock Abstraction	4	Clematis Sandstone	<0.05
RN 67626	Stock Abstraction	4	Clematis Sandstone	0.1
RN 62754	Stock Abstraction	4	Clematis Sandstone	0.1
RN 62750	Stock Abstraction	4	Clematis Sandstone	<0.05
RN 16897	Stock Abstraction	4	Clematis Sandstone	<0.05
RN 14217	Stock Abstraction	4	Clematis Sandstone	<0.05

Predicted maximum groundwater level impacts at the remaining 25 registered groundwater bores within 10 km of the lease are summarised in Table 5-9. Ten of these bores are located within the lease area and hence are likely to be decommissioned prior to the commencement of mining operations. Of the remaining 15 registered bores outside of the lease area predicted maximum drawdowns exceed 1 m at:

- Two bore locations to the south of the lease (RN 44486 and RN 103229).
- Two bore locations to the north of the lease (RN 90259 and RN 90256).

Predicted maximum impacts at the remaining registered bores are less than 1 m and hence are considered unlikely to be significant.

Site	Model Layer	Formation Targeted	Maximum Drawdown (m)	Notes
RN 17980	5	Dunda Beds	7.2	Inside lease area
RN 17981	10	Permian Sandstone	149.6	Inside lease area
RN 17982	12	Permian Sandstone	80.5	Inside lease area
RN 44440	2	Unconsolidated Quaternary / Tertiary Units	<0.05	South of lease area
RN 44441	8	Permian Sandstone	<0.05	South of lease area
RN 44484	2	Unconsolidated Quaternary / Tertiary Units	<0.05	East of lease area
RN 44485	5	Dunda Beds	32.2	Inside lease area
RN 44486	5	Dunda Beds	1.7	South-east of lease area
RN 44489	2	Unconsolidated Quaternary / Tertiary Units	<0.05	South-east of lease area
RN 47167	5	Dunda Beds	6.1	Inside lease area

Table 5-9	Predicted Groundwater Level Im	pacts at Other Registered	Bores – Operational Phase
		ipacio al Ollici Negioleiel	Dures – Operational i hase

Site	Model Layer	Formation Targeted	Maximum Drawdown (m)	Notes
RN 62623	10	Permian Sandstone	135.1	Inside lease area
RN 62624	5	Dunda Beds	35.8	Inside lease area
RN 62625	5	Dunda Beds	0.3	South of lease area
RN 67627	10	Permian Sandstone	0.7	South of lease area
RN 90256	10	Permian Sandstone	2.2	North of lease area
RN 90258	5	Dunda Beds	7.5	Inside lease area
RN 90259	10	Permian Sandstone	19.8	North of lease area
RN 90260	5	Dunda Beds	7.8	Inside lease area
RN 90369	5	Dunda Beds	0.7	Inside lease area
RN 103229	10	Permian Sandstone	1.6	South of lease area
RN 103230	8	Permian Sandstone	<0.05	South of lease area
RN 103231	8	Permian Sandstone	0.2	South of lease area
RN 103249	10	Permian Sandstone	0.6	South of lease area
RN 103559	12	Permian Sandstone	0.6	South of lease area
RN 103565	5	Dunda Beds	0.9	South of lease area

5.6.4.3 Base Flow Impacts

Given the predicted impacts on groundwater levels in the vicinity of the mine there is also the potential for impact on flows in Carmichael River and on other local water courses which are receiving groundwater base flow. Information on observed surface water flows, groundwater levels and a comparison of groundwater and surface water quality data for the Carmichael River suggests that flows and/or water levels are at least partly supported by direct groundwater flow from the underlying units and/or by discharge from the Doongmabulla Springs. This is consistent with field observations which confirm active flow in the Carmichael River throughout much of the period from June to November 2011 (i.e. during the dry season). Some impact on the Carmichael River and any other local water courses which receive groundwater base flow are therefore anticipated. However, little or no groundwater flow is thought to be occurring currently to other minor ephemeral water courses in the area and hence no significant impacts are expected.

Output from the calibrated pre-development steady state model suggests around 15,300 m³/d of groundwater flow to local watercourses, almost all of which is to the Carmichael River upstream of the site. This is consistent with groundwater level and surface water data for the site. Output from the predictive post development model suggests that this base flow could be reduced to around 14,300 m³/d by the end of the mining period and hence impacts of up to around 1,000 m³/d on base flows to the Carmichael River upstream of the site. This is equivalent to a predicted 7 per cent reduction in modelled groundwater discharges to local watercourses. During wet periods direct base flow and discharges from the Doongmabulla Springs will represent only a minor component of flow to the Carmichael River.

However, groundwater discharges will represent a progressively more important source of water during prolonged dry periods, as evidenced by comparison of the available surface water and groundwater quality data. Given that the predicted reduction of baseflow is only 7 per cent, it is considered unlikely that the mining workings will cause significant changes to the duration of zero flow and/or low flow periods in the Carmichael River. However, further reliable flow data is required to confirm the significance of this impact.

This relatively minor predicted impact on flows despite the relatively large groundwater level impacts described in Section 5.6.5 is related to the groundwater model predictions of flow losses from the Carmichael River to underlying groundwater under current i.e. pre-development conditions throughout the majority of the lease area. This is consistent with groundwater level and flow monitoring data for the site which suggests:

- Groundwater levels in the alluvium which are below the bed of the river (i.e. losing conditions) at both sites C025 and C029 located in the eastern part of the lease (Section 4.7.2); and
- Observed flow losses in the Carmichael River across the lease area between the upstream and downstream gauges (Section 4.7.4).

It should be noted that the current groundwater flow model effectively assumes dis-connection of groundwater and surface resources in areas where a downward gradient is calculated. Hence it has been assumed that any further drawdowns in areas where there is already a downward gradient (i.e. throughout the majority of the lease area) will not induce further losses from the river. This assumption is however considered to be consistent with groundwater level data for the riverside monitoring bores C025P1 and C029P1 both of which show only a limited response to significant increases (up to 4 m) in groundwater and surface water levels which occurred between December 2011 and March 2012. This suggests little or no connectivity between surface water and groundwater resources at these locations.

Figure 5-9 shows a time series plot charting the development of predicted base flow impacts in different creek catchments. This plot confirms that almost all of the predicted impact is to the Carmichael River upstream of the site and also suggests that impacts will take a number of years to develop. For instance impacts of over 100 m^3 /d are not expected until around 15 years after the start of mining.

5.7 Post Closure Impacts

5.7.1 Post Closure Landform

Reference to the conceptual mining study (Runge, 2011) suggests that the majority of the proposed open pit areas will be backfilled and rehabilitated such that for the most part the final land surface will be at or above the current ground level (a result of bulking effects on the excavated overburden). On average the final land surface is anticipated to be 50 m above the current ground surface in backfilled areas (Runge, 2011). However, the final landform outlined in the concept design also includes a number of large final voids, typically situated towards the west of the proposed open cut mining area. Where possible these final voids will be backfilled using redirected pre-strip waste from adjacent pits. However, significant backfilling will not be possible in the nine pit areas including the western parts of the BE, DE, BW, DW, G, H, N, O and P pits. These pits will be remediated to some extent by re-profiling of the pit walls to ensure long term geotechnical stability and encourage re-vegetation. However, the final ground surface within these voids will be substantially below pre-development ground surface and groundwater level elevations. Hence once dewatering operations have ceased in each pit, there is the potential for

groundwater levels to gradually rebound and permanent lakes could develop in the BE, DE, BW, DW, G, H, N, O and P pits.

A comparison of annual patched point rainfall and evaporation totals, extracted for the site from the Bureau of Meteorology (BOM) SILO website, indicates that evaporation totals on average exceed rainfall by around 1,350 mm/yr. Net actual evaporation losses from a flooded pit environment are likely to be less than these potential rates due to shadowing at the base of the pit, nevertheless evaporation losses from lakes which form in the closed open pits represent a potentially significant post-closure groundwater extraction. Reference to drawings included in the conceptual mining study (Runge, 2011) suggest a total un-remediated void area of around 1,500 hectares. Based on a net effective rainfall rate of -1,350 mm/yr and assuming, conservatively, that the external catchment to each void is zero, then potential evaporation losses from the final un-remediated voids could exceed 56 ML/d.

Given that these potential losses significantly exceed the predicted pit inflows at the end of the mine life (i.e. the potential evaporation losses exceed the capacity of the coal measures and other units to provide inflow) the pits are expected to remain dry except following heavy rainfall events. This also means that the potential long term post closure impacts associated with the BE, DE, BW, DW, G, H, N, O and P pits may exceed those calculated for the operational period since evaporation is likely to continue to control groundwater levels within the final un-remediated voids in perpetuity.

Further calculations have therefore been carried out using the groundwater model developed for the Project in order to assess the impact of evaporation losses from un-remediated voids on groundwater resources.

5.7.2 Post Closure Groundwater Model Set-up

Unlike dewatering impacts during the operational phase of mine development, which are transient, evaporation losses from un-remediated voids will continue in perpetuity following closure of the mine. The groundwater model developed for the operational period has therefor been run in steady state model to assess the long-term impact of the proposed development post closure. Initial groundwater levels for this run were taken from the final stress period of the predictive run i.e. predicted groundwater levels at the end of the 90 year operational mine life.

As discussed above, groundwater levels are anticipated to be at around the base of the voids post closure and the un-remediated voids are expected to remain dry except following heavy rainfall events. Predictive modelling, for this situation has been undertaken through the use of the MODFLOW Drain package. Drain cells covering the full extent of the un-remediated voids were assigned to all layers of the numerical model down to the base of Layer 11 i.e. Coal Seam D.

Post closure model results indicate around 2 ML/d of groundwater inflow to un-remediated void areas via the modelled drain cells, i.e. significantly less than the 56 ML/d of potential evaporation losses calculated in Section 5.7.1, see above. Modelling results therefore also suggest that:

- In the absence of significant external catchments the un-remediated void areas will tend to remain dry post closure
- Evaporation losses from the un-remediated void areas will represent a significant ongoing groundwater extraction of 2 ML/d from the system

5.7.3 Predicted Post-Closure Groundwater Level Impacts

Predicted post closure groundwater levels impacts at spring locations are listed in Table 5-10.

Predicted drawdowns at the Doongmabulla Springs to the west of the lease area are similar to maximum predicted drawdowns during the operational period. Hence predicted post closure impacts are a maximum of 0.1 m at the Littmose (Little Moses) and Doongma (Doongmabulla) springs and are less than 0.05 m at seven of the nine remaining springs. Predicted post closure impacts at the Mellaluka spring system to the south of the mining lease are between 4.8 and 5.3 m and hence are substantially higher than maximum predicted drawdowns of 0.7 and 0.8 m during the operational period (see Table 5-7).

Spring Number and Name	Spring System	Predicted Drawdown (m)	
1031_Moses4	Doongmabulla	<0.05 *	
1032_Moses3	Doongmabulla	<0.05 *	
1033_Moses2	Doongmabulla	<0.05 *	
1034_Littmose	Doongmabulla	0.1 *	
1035_Moses1	Doongmabulla	<0.05 *	
1036_75E	Doongmabulla	<0.05 *	
1037_75A	Doongmabulla	<0.05 *	
1038_75D	Doongmabulla	<0.05 *	
1039_75B	Doongmabulla	<0.05 *	
1040_75C	Doongmabulla	<0.05 *	
1041_Doongma	Doongmabulla	0.1 *	
41_(no name recorded)	Mellaluka?	4.8 **	
42_(no name recorded)	Mellaluka?	5.3 **	
* predicted drawdown in the Clematis Sandstone			

* predicted drawdown in the Clematis Sandstone

** predicted drawdown in the Older Permian unit

Predicted post closure groundwater level impacts at each of the 21 licensed groundwater bores within the groundwater model area are listed in Table 5-11. Predicted post closure drawdowns exceed 1 m at only one bore location (RN90255) to the north of the mine lease. Predicted impacts at the remaining licensed extraction bores are less than 1 m and hence are considered unlikely to be significant.

As discussed previously in Section 5.7.1, although still relatively minor, these predicted post closure impacts typically exceed the maximum predicted drawdowns during the operational period since evaporation from un-remediated void areas will continue in perpetuity, unlike operational dewatering impacts which will be transient.

Site	Feature Type	Model Layer	Target Formation	Predicted Drawdown (m)
RN 62798	Irrigation Extraction	2	Unconsolidated Tertiary Units	<0.05
RN 57660	Irrigation Extraction	2	Unconsolidated Tertiary Units	<0.05
RN 57661	Irrigation Extraction	2	Unconsolidated Tertiary Units	<0.05
RN 44398	Irrigation Extraction	2	Unconsolidated Tertiary Units	<0.05
RN 6404	Irrigation Extraction	1	Unconsolidated Tertiary Units	0.9
RN 62753	Stock Extraction	3	Moolayember Formation	0.1
RN 39802	Stock Extraction	3	Moolayember Formation	<0.05
RN 39801	Stock Extraction	3	Moolayember Formation	<0.05
RN 16896	Stock Extraction	3	Moolayember Formation	<0.05
RN 16895	Stock Extraction	3	Moolayember Formation	0.1
RN 90261	Stock Extraction	4	Clematis Sandstone	<0.05
RN 90255	Stock Extraction	4	Clematis Sandstone / Dunda Beds	3.0
RN 69443	Stock Extraction	4	Clematis Sandstone	<0.05
RN 69442	Stock Abstraction	4	Clematis Sandstone	<0.05
RN 69441	Stock Abstraction	4	Clematis Sandstone	<0.05
RN 67626	Stock Abstraction	4	Clematis Sandstone	0.2
RN 62754	Stock Abstraction	4	Clematis Sandstone	0.1
RN 62750	Stock Abstraction	4	Clematis Sandstone	<0.05
RN 16897	Stock Abstraction	4	Clematis Sandstone	<0.05
RN 14217	Stock Abstraction	4	Clematis Sandstone	<0.05

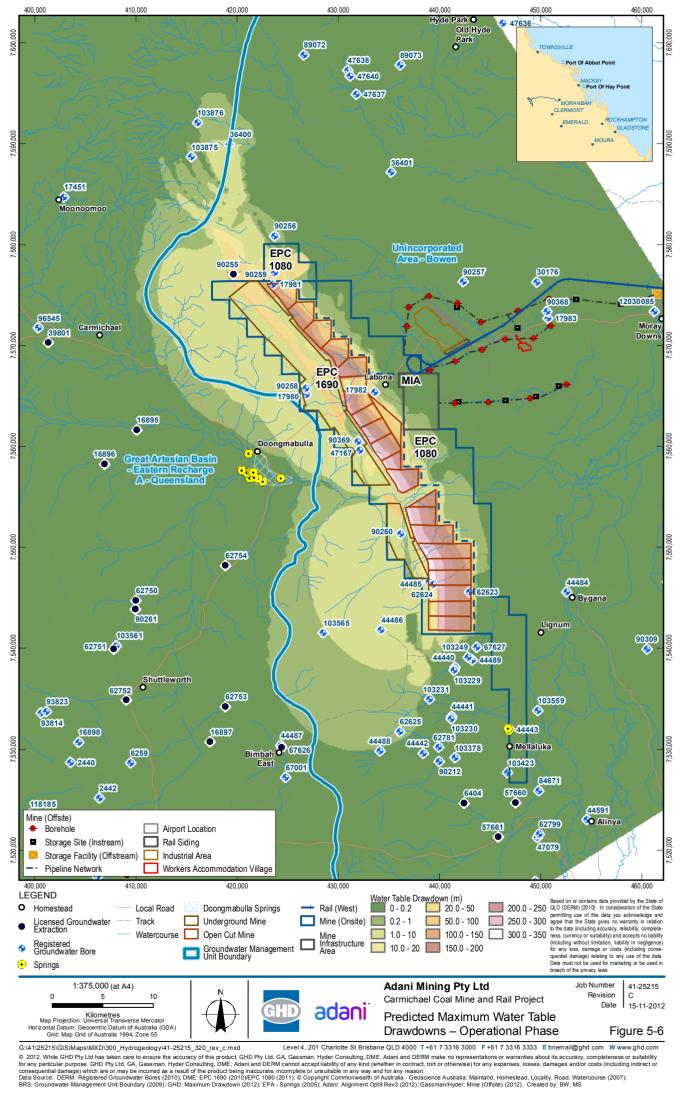
Table 5-11 Predicted Groundwater Level Impacts at Licensed Bores – Post Closure

Predicted post closure groundwater level impacts at the remaining 25 registered groundwater bores within 10 km of the lease are summarised in Table 5-12. Ten of these bores are located within the lease area and hence are likely to decommissioned prior to the commencement of mining operations. Of the remaining 15 registered bores outside of the lease area predicted maximum drawdowns exceed 1 m at all bores listed and hence could be significant depending on the status, rest water level and pump elevations at each location.

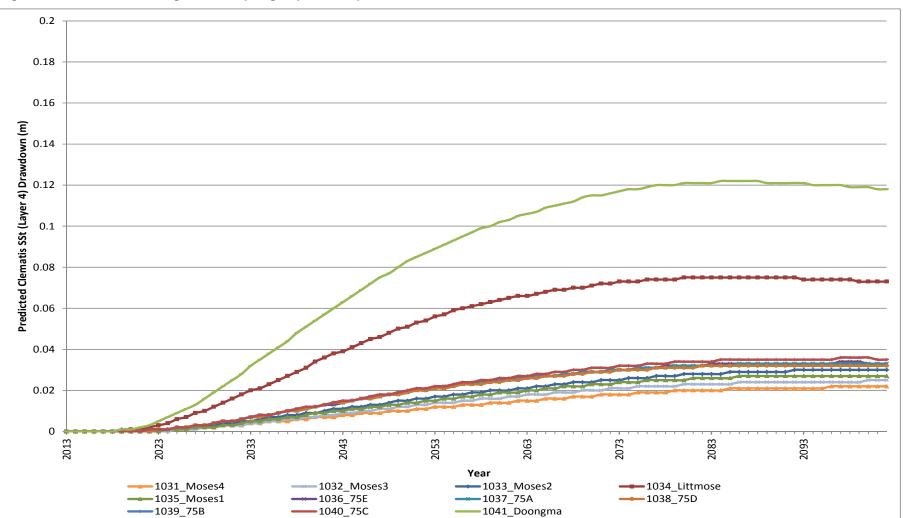
As discussed previously in Section 5.7.1 these predicted post closure impacts typically exceed the maximum predicted drawdowns during the operational period since evaporation from un-remediated void areas will continue in perpetuity, unlike operational dewatering impacts which will be transient.

RN 179805Dunda Beds5.2Inside lease areaRN 1798110Permian Sandstone55.1Inside lease areaRN 1798212Permian Sandstone126.3Inside lease areaRN 444402Unconsolidated Quaternary / Tertiary Units29.1South of lease areaRN 444418Permian Sandstone10.8South of lease areaRN 444418Permian Sandstone10.8South of lease areaRN 444842Unconsolidated Quaternary / Tertiary Units1.0East of lease areaRN 444855Dunda Beds29.7Inside lease areaRN 444865Dunda Beds3.8South-east of lease areaRN 444892Unconsolidated Quaternary / Tertiary Units28.5South-east of lease areaRN 444892Unconsolidated Quaternary / Tertiary Units28.5South-east of lease areaRN 444892Unconsolidated Quaternary / Tertiary Units28.5South-east of lease areaRN 471675Dunda Beds7.8Inside lease areaRN 6262310Permian Sandstone147.1Inside lease areaRN 626245Dunda Beds59.0147.1	
RN 1798212Permian Sandstone126.3Inside lease areaRN 444402Unconsolidated Quaternary / Tertiary Units29.1South of lease areaRN 444418Permian Sandstone10.8South of lease areaRN 444412Unconsolidated Quaternary / Tertiary Units1.0East of lease areaRN 444842Unconsolidated Quaternary / Tertiary Units1.0East of lease areaRN 444855Dunda Beds29.7Inside lease areaRN 444865Dunda Beds3.8South-east of lease areaRN 444892Unconsolidated Quaternary / Tertiary Units28.5South-east of lease areaRN 444892Unconsolidated Quaternary / Tertiary Units28.5South-east of lease areaRN 471675Dunda Beds7.8Inside lease areaRN 6262310Permian Sandstone147.1Inside lease area	
RN 444402Unconsolidated Quaternary / Tertiary Units29.1South of lease areaRN 444418Permian Sandstone10.8South of lease areaRN 444842Unconsolidated Quaternary / Tertiary Units1.0East of lease areaRN 444855Dunda Beds29.7Inside lease areaRN 444865Dunda Beds3.8South-east of lease areaRN 444892Unconsolidated Quaternary / Tertiary Units28.5South-east of lease areaRN 444892Unconsolidated Quaternary / Tertiary Units28.5South-east of lease areaRN 471675Dunda Beds7.8Inside lease areaRN 6262310Permian Sandstone147.1Inside lease area	
RN 444418Permian Sandstone10.8South of lease areaRN 444842Unconsolidated Quaternary / Tertiary Units1.0East of lease areaRN 444855Dunda Beds29.7Inside lease areaRN 444865Dunda Beds3.8South-east of lease areaRN 444892Unconsolidated Quaternary / Tertiary Units28.5South-east of lease areaRN 444892Unconsolidated Quaternary / Tertiary Units28.5South-east of lease areaRN 444892Unconsolidated Quaternary / Tertiary Units28.5South-east of lease areaRN 471675Dunda Beds7.8Inside lease areaRN 6262310Permian Sandstone147.1Inside lease area	
RN 444842Unconsolidated Quaternary / Tertiary Units1.0East of lease areaRN 444855Dunda Beds29.7Inside lease areaRN 444865Dunda Beds3.8South-east of lease areaRN 444892Unconsolidated Quaternary / Tertiary Units28.5South-east of lease areaRN 471675Dunda Beds7.8Inside lease areaRN 6262310Permian Sandstone147.1Inside lease area	l
/ Tertiary UnitsRN 444855Dunda Beds29.7Inside lease areaRN 444865Dunda Beds3.8South-east of lease areaRN 444892Unconsolidated Quaternary / Tertiary Units28.5South-east of lease areaRN 471675Dunda Beds7.8Inside lease areaRN 6262310Permian Sandstone147.1Inside lease area	l
RN 444865Dunda Beds3.8South-east of lease areaRN 444892Unconsolidated Quaternary / Tertiary Units28.5South-east of lease areaRN 471675Dunda Beds7.8Inside lease areaRN 6262310Permian Sandstone147.1Inside lease area	
areaRN 444892Unconsolidated Quaternary / Tertiary Units28.5South-east of lease areaRN 471675Dunda Beds7.8Inside lease areaRN 6262310Permian Sandstone147.1Inside lease area	
/ Tertiary UnitsareaRN 471675Dunda Beds7.8Inside lease areaRN 6262310Permian Sandstone147.1Inside lease area	
RN 62623 10 Permian Sandstone 147.1 Inside lease area	
RN 626245Dunda Beds36.2Inside lease area	
RN 626255Dunda Beds1.8South of lease area	l
RN 6762710Permian Sandstone45.7South of lease area	l
RN 9025610Permian Sandstone7.0North of lease area	
RN 902585Dunda Beds5.4Inside lease area	
RN 9025910Permian Sandstone35.6North of lease area	
RN 902605Dunda Beds8.9Inside lease area	
RN 903695Dunda Beds12.5Inside lease area	
RN 10322910Permian Sandstone39.1South of lease area	l
RN 1032308Permian Sandstone10.8South of lease area	l
RN 1032318Permian Sandstone12.1South of lease area	l
RN 10324910Permian Sandstone44.5South of lease area	l

Table 5-12	Predicted Groundwater Level	Impacts at Other Registe	red Bores – Post Closure
		impuoto at otnor regioto	

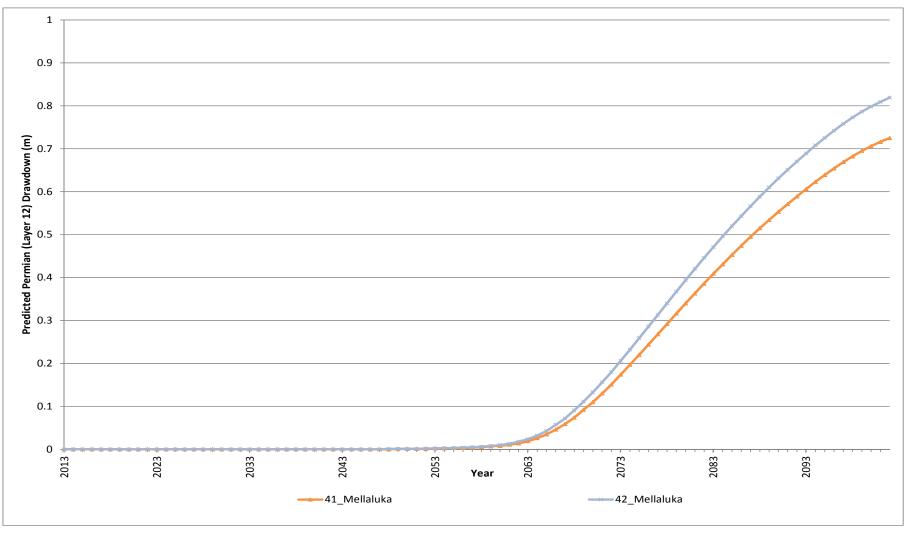


Site	Model Layer	Formation Targeted	Predicted Drawdown (m)	Notes
RN 103559	12	Permian Sandstone	3.2	South of lease area
RN 103565	5	Dunda Beds	2.0	South of lease area

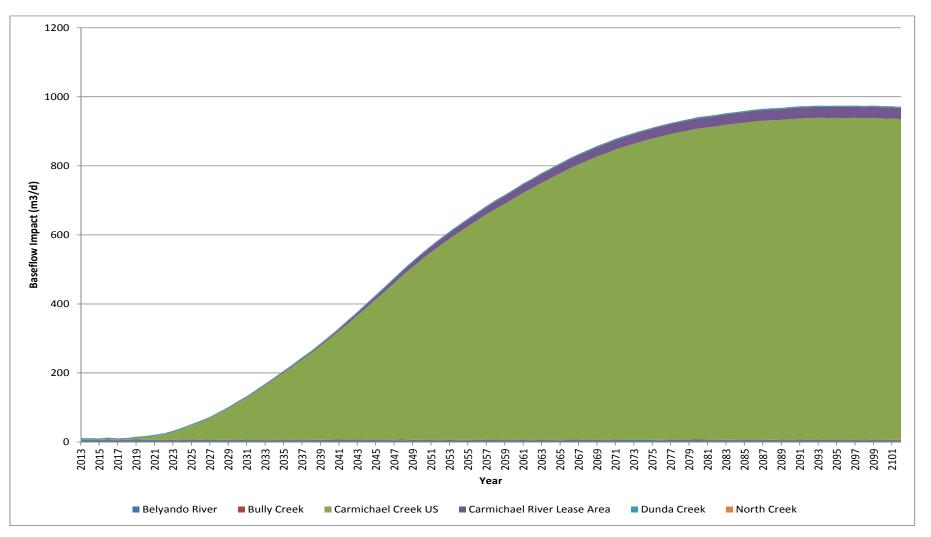

5.7.4 Base Flow Impacts

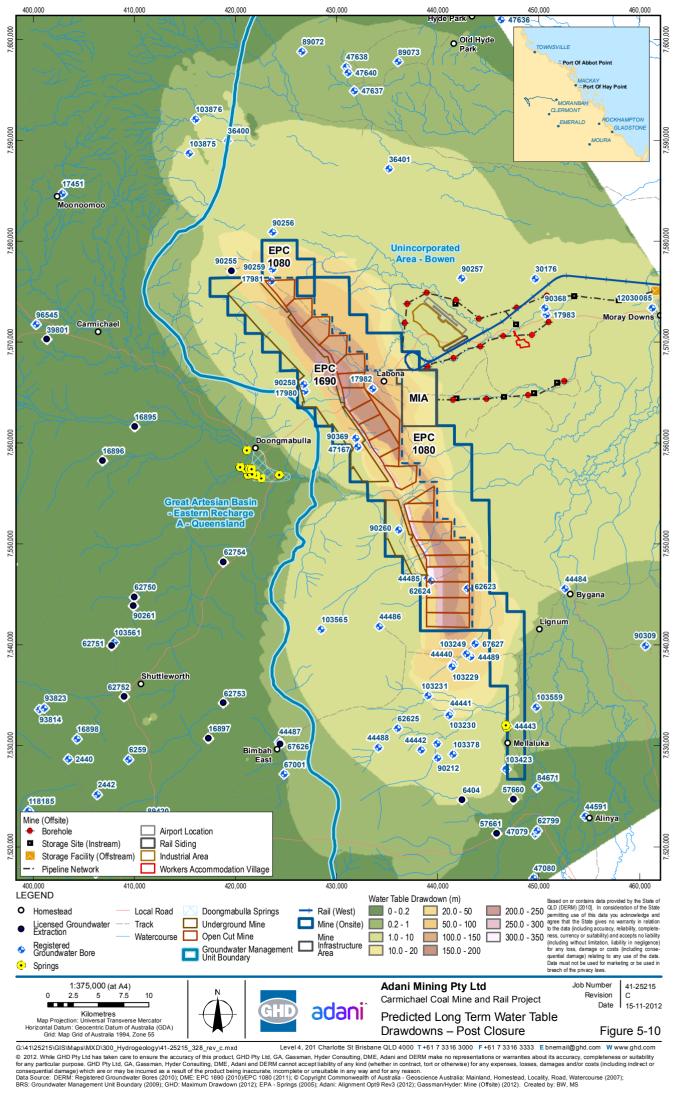
Predicted post closure base flow impacts on each of the affected local watercourses are shown in Figure 5-11. In this case the predicted post closure impacts are comparable to those predicted during the operational period. This is due to the fact that predicted drawdowns in the area upstream of the mining lease are comparable during the operational and post closure scenarios (Figure 5-6 and Figure 5-10).

Output from the calibrated pre-development steady-state model suggests around 15,300 m³/d of groundwater flow to local watercourses, predominantly the Carmichael River. Output from the post closure steady-state model suggests that this base flow could be reduced to around 14,300 m³/d post closure and hence impacts of up to around 1,000 m³/d on base flows to local watercourses are predicted. This is equivalent to a predicted 7 per cent reduction in modelled groundwater discharges to local watercourses. During wet periods, direct base flow and discharges from the Doongmabulla Springs will represent only a minor component of flow to the Carmichael River. However, groundwater discharges will represent a progressively more important source of water during prolonged dry periods, as evidenced by comparison of the available surface water and groundwater quality data. Given that the predicted reduction of baseflow is only 7 per cent, it is unlikely that the proposed mining development will cause significant changes to the duration of zero flow and/or low flow periods in the Carmichael River. However, further reliable flow data is required to confirm the significance of this impact.



41/25215/438041 Report for Carmichael Coal Mine and Rail Project: Mine Technical Report Hydrogeology Report 25215-D-RP-0026




Report for Carmichael Coal Mine and Rail Project: Mine Technical Report Hydrogeology Report 25215-D-RP-0026

41/25215/438041

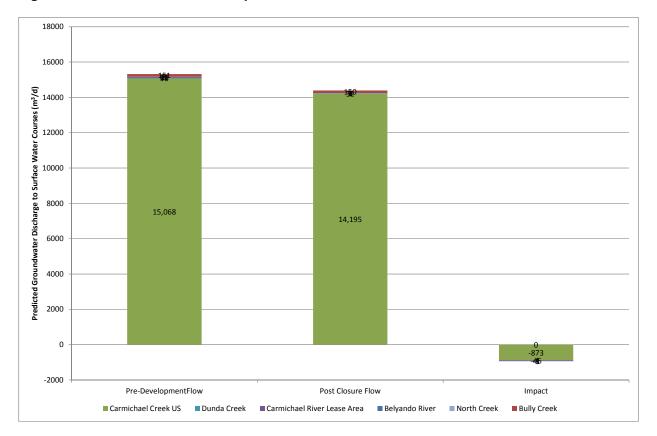


Figure 5-11 Predicted Base Flow Impacts – Post Closure

5.8 Sensitivity Analysis

5.8.1 Approach

A detailed post calibration sensitivity analysis has been carried out in order to assess the sensitivity of model calibration and predictions to variations in selected key parameters. In total a further 176 runs of the calibration and predictive models were undertaken as follows:

- 82 further runs of the steady state calibration model in order to assess the sensitivity of the model calibration to modelled hydraulic conductivity, recharge and river conductance;
- 92 further runs of the post closure steady state model in order to assess the sensitivity of key model predictions to modelled hydraulic conductivity, recharge and river and drain conductance; and
- 2 further runs of the transient predictive model in order to assess the sensitivity of key model predictions to modelled storage parameters (i.e. specific yield and storativity).

Further information on the modelled parameters varied during the sensitivity analysis and the range of parameter multipliers considered are shown in Table 5-13.

Table 5-13 Sensitivity Analysis– Parameters and Multipliers

Parameter	Calibration Model Layer	Predictive Model Layer	Parameter Multipliers
K – Quaternary	1	1	0.1,0.2,0.5,2,5,10
K – Tertiary	2	2	0.1,0.2,0.5,2,5,10
K – Moolayember Formation	3	3	0.1,0.2,0.5,2,5,10
K – Clematis Sandstone	4	4	0.1,0.2,0.5,2,5,10
K – Dunda Beds	5	5	0.1,0.2,0.5,2,5,10
K – Rewan Formation	6	6/7	0.1,0.2,0.5,2,5,10
K – Permian OB	7	8	0.1,0.2,0.5,2,5,10
K – AB Coal Seam	8	9	0.1,0.2,0.5,2,5,10
K – Permian IB	9	10	0.1,0.2,0.5,2,5,10
K – D Coal Seams	10	11	0.1,0.2,0.5,2,5,10
K – Older Permian Units	11	12	0.1,0.2,0.5,2,5,10
Recharge	Layers 1 - 5	Layers 1 – 5	0.1,0.2,0.5,2,5,10
River Conductance	Layers 1 – 5	Layers 1 – 5	0.1,0.2,0.5,2,5,10
Drain Conductance	Layers 1 – 10	Layers 1 – 10	0.1,0.2,0.5,2,5,10
Storage	Layers 1 – 11	Layers 1 – 12	0.5,2

The sensitivity analysis approach adopted is consistent with the approach outlined in Section 5.2 of the Murray Darling Basin Groundwater Flow Modelling Guidelines (Middlemis, Merrick and Ross, 2001) and enables identification of four different sensitivity types as follows:

- Type I Parameters. Parameters with an insignificant impact on either the calibration or model predictions;
- Type II Parameters. Parameters which have a significant impact on the model calibration but an insignificant impact on model predictions;
- Type III Parameters. Parameters which have a significant impact on the model calibration but an insignificant impact on model predictions; and
- Type IV Parameters. Parameters which have an insignificant impact on the model calibration but an insignificant impact on model predictions

For a calibrated model then Type IV parameters only are cause for concern since variations in these parameters can significantly affect predictions without affecting the calibration. Parameters are often classified as Type IV where there is limited calibration data. For instance where there are few calibration targets in a layer which proves critical to quantifying the impact.

It should be noted that this classification process requires a definition of 'significance' i.e. what magnitude of change in the model calibration and prediction is significant. Whilst this definition is subjective to some degree this does not typically affect the value of the analysis. Adopted definitions of significance for the calibration and various predictions are shown in Table 5-13.

Model Output	Significant Impact	Justification
Calibration Quality (Scaled RMS)	> 0.1 % change in Scaled RMS	Changes of less than 0.1 in the Scaled RMS considered to be insignificant.
Predicted Drawdown at Doongmabulla Springs	> 0.15 m change in predicted drawdown	Predictions based on the calibrated parameter set suggest <0.05 m of impact post closure, an additional 0.15 m would therefore be sufficient for the impact to exceed the 0.2 m significant level adopted for other studies (e.g. QWC, 2012).
Predicted Drawdown at Mellaluka Springs	> 1 m change in predicted drawdown	Predictions based on the calibrated parameter set suggest around 5 m of impact post closure, a variation of 1 m or 20% is therefore considered to represent a significant change in prediction.
Predicted Baseflow Impact	> 20% change in predicted baseflow impact	Expected error in modelled flow predictions = + or - 20%.

Table 5-14 Sensitivity Analysis– Significance Definition

5.8.2 Discussion of Results

Doongmabulla Springs

Sensitivity analysis results relating to predicted post closure impacts at the Doongmabulla Springs are presented in Figure 5-12. This plot suggests that the predicted impacts on the springs are relatively insensitive to all of the parameters tested.

Results suggest that slightly higher post closure impacts of around excess of 0.1 m (i.e. around 0.05 m higher than the predictions made using the calibrated parameter set) could occur at the springs if the actual hydraulic conductivity of the Clematis Sandstone was 10 times higher than the calibrated value for this layer. As would be expected sensitivity analysis results also that the timing of impacts may be affected where the actual storage values are different from those assumed for modelling purposes. However, in this case since maximum impacts on the Doongmabulla Springs occur during the steady state post closure run then maximum predicted drawdowns are not sensitive to storage variations. Storage sensitivity analysis results for the Littmose spring therefore indicate that the timing of peak impact at the spring may vary by around + or - 15 years depending on the actual aquifer storage but that the maximum impact of 0.1 m at this location will be unaffected.

Mellaluka Springs

Sensitivity analysis results relating to predicted post closure impacts on groundwater levels in Permian strata at the Mellaluka Springs are presented in Figure 5-13. This plot suggests that the predicted impacts on the springs are relatively sensitive to the hydraulic conductivity (K) of the Permian overburden, the Permian coal seams and the older Permian units but that the overall calibration quality is relatively insensitive to these same parameters i.e. the following parameters are classified as Type IV:

- K Permian Overburden;
- K AB Coal Seams;
- K D Seams; and
- K Older Permian Units.

The results also suggest that higher post closure impacts of up to around excess of 10 m (i.e. around 5 m higher than the predictions made using the calibrated parameter set) could occur at the springs if the actual hydraulic conductivity of the older Permian units was 10 times higher than the calibrated value for this layer.

As for the Doongmabulla Springs sensitivity analysis results for storage suggest that the timing of significant impacts (i.e. greater than 0.2 m) at the Mellaluka Springs may vary by around + or - 15 years depending on the actual aquifer storage values but that the maximum long term impact will be unaffected.

Post Closure Baseflow Impacts

Sensitivity analysis results relating to predicted post closure impacts on baseflow in local water courses are presented in Figure 5-14. This plot suggests that the predicted impacts on the springs are relatively sensitive to the hydraulic conductivity (K) of the older Permian units and River Conductance but that the overall calibration quality is relatively insensitive to these same parameters i.e. the following parameters are classified as Type IV:

- K Older Permian Units; and
- River Conductance.

The predicted baseflow are also relatively sensitive to the hydraulic conductivity of the Dunda Beds, the Rewan Formation and the coal seams to some extent although these parameters have been classified as Type III since the calibration is also relatively sensitive to these parameters.

Results suggest that predicted post closure baseflow impacts could be as high as 1440 m3/d if the actual hydraulic conductivity of the older Permian units was 10 times higher than the calibrated value for this layer. Based on the calibrated parameters post closure baseflow impacts are predicted to be around 920 m3/d. Sensitivity analysis results therefore suggest an upper bound impact of around 1440 m3/d or 520 m3/d higher than the 'best estimate' inflow based on the calibration.

The predicted baseflow impacts are therefore relatively insensitive to the hydraulic conductivity of the remaining layers and/or recharge.

Sensitivity analysis results for storage suggest that the timing of peak baseflow impact on the Carmichael River may vary by around + or -20 years depending on the actual aquifer storage values but that the maximum long term impact will be unaffected.

Predicted Post Closure Mine Inflows

Since the proposed mine is not included in the historic calibration model then it is only possible to assess the sensitivity of predicted inflows to un-remediated voids to the parameters shown in Table 5-13. The results are summarised in Figure 5-15 and suggest that predicted inflows are relatively sensitive to:

- K Dunda Beds;
- K Rewan Formation;
- K Permian Overburden;
- K AB Coal Seams;
- K Permian Interburden;
- K Older Permian Units; and
- Recharge.

Predicted groundwater inflows appear to be particularly sensitive to the modelled hydraulic conductivity of the older Permian units. Results suggest that inflows could be as high as 4700 m3/d if the actual hydraulic conductivity of the older Permian units was 10 times higher than the calibrated value for this layer. Based on the calibrated parameters post closure groundwater inflows to unremediated voids are predicted to be around 1900 m3/d. Sensitivity analysis results therefore suggest an upper bound inflow of around 4700 m3/d or 1800 m3/d higher than the 'best estimate' inflow calculated using the calibrated parameter set.

Sensitivity analysis results for storage suggest that the predicted inflows to the proposed mineworkings may vary by up to around + or -25% on average for the first 80 years of the 90 year mine life. However, during the final 10 years of the mine life flows appear to approach steady state and hence predicted inflows during the last 10 years of mining onwards do not appear to be sensitive to the assumed modelled storage values.

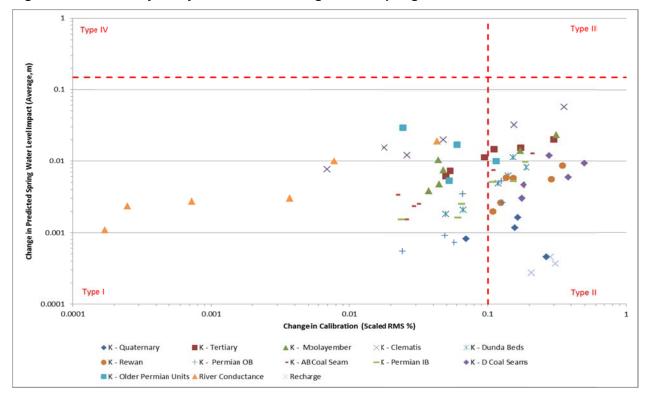
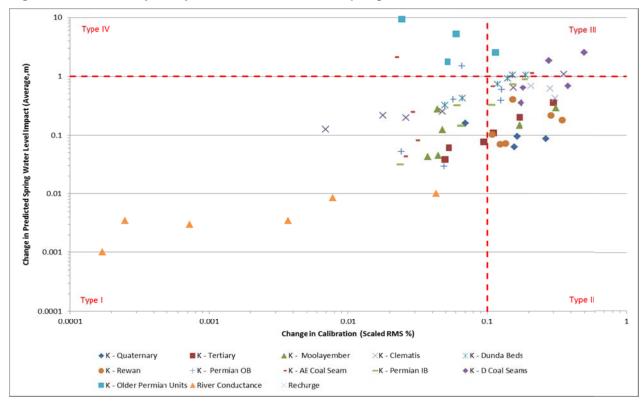



Figure 5-12 Sensitivity Analysis Results – Doongmabulla Springs

Figure 5-13 Sensitivity Analysis Results – Mellaluka Springs

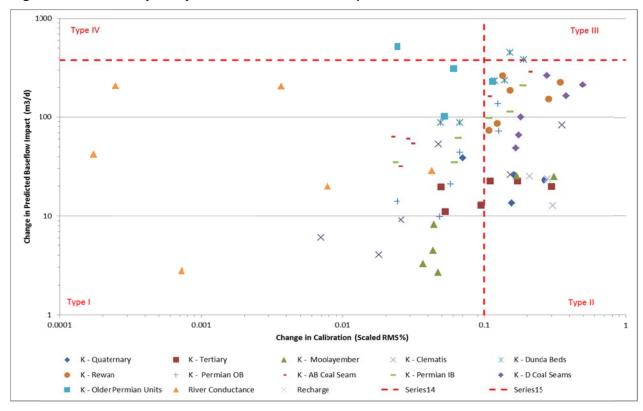
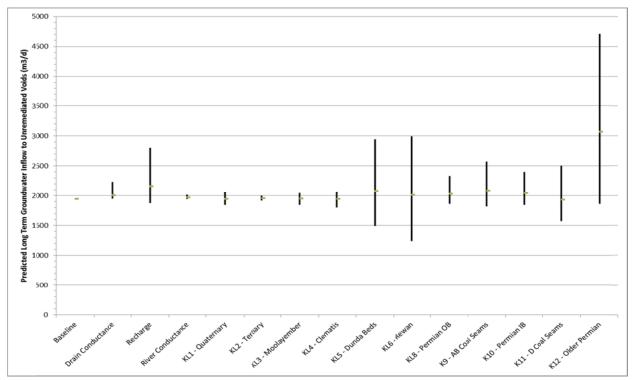



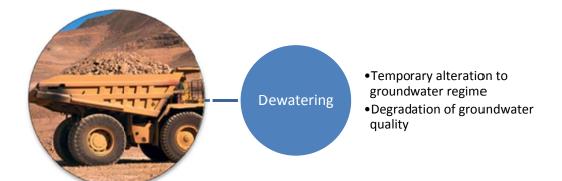
Figure 5-14 Sensitivity Analysis Results – Baseflow Impact

Figure 5-15 Sensitivity Analysis Results – Mine Inflows

5.7.1 Sensitivity Analysis Conclusion

Sensitivity analysis results suggest that the predicted impacts on the Doongmabulla and Mellaluka Springs, baseflow in the Carmichael River and predicted inflows to the proposed mine workings are all relatively sensitive to the modelled hydraulic conductivity of the basal model layer which represents older Permian units underlying the D Seams. Conversely, however, the model calibration is relatively insensitive to this parameter since there are few observations in this unit. Re-calibration of the model using additional groundwater level observation data for the older Permian units would therefore tend to reduce the current level uncertainty in a number of model predictions.

6. Potential Impacts and Mitigation Measures – Construction Phase


6.1 Overview

The principal activities during the construction phase of the Project (Mine) which may impact groundwater resources are considered to be:

- Temporary dewatering for construction of foundations for proposed infrastructure, including for:
 - Mine infrastructure including water and waste management facilities
 - Mine airport
 - Workers accommodation village
 - Creek crossings (if constructed during the wet season)
- Degradation of groundwater quality due to spills and leaks of hazardous materials such as oil and diesel or poor management of wastewater.

It is understood that all water required for construction will be sourced from offsite surface water resources; hence, groundwater extraction for use in construction use has not been considered in the impact assessment. Figure 6-1 provides an overview of potential impacts of the construction phase of the Project (Mine).

Figure 6-1 Summary of Potential Impacts, Construction Phase

6.2 Potential Impacts of Construction Activities

6.2.1 Overview

The potential impacts to groundwater resources from the principal construction activities are considered to be:

- Potential for localised and temporary changes to groundwater levels and flows as a result of temporary dewatering during construction of foundations and/or the general waste landfill.
- Potential to degrade the groundwater quality as a result of leaks and spills and/or uncontrolled discharges of site runoff occurring during construction works.

6.2.2 Potential Impacts to the Groundwater Flow Regime

Temporary dewatering is unlikely to be required for construction of foundations for infrastructure (including the village and airport) or for the construction of a general waste landfill, given that depth to groundwater is anticipated to be at least 20 m below ground surface away from the Carmichael River (i.e. within and in the vicinity of the Mine Infrastructure Area (MIA) where the majority of construction is proposed). The location of the proposed landfill has not been confirmed however, it has been assumed that it will also be close to the MIA for the purposes of this assessment.

Temporary dewatering is also considered unlikely to be required for construction of minor creek crossings, given that the minor surface watercourses in the Project area are understood to be ephemeral and located in areas where groundwater is anticipated to be at least 20 m below ground surface. A causeway construction, with culverts, is proposed for the short term low-level crossing of the Carmichael River; hence significant temporary dewatering is also unlikely to be required for this construction activity. The proposed bridge across the Carmichael River will also require minimal excavation.

6.2.3 Potential Impacts to Groundwater Quality

Construction vehicles and equipment will use diesel and oil, and diesel will be stored at the MIA and offsite infrastructure area for refuelling. Other potentially environmentally hazardous materials include waste oils and sewage.

The relatively high anticipated depths to groundwater (generally greater than 20 m below ground surface) and the clayey nature of much of the Tertiary-age strata encountered across the site is considered to provide significant potential for the attenuation of any contaminants from leaks and spills before they reach the groundwater table.

In addition, leaching of contaminants to groundwater is unlikely to occur unless moderate to large quantities are released over a long period of time. Provided that storage facilities are designed in accordance with Australian standards and standard practices for management of storage and handling activities are followed, large quantity, long term releases are not expected.

If treated sewage is to be disposed of by irrigation, this will be in accordance with an effluent disposal management plan that is informed by modelling to determine the application rates required to avoid leaching to groundwater.

Hence, the risk of degradation of the groundwater quality from construction activities is considered to be low.

The highest risks to groundwater quality therefore relate to any construction activities in the vicinity of the Carmichael River (such as construction of the crossing) since groundwater levels in this area are relatively close to ground surface (within five metres in places) and the shallow sub-surface materials are likely to be relatively sandy, i.e. permeable. Hence, any contaminants introduced at the ground surface in this area are likely to reach the water table relatively quickly and with little or no attenuation. Any impacts on groundwater quality in this area could also affect surface water quality as a component of flow in Carmichael River during dry periods is thought to be derived from local groundwater sources.

However, assuming that construction activities are managed and operated according to management and mitigation measures outlined in Section 6.3 then no significant impacts on groundwater quality are anticipated during the construction phase.

6.3 Management, Mitigation and Monitoring Activities – Construction Phase

Laydown areas for vehicles and machinery and storage areas for chemicals, oils and fuels must be appropriately designed and allow for full containment of any leaks and spills. Containment may include: sealed/lined surfaces and hard stand areas; bunded areas; containerised storage. In addition, chemicals, oils, fluids and other hazardous substances must be stored in accordance with the specifications of the material substance data sheet, as appropriate. Containment and correct storage will prevent spills, leaks, infiltration and surface runoff and hence prevent contaminants from entering aquifers, waterways and the general environment.

Laydown and storage areas must not be placed in the vicinity of creeks or rivers or near to sensitive receptors (i.e. groundwater bores or GDEs).

Spill kits must be available to all personnel in the event of a spill or leak. Booms and spill kits must be onsite at refuelling facilities. Refuelling must only occur at designated sites away from watercourses and other sensitive receptors. A spill kit must be present for any mobile refuelling and mobile refuelling must be supervised.

Where sources of sand are required, this must, as far as is practicably possible, be obtained from borrow pits in areas where shallow aquifers are not present (e.g. older alluvial palaeochannels) and should not be obtained from present-day creek beds. Importation of construction materials should also be investigated where necessary.

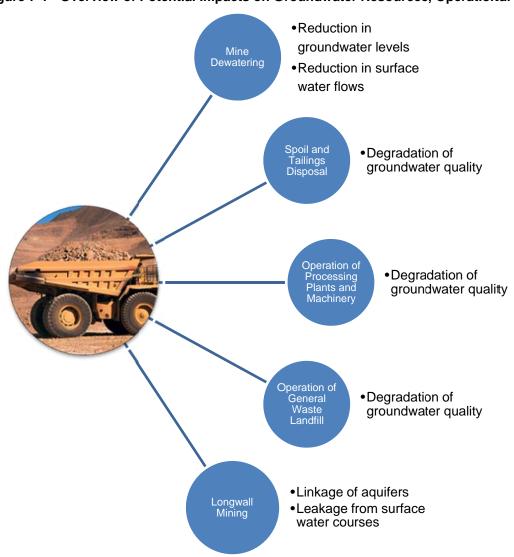
If temporary dewatering of excavations for construction of surface infrastructure is required, the quality of groundwater should first be ascertained and an appropriate means for managing and disposing of the groundwater determined in accordance with procedures in the Construction Environmental Management Plan (CEMP). Dewatering should be kept to a minimum by forward planning of construction activities requiring dewatering.

Potential impacts on groundwater quality due to the discharge of potentially contaminated runoff will be prevented through the development and operation of a suitable surface water management system and associated management plan (SWMP). The overall aim of the system and plan would be to ensure that all water leaving the construction site is captured, treated and recycled (where possible). Where discharge from the site is necessary then the effluent will be of a suitable quality and quantity to prevent any significant impacts on receiving water course.

7. Potential Impacts and Mitigation Measures – Operational Phase

7.1 Overview

The principal activities during the operational phase of the Project (Mine) which may impact groundwater resources are considered to be:


- Dewatering of open cut pits;
- Dewatering of underground mine workings;
- Spoil and tailings disposal to pits and/or tailings dams;
- Operation and processing and storage facilities and plant;
- The diversion of minor ephemeral creeks along the western boundary of the Study Area;
- Operation of the general waste landfill;
- Longwall mining of the underground workings.

It is understood that the water demand for the operational phase of the Project (Mine) will be met from a combination of water from dewatering, stored surface water and water imported from offsite. The impact of additional groundwater extraction from boreholes, specifically for the purposes of meeting the operational water demand, has not been considered in the impact assessment.

Figure 7-1 provides an overview of the potential impacts during the operational phase.

Figure 7-1 Overview of Potential Impacts on Groundwater Resources, Operational Phase

7.2 Potential Impacts related to Mine Dewatering

7.2.1 Cone of Influence of Dewatering Operations

Dewatering will be required to lower groundwater levels to the base of the proposed workings for safe and efficient operation of the open cut and the underground mines. As a result, groundwater levels will decline within Study Area and are predicted to be drawn down by more than one metre up to around 10 km from the Project (Mine) site during the operational phase (refer to Figure 5-6 for a map of predicted water table decline).

7.2.2 Discharge of Excess Groundwater Inflow

Groundwater discharge to the proposed mine workings is expected to form one of the major inputs to the mine water management system, particularly during dry season, and will typically be re-cycled for use elsewhere within the mine, to meet processing and other water demands. The reuse of groundwater and

the need for a discharge must be assessed through the development and application of a water balance model (see Volume 4 Appendix P2 Preliminary Water Balance).

7.2.3 Drawdown at Existing Groundwater Extraction Locations

Dewatering has the potential to reduce groundwater levels in existing groundwater bores that fall within the cone of influence of the proposed mine and hence has the potential to impact on existing groundwater users. It has been assumed that the ten registered bores located within the lease boundary will be decommissioned prior to commencement of mining and hence have been excluded from the impact assessment.

Potential impacts on 31 of the 36 licensed and other registered bores, outside of the lease area assessed by the model, are not anticipated to be significant, on the basis that the predicted drawdowns at these locations are less than one metre. In most cases it is likely that a 1 m drawdown will have little or no impact on the yield of an individual bore.

Potentially significant impacts on groundwater levels (i.e. a predicted drop in water levels of greater than one metre) are anticipated at five registered bores (see Table 7-1). It should be noted that the actual significance of these predicted drawdowns will depend on a range of factors including bore status, bore depth, rest water level and pump and screen elevations. It may be possible to maintain water production rates and quality with augmentation of bores and a detailed assessment of individual bores will be carried out prior to development and in consultation with landholders.

Site	Model Layer	Formation Targeted	Maximum Drawdown (m)	Notes
RN 90255	4	Clematis Sandstone / Dunda Beds	3.6	North of lease area
RN 44486	5	Dunda Beds	6.4	South-east of lease area
RN 90256	10	Permian Sandstone	2.2	North of lease area
RN 90259	10	Permian Sandstone	19.8	North of lease area
RN 103229	10	Permian Sandstone	1.6	South of lease area

Table 7-1 Summary of Significant Impacts at Registered Groundwater Bores

7.2.4 Potential for Indirect Impacts on the Great Artesian Basin

The proposed open cut mining areas are located towards the east of the EPC 1690 lease area. None of the Triassic-age strata which form part of the GAB (i.e. the strata overlying the Rewan Group) are present within the proposed open cut mining areas. Triassic-age strata including the Dunda Beds are present in the underground mining area towards the west of the lease but only the older underlying Permian units will be actively dewatered in this area. No direct impacts on groundwater resources in the GAB are anticipated. However, groundwater modelling results suggest that some indirect impact on the GAB is possible primarily via inducing drawdown in the near-surface Tertiary and Quaternary-age units which are present throughout the Project area and hence also extend into the GAB area to the west.

Groundwater model predictions suggest maximum groundwater table drawdowns of up to 10 m during the operation phase along the western boundary of the Study Area where Triassic-age Dunda Beds, Clematis Sandstone and/or the Moolayember Formation are mapped at outcrop. Predicted impacts decline relatively rapidly towards the west, away from Study Area, and hence maximum water table impacts of less than one metre at 10 km from the lease boundary are typically predicted.

As shown in Figure 5-6 the area to the west of Study Area is mapped as representing part of the Eastern Recharge area of the GAB. Hence, any impacts on groundwater levels in outcropping relatively permeable sandstone units such as the Dunda Beds and Clematis Sandstone has the potential to reduce the volume of recharge to the GAB. However, it should be noted that the topography, groundwater modelling results and the limited available groundwater level data all suggest that current groundwater flow in Triassic-age units to the west of the site may be towards the east i.e. away from the GAB rather than towards it. Where this eastward groundwater flow direction is confirmed by further monitoring then no impacts on the GAB groundwater resources would occur as a result of dewatering.

7.2.5 Potential Impact on Local Spring Systems

For the most part the predicted cone of influence of mine dewatering does not extend beneath the GAB Doongmabulla Spring complex to the west of the Project (Mine) site and hence less than 0.05 m of drawdown is predicted at 9 of the 11 mapped spring sites. However, minor impacts of up to around 0.1 m drawdown are predicted at the two springs closest to the lease, Little Moses (1034) and Doongmabulla or Joshua Spring (1041). There is the potential, therefore, for some minor impact on groundwater levels at two springs which in turn has the potential to reduce the rate of flow from the springs and to reduce the amount of water available for the ecological communities dependent on and associated with the springs. Any reduction in the flow from the springs will also impact flows in the Carmichael River downstream.

Based on recent assessments of the potential for impacts on GAB springs in response to Coal Seam Gas (CSG) extractions carried out by DNRM and the Queensland Water Commission, drawdowns of over 0.2 m at GAB spring locations are considered to be potentially significant. Predicted drawdowns at all of the mapped Doongmabulla Springs are below this threshold and are therefore considered to be insignificant.

Drawdowns of up to 0.7 to 0.8 m are predicted at the location of the two non-GAB springs mapped just north of Mellaluka (approximately 10 km south of the Project (Mine) site) during the operational phase and hence it is possible that these springs could be impacted. It should be noted, however, that limited data are currently available on the geology and hydrogeology of the area to the south of the Carmichael River and that little is known about the status or source of these springs. The Mellaluka springs are identified as non-GAB Eastern Desert Upland springs typically associated with outcropping Dunda Beds. In this case, however, it is considered unlikely that the Dunda Beds are present in the vicinity of the Mellaluka Springs. The springs are mapped around 10 km east of the nearest area of Dunda Beds outcrop and the geology typically dips from east to west. Further assessment of the ecology and hydrogeology of the springs themselves and of the area between the springs and the proposed mining area is required to better understand the potential for impact in this area. It should also be stressed that significant drawdowns are not expected in the Mellaluka Springs area until around 60 years into the proposed life time of the mine. There will therefore be ample opportunity to collect further data and develop management and mitigation measures before any impacts eventuate.

7.2.6 Potential Impacts on Surface Water Flows

The maximum predicted cone of influence of mine dewatering extends beneath the Carmichael River within, upstream and downstream of the Project (Mine) site. Given that groundwater discharge to the Carmichael River upstream of the site is thought to help maintain flow in the river during dry periods (along with discharge from Doongmabulla Springs), surface water flows in the river are likely to decline as a result of the predicted reduction in groundwater levels along the river. Groundwater modelling results suggest that groundwater discharges to local water courses, predominantly the Carmichael River, will be reduced by up to 1,000 m³/d or 7 per cent of pre-development discharge during the operational phase. Where groundwater discharge is reduced by 7 per cent as predicted then this may have some impact on the duration of zero flow and/or low flow periods in the Carmichael River and also possibly the Belyando River downstream. Ongoing monitoring and measurement of flows in the Carmichael River and of discharges from the Doongmabulla Springs is required to quantify the magnitude of these impacts.

The Carmichael River also receives a proportion of its water from Doongmabulla Springs; hence any reduction in the rate of flow from the springs as a result of the minor predicted impacts on groundwater levels at two of the springs (Section 7.2.5) may also contribute to a reduction of flow in the river.

No significant impacts on flows in the various ephemeral minor creeks which drain the Project area are anticipated since these water courses are not thought to currently receive any substantial discharges from groundwater.

7.2.7 Potential Impacts on Riparian Vegetation

Direct groundwater discharge to the Quaternary alluvium underlying the river and discharge from the Doongmabulla springs is thought to represent a potentially significant water source to the stands of the mature River Red Gum and Paper Bark tree communities along the river, particularly during dry periods. Any significant reduction in groundwater levels and/or surface water flows in the Carmichael River during dry periods has the potential to impact the ecological health of these communities. This is assessed further in Volume 4 Appendix N1 Mine Terrestrial Ecology.

7.3 Potential Impacts of Spoil and Tailings Disposal

Based on information provided in the conceptual mine plan (Runge, 2011), a combination of in pit disposal (overburden, interburden, coarse reject, tailings and slimes) and out of pit disposal (overburden, interburden and coarse reject) will be employed. Tailings will initially be disposed of to a tailings dam adjacent to the MIA until the in pit disposal system becomes operational. Provided these facilities are operated to minimise discharges, either via surface water release and/or groundwater seepage and to manage any potential for materials to produce acid and metalliferous drainage (AMD), no significant impacts on groundwater resources in the area are anticipated (See Volume 2 Section 10.2 Acid Mine Drainage). This assessment is based on an assumption that the management, mitigation and monitoring activities outlined in Section 7.8.7 are adopted and taking into account the following considerations:

Processing of the coal will be limited to a relatively simple washing process and hence the quality of any water leaching from the deposited tailings is expected to be relatively benign based on experience with similar plants. Testing of the tailings and spoil will also be conducted as part of the monitoring activities, which will identify any potential impacts on groundwater and inform the implementation of appropriate mitigation measures.

- An assumption that the material to be deposited in the proposed in pit disposal areas will be relatively dry on deposition (i.e. will not require substantial ponds to store process water that might drain from the spoil/tailings).
- The current quality of groundwater resources within the area is indicated to be relatively poor on the basis that the majority of the groundwater samples taken from the Project (Mine) monitoring network to date would not be suitable for drinking water, irrigation or livestock use.

Whilst significant impacts related to in-pit or above ground storage are not anticipated, it is understood that the proposed coal washing process involves the addition of magnetite. No tailings leachate trials have been undertaken to date and hence the potential impact of this part of the process on the quality of leachate is currently unknown.

Initial desktop (SRK 2012a) and geochemical assessments (SRK 2012b and c) of the potential for excavated material to produce acid and metalliferous drainage have been conducted (refer to the, Volume 4 Appendix V Acid Mine Drainage Report). The initial geochemical assessment has identified the potential for a proportion of the coal, roof, floor, interburden and overburden materials to be potentially acid forming. As detailed in the geochemistry report (SRK, 2012c), testing of tailings from coal washing would be required to assess the AMD risks associated with these materials. Initial testing using raw coal as a surrogate infers a small potential for the coal wastes to generate acid and/or slightly saline drainage. Additional sampling and geochemical testing to assess AMD risks in relation to excavated material are currently underway.

7.4 Potential Impacts Related to Operation of Plant and Storage Facilities

Leakages and spills from plant (such as for coal processing, vehicles and maintenance) during the course of day to day site operations and from any fuel and/or chemical storage facilities have the potential to degrade the quality of local groundwater resources.

The highest risks to groundwater quality relate to any operational activities carried out in the vicinity of the Carmichael River since groundwater levels in this area are relatively close to ground surface (within five metres in places) and shallow sub-surface materials are likely to be relatively sandy. Hence, any contaminants introduced at the ground surface (such as leaks and spills) in this area are likely to reach the water table relatively quickly, with little or no attenuation. However, operational activities in the immediate vicinity of the river are understood to be limited to mine vehicle traffic across the river via a specifically engineered structure. The risk of any significant leaks and spills in this area is therefore considered to be negligible.

Assuming that storage facilities and plant activities are managed and operated according to management and mitigation measures outlined in Section 7.8.8 (see below) then no significant impacts on groundwater quality are anticipated during the construction phase.

7.5 Potential Impacts Related to Stream Diversions

The final mine design will include the diversion of a number of minor ephemeral creeks which currently flow during heavy rainfall events from west to east across the EPC 1690. Preliminary design work for this diversion has identified a number of potential design options including the construction of a diversion channel along the western margin of Study Area to divert flow north and south into the Carmichael River. Further design work is required to confirm the location and elevation of the final diversion system and

hence insufficient information is currently available to quantify the impacts of the diversion. Significant impacts on groundwater are considered unlikely given the elevated depths to groundwater observed across most of the site and the fact that any practical diversion design, which can be economically constructed, is considered unlikely to intersect the water table over the majority of its length. Consideration of depth to groundwater should however be incorporated as a key constraint in the final diversion design process, as outlined in Section 7.8.9.

7.6 Potential Impacts Related to Operation of a General Waste Landfill

It is proposed to locate a landfill at the off-site infrastructure area for putrescible wastes and other wastes that cannot be removed by contractor for recycling or disposal due to the distances involved. It has been assumed that this landfill will not be required to receive 'Regulated waste'(e.g. oils, batteries, tyres, solvents and chemicals and other waste types) which are regulated under Schedule 1 of the Environmental Protection (Waste Management) Regulation 2000.

As detailed in the Mine Waste Management Section (Volume 2 Section 10) the management of waste from the Project (Mine) will be in accordance with relevant legislation and the principles of the waste management hierarchy. The general waste landfill would be designed, constructed and operated in accordance with the appropriate waste management legislation and guidelines and as such would include appropriate measures to minimise any leachate leakage from the landfill to groundwater.

7.7 Potential Impacts Related to Longwall Mining

Longwall mining creates a void, or goaf, into which unsupported material typically collapses and this, can result in fracturing of the overlying material remaining in-situ and cause subsidence of the ground surface. The fracturing not only occurs directly above the goaf but can also radiate out at an angle although the intensity of fracturing typically decreases with increasing distance from the goaf.

The extent of this fracture zone and the potential for surface subsidence has been assessed in separate study undertaken by MSEC (MSEC, 2012). The results of this study suggest that a free draining fracture zone with a maximum height of approximately 150 meters above each of the mined seams is likely to develop above the underground longwall mine workings. This free draining fractured zone is likely to be characterized by intense vertical fracturing thus creating potential for direct groundwater inflows from the overburden to the workings. Conceptual models for the free draining fractured zone (MSEC, 2012; Guo et al., 2007) suggest potentially significant increases in vertical hydraulic conductivity in these areas. Guo et al. (2007) suggest that the vertical hydraulic conductivity in the free draining fracture zone may be increased by a factor of up to 50. Furthermore the relative change in vertical hydraulic conductivity is likely to be higher towards the base of the fracture zone than at the top.

The impact of these changes in the hydraulic conductivity in areas above the mine has been assessed as part of the groundwater modelling work through the introduction of time varying hydraulic conductivity to the predictive model. The hydraulic conductivity of the Permian and Triassic age strata which fall within the predicted free draining fracture zone has been increased for the modelled post-mining period. The predictions of impact on the GAB areas to the west of the mine therefore take account of this potentially important mining-induced change in hydrogeological properties.

As illustrated in the conceptual mine study (Runge, 2011) the longwalls will not be advanced beneath the Carmichael River and hence subsidence beneath the river itself should be avoided providing that the 'stand-off' distance between the river and the nearest panels is sufficient.

Based on subsidence contours included within Appendix C of the MSEC study (MSEC, 2012) less than 50 mm of subsidence is anticipated in the vicinity of the Carmichael River. Furthermore surface cracking it expected to be limited to areas immediately above the proposed longwall panels and hence no significant surface cracking is expected in the vicinity of the Carmichael River. The MSEC report also highlights that whilst surface cracking is often observed in exposed bedrock areas in NSW, similar types of cracking are not anticipated in the Carmichael Coal project area due to the presence of unconsolidated Quaternary and Tertiary sediments at outcrop across the underground mining area.

7.8 Management, Mitigation and Monitoring Activities – Operational Phase

7.8.1 Discharge of Excess Groundwater Inflows

All inflows to the operational mine area, including groundwater inflow to the proposed open cut and underground workings, would be directed into the mine water management system. It is proposed that the mine affected water (MAW), including dewatered water, will be reused for dust suppression and in the coal handling process where possible. Any discharges of MAW will be subject to appropriate levels of control and monitoring such that it can be discharged to receiving water courses without any significant detrimental impacts on water quality and flow. This is discussed further in Volume 4 Appendix Q Mine Water Quality Report and Appendix P2 Preliminary Water Balance.t. Operation of the mine water management system will be documented in the mine water management plan, which will form part of the overall Environmental Management Plan (EMP) developed for the construction and operational phases of the Project.

7.8.2 Drawdown at Existing Groundwater Extraction Locations

Prior to the commencement of construction activities the status of each of the existing registered bores that could be significantly affected by the proposed Project (Mine) should be confirmed and a baseline assessment undertaken at each of the active bores in order to establish their pre-operational condition. This assessment would include:

- Confirmation of the operational status, purpose of use of the bore and bore yield
- Measurement of pumping and rest water levels and pumping rates
- Sampling and laboratory analysis of water samples from each bore

Where operational registered bores are identified, which may be impacted by the development, then consideration would be given to incorporating them into the Project (Mine) monitoring network and/or installing observation bores in the area between the mine and the bores in order to identify the development of the mine cone of depression in the direction of the bores. This will be determined in consultation with landholders.

If an operational registered bore is found to be significantly impacted as a result of the Project (Mine) then losses/changes in the extracted groundwater will be 'made good', for example by supplementing the supply with imported water.

Any monitoring of registered bores will be incorporated into the Environmental Management Plan, (see Appendix 2 Section 15 of the EIS).

Should significant effects on registered bores used for water supply be identified, Adani will make good any loss in water availability in conjunction with the landholder.

7.8.3 Great Artesian Basin Aquifers

Groundwater model predictions suggest the potential for some minor indirect impacts on groundwater levels and recharge to Triassic-age units, which form part of the GAB system. Given the importance of the GAB from a national water resource perspective additional monitoring bores have already been installed in the area to the west of the Study Area including the installation and monitoring of two multi-level facilities at sites HD02 and HD03 close to the Carmichael River, upstream of Study Area but downstream of the Doongmabulla Spring complex. Initial results from these bores have already been incorporated into the EIS and associated modelling as described above.

The primary purpose of these facilities is to:

- Confirm pre-development groundwater flow directions in the Triassic-age units to the west of the site;
- Track the progression of any impacts on GAB units to the west of the site.

7.8.4 Local Spring Systems

Groundwater model predictions also suggest the potential for some minor impacts at two of the 11 mapped GAB springs at Doongmabulla. Impacts of up to 0.1 m are predicted after 40-70 years at the two closest springs to the proposed mining area, i.e. the Little Moses spring to the north and the Doongmabulla Spring to the east. Little or no data is currently available on the flow rate or chemistry of these springs and access was not possible during the majority of the current EIS monitoring period.

Given the importance of these springs from an ecological and cultural perspective, further investigations and monitoring will be undertaken prior to commencement of mining operations, to establish a reliable baseline data set of conditions at the springs and also of groundwater levels between the springs and the Project (Mine) site. The following investigations and monitoring are proposed at least 12 months prior to commencement of any dewatering operations:

- An ecological survey of the spring complex to establish its 'health' and to establish any seasonal variations. The survey would include measurement or estimation of discharge flows, assessment of the water quality and assessment of the ecology (for example extent, health and species present).
- The installation of two multi-level monitoring bores close to the Little Moses and Doongmabulla Springs. Data from these bores would be used to confirm the relative levels and quality of groundwater in the near surface and underlying Triassic-age strata. These facilities would complement similar monitoring bores/stationsalready installed along the Carmichael River downstream (refer to Section 7.8.3).

Access to the Doongmabulla Springs area was recently negotiated allowing this work to be commenced. The results of an initial ecological survey and sampling of the springs is described in Volume 4 Appendix Q of the EIS.

Drawdowns of up to 0.7 to 0.8 m are also predicted after around 60 years at the location of the two non-GAB springs mapped just north of Mellaluka during the operational phase and hence it is possible that these springs could also be affected. However, relatively little is currently known about these springs and is understood that they may be currently used for water supply purposes. Further assessment of the ecology and hydrogeology of the springs themselves is therefore proposed initially, in order to confirm their environmental values, current status and confirm likely source aquifers for the springs. Depending on the findings of these assessments Adani Mining Pty Ltd is committed to taking any further steps as

necessary to reduce the predicted impacts at these springs to acceptable levels. Potential mitigation measures which may reduce and/or mitigate predicted impacts during the operational phase include:

- Reviewing and revising the extent, location and/or timing of the proposed mine workings; and/or
- Offsetting or 'making good' any residual impacts.

It should also be stressed that significant drawdowns are not expected in the Mellaluka Springs area until around 60 years into the proposed life time of the mine. There will therefore be ample opportunity to collect further data and develop management and mitigation measures before any actual impacts eventuate.

7.8.5 Surface Water Flows

Given the potential for a reduction in surface water flows in the Carmichael River, supported by numerical modelling, continued detailed monitoring of groundwater levels and flows in the Carmichael River corridor will be undertaken. In particular, further manual gauging will be undertaken at the existing upstream and downstream level monitoring sites so that a reliable pre-development flow record can be developed for these gauges. An assessment of ecological impacts associated with changes in flows is provided in Volume 4 Appendix O1 Mine Aquatic Ecology.

In the event that groundwater level and/or surface water flow impacts are identified post development then Adani would work with the relevant environmental authorities to manage the water balance for identified losses. Potential alternative sources of water which could be used to mitigate observed flow impacts on the Carmichael include the diversion of minor creeks that currently flow across the mine footprint and the discharge of suitably treated inflows to the proposed mine workings.

7.8.6 Riparian Vegetation

Given the potential for a reduction in groundwater levels in the vicinity of the Carmichael River and hence the potential to impact on the health of the mature River Red Gum and Paper Bark communities, ecological monitoring before, during and after mine dewatering operations would be undertaken in addition to the hydrological monitoring outlined above (Section 7.8.5). An assessment of ecological impacts associated with changes in groundwater levels is provided in Volume 4 Appendix N1 Mine Terrestrial Ecology Report.

7.8.7 Spoil and Tailings Disposal Siting and Operation

Mitigation and monitoring measures are proposed as follows:

- Design and operation of the above ground tailings dam in accordance with appropriate legislation to minimise impacts on groundwater resources (see Volume 2 Section 10.2).
- Establishment and operation of a dedicated groundwater monitoring network around the perimeter of the proposed above ground tailings dam, comprising a minimum of four locations, prior to commencement of the operation of the dam.
- Leach testing of tailings generated from coal washing (or other processing activities) and materials proposed for disposal in the in pit and above ground tailings facilities prior to the start of mining, in order to identify any contaminants that might leach to groundwater. This will assist with the development and implementation of suitable treatment and, or, management measures in order to minimise impacts on groundwater quality from disposal.

- Treatment of spoil and tailings prior to disposal, if necessary, in order to minimise acid generation from any materials with AMD potential.
- Post closure capping of in-pit and above ground tailings facilities.
- Location of in-pit and above ground facilities in the northern half and towards the eastern edge of the site and more than five kilometres from the Carmichael River (i.e. areas thought to be characterised by a relatively thick unsaturated zone and as far as possible from any Triassic-age GAB units).

7.8.8 Operation of Plant and Storage Facilities

Laydown areas for vehicles and machinery and storage areas for chemicals, oils and fuels must be appropriately designed facilities and allow for full containment of any leaks or spills. Containment may include sealed/lined surfaces and hard stand areas; bunded areas; containerised storage. In addition, chemicals, oils, fluids and other hazardous substances must be stored in accordance with the specifications of the material substance data sheet, as appropriate. Containment and correct storage will prevent spills, leaks, infiltration and surface runoff and hence prevent contaminants from entering aquifers, waterways and the general environment.

Spill kits must be available to all personnel in the event of a spill or leak. Spill kits must be onsite at refuelling facilities. Refuelling must only occur within pits or at the central MIA or underground MIAs.

Potential impacts on groundwater quality due to the discharge of potentially contaminated runoff will be prevented through the development and operation of a suitable surface water management system and associated management plan (SWMP). The overall aim of the system and plan would be to ensure that all water leaving the operational mine site is captured, treated and recycled (where possible). Where discharge from the site is necessary then the effluent will be of a suitable quality and quantity to prevent any significant impacts on receiving watercourse.

7.8.9 Diversion Channel Design

Given the proximity of the western boundary of the site to the eastern limit of the GAB the potential for long term impacts on groundwater levels will form a key constraint on the final diversion channel design. As far as possible, the location and elevation of the diversion system will be designed to minimise areas where the drain invert is below the current water table. Where this cannot be achieved, due to practical or other constraints, then the impacts of the final design will be assessed by completing further numerical modelling work and implementing additional mitigation measures to further reduce potential impacts on groundwater resources.

7.8.10 General Waste Landfill Siting and Operation

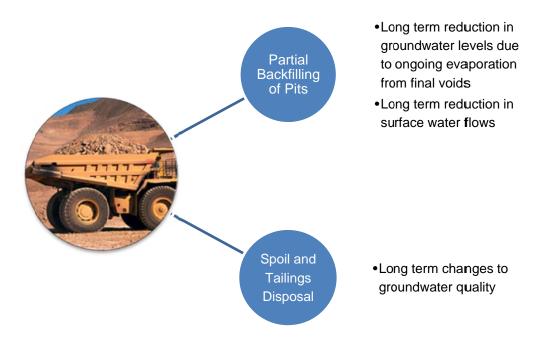
Whilst no significant impacts on groundwater from construction of a general waste landfill are anticipated, monitoring and mitigation measures to minimise the potential for any impacts from operation of the proposed landfill (refer to Section 7.6) are proposed as follows:

- Design, construction, management and operation of the general waste landfill in accordance with relevant legislation and guidelines (see Volume 2 Section 10.2)
- Establishment and operation of a dedicated groundwater monitoring network around the perimeter of the landfill, comprising a minimum of four locations, prior to commencement of the operation of the facility

Post closure capping

7.8.11 Monitoring Network Review and Groundwater Management Plan

Once the final mine design and layout have been developed, a review of the adequacy of the current groundwater monitoring network and the additional monitoring proposals outlined above in Sections 7.8.1 to 7.8.9 will be undertaken. The findings of this review will form a key component of a groundwater management plan, which would be developed prior to commencement of construction of the Project (Mine).


8. Potential Impacts and Mitigation Measures – Post Closure

8.1 Overview

The principal outcome of the post-closure phase of the Project (Mine) considered to have the potential to impact on groundwater resources is the proposed partial backfilling of some of the open cut pits. Long-term impacts on groundwater resources, principally of reduced groundwater levels and alterations to the groundwater regime due to ongoing evaporation from final void areas are anticipated.

Figure 8-1 shows a summary of the post-closure potential impacts.

Figure 8-1 Overview of Potential Impacts on Groundwater, Post-Closure Phase

8.2 Potential Impacts Related to Creation of Voids

The conceptual mining study (Runge, 2011) indicates that nine of the open cut pits will not be significantly backfilled and hence that the final ground surface within these voids will be substantially below pre-development ground surface and groundwater level elevations. Whilst there is the potential for these voids to gradually fill with water once dewatering operations have ceased, potential evaporation losses from the voids significantly exceed the predicted groundwater inflow to these pits and hence the voids are expected to remain dry, except following prolonged heavy rainfall events. In this case, ongoing evaporation from these voids will essentially act as long-term groundwater levels to the base of proposed final voids. As a result, the numerous impacts related to dewatering of the mine during the operational period (Section 7.2) will persist post-closure. Furthermore, in most cases predictions indicate that

potential long-term post closure impacts may exceed those calculated for the operational period since evaporation is likely to continue to control groundwater levels within the final un-remediated voids in perpetuity, whereas dewatering of the proposed mine workings during the operational phase is only required for the life of the mine.

8.2.1 Drawdown at Existing Groundwater Extractions

There is the potential for significant reductions in groundwater levels at selected registered groundwater bores if the voids are only partially backfilled. Potentially significant post closure impacts of between one and 46 m are predicted at one out of 21 licensed registered bores and all of the 15 other registered bores outside of the Study Area.

8.2.2 Potential for Indirect Impacts on the Great Artesian Basin

As during the operational phase, the predicted post closure cone of influence extends to the west and includes areas where the Triassic-age Dunda Beds, Clematis Sandstone and/or the Moolayember Formation are mapped at outcrop. Hence, there is the potential for groundwater levels to remain lower than pre-development levels after cessation of mining activities and for a permanent reduction in the availability of recharge to the GAB in this area. However, it should be noted that the topography, groundwater modelling results and the available groundwater level data all suggest that current groundwater flow in Triassic-age units to the west of the site may be towards the east i.e. away from the GAB rather than towards it. If this eastward groundwater flow direction is confirmed by further monitoring then no impacts on the GAB groundwater resources are expected to occur as a result of dewatering.

8.2.3 Potential for Impacts on Local Springs

Minor impacts on groundwater levels at the two springs closest to the lease, Little Moses (1034) and Doongmabulla or Joshua Spring (1041), are predicted to continue to be impacted post-closure of the mining operations. No impact on the remaining nine springs in the Doongmabulla complex are predicted during the operational or post closure period.

At the Mellaluka Spring site, however, predictions suggest ongoing drawdown post closure result in drawdowns of around 5 m at these springs in the long term although it should be stressed that predictions also suggest that significant impacts will not occur until around 60 years into the proposed life time of the mine. Furthermore as previously discussed in Section 7.2.5 our understanding of the areas to the south of the lease and the springs themselves is currently limited. Further assessment of the ecology and hydrogeology of the springs themselves is therefore proposed initially. Depending on the findings of these assessments Adani Mining Pty Ltd is committed to taking any further steps as necessary to reduce the predicted impacts at these springs to acceptable levels. Potential mitigation measures which may reduce and/or mitigate impacts during the post closure phase include:

- Reviewing and revising the extent, location and/or timing of the proposed mine workings;
- Backfilling of final voids to above pre-development groundwater levels to prevent ongoing losses due to evaporation; and/or
- Offsetting any residual impacts.

It should also be stressed that significant drawdowns are not expected in the Mellaluka Springs area until around 60 years into the proposed life time of the mine. There will therefore be ample opportunity to

collect further data and develop management and mitigation measures before any actual impacts eventuate.

8.2.4 Potential for Impacts on Surface Water Flows

There is potential for further reductions in base flow to local surface watercourses (including the Carmichael River and the Belyando River) during the post-closure phase, with long term impacts of around 1,00 m³/d or 7 per cent of pre-development base flows predicted. Where groundwater discharge is reduced by 7 per cent as predicted then this may have some impact on the duration of zero flow and/or low flow periods in the Carmichael River and also possibly the Belyando River downstream. Further information on flows in the Carmichael River and on discharges from the Doongmabulla Springs is required to quantify the significance of these impacts.

Unlike during the operational period there is little opportunity for 'making good' any impacts since the mining operations will have been de-commissioned. In the event that significant post closure impacts are predicted then Adani Mining Pty Ltd is committed to taking any further steps necessary to reduce the impacts on levels and/or flow in the Carmichael River to acceptable levels. Potential mitigation measures which may reduce and/or mitigate impacts during the post closure phase include:

- Reviewing and revising the extent, location and/or timing of the proposed mine workings;
- Backfilling of final voids to above pre-development groundwater levels to prevent ongoing losses due to evaporation; and/or
- Offsetting any residual impacts.

8.3 Potential Impacts Related to Tailings and Spoil Disposal and General Waste Landfill

If disposal of tailings and spoil and the general waste landfill are not managed effectively at the operational stage there is potential for these wastes to be sources of long term contamination of groundwater post-closure of the mine, both within and down gradient of the Project (Mine) lease.

8.4 Management, Monitoring and Mitigation Measures – Post Closure

8.4.1 Open Pits

Significant potential impacts on groundwater levels, groundwater extractions and on the groundwater regime within and in the vicinity of Study Area are predicted as a result of partial backfilling of pits and in most cases are predicted to be greater than the operational phase of the Project (Mine).

The following mitigation measure is therefore proposed:

Partial backfill all open cut pit voids such that the final ground surface within each of the pit areas is above the pre-development groundwater levels, to allow groundwater levels to rebound to predevelopment elevations.

8.4.2 Tailings and Spoil Disposal, General Waste Landfill, Mine Infrastructure Area

In order to confirm no impact on groundwater quality from waste storage and former operational areas of the site (such as in pit and above ground disposal of tailings and spoil, seepage from the general waste

landfill and coal processing facilities), continuation of monitoring of groundwater quality beyond the end of the operational phase will be undertaken. A staged approach to post-mining monitoring of tailings and spoil disposal areas is proposed in order to tie in with the various stages of mining as they are completed and rehabilitated.

The operational monitoring network for the Project (Mine) site would be reviewed and modified as appropriate in order to develop an appropriate post closure monitoring network. A post closure GWMP would be developed as part of the post closure EMP and include key components such as monitoring duration and frequency, chemical analyses, definition of trigger values and appropriate action plans.

9. References

Australian Drinking Water Guidelines (ADWG) 6, 2011, Volume 1, Commonwealth of Australia.

Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Volume 1, the guidelines (Chapters 1 - 7), 2000, Australian and New Zealand Environment Conservation Council (ANZECC) and Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ).

Australian National Resources Atlas (ANRA) website, Australian Government, available from: http://www.anra.gov.au/topics/water/overview/qld/gmu-great-artesian-basin-eastern-recharge-aqueensland.html.

Bureau of Mineral Resources, Geology and Geophysics, 1972, Australia 1:250 000 Geological Series, Galilee, Sheet SF55-10.

Bureau of Mineral Resources, Geology and Geophysics, 1982, Australia 1:250 000 Geological Series, Buchanan, Sheet SF55-6.

Carr, A.F., 1974, Galilee Basin Exploratory Coal Drilling – Moray Downs Area, Geological Survey of Queensland.

Cook, P.G, Healy R.W., 2002, 'Using Groundwater Levels to Estimate Recharge'. Hydrogeology Journal 10: pp. 91-109.Department of Environment and Resource Management (DERM), 2010, Queensland Groundwater Database.

Department of Environment and Resource Management (DERM), 2010, data download from Water Entitlements Registered Database (WERD) on 22 December 2010.

Department of Natural Resources and Water, 2007, Great Artesian Basin Resource Operations Plan, Queensland Government.

Doherty, J., 2010, PEST: Model-Independent Parameter Estimation, Watermark Numerical Computing, Brisbane, Australia.

Environmental Protection (Water) Policy 2009, Queensland Government.

Geoscience Australia, 2000, Australian Groundwater Management Units, Unincorporated Areas and Provinces.

GHD Pty Ltd, 2010, Galilee Project Technical Due Diligence report.

Great Artesian Basin Consultative Council, 1998, Great Artesian Basin Resource Study, Ed. Cox, R., Barron, A.

Guo, H., Adhikary, D. P. and Gabeva, D., 2007. Hydrogeological Response to Longwall Mining, ACARP project C14033. CSIRO Exploration and Mining Report P2007/692.Houlsby, 1976, Routine Interpretation of the Lugeon Water-Test, p303 – 313.

Hydrogeologic, 1996. MODHMS Software (Version 2.0) Documentation. Volume I: Groundwater Flow Modules.

Linc Energy, not dated, exploration borehole logs within EPC 1690.

Littleboy, M., Silburn, D.M., Freebairn, D.M., Woodruff, D.R. and Hammer, G.L., 1989. *PERFECT, 'A* computer simulation model of Productivity, Erosion, Runoff Functions to Evaluate Conservation Techniques'. Queensland Department of Primary Industries, Bulletin QB89005, 119 pp.

Lu, H., Raupach, MR., McVicar, TR., 2001, A robust model to separate remotely sensed vegetation indices into woody and non-woody cover and its large-scale application using AVHRR NDVI time series. CSIRO Technical Report 35/01, in preparation.

Middlemis, H., Merrick, N., Ross, J., 2000, Groundwater Flow Modelling Guideline, Murray Darling Basin Commission, Australia.

MSEC, Mine Subsidence Engineering Consultants, 2012. Carmichael Project – Subsidence Prediction Report. Report Number: MSEC575

Queensland Department of Natural Resources, Mines and Energy, 2004, North Eromanga Basin map sheet, digital version.

Queensland Environmental Protection Act 1994, Reprint 10C, Queensland Government.

Queensland Water Commission (QWC), 2012. Underground Water Impact Report for the Surat Cumulative Management Area. Coal Seam Gas Water – Queensland Water Commission.

Rassam, D. and Littleboy, M., 2003, 'Identifying vertical and lateral components of drainage flux in hillslopes'. MODSIM 2003 Proceedings, Vol1.

Runge Pty Ltd, 2011, Carmichael Macro-Conceptual Mine Study.

SCT Operations Pty Ltd, 30 November 2011, Memorandum 'Preliminary Estimates of Subsidence Associated with Longwall Extraction of AB and D Seams at the Carmichael Project'.

Sloto, R.A., Crouse, M.Y., 1996, 'HYSEP: A Computer Program for Streamflow Hydrograph Separation And Analysis'. U.S. Geological Survey Water-Resources Investigations Report 96-4040.

SRK Consulting, 2012a, Carmichael Project: Mine Waste and Metalliferous Drainage and Dispersive Materials Desktop Assessment.

SRK Consulting, 2012b, Carmichael Project: Mine Waste and Metalliferous Drainage and Dispersive Materials Assessment, Initial Laboratory Results.

SRK Consulting, 2012c, Carmichael Project: Mine Waste Acid and Metalliferous Drainage and Dispersive Materials Assessment.

Sustainable Planning Act 2009, Commonwealth Government.

Water Regulation 2002, Reprint 8F, Queensland Government.

Water Resource (Burdekin Basin) Plan 2007, Queensland Government.

Water Resource (Great Artesian Basin) Plan 2006, Reprint 1A, Queensland Government.

Western, A., McKenzie, N., 2006. 'Soil hydrologic Properties of Australia'. Rev. 1.01, Cooperative Research Centre for Catchment Hydrology, University of Melbourne, Victoria, Australia.

Xenith Consulting Pty Ltd, 2009, Galilee Project – MDLa 372 In situ Coal Resource Estimate.

Xenith Consulting Pty Ltd, exploration borehole logs for 2010 and 2011 within EPC 1690.

Xenith Consulting Pty Ltd, Geological Model, provided 26 October 2011.

Appendix A Terms of Reference Cross Reference

Page intentionally left blank

Terms of Reference Cross Reference

3.4	. Water Resources	
3.4	1 Description of Environmental Values	
in t the Aus	scribe the existing water resources that may be affected by the project he context of environmental values as defined in such documents as EP Act, Environmental Protection (Water) Policy 2009 (EPP (Water)), stralia and New Zealand Guidelines for Fresh and Marine Water ality and the Queensland Water Quality Guidelines.	Volume 4 Appendix P
De: pot ind	scribe present and potential users and uses of water in areas entially affected by the project, including municipal, agricultural, ustrial and recreational uses of water, and reference to any licences d by users.	Section 4.4.6
De: affe gro	scribe the environmental values of the surface waterways of the ected area in terms of existing and other potential surface and undwater users	Section 4.4.6,
gro	vide a detailed description of the quality and quantity of surface and undwater resources in the area potentially affected by the project.	Sections 4.4
dep Pai	scribe the groundwater quality considering seasonal variations in oth and flow and all times of natural flow in ephemeral streams. ameters should include a broad range of water quality indicators uding, but not necessarily limited to:	
•	Electrical conductivity	Appendix E
•	Major cations and anions	Section 4.4.2 Appendix E
• Hg	Dissolved metals (including Al, Ag, As, B, Br, Ca, Co, Cr, Cu, Fe, Mo, Mn, Ni, Pb, Se, U, V, Zn)	Section 4.4.4 Appendix E
•	Minor ions (such as ammonia, nitrite, nitrate, fluoride)	
•	Hydrocarbons	Section 4.4.5 Appendix E
•	Any other potential toxic or harmful substances	Appendix E
•	Turbidity	Appendix E
•	Suspended sediments	Appendix E
•	pH.	Appendix E
Sai wa for	sampling should be performed in accordance with the Monitoring and npling Manual 2009 or the most current edition. The description of er quality should include medians, ranges and percentiles appropriate comparison with appropriate trigger levels and guidelines for the tection of aquatic ecosystems and downstream users.	Section 2
ass imp pro	estigate the relationship between groundwater and surface water to less the nature of any interaction between the two resources and any lications of the proposed mine that would affect the interaction. If the ject is likely to use or affect local sources of groundwater, describe the undwater resources in the area in terms of interaction with surface ter	Section 4.3, 4.7
	scribe the environmental values of the surface waterways and undwater of the affected area in terms of: values identified in the EPP	Section 4
•	Physical integrity, fluvial processes and morphology	Volume 4 Appendix P
•	Any impoundments	Volume 4 Appendix P
•	Hydrology of waterways and groundwater	Section 4.1
•	Sustainability (quality and quantity)	Section 4.3, 4.4
•	Dependent ecosystems	Section 4.8
•	Existing and other potential surface and groundwater users	Section 4.5
	Details of any proposed buffer widths between project activities and	Section 6, 7
•	שבימווש טו מווץ איטאטפט טעוובו אוענווש שבנאבבוו אוטובני מטנואונופט מווע	

3.4	. Water Resources	
wat	erways	
•	Any water resource plans relevant to the affected catchments	Volume 4 Appendix P
	he project is likely to use or affect local sources of groundwater, acribe the groundwater resources in the area in terms of:	
aqu	A comprehensive hydrogeological description covering: the coal ims and surrounding aquifers, both artesian and sub-artesian; inter- ifer connectivity; flow of water; recharge and discharge mechanisms; I hydrogeological processes at work	Section 4.2
	Current extraction regime	Section 4.5
	Geology/stratigraphy	Section 4.1, 4.2
	Aquifer type	Section 4.5
•	Depth to and thickness of aquifers	Section 4.6
,	Depth to water level and seasonal changes in levels	Section 4.3
	Groundwater flow directions	Section 4.3
	Interaction with surface water	Section 4.7
	Possible sources of recharge	Section 4.3
	Potential exposure to pollution	Section 4.4
etc	Current access to groundwater resources (bores, springs, ponds,	Section 4.5, 4.8
For gro neig egi	the taking of groundwater, the EIS should review the significance of undwater in the project area, together with groundwater use in ghbouring areas. Specific reference should be made to relevant slation or water resource plans for the region. The review should also ess the potential take of water from the aquifer and how current users	N/A No groundwater take is proposed.
The aci	I the aquifer itself and any connected aquifers will be affected. e review should include a survey of existing groundwater supply lities (bores, wells, or excavations) to the extent of any environmental m. Information gathered for analysis should include: location, type and status of existing water entitlements and	Section 4.5
ass	ociated infrastructure (bores, wells or excavations)	
	pumping parameters	Section 4.5
	draw down and recharge at normal pumping rates	Section 4.5
	seasonal variations (if records exist) of groundwater levels	Section 4.4
gro	velop a network of observation points that would satisfactorily monitor undwater resources both before and after commencement of erations.	Section 2.3
Fhe ena gro	 data obtained from the groundwater survey should be sufficient to ble specification of the major ionic species present in the undwater, pH, electrical conductivity and total dissolved solids. 2 Potential Impacts and Mitigation Measures 	Section 2.3
Ass pro sec pro hov anc ma	sess potential impacts, including long-term indirect impacts of the ject on water resource environmental values identified in the previous tion. Define and describe the objectives and practical measures for tecting or enhancing water resource environmental values, to describe v nominated quantitative standards and indicators may be achieved, I how the achievement of the objectives will be monitored, audited and maged. Address and describe the following matters, including vision of maps:	

9-4

3.4. Water Resources	
• Potential impacts on the flow and the quality of surface and groundwater from all phases of the project, with reference to their suitability for the current and potential downstream uses and discharge licences	Section 5.6
All likely impacts on groundwater depletion or recharge regimes	Section 5.6
 The likely volume of groundwater to be dewatered during the operations, and its likely quality characteristics, including salinity 	Section 5.6
• The impacts on groundwater resources in each aquifer of any take of groundwater or dewatering as a result of the mine's operation, including any potential migration and risks associated with the inter-basin transfer of water	Section 5.6
 How extracted groundwater will be managed in the surface water management system to minimise the likelihood of discharging highly saline water 	Section 5.6
 Measures to prevent, mitigate and remediate any impacts on existing users or groundwater-dependent ecosystems 	Section 7.7.6
• The potential environmental impact caused by the project (and its associated project components) to local groundwater resources, including the potential for groundwater-induced salinity	Section 7.2
Response of the groundwater resource to the progression and cessation of the proposal	Section 7, 8
 Impact on the local groundwater regime caused by the altered porosity and permeability of any land disturbance 	Section 8.2
Any potential for the project to impact on groundwater-dependent vegetation, including avoidance and mitigation measures	Section 7.2.7
 Potential impacts of surface water flow on existing infrastructure, with reference to the EPP (Water) and the Water Act 2000 	Volume 4 Appendix P
• Chemical and physical properties of any wastewater including stormwater at the point of discharge into natural surface waters, including the toxicity of effluent to flora and fauna	Volume 4 Appendix P
 How contaminants and wastes are avoided, minimised, treated and managed in accordance with section 13 of EPP (Water) 	Volume 2 Section 10
 Environmental monitoring to check the effectiveness of mitigation measures 	Section 7.7.11
• Potential impacts on other downstream receiving environments, considering the available assimilative capacity of the receiving waters, if it is proposed to discharge water to a riverine system	N/A Uncontrolled releases not proposed
 If it is proposed to discharge water to a riverine system, mitigation measures for water treatment The results of a risk assessment for uncontrolled releases to water due to system or catastrophic failure, implications of such emissions for human health and natural ecosystems, and strategies to prevent, minimise and contain impacts 	N/A Volume 4 Appendix P Volume 2 Section 12
• The potential to contaminate surface and groundwater resources and measures to prevent, mitigate and remediate such contamination.	Section 7.3, 7.6
Describe and address the impacts of subsidence.	Volume 2 Section 4
Assess any potential surface water and groundwater interaction as a result of subsidence of a watercourse. Also assess the potential impacts on the groundwater regime in alluvial and deeper aquifers due to altered porosity, permeability and interconnectivity from any land disturbance, including subsidence.	Section 5.7, 7.2.6, 8.2.4
Assess the potential impacts of subsidence on the sediment load within watercourses. Identify any existing Quarry Material Allocation Notice (QMAN) holders in, or downstream of, subsidence areas; and if there are any QMAN holders, assess whether there would be potential impacts on their resource or entitlement. Provide mitigation measures for any	Volume 2 Section 4

3.4. Water Resources	
impacts on any QMAN holders.	
Assess the impacts of subsidence on the ecological condition of the bed and banks, including fish passage	Volume 2 Section 4
Assess the impacts of subsidence effects on terrestrial ecosystems	Volume 2 Section 4
Detail measures that would mitigate the impacts of subsidence	Volume 2 Section 4
Outline impacts on all surface water resources by describing:	
• Local overland flow catchment characteristics and estimated change to mean and median (50th percentile) annual run off from local overland flow catchments	Volume 4 Appendix P
 Change to flows including mean and median (50th percentile) annual flow, in watercourses immediately downstream of the site 	Volume 4 Appendix P
Describe the option for supplying water to the project, and assess the consequential impacts.	Volume 4 Appendix P
Reference the properties of the land disturbed and processing liquid wastes, the technology for settling suspended clays from contaminated water, and the techniques to be employed to ensure contaminated water is contained and successfully treated on site.	
Describe the proposed stormwater drainage system and proposed disposal arrangements. (Illustrate with figures and contours).	Volume 4 Appendix P
The EIS should outline all of the approvals required under the Water Act 2000, Water Regulation 2002 and subordinate legislation to complete the project, including construction and operational stages	Volume 4 Appendix P
Describe management strategies in adequate detail to demonstrate best practice management and environmental values of receiving waters will be maintained to nominated water quality objectives.	Volume 4 Appendix P
Address where there will be a requirement for a Quarry Material Allocation and an associated Development Approval under the Sustainable Planning Act.	N/A

Appendix B Registered Groundwater Bores

Table B1: Registered Bore Summary Table B2: Bore Census Results

Page intentionally left blank

								Base of Screen or Open Bo	re Depth C	Conductivit	Total Dissolved Solids	м	easurement	
RN Original Name	Easting I	Northina	Facility Type Description	Facility Role	Facility Status	Comments	Interpreted Screened Lithology	Section (m)		y (uS/cm)	(TDS)	рH		Yield (L/s)
5	J	J			Abandoned and				()	, (**** ,				
17980 -	426849	756514	12 Sub-artesian Facility	-	Destroyed	-	-	-	-	400	0	7.7	Lab	-
17981 10 Mile Bore	423527	75760	54 Sub-artesian Facility	Water Supply	Existing	Stock	Sandstone (Tertiary / Permian-age)	-	-	1400	0	7.5	Lab	-
17982 Labona Bore	433592	756539	99 Sub-artesian Facility	Water Supply	Existing	-	Sandstone (Permian-age)	-	58	795	0	7	Lab	-
44440 New Bore	441533	75381	08 Sub-artesian Facility	-	Existing	-	Alluvium	-	23	3700	1979.94	8	Lab	1
			Artesian Bore, Controlled											
44441 Trickle Flow Bore	441226	753324	40 Flow	-	Existing	-	Sandstone (Triassic-age, Dunda Beds)	-	-	-	-	-	-	-
					Abandoned and									
44484 House Bore	452599	754556	69 Sub-artesian Facility	-	Destroyed	-	Alluvium	7.6	8	8100	4702.22	9.4	Lab	-
			·		Abandoned and									
44485 Murphys Bore	438998	754658	31 Sub-artesian Facility	-	Destroyed	-	Trassic-age or Permian-age	-	67	155	85.21	7.7	Lab	1.3
44486 Desert Bore	434239	754182	28 Sub-artesian Facility	-	Existing	-	Sandstone (Triassic-age, Dunda Beds)	-	92	200	106.8	7.5	Lab	0.76
44489 New Bore	443276	753879	96 Sub-artesian Facility	-	Existing	-	Alluvium (loose sand)	25	25	3800	2098.37	8.2	Lab	2.78
47167 Humes Bore	432099	755959	99 Sub-artesian Facility	-	Existing	-	•	-	-	-	-	-	-	-
			Artesian Bore, Controlled											
62623 Gricks Corner Bore	442969	75455	54 Flow	-	Existing	*LTW authorised	Sandstone (Triassic-age, Dunda Beds)	104	104	720	434.19	7.1	Lab	1
62624 Murphys Bore	439404	754633	36 Sub-artesian Facility	-	Existing	-	Sandstone (Triassic-age or Permian-age)	61	54	440	335.73	7.2	Lab	2
62625 Soak Bore	436052	753174	43 Sub-artesian Facility	-	Existing	-	Sandstone (Triassic-age, Dunda Beds)	85	84	375	212.49	7	Lab	4
			Artesian Bore, Controlled											
67627 Dexter	443712	754010	04 Flow	-	Existing	*LTW authorised	Permian-age	104	41	3400	1929.84	8.1	Lab	2.41
90255 Langlands Bore	419633	757704	47 Sub-artesian Facility	-	Existing	*LTW authorised	Sandstone (Triassic-age or Permian-age)	97	-	-	-	-	-	-
90256 15 Mile Bore	423671	75808	78 Sub-artesian Facility	Water Supply	Existing	Stock	Sandstone (Permian-age strata)	117	-	-	-	-	-	2.53
90258 4 Mile Bore Labona	426775	756578	35 Sub-artesian Facility	Water Supply	Existing	Stock	Sandstone (Triassic-age or Permian-age)	79.3	-	-	-	-	-	1.89
90259 Ten Mile	423688	757724	46 Sub-artesian Facility	Water Supply		Stock	Sandstone (Permian-age)	104	-	-	-	-	-	4.55
90260 Carmichael Bore	436157	755136	60 Sub-artesian Facility	-	Existing	-	Sandstone (Triassic-age or Permian-age)	91	-	-	-	-	-	-
					•		Clay with Sandstone (Tertiary-age or							
90369 New Humes Bore	431919	756040	69 Sub-artesian Facility	-	Existing	-	Permian-age)	78	-	400	-	-	Field	1.6
103229 Desert Bore	441450	75378	03 Sub-artesian Facility	Water Supply	Existing	-	Trassic-age or Permian-age	47.85	-	3800	-	-	Field	0.63
103231 Poison Bore	439028	75349	51 Sub-artesian Facility	Water Supply		-	Sandstone (Triassic-age, Dunda Beds)	97.54	-	1561	-	-	Field	0.51
			<u> </u>		Č.			88 (base of						-
103230 3 Mile Bore	441156	75330	12 Sub-artesian Facility	Water Supply	Existing	-	Sandstone (Triassic-age, Dunda Beds)	hole)	-	945	-	-	Field	0.13
103249 New Bore	442857	75391	17 Sub-artesian Facility	Water Supply		-	Sandstone (Tertiary or Permian-age)	46.94	-	-	-	-	-	8.21
103559 -	449748		30 Sub-artesian Facility	Water Supply		-	Trassic-age or Permian-age	-	-	-	-	-	-	-
103565 -	428493		24 Sub-artesian Facility	Water Supply		-	Sandstone (Triassic-age, Dunda Beds)	75	-	-	-	-	-	0.58

Interpretation of screend lithology based on bore depth, mapped geology and recorded lithology * LTW - licence to take water

	Name of			
Registered Bore ID	Registered Bore	Purpose	Condition	Remarks
		Water supply, stock		Pump headworks, diesel generator, under cover, storage tank, turkeys nest
17981	10 Mile Bore	watering (DERM, 2010)	Looks maintained	dam, 2 x water troughs
		Water supply, stock		Electricity hookup, could not observe headworks, under cover, 1 x storage
17982	Labona bore	watering (DERM, 2010)	Looks maintained	tank, water trough
		Assumed is for stock		GPS 439149E 7546347N. Pump headworks, 2 x solar panels, 1 x tanks.
Not confirmed	Murphys Bore	watering	Maintained	Known as Middle Murphys Bore. Probably RN 62624
		Assumed is for stock		
90260	Carmichael Bore	watering	Looks maintained	GPS 436383E 7551860N. Pump headworks, 1 x storage tank
		Assumed is for stock		GPS 427254E 7565148N. Pump headworks, diesel generator, under cover, 1
Not confirmed	4 Mile Bore	watering	Looks maintained	x storage tank. Probably RN 90258
	Humes Bore	Assumed is for stock		GPS 431999E 7559048N. Pump headworks, diesel generator, under cover,
Not confirmed	(assumed)	watering	Looks maintained	turkeys nest dam. Suspect is either RN 90369 or RN 47167
	Middle Murphys	Assumed is for stock		Known as Murphys Bore. Pump headworks, 1 x tank. Could not identifty a
Not confirmed	Bore	watering	Looks maintained	possible RN Bore ID

GPS coordinates GDA94 Zone 55

Appendix C Survey Data and Borehole Logs

Table C1: Monitoring bore survey data Borehole logging notes Draft borehole logs

Page intentionally left blank

M			Ground	Top of		
Monitoring	E	N a set la las se	Elevation RL	Casing RL	0	0
Bore ID	Easting	Northing	(mAHD)	(mAHD)	Survey Date	
C006P1	435726.146	7560833.182	233.71	234.333	14/11/2011	Wilson Survey Group
C006P3r	435733.591	7560825.82	233.867	234.355	14/11/2011	Wilson Survey Group
C007P2	434726.28	7559864.482	238.11	238.797	14/11/2011	Wilson Survey Group
C007P3	434727.969	7559861.908	238.117	238.966	14/11/2011	Wilson Survey Group
C008P1	433710.221	7558830.229	238.141	238.685	14/11/2011	Wilson Survey Group
C008P2	433707.789	7558826.807	238.117	238.848	14/11/2011	Wilson Survey Group
C011P1	428842.528	7569952.912	254.46	255.105	14/11/2011	Wilson Survey Group
C011P3	428845.625	7569954.926	254.396	255.096	14/11/2011	Wilson Survey Group
C012P1	430887.597	7569874.426	247.333	247.982	14/11/2011	Wilson Survey Group
C012P2	430887.426	7569876.797	247.252	247.958	14/11/2011	Wilson Survey Group
C014P2	430730.902	7563976.225	255.987	256.78	14/11/2011	Wilson Survey Group
C016P2	422017.42	7574974.28	294.453	295.126	14/11/2011	Wilson Survey Group
C018P1	423981.852	7574849.963	281.269	281.949	14/11/2011	Wilson Survey Group
C018P2	423988.081	7574849.148	281.295	282.044	14/11/2011	Wilson Survey Group
C018P3	423977.524	7574853.22	281.212	281.945	14/11/2011	Wilson Survey Group
C020P2	427845.604	7566931.847	263.057	263.78	14/11/2011	Wilson Survey Group
C022P1	426812.614	7565961.716	273.763	274.275	14/11/2011	Wilson Survey Group
C024P3	428909.131	7571761.206	258.586	259.069	14/11/2011	Wilson Survey Group
C025P1	438015.576	7555845.846	227.543	228.145	14/11/2011	Wilson Survey Group
C025P2	438010.253	7555844.706	227.478	228.279	14/11/2011	Wilson Survey Group
C027P1	433643.076	7554818.391	226.95	227.672	21/09/2012	Wilson Survey Group
C027P2	433648.209	7554818.544	227.558*	227.859	21/09/2012	Wilson Survey Group
C029P1	437691.058	7555082.374	225.438	226.079	14/11/2011	Wilson Survey Group
C029P2	437687.554	7555080.918	225.373	225.994	14/11/2011	Wilson Survey Group
C032P2	439404.358	7544896.018	256.221*	256.318	21/09/2012	Wilson Survey Group
C034P1	442385.586	7547815.692	227.441	228.139	21/09/2012	Wilson Survey Group
C034P3	442388.717	7547813.986	227.384	228.138	21/09/2012	Wilson Survey Group
C035P1	441403.586	7546823.808	236.312*	236.667	21/09/2012	Wilson Survey Group
C035P2	441401.683	7546827.747	236.24*	236.568	21/09/2012	Wilson Survey Group
C555P1	432449.639	7557880.783	241.154^	241.874	11/10/2012	Wilson Survey Group
C556P1	436524.082	7549881.547	260.634	261.553	11/10/2012	Wilson Survey Group
C558P1	430311.546	7566903.059	250.054^	250.724	11/10/2012	Wilson Survey Group
C9553P1R	421010.111	7573974.87	294.114^	294.414	11/10/2012	Wilson Survey Group
HD01	426146.035	7561467.856	-	312.025	11/10/2012	Wilson Survey Group
HD02	423823	7557008	240**	241.02^^	24/10/2012	Adani Mining
HD03A	427560	7556126	TBC	TBC	3/11/2012	Adani Mining
HD03B	427559	7556122	TBC	TBC	3/11/2012	Adani Mining
C553P	420992.731	7573965.334	294.562	-	11/10/2012	
						Survey TBC. C555P within 10m of C555P1. Coordinates and ground
C555P	432449.639	7557880.783	241.154	-	-	RL for C555P1
C9556PR	436542.639	7549884.872	260.398	-	11/10/2012	Wilson Survey Group
C056C	424920	7569970	283.86	-	4/11/2011	Adani Mining
						Survey TBC. C558P within 10m of C558P1. Coordinates and ground
C558P	430311.546	7566903.059	250.054	-	-	RL for C558P1

* denotes value taken from LiDAR ** denots value from GPS

^ denotes value calculated from pvc stickup and top of casing RL survey

 $\ensuremath{^{\mbox{\scriptsize M}}}$ denotes value calculated from pvc stickup and ground RL survey

TBC - to be confirmed

GENERAL NOTES

GHD GEOTECHNICS Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com.au/ghdgeotechnics

The report contains the results of a geotechnical investigation conducted for a specific purpose and client. The results should not be used by other parties, or for other purposes, as they may contain neither adequate nor appropriate information. In particular, the investigation does not cover contamination issues unless specifically required to do so by the client.

TEST HOLE LOGGING

The information on the test hole logs (boreholes, test pits, exposures etc.) is based on a visual and tactile assessment, except at the discrete locations where test information is available (field and/or laboratory results). The test hole logs include both factual data and inferred information. Moreover, the location of test holes should be considered approximate, unless noted otherwise (refer report). Reference should also be made to the relevant standard sheets for the explanation of logging procedures (Soil and Rock Descriptions, Core Log Sheet Notes etc.).

GROUNDWATER

Unless otherwise indicated, the water levels presented on the test hole logs are the levels of free water or seepage in the test hole recorded at the given time of measuring. The actual groundwater level may differ from this recorded level depending on material permeabilities (i.e. depending on response time of the measuring instrument). Further, variations of this level could occur with time due to such effects as seasonal, environmental and tidal fluctuations or construction activities. Confirmation of groundwater levels, phreatic surfaces or piezometric pressures can only be made by appropriate instrumentation techniques and monitoring programmes.

INTERPRETATION OF RESULTS

The discussion or recommendations contained within this report normally are based on a site evaluation from discrete test hole data, often with only approximate locations (e.g. GPS). Generalised, idealised or inferred subsurface conditions (including any geotechnical cross-sections) have been assumed or prepared by interpolation and/or extrapolation of these data. As such these conditions are an interpretation and must be considered as a guide only.

CHANGE IN CONDITIONS

Local variations or anomalies in the generalised ground conditions do occur in the natural environment, particularly between discrete test hole locations. Additionally, certain design or construction procedures may have been assumed in assessing the soil-structure interaction behaviour of the site. Furthermore, conditions may change at the site from those encountered at the time of the geotechnical investigation through construction activities and constantly changing natural forces.

Any change in design, in construction methods, or in ground conditions as noted during construction, from those assumed or reported should be referred to this firm for appropriate assessment and comment.

GEOTECHNICAL VERIFICATION

Verification of the geotechnical assumptions and/or model is an integral part of the design process - investigation, construction verification, and performance monitoring. Variability is a feature of the natural environment and, in many instances, verification of soil or rock quality, or foundation levels, is required. There may be a requirement to extend foundation depths, to modify a foundation system and/or to conduct monitoring as a result of this natural variability. Allowance for verification by appropriate geotechnical personnel must be recognised and programmed for construction.

FOUNDATIONS

Where referred to in the report, the soil or rock quality, or the recommended depth of any foundation (piles, caissons, footings etc.) is an engineering estimate. The estimate is influenced, and perhaps limited, by the fieldwork method and testing carried out in connection with the site investigation, and other pertinent information as has been made available. The material quality and/or foundation depth remains, however, an <u>estimate</u> and therefore liable to variation. Foundation drawings, designs and specifications should provide for variations in the final depth, depending upon the ground conditions at each point of support, and allow for geotechnical verification.

CLIMATE CHANGE

GHD Geotechnics acknowledges the occurrence of ongoing climate change. Cognisance is given to climate change issues as may be applicable to specific geotechnical investigations and assessments.

REPRODUCTION OF REPORTS

Where it is desired to reproduce the information contained in our geotechnical report, or other technical information, for the inclusion in contract documents or engineering specification of the subject development, such reproductions must include at least all of the relevant test hole and test data, together with the appropriate Standard Description sheets and remarks made in the written report of a factual or descriptive nature.

Reports are the subject of copyright and shall not be reproduced either totally or in part without the express permission of GHD.

GLOSSARY OF SYMBOLS

GHD GEOTECHNICS Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com.au/ghdgeotechnics

This standard sheet should be read in conjunction with all test hole log sheets and any idealised geological sections prepared for the investigation report.

GENERAL

GENERAL						
Symbol D U C SV SPT N HB PM PP PK	tube diameter in Core Sample (su Shear Vane Test Standard Penetra SPT Value SPT hammer boo Pressuremeter T	e apled (suffixed by sample size mm if applicable) uffixed by diameter in mm) (suffixed by value in kPa) ation Test (with blows per 0.1 uncing	F PBT 5m) — ⊻ ₹	Desc Piezometer Installa Rising Head Perme Falling Head Perme Plate Bearing Tes Water Inflow (make Water Outflow (loss Temporary Water L Final Water Level Point Load Test (ax Point Load Test (di Impression Device	eability Test neability Test st e) ss) Level xial) iametric)	
SOIL SYMB	OLS					
	Main Corr	iponents				
[SAND		CLAY		SILT	
	GRAVEL		FILL		TOPSOIL	
	Minor Co	mponents				
	sandy		clayey vegetation, I	roots	silty	
L	0 0	*	-	Б		
ROCK SYM		Natural soils are generally a	combination c	of constituents, e.g.	sandy CLAY	
	Sediment	ary			Igneous	
[SANDSTO	DNE	SHALE	[<
	CLAYSTC	NE	CONGLOM	ERATE	IGNEOUS DYKE	1 - - -
	SILTSTON	1E	COAL		BASALTIC ROCH	<
Note: /	Additional rock syn	nbols may be allocated for a	particular proj	ect.		
NATURAL F	RACTURES (Cod	ding)				
Fracture Ty JT Joint BP Bedd Cb Cross	ing Plane	Orientation For vertical non-oriented For inclined non-oriented For inclined oriented core.	core "Angle	e" measured relative	to core axis.	

Roughness

SLK

SO

RF

VR

POL Polished

Slickensided

Very Rough

Smooth

Rough

Others

Discontinuous

Open

Tight

Closed

DIS

OP

CL

ΤI

- SS **Sheared Surface**
- SM Seam
- CS **Crushed Seam**

VT

d

HZ or 0°

Shape

Planar

Curved

Stepped

Irregular

Undulating

PLN

CU

UN

ST

IR

Vertical

degrees

Horizontal

- FΖ Fragmented Zone
- SZ Shear Zone
- VN Vein
- Infilling or Coating
- CN Clean Х Carbonaceous **CLAY Clay** KΤ Chlorite CA Calcite FE Iron Oxide MI Micaceous
- Mn Manganese
- Pyrite Рy
- QZ Quartz
- VE Veneer

Ref: DS6.5.1 Issue 1.7 Date: 20/09/2010

SOIL DESCRIPTION

GHD GEOTECHNICS Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com.au/ghdgeotechnics

This procedure involves the description of a soil in terms of its visual and tactile properties, and relates to both laboratory samples and field exposures as applicable. A detailed soil profile description, in association with local geology and experience, will facilitate the initial (and often complete) site assessment for engineering purposes.

The method involves an evaluation of each of the items listed below and is in general agreement with both Australian Standard AS 1726 (the Site Investigation Code) and ASTM D2487 and D2488.

MOISTURE

The moisture condition of the soil is most applicable for cohesive soils as a precursor to the assessment of consistency and workability. The moisture condition is described as:-

Dry (dusty, dry to the touch) Slightly Moist Moist (damp, no visible water) Very Moist or Wet (visible free water, saturated condition)

In addition, the presence of any seepage or free water is noted on the testhole logs.

COLOUR

Colour is important for correlation of data between testholes and during subsequent excavation operations. The prominent colour is noted, followed by (spotted, mottled, streaked etc.) then secondary colours as applicable. Colour is usually described at as-received moisture condition, though both wet and dry colours may also be appropriate.

CONSISTENCY / DENSITY INDEX

This assessment is based on the effort required to penetrate and/or mould the soil, and is an indicator of shear strength.

Granular soils are generally described in terms of density index as listed in AS 1726. These soils are inherently difficult to assess and normally a penetration test procedure (SPT, DCP or CPT) is used in conjunction with published correlations. Alternatively, in-situ density tests can be conducted in association with minimum and maximum densities performed in the laboratory.

Term	Symbol	Density Index (%)
Very Loose	VL	< 15
Loose	L	15 - 35
Medium Dense	MD	35 - 65
Dense	D	65 - 85
Very Dense	VD	>85

Cohesive soils can be assessed by direct measurement (shear vane, CPT etc), or estimated approximately by tactile means and/or the aid of a geological pick as given on the following table. It is emphasised that a "design shear strength" must take cognisance of the mode of testing and the in-situ moisture content with the possible variations of moisture with time.

Term	Symbol	Tactile Properties	Undrained Strength S _u (kPa)
Very Soft	VS	Extrudes between fingers when squeezed in hand	<12
Soft	S	Easily penetrated by thumb about 30-40 mm. Pick head can be pushed in up to shaft.	12-25
Firm	F	Penetrated by thumb 20-30mm with moderate effort. Sharp end of pick pushed in 30-40mm.	25-50
Stiff	St	Indented by thumb about 5mm with moderate effort. Pick pushed in up to 10mm.	50-100
Very Stiff	VSt	Readily indented by thumb nail. Slight indentation produced by pushing pick into soil.	100-200
Hard	н	Difficult to indent with thumb nail. Requires power tools for excavation.	>200

STRUCTURE/OTHER FEATURES

The soil structure is generally applicable to cohesive soils and mainly refers to the presence or absence of joints and layering. Typical terms use are intact (no joints), fissured (closed joints), shattered (open joints), slickensided (polished joints indicative of movement), and stratified/laminated. In addition, the presence of other features (ferricrete nodules, timber inclusions) should also be noted as applicable.

For granular soils, an assessment of grading (well, uniform or poor), particle size (fine, medium etc.) and angularity and shape may also be given.

SOIL TYPE

The soil is described in terms of its estimated grain size composition and the tactile behaviour (plasticity of any fines (less than *0.06 mm)). This system does not differentiate on grading below 0.06 mm, in accordance with the Unified Soil Classification (USC) procedure.

However, in some situations a soil can exhibit different characteristics between the undisturbed and disturbed/remolded condition (eg. 'sand' sized particles which break down a clay). The Soil Type generally relates to the latter state but the former condition should be noted where applicable. Furthermore, as most natural soils frequently are combinations of various constituents, the primary soil is described and modified by minor components. In brief, the system is as follows:-

	Coarse Grained Soils		Fine Grained Soils
% Fines	Modifier	% Coarse	Modifier
<5	omit, or use "trace"	<15	omit, or use "trace"
5-12	describe as "with clay/silt" as applicable	15-30	described as "with sand/gravel" as applicable
>12	prefix soil as "silty/clayey" as applicable	>30	prefix soil as "sandy/gravelly" as applicable

(*The 200# sieve (0.075 mm) is commonly used in practice to differentiate between fine and coarse grained soils).

Note: For soils containing both sand and gravel the minor coarse fraction is omitted if less than 15%, or described as "with sand/gravel" as applicable when greater than 15%.

The appropriate USC symbol may also be given after the soil type description in accordance with ASTM D2487 and D2488.

ORIGIN

An attempt is made, where possible, to assess origin (transported, residual, pedogenic, or fill etc.) since this assists in the judgement of probable engineering behaviour. This assessment is generally restricted to field logging activities. An interpretation of landform is a useful guide to the origin of transported soils (e.g. colluvium, talus, slide debris, slope wash, alluvium, lacustrine, estuarine, aeolian and littoral deposits) while local geology and remnant fabric will assist identification of residual soils.

ROCK DESCRIPTION

GHD GEOTECHNICS

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com.au/ghdgeotechnics

This method is based on Australian Standard AS 1726 and is orientated to the field logging of diamond drill core, but may be used for the profiling of natural exposures and cuttings, as applicable. The procedure involves a visual and tactile assessment of the rock mass and the nature of defects within it in order to facilitate a prediction of engineering behaviour.

DESCRIPTION: Rock Type is described on the basis of origin (sedimentary, metamorphic and igneous) with the common types listed below:-

	Sedim	entary		Metamorphic			Igneous		
Clastic	Non clastic (chemical)	Non clastic (organic)	Pyroclastic			Acid	Intern	nediate	Basic
Conglomerate Sandstone Siltstone Shale Claystone	Limestone Chert Gypsum Salt	Coal Some Limestone	Tuff Agglomerate Volcanic Breccia	Slate Phyllite Schist Quartzite Gneiss	Extrusive Intrusive (medium grained) (coarse grained)	Rhyolite Quartz Porphyry Granite	Trachyte Porphyry Syenite	Andesite Porphyrite Diorite	Basalt Dolerite Gabbro

<u>Colour</u> is given to assist in rock identification and the interpolation of field data. Colour is usually described at as-received moisture condition, though both wet and dry colours may also be appropriate.

<u>Texture</u> refers to the degree of crystallinity and granularity (grain size) and the fabric relationship between the constituents of a rock. Often only <u>grain size</u> is given for simplified descriptions of certain sedimentary rocks.

<u>Structure</u> and texture are commonly used synonymously in describing rocks since there is no clear delineation between terms. In general, structure refers to large-scale features recognisable in the field (banding, lineation, massive, porphyritic, schistose etc.). For sedimentary rocks in particular, the thickness of sedimentary layering (bedding) is described as:-

Thinly laminated	<6mm	very thinly bedded	20-60mm	medium bedded	0.2-0.6m	very thickly bedded	>2m
Laminated	6-20mm	thinly bedded	60-200mm	thickly bedded	0.6-2m		

In addition, mineral composition, hardness, alteration, cementation is given as applicable.

WEATHERING: The assignment of weathering is somewhat subjective. Weathering assists identification and does <u>not</u> imply engineering behaviour. No distinction is drawn between chemical weathering and alteration for most engineering purposes. These procedures are collectively described as "weathering" using the following terms which do not describe the related strength change. This system is general, and in this format may not apply to all rock types. Carbonate rocks generally do not conform to this classification.

Term	Symbol	Definition
Completely Weathered	CW	Residual soil with rock fabric not visible.
Extremely Weathered	EW	The rock exhibits soil-like properties though the texture of the original rock is still evident.
Highly Weathered	HW	Limonite staining or colour change affects the whole of the rock mass and other signs of chemical or physical decomposition are evident.
Moderately Weathered	MW	Staining extends throughout the whole of the rock mass and the original colour is no longer recognisable.
Slightly Weathered	SW	Partial staining or discolouration of the rock mass, usually by limonite, has taken place.
Fresh	Fr	Rock mass unaffected by weathering.

ESTIMATED STRENGTH: This refers to the strength of the <u>rock substance</u> and not that of the rock mass. The strength of the rock substance is estimated by the Point Load Strength Index $I_{S}(50)$ and refers to the strength measured in the direction normal to the bedding for sedimentary rocks. A field guide is given below:-

Term	Symbol	I _S (50)	Field Guide
		MPa	(The core refers to a 150mm long x 50mm dia. sample)
Extremely Low	EL	< 0.03	Remoulded by hand to a material with soil properties.
Very Low	VL	0.03-0.1	May be crumbled in the hand. Sandstone is "sugary" and friable.
Low	L	0.1-0.3	The core may be broken by hand and easily scored with a knife. Sharp edges of core may be friable and break during handling.
Medium	М	0.3-1.0	The core may be broken by hand with considerable difficulty. Readily scored with knife.
High	н	1-3	The core cannot be broken by unaided hands, can be slightly scratched or scored with knife.
Very High	VH	3-10	The core may be broken readily with hand held hammer. Cannot be scratched with knife.
Extremely High	EH	>10	The core is difficult to break with hand held hammer. Rings when struck with a hammer.

DEFECTS: This important feature can control the overall engineering behaviour of a rock mass. All types of <u>natural</u> fractures across which the core is discontinuous are noted. These fractures include bedding plane partings, joints and other defects but exclude artificial fractures such as drilling breaks. The nature of the defects (joints, bedding partings, seams, zones and veins) is also noted with description, orientation, infilling or coating, shape, roughness, thickness, etc. given generally in accordance with AS 1726. The spacing of natural fractures <u>excludes</u> bedding partings unless there is evidence that they were separated prior to drilling. This notwithstanding, bedding partings maybe considered as planes of weakness in an engineering assessment.

CORE LOG SHEET NOTES

GHD GEOTECHNICS Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com.au/ghdgeotechnics

The intention of Core log Sheets is to present factual information measured from the core or as recorded in the field. Some interpretative information is inevitable in the location of core loss, description of weathering and identification of drilling induced fractures. This should be noted in the use of Core Log Sheets and remembered in their utilisation.

DRILLING AND CASING

The types of drilling used to advance the drill hole are recorded for relevant intervals. The types of drilling may include: NMLC coring, NQTT (NQ triple tube wire line), HW, HX, NW and NX casing, wash boring (tri-cone roller bit, TC drag bit, TC blade bit), or auger drilling (V-bit, TC drag bit).

The relevant progress is shown by abbreviated dates in the column.

WATER

Water lost or water made during drilling is recorded and subsequent readings of water levels in the borehole or piezometers are recorded here with dates of observation.

DRILL DEPTH AND CORE LOSS

Drilling intervals are shown by depth increments and horizontal marker lines. Core loss is measured as a percentage of the drill run. If the location of the core loss is known or strongly suspected, it is shown in a region of the column bounded by dashed horizontal lines. If unknown, core loss is assigned to the bottom of a coring run.

SAMPLES AND FIELD TESTS

The location of samples taken for testing or the location of field tests are indicated by the appropriate symbol from the GLOSSARY OF SYMBOLS Standard Sheet (or as applicable for the project) and are shown at the relevant location or over the relevant depth interval.

DEPTH (RL)

Changes in rock types or the locations of piezometer tips, samples, test intervals or other depths are shown as appropriate in terms of depth from the hole collar or in terms of RL.

For inclined holes the depths shown on the log refer to the drilled length along the borehole. The RL, where used, is the only transformed reference to true vertical depth.

STRATA

Rock types are presented graphically using the symbols shown on the GLOSSARY OF SYMBOLS Standard Sheet or as assigned for the project.

DESCRIPTION

The rock type is described in accordance with the ROCK DESCRIPTION Standard Sheet.

WEATHERING

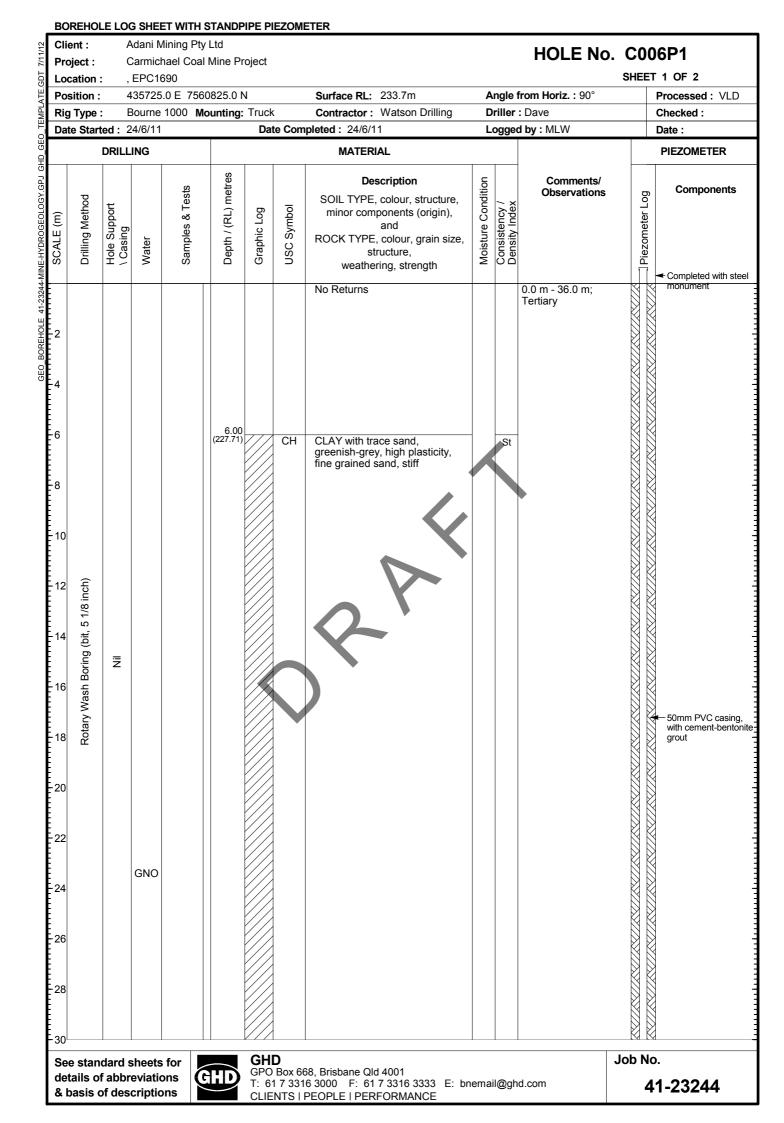
Weathering is described, by code letters, in accordance with the ROCK DESCRIPTION Standard Sheet. A weathering term or range of terms is usually assigned to various strata.

It is noted, however, that the assignment of a term of weathering is subjective and is normally used for identification and does <u>not</u> imply engineering behaviour (such behaviour being controlled principally by rock substances strength and defect frequency - collectively, rock mass strength). Consequently, boundaries are often not shown and weathering may even not be reported where potentially misleading.

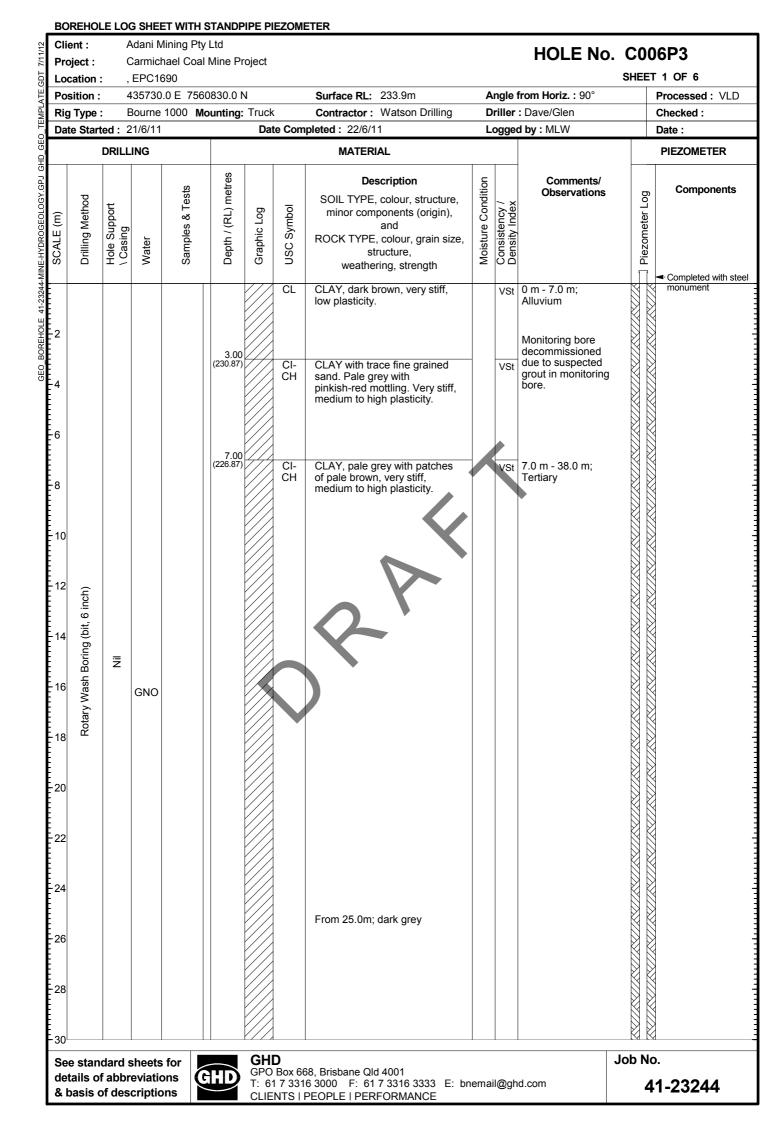
ESTIMATED STRENGTH

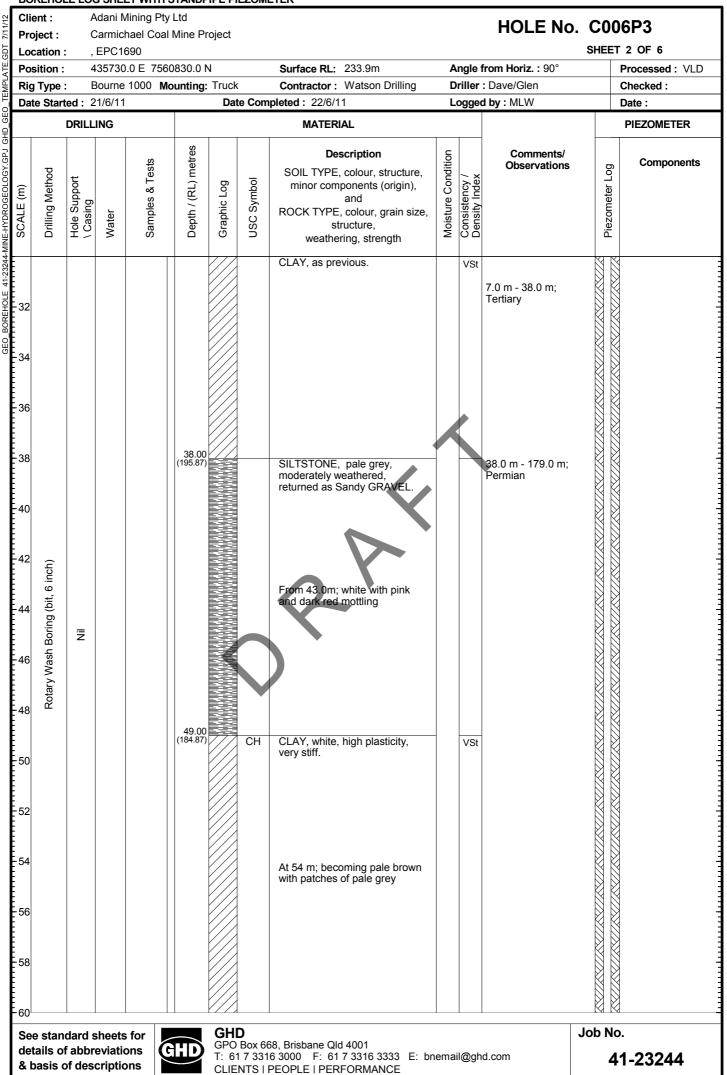
The strength of the rock substance is estimated by a combination of Point Load testing and tactile appraisal in accordance with the ROCK DESCRIPTION Standard Sheet. The estimated strength is presented in a histogram form. Both axial and diametric point load test results can be presented using the symbols on the GLOSSARY OF SYMBOLS Standard Sheet and the variation between axial and diametric values is indicative of anisotropy or fissility of the rock unit.

NATURAL FRACTURES

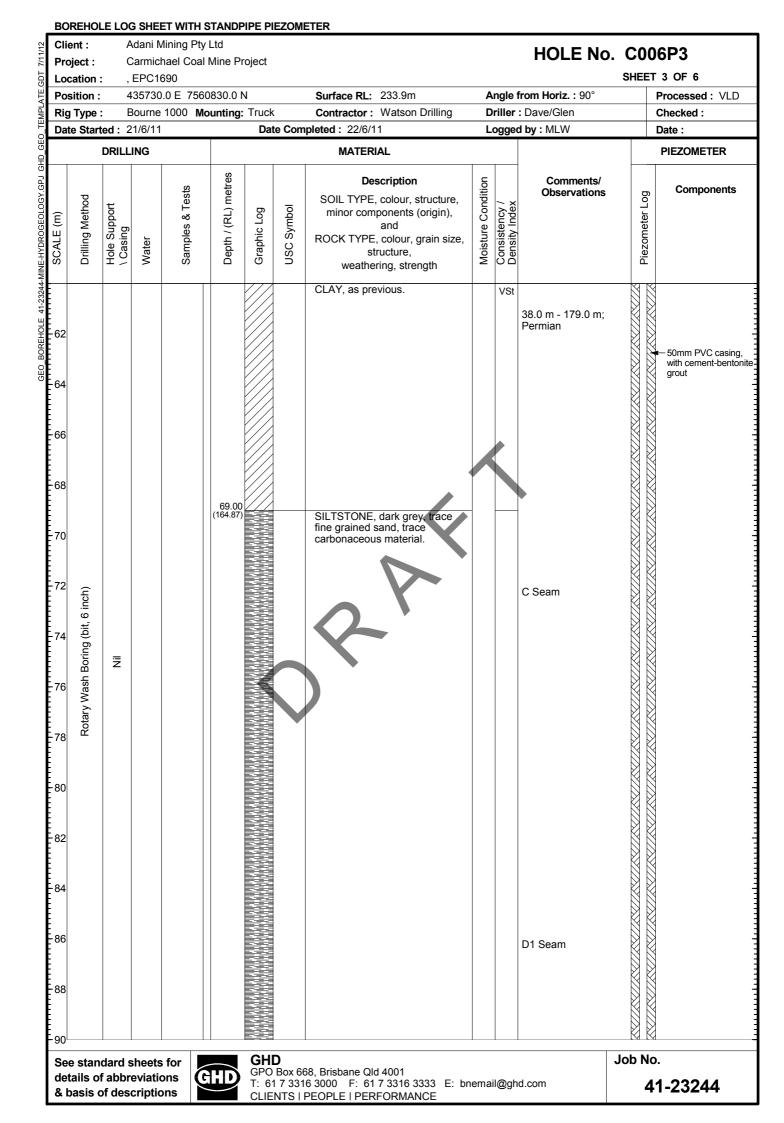

The identification of <u>natural</u> fractures requires an endeavour to exclude drilling induced breaks in the core and, as such, can be somewhat subjective. Natural fractures exist prior to coring the rock, whereas artificial fractures occur either during coring, during placing core in the core boxes, or during examination or transportation, or core after being boxed.

The log of Natural Fractures is presented as a combination of Fracture Spacing, Visual and Description columns. Coding is presented on the GLOSSARY OF SYMBOLS Standard Sheet.


ROCK QUALITY DESIGNATION (RQD) INDEX OPTION


The Core Log Sheet has an optional field column to record the RQD index. For certain projects, such as tunnelling or underground mining investigations, rock mass ratings or classifications can be required as part of the design process. The Rock Quality Designation (RQD) Index forms a component of these rock mass ratings and provides a quantitative estimate of rock mass quality from rock core logs. The core must be a minimum of 54.7mm diameter (although NMLC-sized core is probably OK) for derivation of an RQD index.

The RQD index is expressed as a <u>percentage of intact rock core</u> (excludes extremely weathered rock/residual soil) <u>greater than 100 mm</u> <u>in length over the total selected core length</u>. The total selected core length should be based on identifiable engineering geological domain characteristics. Should this not be practicable, RQD can be measured on a per run basis.



Client : Project			Mining Pt hael Coa	-	niect					HOLE No.	C00	6P1		
Locatio		, EPC1			ojeci						SHEET	2 OF 2		
Position			5.0 E 756	60825.0 N	١		Surface RL: 233.7m				Processed : VLD			
Rig Typ	e :	Bourne	e 1000 N	lounting:			Contractor: Watson Drilling		Driller : Dave			Checked :		
Date Sta	arted :	24/6/1	1	Date Completed : 24/6/11					oggeo	by:MLW		Date :		
	DRIL	LING		MATERIAL								PIEZOMETER		
SCALE (m) Drilling Method	Hole Support	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components		
80 99 45 50 (bit, 5 1/8 inch)				36.00 (197.71)			CLAY, as previous. SILTSTONE, pale grey, high strength, returned as Sandy GRAVEL.		St	36.0m - 47.3m; Permian		← Bentonite		
9 Pt 75 09 88 Rotary Wash Boring (bit,	ĨN			42.00 (191.71)			MUDSTONE, white, high plasticity, stiff, returned as Clayey SAND.		St			Filter pack Sceen		
18 50 52				47.30 (186.41)			End of borehole at 47.3 m. Piezometer Installed.							
54														
56														
60														
See sta		sheet	s for	GHD	GP0		68, Brisbane Qld 4001				Job No			

BOREHOLE LOG SHEET WITH STANDPIPE PIEZOMETER

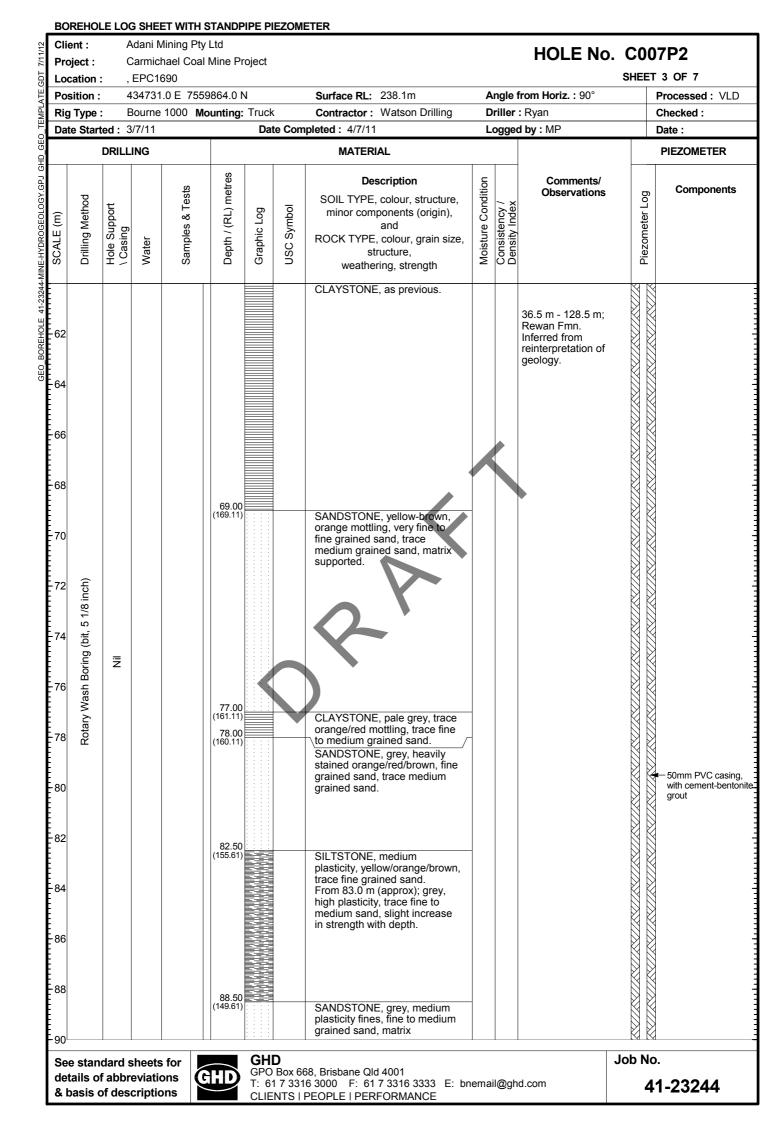
Client : Project : Location : Position :	Carmich , EPC16	lining Pty I nael Coal N	Vine Projec		Surface RL: 233.9m	Ar	ngle f	HOLE No.	SHEET	6P3 4 OF 6 Processed : VLD
Rig Type :	Bourne		unting: Tru		Contractor : Watson Drilling	Dr	iller	: Dave/Glen		Checked :
Date Started			[Date Con	npleted: 22/6/11	Lo	oggeo	l by : MLW		Date :
DF	RILLING				MATERIAL					PIEZOMETER
SCALE (m) Drilling Method Hole Support	\ Casing Water	Samples & Tests	Depth / (RL) metres Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
92 94 96 98 100 102 (luch line line line line line line line line	EZ		108.00		SILTSTONE, as previous.			38.0 m - 179.0 m; Permian	401,8501,8501,8501,8501,8501,8501,8501,85	
-116 -118			117.00 (116.87)		SILTSTONE, pale grey, trace fine grained sand, some carbonaceous material	-		D3 Seam	XUIXXUIXVIIXXUIXVII XUIXXUIXVIIXVIIXVII	
120 See standa details of a			GF	HD PO Box 6	68, Brisbane Qld 4001 16 3000 F: 61 7 3316 3333 E: br				Job No	1-23244

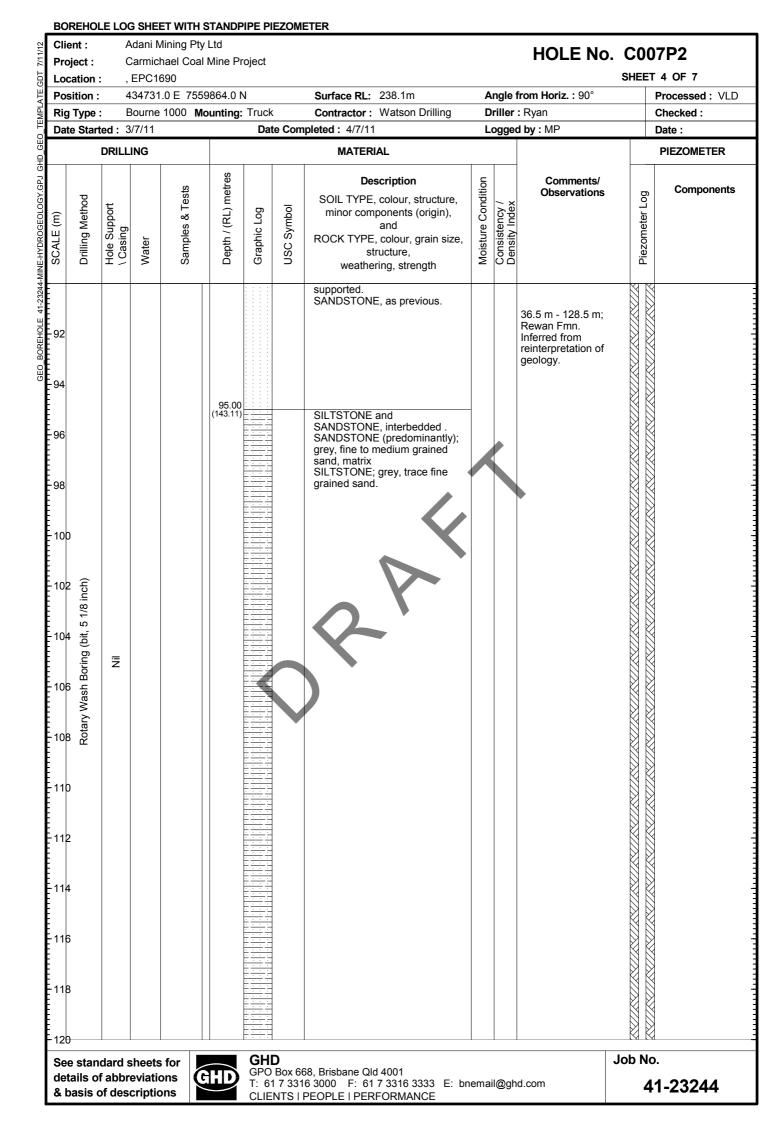
-	nt: ect: ation:	(y Ltd I Mine Pr	oject					HOLE No.		6 P3 5 OF 6
Posi	ition : Type :	2	435730	.0 E 756	60830.0 N Iounting:			Surface RL: 233.9m Contractor : Watson Drilling		-	rom Horiz. : 90° : Dave/Glen		Processed : VLC Checked :
Date	Start	ted : 2	21/6/11			Dat	e Com	pleted: 22/6/11	L	ogge	d by : MLW		Date :
		DRILLING						MATERIAL					PIEZOMETER
SUALE (M)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
122					122.00			SILTSTONE, as previous.			38.0 m - 179.0 m; Permian		
124					(111.87) 123.00 (110.87)			COAL,dark grey/black, dull SILTSTONE, pale grey, trace fine grained sand, some carbonaceous material	-		E Seam		
126 128					128.00 (105.87)			COAL,dark grey/black, dull	-				← Bentonite
130					130.00 (103.87)			SILTSTONE with some COAL pale grey. Returning as clayey	-		F Seam		
132 134	Boring (bit, 6 inch)	Nil			132.00 (101.87) 133.00 (100.87) 134.00 (99.87)			SILT with some coal COAL, dark grey/black, dull SILTSTONE with some COAL, pale grey. Returning as clayey SILT with some coal COAL, dark grey/black, dull	-				← Filter pack Screen
36 38	Rotary Wash Boring (bit,				136.00 (97.87)			SILTSTONE with some COAL, pale grey. Returning as clayey SILT with some coal	-				← End cap ← Bentonite
140 142													
144					147.00							-	— Back fill
148					(86.87) (84.87)			COAL,dark grey/black, dull SILTSTONE with some COAL,	-				
150								pale grey. Returning as clayey					
	ails of	fabbr	sheets eviatic criptio	ons (GHD		Box 66	58, Brisbane Qld 4001 6 3000 F: 61 7 3316 3333 E: br	emai	il@ah		Job No	1-23244

Clien Proje Loca	ct :	(lining Pty nael Coal 390		oject					HOLE No.		6P3 6 OF 6
Posit	ion :	4	435730	.0 E 756				Surface RL: 233.9m		-	from Horiz. : 90°		Processed : VLD
Rig T				1000 M	ounting:			Contractor : Watson Drilling			: Dave/Glen		Checked :
Date			21/6/11			Dat	e Com	pleted : 22/6/11		ogge	d by : MLW		Date :
	DRILLING							MATERIAL					PIEZOMETER
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
	Rotary Wash Boring (bit, 6 inch)	Ni			155.00 (78.87) 156.00 (77.87)			SILT with some coal SILTSTONE with some COAL, as previous. COAL,dark grey/black, dull SILTSTONE with some COAL, pale grey. Returning as clayey SILT with some coal			38.0 m - 179.0 m; Permian		— Back fill
					179.00 (54.87)			End of borehole at 179 m.	1			C N PE	
180								Piezometer Installed.	<u> </u>				
			sheets		\sim	GHI		Reinhana Old 4004				Job No	•
			eviatio criptio		HD	T: 61	7 331	68, Brisbane Qld 4001 6 3000 F: 61 7 3316 3333 E: bn	iema	il@gh	d.com	4	1-23244

Client : Project : Location :			/ Ltd I Mine Pr	oject					HOLE No		6 P3r 1 OF 4
Position : Rig Type :	435727	0 E 756	0835.0 N ounting:			Surface RL: 233.9m Contractor : Watson Drilling		-	from Horiz. : 90° : Snickers		Processed : VLD Checked :
Date Started			ountingi			pleted : 11/7/11			d by : MLW		Date :
DR	ILLING					MATERIAL					PIEZOMETER
SCALE (m) Drilling Method Hole Support	\ Casing Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	□ Piezometer Log	Components
22 4 6 8 10 12 14 16 16 12 14 16 16 12 14 16 16 12 14 16 16 12 14 16 16 12 14 16 16 12 14 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	GNO		1.00 (232.87) 6.00 (227.87)			Silty CLAY, dark brown (TOPSOIL) CLAY, dark reddish-brown, trace fine grained sand, soft		S St VSt	0 m - 6.0 m; Alluvium	XU 1XU 1XU 1XU 1XU 1XU 1XU 1XU 1XU 1XU 1	 Completed with stemonument
28 30 See standar details of ab				GHE GPO	Box 66	38, Brisbane Qld 4001 6 3000 F: 61 7 3316 3333 E: bn				Job No). 1-23244

Clie Pro	ent : ject : ation :		Adani M	lining Pt nael Coa	y Ltd Mine Pr						HOLE No.		06P3r T 2 OF 4
Pos Rig	ition : Type	:	435727	.0 E 75	60835.0 M Nounting:	Truck		Surface RL: 233.9m Contractor : Watson Drilling apleted : 11/7/11	Dr	iller	rom Horiz. : 90° : Snickers		Processed : VLD Checked :
Jai		DRILL				Dat	e con	MATERIAL	LU	yyet	l by : MLW		Date : PIEZOMETER
	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Loa	, Components
32								CLAY, as previous		St	6.0 m - 36.0 m; Tertiary		
6					36.00 (197.87)			SILTSTONE, pale grey-white, very low strength, returned as Clayey SILT, stiff			36.0 m - 118.4 m; Permian		
.0 .2	ng (bit, 6 inch)				40.00 (193.87) 43.00 (190.87)			SILTSTONE AND MUDSTONE, interbedded, SILTSTONE; pale greyish-white, very low strength, MUDSTONE; orange, high strength SILTSTONE, pale grey-white, very low strength, returned as Clayey SILT, stiff					
.6	Rotary Wash Boring (bit,	N			46.00 (187.87)			CLAYSTONE, white, returned as silty CLAY, firm					
50 52 54 56					52.00 (181.87) 55.00 (178.87)			From 51.0m; pale grey with dark red and brown mottling. Becoming stiff SILTSTONE AND CLAYSTONE, interbedded, pale grey and dark orange, returned as clayey SILT/Silty CLAY, firm to stiff, trace dark red staining CLAYSTONE, orange-brown with some patches or dark red, low to medium strength					 50mm PVC casing with cement-bento grout
o See	ails o	fabb	sheets reviatio	ons (GHD		Box 6	68, Brisbane Qld 4001 16 3000 F: 61 7 3316 3333 E: br	email	Øah		Job N	o. 41-23244

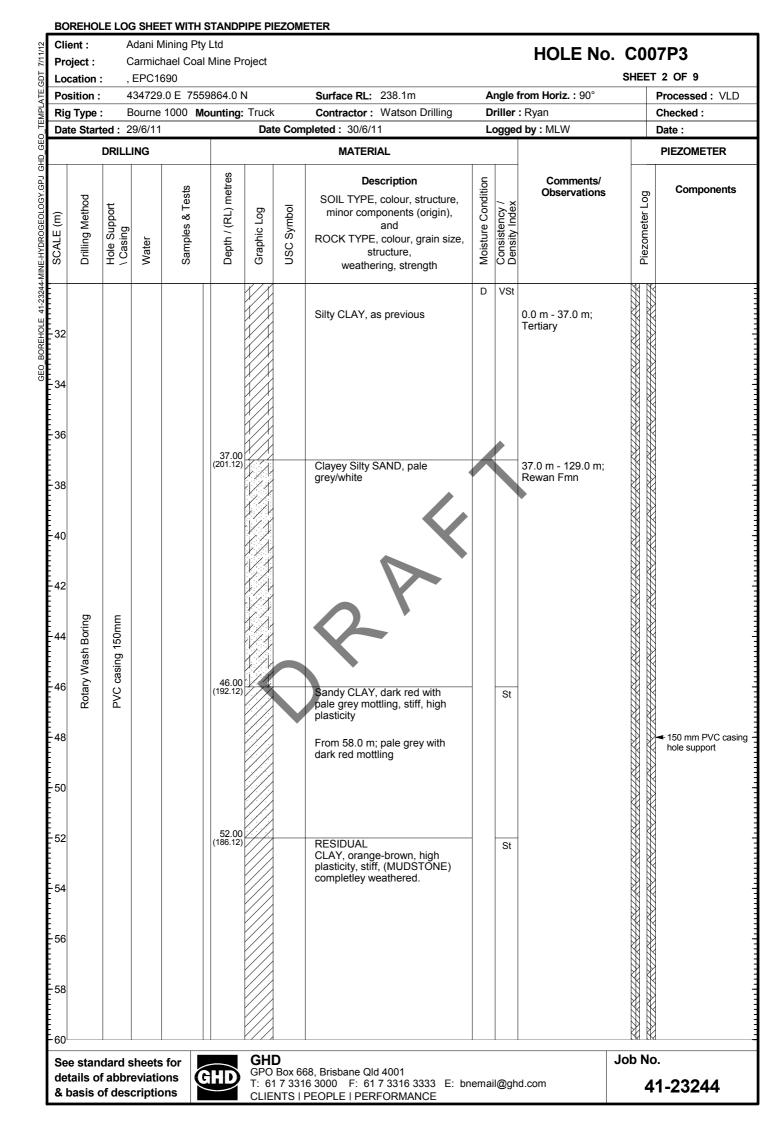

Pro Loc	ent : ject : ation :	(: ,	Carmich		Mine Pr						HOLE No.	SHEET	3 OF 4
	ition : Type			.0 E 7560 1000 M o				Surface RL: 233.9m Contractor : Watson Drilling		-	from Horiz. : 90° : Snickers		Processed : VLD Checked :
-			11/7/11		Junung.			pleted : 11/7/11			d by : MLW		Date :
		DRILL	ING					MATERIAL			-		PIEZOMETER
	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
52 54 56 58 70 72 72	sring (bit, 6 inch)				67.00 (166.87) 72.00 (161.87)			From 60.0m; becoming orange with grey mottling From 63.0m; pale white-grey From 66.0m; pale brown CARBONACEOUS MUDSTONE, dark grey and black, returned as carbonaceous clay, firm COAL AND MUDSTONE, interbedded, dark grey and black, returned as clay (60%) with coal (40%), coal very weak			36.0 m - 118.4 m; Tertiary	KU KU KU KU KU KU KU KU	
76 78 30 32 34 36	Rotary Wash Boring (bit,				83.00 (150.87) 87.00 (146.87)			CARBONACEOUS MUDSTONE, dark grey with patches of black, returned as CLAY, very stiff CARBONACEOUS MUDSTONE AND COAL, interbedded, dark grey and black, returned as clay (70%) and coal (30%)	-		C Seam D1 Seam	נו ויצרו ויצר או ויצרו ו	
90L					90.00								
-	stan	dard	sheets	for		GHI	D					Job No.	
			reviatio			GPO	Box 6	68, Brisbane Qld 4001 6 3000 F: 61 7 3316 3333 E: br	ama	il@ah			1-23244

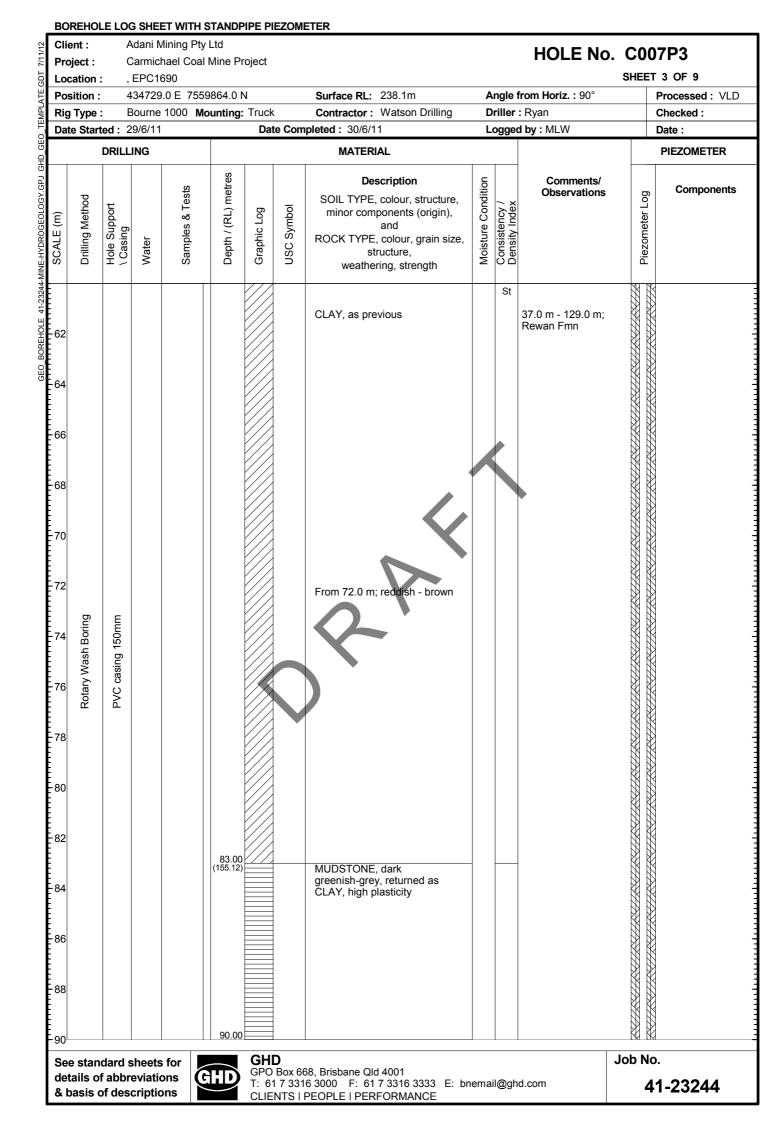

Client : Project :		Adani M Carmich	-	al Mine Pr	oject					HOLE No.	C00	6P3r
ocation	1:	, EPC16										4 OF 4
Position				60835.0 N			Surface RL: 233.9m		-	from Horiz. : 90°		Processed : VLD
Rig Type		Bourne 11/7/11	1000	Nounting:			Contractor : Watson Drilling pleted : 11/7/11			: Snickers d by : MLW		Checked :
ale Sid					Da	G OUII		L	აყყო	x ⊖y . IVI∟VV		Date :
	UKIL	LING					MATERIAL					PIEZOMETER
Drilling Method	Hole Support	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
90 00 00 90 90 90 90 90 90 90 90 90 90 9	IN			93.00 (140.87) 95.00 (138.87)			COAL, black, vitreous with some dull surfaces CARBONACEOUS MUDSTONE AND COAL, interbedded, dark grey and black, returned as clay (70%) and coal (30%) SILTSTONE, dark grey, trace fine grained sand, trace carbonaceous material From 98.0 m - 99.0 m; pale grey			36.0 m - 118.4 m; Permian	KU KU KU KU KU KU KU KU	
08 10 12 14 16				108.00 (125.87) 111.00 (122.87) 112.00 (121.87) 112.00 (121.87)			COAL, black, vitreous SILTSTONE, pale grey, trace fine grained sand, some carbonaceous material COAL, black, vitreous	-		D2 Seam D3 Seam		 ➡ Entonite ➡ Filter pack ➡ Screen ▲ End cap ➡ Hole Collapse
							Piezometer Installed.					
20												
ee sta	ndard	sheets		\frown	GHI						Job No	•
	of obb	reviatio		GHD			68, Brisbane Qld 4001 6 3000 F: 61 7 3316 3333 E: br					1-23244

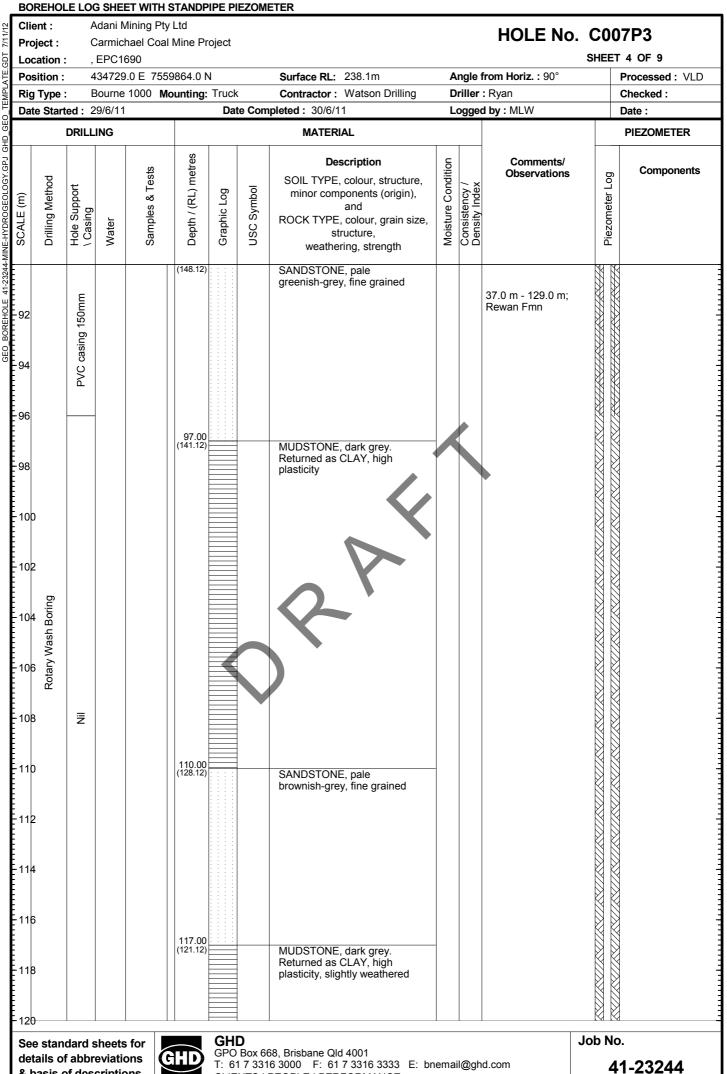
BOREHOLE LOG SHEET WITH STANDPIPE PIEZOMETER

Client Projec Locati	ct:	C		lining Pty nael Coal 890		oject					HOLE No.		7 P2 1 OF 7
Positio				.0 E 7559				Surface RL: 238.1m		-	irom Horiz. : 90°		Processed : VLD
Rig Ty Date S				1000 M o	ounting:			Contractor : Watson Drilling pleted : 4/7/11			: Ryan I by : MP		Checked : Date :
	[DRILL	ING					MATERIAL	·		•		PIEZOMETER
SCALE (m)	Urilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
2 4	Air Hammer (bit, 5 1/8 inch)				1.00 (237.11)		OL/ OH CI	Sandy SILT, medium plasticity, orange-brown, fine to medium grained sand, fine to medium sub-rounded to subangular lithic gravel. (TOPSOIL) CLAY, medium plasticity, grey, significant red mottling/streaking, trace iron nodules, fine grained sand (<10%), trace medium to coarse grained sand, stiff to very stiff. (Completley weathered CLAYSTONE) From 6.0 m; trace red/orange mottling, trace dark grey carbonaceous clay. From 7.0 m; no iron nodules.		St- VSt	0.0 m - 36.5 m; Tertiary	111×111×111×111×111×111×111×111×111×11	Completed with ste monument
14 4 16	Kotary Wash Boring (bit, 5 1/8 inch)	Nil	GNO					From 20.0 m; decrease in orange mottling, increase in strength with depth (very stiff).		VSt		23/1/23/1/23/1/23/1/23/1/23/1/23/1/23/1	
26 28 30								From 27.0 m; little to no orange mottling, increase in strength with depth (very stiff to hard).		VSt to H			

Pro	ent : ject : ation	C			y Ltd I Mine Pr	oject					HOLE No.		7P2 2 OF 7
Rig	ition Type	: 4	134731 Bourne	.0 E 755	59864.0 N Iounting:	Truck		Surface RL: 238.1m Contractor : Watson Drilling upleted : 4/7/11	D	riller	from Horiz. : 90° : Ryan d by : MP		Processed : VLD Checked : Date :
Dat	e otai	DRILL				Dui		MATERIAL		0990			PIEZOMETER
SCALE (M)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
32 34 36 38 40 42 44 46 48 50 52 54 55	Rotary Wash Boring (bit, 5 1/8 inch)	NI			36.50 (201.61) 46.00 (192.11)			CLAY, as previous. SANDSTONE, grey, yellow/orange/red staining, fine grained sand, trace medium grained sand, high quartz sand content, matrix supported, brittle (chips into small shards at <5mm), highly weathered. From 38.0 m; slightly weathered, slight increase in strength with depth. CLAYSTONE, pale grey, orange/red/dark red mottling/staining, trace iron nodules, fine grained sand, friable. From 48.5 m (approx); complete dark red staining of sediments, iron nodules (<1mm). From 51.0 m; grey with orange/yellow mottling, trace red mottling.		St-VSt	0.0 m - 36.5 m; Tertiary. Inferred from reinterpretation of geology. 36.5 m - 128.5 m; Rewan Fmn. Inferred from reinterpretation of geology.	ULIKU IKU IKU IKU IKU IKU IKU IKU IKU IKU	
58 60		idard s				GHI					I	ob No	
		of abbr			GHD	GPO	Box 6	68, Brisbane Qld 4001 6 3000 F: 61 7 3316 3333 E: br	emai	100 ah			1-23244

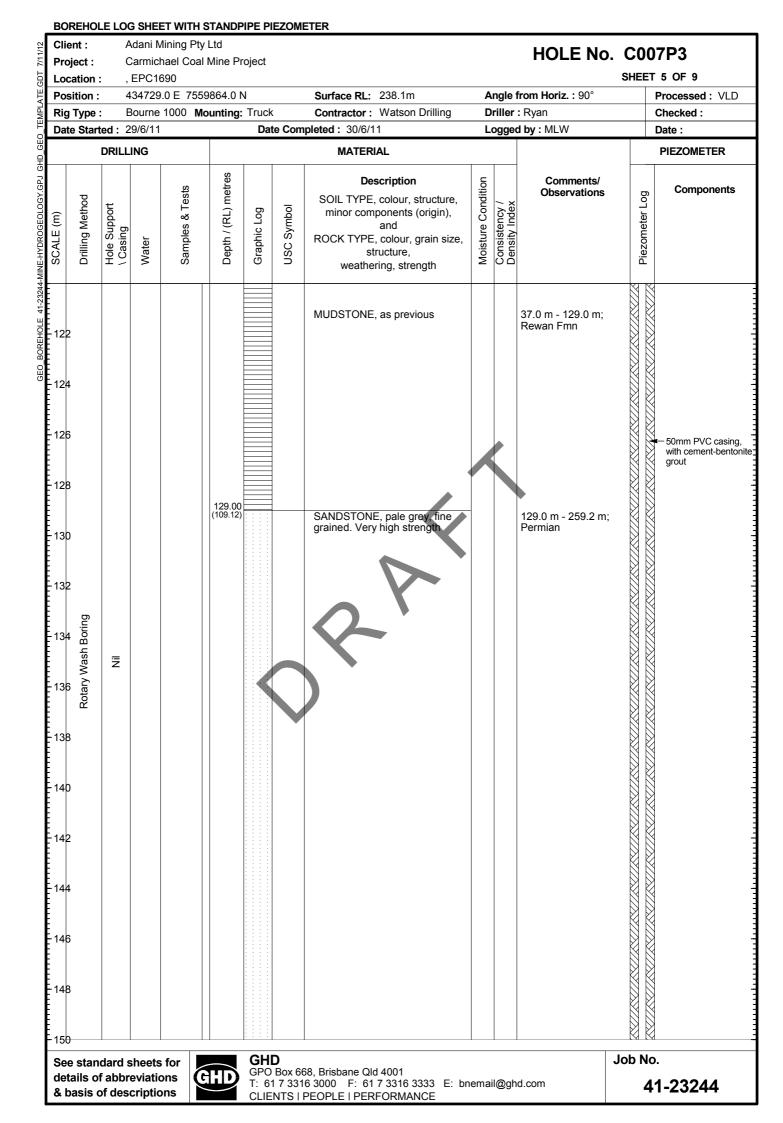


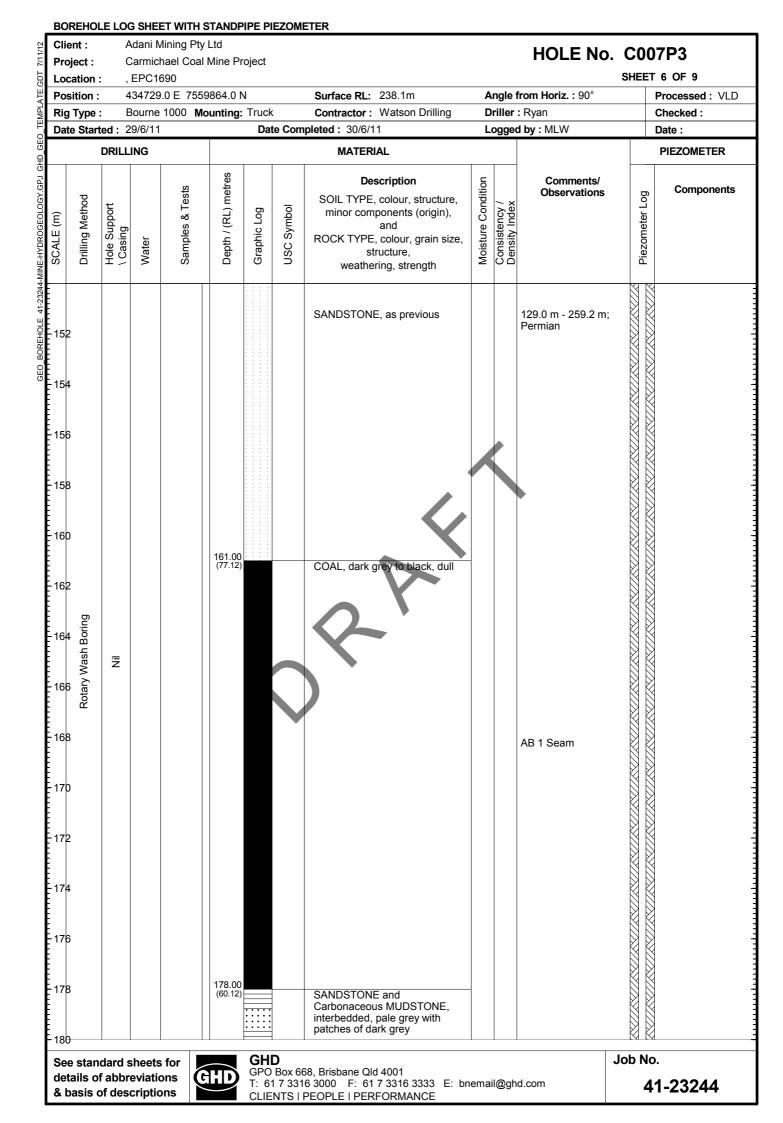

Pro	ent : ject : cation	/ (Adani N	ET WITH S Mining Pty hael Coal 690	Ltd						HOLE No.		7P2
	sition :			.0 E 7559				Surface RL: 238.1m			from Horiz. : 90°		Processed : VLD
-	Type o Star	ted: 3		1000 M o	ounting:			Contractor : Watson Drilling npleted : 4/7/11			: Ryan d by : MP		Checked : Date :
Jai	e olai					Dat	0011	MATERIAL		/gget			PIEZOMETER
	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
122 122 124 126 128 130 130 132 133 134 136 138 138 138 138 138 138 138 138 138 138	Rotary Wash Boring (bit, 5 1/8 inch)	IN						SILTSTONE and SANDSTONE interbedded, as previous.			36.5 m - 128.5 m; Rewan Fmn. Inferred from reinterpretation of geology. 128.5 m - 179.5 m; Permian. Inferred from reinterpretation of geology.	×	
150)					<u> </u>							1
			sheets			GPO		68, Brisbane Qld 4001			J	ob No).
			eviation cription		HD	T: 61	7 331	I6 3000 F: 61 7 3316 3333 E: bn PEOPLE PERFORMANCE	email	@gh	d.com	4	1-23244

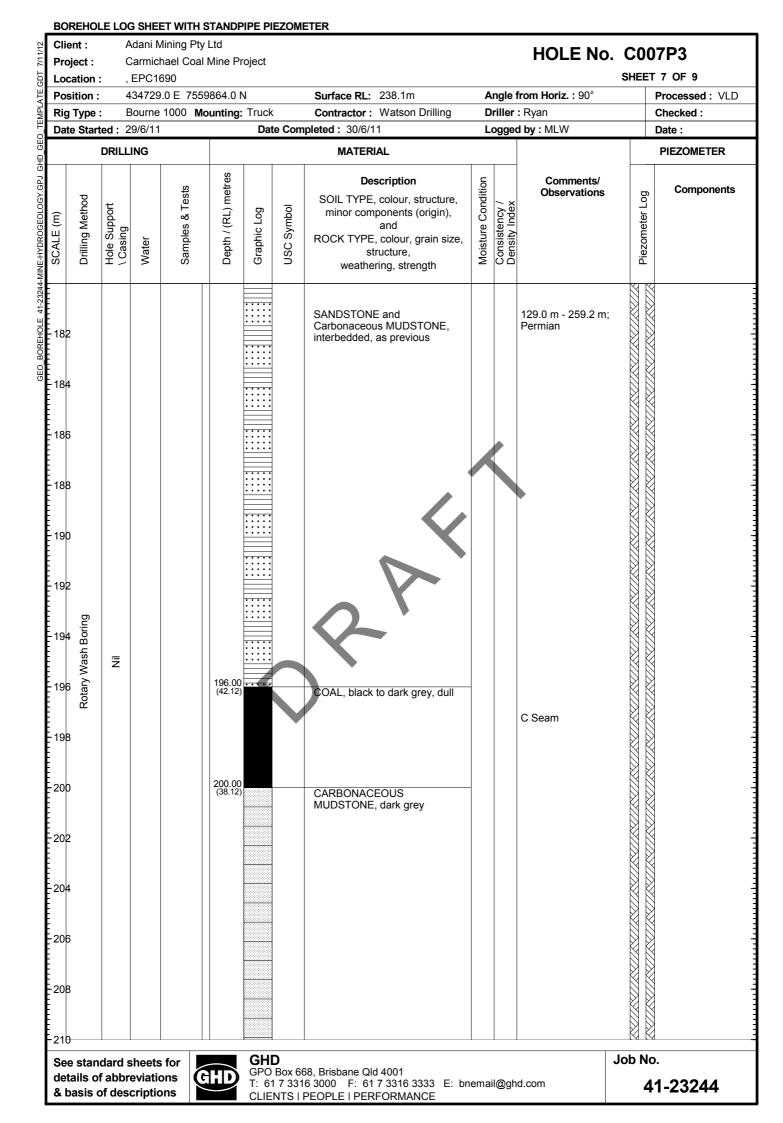

	ect :	(: ,	Carmich EPC16		Mine Pi							HEET	6 OF 7
	tion : Type			.0 E 7559 1000 M				Surface RL: 238.1m Contractor : Watson Drilling		-	rom Horiz. : 90° : Ryan		Processed : VLC Checked :
-		ted: 3			Juning			pleted : 4/7/11			i by : MP		Date :
		DRILL	.ING					MATERIAL					PIEZOMETER
	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
52 54 56 60 62 64 66 68 70 72 74 76	Rotary Wash Boring (bit, 5 1/8 inch)	I -			161.00 (77.11)			 weathering, strength SILTSTONE and SANDSTONE interbedded, as previous. COAL, black. COAL, black. From 165 to 167 m; interbedded with SILTSTONE, drey, trace fine grained sand. From 167 to 169m; increase in SILTSTONE material (50% / 50%). From 171 to 173 m; interbedded COAL and SILTSTONE (50% / 50%). From 176 to 177 m; interbedded COAL and SILTSTONE (50% / 50%). 			128.5 m - 179.5 m; Permian. Inferred from reinterpretation of geology.		 Bentonite Filter pack Screen End cap Bentonite
78					178.00 (60.11) 179.50 (58.61)			SANDSTONE, dark grey, fine grained sand, trace medium grained sand, matrix supported.	-				— Sand Backfill
80 6ee	stan	dard s	sheets			GHI		68. Brisbane Qld 4001			Jo	b No	•

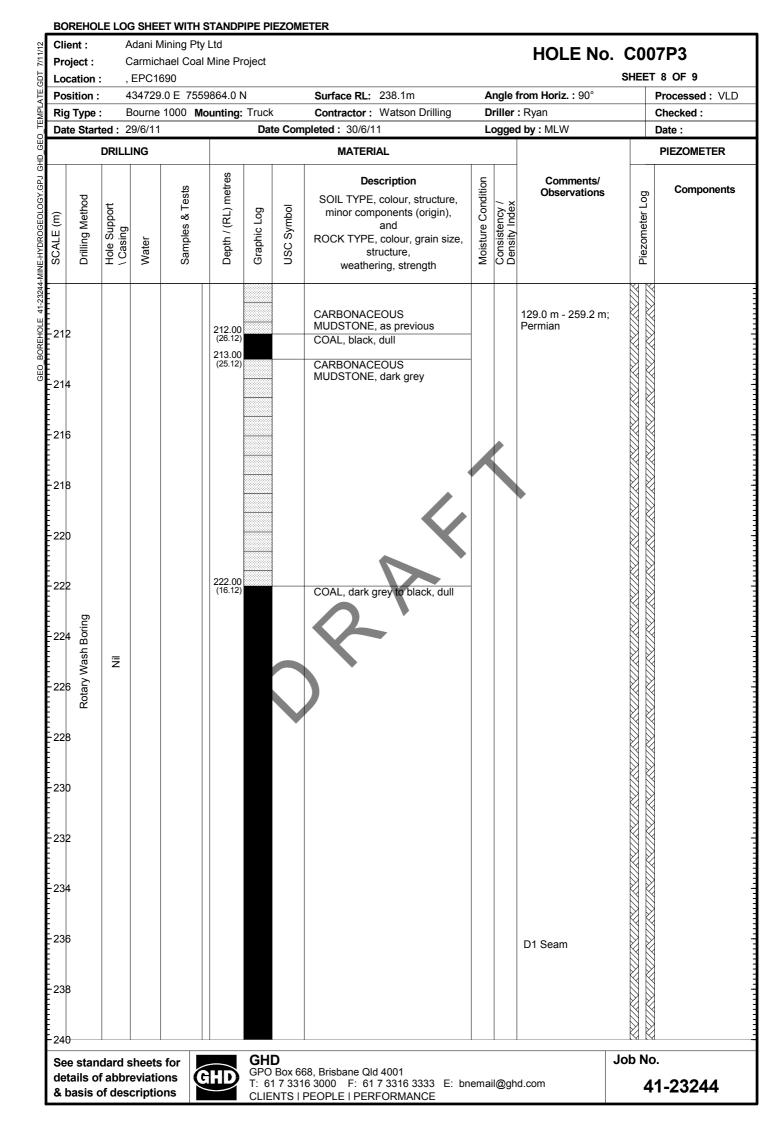
		LE LOO	g shei	ET WITH S	TANDP	IPE PI	EZOM	ETER					
	ient :			lining Pty							HOLE No	C0(N7P2
	oject :			hael Coal I	Mine Pr	oject							
-	cation :		EPC1									SHEE	T 7 OF 7
	sition :			.0 E 7559 1000 Mo				Surface RL: 238.1m Contractor : Watson Drilling		-	rom Horiz. : 90° Ryan		Processed : VLD
	g Type : ite Start				unting:			pleted : 4/7/11			l by : MP		Checked : Date :
						Dat	e oom			Jgget			
<u> </u>		DRILL	ING					MATERIAL					PIEZOMETER
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
18 18 18 18 19 19 19 19 19 20 20 20	4 6 8 0 2 4 6 8 0 2 4							End of borehole at 179.5 m. Piezometer installed.					
-20 -21													
Se	e stan	dard s	sheets	s for	\sim	GHI	כ					Job N	0.
	tails of			ons (GPO	Box 66	68, Brisbane Qld 4001	oma	1@~h	d com		
	basis o			ons 🛛 🎽				6 3000 F: 61 7 3316 3333 E: bn PEOPLE PERFORMANCE	emal	ugno	a.com	2	11-23244

Client : Project : Location :		lining Pty nael Coal	Ltd						HOLE No.		7P3 1 OF 9
Position :	434729	.0 E 7559				Surface RL: 238.1m			from Horiz. : 90°		Processed : VLD
Rig Type : Date Started		1000 Mo	ounting:		Com	Contractor : Watson Drilling pleted : 30/6/11			: Ryan d by : MLW		Checked : Date :
	ILLING			Dut		MATERIAL		ogget			PIEZOMETER
SCALE (m) Drilling Method Hole Support	\ Casing Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
2 4 6 8 10 12			3.00 (235.12)		SP-SM	SANDY SILT, brown, some rootlets, dry (TOPSOIL) From 2.0m; pale brown Silty CLAY, dark red with pale brown mottling, very stiff, dry, high plasticity	D	VSt	0.0 m - 37.0 m; Tertiary		 Completed with stee monument Gypset 30 plug

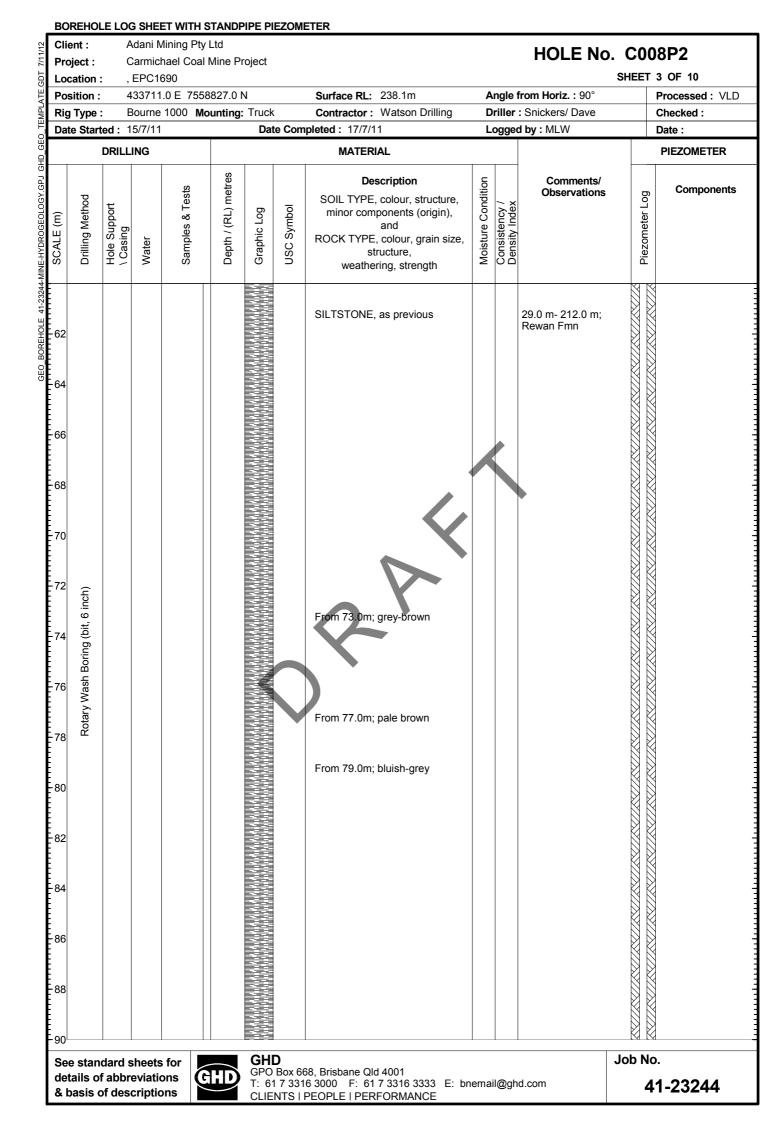







& basis of descriptions

CLIENTS | PEOPLE | PERFORMANCE


Client :		Adani M	/lining Pt	•						HOLE No.	C00	7P3
Project :				al Mine Pr	oject					HOLL NO.		9 OF 9
Location Position		, EPC1		59864.0 N	J		Surface RL: 238.1m	Δ	nale f	rom Horiz. : 90°		Processed : VLD
Rig Type				Nounting:			Contractor : Watson Drilling		-	: Ryan		Checked :
Date Star	rted :	29/6/11			Dat	e Com	pleted : 30/6/11	L	ogged	l by : MLW		Date :
	DRIL	LING					MATERIAL					PIEZOMETER
SCALE (III) Drilling Method	Hole Support	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
242 244 246 248 250 252 254 256 258 256 258 260 262 264 266				242.00 (-3.88) 252.00 (-13.88) 259.20 (-21.08)			COAL, as previous. CARBONACEOUS MUDSTONE, dark grey			129.0 m - 259.2 m; Permian D2 Seam		 Bentonite Filter pack Screen End cap
268												
See star	ndard	sheete	s for I		GHI	D					Job No).
letails o	of abb		ons (GHD	GPO T: 61	Box 66	58, Brisbane Qld 4001 6 3000 F: 61 7 3316 3333 E: br PEOPLE I PERFORMANCE	nemai	l@gh			1-23244

Client : Project :	Adani Mining Carmichael (l Pty Ltd Coal Mine Projec	t		HOLE No	. C00	8P1
Location :	, EPC1690					SHEET	1 OF 2
Position :	433713.0 E	7558829.0 N	Surface RL: 238.1m	Angle	from Horiz. : 90°	F	Processed : VLD
Rig Type :		Mounting: Tru			: Snickers	(Checked :
Date Started :	14/7/11		Date Completed : 15/7/11	Logge	d by : MLW	[Date :
DRII	LING		MATERIAL		-		PIEZOMETER
Drilling Method Hole Support	Vater Water	Depth / (RL) metres Graphic Log	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
22 44 66 88 100 122 14 (quig) tiq 16 Hammer (pit 9 inc) 17 18 20 22 24 24 26		2.00 (236.14) 3.00 (235.14) 5.00 (233.14) 8.00 (230.14)	MI Clayey SILT, dark orange, dry, trace organic material CL Silty CLAY with trace sand, pale brown, low plasticity, fine grained sand, trace, fine to medium grained iron nodules. Clayey SAND, pale grey, fine grained. SC SILTSTONE, pale grey, high strength, some veins of carbonaceous material, dry, slightly weathered. CLAY, brown and pale grey, low to medium plasticity, dry, very stiff, rock structure, observed (pre-consolidated MUDSTONE, TERTIARY SEDIMENTS)		0.0 m - 29.0 m; Tertiary		 Completed with ster monument 50mm PVC casing, with cement-benton grout
30					29.0 m - 56.0 m; Rewan Fmn.		
See standard	I sheets for previations		HD O Box 668, Brisbane Qld 4001			Job No.	

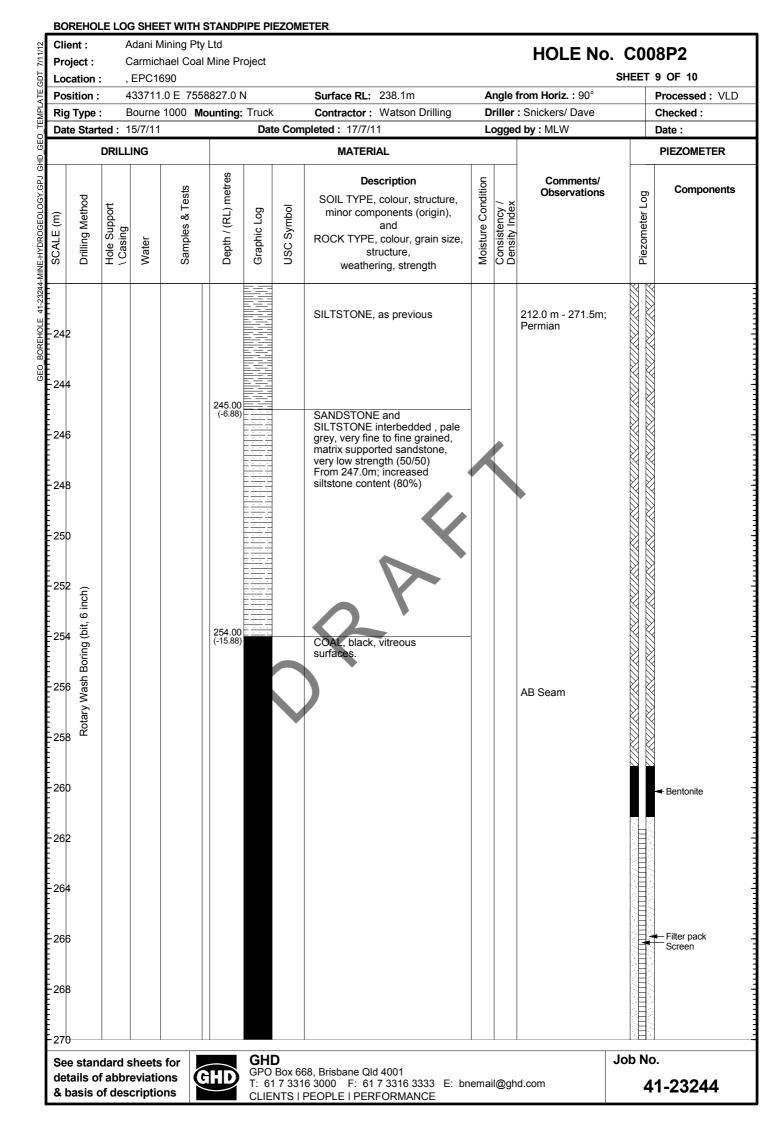
Client : Project : Location : Position :		C			y Ltd Il Mine Pr	oject					HOLE No.	C008P1 SHEET 2 OF 2			
					558829.0 N Surface RL: 238.1m					-	from Horiz. : 90°	Processed : VLD			
Rig Type :				1000 N	Mounting: Truck Contractor : Watson Drilling					Driller : Snickers Logged by : MLW			Checked :		
Date Started : 14/7/11 DRILLING										oggeo			Date :		
		DRILL	ING					MATERIAL					PIEZOMETER		
SUALE (III)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components		
	Air Hammer (bit, 6 inch)	Ni			47.00 (191.14) 57.50 (180.64)			CLAY, as previous.			Inferred from reinterpretation of geology.		 ➡ Bentonite ➡ Filter pack ➡ Screen ➡ End cap 		
58								Piezometer installed.							
0															
	stand	dard s	sheets	for	\frown	GHI		68, Brisbane Qld 4001				Job No			

	nt: ect:		Adani Mining Pty Ltd Carmichael Coal Mine Project							HOLE No. C008P2				
-	ation :		EPC16			ojeci						SHEET	1 OF 10	
	ition :				58827.01	N		Surface RL: 238.1m	Α	ngle	from Horiz. : 90°		Processed : VLD	
Rig Type :			Bourne	1000 N	lounting:	Truck	Ι.	Contractor: Watson Drilling	D	riller	: Snickers/ Dave		Checked :	
Date	e Start	ed :	15/7/11			Dat	te Com	pleted : 17/7/11	Logged by : MLW				Date :	
		DRILL	ING					MATERIAL					PIEZOMETER	
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations] Piezometer Log	Components	
2							CI	Silty CLAY, yellow-brown, high plasticity, soft, trace sand and gravel, sand fine to medium grained, gravel of ironstone.		S	0.0 m - 29.0 m; Tertiary		 Completed with ste monument 	
4					4.00 (234.12) 6.00			SILTSTONE, dark grey, some orange staining, returned as Clayey GRAVEL	-					
8					6.00 (232.12)		СН	CLAY, pale greenish-grey with some orange-brown staining, stiff, high plasticity, trace fine grained sand		St				
10 12 14 16 18	Rotary Wash Boring (bit, 6 inch)	PVC casing 150mm						From 15.0 to 17.0m; Increase in orange-brown staining.				1921 1921 1921 1921 1921 1921 1921 1921 1921 1921 1921 1921 1921 1921 1921 1921 1927 1927 1927 1927 1927 1927 1927 1927 1927 1927 1927 1927 1927 1927 1927 1927	✓ 150 mm PVC casi hole support	
22 24 26			GNO		29.00 (209.12)		СН	CLAY, dark greenish-grey, stiff to very stiff, high plasticity	-	ST - VSt	29.0 m- 212.0 m; Rewan Fmn	2011201120112011201120112011201120 20112011		
30L				ı					1	voi		N K	4	
See			sheets reviatio		GHD	GPO		68, Brisbane Qld 4001				Job No).	

			Adani Mining Pty Ltd Carmichael Coal Mine Project							HOLE No. C008P2					
	ation		EPC16								\$	SHEET 2	OF 10		
Position :					58827.0 N			Surface RL: 238.1m		-	rom Horiz. : 90°		Processed : VLD		
-	Туре			1000 N	lounting:			Contractor : Watson Drilling			Snickers/ Dave		Checked :		
Dat	e Star	t ed : 1	5/7/11			Dat	e Con	npleted : 17/7/11	L	ogged	by : MLW		Date :		
		DRILL	ING					MATERIAL					PIEZOMETER		
SUALE (III)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	 Consistency / Density Index 	Comments/ Observations	Piezometer Log	Components		
32 34 36								From 34.0m; pale grey From 36.0m; dark purple-grey		VSt		17371173711737117371173711737117371			
0 2 4	Rotary Wash Boring (bit, 6 inch)	PVC casing 150mm			45.00 (193.12)		СН	From 39.0 - 40.0m; Colour change to pale grey CLAY with ironstone, pinkish-red with patches of pale grey, firm, medium to high plasticity, fine to coarse nodules of ironstone	-	F	*	103110311031103110311031103110311031103			
48 50	Rota							From 48.0m; dark red with some white patches. From 49.0 to 51.0m; white with patches of dark red							
52 54					52.00 (186.12)			SILTSTONE, dark red with trace patches of pale grey, returned as Clayey SILT, extremely low strength.							
56								From 55.0m; yellow-brown							
50 ^L												КК			
Ser	stan	dard s	heets	for		GH	כ				J	ob No.			
			eviatio		GHD	CPO	Day 6	68, Brisbane Qld 4001							

Cliei Proj	nt: ect:	C	Carmich	ining Pty ael Coal I		oject					HOLE No.		
	ation :		EPC16										4 OF 10
	tion: Type:			0 E 7558 1000 Mo				Surface RL: 238.1m Contractor : Watson Drilling		-	rom Horiz. : 90° : Snickers/ Dave		Processed : VLD Checked :
-			5/7/11		unung.			npleted : 17/7/11			i by : MLW		Date :
		DRILL						MATERIAL		55			PIEZOMETER
					6								
SCALE (M)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
92 94 96 98 100 102 104 106 110 112 112 114 116 118	Rotary Wash Boring (bit, 6 inch)							SILTSTONE, as previous			29.0 m- 212.0 m; Rewan Fmn	801180118011801180118011801180118011801	
120												KI K	
See	stan	dard s	sheets		\sim	GHE)					Job No).
			eviatio		HD	GPO	Box 6	68, Brisbane Qld 4001 I6 3000 F: 61 7 3316 3333 E: bn		il@ah	d.oom	-	1-23244

Project :	Adani Mining Pty Carmichael Coal				HOLE No.	C008P2
Location :	, EPC1690				Sł	HEET 5 OF 10
Position :	433711.0 E 755	8827.0 N	Surface RL: 238.1m	-	from Horiz. : 90°	Processed : VLD
Rig Type :	Bourne 1000 M		Contractor : Watson Drilling		: Snickers/ Dave	Checked :
Date Started		Date Co	npleted : 17/7/11	Logge	d by : MLW	Date :
DRI	LLING		MATERIAL		-	PIEZOMETER
SCALE (m) Drilling Method Hole Support	\ Casing Water Samples & Tests	Depth / (RL) metres Graphic Log USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition Consistency / Density Index	Comments/ Observations	Diezometer Log
122 124 126 128 130 132 (uu) (uu) (uu) (uu) (uu) (uu) (uu) (uu			SILTSTONE, as previous		29.0 m- 212.0 m; Rewan Fmn	Somm PVC casing with cement-bentor grout


Clien Proje				ining Pty ael Coal I		niect					HOLE No.	C00	8P2
Loca			EPC16			Jeci							6 OF 10
	tion :			0 E 7558	827.0 N			Surface RL: 238.1m	Α	ngle	rom Horiz. : 90°		Processed : VLD
Rig T	ype :	E	Sourne	1000 Mo	ounting:	Truck		Contractor : Watson Drilling	D	riller	Snickers/ Dave	(Checked :
Date	Start	ed: 1	5/7/11			Date	e Com	pleted : 17/7/11	L	ogge	l by : MLW		Date :
		DRILL	ING					MATERIAL					PIEZOMETER
SCALE (M)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
	Rotary Wash Boring (bit, 6 inch)							SILTSTONE, as previous			29.0 m- 212.0 m; Rewan Fmn	XUIXUIXUIXUIXUIXUIXUIXUIXUIXUIXUIXUIXUIX	
178					178.00 (60.12)			SILTSTONE and SANDSTONE interbedded, blue-grey, very fine- to fine-grained sandstone, low	-				
180		-			· · · · ·		`	1	1	1			
200	stan	dard s	heets	for	\sim	GHE)	68, Brisbane Qld 4001			Jo	b No.	

Client : Project :			lining Pty nael Coal I		niect					HOLE No.	C008	3P2
Location		EPC16			ojeci					s	HEET 7	OF 10
Position :			.0 E 7558	3827.0 N	1		Surface RL: 238.1m	Α	nglef	from Horiz. : 90°		Processed : VLD
Rig Type			1000 Mo				Contractor : Watson Drilling		-	: Snickers/ Dave		Checked :
Date Star							pleted : 17/7/11			d by : MLW	C	Date :
	DRILL	ING					MATERIAL		-	-		PIEZOMETER
				s						Commontel		
Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
182 184 186 187 180 190 191 192 193 194 195 197 198 200 201 202 204 206 208							 weathering, strength strength, 70% SILTSTONE 30% SANDSTONE, returned as Sandy Clayey SILT. SILTSTONE and SANDSTONE interbedded, as previous. 			29.0 m- 212.0 m; Rewan Fmn		

GPO Box 668, Brisbane Qld 4001 T: 61 7 3316 3000 F: 61 7 3316 3333 E: bnemail@ghd.com CLIENTS | PEOPLE | PERFORMANCE

Clie Proj	nt: ect:			/lining Pty hael Coal		oject	_		_	_	HOLE No.	C00)8P2
-	ation		EPC16			- ,					:	SHEET	8 OF 10
Posi	ition :	4	433711	.0 E 755	8827.0 1	1		Surface RL: 238.1m	Α	nglef	rom Horiz. : 90°		Processed : VLD
Rig	Туре		Bourne	1000 M	ounting:			Contractor: Watson Drilling	D	riller	Snickers/ Dave		Checked :
Date	Star	ed :	15/7/11			Dat	e Con	pleted: 17/7/11	L	oggeo	l by : MLW		Date :
		DRILL	ING					MATERIAL					PIEZOMETER
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
212 214 216 218 220 222 224 224 226	Rotary Wash Boring (bit, 6 inch)				(28.12) 212.00 (26.12)			SANDSTONE, pale blue-grey, very fine to fine grained, low strength, returned as Silty SAND. SILTSTONE, pale grey, lenses of sandstone, very fine to fine grained, low strength.			212.0 m - 271.5m; Permian	111X/11X/11X/11X/11X/11X/11X/11X/11X/11	
228 230 232 234 236	Rota				227.00 (11.12) 228.00 (10.12) 234.50 (3.62) 235.50 (2.62)			SANDSTONE, pale grey, very fine to fine grained, matrix supported, low strength. SILTSTONE, pale grey, lenses of sandstone, very fine to fine grained, low strength. SANDSTONE, pale grey, very fine to fine grained, matrix supported, low strength. SILTSTONE, pale grey, lenses of sandstone, very fine- to fine-grained, low strength	-			9/1/22/1/22/1/22/1/22/1/22/1/22/1/22/1/	
238													
240							_	1	1				NI
			sheets			GPO		68 Brishana Old 4001			•	Job No	D.
ta	ails o	fabbi	reviatio criptio	ons 🧿		GPO	Box 6	68, Brisbane Qld 4001 I6 3000 F: 61 7 3316 3333 E: bn	iema	il@gh			1-23244

		LE LO	g she	ET WITH S	STANDP	IPE PI	EZOM	ETER					
	ient :			Vining Pty							HOLE No	C0(08P2
	oject :			hael Coal	Mine Pr	oject							
-	cation		EPC1		00701			0 1 0 0 1	•			SHEET	10 OF 10
	sition : g Type			1.0 E 7558 1000 Mc				Surface RL: 238.1m Contractor : Watson Drilling		-	rom Horiz. : 90° Snickers/ Dave		Processed : VLD Checked :
	ate Star				unung.			pleted : 17/7/11			by : MLW		Date :
						Da	e oom			Jaged			
<u> </u>		DRILL	ING	1				MATERIAL					PIEZOMETER
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	, Components
					074 50			COAL, as previous.					
-27 -27 -27	4				271.50 (-33.38)			End of borehole at 271.5 m. Piezometer installed.					
27													· ·
-28	2							P.					
-28	4												
-28	6												
-28	8						¥						
29	o												
-29	2												
-29	4												
-29	6												
29	8												
de	e stan tails o	f abbr	eviati	ons 🤆	HD	GPO T: 6'	Box 66	58, Brisbane Qld 4001 6 3000 F: 61 7 3316 3333 E: bn	emai	il@gha	d.com	Job N	o. 11-23244
&	basis o	of des	criptio	ons 🛛 🗋				PEOPLE PERFORMANCE		<u> </u>		6	TI-2J244

Client : Project Locatio	:		ining Pty ael Coal 90		oject					HOLE No.	SHEET	1 OF 2
Position			0 E 7569				Surface RL: 254.5m		-	from Horiz. : 90° : Dave		Processed : VLD
Rig Typ Date Sta			1000 Mc	bunung:			Contractor : Watson Drilling pleted : 22/7/11			d by : RB		Checked : Date :
	DRIL	LING					MATERIAL			-		PIEZOMETER
SCALE (m) Drilling Method	Hole Support	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations] Piezometer Log	Components
2 4 6 8 10 12 14 14 16 112 14 12 12 14 12 12 14 12 14 12 12 14 14 12 12 14 12 12 14 12 12 14 12 12 12 12 12 12 12 12 12 12 12 12 12				2.00 (252.46) 6.00 (248.46)		GP- GM	Silty GRAVEL, orange-brown, trace pale brown clay, fine gravel, orange-brown, fine grained sandstone, some fine to medium grained quartz sand. Silty SANDSTONE, orange-brown and pale grey-green mottled, fine grained sand, highly to extremely weathered. Returning as Clayey SAND. From 4.0 m; pale green-grey with some red. Carbonaceous SILTSTONE, pale green-brown, black flecks (carbonaceous material), trace fine grained sand. Some carbonaceous mudstone, pale green-brown, black flecks (carbonaceous material). Highly weathered.			0.0 m - 2.0 m; Alluvium 2.0 m - 24.0 m; Tertiary	1241) X411 X411 X411 X411 X411 X411 X411 X	 Completed with ster monument
24 26 28		GNO		24.00 (230.46)			SANDSTONE and SILTSTONE interbedded, SANDSTONE; pale green and white, medium grained sand, matrix supported (clay), extremely weathered. SILTSTONE; pale pink-white (leached), trace pink tabular flecks, distinctly weathered.			24.0 m - 55.0 m; Permian	11) X (1) X	 50mm PVC casing, with cement-bentor grout
		sheets			GPO	Box 66	68, Brisbane Qld 4001 6 3000 F: 61 7 3316 3333 E: bn				Job No). 1-23244

Client : Project			Mining Pty hael Coal		niect					HOLE No.	C01	I1P1
-roject		, EPC1		MILLE FI	ojeci							T 2 OF 2
Position	ı :	428839	9.0 E 756	9952.0 N	١		Surface RL: 254.5m	Α	ngle fr	om Horiz. : 90°		Processed : VLC
Rig Typ			e 1000 M e	ounting:			Contractor: Watson Drilling		riller :			Checked :
Date Sta		21/7/11	1		Da	te Com	pleted : 22/7/11	L	ogged	by : RB		Date :
	DRIL	LING	1				MATERIAL					PIEZOMETER
Drilling Method	Hole Support	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
8 9 F 7 0 8 9 F 7 2 Air Hammer (bit,6 1/2 inch)	Ni			32.00 (222.46) 38.50 (215.96)			SANDSTONE and SILTSTONE interbedded, as previous. SANDSTONE, pink, pale pink/orange/white mottling, medium grained sand, predominately quartz and carbonaceous material (black), matrix supported (clay), extremely weathered. From 33.0 to 35.0 m; fine grained sand. SANDSTONE, orange-brown, fine to medium grained sand, predominately quartz and contains specks of carbonaceous material (black), grain supported, trace clay, extremely weathered, orumbles between the fingers			,	X//X//X//X//X//X//X//X//X//X//X//X//X//	✓ Bentonite
50 52 54 56 58				<u>55.00</u> (199.46)			End of borehole at 55.0 m. Piezometer installed.					 Filter pack Screen Screen
0												
ee sta	indard	sheet			GH		Reichang Old 4004				Job No	Э.
etails	of abb	oreviati scripti	ons 🤇	iHD	T: 6	1 7 331	68, Brisbane Qld 4001 6 3000 F: 61 7 3316 3333 E: br PEOPLE PERFORMANCE	nema	il@ghd	.com	4	1-23244

Project : _ocation :		EPC16	ael Coal 90	Mine Pr	oject					HOLE No		1 OF 4
Position :			0 E 7569	9950.0 N	1		Surface RL: 254.4m	Α	ngle	from Horiz. : 90°		Processed : VLD
Rig Type :			1000 M o	ounting:			Contractor: Watson Drilling			: Dave/ Troy		Checked :
Date Start	ed: 2	2/7/11			Dat	e Com	pleted: 22/7/11	L	ogge	d by : RB		Date :
	DRILL	ING					MATERIAL					PIEZOMETER
Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations] Piezometer Log	Components
22 4 4 5 3 10 12 14 16 16 18 18 18 20 22 24 26 28	Nij	GNO		2.00 (252.40) (252.40) (248.40)			Silty GRAVEL, orange-brown, trace pale brown clay, fine grained sandstone, some fine to medium grained quartz sand. Silty SANDSTONE, orange-brown and pale grey-green mottled, fine grained sand, highly to extremely weathered. Returning as Clayey SAND. From 4.0 m; pale green-grey with some red. Carbonaceous SILTSTONE, pale green-brown, black flecks (carbonaceous material), trace fine grained sand. Some carbonaceous mudstone, pale green-brown, black flecks (carbonaceous mudstone, pale green-brown, black flecks (carbonaceous material). Highly weathered. From 17.0 to 20.0 m; trace iron staining. From 20.0 to 24.0 m; green-grey. SANDSTONE and SILTSTONE interbedded, SANDSTONE interbedded, SANDSTONE; pale green and white, medium grained sand, matrix supported (clay), extremely weathered. SILTSTONE; pale pink-white (leached), trace pink tabular flecks, distinctly weathered.			0.0 m - 2.0 m; Alluvium 2.0 m - 24.0 m; Tertiary 24.0 m - 104.5m; Permian	11/2/1/2/1/2/1/2/1/2/1/2/1/2/1/2/1/2/1/	<u>Completed with stressed</u>

BOREHOLE LOG SHEET WITH STANDPIPE PIEZOMETER

Client :		lining Pty							HOLE No.	C01	1P3
Project : .ocation :	, EPC1	hael Coal	Mine Pr	oject							2 OF 4
Position :		.0 E 756	9950 0 1	J		Surface RL: 254.4m	Δ	nale f	rom Horiz. : 90°		Processed : VLD
Rig Type :		1000 M				Contractor : Watson Drilling		-	Dave/ Troy		Checked :
Date Started			ouningi			pleted : 22/7/11			by:RB		Date :
						MATERIAL		33			PIEZOMETER
											PIEZOWETER
Drilling Method Hole Support	\ Casing Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
12 4 6 8 0 1			32.00 (222.40) 38.50 (215.90) 53.00 (201.40)			SANDSTONE and SILTSTONE interbedded, as previous. SANDSTONE, pink, pale pink/orange/white mottling, medium grained sand, predominately quartz and carbonaceous material (black), matrix supported (clay), extremely weathered. From 33.0 to 35.0 m; fine grained sand. SANDSTONE, orange-brown, fine to medium grained sand, predominately quartz and contains specks of carbonaceous material (black), grain supported trace clay, extremely weathered, orumbles between the fingers: SANDSTONE, pale grey, medium grained sand, predominately rounded quartz, trace lithic fragments, contains carbonaceous material (black, fine to medium grained), returning as sandy clay, low plasticity, extremely weathered.				1115×1115×1115×1115×1115×1115×1115×111	- 50mm PVC casing with cement-bento grout

GHD

GHD GPO Box 668, Brisbane Qld 4001 T: 61 7 3316 3000 F: 61 7 3316 3333 E: bnemail@ghd.com CLIENTS | PEOPLE | PERFORMANCE

Job No.

Clier Proje				/lining Pty hael Coa		oject					HOLE No.	C01	1P3
-	tion	;	EPC1	690								SHEET	3 OF 4
	tion :			5.0 E 756				Surface RL: 254.4m		-	rom Horiz. : 90°		Processed : VLD
-	Гуре			1000 M	lounting:			Contractor : Watson Drilling			: Dave/ Troy		Checked :
Date	Star	ted: 2	22/7/11			Dat	te Con	pleted : 22/7/11	L	ogge	i by : RB		Date :
		DRILL	ING					MATERIAL					PIEZOMETER
SUALE (M)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
52 54					65.00 (189.40)			SANDSTONE, as previous.	_		24.0 m - 104.5m; Permian	11.KV1.KV1.KV1.KV1.K 11.KV1.KV1.KV1.KV1.K	
56 58					69.00 (185.40)			returning as clay, low plasticity, extremely weathered.	_				
70 72	, 6 inch)				70.50 (183.90) 73.00 (181.40)			Carbonaceous SILTSTONE, dark grey, fine grained, trace coal.	-				
74	Rotary Wash Boring (bit,	Nij			76.00 (178.40) 77.00 (177.40)			interbedded, COAL, black, shiny. SILTSTONE; dark grey, carbonaceous, fine grained. Carbonaceous SILTSTONE, dark grey, fine grained, with clay.	-				
78 80 82 84	Roi						¥	Carbonaceous SANDSTONE, pale grey, fine grained sand, significant black specks and needles (carbonaceous material) and laminae. From 79.0 m; interbedded siltstone, soft, clay present indicating harder and softer bands of siltstone/mudstone. From 80.0 to 81.0 m; carbonaceous tuff, pale grey-brown, 'layers' of fine needles.				1115KU15KU15KU15KU15KU15KU15KU17KU17	
38					89.00 (165.40) 90.00			COAL, black, predominately disintegrates to clay-like	-				
90∟													
			sheets					68 Brisbane Old 4001			J	ON CO	•
ta	ils o	f abbr	sheets eviatio criptic	ons 🤇	GHD	T: 61	Box 6 1 7 331	68, Brisbane Qld 4001 I6 3000 F: 61 7 3316 3333 E: br PEOPLE I PERFORMANCE	nemai	il@gh		lob No 4	1-23244

Client : Project	:	Adani M Carmic	ET WITH S /lining Pty hael Coal	Ltd		<u>EZOMI</u>	EIEK			HOLE No.		1P3 4 OF 4
Locatio Positior		, EPC1	5.0 E 7569	9950.0 N	1		Surface RL: 254.4m	A	nglef	from Horiz. : 90°		Processed : VLD
Rig Typ			1000 M o				Contractor: Watson Drilling		-	: Dave/ Troy		Checked :
Date Sta	arted :	22/7/11			Dat	e Com	pleted: 22/7/11	L	oggeo	d by : RB		Date :
	DRIL	LING					MATERIAL					PIEZOMETER
SCALE (m) Drilling Method	Hole Support	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
92 94 96 (bit, 6 inch)				(164.40)			\material Carbonaceous SILTSTONE, dark grey, fine grained, some soft clay From 95.0m; grey			24.0 m - 104.5m; Permian		 ■ Bentonite
01 00 86 96 Rotary Wash Boring (bit, 6 inch)	Z			98.80 (155.60) 100.00 (154.40) 101.00 (153.40)			COAL, black, some disintegration in water to clay Carbonaceous SILTSTONE, dark grey, fine grained, with clay and silt (grey). COAL, black, little/no disintegration to clay			D1 Seam		← Filter pack — Screen
104				104.60 (168.800) (149.40)			Carbonaceous SILTSTONE, dark grey, fine grained.	-				End cap Cave in
106 108 110 112 114 116							End of borehole at 105 m. Piezometer installed.					
118 120												
details	of abb	l sheets previations scriptions	ons 🧿	iHD	T: 61	Box 66 I 7 331	38, Brisbane Qld 4001 6 3000 F: 61 7 3316 3333 E: bn PEOPLE PERFORMANCE	emai	il@gh		Job No 4'	1-23244

lient : roject : ocation :		lining Pty lael Coal		oject					HOLE No.		2P1
osition : tig Type :	430890. Bourne	0 E 756 1000 M		Truck		Surface RL: 247.3m Contractor : Watson Drilling	D	riller	from Horiz. : 90° : Dave		Processed : VLD Checked :
ate Started :	LING			Dat	e Con	MATERIAL	L	ogge	d by : RB		Date : PIEZOMETER
Drilling Method Hole Support		Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
9 9 9 9 9 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 9 9 9 10 10 10 10 10 </td <td>GNO</td> <td></td> <td>(246.33) (246.33) (246.33) (243.33) (240.83) (221.33) (221.33)</td> <td></td> <td>SP- SM GP- GC</td> <td>Silty Gravelly SAND, orange-red, medium to coarse grained sub-rounded to sub-angular sand, fine sub-rounded to sub-angular gravel. Clayey GRAVEL, orange-brown, fine- to medium-sized sub-rounded gravel, orange-red staining. (LATERITE) SANDSTONE, pink/orange/white, medium grained sand, predominately quartz, trace silt and clay, highly weathered. SILTSTONE and SANDSTONE, SILTSTONE; pale pink, fine-grained, trace orange flecks, needles and laminae, weathered/altered organic matter (leached). SANDSTONE; pale pink, fine-grained sand. (leached) SANDSTONE; orange, trace pale grey mottling, grain supported, medium grained sub-rounded quartz sand, trace flecks, needles and, trace fine sub-rounded gravel, some silt, trace clay, highly weathered.</td> <td>VM-W</td> <td></td> <td>0.0 m - 32.0 m; Tertiary</td> <td>011×011×011×011×011×011×011×011×011×011</td> <td> Completed with stem monument 50mm PVC casing with cement-bentor grout </td>	GNO		(246.33) (246.33) (246.33) (243.33) (240.83) (221.33) (221.33)		SP- SM GP- GC	Silty Gravelly SAND, orange-red, medium to coarse grained sub-rounded to sub-angular sand, fine sub-rounded to sub-angular gravel. Clayey GRAVEL, orange-brown, fine- to medium-sized sub-rounded gravel, orange-red staining. (LATERITE) SANDSTONE, pink/orange/white, medium grained sand, predominately quartz, trace silt and clay, highly weathered. SILTSTONE and SANDSTONE, SILTSTONE; pale pink, fine-grained, trace orange flecks, needles and laminae, weathered/altered organic matter (leached). SANDSTONE; pale pink, fine-grained sand. (leached) SANDSTONE; orange, trace pale grey mottling, grain supported, medium grained sub-rounded quartz sand, trace flecks, needles and, trace fine sub-rounded gravel, some silt, trace clay, highly weathered.	VM-W		0.0 m - 32.0 m; Tertiary	011×011×011×011×011×011×011×011×011×011	 Completed with stem monument 50mm PVC casing with cement-bentor grout

CLIENTS | PEOPLE | PERFORMANCE

Clier Proje Loca		C		lining Pty nael Coal I 690		oject					HOLE No.		2P1 2 OF 2
Posi	tion :	4	30890	.0 E 7569)875.0 N	١		Surface RL: 247.3m		-	rom Horiz. : 90°		Processed : VLD
-	Type :			1000 Mo	ounting:			Contractor : Watson Drilling			: Dave		Checked :
Date			4/7/11			Dat	e Com	pleted : 24/7/11	L	ogge	l by : RB		Date :
		DRILL	ING					MATERIAL					PIEZOMETER
SUALE (M)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
32 34 36 38 40 42 44	Air Hammer (bit, 6 inch)	Nil			32.00 (215.33) 35.00 (212.33) 40.00 (207.33)			SILTSTONE; brown-orange-pink, highly weathered. From 29.0 to 30.0 m; orange, specks of black/orange (weathered carbonaceous material?). From 30 to 32 m; dark purple-brown fine-grained silt and dark grey-purple medium grained highly weathered rock (iron rich ferricrete). SILTSTONE, orange, fine grained, slightly sandy. SANDSTONE, brown-orange and pale grey, fine and coarse grained, predominantly quartz, sub-rounded. Grain supported, iron stained quartz, trace silt highly weathered. End of borehole at 40 m. Piezometer installed.	VM- W		32.0 m - 40.0 m; Permian		 ➡ Bentonite ➡ Filter pack ➡ Screen ➡ End cap
48 50 52													
54													
56													
60													
			sheets			GHI		68. Brisbane Qld 4001				Job No).
			eviatio criptio		HD	T: 61	17331	6 3000 F: 61 7 3316 3333 E: b PEOPLE PERFORMANCE	nema	il@gh	d.com	4	1-23244

	ent :	А	dani M	ining Pty	/ Ltd						HOLE No.	C01	202
	ject :				Mine Pr	oject							
	ation :		EPC16		0077.0.			0 () 047.0	•				1 OF 2
	ition :				9877.01			Surface RL: 247.3m Contractor : Watson Drilling		-	from Horiz. : 90°		Processed : VLD
_	Type : e Start				ounting:			ipleted : 24/7/11			: Troy d by : RB		Checked :
Jai						Dai	e con	•		ogged	а ру. КВ		Date :
		DRILL	ING					MATERIAL					PIEZOMETER
SUALE (III)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index		Piezometer Log	Components
22 10 10 10 10 10 10 10 10 10 10	Rotary Wash Boring (PCD, 6 inch bit)	Ni	GNO		3.50 (243.75) 5.00 (242.25) (242.25) (236.25) (234.75)			Clayey LATERITE,orange-brown, high plasticity clay, clayey fine to medium rounded to sub-rounded gravel, orange-red staining, trace sand. SANDSTONE, white, brown-orange and pink, medium grained sand. SILTSTONE, leached, white and pink, fine grained, brittle. Returning as gravelly CLAY, medium plasticity, orange flecks, spots and needles (resembles organic matter) From 10.0 to 11.0 m; trace clay. QUARTZITE, neturning as orange-brown, medium to coarse grained sub-angular quartz, trace silt, iron stained. SILTSTONE, pink-orange, leached, very fine to fine grained, brittle, trace clay. From 15.0 m; colour change to white and pink. From 19.0 to 22.0 m; predominately pink.			0.0 m - 32.5 m; Tertiary	U 1.5 U 1 U 1.5 U 1.5	 Completed with sta monument Somm PVC casing with cement-bento grout
					29.00			MUDSTONE (?), pink,	-				
					(210.23)			leached, silicified, very fine					

GPO Box 668, Brisbane Qld 4001 T: 61 7 3316 3000 F: 61 7 3316 3333 E: bnemail@ghd.com CLIENTS | PEOPLE | PERFORMANCE

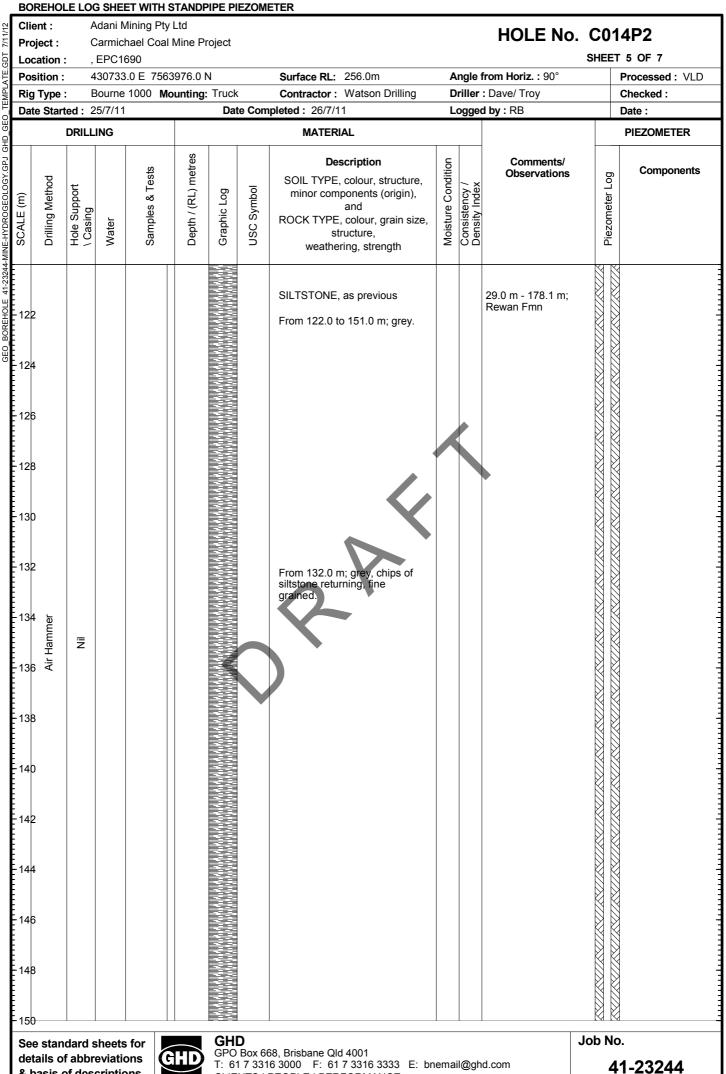
	ation		Carmich EPC16	hael Coal 690	Ltd Mine Pr	oject					HOLE No.		2 P2 2 OF 2
	ition : _			.0 E 756				Surface RL: 247.3m		-	from Horiz. : 90°		Processed : VLD
-	Type Start		30urne 23/7/11	1000 M	ounting:			Contractor : Watson Drilling pleted : 24/7/11			: Troy d by : RB		Checked : Date :
		DRILL						MATERIAL		-33-	, <u>,</u>		PIEZOMETER
	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
2 4 6					32.50 (214.75) 35.00 (212.25)			grained. MUDSTONE, as previous SILTSTONE, orange-brown, fine grained, highly weathered, trace silt, slight foliation. SANDSTONE, pale brown-orange, fine to medium grained sub-angular quartz sand (white, iron stained), extremely to highly weathered.	-		32.5 m - 59.0 m; Permian		
.8 .0 .2 .4 .6 .8	Rotary Wash Boring (PCD, 6 inch bit)	Ni			41.00 (206.25) 47.00 (200.25)			Siltstone laminae present, dark grey and orange-brown. From 37.0 m; no clay, highly weathered. SILTSTONE, orange, fine grained, no clay, extremely to highly weathered. From 45.0 to 47.0 m; Interbedded with SANDSTONE, returning as orange-brown, medium to coarse grained quartz, leached pink. SANDSTONE, high plasticity fines, orange-brown, fine to medium grained sand, extremely weathered, returning as Sandy CLAY.				11) KU KU KU KU KU KU KU KU	
52 54 56 58					59.00 (188.25)			From 50.0 to 51.5 m; interbedded with siltstone, grey-orange, fine grained, slight foliation. From 55.0 - 59.0 m; interbedded with siltstone, grey-orange, fine grained, slight foliation.					 Bentonite Filter pack Screen End cap Cave in
50L								Piezometer installed.	1				
			sheets eviatio			GPO		68, Brisbane Qld 4001			•	Job No	

Rig Type : Bourne 1000 Mounting: Truck Contractor : Watson Drilling Driller : Dave/ Troy Ch Date Started : 25/7/11 Date Completed : 26/7/11 Logged by : RB Da DRILLING MATERIAL Pi 1 1 1 0 0 0	rocessed : VLD hecked : ate : PIEZOMETER Components
Date Started : 25/7/11 Date Completed : 26/7/11 Logged by : RB Da DRILLING MATERIAL PI Image: Started : 25/7/11 Description S Comments/ Observations PI	ate : PIEZOMETER
DRILLING MATERIAL Image: State of the	PIEZOMETER
matrix matrix	
Description Comments/ Display b training training	Components
	Completed with ste
	Completed with stemonument

GPD GPO Box 668, Brisbane Qld 4001 T: 61 7 3316 3000 F: 61 7 3316 3333 E: bnemail@ghd.com CLIENTS | PEOPLE | PERFORMANCE

Job No. 41-23244

				IPE PI	EZOM	ETER					
Client : Project :		ning Pty L ael Coal N		oiect					HOLE No.	C)14P2
Location :	, EPC169			-,						SHE	ET 2 OF 7
Position :	430733.0	DE 75639	976.0 N	1		Surface RL: 256.0m	Α	ngle	from Horiz. : 90°		Processed : VLD
Rig Type :		000 Mou	unting:			Contractor: Watson Drilling			: Dave/ Troy		Checked :
Date Started :	25/7/11			Dat	e Com	pleted : 26/7/11	L	ogge	d by : RB		Date :
DRI	LLING					MATERIAL		1			PIEZOMETER
SCALE (m) Drilling Method Hole Support	\ Casing Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations		Components
-32 -34 -36 -38 -40 -42 -44 -46 -48 -50 -52 -54 -58	GNO		31.00 (224.99) 32.00 (223.99) (223.99) (220.99) (220.99) (220.99) (200.99) (200.99) (200.99) (200.99) (200.99) (200.99) (199.99) (199.99) (196.99) (196.99) (196.99) (196.99) (0.00)			high plasticity, slightly grainy texture, extremely weathered. SILTSTONE, as previous MUDSTONE, pale green-brown, returning as clay chips, high plasticity, smooth, extremely weathered. SILTSTONE, pink-brown, returning as clay chips, high plasticity fines, stiff, slightly grainy, extremely weathered. From 33.0 to 35.0 m; pale green-brown and brown-orange. CLAY, high plasticity, orange, trace fine grained sand, returning as powder From 36.0 to 37.0 m; trace fine to medium grained sand. From 36.0 to 38.0 m; pale brown-orange. From 36.0 to 39.0 m; orange-red. From 39.0 to 42.0 m; pale brown-orange. From 42.0 to 43.0 m; pale pink-brown, slighty grainy From 43.0 to 44.0 m; yellow-orange, smooth From 44.0 to 47.0 m; pale pink-brown, returns as chips MUDSTONE/CLAYSTONE, blue-grey, leached, high plasticity, smooth, returns as powder.			29.0 m - 178.1 m; Rewan Fmn		- 150 mm PVC casing hole support


GPD Box 668, Brisbane Qld 4001 T: 61 7 3316 3000 F: 61 7 3316 3333 E: bnemail@ghd.com CLIENTS | PEOPLE | PERFORMANCE

Job No. 41-23244

Pro	ent : ject : ation	C : ,	armich		Mine P						HOLE No.		4P2 3 OF 7
	ition : Type			0 E 7563 1000 Mc				Surface RL: 256.0m Contractor : Watson Drilling		-	from Horiz. : 90° : Dave/ Troy		Processed : VLD Checked :
-					Junung			pleted : 26/7/11			l by : RB		Date :
		DRILL	ING					MATERIAL					PIEZOMETER
SCALE (M)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
52 54		PVC casing 150mm			(195.99)			SILTSTONE, orange-yellow, high plasticity, smooth, returning as powder, extremely weathered. MUDSTONE/CLAYSTONE, blue-grey, leached, high plasticity, smooth, returns as powder. SILTSTONE, grey-blue, leached, high plasticity, trace silt, trace fine grained black carbonaceous material, slightly			29.0 m - 178.1 m; Rewan Fmn	<u>X117X7117X7117X7117X7117</u>	
 56 58 70 72 74 76 78 30 32 34 	Air Hammer	Ni			77.00 (178.99)			grainy, returns as powder From 67.0 to 68.0 m; grey-pink.				11 K U K U K U K U K U K U K U K U K U K	
36 38 90													
		dard a	heets	for		GHE	ר				J	ob No	

CLIENTS | PEOPLE | PERFORMANCE

Client : Project	:	Adar Carn	HEET WITH hi Mining P hichael Co	ty Ltd						HOLE No.		
Location Positior			C1690 '33.0 E 75	63976 0	N		Surface RL: 256.0m	Δ	nale	rom Horiz. : 90°		4 OF 7 Processed : VLD
Rig Typ			ne 1000				Contractor : Watson Drilling		-	: Dave/ Troy		Checked :
Date Sta	arted :	25/7/	′11		Dat	e Com	pleted: 26/7/11	L	ogge	i by : RB		Date :
	DRI	LLING					MATERIAL					PIEZOMETER
SCALE (m) Drilling Method	Hole Support	\ Casing Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength MUDSTONE/CLAYSTONE, as	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
92 94 96 98 100 102 104 108 110 108 1110 112 114 116 118 120	Ī			94.00			previous SILTSTONE, grey-blue, leached, high plasticity, trace fine grained black carbonaceous material, returns as powder From 107.0 to 122.0 m; brown-grey.			29.0 m - 178.1 m; Rewan Fmn	1981 1981 1981 1981 1981 1981 1981 1981	 50mm PVC casing, with cement-bentor grout
					~							
See sta details	of ab	brevia		GHD	GPO T: 6	Box 6	68, Brisbane Qld 4001 6 3000 F: 61 7 3316 3333 E: br	nemai	l@gh		Job No A	1-23244

& basis of descriptions

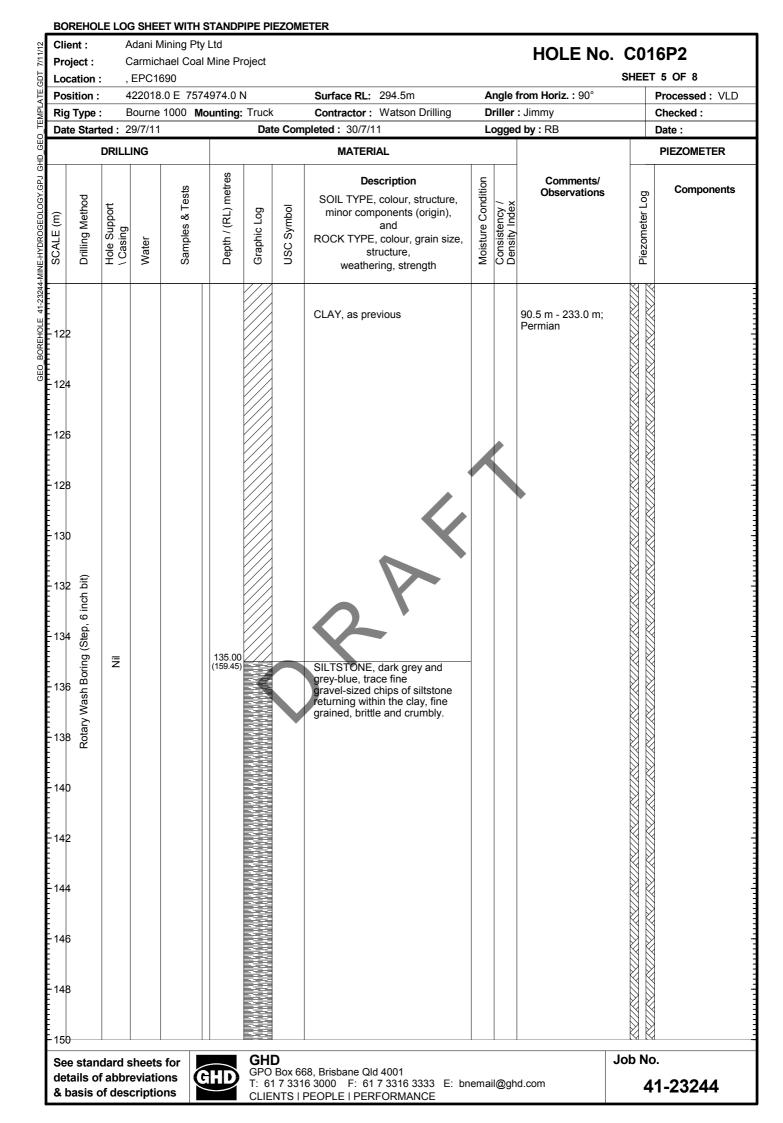
CLIENTS | PEOPLE | PERFORMANCE

Update Commandation SHEET 6 OF 7 realition: LPD1000 Surface RL: 2850m Angle from Hortz: 90" Processes 1/V. tation: LPD1000 Surface RL: 2850m Angle from Hortz: 90" Processes 1/V. tate Started: 257/11 Date Completed: 207/11 Logged by: RB Date: DRILLING Image: Surface RL: 286/01 Logged by: RB Date: DRILLING Image: Surface RL: 286/01 Logged by: RB Date: DRILLING Image: Surface RL: 286/01 Logged by: RB Date: Image: Surface RL: 286/01 Image: Surface RL: 286/01 Logged by: RB Date: Image: Surface RL: 286/01 Image: Surface RL: 286/01 Logged by: RB Date: Image: Surface RL: 286/01 Image: Surface RL: 286/01 Logged by: RB Date: Image: Surface RL: 286/01 Image: Surface RL: 286/01 Image: Surface RL: 286/01 Commond: Commonder RI Image: Surface RL: 286/01 Image: Surface RL: 286/01 Image: Surface RL: 286/01	Client :	Adani Mining				HOLE No	. C0 [,]	14P2
Generation 43073.0 E From Version Contractor : Surface 2: 250.0m Angle from Mor: 100	Project :		Coal Mine Project					
Burner Bounce 1000 Mounting: True Date Completed: 207/11 Logged by : RB Date : DRILLING MATERIAL Generator: Watson Color, structure, watson Drilling Driller: Dave Troy Detect: DRILLING MATERIAL MATERIAL Generator: Watson Color, structure,	Position :		7563976.0 N	Surface RL: 256.0m	Angle fr	rom Horiz. : 90°		Processed : VLD
DRILLING MATERIAL PIEZOMETER 000000000000000000000000000000000000	Rig Type :				-			
Participant	Date Started :	25/7/11	Date	Completed: 26/7/11	Logged	by:RB		Date :
2 2 0	DRI	LLING		MATERIAL				PIEZOMETER
52 54 20.0 m - 178.1 m; 54 From 155.0 to 160.0 m; grey 55 56 57 64 99 72 63 73 73	SCALE (m) Drilling Method Hole Support	Vasing Water Samples & Teste	Depth / (RL) metres Graphic Log	SOIL TYPE, colour, structure minor components (origin), and ROCK TYPE, colour, grain siz structure, weathering, strength	, a basic condition Moisture Condition Consistency / Density Index		Piezometer Log	Components
From 155.0 to 160.0 m; grey From 160.0 to 166.0 m; palb grey From 160.0 to 166.0 m; palb grey From 160.0 to 168.0 m; grey From 168.0 to 194.0 m; pale grey To To To To To To To To To To	152			From 151.0 to 155.0 m; pale		29.0 m - 178.1 m; Rewan Fmn		
60 From 160.0 to 166.0 m; pala 62 From 160.0 to 166.0 m; grey 64 Tom 166.0 to 168.0 m; grey 68 From 168.0 to 194.0 m; pala 70 From 168.0 to 194.0 m; pala 71 From 168.0 to 194.0 m; pala 72 From 168.0 to 194.0 m; pala 73 From 168.0 to 194.0 m; pala 74 From 168.0 to 194.0 m; pala 75 From 168.0 to 194.0 m; pala 76 From 168.0 to 194.0 m; pala 78 From 168.0 to 194.0 m; pala	156			From 155.0 to 160.0 m; grey				
68 From 166.0 to 168.0 m; grey 70 From 168.0 to 194.0 m; pale 71 From 168.0 to 194.0 m; pale 72 From 168.0 to 194.0 m; pale 74 From 168.0 to 194.0 m; pale 78 From 168.0 to 194.0 m; pale 78 From 168.0 to 194.0 m; pale 78 From 168.0 to 194.0 m; pale 79 From 168.0 to 194.0 m; pale 71 From 168.0 to 194.0 m; pale 72 From 168.0 to 194.0 m; pale 74 From 168.0 to 194.0 m; pale 75 From 168.0 to 194.0 m; pale 76 From 168.0 to 194.0 m; pale 78 From 168.0 to 194.0 m; pale 79 From 168.0 to 194.0 m; pale 79 From 168.0 to 194.0 m; pale 78 From 168.0 to 194.0 m; pale 79 From 168.0 to 194.0 m; pale	160 162			From 160.0 to 166.0 m; pale grey				
70 grey 71 grey 72 grey 74 grey 76 grey 78 grey 178.1 m - 205.0 m; Permian				From 166.0 to 168.0 m; grey				
76 78 178.1 m - 205.0 m; Permian	168 170 172						<u> </u>	
178.1 m - 205.0 m; Permian	174 176							
	178							
See standard sheets for GHD Job No.								0

GPO Box 668, Brisbane Qld 4001 T: 61 7 3316 3000 F: 61 7 3316 3333 E: bnemail@ghd.com CLIENTS | PEOPLE | PERFORMANCE

Client :			lining Pty							HOLE No.	C01	4P2
Project : Location		Carmich EPC16	ael Coal	Mine P	roject							7 OF 7
Position :			0 E 7563	3976.0	N		Surface RL: 256.0m	A	nglef	irom Horiz. : 90°		Processed : VLD
Rig Type			1000 M o				Contractor : Watson Drilling		-	: Dave/ Troy		Checked :
Date Star	ted: 2	25/7/11			Dat	e Com	pleted: 26/7/11	L	oggeo	i by : RB		Date :
	DRILL	ING					MATERIAL					PIEZOMETER
SCALE (m) Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
182 184 186 188 190 192 Hair Hammer 194	Ni			194.00 (61.99) 195.00 (60.99)			SILTSTONE, as previous			47.0 m - 205.0 m; Permian		■ Bentonite
196 198 200 202 204				198.50 (57.49) 205.00			fine grained, brittle. COAL; black, brittle. COAL, black, slight sheen, brittle, trace interbeds of silicified mudstone (brown-green, no visible grains). From 195.5 to 198.5 m; siltstone. Carbonaceous SILTSTONE/SILTSTONE and COAL interbedded; trace silicified mudstone, (brown-green, no visible grains). SILTSTONE; dark grey and grey, fine grained. COAL; black, brittle	-		AB Seam		← Filter pack — Screen ■ End cap — Hole collapse
206 208				(50.99)			End of borehole at 205.0 m. Piezometer installed.					
210		I	L	·		<u> </u>	1	1	1	1		
	dard c	sheets	for	HD	GHI		68, Brisbane Qld 4001				Job No	

Client : Project : Location :	Adani Mir Carmicha , EPC169	ael Coal		oject					HOLE No.			5P2 1 OF 8
Position :	422018.0					Surface RL: 294.5m		-	from Horiz. : 90°		-	rocessed : VLD
Rig Type : Date Started :	Bourne 1	000 Mc	ounting:			Contractor : Watson Drilling pleted : 30/7/11			: Jimmy d by : RB		-	Shecked : Date :
				Dat	e con	•		ogge	I DY . RD			
DRI	LLING					MATERIAL						PIEZOMETER
SCALE (m) Drilling Method Hole Support	\ Casing Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Diazomatar L oo	Plezonieler Log	Components
2 4 6 8 10 12 14 14 16 18 20 22 24 26 28 30 10 10 10 10 10 10 10 10 10 1	GNO		4.00 (290.45) 5.00 (288.45) 6.00 (288.45) 9.00 (285.45)			Silty SAND, orange-brown, medium to coarse grained sub-rounded to sub-angular sand, predominately quartz, trace clay, trace fine sub-rounded to sub-angular gravel. From 2.0 to 3.0 m; green-grey with some orange spots. From 3.0 to 4.0 m; orange-pink with fine sub-rounded to sub-angular gravel, predominately quartz grains. Silty GRAVEL, dark orange-brown, fine angular to sub-angular gravel, trace clay, gravel of highly weathered fine grained rock. Sandy CLAY, pale grey, sortle orange spots, medium plasticity, fine grained sand. Silty SAND, orange-brown, medium to coarse grained sand (quartz and orange fine-grained highly weathered rock). Sandy CLAY, pale grey, orange-brown and dark orange-brown mottling, medium plasticity, fine to medium grained sand (quartz and dark grey fine grained carbonaceous material), trace silt.			0.0 m - 9.0 m; Alluvium 9.0 m - 68.0 m; Tertiary		<u> </u>	Completed with stem monument



GPD Box 668, Brisbane Qld 4001 T: 61 7 3316 3000 F: 61 7 3316 3333 E: bnemail@ghd.com CLIENTS | PEOPLE | PERFORMANCE Job No.

Clie Pro	ent : ject : ation		Adani M	ET WITH S Iining Pty nael Coal 690	Ltd						HOLE No.		6P2 2 OF 8
	ition :			.0 E 757				Surface RL: 294.5m		-	rom Horiz. : 90°		Processed : VLD
-	Type Star		Bourne 29/7/11	1000 M	ounting:			Contractor : Watson Drilling apleted : 30/7/11			: Jimmy I by : RB		Checked : Date :
Dut		DRILL				Dut	0 0011	MATERIAL	_	09900			
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
32 34								Sandy CLAY, as previous					
36 38								From 35.0 m; orange-brown and pale grey-pink in colour.				איז נאאר עריינען איז עריאען איז	
40 42 44	ing (Step, 6 inch bit)	Nil			41.00 (253.45)			Sandy CLAY, dark orange-brown, medium plasticity, with silt, fine to medium grained sand, predominately quartz.	_			Y//XY//XY//XY//XY//XY/	
46 48 50	Rotary Wash Boring (Step,				46.00 (248.45)			Sandy CLAY, white, some yellow-orange mottling, high plasticity, fine to medium grained sand, predominately quartz, trace carbonaceous material.	_				
52 54 56					53.00 (241.45)			CLAY, white, trace yellow-orange mottling, high plasticity. From 54.0 to 55.0 m; pink-brown with white mottling	_		9.0 m - 68.0 m; Tertiary		
58								From 57.0 to 61.0 m; pink-brown, orange-yellow/white mottling					
See det	ails o	fabb	sheets reviatio scriptio	ons 🤇	HD	T: 61	Box 6	68, Brisbane Qld 4001 16 3000 F: 61 7 3316 3333 E: br PEOPLE PERFORMANCE	nemai	il@gh		Job No 4'	1-23244

Pro	nt : ject : ation	C : ,	Carmich EPC16		Mine Pr						HOLE No		6P2 3 OF 8
	ition : Type			0 E 757 1000 M				Surface RL: 294.5m Contractor : Watson Drilling		-	rom Horiz. : 90° Jimmy		Processed : VLD Checked :
-		ted: 2			ouning			pleted : 30/7/11			by:RB		Date :
	DRILLING							MATERIAL					PIEZOMETER
SUALE (III)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
52 54					61.00 (233.45)			Sandy CLAY, pink-brown with pale grey/orange mottling, high plasticity, sand is fine grained sand, trace silt.	_			11XU1XU1XU1XU1XU1X 11XU1XU1XU1XU1XU1X	
8 0 2	ng (Step, 6 inch bit)	Ni			68.00 (226.45)			CLAY, brown-orange with trace pink-brown mottling, high plasticity, smooth. From 71.0 m; green-brown			68.0 m - 91.0 m; Rewan Group	XA 11 XA	
6 8 0	Rotary Wash Boring (Step,	2						From 77.0 to 79.0 m; brown, trace fine grained sand, fine grained carbonaceous material From 79.0 to 85.5 m; green-brown, grey mottling				12/2/12/2/12/2/12/2/12/2/12/2/12/2/12/	
4								From 83.0 to 85.5 m; with trace fine sand.					
8					86.00 (208.45)			Sandy CLAY, brown-pink, high plasticity, fine grained sand, dark grey pockets of carbonaceous rich sandy clay.	_				
					89.50 (204.95)			CLAY, green-brown, high	-				
See	ails o	fabbr	sheets eviatio criptio	ns [HD	T: 61	Box 60 I 7 331	68, Brisbane Qld 4001 6 3000 F: 61 7 3316 3333 E: br PEOPLE I PERFORMANCE	nema	il@gho	l.com	Job No	1-23244

Client :		Adani	ET WITH Mining Pty chael Coa	/ Ltd						HOLE No.	C0 ⁻	16P2
Project : Location		, EPC		I Mine Pr	oject							T 4 OF 8
Position			8.0 E 757	4974.0 1	J		Surface RL: 294.5m	Α	nale f	from Horiz. : 90°		Processed : VLD
Rig Type			e 1000 M				Contractor: Watson Drilling		-	: Jimmy		Checked :
Date Star							pleted : 30/7/11	Lo	oggeo	d by : RB		Date :
	DRIL	LING					MATERIAL					PIEZOMETER
thod	ort		k Tests	L) metres	D	loc	Description SOIL TYPE, colour, structure, minor components (origin),	Condition	cy / dex	Comments/ Observations	er Log	Components
Drilling Method	Hole Support	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index		Piezometer Log	
				90.50 (203.95)			plasticity, smooth. CLAY, blue-grey,(MUDSTONE/CLAYST leached ?).	ONE,		90.5 m - 233.0 m; Permian		
92 94 96 98 100 102 101 102 101 102 104 100 110 111 111 111 111 111	Ni						From 99.0 m; trace silt trace fine grained sand sized black carbonaceous material. (SILTSTONE ?)				0 X 1 X X 1 X X 1 X X 1 X X 1 X X 1 X X 1 X X 1 X X 1 X X 1 X X 1 X X 1 X X 1 X X 1 X X 1 X X 1 X X 1 X X 1 X X X X X X	50mm PVC casing with cement-bentor grout
120			· · · · ·			`	1			[•
See star details c & basis	of abb	reviat	ions 🕻	GHD	T: 61	Box 60 7 331	68, Brisbane Qld 4001 6 3000 F: 61 7 3316 3333 E: br PEOPLE I PERFORMANCE	iemai	l@gh		Job N	^{o.} 11-23244

Client : Project :			lining Pty nael Coal	/ Ltd I Mine Pr	oject					HOLE No.	C01	6P2
Locatior		, EPC16									SHEET	6 OF 8
Position				4974.0 1			Surface RL: 294.5m		-	from Horiz. : 90°		Processed : VLD
Rig Type			1000 M	ounting:			Contractor : Watson Drilling			: Jimmy		Checked :
Date Sta					Dat	e Com	pleted: 30/7/11	L	ogge	d by : RB		Date :
	DRILI						MATERIAL					PIEZOMETER
SCALE (m) Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
152 154 156 160 162 164 166 164 166 164 170 172 172 174 176 177 177 177	ĨZ			178.00			SANDSTONE, as previous			90.5 m - 233.0 m; Permian	210211220122012201220122012201220122012	
180				(116.45)			Interbedded SILTSTONE and SANDSTONE Siltstone, blue-grey and dark grey, fine grained.					
55		abaat	for F		GH)					Job No.	
See sta			TOF								SASAN INC.	

BOREHOLE LOG SHEET WITH STANDPIPE PIEZOMETER

Client :	А	Adani M	lining Pty	Ltd							0040	החי
Project :			nael Coal	Mine Pr	oject					HOLE No.		
ocation		EPC16									SHEET	
Position			0 E 757				Surface RL: 294.5m		-	irom Horiz. : 90°		Processed : VLD
Rig Type Date Sta			1000 M	ounting:			Contractor : Watson Drilling pleted : 30/7/11			: Jimmy I by : RB		Checked :
Jate Sta					Dat	e Com	•	L	oggeo	D DY : RB)ate :
	DRILL	ING			<u>г т</u>		MATERIAL					PIEZOMETER
Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
182				183.00 (111.45)			Sandstone, pale grey, fine grained quartz, carbonaceous silt/fine sand sized, black. SANDSTONE with interbeds of SILTSTONE, as previous SILTSTONE, blue-grey, fine grained, returns with high plasticity clay.	_		90.5 m - 233.0 m; Permian		
61 61 61 63 61 88 88 64 61 61 61 61 61 61 61 61 61 61 61 61 61	Nil						From 195.0 m; interbedded with SANDSTONE, pale grey, fine grained quartz, fine sand sized/silt black carbonaceous material.				1174178417841784178417841784178417841784	
198 200 200 202 204 206 208				208.00 (86.45)		-	SANDSTONE with interbeds of SILTSTONE SANDSTONE; pale grey, fine	_			117×117×117×117×117×117×117×117×117×117	

GHD GPO T: 6 CLIF

GHD GPO Box 668, Brisbane Qld 4001 T: 61 7 3316 3000 F: 61 7 3316 3333 E: bnemail@ghd.com CLIENTS | PEOPLE | PERFORMANCE

			ning Pty		ninet					HOLE No.	C01	6P2	
Project : .ocation		EPC169	ael Coal I 90	wine Pr	oject						SHEET 8 OF 8		
Position			S1000 Surface RL: 294.5m						Angle from Horiz. : 90°			Processed : VLD	
Rig Type			Irne 1000 Mounting: Truck Contractor : Watson Drilling							: Jimmy		Checked :	
Date Star							pleted : 30/7/11			d by : RB		Date :	
	DRILL	ING		MATERIAL								PIEZOMETER	
												-	
Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components	
212 214							sized/silt carbonaceous material, returns as high plasticity Sandy CLAY. SILTSTONE; grey. SANDSTONE with interbeds of SILTSTONE, as previous From 213.0 to 218.0 m; with interbeds of coal (black, slackes in water) and carbonaceous siltstone (dark			90.5 m - 233.0 m; Permian AB1 Seam			
(Step, 6 inch bit)				218.00 (76.45)			COAL, black, slakes in water, brittle, some interbeds of carbonaceous siltstone and sandstone.					← Bentonite	
C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	Nii			224.00 (70.45)			From 221.0 to 222.0 m; trace carbonaceous siltstone, sandstone and mudstone. Mudstone is milky brown with carbonaceous (black) laminae, no visible grains. Carbonaceous SILTSTONE, dark grey, fine-grained, trace calcite, with interbeds of coal, returns include high plasticity clay.	-		AB2 Seam		← Filter pack — Screen	
228 230				227.00 (67.45)			SANDSTONE, pale grey, fine grained quartz sand, with silt/fine sand sized carbonaceous material. With trace interbeds of carbonaceous siltstone, returning with high plasticity sandy clay.	-				← End cap	
232				233.00 (61.45)			End of horobole at 202.0					— Hole collapse	
234				(01.40)			End of borehole at 233.0 m. Piezometer installed.						
36 38													

GHD GPO Box 668, Brisbane Qld 4001 T: 61 7 3316 3000 F: 61 7 3316 3333 E: bnemail@ghd.com CLIENTS | PEOPLE | PERFORMANCE Job No.

BOREHOLE LOG SHEET WITH STANDPIPE PIEZOMETER

Client : Project : Location :	Carmicl	lining Pty hael Coal 690		oject					HOLE No		8P1 1 OF 2
Position :		.0 E 7574				Surface RL: 281.3m		-	from Horiz. : 90°		Processed : VLD
Rig Type :	Bourne ed: 1/8/11	1000 M	ounting:			Contractor : Watson Drilling pleted : 1/8/11			: Snickers d by : RB		Checked : Date :
	DRILLING			Du		MATERIAL		ogge			PIEZOMETER
SCALE (m) Drilling Method	Hole Support \ Casing Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
2 4 6 8 10 12 14 14 16 18 20 22 24 24 26 28 30	Ni		4.00 (280.27)			Silty SAND, orange-brown, fine grained quartz sand, slightly moist. (TOPSOIL) SILTSTONE, orange-brown, fine grained, trace fine grained sand, trace silt, slight foliation, returns as high plasticity clays, extremely weathered. SANDSTONE, orange, fine grained, sub-rounded to rounded quartz sand, silt, trace clay, highly to extremely weathered. From 7.0 m; fine to coarse grained sand, some quartz is iron stained (orange), trace black fine grained carbonaceous material and orange brown angular fragments (fine to medium sand sized grains). From 11.0 m; pale brown-orange, fine to medium grained sand.	SM		0.0 m - 42.0 m; Tertiary	V [] × [] × [] × [] × [] × [] × [] × []	 Completed with stee monument 50mm PVC casing, with cement-bentoni grout
	dard sheets			GHI		20. Drinkana Old 4004				Job No).
details of	abbreviation abbreviation f description f abbreviation f abbreviat			T: 61	1 7 331	68, Brisbane Qld 4001 6 3000 F: 61 7 3316 3333 E: br PEOPLE PERFORMANCE	iemai	l@gh	id.com	4	1-23244

Client :			lining Pty		oicot					HOLE No.	C0 [,]	18P1
Project Locatio		, EPC16	nael Coal 390	Mine Pr	oject							T 2 OF 2
Position			.0 E 7574	4850.0 N	1		Surface RL: 281.3m	Ar	ngle f	rom Horiz. : 90°		Processed : VLD
Rig Typ	e:	Bourne	1000 M	ounting:			Contractor : Watson Drilling	Dr	iller	: Snickers		Checked :
Date Sta	arted :	1/8/11			Dat	e Com	pleted: 1/8/11	Lo	ggeo	i by : RB		Date :
DRILLING							MATERIAL					PIEZOMETER
Drilling Method	Hole Support	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
32 34 36		GNO					SANDSTONE, as previous From 32.5 m; increase in clay content. Interbeds of sandy CLAY, pale grey-brown high plasticity, and medium-grained sandstone. Extremely weathered.			0.0 m - 42.0 m; Tertiary	<u> </u>	
8 9 7 7 0 Air Hammer	IN			42.00 (239.27)			SANDSTONE, pale yellow-brown, fine to medium grained sand, high plasticity fines, extremely weathered. Returns as very Sandy CLAY. From 45.0 to 47.0 m; orange-brown, fine to medium grained quartz sand, silt matrix, trace clay. From 47.0 to 50.0 m; pale yellow-brown, fine to medium	-		42.0 m - 53.0 m; Permian		- Bentonite
i0 i2 i4				<u>53.00</u> (228.27)			grained sand, high plasticity fines. Returns as Sandy clay/clayey SAND. End of borehole at 53 m. Piezometer installed.					Filter pack
56												
		ohart	for		GHI		1				Job N	۰ ۱
see sta		sheets reviatio					68, Brisbane Qld 4001			•		0.

Client : Project : .ocation :	Adani Mining Carmichael , EPC1690		roject			HOLE No	. C018P2 SHEET 1 OF 4
Position : Rig Type :	423991.0 E Bourne 1000		Truck	Surface RL: 281.3m Contractor : Watson Drilling	Dril	le from Horiz. : 90° ler : Shawn	Processed : VLI Checked :
Date Started :			Date Co	mpleted : 5/8/11	Log	ged by : MP	Date :
DRI	LLING			MATERIAL			PIEZOMETER
Drilling Method Hole Support	\ Casing Water	Samples & Lests Depth / (RL) metres	Graphic Log USC Svmbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition Consistency /	Comments/ Observations	60 Diezomponents
22 24 26 28 28 20 20 20 20 20 20 20 20 20 20 20 20 20		(280.30) (278.30)	0	Clayey SILT, orange-brown, medium plasticity, very fine grained sand, trace fine to medium grained sand. Sandy Gravelly SILT, grey, heavily stained brown-orange, red/yellow/orange mottling, fine to coarse grained sand, fine sized, sub-rounded to angular lithic gravel. Sandy SILT, grey, heavily stained brown-orange, yellow/orange/red/dark brown mottling, medium to high plasticity, very fine to fine grained sand, trace medium to coarse grained sand. From 16.0 m; grey with brown-red staining, red mottling, trace yellow/orange/dark brown mottling. From 23.0 to 24.0 m; grey with orange staining, yellow/orange/red mottling. From 24.0 m; decrease in staining, yellow/orange/red/brown mottling.		0.0 m - 40.0 m; Tertiary	Completed with s monument
30							<u> </u>
Soo standar	d sheets for	\frown	GHD GPO Box				Job No.

CLIENTS | PEOPLE | PERFORMANCE

Decision : EPC1000 SelfET 2 0 0 4 gType : Bourne 1000 Mounting: Truck. Contractor : Watson Drilling Driller : Shawn Checked : VLT Ditter : Date Completed : SINIT Logged by : MP Date : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : as Sutration : 42011 Date Completed : SINIT Logged by : MP Date : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : Ditter : San	Clien Proje				lining Pty nael Coal		oiect					HOLE No	. C01	8P2
g Type: Bourne 1000 Mounting: Driller: Shawn One-ketal: is Started: 48/11 Date Completed: 18/11 Logged by : MP Date: DRLLING METRIAL Date Completed: 18/11 Logged by : MP Date: DRLING METRIAL Description Sold: Tree: Shawn Description Sold: Sold: TYPE: colour, structure, minimation component colour, structure, minimation colour component colour, structure, minimation colour colour, structure, minimation colour, structure, minininte colour, structure, minini	-					WINC 11	ojeci						SHEET	2 OF 4
Bitstriet 4/0/11 Date Completed 5/0/11 Logged by : MP Date : DRULING MATERIAL Description Gomments/ Discription Comments/ Discription Comments/ Discription Comments/ Discription Comments/ Discription Comments/ Discription 00 00 00 00 00 00 00 00 00 00 00 00 00						4848.0 N	I		Surface RL: 281.3m	Α	ngle	from Horiz. : 90°		Processed : VLD
DRILLING MATERIAL 000 userightion set set set set set set set set set set	-				1000 M o	ounting:	Truck	(Contractor: Watson Drilling					Checked :
page 1 1000 1000 1000 1000 1000 1000 1000 1	Date	Start	ed : 4	/8/11		1	Dat	te Con	npleted : 5/8/11	L	ogge	d by : MP		Date :
Example in the initial initia			DRILL	ING					MATERIAL					PIEZOMETER
SWL From 39.0 m; completient stained pale red with track orange yellow/red motting SANDS TONE pale grey-whith trace compact/files. File grained sand vice medium to high hearticity files. File grained sand vice medium to sub-rounded sub-analier to sub-rounded to rounded, guetz and lifter. A 153.0 to 54.0 m; CONGLOMERATE, ine grained/sub-rounded to rounded, guetz and lifter. A 150.0 to 58.0 m; pale yellow/round with pale rounded to rounded, guetz and lifter. A 150.0 to 58.0 m; pale yellow/round with pale rounded to rounded, guetz and lifter. A 150.0 to 58.0 m; pale yellow/round After 58.0 m; completely 40.0 m - 90.0 m; Tertiary 0.0 m + 90.0 m; Tertiary		Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure,	Moisture Condition	Consistency / Density Index	Observations	Piezometer Log	Components
At 53.0 to 54.0 m; CONGLOMERATE, fine grained/silt matrix, fine to medium grained sub-rounded to rounded, quartz and ilthic gravel (smooth and polished). At 54.0 to 56.0 m; pale grey with pale red staining in places, trace orange/yellow/red mottling. At 56.0 to 58.0 m; pale yellow-brown, yellow/red/orange/dark brown mottling. After 58.0 m; completely	4	(PCD, 6 in	Nii	SWL		40.00 (241.30)			From 39.0 m; completely stained pale red with trace orange/yellow/red mottling. SANDSTONE, pale grey-white, trace orange/yellow/red mottling, matrix supported, medium to high plasticity fines, fine grained sand, trace medium to coarse grained sub-angular to sub-rounded sand. Hard, coming up in chips in places. Decrease in mottling with			Tertiary 40.0 m - 90.0 m;	11×11×11×11×11×11	- 50mm PVC casing with cement-bentc
	50 52 54 56 58 50	Rotary Wasi							CONGLOMERATE, fine grained/silt matrix, fine to medium grained sub-rounded to rounded, quartz and lithic gravel (smooth and polished). At 54.0 to 56.0 m; pale grey with pale red staining in places, trace orange/yellow/red mottling. At 56.0 to 58.0 m; pale yellow-brown, yellow/red/orange/dark brown mottling.					
	-						<u> </u>		1					1
etails of abbreviations GHD GPO Box 668, Brisbane Qld 4001 T: 61 7 3316 3000 F: 61 7 3316 3333 F: bnemail@dbd.com A1 22244							GPO	D Boy F	68 Brishane Old 4001				Job No).

Clien Proje Loca		C , I	armich EPC16	90	Mine Pr								8P2 3 OF 4
	ion :				4848.0 N			Surface RL: 281.3m		-	rom Horiz. : 90° : Shawn		Processed : VLD
-	ype : Start	ed: 4/			ounting:			Contractor : Watson Drilling pleted : 5/8/11			l by : MP		Checked : Date :
Juic		DRILLI				But	0.0011	MATERIAL		99900			PIEZOMETER
													FIEZOWIETER
SCALE (M)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
52 54 56 58 70 72 74 76 78 80 82	Rotary Wash Boring (PCD, 6 inch bit)	NI			76.50 (204.80) 81.00 (200.30)			Stained brown-orange with yellow/orange/red mottling.			40.0 m - 90.0 m; Tertiary	1, K. (1,	 ■ Bentonite
84 86 88					89.00 (192.30)			SILTSTONE, dark grey,	_		AB3 Seam		← Filter pack — Screen
90L					90.00			returning as CLAY (ribbons),					
-		ا محما	hast-	for =		GHI	<u>ר</u>					ob No	<u> </u>
	stand	iard S	heets		HD			68, Brisbane Qld 4001			J	00 140	-

BOREHO	DLE LOG SHEE	T WITH STAND	PIPE PIEZOM	ETER			
Client :		ining Pty Ltd				HOLE No.	C018D2
Project :		ael Coal Mine P	roject				
Location							HEET 4 OF 4
Position		0 E 7574848.0		Surface RL: 281.3m	-	n Horiz. : 90°	Processed : VLD
Rig Type		1000 Mounting		Contractor: Watson Drilling	Driller : St		Checked :
Date Sta	rted: 4/8/11		Date Corr	pleted : 5/8/11	Logged by	/:MP	Date :
	DRILLING			MATERIAL			PIEZOMETER
SCALE (m) Drilling Method	Hole Support \ Casing Water	Samples & Tests Depth / (RL) metres	Graphic Log USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition Consistency / Density Index	Comments/ Observations	Log Components Log Log
92		(191.30		Stiff. End of borehole at 90.0 m. Piezometer installed.			
-98 -100							
- 102 - 104				27			
- 106							
-108							
-110 -112							
-114							
-116							
-118 -120							
	i						h Ne
details	ndard sheets of abbreviatio of description	ns CHD	T: 61 7 331	68, Brisbane Qld 4001 I6 3000 F: 61 7 3316 3333 E: br PEOPLE I PERFORMANCE	nemail@ghd.co		b No. 41-23244

Project :	Adani Miı Carmicha , EPC169	ael Coal	Ltd Mine Proj	ect				HOLE No.		8P3
Position :	423975.0 Bourne 1)E 7574	4857.0 N Dunting: T		Surface RL: 281.2m Contractor : Watson Drilling Completed : 3/8/11	Dri	ller	from Horiz. : 90° : Shawn d by : MP		Processed : VLD Checked : Date :
DRIL					MATERIAL		55-			PIEZOMETER
Drilling Method Hole Support V Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index		Diezometer Log	Components
6 0 10 7 10 10 8 10 10 9 10 10 10 10			0.50 (280.71) 3.00 (278.21) 4.00 (277.21) 10.00 (271.21) 10.00 (271.21)		Silty SAND, low plasticity fines, grey-brown, fine to medium grained sand, trace organic matter (rootlets). (TOPSOIL) Sandy CLAY, pale brown, trace orange mottling medium plasticity, fine to medium grained sand. Sandy SILT, grey, significant orange-grey colouring, orange/yellow mottling, low plasticity, fine to medium grained sand. SAND, orange-brown, medium to coarse grained sand, trace fine grained sand, <15% fines returning, trace fine angular to sub-angular gravel. From 8.0 m; increase in fines content with depth. Sandy SILT, grey, heavily mottled red/orange/brown, tine grained sand, trace medium to coarse grained sand. Interbedded with SAND, brown, medium to coarse grained sand, trace fine grained sand, trace fine sub-angular to angular gravel. SANDSTONE, grey, yellow/red/orange mottling, matrix supported, fine grained sand, trace medium grained sand. SILTSTONE, grey, stained orange-brown, orange/yellow/red mottling, high plasticity fines, very fine grained sand, trace fine grained sand. Interbedded with thin bands of SANDSTONE, fine grained sand, trace medium to coarse grained sand. Interbedded with thin bands of SANDSTONE, fine grained sand, trace medium to coarse grained sand.			0.0 m - 41.0 m; Tertiary	11.KU1.KU1.KU1.KU1.KU1.KU1.KU1.KU1.KU1.K	Completed with st monument

details of abbreviations & basis of descriptions

GPO Box 668, Brisbane Qld 4001 T: 61 7 3316 3000 F: 61 7 3316 3333 E: bnemail@ghd.com CLIENTS | PEOPLE | PERFORMANCE

Pro Loc	ent : ject : ation :	C : ,	Carmich EPC16		Mine P						HOLE No.		2 OF 6
	ition : Type :			0 E 757 1000 M				Surface RL: 281.2m Contractor : Watson Drilling		-	from Horiz. : 90° : Shawn		Processed : VLD Checked :
-		ed: 2			ouning			pleted : 3/8/11			d by : MP		Date :
		DRILL	ING					MATERIAL					PIEZOMETER
SCALE (M)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
32 34 36 38			GNO					SILTSTONE, as previous At 33.0 m; thin beds of fine to medium grained sand, trace coarse grained sand.			0.0 m - 41.0 m; Tertiary	11177117711771177117711771177117711771	
42 44 46	Rotary Wash Boring (Bit, 6 inch)	Nil			41.00 (240.21) 47.00 (234.21)			SANDSTONE, grey, trace orange/red/yellow mottling, matrix supported, medium plasticity fines, fine grained sand, trace medium grained sand.	_		41.0 m -161.0 m; Permian	1 1 × 1 1	
48 50 52 54 56 58	Ř				51.00 (230.21)			predominantly quartz, fine to medium sized sub rounded to rounded gravel, <10% fines returning, well sorted, trace fine to coarse grained sand. From 49.0 to 50.0 m; SANDSTONE, grey, matrix supported (silt), fine to medium grained sand, trace coarse grained sand. SILTSTONE, pale grey, heavily stained pale red-brown, trace yellow/orange mottling, low plasticity, fine-grained sand. From 53.0 m; decrease in pale red-brown staining, increase in orange/yellow mottling.	-			1) X	
60								From 59.0 m; completely stained brown-orange, trace					
det	ails of	f abbr	sheets eviatio criptio	ns 🤇	HD		Box 6	58, Brisbane Qld 4001 6 3000 F: 61 7 3316 3333 E: br	nemai	l@gh		Job No A	1-23244

Client : Project : Location	C	Adani Mini Carmichae EPC1690	el Coal		oject					HOLE No.		18P3 T 3 OF 6
Position Rig Type	: 4 : E	23975.0 Bourne 10	E 7574		Truck		Surface RL: 281.2m Contractor : Watson Drilling	Dı	riller	from Horiz. : 90° : Shawn		Processed : VLD Checked :
Date Star					Dat	e Com	pleted: 3/8/11	Lo	oggeo	d by : MP		Date :
	DRILL	ING					MATERIAL					PIEZOMETER
SCALE (m) Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
							red/dark brown mottling.				N R	
62 64 66 68 70 77 86 66 67 78 78 78 79 79 79 79 79 79 79 79 79 79 79 79 79	Ni			75.50 (205.71) 77.00 (204.21)			SILTSTONE, as previous SILTSTONE, dark grey, trace brange/yellow mottling, no sand. SILTSTONE/SANDSTONE, grey, high plasticity fines, very fine grained sand, trace fine			41.0 m -161.0 m; Permian	271122112211221122112211221122112211221	50mm PVC casing with cement-bento grout
80 82 84 86 88 90				83.00 (198.21) 90.00			grained sand. CARBONACEOUS SILTSTONE, grey, very fine grained sand, trace fine grained sand. Thin beds of COAL, black, dull, soft.				9///X///X///X///X///X///X///X///X///X//	

Client : Project : Location	(lining Pty nael Coal	Ltd	oject					HOLE No.		8 P3 4 OF 6
Position			.0 E 7574				Surface RL: 281.2m		-	from Horiz. : 90°		Processed : VLD
Rig Type Date Star			1000 Mc	ounting:			Contractor : Watson Drilling npleted : 3/8/11			: Shawn		Checked :
Jale Slar					Dai	e con	•		oyye	d by : MP		Date :
	DRILL						MATERIAL					PIEZOMETER
Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
)2)4)6				(191.21)			SILTSTONE, dark grey, trace orange mottling, trace fine grained sand.			41.0 m -161.0 m; Permian		
, 6 inch)				98.00 (183.21) 103.00 (178.21)			CARBONACEOUS SILTSTONE, dark grey-black, dull, very fine grained sand, soft, some hard vitreous coal. Interbedded with pale grey SILTSTONE, very fine grained sand.	-		AB3 Seam	11/2011/2011/2011/2011/2011/2011/2011/2	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IN			107.00 (174.21)			fine to fine grained sand. SANDSTONE, grey, grain supported, fine to medium grained sand, coarsening slightly with depth, medium grained sand, trace fine grained sand. From 109.0 m; trace coarse grained sand, decrease in fines.	_			SU (SU (SU (SU (SU (SU (SU (SU (SU (SU (
12 14 16				113.00 (168.21)			COAL, black, dull, returning as small chips, hard, some soft carbonaceous material present. Thin beds of grey SILTSTONE.	_		113 m - 139 m; C Seam (interpreted from C017 ~ along strike) C Seam	11XA11XA11XA11XA11XA11 11XA11XA11XA11XA1	
18				118.50 (162.71)			Interbedded SILTSTONE and COAL SILTSTONE, pale grey,	_				
See stan	dard	sheete	for		GH)					Job No).
		reviatio		HD	GPO	Box 6	68, Brisbane Qld 4001 16 3000 F: 61 7 3316 3333 E: bn					1-23244

	nt:			Aining Pty	y Ltd I Mine Pro	oioct					HOLE No.	C01	3P3
-	ect : ation		EPC16		I MINE PR	ojeci							5 OF 6
	ition :				4857.0 N	1		Surface RL: 281.2m	Α	ngle	rom Horiz. : 90°		Processed : VLD
Rig '	Туре	: 6	Bourne	1000 M	lounting:	Truck		Contractor: Watson Drilling	D	riller	Shawn	(Checked :
Date	Star	ted: 2	2/8/11			Dat	e Com	pleted : 3/8/11	L	ogge	l by : MP	[Date :
		DRILL	.ING					MATERIAL					PIEZOMETER
					ß			Description	Ę		Comments/		
	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Observations	Piezometer Log	Components
22 24 26								medium plasticity, carbonaceous material present, trace fine grained sand. COAL, brown-black, dull, soft, some hard shards returning, almost carbonaceous siltstone.			41.0 m -161.0 m; Permian C Seam	<u> </u>	
28 30 32 34 36	Rotary Wash Boring (Bit, 6 inch)	Ni			132.00 (149.21)			COAL, brown-black, dull, chips into small shards.				Y D X D	
38 40 42	Rota				137.50 (143.21) (143.21) 139.00 (142.21)			SILTSTONE, medium plasticity, pale grey. COAL, black, dull, carbonaceous material within siltstone present. CARBONACEOUS SILTSTONE, grey to dark grey, trace fine to medium grained sand.	-				 ■ Bentonite – Filter pack
44					143.00 (138.21) 145.50 (135.71)			COAL, black, soft, 50/50 shards/soft material.	_		D1 Seam		– Screen
46 48					(135.71) 147.00 (134.21)			CARBONACEOUS SILTSTONE, dark grey, trace mica grains. SANDSTONE, grey, grain supported, fine to medium grained sand, coarsening with depth. From 154.0 m; grey, medium to coarse grained sand, trace fine					€ End cap
50		<u> </u>		<u> </u>		::::							
			sheets	for		GH	C					Job No.	

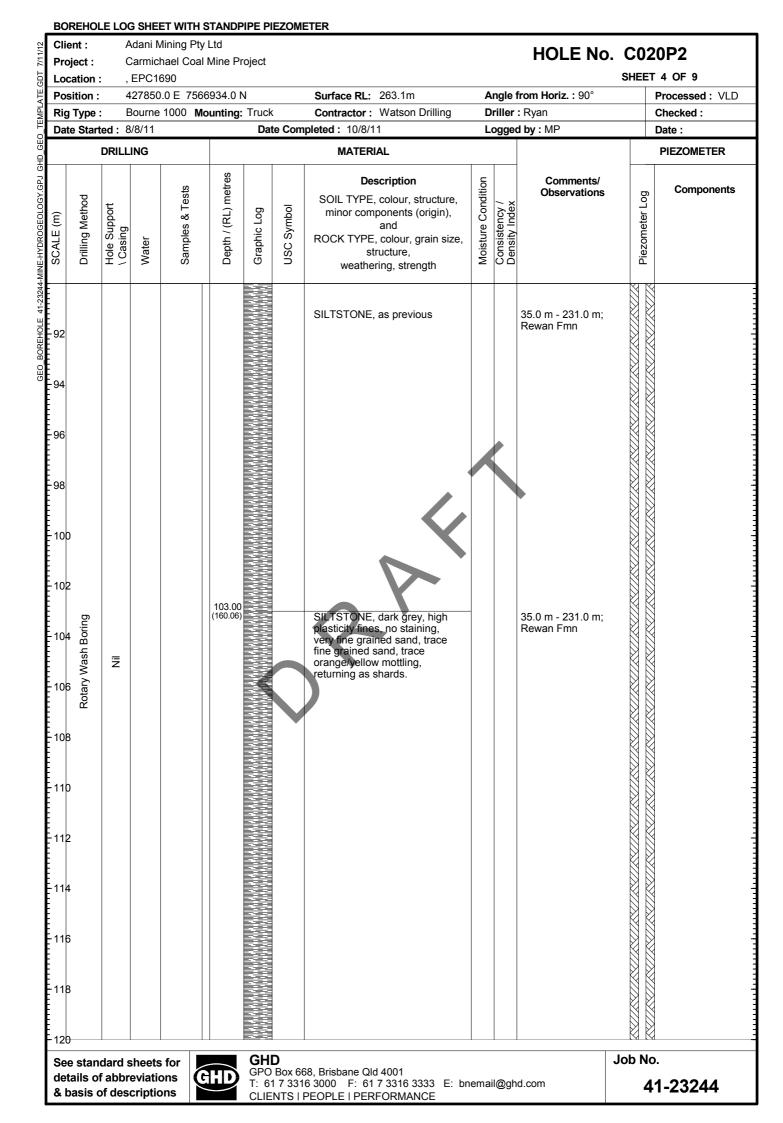
details of abbreviations & basis of descriptions

GPO Box 668, Brisbane Qld 4001 T: 61 7 3316 3000 F: 61 7 3316 3333 E: bnemail@ghd.com CLIENTS | PEOPLE | PERFORMANCE

BOR	EHOL	E LOC	3 SHEE	et with s	STANDP	IPE PI	EZOM	ETER					
Clien				lining Pty		_	_		_	_	HOLE No	- C01	12D3
Proje				hael Coal	Mine Pr	oject							
Locat			EPC16						•		000	SHEE	
Posit				.0 E 7574				Surface RL: 281.2m		-	from Horiz. : 90°		Processed : VLD
Rig T		: B ted: 2		1000 Mo	ounting:			Contractor : Watson Drilling apleted : 3/8/11			: Shawn d by : MP		Checked :
Date							le com	•	L.	ეველ			Date :
		DRILL	ING					MATERIAL					PIEZOMETER
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
152 154 156 158 160 162 164 166 168 170 172 174 176 176	Rotary Wash Boring (Bit, 6 inch)	Ni			161.00 (120.21)			grained sand. At 152.5 m; dark grey, interbedded with thin carbonaceous siltstone bands. From 154.0 m; fining up to fine grained sand, trace medium to coarse grained sand, increase in fines content, grain supported. From 156.0 m; matrix supported (silt), fine grained sand, carbonaceous siltstone present. From 159.0 m; grain supported, fine to medium grained sand, coarsening with depth. From 160.0 m; medium to coarse grained sand, trace fine grained sand, <10% fines. End of borehole at 161 m. Piezometer installed.			41.0 m -161.0 m; Permian		
Ê	I					'							
- 180-													
	ils of	fabbro	sheets eviatio	ons 🧿	HD	GPO T: 61) Box 66	68, Brisbane Qld 4001 I6 3000 F: 61 7 3316 3333 E: br	nemai	l@gh	id.com	Job No	o. 1-23244

& basis of descriptions

/


T: 61 7 3316 3000 F: 61 7 3316 3333 E: bnemail@ghd.com CLIENTS | PEOPLE | PERFORMANCE

Position: 2278:00 F: 756834 0 N Surface RL: 783 1m Angle from Hofz. 10°C Processed : VLD Diffe Started: 2011 Diffe Started: 100 Diffe Started:	Project : Ca Location : , E	dani Mining Pty armichael Coal EPC1690	Mine Project			O. C020P2 SHEET 1 OF 9
Date Stantict : 9/8/11 Date Completed : 10/8/11 Logged by: MP Date : DRULING MATERIAL Description Stantict : 00/8/11 Comments Dig d				Surface RL: 263.1m	Angle from Horiz. : 90°	Processed : VLD
DRILLING MATERIAL PEZOMETER Image: State of the state o	• • •			· · · · · · · · · · · · · · · · · · ·		
Completed at the second s				•		
2 august of the granted angular to such and white (opaque) quart, to grants, fine granted angular to such angular so and white (opaque) quart, the granted angular to such angular so and, matrix of such angular so and, matrix of such angular so and, matrix of granted sand, trace medium granted and, trace medium granted sand, trace medium gra	Drilling Method Hole Support / Casing	Water Samples & Tests	Depth / (RL) metres Graphic Log	SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size structure, weathering, strength	Moisture Condition Consistency / Consistency / Density Index	IS Components
	8 10 12 14 14 16 18 10 12 14 16 18 20 22 24 26 28		14.00	 supported, grey (translucent) and white (opaque) quartz grains, fine grained angular to sub-rounded quartz gravel, coarse grained angular to sub-angular sand, matrix of sandy silt, very fine to fine grained sand, trace medium grained sand, iron stained and hardened, dark red-brown, dark red/orange mottling, trace gypsum crystals. From 3.0 m; pale brown-orange staining of quartz grains, no iron hardening of sediments. SANDSTONE, grain supported, pale grey, fine to medium grained sand, predominately quartz, trace coarse grained sand. Increase in fines content with depth. From 7.0 to 9.0 m; pale yellow-orange From 9.0 m; matrix supported, silt, trace clay. SILTSTONE, completely stained pale brown-red, trace mica grains. From 16.0 to 19.0 m; colour change to pale grey, heavily stained pale yellow-brown. After 19.0 m; pale grey, stained pale brown-red in places, 	Tertiary	
	details of abbre & basis of desc		Т: 61	Box 668, Brisbane Qld 4001 7 3316 3000 F: 61 7 3316 3333 E: ITS PEOPLE PERFORMANCE	bnemail@ghd.com	41-23244

Client : Project : Location	(: ,	Carmich EPC16		Mine Pr						HOLE No.		T 2 OF 9
Position Rig Type			0 E 7566 1000 M o				Surface RL: 263.1m Contractor : Watson Drilling		-	f rom Horiz. : 90° : Ryan		Processed : VLD Checked :
Date Sta				Juning.			npleted : 10/8/11			d by : MP		Date :
	DRILL	ING					MATERIAL					PIEZOMETER
Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
32 34							SILTSTONE, as previous From 32.0 to 35.0 m; heavily stained dark red-brown.			0.0 m - 35.0 m; Tertiary		
36 38				35.00 (228.06)			SANDSTONE, matrix supported, pale yellow-brown, very fine to fine grained sand.			35.0 m - 231.0 m; Rewan Fmn		
40 42 44 44 46 48 49 80 49 40 40 40 40 40 40 40 40 40 40 40 40 40	NI	GNO									//////////////////////////////////////	
52 54 56 58				53.00 (210.06)			SILTSTONE and SANDSTONE, completely stained dark brown-red, iron hardened in places, orange/yellow/red mottling. Siltstone; extremely weathered. Sandstone; matrix supported (silt), very fine to fine grained sand, trace medium grained sand. Decrease in staining with depth, becoming pale grey with pale yellow staining and iron hardening in places,	-			7.37/7.37/7.37/7.37/7.37/7.37/7.37/7.37	

Client : Project :		ining Pty I ael Coal I			ZOME				HOLE No.	C02	20P2
Location :	, EPC16			J = = 1						SHEE	T 3 OF 9
Position :		0E 7566				Surface RL: 263.1m	Α	ngle	f rom Horiz. : 90°		Processed : VLD
Rig Type :		1000 Mo	unting:			Contractor: Watson Drilling			: Ryan		Checked :
Date Started	: 8/8/11			Date	e Com	pleted: 10/8/11	Lo	ogge	d by : MP		Date :
DR	ILLING					MATERIAL					PIEZOMETER
SCALE (m) Drilling Method Hole Support	\ Casing Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
62 64 66 68 70 72 74 80 80 82 84 88 88			80.00 (183.06)			red/orange mottling. SILTSTONE / SANDSTONE, as previous SILTSTONE, grey, stained red-grey in places, trace fine grained sand, trace orange/red/brown mottling, iron hardened in places (dark red-brown).			35.0 m - 231.0 m; Rewan Fmn		
90	d sheets			GHD)	8, Brisbane Qld 4001				Job N	0 .

GPO Box 668, Brisbane Qld 4001 T: 61 7 3316 3000 F: 61 7 3316 3333 E: bnemail@ghd.com CLIENTS | PEOPLE | PERFORMANCE

Client : Project : Location :	Adani Minin Carmichael , EPC1690	Coal Mine Project			HOLE No.		5 OF 9
Position : Rig Type :		7566934.0 N 00 Mounting: True	Surface RL: 263.1m Contractor : Watson Drilling	_	from Horiz. : 90° : Ryan		Processed : VLD Checked :
Date Started			ate Completed : 10/8/11		d by : MP		Date :
DRI	ILLING		MATERIAL				PIEZOMETER
Drilling Method Hole Support	\ Casing Water	Samples & Tests Depth / (RL) metres Graphic Log	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
122 124 126 128 130 132 134 136 Suborn 138 140 142 144 146 148			SILTSTONE, as previous		35.0 m - 231.0 m; Rewan Fmn	<pre>(1) K(1) K(1) K(1) K(1) K(1) K(1) K(1) K</pre>	- 50mm PVC casing with cement-bentor grout

Client : Project : Location :			Ltd Mine Project					HOLE No.		0P2 6 OF 9
Position :		0.0 E 7566			RL: 263.1m		-	rom Horiz. : 90°		Processed : VLD
Rig Type : Date Started		1000 MC	ounting: Truck	e Completed : 1	ctor: Watson Drilling			: Ryan I by : MP		Checked : Date :
	RILLING		Dat	-	ATERIAL	20	gget			
Dr										PIEZOMETER
Drilling Method Hole Support	\ Casing Water	Samples & Tests	Depth / (RL) metres Graphic Log	ROCK	Description TYPE, colour, structure, r components (origin), and TYPE, colour, grain size, structure, eathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
 ≤ Liston 166 170 172 174 176 178 				SILTST	ONE, as previous			35.0 m - 231.0 m; Rewan Fmn	KU I	
180						1		1		
	rd sheets	s for 🛛 🗖	GHI) Box 668, Brisbaı					Job No.	

Project :		ni Mining nichael C	oal Mine Pi	roject					HOLE No.	C02	0P2
Location :	, EP	C1690		-						SHEET	7 OF 9
Position :			566934.0		Surface RL:			-	rom Horiz. : 90°		Processed : VLD
Rig Type :			Mounting:			Watson Drilling			: Ryan		Checked :
Date Starte	e d: 8/8/	11		Dat	e Completed : 10/8/	11	Lo	ggeo	i by : MP		Date :
Γ	ORILLING	1			MATER	RIAL					PIEZOMETER
Drilling Method	Hole Support \ Casing \\/\	Samples & Tests	Depth / (RL) metres	Graphic Log	SOIL TYPE minor con ROCK TYPE	escription E, colour, structure, nponents (origin), and E, colour, grain size, tructure, ering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
182 184 186 188 188 190 192 194 199 199 199 199 199 199	Ni				SILTSTONE	, as previous			35.0 m - 231.0 m; Rewan Fmn	401,8×01,8×01,8×01,8×01,8×01,8×01,8×01,8×	
200 202 204 206 208			199.00 (64.06) 208.00 (55.06)		orange motti supported, (plasticity fine sand, trace r sand. From 203.0 grained sand hardening of dark red-bro	silt, medium ss), fine grained medium grained to 207.0 m; coarse d, iron staining and f some sediments, wn.	-			ארו הארו הארו הארו הארו הארו הארו הארו ה	
10			210.00			ound.				ЯM	
too stand	lard she	ets for		GH)				,	Job No.	1
			GHD		Box 668, Brisbane Q						

-00	ject : ation ition :	,	EPC16	90	I Mine Pr	-		Surface RL: 263.1m		nala	HOLE No.		T 8 OF 9 Processed : VLD
	Type				ounting:			Contractor : Watson Drilling		-	: Ryan		Checked :
_		ted: 8						pleted : 10/8/11			d by : MP		Date :
		DRILL	ING					MATERIAL					PIEZOMETER
	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
12 14 16					(53.06) 215.00 (48.06)			SANDSTONE, grey, matrix supported, high plasticity (clay/silt), very fine to fine grained sand, trace medium grained sand.	-		35.0 m - 231.0 m; Rewan Fmn	111/X/11/X/11/X/11/X/11/X/11/X/11/X/11	
20 22 24 26	Rotary Wash Boring	Nii			221.00 (42.06)			SILTSTONE, dark grey, high plasticity fines, very fine grained sand, returning as shards.	-			<u>877787787787778777877877877877877877877</u>	
30 32 34					231.00 (32.06)			SANDSTONE, grey, matrix supported, medium plasticity fines (silt), fine grained sand, trace medium to coarse grained sand.	_		231.0 m - 267.0 m; Permian		
36 38					236.00 (27.06)			SILTSTONE, grey, orange/dark red-brown mottling, some iron hardening in places, very fine to fine grained sand, trace medium to coarse grained sand.	_				
40							`	1	1	1			×I
			sheets eviatic		GHD	GPO		68, Brisbane Qld 4001				Job No	0.

Client :			lining Pty		raiaat					HOLE No.	C02	0P2
Project : Location		EPC16	ael Coal	Mine Pi	oject							9 OF 9
Position :			.0 E 7566	6934.0 I	N		Surface RL: 263.1m	Α	ngle	from Horiz. : 90°		Processed : VLD
Rig Type	: E	Bourne	1000 M o	ounting:	Truck		Contractor : Watson Drilling	D	riller	: Ryan		Checked :
Date Star	ted: 8	8/8/11		1	Dat	e Con	npleted: 10/8/11	L	ogge	d by : MP		Date :
	DRILL	ING					MATERIAL					PIEZOMETER
SCALE (m) Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
242 244 246 248 250 252 254 256 258 258	II			255.00 (8.06)			SILTSTONE, as previous			231.0 m - 267.0 m; Permian		 ■ Bentonite Filter pack — Screen
260 262				261.00 (2.06) 263.00 (0.06)			SILTSTONE, grey, some carbonaceous material present. COAL, black, vitreous, breaks	-				 End cap
264				264.50 (-1.44)			into small shards. SILTSTONE, grey, trace orange/red mottling, trace fine	-				
266				<u>267.00</u> (-3.94)			grained sand, trace medium grained sand, some carbonaceous material present. End of borehole at 267.0 m.					
268							Piezometer installed.					
270												
See stan		sheets eviatio		HD	GPO		68, Brisbane Qld 4001			•	Job No	•

Location		EPC16 26816	.0 E 756	5958.0 N	l		Surface RL: 273.8m	Α	ngle	from Horiz. : 90°	SHEET	Processed : VLD
Rig Type			1000 M	ounting:			Contractor : Watson Drilling		riller			Checked :
Date Star					Dat	e Com	npleted: 12/8/11	Lo	ogge	d by : MP		Date :
	DRILL	ING					MATERIAL		1			PIEZOMETER
Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Densitv Index	Comments/ Observations	☐ Piezometer Log	Components
2 4 2 4 3 10 12 14 16 18 20 22 24 20 25 24 26 28 27 24	IN	GNO		1.00 (272.76)			SANDSTONE, matrix supported, orange, fine grained sand, with medium to coarse grained sub-angular sand, completely weathered. SANDSTONE, pale grey-brown, orange/red/dark brown mottling/staining in places, some iron hardening, very fine to fine grained sand. SANDSTONE, grain supported, pale orange-yellow, trace orange/red mottling, fine to medium grained sand, trace coarse grained sub-angular to sub-rounded sand, quartz and lithic grains. From 11.0 m; pate red-brown, increase in orange/yellow mottling.			0.0 m - 67.0 m: Dunda Beds	×	 Completed with stee monument Somm PVC casing, with cement-benton
30												

	ent :			Aining Pty		-:t	EZOM				HOLE No.	C02	2P1
	ject : ation		EPC1	hael Coa 690	i wine Pr	oject							2 OF 3
	sition :			.0 E 756	5958.0 N	1		Surface RL: 273.8m	Α	ngle f	rom Horiz. : 90°		Processed : VLD
Rig	Туре	: E	Bourne	1000 M	ounting:	Truck		Contractor : Watson Drilling	D	riller	:		Checked :
Dat	e Star	ted: 1	1/8/11			Dat	e Com	pleted : 12/8/11	L	oggeo	i by : MP		Date :
		DRILL	ING					MATERIAL					PIEZOMETER
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
32 34 36 38 40 42 44 46 48 50 52	Rotary Wash Boring	Ni						SANDSTONE, as previous. From 40.0 m; matrix/grains 50/50, high plasticity fines, stained dark red, orange/yellow/red mottling, fine angular to subangular quartz gravel (translucent, white/yellow). From 47.0 m; completely stained dark brown-red.			0.0 m - 67.0 m: Dunda Beds	1) KU 1, KU 1, 11 KU 1, K	grout
54 56					50.00			From 54.0 m; orange-yellow red/orange mottling, decrease in staining, increase in coarse grained sand content.					
58 60					58.00 (215.76) 59.00 (214.76)			SANDSTONE, grain supported, stained red-brown/orange, medium to coarse grained sand, trace fine	-				- Bentonite
				_		<u></u>	<u> </u>						
		dard s				GPO	Box 6	68, Brisbane Qld 4001			•	Job No	-
	aile o	t ahhr	eviatio	ons 🛛 🕻 🕻	HD	T. 61	1 7 331	16 3000 F: 61 7 3316 3333 E: br	omoi	l@ah	d com		1-23244

			g shei	ET WITH S	STANDP	IPE PI	EZOM	ETER					
2	ient :			/lining Pty							HOLE No	b. C02	22P1
	oject :			hael Coal	Mine Pr	oject							T 3 OF 3
<u>ب</u>	ocation		EPC10	690 6.0 E 756	5058 O N	1		Surface RL: 273.8m	^	nalo	from Horiz. : 90°	JHEE	Processed : VLD
5	g Type			1000 M				Contractor : Watson Drilling		riller			Checked :
Ū.	ate Star				zanting.			pleted : 12/8/11			d by : MP		Date :
		DRILL						MATERIAL		00			PIEZOMETER
			ING		es			Description			Comments/		PIEZOMETER
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Observations	Piezometer Log	Components
62	Rotary Wash Bor	Nil			64,50 (285,26) (208,76) 67,00 (206,76)			grained sand, predominately quartz, trace fine angular to sub-angular gravel, hard capping/iron crust SANDSTONE, pale red, grain supported, well graded, medium grained sand, trace fine and coarse grained sand, predominately quartz grains, some volcanic grains. After 60.0 m - colour change to pale grey-yellow, very little fines. SANDSTONE, pale grey, matrix supported, high plasticity fines (silt), fine	-		0.0 m - 67.0 m: Dunda Beds		 Filter pack Screen
-68								grained sand with medium to coarse grained sand. SANDSTONE, pale grey, trace red mottling, grain supported (>25% fines), medium grained sand, with fine grained sand, trace coarse grained sand. End of borehole at 67.0 m. Piezometer installed.					
-74								~ ^v					
-76 -78													-
- 80 - 80													
82													
-84													
-86													
Ē													
de	e stan etails o basis o	fabbr	eviatio	ons 🧿	iHD	T: 61	Box 6 I 7 331	68, Brisbane Qld 4001 16 3000 F: 61 7 3316 3333 E: bn PEOPLE I PERFORMANCE	ema	il@gh	d.com	Job N	o. 11-23244

Pos	ation : ition : Type :	4		0 E 757	1759.0 N ounting:		<u> </u>	Surface RL: 258.6m Contractor : Watson Drilling		-	from Horiz. : 90° : Glen		Processed : VLD Checked :
-	e Start				Juningi			pleted : 15/8/11			d by : MP		Date :
		DRILLI						MATERIAL			-		PIEZOMETER
SCALE (M)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Diezometer Log	Components
2 4 6 8 10 12 14	Rotary Wash Boring (bit, 6 inch)	Ni			4.50 (254.09) 11.00 (247.59)			Sandy SILT, orange-brown, yellow/orange/red mottling, iron nodules (<5mm), fine grained sand, trace medium grained sand, low plasticity fines. From 2.0 m; colour change to pale grey with significant pale brown-orange staining, yellow/orange/red mottling, medium to coarse grained angular to sub-angular sand. SANDSTONE, matrix supported (medium plasticity silt), pale grey, heavily stained pale yellow-brown, orange/yellow/red mottling, very fine to fine grained sand. From 8.0 m; increase in medium to coarse grained sand content. CLAYSTONE/SILTSTONE, leached, white, trace orange-yellow staining, some silt, trace very fine to fine grained sand. From 13.0 m; significant orange/yellow/dark orange/red mottling. From 15.0 to 17.0 m; heavily stained pale orange-brown and pale red-brown.			0.0 m - 19.0 m; Tertiary	11.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I 11.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I.K.U.I.K	monument
18 20 22 24	_							From 19.0 to 26.0 m; white, heavily stained pale grey-red (purple) and pale orange.			19.0 m - 49.0 m; Permian. Inferred from reinterpretation of geology.	33773377337733773377337733773377337733	← 50mm PVC casing, with cement-bentor grout
26 28								From 26.0 to 27.5 m; heavily stained dark orange, orange/yellow/red mottling.				XUIXAUXAUXAUXAUX	
30 See						GH						ob No	

Client : Project :			Aining F	Pty Ltd bal Mine Pi	niect					HOLE No.	C02	24P3
ocation		EPC1			5,000						SHEE	T 2 OF 2
Position :	4	128910	.0 E 7	571759.01	N		Surface RL: 258.6m	Α	ngle	from Horiz. : 90°		Processed : VLD
Rig Type	: E	Bourne	1000	Mounting:			Contractor: Watson Drilling			: Glen		Checked :
Date Star	ted: 1	5/8/11			Dat	te Com	pleted: 15/8/11	L	ogge	d by : MP		Date :
	DRILL	ING					MATERIAL					PIEZOMETER
Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
32 34 36 38 44 36 38 30 52 34 36 38 63 30 32 34 64 36 36 36 73 34 36 36 74 36 36 36 74 36 36 36 74 36 36 36 74 36 36 36 74 36 36 36 74 36 36 36 74 36 36 36 74 36 36 36 74 36 36 36 74 36 36 36 75 36 36 36 76 36 36 36 76 36 36 36 76 36 36 36	IN	GNO		37.50 (221.09) 44.00 (214.59) 49.00 (209.59)			From 30.0 to 32.0 m; white, some staining of pale brown. From 32.0 to 33.0 m; pale brown, trace orange/yellow mottling. From 33.0 to 34.0 m; purple-brown. From 34.0 to 36.0 m; pale grey, trace pale red/orange mottling. From 36.0 to 37.5 m; dark grey, trace orange mottling. SILTSTONE, pale orange-brown, trace orange/yellow/red/dark brown-red mottling, very fine to fine grained sand, crumbles into powder. From 38.0 m; pale grey-red. From 41.0 to 42.0 m; pale yellow-brown. From 42.0 to 43.0 m; heavily stained pale orange-brown. COAL, black-dark brown, dull, soft, some vitreous shards, interbedded with CARBONACEOUS SILTSTONE; dark brown. SILTSTONE; dark brown. SILTSTONE; dark brown. Piezometer installed.			19.0 m - 49.0 m; Permian. Inferred from reinterpretation of geology. D3 Seam	11/2/11/2/11/2/11/2/11/2/11/2/11/2/11/	Bentonite Filter pack Screen Hole Collapse
See stan Ietails o & basis o	fabbr	eviatio	ons	GHD	T: 6′	Box 66 1 7 331	68, Brisbane Qld 4001 6 3000 F: 61 7 3316 3333 E: br PEOPLE PERFORMANCE	nema	il@gh		Job No 4	o. 1-23244

Clie	nt :	A	dani M	lining Pt	-						HOLE No	. C02	25P1
-	ect: ation:		EPC16		Il Mine Pr	oject							1 OF 1
	tion :				5846.0 N			Surface RL: 227.5m	А	ngle	rom Horiz. : 90°		Processed : VLD
Rig [·]	Type	E	ourne	1000 M	lounting:	Truck		Contractor: Watson Drilling		-	: Stacy		Checked :
Date	Start	ed: 1	7/8/11			Dat	e Com	pleted: 17/8/11	L	ogge	i by : RB		Date :
		DRILL	ING					MATERIAL					PIEZOMETER
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
(m) 3CYFE (m) 2 2 4 6 8 10 12 14 16 18 20 22 24 24 26 28	Rotary Wash Boring (Step bit, 6 inch) D	Z I	GNO		11.00 (226.54) 3.00 (224.54) 4.00 (223.54) (216.54)		CH SC CH	weathering, strength LATERITE, orange-brown, fine and medium sized sub-rounded nodules, iron rich, silt, trace fine grained sand. Sandy CLAY, orange, yellow-orange and pale grey mottled, trace fine grained sand. High plasticity. (Extremely weathered SANDSTONE). Clayey SAND, Orange, yellow-orange and pale grey mottled, fine grained sand. (Extremely weathered SANDSTONE) Sandy CLAY, fine grained sand, high plasticity. (Extremely weathered SANDSTONE) End of borehole at 11 m. Piezometer installed:			0.0 m - 11.0 m; Tertiary		 Completed with stea monument 50mm PVC casing, with cement-benton grout Bentonite Filter pack Screen End cap
deta	ails o	abbr	sheets eviatic criptio	ons 🤇	GHD	T: 61	Box 66 7 331	8, Brisbane Qld 4001 6 3000 F: 61 7 3316 3333 E: bn PEOPLE PERFORMANCE	lema	il@gh	d.com	Job No	1-23244

Client : Project : Location	C : ,	armicha		Mine Pr						HOLE No.		2 5P2 1 OF 2
Position :			DE 7555				Surface RL: 227.5m Contractor : Watson Drilling		-	from Horiz. : 90° : Stacy		Processed : VLD Checked :
Rig Type Date Star				unung.			pleted : 17/8/11			d by : RB		Date :
	DRILL	ING					MATERIAL					PIEZOMETER
SCALE (m) Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30	Ni	GNO		2.00 (225.48) 4.00 (223.48) 5.00 (222.48) 11.00 (216.48)		CH CH	LATERITE, brown-red, fine and medium gravel sized sub-rounded nodules of iron rich material, silt, trace fine grained sand. From 1-2 m; Orange - brown Sandy CLAY, orange yellow-orange and pale grey mottled, fine grained sand. High plasticity. (Extremely weathered SANDSTONE) Clayey SAND, Orange-red, yellow-orange and pale grey mottled, fine grained sand. (Extremely weathered SANDSTONE) Very Sandy CLAY Pale grey with orange mottling, fine grained sand. (Extremely weathered SANDSTONE) CLAY, pale green-grey trace brown-orange mottle, trace fine-grained sand, high plasticity. At 15 m; pale grey-green, smooth From 16 to 18 m; trace black brittle material (carbon) up to 8 mm length (elongate, flat) organic looking.			0.0 m- 41.0 m; Tertiary		Completed with ster monument
	dard -	beet-	for -		GHE	<u>ר</u>					Job No)
See stan	dard s	heets t eviatio		HD			68, Brisbane Qld 4001					

Clien Proje	it :	A	Adani N	/lining Pt hael Coa	STANDP y Ltd Il Mine Pr						HOLE No		5P2 2 OF 2
Posit Rig T	tion : Type	4 : E	38013 3ourne	.0 E 755 1000 M	55846.0 N Iounting:	Truck		Surface RL: 227.5m Contractor : Watson Drilling	D	riller	f rom Horiz. : 90° : Stacy		Processed : VLD Checked :
Date			7/8/11			Dat	te Com	pleted: 17/8/11	L	ogge	d by : RB		Date :
		DRILL	ING					MATERIAL					PIEZOMETER
32	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
32 34 36 38 38 40 42 44 46 48 48 50 52 54 56	Rotary Wash Boring (Step bit, 6 inch)	ĨZ			32.00 (195.48) (195.48) (188.48) (186.48)			From 30 m; trace carbon Leached rock, pale grey-brown, fine grained (silt sized), silicified chips in clay matrix. Returns as gravely CLAY. (SILTSTONE?) From 33 to 35 m; pink-red, white with yellow and orange and pink-red staining, trace to some clay. From 35 to 39 m; significant clay. FERRICRETE, pink brown, hard fine grained chips (iron rich), some clay. End of borehole at 41 m. Piezometer installed.			0.0 m- 41.0 m; Tertiary		 ← Filter pack — Screen — End cap — Filter pack
etai	ils o	fabbr	sheets eviatio criptic	ons 🤇	GHD	T: 61	Box 66 1 7 331	68, Brisbane Qld 4001 6 3000 F: 61 7 3316 3333 E: br PEOPLE PERFORMANCE	lemai	il@gh	d.com	Job No 4	1-23244

Project : Location :	C			/ Ltd I Mine Pr	oject					HOLE No		27P1
Position : Rig Type	4 : E	33645.0 Bourne <i>1</i>	0E 755	4821.0 N ounting:	Truck		Surface RL: 227.6m Contractor : Watson Drilling	D	riller	from Horiz. : 90° : Stacey		Processed : VLD Checked :
Date Star					Dat	e Com	pleted : 21/8/11	L	ogge	d by : RB		Date :
	DRILL	ING					MATERIAL		1			PIEZOMETER
SCALE (m) Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations] Piezometer Log	Components
Client : Project : Location : Rig Type Date Start (III) Date Start (III) 12 14 16 18 20 22 24 26 28		GNO		3.00 (224.63) (224.63) (215.63) (214.63)	[] / /	SP	SAND, brown-orange, fine grained, trace silt, trace clay. From 2 to 3 m, fine and medium grained, no silt, no clay. SAND with gravel, orange brown and pale grey mottled, medium and coarse grained sand, trace fine sand, trace clay. Gravel is fine grained, all grains are quartz (white, grey, pink-orange, pink, orange), sub-angular and sub-rounded. (ALLUVIUM) From 7 to 8 m; some CLAY From 7 m; trace ferricrete (dark orange-brown, angular and sub-angular, fine gravel sized, fine grained) From 8 to 10 m; no clay, some ferricrete as described above. From 10 to 12 m; clayey Sandy CLAY, pale grey with orange mottles, trace whisps orange-red in colour. Fine grained sand. Fines include needles, specks and sub-rounded grains. Trace coarse angular sand sized extremely weathered to highly weathered siltstone (orange-brown, fine grained). Fines include needles, specks, and sub-rounded grains. Trace ferricrete (fine sized gravel), trace quartz (fine sized gravel), trace quartz (fine sized gravel), trace quartz (fine sized gravel), possibly contamination from above. (ALLUVIUM) End of borehole at 13 m. Piezometer installed.			0.0 m - 13.0 m; Alluvium		 Completed with stee monument 50mm PVC casing, with cement-benton grout Bentonite Filter pack Screen End cap
30												
See stan	dard s	sheets	for	\sim	GHI						Job No) .
		eviatio		HD	GPO	Box 66	8, Brisbane Qld 4001					

Pripet. Control Control Multipropet SHEET 1 OF 2 Pesition: 433640 E 758620.0 N Surface RL: 227 6m Angle from Hortz: 190" Processed 1: Pesition: 433640 E 758620.0 N Surface RL: 227 6m Angle from Hortz: 190" Processed 1: Diff. The Processed 1: Discription Discription Concessed 1: Diff. The Processed 1: Discription Solt TYPE; colour, structure, minor components (onja), and		Adani Mining I				HOLE No	. C027P2
Position: 433849 0 E 7554220 0 N Surface RL: 227 8m Angle from Horiz : 90" Processed : 1 By Type: Bourne 1000 Mounting Truck Contractor / Watson Dnilling Dniller: Slacey Dnelcompleted: 208/11 Logged by: RB Date : By Startic: 208/11 Date Completed: 208/11 Logged by: RB Date : Date : PRILLING MATERAL Startic: Slacey Detail: Date : Date : PRILLING MATERAL Startic: Slacey Date : Date : Date : PRILLING MATERAL Startic: Slacey Date : Date : Date : Startic: Slacey Startic: Slacey Startic: Slacey Date :	•		oal Mine Project				
Date Stantici : 2019/11 Date Completed : 2019/11 Logget by : RB Date : PRLLING MATERIAL MATERIAL PECOMETE Image: Stantici : 2019/11 Description Gi		-	554820.0 N	Surface RL: 227.6m	Angle	from Horiz. : 90°	Processed : VLD
DRILLING MATERIAL Commental Description PIEZOMETEI 00 00 00 00 00 00 00 00 00 00 00 00 00	Rig Type :	Bourne 1000	Mounting: Truck	Contractor: Watson Drilling	Driller	: Stacey	Checked :
Bit Mark Compone Bit Mark Bit	Date Started :	20/8/11	Date Con	npleted: 20/8/11	Logge	d by : RB	Date :
GNO 100 100 SP SAND crange brown, fine grained, trace alt, trace day, (ALLU/UM) 00	DRILI	LING		MATERIAL			PIEZOMETER
GNO SP SAND with Gravel, grained, trace silt, trace clay, Clayey SAND, crange-brown, fine grained, trace silt, trace clay, Clayey SAND, crange-brown, fine grained, trace silt, trace clay, clayey SAND, trange-brown, fine grained, trace sind, trace clay. Fine sub-rounded and sub-angular gravel, predominantly quart. Trace fine grained into rich material (ferricrete nodues), trom 5 to 8 m; trace fine grained model grayments, meduum model graym	Drilling Method Hole Support \ Casing	Water Samples & Tests	Depth / (RL) metres Graphic Log USC Symbol	SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure,	Moisture Condition Consistency / Density Index	Observations	
0 9 10.00.8/3 grave, fitable Day (is a 4 with) 2 5 5 5 2 0 2 5 2 0 12.00 5 2 0 2 5 2 0 2 5 2 0 2 5 2 0 2 5 2 0 2 5 2 0 2 5 2 0 2 5 3 0 3 5 4 5 5 5 6 12.0 12.0 12.0 14 15 12.0 12.0 12.0 15 16 12.0 12.0 12.0 12.0 16 17.00 18.00 19.00 12.0 12.0 12.0 16 16 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00		GNO	1.00 (226.56) SP-	grained, trace silt, trace clay. (ALLUVIUM) Clayey SAND, orange-brown,	-		monument
22 Quartz (grey and pink-orange). Trace fine grained sub-angular and sub-rounded quartz (as sand grains, as 4 to 10 m) possible contamination. (203.56) 24.00 CI (203.56) CI (203.56) CI 26.00 Sandy CLAY, as 19 to 21 m. (SANDSTONE) Sandy CLAY, pale grey, fine and medium grained sand (as 19 to 21 m). (SANDSTONE) 8 26.00 26.00 Green-grey-brown with orange-brown, yellow, red-brown and black staining and wisps of colour. Fine and medium grained sand (as 19 to 21 m). (SANDSTONE)	6 inch bit to 26 m and PDC 6 inch bit to 32.8 m)		(223.56) (223.56)	brown-orange with pale grey mottle, trace fine grained sand, trace clay. Fine sub-rounded and sub-angular gravel, predominantly quartz. Trace fine grained iron rich material (ferricrete nodules). (ALLUVIUM) From 5 to 8 m; some clay From 7 to 8 m; trace fine gravel From 8 to 10 m; sand with gravel, trace clay (as at 4 m) (ALLUVIUM) Clayey SAND with Gravel, brown-orange with trace pale grey mottle, medium and coarse grained sand, trace fine sand. Gravel is fine and all grains sub-angular and sub-rounded, predominantly quartz, trace ferricrete. (ALLUVIUM) Clayey SAND/Sandy CLAY, pale brown-grey and grey to orange, fine and medium grained sand, wisps of pink-red clay. Grains include grey quartz (sub-rounded) and grey needles and flecks of material.			50mm PVC casing with cement-bento
8 0range-brown, yellow, 0 red-brown and black staining 0 and wisps of colour. Fine and 0 and wisps of colour. Fine and	12 – 14 16		21.00 (206.56) SC 24.00 (203.56) Cl	sub-rounded quartz gravel (contamination?) and fine grained siltstone/ ferricrete (contamination?). (SANDSTONE) SAND with Clay, pale grey-brown, fine and medium grained, trace coarse grains. Quartz (grey and pink-orange). Trace fine grained sub-angular and sub-rounded quartz (as sand grains, as 4 to 10 m) possible contamination. (SANDSTONE) Clayey SAND/Sandy CLAY, as 19 to 21 m. (SANDSTONE) Sandy CLAY, pale grey, fine and medium grained sand (as 19 to 21 m). (SANDSTONE) Iron rich Hardpan, pale	-		- Bentonite
				red-brown and black staining			Filter pack

GPO Box 668, Brisbane Qld 4001 T: 61 7 3316 3000 F: 61 7 3316 3333 E: bnemail@ghd.com CLIENTS | PEOPLE | PERFORMANCE

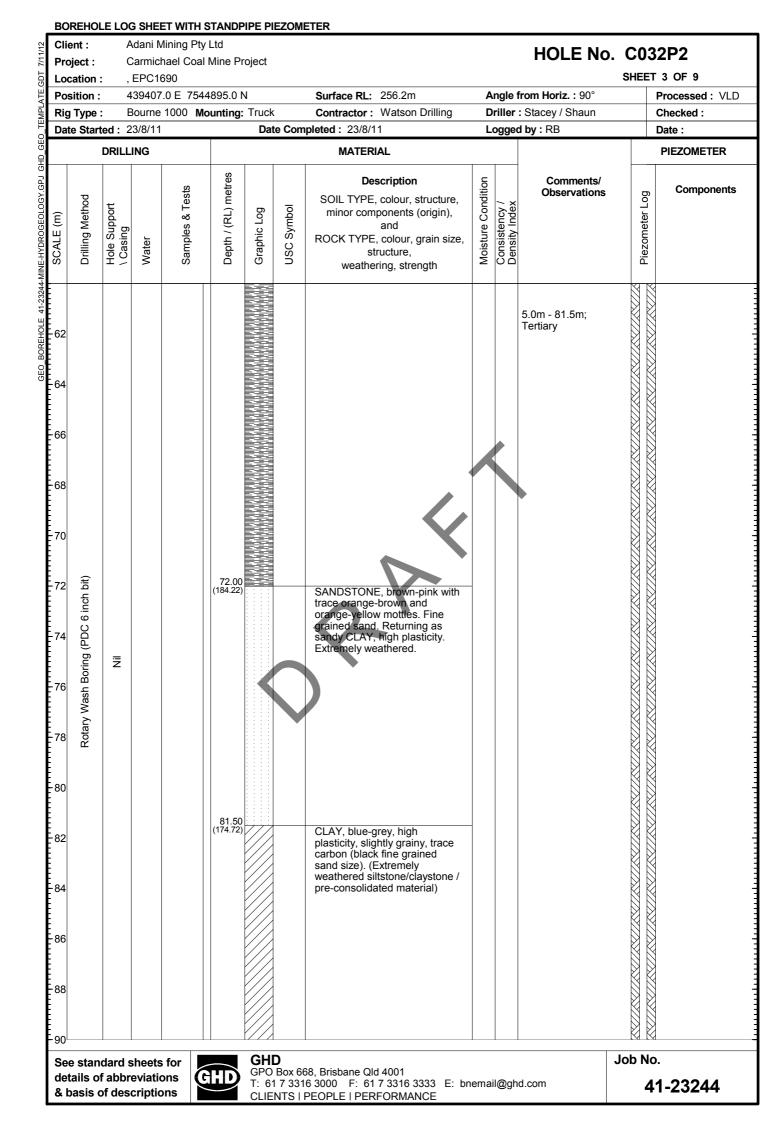
	ent : oject : cation	A (Adani M	ining Pty ael Coal	Ltd						HOLE No.		7 P2 2 OF 2
Pos	sition			0 E 755	4820.0 1	١		Surface RL: 227.6m		-	rom Horiz. : 90°		Processed : VLD
Rig	Туре			1000 M	ounting:			Contractor : Watson Drilling			Stacey		Checked :
Dat	e Star		20/8/11			Dat	e Com	pleted: 20/8/11	Lo	oggeo	i by : RB		Date :
		DRILL	ING					MATERIAL					PIEZOMETER
Clie Pro Pos Rig Dat () 32 32	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
32					<u>32.80</u> (194.76)			sandstone and siltstone. (SANDSTONE and SILTSTONE) Iron rich Hardpan, as previous End of borehole at 32.8 m.			12.0 m - 32.8 m; Dunda Beds		Screen — End cap — Hole Collapse
34								Piezometer installed.					
36													
38													
10								X					
12													
14								~					
16													
18							•						
50													
52													
54													
56													
58													
so See	e star	dard 9	sheets	for		GHI					,	Job No	
det	tails o	f abbr	eviatio criptio	ons 🖸	HD	T: 61	7 331	68, Brisbane Qld 4001 6 3000 F: 61 7 3316 3333 E: bn PEOPLE I PERFORMANCE	emai	l@gh	d.com	4	1-23244

Project Locatio			/lining Pty hael Coal 690		oject					HOLE No.		9P1 1 OF 1
Positio			5.0 E 755	5078.0 N	1		Surface RL: 225.4m	A	ngle	from Horiz. : 90°		Processed : VLD
Rig Typ	be :	Bourne	1000 M o	ounting:	Truck		Contractor: Watson Drilling		-	: Stacey		Checked :
Date St	arted :	21/8/11			Dat	e Com	pleted: 21/8/11	L	ogge	d by : RB		Date :
	DRI	LLING					MATERIAL					PIEZOMETER
SCALE (m) Drilling Method	Hole Support	\ Casing Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations] Piezometer Log	Components
22 4 (quil 6) (quil				2.00 (223.44) (220.44) (220.44) (219.44) (219.44) (216.44) (214.44) (214.44) (212.04)		SP- SM CH SC SC SC SC	Silty SAND, orange-brown, fine grained, trace clay. (ALLUVIUM) Sandy CLAY, orange-brown and pale pale grey mottled (high plasticity), Fine and medium grained sand. clay. Trace coarse sand and fine sized gravel of carbon rich material. (ALLUVIUM) Clayey SAND, orange and pale grey mottled, fine and medium grained sand. (ALLUVIUM) Sandy CLAY, orange-brown and pale pale grey mottled, trace brown mottle. Trace spots of dark grey (carbon rich) fine and medium grained sand. Some lumps of material appear semi-consolidated. (ALLUVIUM) SAND, orange and pale grey mottled, fine and medium grained, trace clay, trace coarse sand and fine gravel (sub-rounded and sub-angular, pink and grey). (ALLUVIUM) SAND with Clay, as above with clay. (ALLUVIUM) End of borehole at 13.4 m. Piezometer installed.			0.0 m - 13.4 m; Alluvium		 Completed with stee monument 50mm PVC casing, with cement-bentoni grout Bentonite Filter pack Screen End cap
.30												
	andar	d sheets	tor		GHI	D					Job No	•
See er:							8, Brisbane Qld 4001					

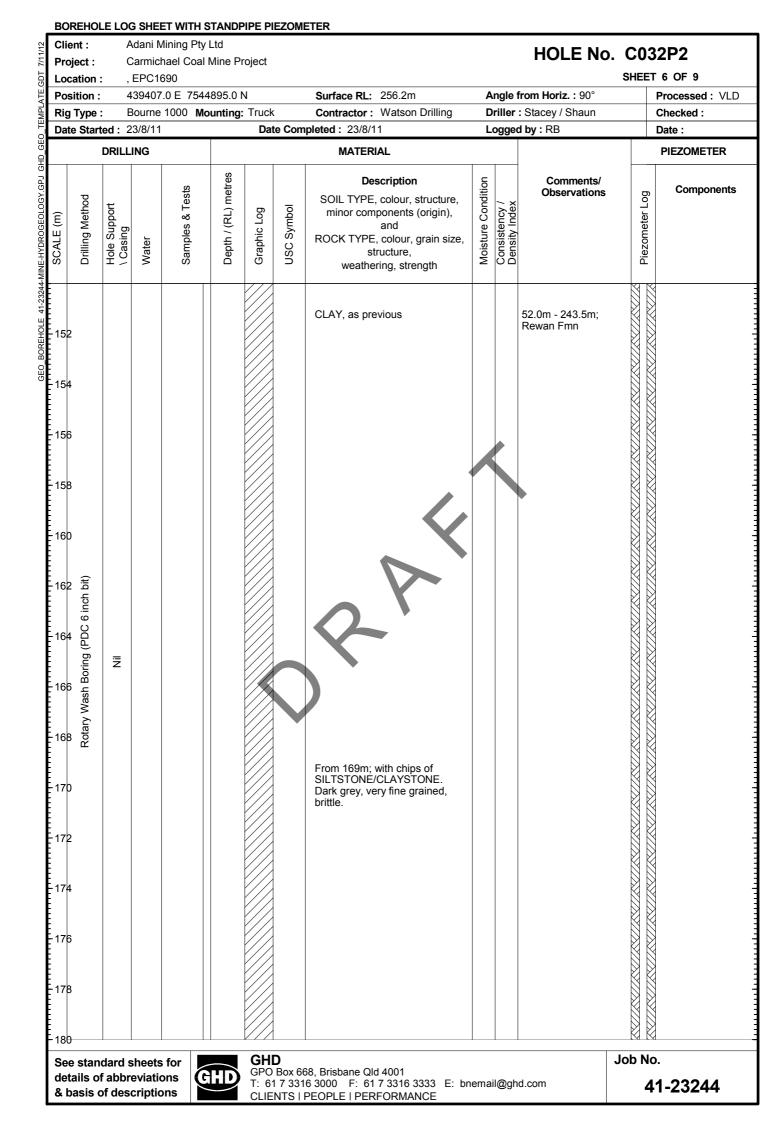
Pro	ent : ject :	C	Carmich		Ltd Mine Pr	oject					HOLE No.		
	ation :		EPC16		5078.0 N	1		Surface RL: 225.4m	•	nalo	from Horiz. : 90°		1 OF 2 Processed : VLD
	Type :				ounting:			Contractor : Watson Drilling		-	: Stacey		Checked :
Dat	e Start	ed: 2	1/8/11			Dat	te Com	pleted : 21/8/11	L	ogge	d by : RB		Date :
		DRILL	ING					MATERIAL					PIEZOMETER
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	🛉 🗍 Piezometer Log	Components
2 4 6 8 10 12 14 16 18 20 22 24 22 24 26 28	Rotary Wash Boring (Step bit, 6 inch)	Nil	GNO		3.00 (222.37) (222.37) 10.00 (217.37) 12.00 (213.37) 13.00 (212.37)		SM CH SP CH CH	Silty SAND, orange-brown, fine and medium grained sand, trace clay. (ALLUVIUM) Sandy CLAY, orange-brown and pale grey mottled (high plasticity). Fine and medium grained sand. Trace black coarse sand and fine gravel sized carbonised material (disintegrates when rubbed), including elongated wood like piece. From 6 to 8 m; rare coarse grained sand and fine gravel (quartz sub-angular, pale pink and grey). (ALLUVIUM) SAND with Clay, pale brown-grey with orange mottle. Some wavey laminations 1 to 5 mm width (orange, sand dominated). Fine and medium-grained sand. Trace dark grey spots (carbon rich). (ALLUVIUM) SAND, as above, trace clay From 11 m to 12 m- trace toarse sand and fine gravel (quartz, grey, white, pale yellow). Trace ferricrete (coarse grained sand and fine gravel in size, fine grained, orange and brown, hard, sub-angular) Sandy CLAY, grey-green-brown, high plasticity, fine and medium grained sand. Trace medium grained, iron rich). (ALLUVIUM) CLAY, grey trace red-brown. High plasticity, trace black smearing (carbonaceous), smooth. (ALLUVIUM)			0.0 m - 37.8 m; Alluvium	11 K 01 K	- 50mm PVC casing with cement-bentor grout
								From 29 to 30 m; dark					
30 ^L								grey-brown colour.					
			sheets eviatio		aHD		Box 6	68, Brisbane Qld 4001 6 3000 F: 61 7 3316 3333 E: br				Job No	1-23244

Client Projec	ct :	С	armich	ining Pty ael Coal		oject					HOLE No		
_ocati			EPC16	90 0 E 755	5079 0 1	1		Surface RL: 225.4m	•	nala	from Horiz + 00°	SHEE	T 2 OF 2 Processed : VLD
Positi Rig Ty				0 E 7558 1000 M o				Contractor: Watson Drilling		-	from Horiz. : 90° : Stacey		Processed : VLD Checked :
		ed: 2			<u>-</u>			pleted : 21/8/11			d by : RB		Date :
	I	DRILLI	NG					MATERIAL					PIEZOMETER
	thod	ort		Tests	-) metres	D	Q	Description SOIL TYPE, colour, structure, minor components (origin),	ondition	sy / lex	Comments/ Observations	Log	Components
	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index		Piezometer Log	
32 34 36	bit, 6 inch)							From 30 to 31 m; dark brown colour. From 31 to 38 m; grey-brown colour.			0.0 m - 37.8 m; Alluvium	Y/////////////////////////////////////	- Bentonite
40 40 42 44	Rotary Wash Boring (Step bit,	N			37.80 (187.57) 40.00 (185.37) 46.00 (179.37)			FERRICRETE, grey with significant yellow, orange, black and dark red-pink staining, black-brown spider veining, trace medium grained rock. Trace chips with no visible grains. Bleached / Leached ROCK, pale grey with some yellow and orange staining, fine grained, hard. From 41 m; returning as CLAY medium plasticity with trace black specks / fines of carbon and fine sand (quartz). From 41 to 43 m; with fine gravel and coarse sand sized chips of bleached / leached			37.8 m - 40.0 m; Tertiary 40.0 m - 46.0 m; Permian		 ← Filter pack ← Screen
8 60 62 66 68					(1/9.37)			End of borehole at 46 m. Piezometer installed.					
30L													
	tan	lard o	heets	for 📕		GHE)					Job N	0.
			neets eviatio		HD	GPO	Box 66	58, Brisbane Qld 4001 6 3000 F: 61 7 3316 3333 E: bn					1-23244

Client : Project : .ocation	A C	Adani M	ining Pty ael Coal 90	Ltd						HOLE No.		2 P2 1 OF 9
Position	: 4		0E 7544				Surface RL: 256.2m		-	from Horiz. : 90°		Processed : VLD
Rig Type			1000 Mo	ounting:			Contractor : Watson Drilling			: Stacey / Shaun		Checked :
Date Sta	DRILL				Dat	e com	pleted : 23/8/11		ogged	d by : RB		Date :
		.ing					MATERIAL					PIEZOMETER
Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index		➡ Piezometer Log	Components
2				5.00 (251.22) 7.00 (249.22)	000	SM	Silty SAND, orange, yellow and pale brown mottled. Fine, medium and coarse grained sand (quartz, sub-angular and sub-rounded, pink, orange, grey). Some fine gravel (quartz, and laterite nodules). Trace clay from 1m. (ALLUVIUM) Laterite GRAVEL, dark orange-brown with yellow-orange and red-pink mottles. Gravel is fine and medium grained rock. Some	_		0.0m - 5.0m; Alluvium 5.0m - 52.5m; Tertiary	<u> </u>	monument
Rotary Wash Boring (PDC 6 inch bit)	IN			8.00 (248.22) 18.50 (237.72) 22.00 (234.22)			silt. SANDSTONE, pale green, fine and medium grained in very fine grained/no visible grains matrix. Brittle. Leached. SANDSTONE, pale green, fine and medium grained in clay matrix, high plasticity. Extremely weathered. SANDSTONE, pale green-grey, fine grained, trace medium grained sand. Returning as sandy CLAY; high plasticity. Carbon pieces and grey patches; fine sand up to fine gravel sized. Extremely weathered. SANDSTONE, pale	-			33/1733/1733/1733/1733/1733/1733/1733/1	
24 26 28		GNO					brown-green with orange mottles, medium grained. Returning as clayey SAND (quartz, sub-angular and sub-rounded, pink, orange, grey, colourless), black specs (carbon). Extremely weathered.				1) X (1) X (


Client : Project : Location	C	Adani Mi Carmicha EPC169	ael Coa	/ Ltd I Mine Pr	oject					HOLE No.		2 P2 2 OF 9
Position Rig Type	: 4 : E	139407.(Bourne 1)E 754	4895.0 N ounting:	Truck		Surface RL: 256.2m Contractor : Watson Drilling	D	riller	from Horiz. : 90° : Stacey / Shaun	F	Processed : VLD Checked :
Date Sta					Dat	e Com	pleted : 23/8/11	Lo	oggeo	d by : RB)ate :
	DRILL	ING					MATERIAL					PIEZOMETER
Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
5 6 8 0 5 7 7 8 9 9 7 7 9 10 <	IN			(226.22) 35.00 (221.22) 38.00 (218.22)			SANDSTONE with Ferricrete, pale pink, cream and orange-brown mottled. Sandstone is medium grained, trace coarse grained sand, black specs (carbon) returning as clayey SAND. Ferricrete is pink-red with dark red and purple staining, hard, iron-rich. FERRICRETE, orange-pink, fine grained, iron-rich. Silt. (SILTSTONE, dark orange-pink, fine grained, gritty (black and orange-pink), iron-rich. Disintegrates to clay. Extremely weathered. From 42m; Pink and white mottled with marble effect, slightly grainy. Returns as CLAY, high plasticity.			5.0m - 52.5m; Tertiary 52.0m - 243.5m; Rewan Fmn	1×11×11×11×11×11×11×11×11×11×11×11×11×1	

See standard sheets for details of abbreviations & basis of descriptions


GHD GPO Box 668, Brisbane Qld 4001 T: 61 7 3316 3000 F: 61 7 3316 3333 E: bnemail@ghd.com CLIENTS | PEOPLE | PERFORMANCE

Job No.

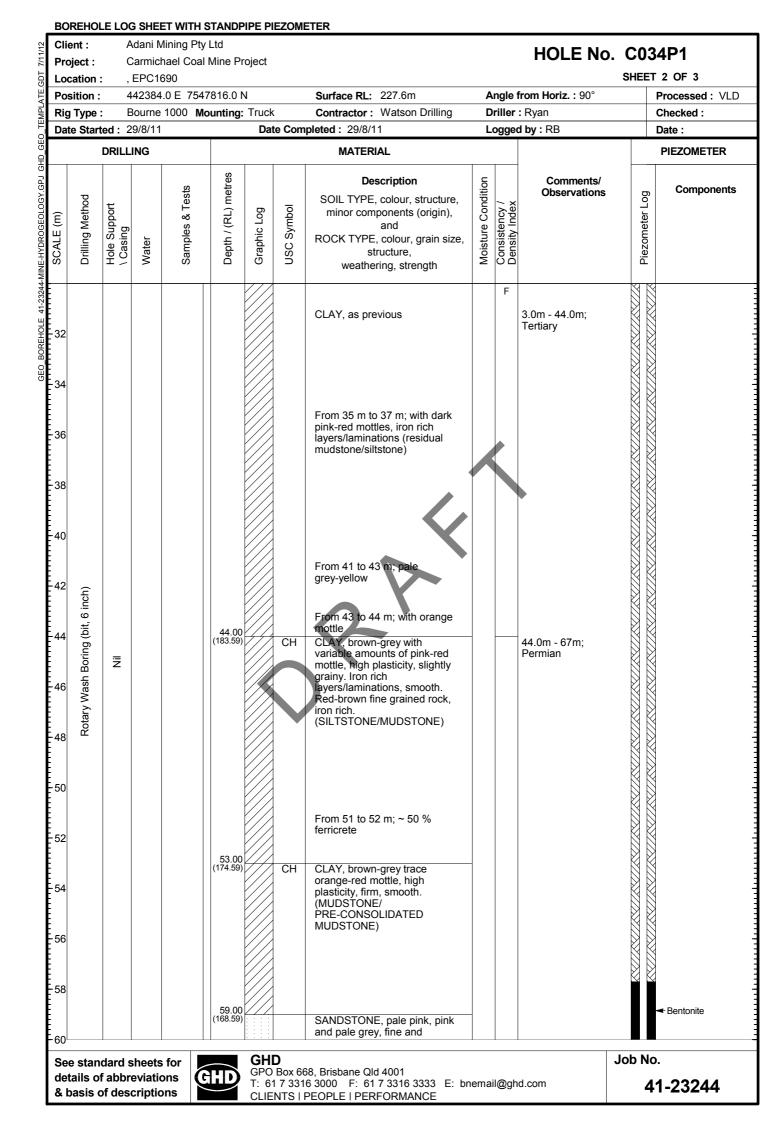
Clier Proje	nt :	1	Adani M	ET WITH S Iining Pty nael Coal	Ltd		0141				HOLE No.		2P2 4 OF 9
	ition :			.0 E 7544	4895.0 N	١		Surface RL: 256.2m	Α	ngle	from Horiz. : 90°		Processed : VLD
-	Туре			1000 Mc	ounting:			Contractor: Watson Drilling			: Stacey / Shaun		Checked :
Date			23/8/11			Dat	e Con	npleted: 23/8/11	L	ogge	d by : RB		Date :
		DRILL						MATERIAL					PIEZOMETER
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
92 94 96 98 100 102 104 106 110 112 112	Rotary Wash Boring (PDC 6 inch bit)	Ni						CLAY, as previous			52.0m - 243.5m; Rewan Fmn	KU I. KU I KU I. KU I	
116 118													
deta	ails o	f abbi	sheets reviatio	ons 🤆	iHD	T: 61	Box 6 7 33	68, Brisbane Qld 4001 16 3000 F: 61 7 3316 3333 E: br PEOPLE I PERFORMANCE	nemai	il@gh		Job No 4'	1-23244

Clie				Aining Pty							HOLE No.	C0:	32P2
-	ject : ation		Carmic EPC1	hael Coal 690	Mine Pi	oject							T 5 OF 9
	ition			7.0 E 754	4895.01	N		Surface RL: 256.2m	Aı	ngle f	rom Horiz. : 90°		Processed : VLD
	Туре		Bourne	1000 M	ounting:	Truck		Contractor : Watson Drilling		-	: Stacey / Shaun		Checked :
Date	e Star	ted: 2	3/8/11			Dat	e Con	pleted: 23/8/11	Lo	oggeo	l by : RB		Date :
		DRILL	ING					MATERIAL					PIEZOMETER
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
122 124 126 128 130 132 134 136 138 140 142 144 146 148	Rotary Wash Boring (PDC 6 inch bit)	Ni						CLAY, as previous From 122 to 135m; with dark brown-red mottles			52.0m - 243.5m; Rewan Fmn	KUIKUIKUIKUIKUIKUIKUIKUIKUIKUIKUIKUIKUIK	50mm PVC casing with cement-bento grout
150		1		ا ا				1	1				×I
See	stan	dard s	sheets	s for	\sim	GHE	<u>ן</u>	68, Brisbane Qld 4001			•	Job N	0.

Pro	ent : ject :	C	armich	lining Pty nael Coal		oject					HOLE No.		
	ation :		EPC16	390 .0 E 7544	1905 0 1			Surface RL: 256.2m	•		rom Horiz. : 90°		7 OF 9 Processed : VLD
	Type			1000 M				Contractor : Watson Drilling		-	: Stacey / Shaun		Checked :
-		ted: 2			J			npleted : 23/8/11			l by : RB		Date :
		DRILL	ING					MATERIAL					PIEZOMETER
SUALE (III)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
182 184 186 188 190 192 194 196 198 200 202 204 204	Rotary Wash Boring (PDC 6 inch bit)	Nil						CLAY, as previous			52.0m - 243.5m; Rewan Fmn	×11×11×11×11×11×11×11×11×11×11×11×11×11	
208 210					208.00 (48.22)			SANDSTONE and SILTSTONE grey and pale grey, interbedded. Sandstone is fine grained (quartz, slightly	_				
		dard -	hooto	for		GH	 ר					Job No	
see		dard s	eviatio		HD			68, Brisbane Qld 4001					•

Client : Project :			ning Pty ael Coal		niect					HOLE No.	C032	2P2
Location :		PC169			ojeci						SHEET	8 OF 9
Position :)E 7544	895.0 N	١		Surface RL: 256.2m	Α	ngle	from Horiz. : 90°	P	rocessed : VLD
Rig Type :	Bc	ourne 1	000 Mo	ounting:			Contractor : Watson Drilling			: Stacey / Shaun	С	hecked :
Date Start	ed: 23	/8/11			Dat	e Com	pleted : 23/8/11	L	ogge	d by : RB	D	ate :
	DRILLIN	IG					MATERIAL				1	PIEZOMETER
Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
212 214 216 2218 2220 2222 2224 2226 2228 2220 2224 2226 2228 2230 2232 230 232 234 236 238 238	IN						sugary texture) SANDSTONE and SILTSTONE interbedded, as previous			52.0m - 243.5m; Rewan Fmn		

See standard sheets for details of abbreviations & basis of descriptions

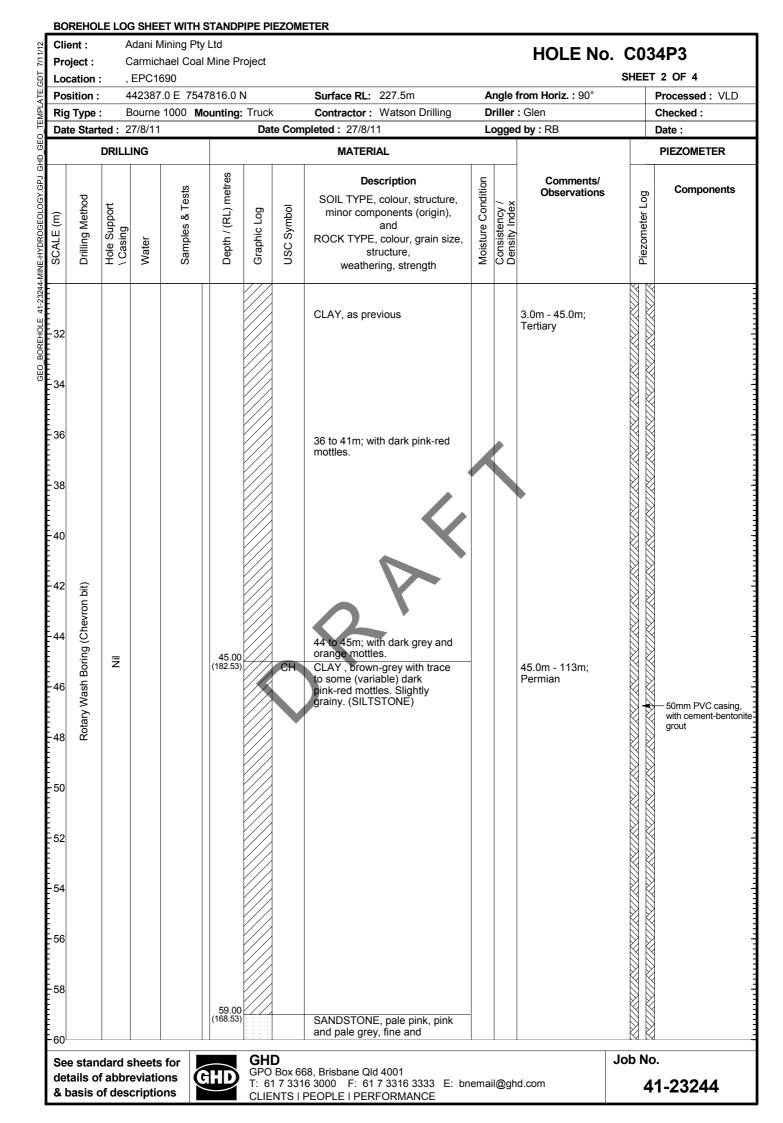

GHD

GHD GPO Box 668, Brisbane Qld 4001 T: 61 7 3316 3000 F: 61 7 3316 3333 E: bnemail@ghd.com CLIENTS | PEOPLE | PERFORMANCE

Job No.

Clie Proj			Adani N	ET WITH Mining Pty hael Coal 690	Ltd						HOLE No.		2P2 9 OF 9
	ition			7.0 E 754	4895.0 N	١		Surface RL: 256.2m			from Horiz. : 90°		Processed : VLD
-	Туре			:1000 M	ounting:			Contractor : Watson Drilling			: Stacey / Shaun		Checked :
Date	e Star		23/8/11			Da	le Con	pleted : 23/8/11	L	oggeo	d by : RB		Date :
_		DRILI						MATERIAL					PIEZOMETER
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
242								SANDSTONE and SILTSTONE interbedded, as previous			52.0m - 243.5m; Rewan Fmn		
244 246 248					243.50 (12.72)			Carbonaceous MUDSTONE, dark grey, very fine grained/no visible grains. Trace to some interbeds of siltstone; grey, fine grained. Trace interbeds of mudstone; pale brown, no visible grains. 246 to 246m; with some COAL interbeds; black, disintegrates.			243.5m - 263.0m; Permian AB Seam		
250 252 254 256	Rotary Wash Boring (PDC 6 inch bit)	Ni						From 253 to 257m: trace to some COAL interbeds.					 ✓ Bentonite ✓ Filter pack ✓ Screen
258 260 262 264					<u>263.00</u> (-6.78)		•	End of borehole at 263m. Piezometer installed.					— End cap
66 68													
deta	ails o	f abb	sheets reviationscription	ons [HD	T: 6′	Box 60 1 7 331	58, Brisbane Qld 4001 6 3000 F: 61 7 3316 3333 E: bn PEOPLE PERFORMANCE	ema	il@gh		Job No 4	^{5.} 1-23244

Pro	ent : ject : ation :	(,	Carmich EPC16		Mine Pr						HOLE No		Г 1 OF 3
	ition : Type :			0 E 7547 1000 M o				Surface RL: 227.6m Contractor : Watson Drilling		-	from Horiz. : 90° : Ryan		Processed : VLD Checked :
-			9/8/11		Junung.			pleted : 29/8/11			d by : RB		Date :
		DRILL	ING					MATERIAL					PIEZOMETER
	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations] Piezometer Log	Components
2 4 6 8 10 12 14 16 18 20 22 24	Rotary Wash Boring (bit, 6 inch)	Ni	GNO		3.00 (224.59) 6.00 (221.59) 15.00 (212.59) 23.00 (204.59)		CH CH	Clayey SAND, brown-orange, fine and medium grained sand, trace coarse grained sand, (quartz, sub-rounded), silt. Completely weathered Sandy CLAY, pale grey-green with orange mottle (3 to 4 m), pale grey-green with pink-orange mottle (4 to 6 m). Medium grained and trace coarse grained sand (quartz), grey, orange, pink, yellow, sub-rounded. Extremely to highly weathered. (SANDSTONE) CLAY, pale green-gey with orange-brown, trace medium-grained sand, firm high plasticity. (SILTSTONE) CLAY, brown-green with pink-red mottles, high plasticity, stiff. (MUDSTONE) From 17 to 19 m, predominantly pink-red.		F	0.0m - 3.0m; Alluvium 3.0m - 44.0m; Tertiary SWL above top of casing after installation	V V <td>Completed with stermonument</td>	Completed with stermonument
26 28 30								From 29 to 33 m, pale grey					50mm PVC casing with cement-bento grout
See	stan	dard s	sheets		\sim	GHI						Job N) .
			eviatio		HD			8, Brisbane Qld 4001 6 3000 F: 61 7 3316 3333 E: br	iema	il@ah	d com		1-23244



Clie Proj		A	Adani M	T WITH S 1ining Pty nael Coal 390	Ltd						HOLE No.		34P1 T 3 OF 3
	ition :			.0 E 7547	7816.0 N	١		Surface RL: 227.6m	A	ngle	from Horiz. : 90°		Processed : VLD
Rig	Туре	: E	Bourne	1000 M o	ounting:			Contractor : Watson Drilling			: Ryan		Checked :
Date			9/8/11		1	Da	te Com	pleted: 29/8/11	Le	ogge	d by : RB		Date :
		DRILL	ING					MATERIAL					PIEZOMETER
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	, Components
62 64 66	Rotary Wash Boring (bit, 6 inch)	Nil						medium grained, trace coarse grained (quartz, sub-rounded with some rounded needles and angular grains). Extremely weathered to highly weathered returning as Sandy CLAY, high plasticity, trace fine sized gravel (angular and sub-angular, quartz).			44.0m - 67m; Permian		▼ Filter pack
	-				67.00			Clayey SAND End of borehole at 67 m.					End cap
 70 72 74 76 78 80 82 84 86 88 													
90													
			sheets			GPO		8, Brisbane Qld 4001			•	Job N	0.
			eviatio criptic		HD	T: 6	1 7 331	6 3000 F: 61 7 3316 3333 E: bn PEOPLE PERFORMANCE	emai	l@gh	d.com	4	41-23244

lient :		dani Mi								HOLE No.	C03	4P3
Project :				I Mine Pro	oject							1 OF 4
ocation		EPC169		7816.0 N	1		Surface RL: 227.5m	^	nalo	from Horiz. : 90°		Processed : VLD
Rig Type				ounting:			Contractor : Watson Drilling		-	: Glen		Checked :
ate Star				ouning.			pleted : 27/8/11			d by : RB		Date :
	DRILL	ING					MATERIAL			-		PIEZOMETER
				ŷ			Description	_		Comments/		-
Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	က် USC Symbol	SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength Clayey SAND, brown-orange,	Moisture Condition	Consistency / Density Index	Observations	Piezometer Log	Components — Completed with ste monument
				3.00		CI	fine and medium grained, trace coarse grained sand (quartz, sub-rounded), silt.	_		0.0m - 3.0m; Quaternary Alluvium 3.0m - 45.0m;		
				6.00 (221.53)			grey-green with orange mottles. 4 to 6m; Pale grey-green with pink-orange mottles. Medium grained, trace coarse grained sand (quartz, sub-rounded, grey, pink,			SWL above top of casing after installation.		
8 9 4 2 0 0 Chevron bit)	Ni			16.00		CI	orange, yellow). Extremely to highly weathered. (SANDSTONE) CLAY, green-grey with orange-brown mottles. Some medium grained sand (quartz as 3 to 6m). (SILTSTONE) From 12m; trace medium grained sand From 14 to 16m; green-grey with red-brown mottles.				נוזארואצרואצרואצרואצרואצרואצרואצרואצרואצרו	
0 8 9 Rotary Wash				(211.53) (211.53) (209.53)		CL	Sandy CLAY, red-brown and green-grey, medium and coarse grained sand (as 3 to 6m). Stiff to firm clay, low plasticity. CLAY, red-brown, high plasticity, trace medium grained sand (quartz). (SILTSTONE)	-				
2 4 6 8				21.00 (206.53)		СН	CLAY, green-grey, high plasticity. (MUDSTONE)	-			\\!\\\\!\\\\!\\\\!\\\\!\\\\!\\\\!\\\\!\\\\	

details of abbreviations & basis of descriptions

GPO Box 668, Brisbane Qld 4001 T: 61 7 3316 3000 F: 61 7 3316 3333 E: bnemail@ghd.com CLIENTS | PEOPLE | PERFORMANCE

Proj	nt: ect:	C	Carmich		y Ltd al Mine Pr	oject					HOLE No.		
osi	ation ition :	4		0E 754	47816.0 M			Surface RL: 227.5m			rom Horiz. : 90°		3 OF 4 Processed : VLD
-	Type	: ⊑ ted:2			lounting:			Contractor : Watson Drilling pleted : 27/8/11			: Glen I by : RB		Checked :
ale						Dai	le Con	•		ogget	I by . RB		Date :
_		DRILL	ING					MATERIAL					PIEZOMETER
	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
2								medium grained sand (quartz, sub-rounded, some angular shards and needles, pale grey and pink). Returning as Sandy CLAY. Extremely weathered. From 64 to 66m; with some brown-green clay; high plasticity, smooth, soft.			45.0m - 113m; Permian	TI KUTKUTKUTKUTKUTKUTU TI KUTKUTKUTKUTKUT	
3 2 4	Rotary Wash Boring (Chevron bit)	Nii			69.00 (158.53) 71.00 (156.53)		СН	CLAY, brown-green, high plasticity, smooth, soft. SANDSTONE VSILTSTONE, SANDSTONE; pale pink and white, medium and coarse grained sand (quartz, sub-rounded and sub-angular, shards and needles).SILTSTONE; Grey, fine grained, trace iron staining, brittle. Extremely weathered.	-			11×411×411×411×411×411×411×411×4	
8 0 2	Rotary W							77 to 83m; sandstone has some fine gravel (quartz, sub-rounded and sub-angular) 83 to 89m; sandstone is fine				1771 1771 1771 1771 1771 1771 1771 177	
4 6 8					89.00 (138.53) 90.00		СН	CLAY, pale pink and white, high plasticity					

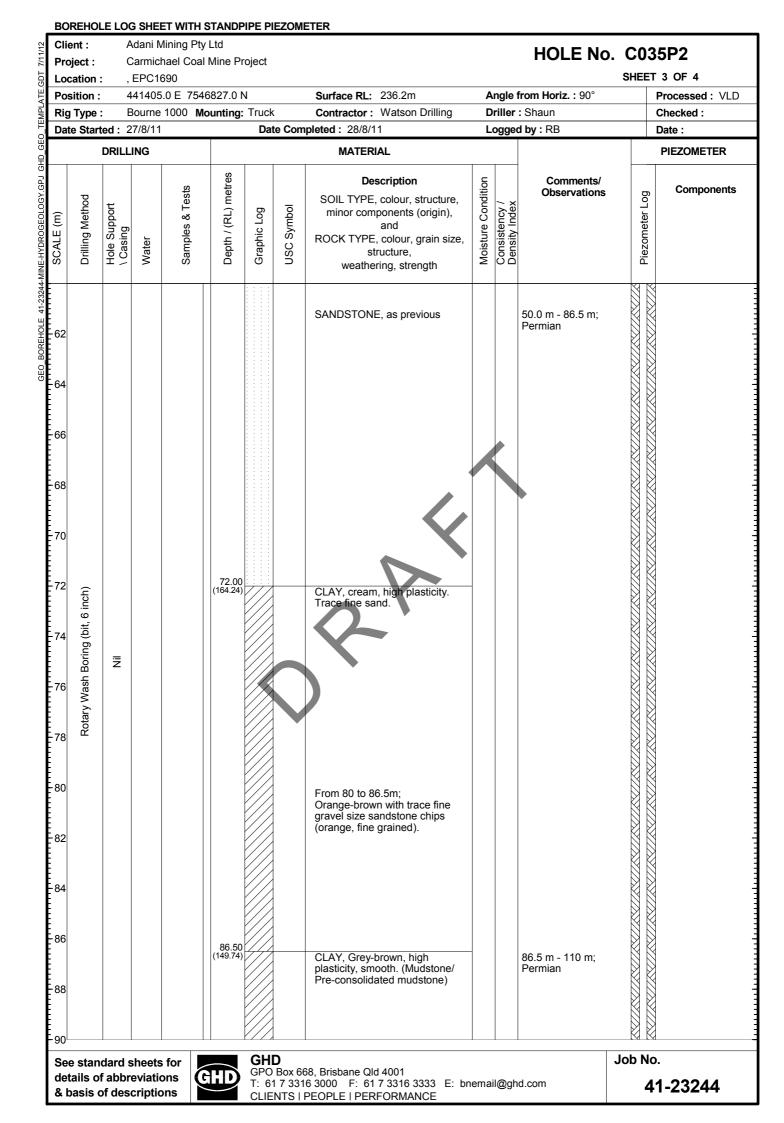
details of abbreviations & basis of descriptions

GID

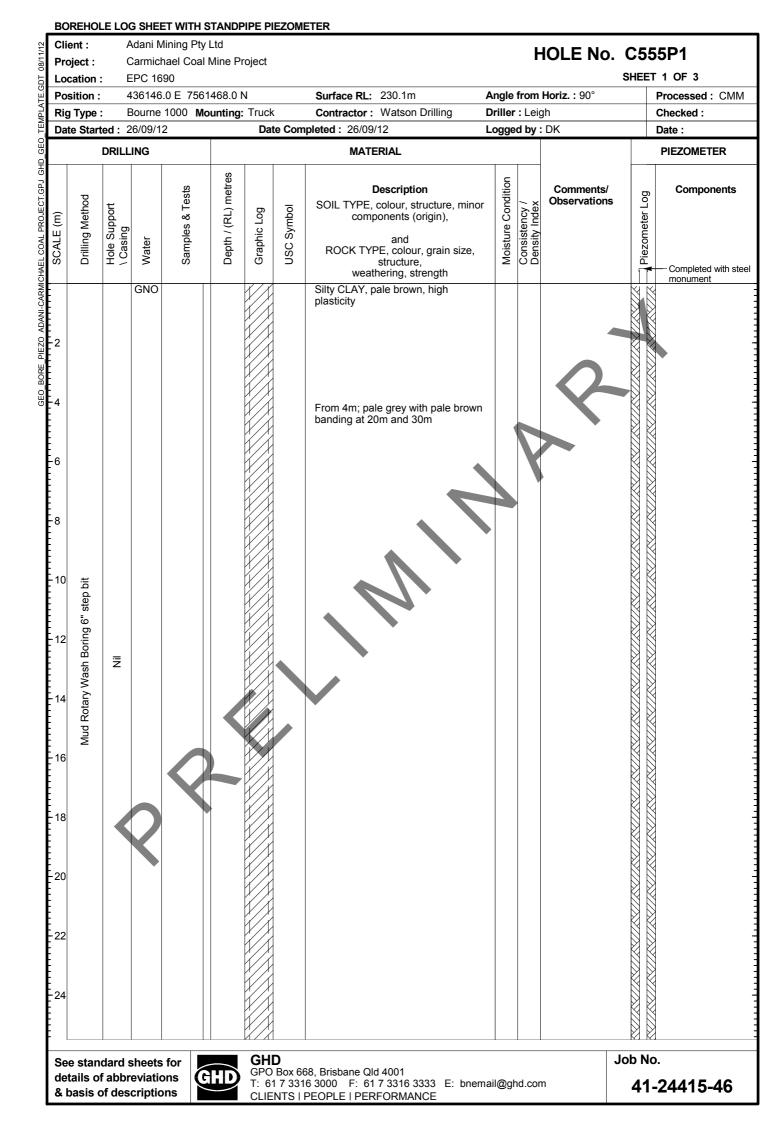
GPO Box 668, Brisbane Qld 4001 T: 61 7 3316 3000 F: 61 7 3316 3333 E: bnemail@ghd.com CLIENTS | PEOPLE | PERFORMANCE

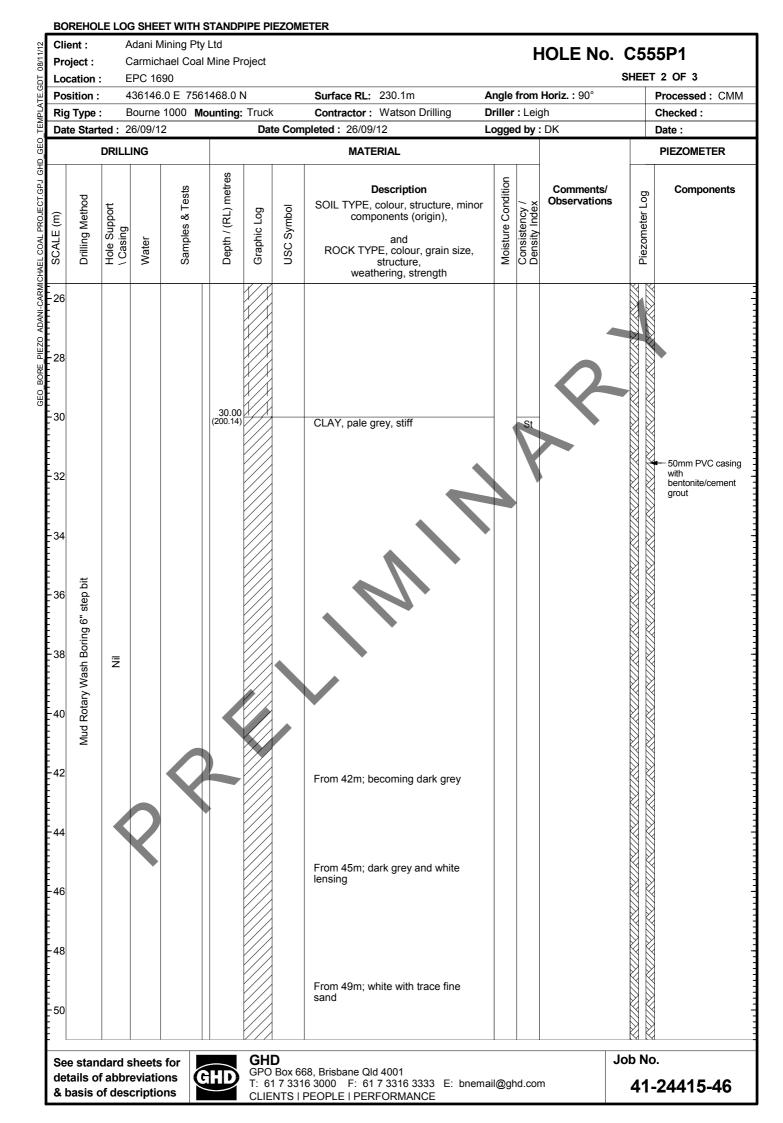
Clie	ent :	1	Adani N	lining Pty	Ltd						HOLE No.	COR	403
	ject :			nael Coal	Mine Pr	oject							
Loc	cation	,	EPC1									SHEET	4 OF 4
Pos	sition :	4	42387	.0 E 754	7816.0	1		Surface RL: 227.5m		<u> </u>	from Horiz. : 90°		Processed : VLD
	ј Туре			1000 M	ounting:			Contractor: Watson Drilling		-	: Glen		Checked :
Dat	te Star	ted: 2	27/8/11			Dat	te Com	pleted: 27/8/11	L	ogge	d by : RB		Date :
		DRILL	ING					MATERIAL					PIEZOMETER
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
96-96-			►		(137.53) 92.00 (135.53)			CARBONACEOUS MUDSTONE with COAL and MUDSTONE. MUDSTONE; Pale brown-green. CARBONACEOUS MUDSTONE; Black. COAL; Black. 90 to 92m; 25% coal, 25% carbonaceous mudstone, 50% mudstone. COAL with CARBONACEOUS MUDSTONE and MUDSTONE. MUDSTONE; Pale brown-green. CARBONACEOUS MUDSTONE; Black. COAL;			45.0m - 113m; Permian Groundwater inflow at approximately 92.0 m, estimated at 3-4 L/s		≺ Bentonite

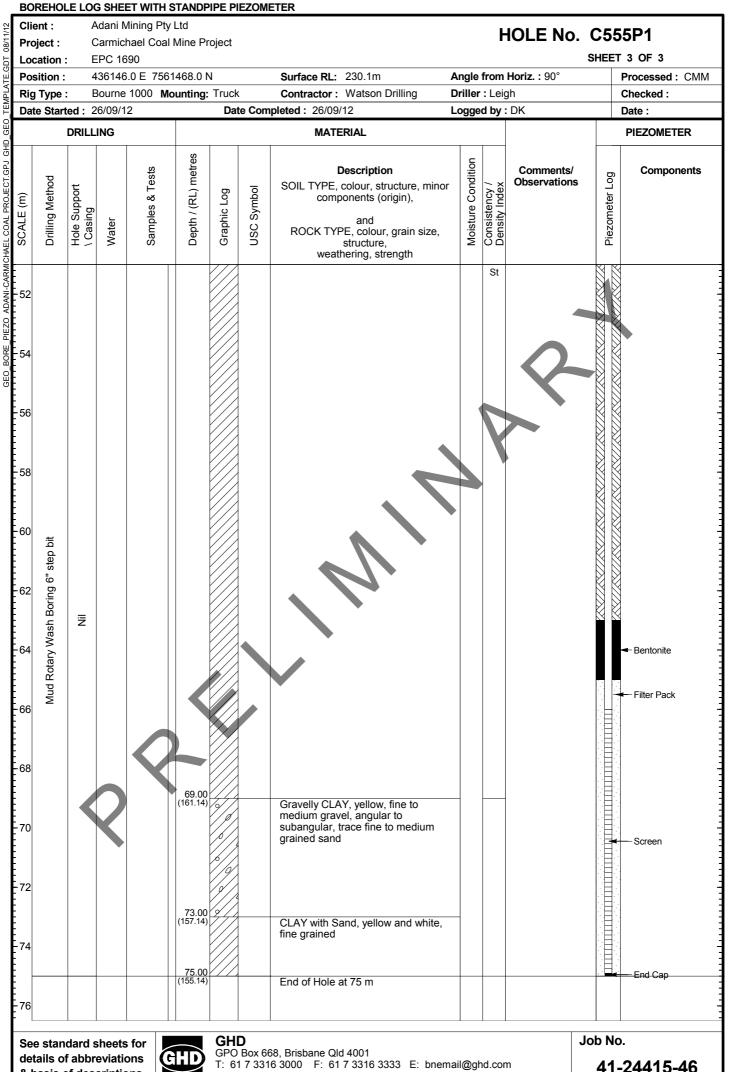
80 00 00 86 90 Rotary Wash Boring (Chevron bit)	ī	106.00 (121.53)	CARBONACEOUS MUDSTONE; Black. COAL; Black. From 92 to 94m; 50% coal, 25% carbonaceous mudstone, 25% mudstone. From 94 to 95m; 98% coal, 1% carbonaceous mudstone, 1% mudstone. From 95 to 103m; 80% coal, 5% carbonaceous mudstone, 15% mudstone. From 103 to 106m; 98% coal, 1% carbonaceous mudstone, 1% mudstone. SILTSTONE, dark grey, fine grained. With interbeds of COAL (5%) and CARBONACEOUS MUDSTONE (5%); black.	D Seam	Filter pack
110		110.00 (117.53) 113.00 (114.53)	SANDSTONE, pale grey, coarse grained sand and fine gravel (quartz, sub-rounded and sub-angular). With trace interbeds of sandstone; grey, fine grained, and carbonaceous mudstone; dark grey. End of hole at 113m.		
116			Piezometer installed.		
details of	dard sheets for f abbreviations of descriptions	T: 61 7 3	668, Brisbane Qld 4001 316 3000 F: 61 7 3316 3333 E: bnemail@ PEOPLE PERFORMANCE		Job No. 41-23244


lient :			/lining P		oicat					HOLE No.	C03	5P1
roject : ocation		Carmic , EPC1		al Mine Pr	oject							1 OF 3
osition				46820.0 N	J		Surface RL: 236.3m	Δ	nale	from Horiz. : 90°		Processed : VLD
lig Type				Mounting:			Contractor : Watson Drilling		-	: Shaun		Checked :
ate Sta				liouningi			pleted : 28/8/11			d by : RB		Date :
							-		-33-			
	DRILI	LING					MATERIAL					PIEZOMETER
Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	🚽 Piezometer Log	Components
Drilling Method		GNO		1.00 (235.31) 5.00 (231.31)	0	SP	SAND with Gravel, orange, medium and coarse grained sand (quartz, sub-angular and sub-rounded), fine gravel of quartz. Silt, trace clay. Sandy CLAY, pale grey-brown and orange mottled, (high plasticity). Medium and coarse grained, trace fine sand (quartz). SANDSTONE, pale grey and orange mottled, medium and coarse grained sand, trace fine gravel (quartz, sub-rounded and sub-angular). Returns as sandy clay. Extremely weathered.	-		0.0 m - 50.0 m; Tertiary	+ 4 (1) X (1	Completed with st monument
8 9 F 7 0 8 9 F 7 0 Rotary Wash Boring (bit, 6 inch)	ĨZ			10.50 (225.81)		СН	CLAY, green-grey and orange mottled, high plasticity. (Siltstone/ Mudstone) From 23 to 26 m; with pink mottling From 26 to 27 m; pink, trace grey-green colour From 27 to 30 m; with pink mottling				54/1754/1754/1754/1754/1754/1754/1754/17	- 50mm PVC casing with cement-bento grout
0 See sta letails (of abb		ons	30.00	T: 61	Box 66 7 331	68, Brisbane Qld 4001 6 3000 F: 61 7 3316 3333 E: br PEOPLE I PERFORMANCE	nema	il@gh		Job No 4). 1-23244

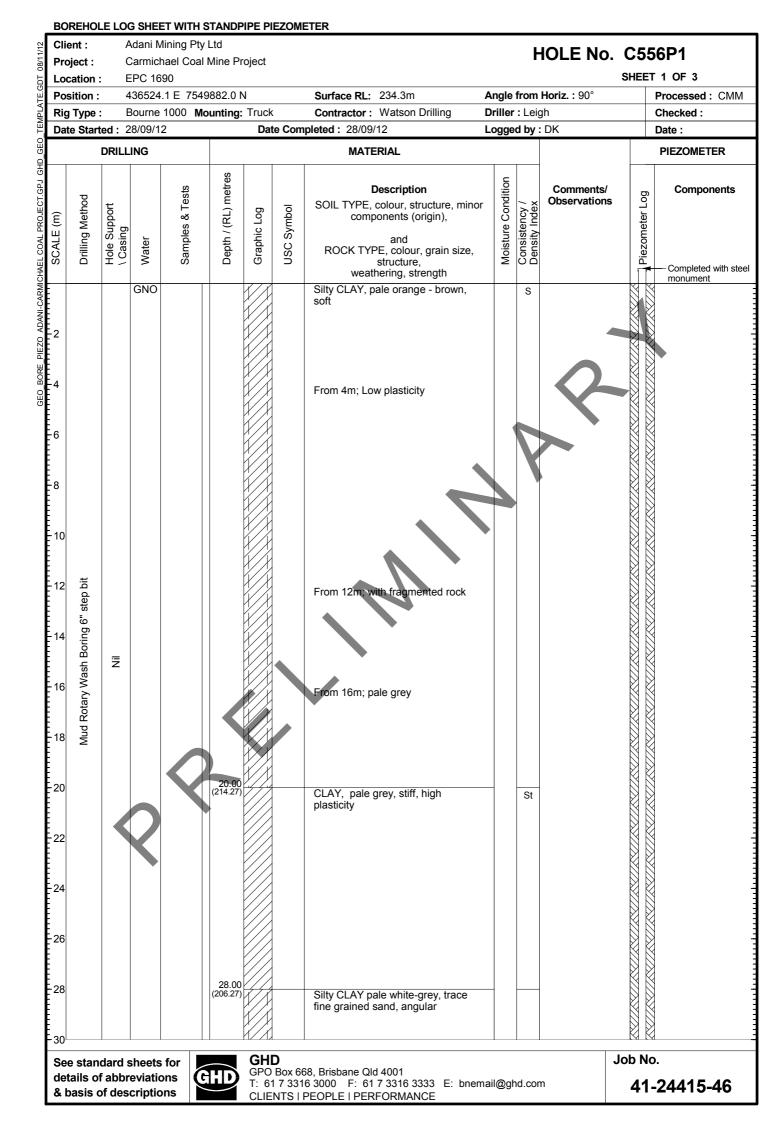
-		A C	dani Mi	ining Pty ael Coal	Ltd Mine Pr						HOLE No		35P1 T 2 OF 3
Rig	ition : Type :		ourne '		6820.0 N ounting:	Truck		Surface RL: 236.3m Contractor : Watson Drilling upleted : 28/8/11	D	riller	from Horiz. : 90° : Shaun 1 by : RB		Processed : VLD Checked : Date :
Jui								MATERIAL		-99-			PIEZOMETER
	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	, Components
32 34 36					(206.31)		СН	CLAY, pale grey-green, high plasticity, stiff, smooth. (Pre-consolidated mudstone/ Siltstone)			0.0 m - 50.0 m; Tertiary		
.0 .2 .4 .6	Rotary Wash Boring (bit, 6 inch)	Ni			40.00 (196.31)		СН	CLAY, brown-grey, high plasticity, firm, smooth. From 41 to 43 m; with red-brown clay, iron-rich layers / laminations	-				
50 52 54					50.00 (186.31)			From 49 to 50 m; green-grey colour. SANDSTONE, pale brown-grey with orange mottles. Fine, medium and coarse grained sand (quartz, sub-angular, needles, pink, red, grey, yellow, white). Returns as sandy clay/clayey sand. Extremely weathered. Trace siltstone, highly weathered.	-		50.0 m - 62.0 m; Rewan Fmn		- Bentonite
58						GHI						Job N	Filter pack
leta	ails of	fabbre	heets eviatio criptio	ns [HD	GPO	Box 66	68, Brisbane Qld 4001 6 3000 F: 61 7 3316 3333 E: br	iemai	il@ah	d.com		u. 41-23244

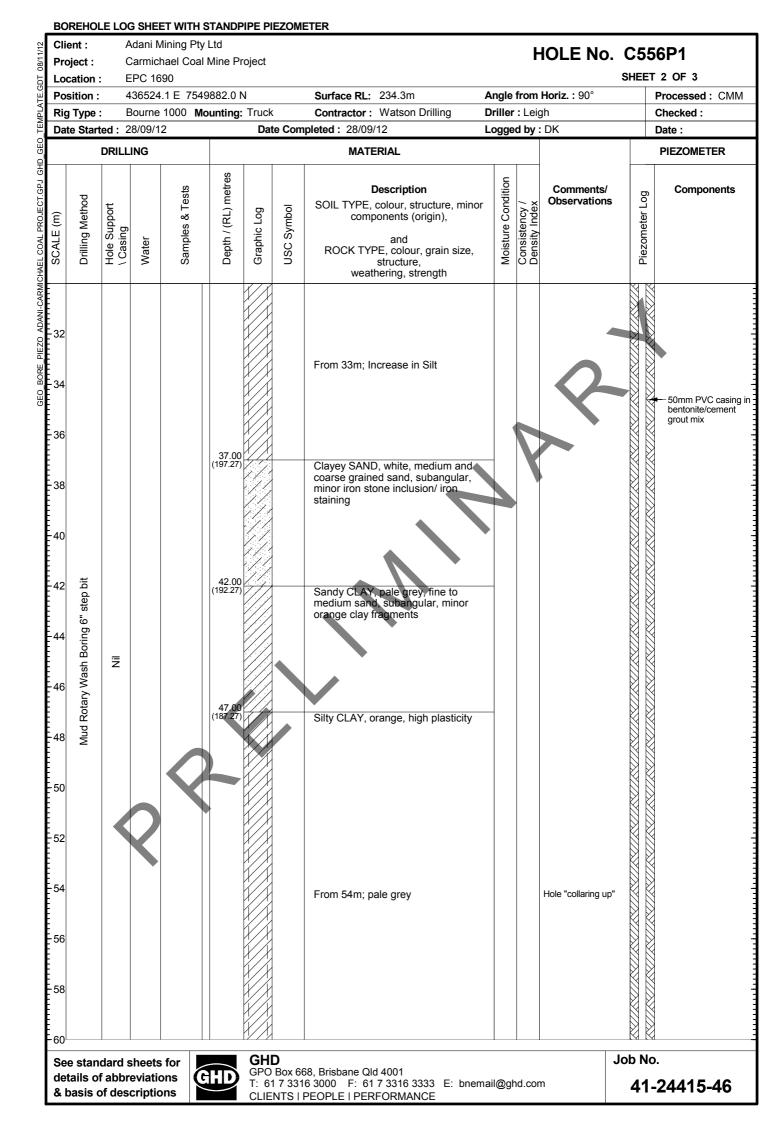

	LE LOG SHEET	T WITH STAP	IDPIPE PI	EZOMETER	8				
Client :		ning Pty Ltd					HOLE No	C03	R5P1
Project :		ael Coal Mine	e Project						
Location :			0.11		6 D1 000 0	A	f actor 11 - 2000	SHEE	T 3 OF 3
Position :		0E 7546820 000 Mount i			urface RL: 236.3m ontractor : Watson Drilling	-	from Horiz. : 90° r : Shaun		Processed : VLD
Rig Type	ted: 28/8/11	000 wound	-		ed: 28/8/11		ed by : RB		Checked : Date :
			Bu	e complete		2099			
	DRILLING				MATERIAL		_		PIEZOMETER
SCALE (m) Drilling Method	Hole Support \ Casing Water	Samples & Tests	Graphic Log	ymbol	Description OIL TYPE, colour, structure, minor components (origin), and DCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition Consistency /	Comments/ Observations	Piezometer Log	Components
62	Ĩ	62	2.00	En	ANDSTONE, as previous ad of borehole at 62 m ezometer installed		50.0 m - 62.0 m; Rewan Fmn		End cap
66									
70					K				
-74					~`				
-76									
-78 -80									
-82									
-84									
86									
88									
details of	dard sheets f f abbreviatior of description	ns 🔃	T: 6	Box 668, B 1 7 3316 30	risbane Qld 4001 00 F: 61 7 3316 3333 E: br PLE I PERFORMANCE	nemail@g	hd.com	Job No 4	o. 1-23244

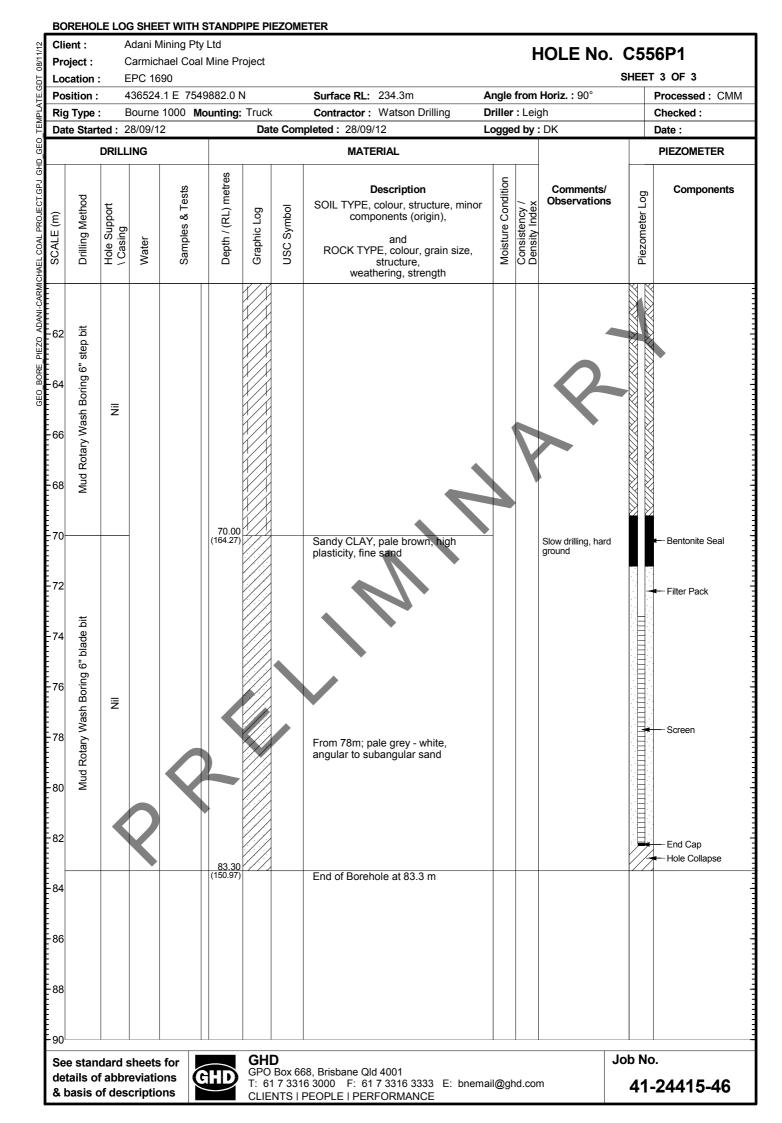

Clien Proje Loca	ect :	(lining Pty ael Coal		oject	oject				HOLE No.	C035P2											
Posit			441405.0 E 7546827.0 N Surface RL: 236.2m							-	from Horiz. : 90°		Processed : VLD										
Rig T				1000 M	ounting:			Contractor : Watson Drilling			: Shaun		Checked :										
Date			27/8/11			Dat	e Cor	npleted : 28/8/11	L	ogge	d by : RB		Date :										
		DRILL	.ING					MATERIAL		1			PIEZOMETER										
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	📕 Piezometer Log	Components										
-2 -4 -6			GNO	GNO	GNO	GNO	GNO	GNO	GNO	GNO	GNO	GNO	GNO		1.00 (235.24)	00		SAND with Gravel, orange, medium and coarse grained sand, fine gravel (quartz, sub-rounded and sub-angular). Silt, trace clay Sandy CLAY, pale grey and orange mottled, high plasticity. Medium and coarse grained sand, trace fine gravel (quartz, sub-rounded and sub-angular).			0.0 m - 50.0 m; Tertiary	11×11×11×11×11×11×11×11×11×11×11×11×11×	monument
	Rotary Wash Boring (bit, 6 inch)	ĒZ			8.00 (228.24) 12.00 (224.24)			SANDSTONE, pale grey and orange mottled, medium and coarse grained sand, trace fine- gravel (quartz, sub-rounded and sub-angular). Returns as sandy clay. Extremely weathered. CLAY, green-grey and orange mottled, high plasticity. (Siltstone/ mudstone) From 17 to 22m; Green-grey with pink mottles.				1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 19 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971											
22 24 26 28								From 26 to 31m; Pink with some green-grey mottles.				<u> </u>											
deta	ils of	fabbr	sheets eviatio criptio	ons 🤇	HD	T: 61	Box 6	68, Brisbane Qld 4001 16 3000 F: 61 7 3316 3333 E: bn PEOPLE PERFORMANCE	emai	l@gh		Job No 4											

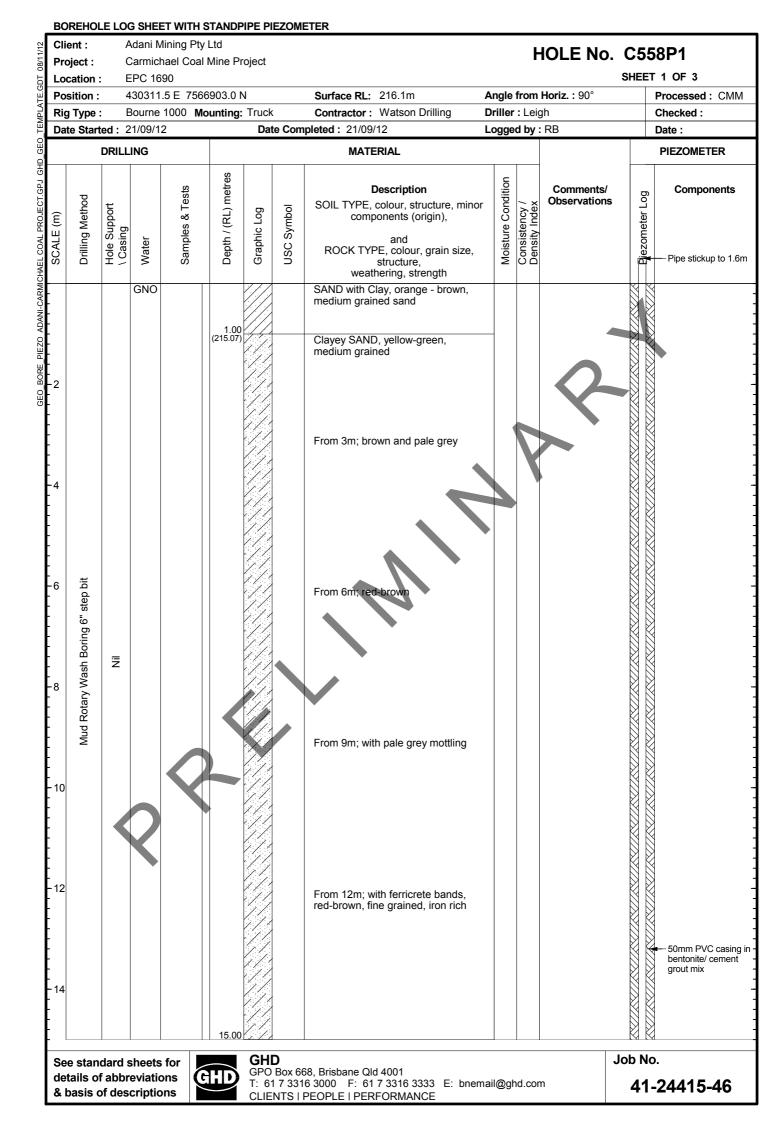

Clie Pro	ent : ject : ation	A	Adani N	/lining Pt hael Coa	STANDP y Ltd I Mine Pr	HOLE N						O. C035P2 SHEET 2 OF 4				
Position : 441405.0 E 754		7546827.0 N Surface RL: 236.2m Mounting: Truck Contractor : Watson Drilling Date Completed : 28/8/11					riller	from Horiz. : 90° : Shaun d by : RB	Processed : VLD Checked : Date :							
		DRILL						MATERIAL		- 33-	,		PIEZOMETER			
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components			
32 34 36								31.00 (205.24)			CLAY, pale grey-green, high plasticity, stiff, smooth.(Mudstone/ siltstone)			0.0m - 50.0 m; Tertiary	<u>871)871)881)881)881)881)881)881)881)881)</u>	
38 10 12 14	Rotary Wash Boring (bit, 6 inch)	NI			40.00 (196.24)			CLAY, brown-grey, high plasticity, firm, smooth. From 41 to 44m; With red-brown and orange clay (iron-rich layers/laminations). (Mudstone)				1777 1777 1777 1777 1777 1777 1777 177				
18 50 52 54	Rotary W				50.00 (186.24)			SANDSTONE, pale brown-grey with orange mottles. Fine, medium and coarse grained sand (quartz, sub-angular, needles, pink, red, grey, yellow, white). Returns as sandy clay/clayey sand. Extremely weathered. Trace siltstone, highly weathered.			50.0 m - 86.5 m; Permian	112411241124112411241124112411241124112	— 50mm PVC casing, with cement-bentor grout			
58 50 50	etar	dard (sheets	for		GHI						Job No				
det	ails o	f abbr	eviatio criptic	ons 🕻	GHD	GPO T: 61	Box 6 7 331	68, Brisbane Qld 4001 6 3000 F: 61 7 3316 3333 E: br PEOPLE I PERFORMANCE	iema	il@gh	d.com	4	1-23244			

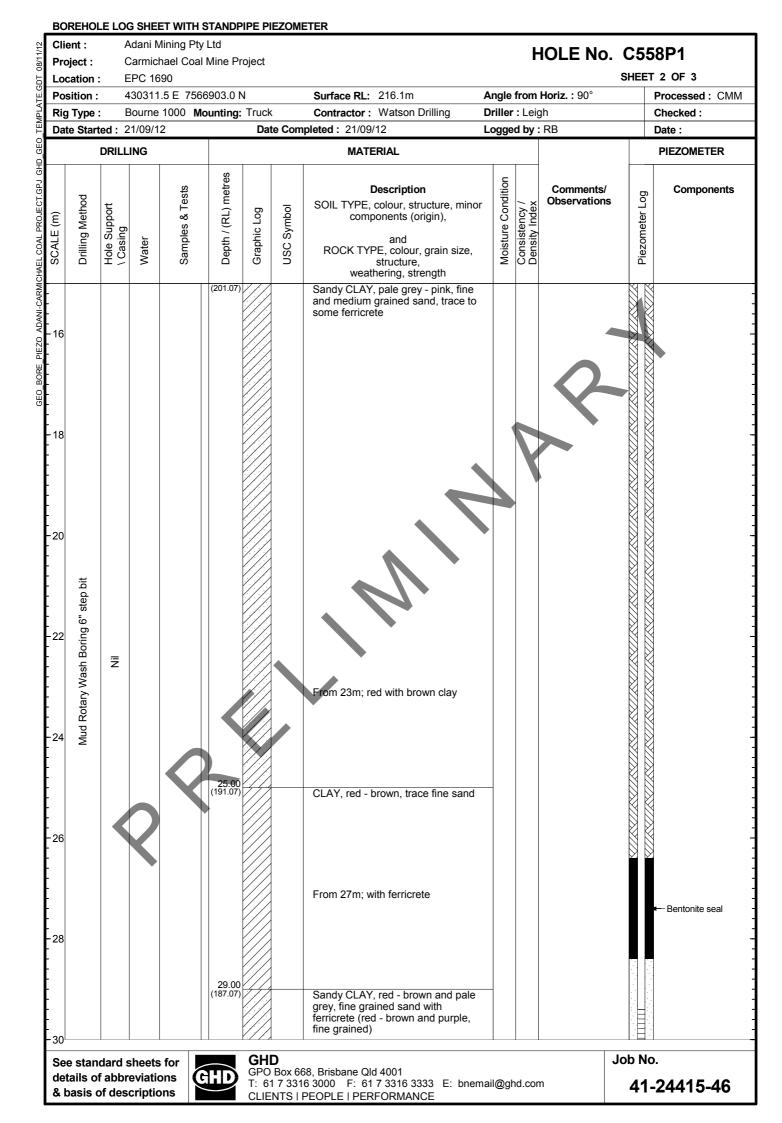
Clie				lining Pty							HOLE No.	C03	5P2
-	ect :			nael Coal	Mine Pr	oject							4 OF 4
	ation ition :		, EPC1690 441405.0 E 7546827.0 N					Surface RL: 236.2m			rom Horiz. : 90°		Processed : VLD
	Type			1000 M				Contractor : Watson Drilling		-	Shaun		Checked :
Date Started :					<u> </u>			pleted : 28/8/11			l by : RB		Date :
		DRILL	ING					MATERIAL					PIEZOMETER
					s			Description			Comments/		
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Observations	Piezometer Log	Components
92								CLAY, as previous					
94 96					93.00 (143.24)			MUDSTONE and COAL, Grey-brown, high plasticity, smooth. (Mudstone/ Pre-consolidated mudstone) From 93 to 97m; Mudstone with coal.	-				
98	oit, 6 inch)							From 97 to 100m; coal with mudstone.					
100 102	otary Wash Boring (bit,	Nii						From 100 to 101m; Coal. From 101 to 107m; Coal with mudstone.			AB1 Seam		← Bentonite
104	Rot							<i>~</i> `					← Filter pack
106								From 107 to 110m; Mudstone with trace coal.					— Screen
110-					110.00			End of borehole at 110m.					End cap
112					(120.24)			Piezometer installed.					
114													
116													
118													
120													
	stan	dard	sheets	for		GH	D					Job No).
			eviatio		HD	GPO		68, Brisbane Qld 4001					

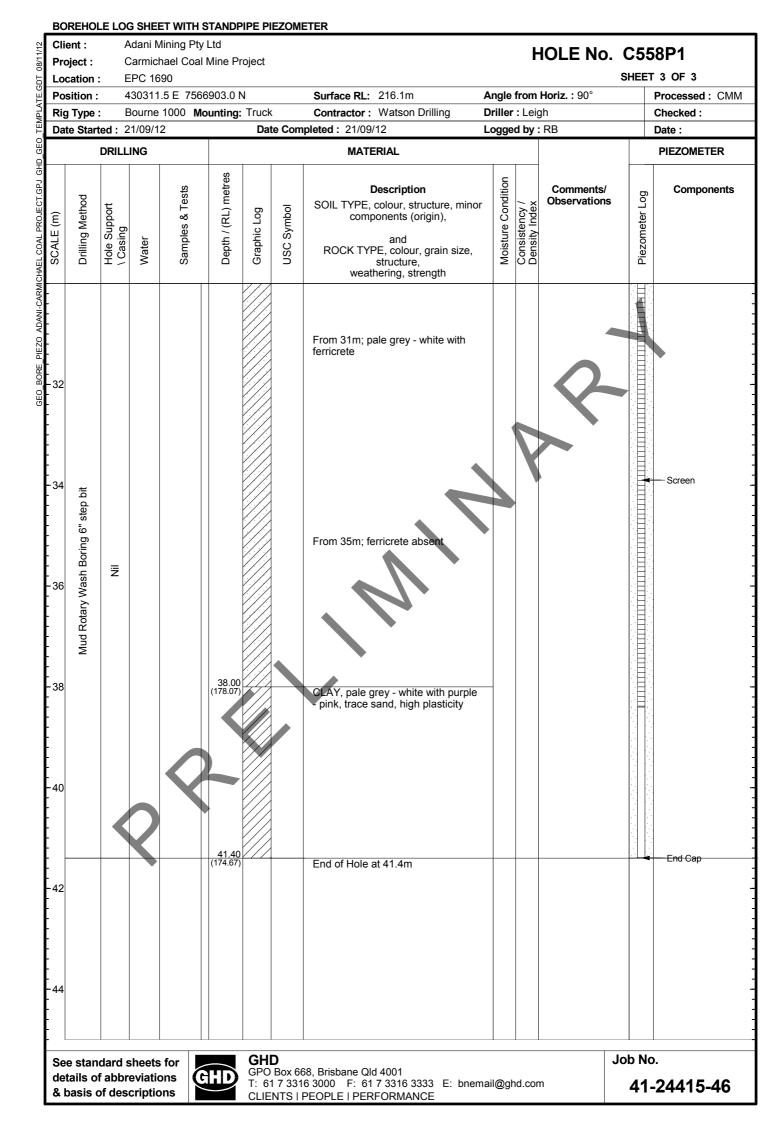


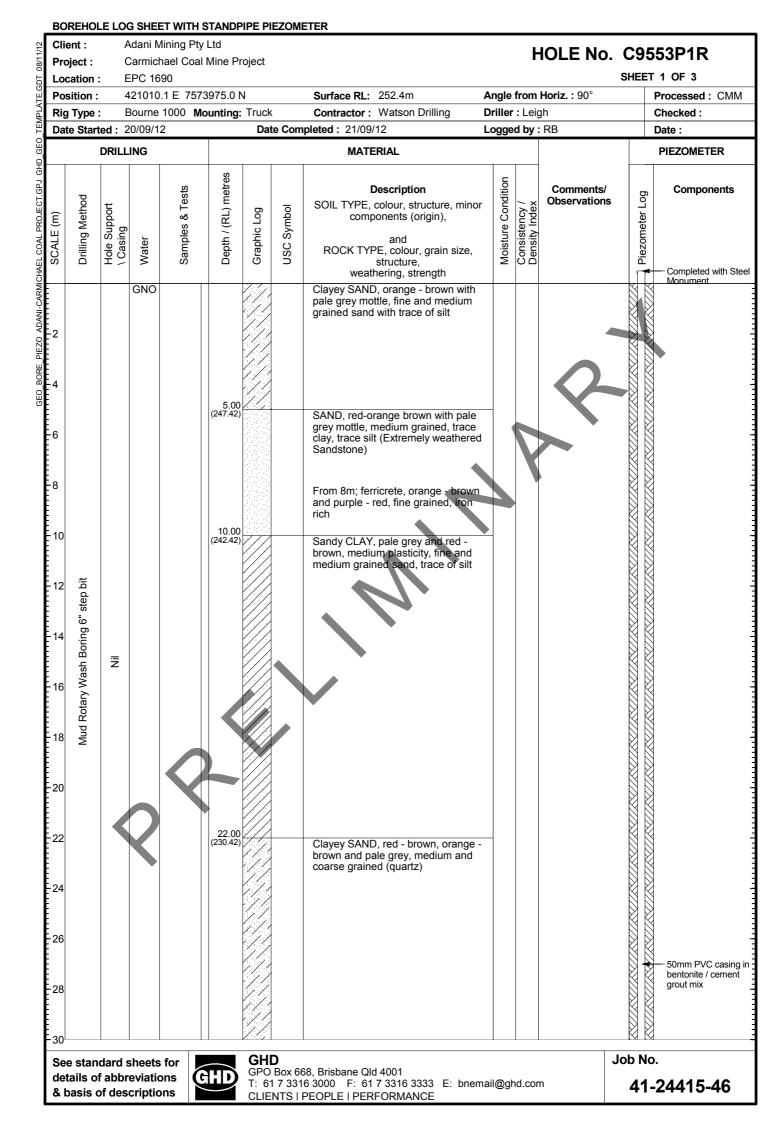

& basis of descriptions

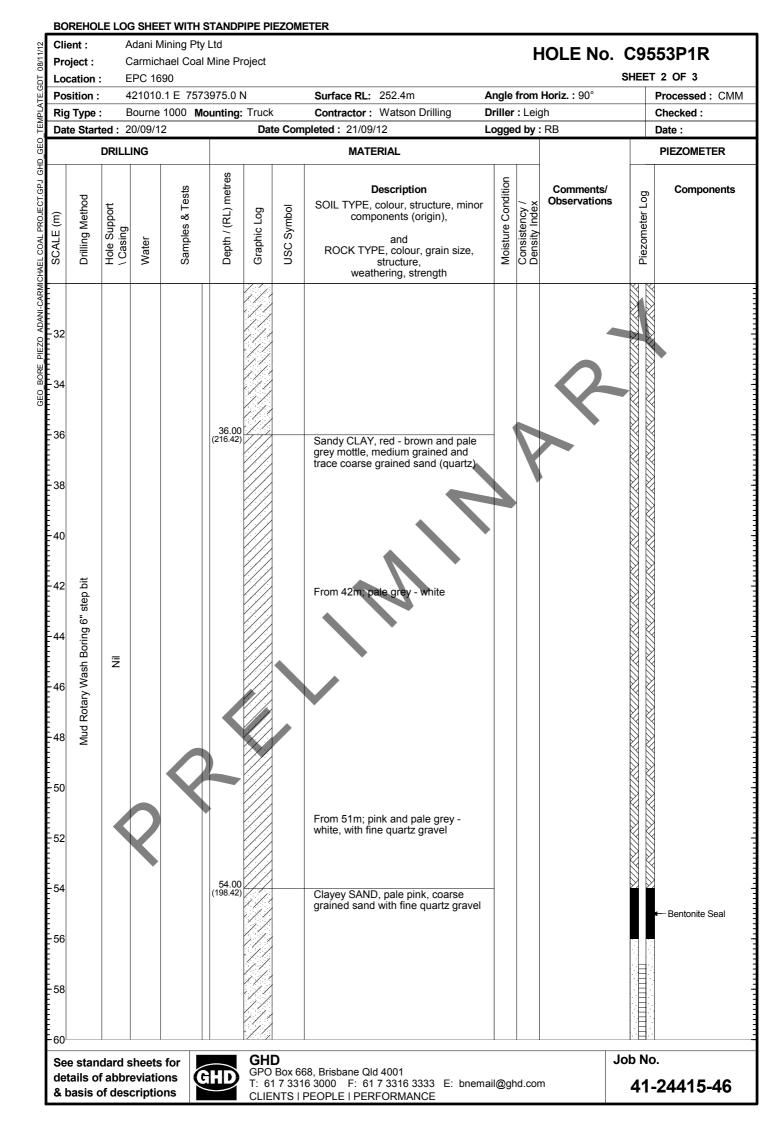


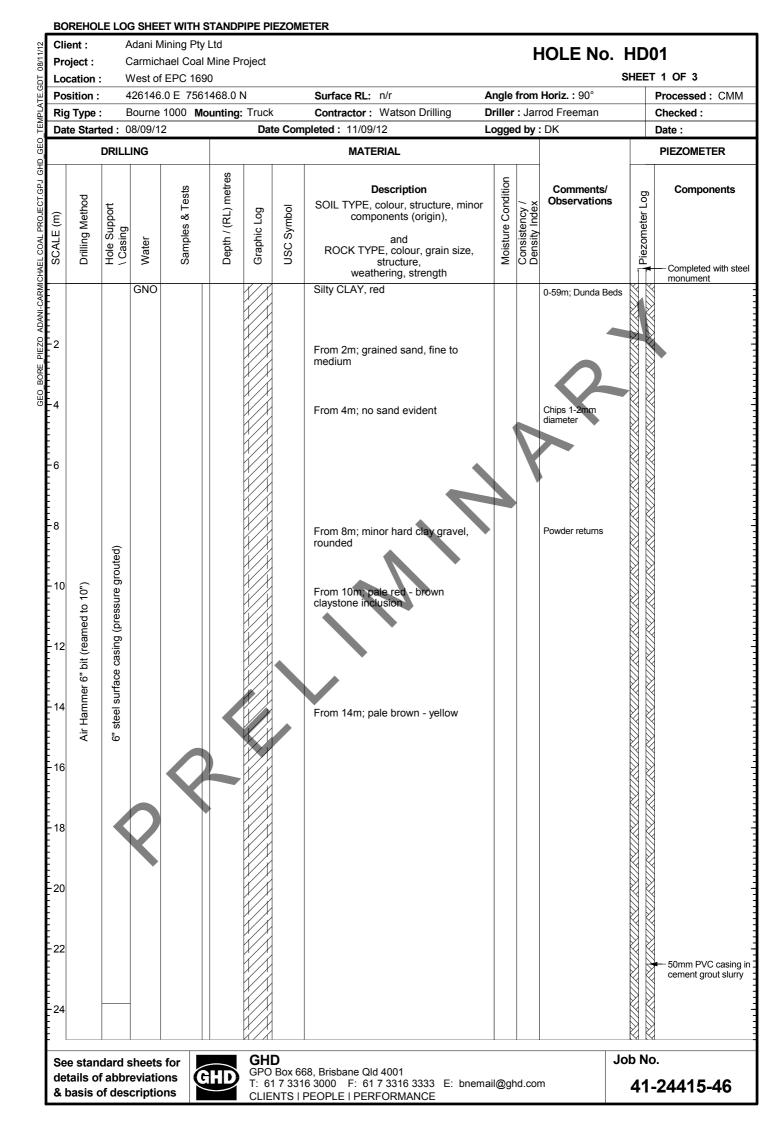

CLIENTS | PEOPLE | PERFORMANCE

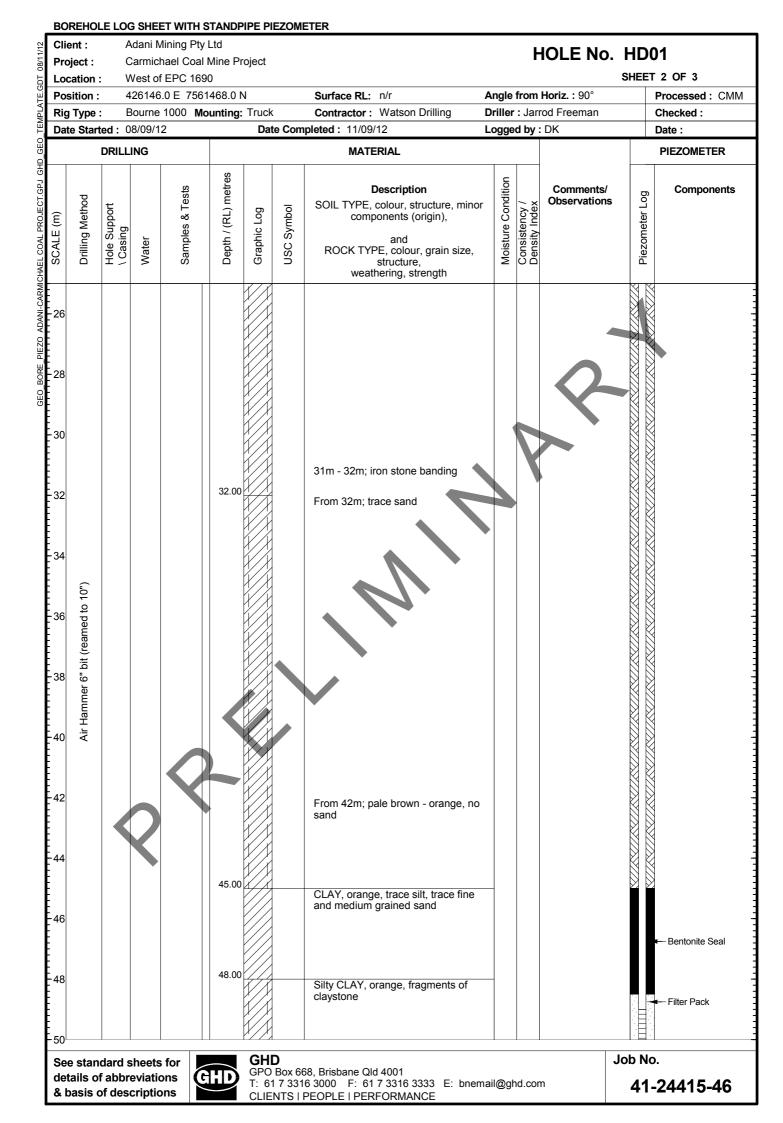

41-24415-46

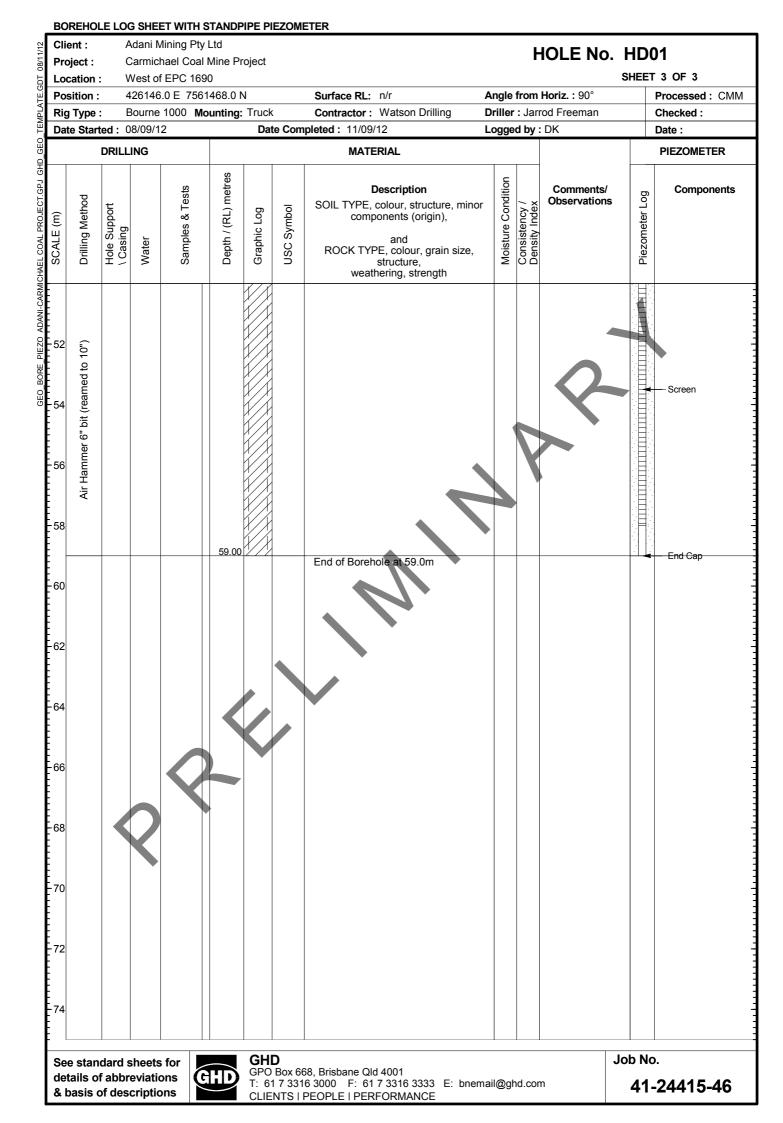


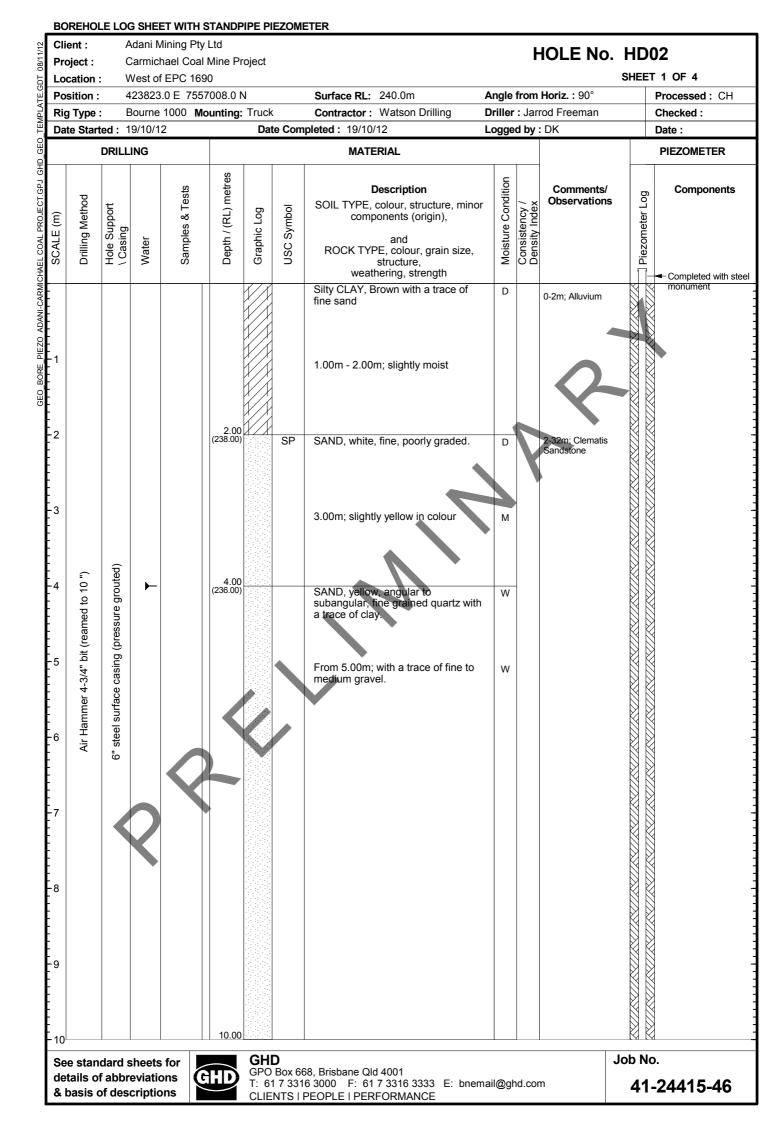


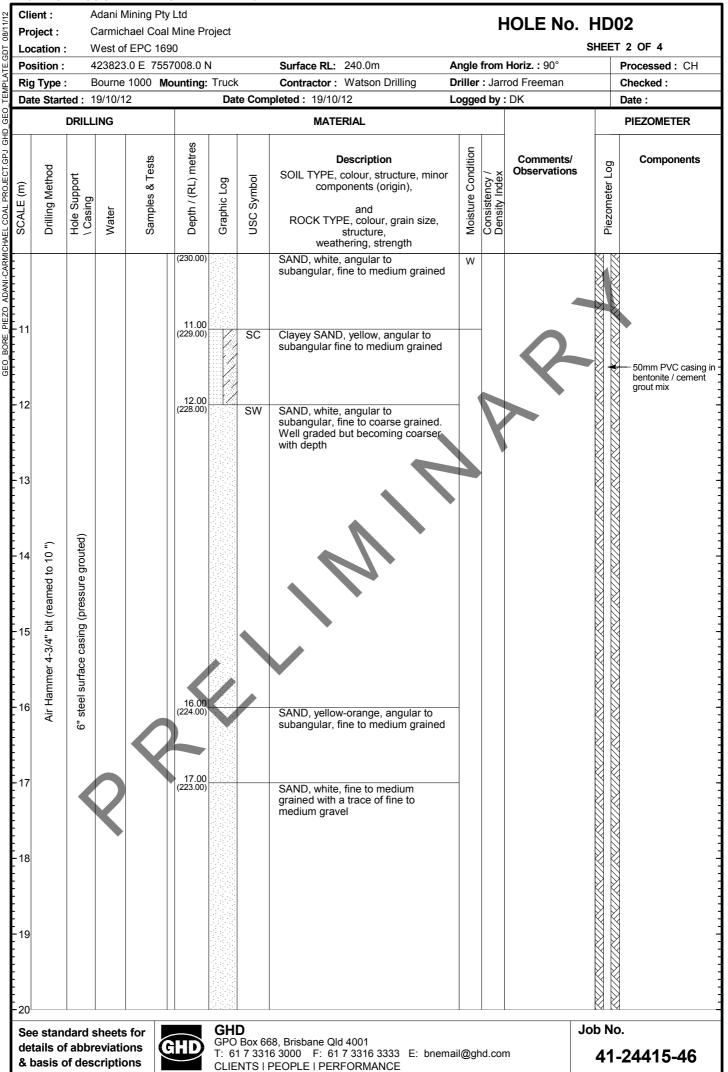


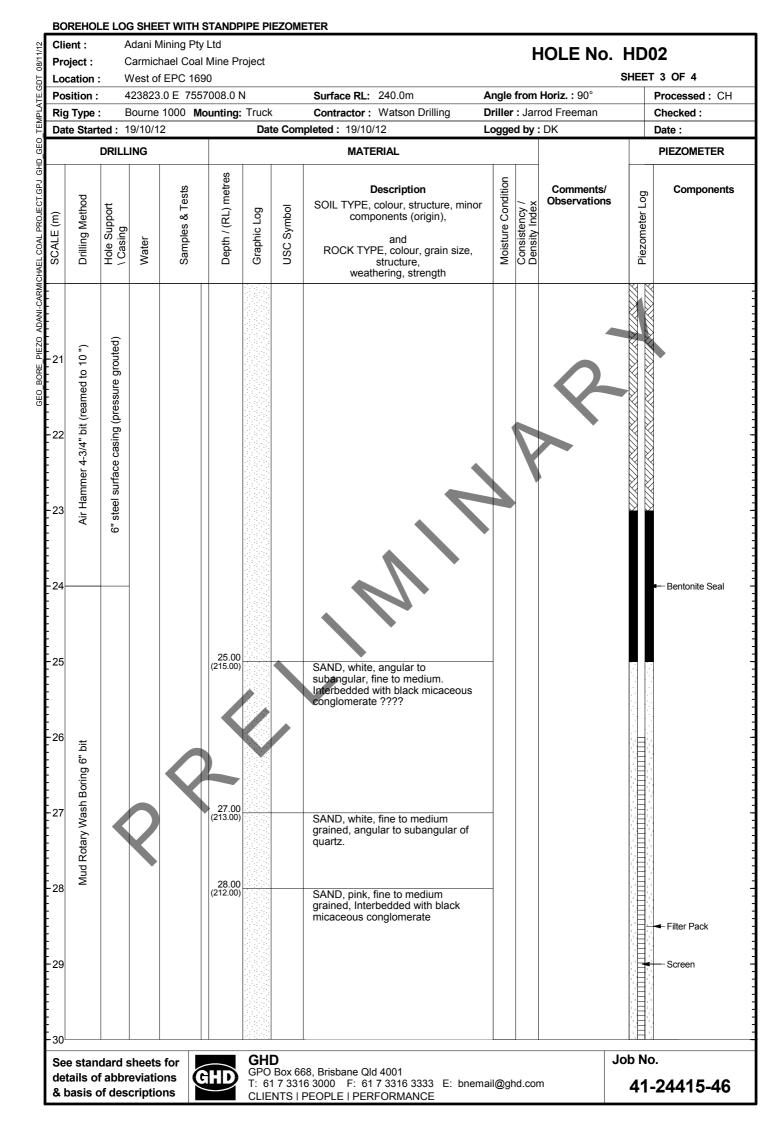


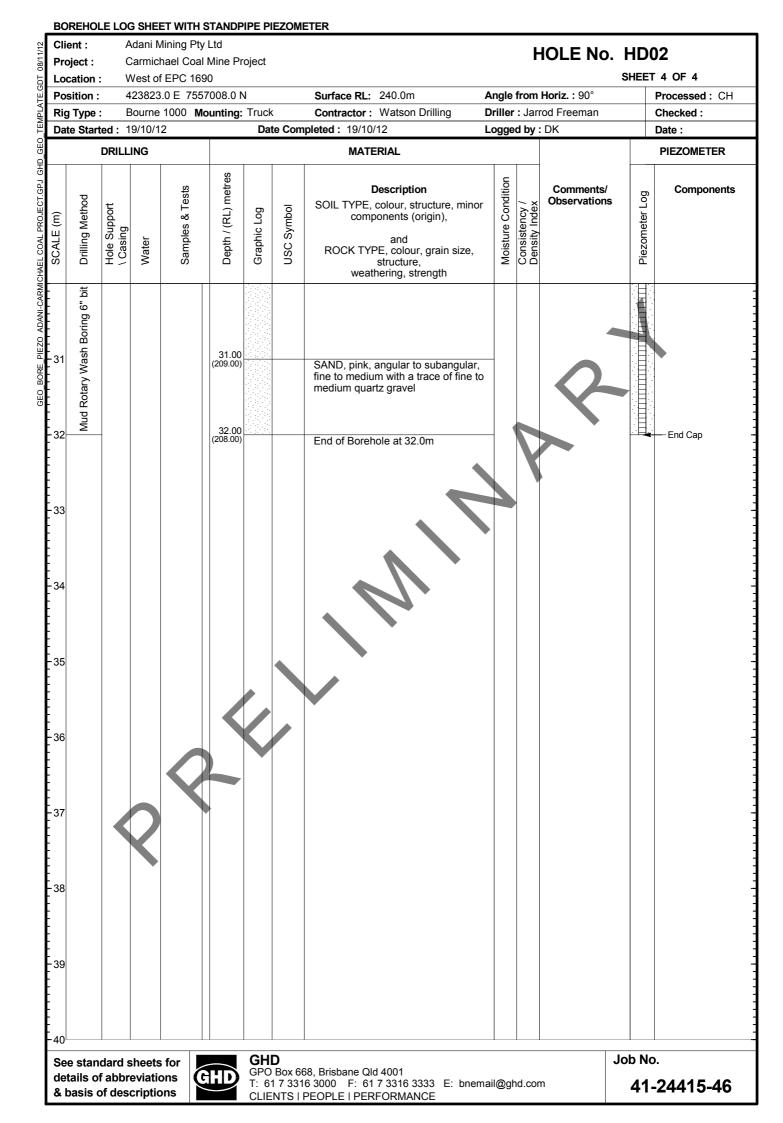


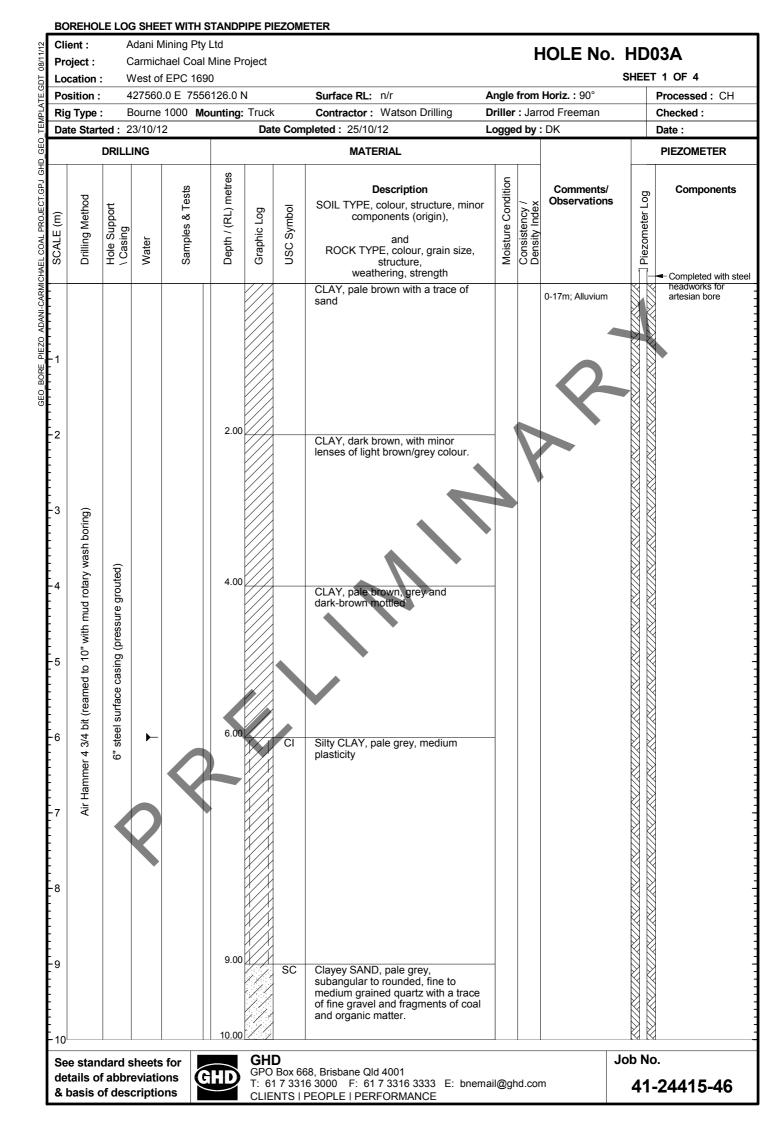


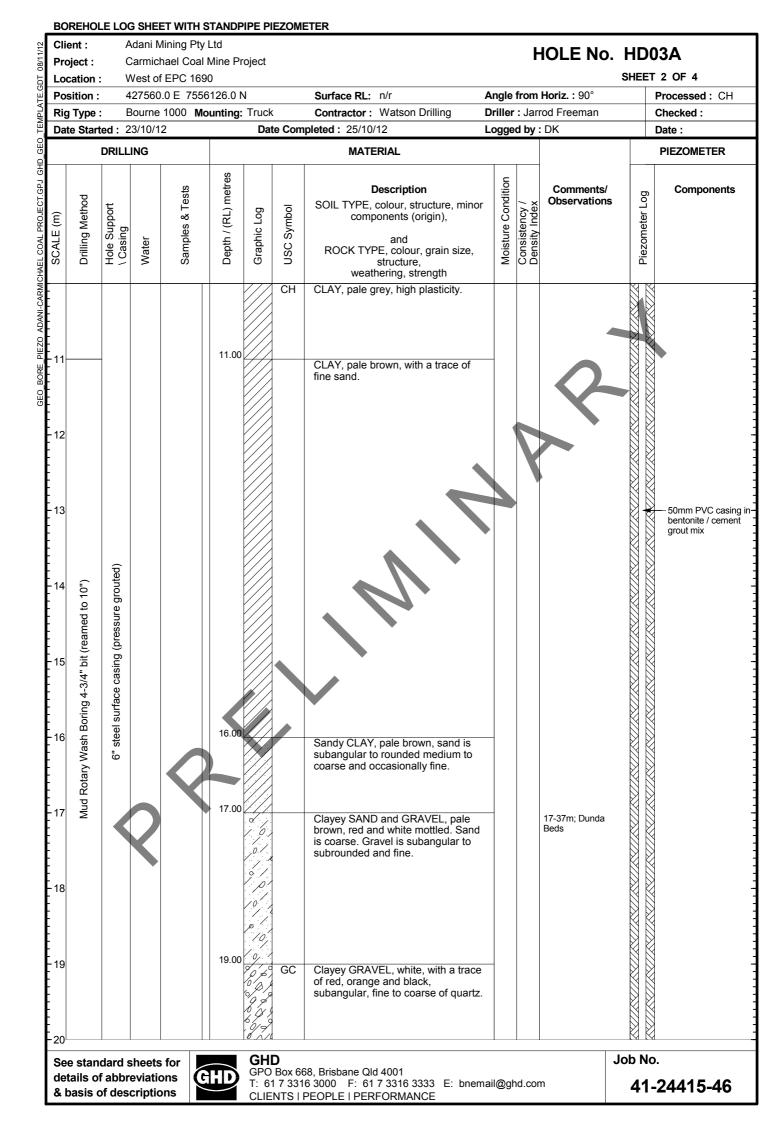

Clie Pro	ent : oject :			/lining Pty hael Coal		roject				ŀ	IOLE No.	C9	553P1R
Loc	cation		EPC 16			-						SHEE	T 3 OF 3
Pos	sition			0.1 E 7573975.0 N Surface RL: 252.4m							Horiz. : 90°		Processed : CMM
Rig Type :Bourne 1000Date Started :20/09/12					ounting			Contractor : Watson Drilling	Driller Logge		-		Checked :
Date Started : 20/09/12						Dat	te Com	pleted : 21/09/12	Logge	ea by	RB		Date :
								MATERIAL					PIEZOMETER
Clie Proc Pos Rig Dat (m) SCALE (m) 62	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, mini- components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
62 64		īz						From 60m; fine and medium grained, with trace coarse sand, trace fine quartz gravel			<i>Ç</i>		Filter Pack Screen
66					<u>66.00</u> (186.42)			End of hole at 66m					End Cap
68								7					
70													
2													
'4													
6													
8													
0				X	-								
2			R										
4													
6													
8													
0													
			sheets reviatio		HD	GPO	Box 66	68, Brisbane Qld 4001		المعا		Job N	
			criptio					6 3000 F: 61 7 3316 3333 E: bne PEOPLE PERFORMANCE	mail@g	10.00	11	41	-24415-46


BOREHOLE LOG SHEET WITH STANDPIPE PIEZOMETER

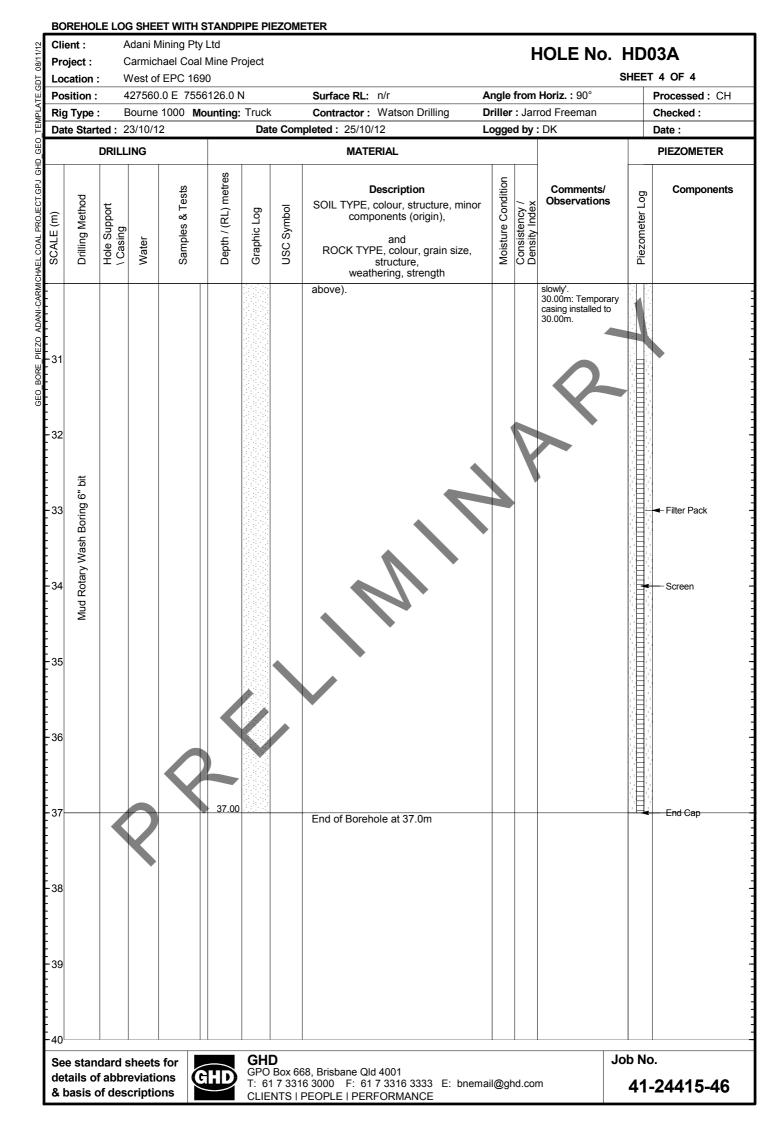


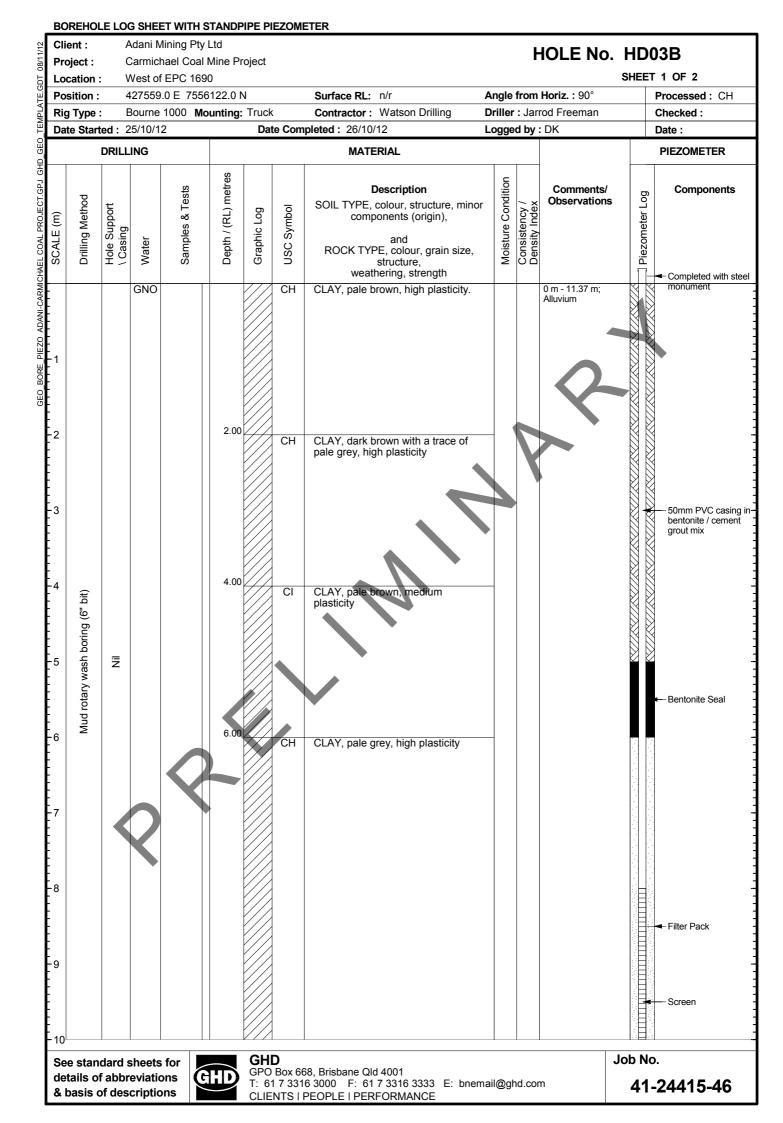


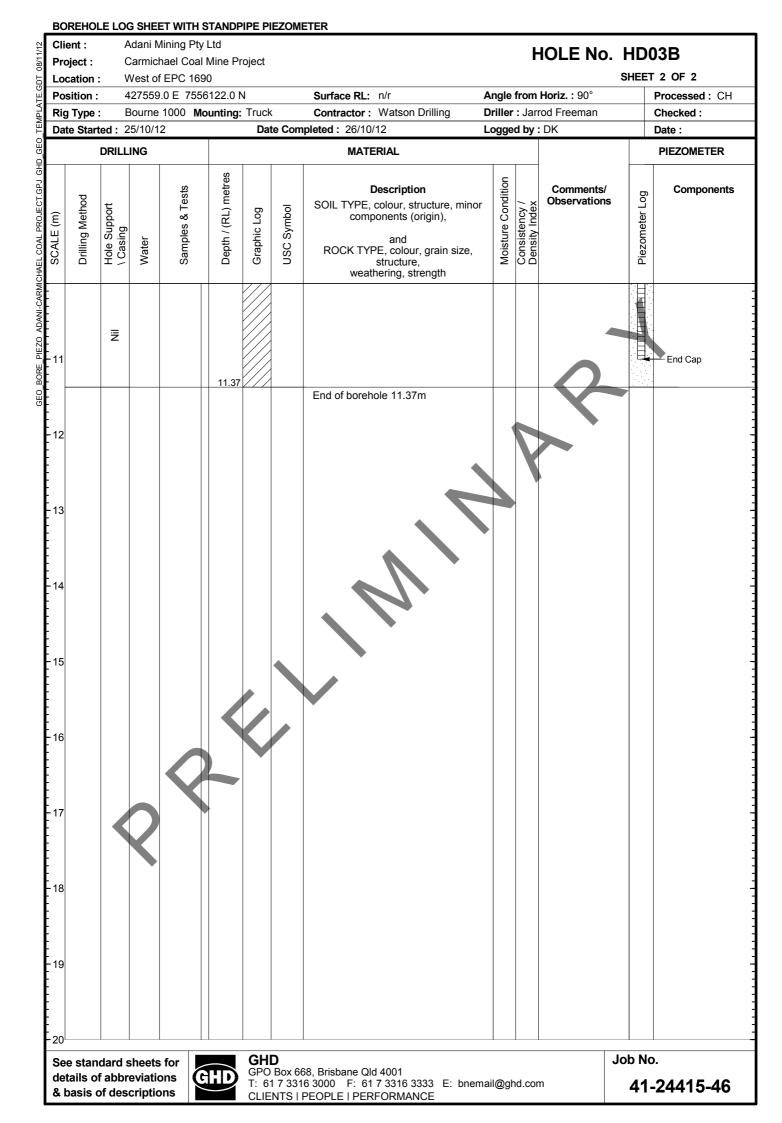



PIEZO ADANI-CARMICHAEL COAL PROJECT.GPJ GHD BORE

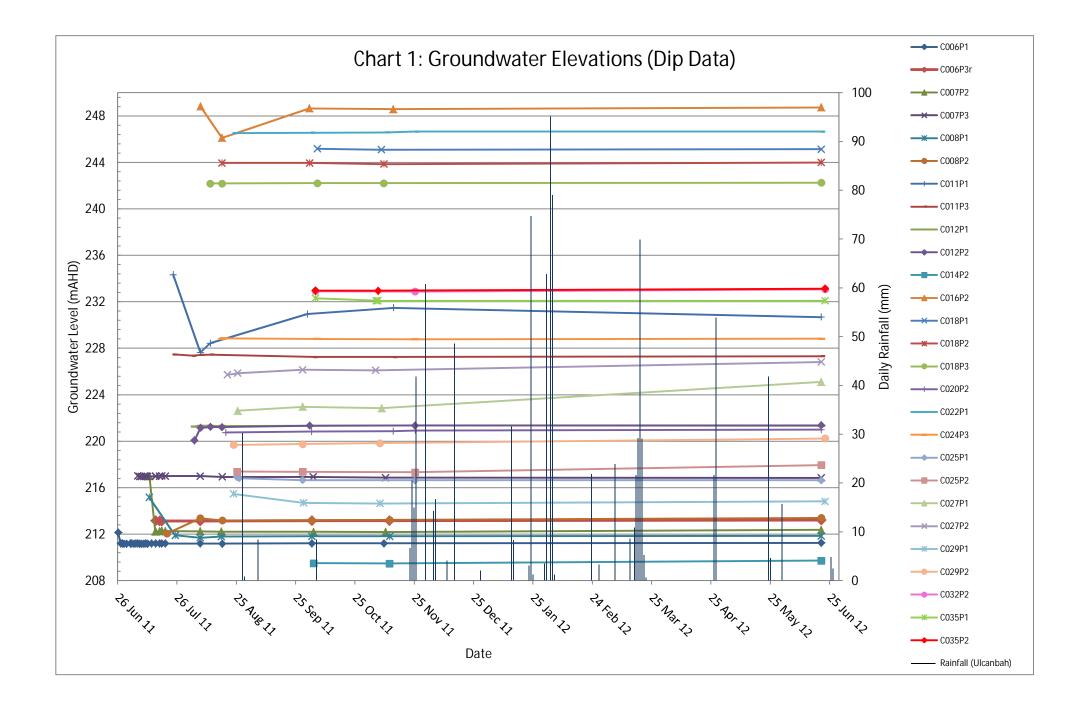
BOREHOLE LOG SHEET WITH STANDPIPE PIEZOMETER

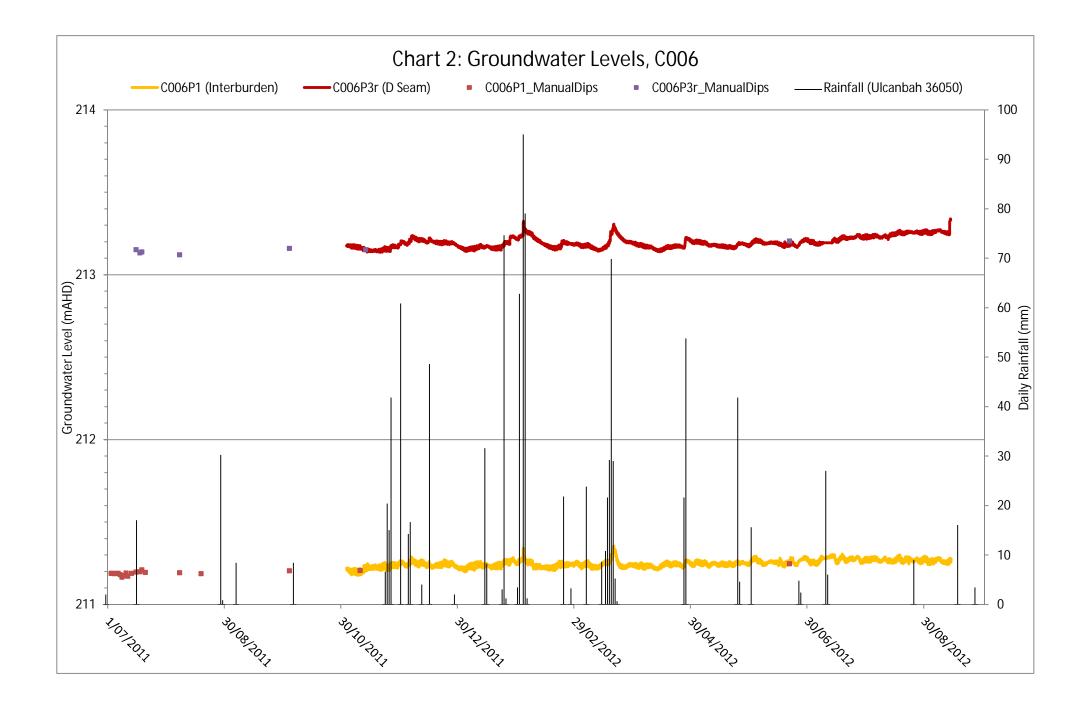


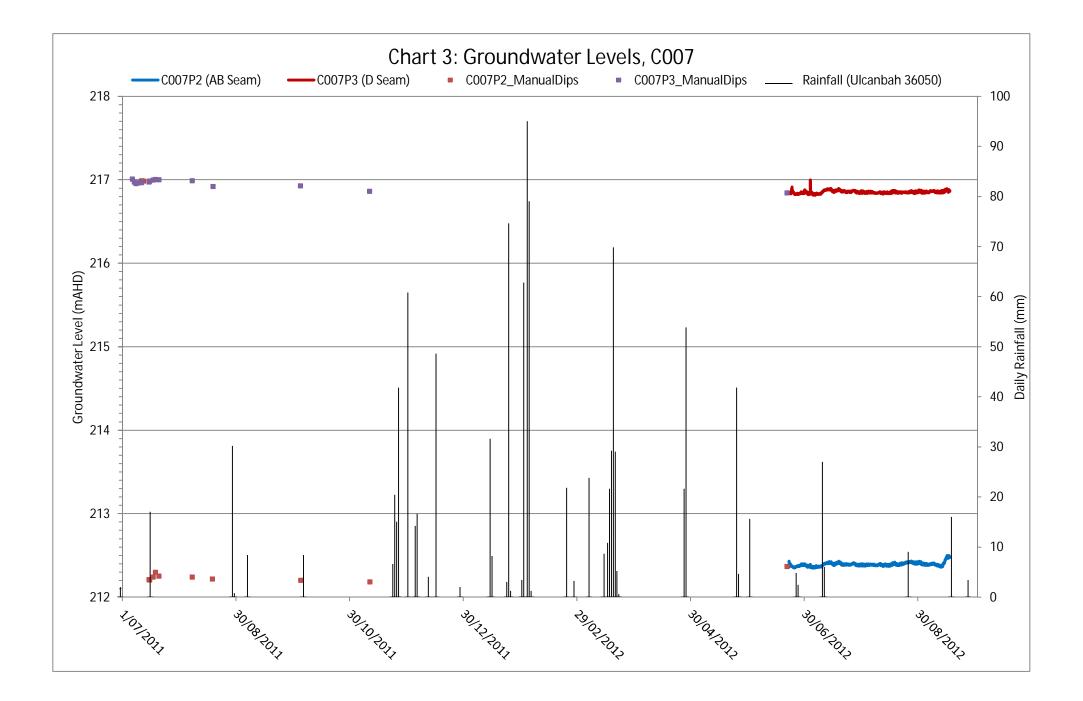


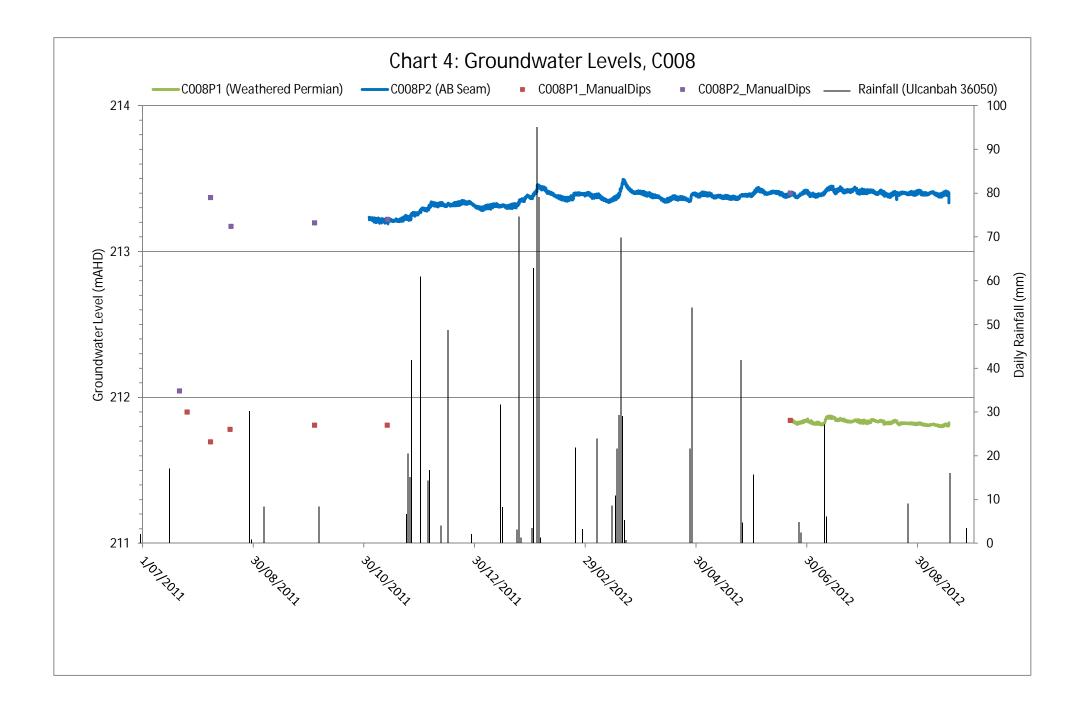


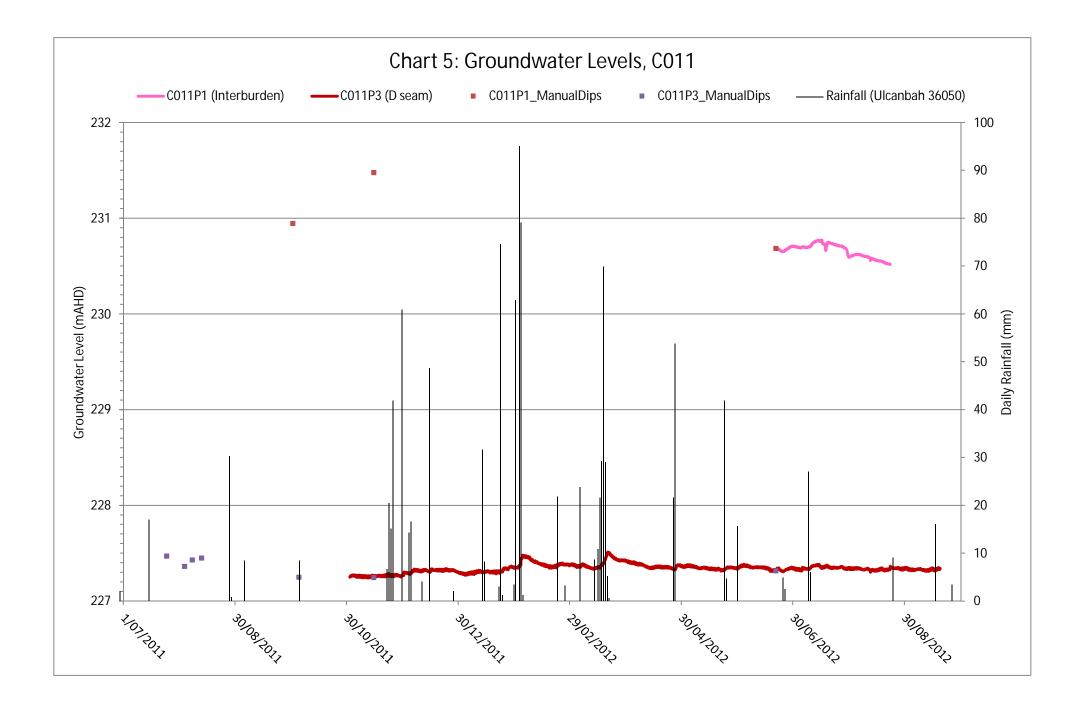
Client : Project : Location :			OG SHEET WITH STANDPIPE PIEZOMETER Adani Mining Pty Ltd Carmichael Coal Mine Project West of EPC 1690							HOLE No.			HD03A SHEET 3 OF 4	
205	sition :	4		.0 E 7556				Surface RL: n/r	Angle from Horiz. : 90°			Processed : CH		
Rig Type : Date Started :								Contractor : Watson Drilling apleted : 25/10/12		Driller : Jarrod Freeman Logged by : DK		Checked : Date :		
				-		Dui		MATERIAL		, a by	BR			
	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, min components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	ture Co	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components	
1 2 3	Mud Rotary Wash Boring 4-3/4" bit (reamed to 10")	6" steel surface casing (pressure grouted)			21.00 23.00 24.00			Sandy CLAY, white with a trace of orange, red and pink. Sand is subangular to angular, fine to medium of quartz.						
5 6 7 7 8 8 9 9	Mud Rotary Wash Boring 6" bit		2		25.00		GC	CLAY, mottled pale grey and purp with occasional bands of hard clavstone. Clayey GRAVEL, white, subangula to subrounded, fine of quartz with fragments of fine grained sandsto and with a trace of quartz sand. With bands of white and purple ha clays and claystones. SAND, white, subangular to rounded, fine (10 - 20%) and coar	ar ne ırd		29.30m: Artesian groundwater		← Bentonite Seal	
so								(80 - 90%). With a trace of gravel (possible contamination from			encountered. Groundwater noted to be flowing 'very			
Bee standard sheets for letails of abbreviations GHD GPO Box 668, Brisbane Qld 4001											Job No.			

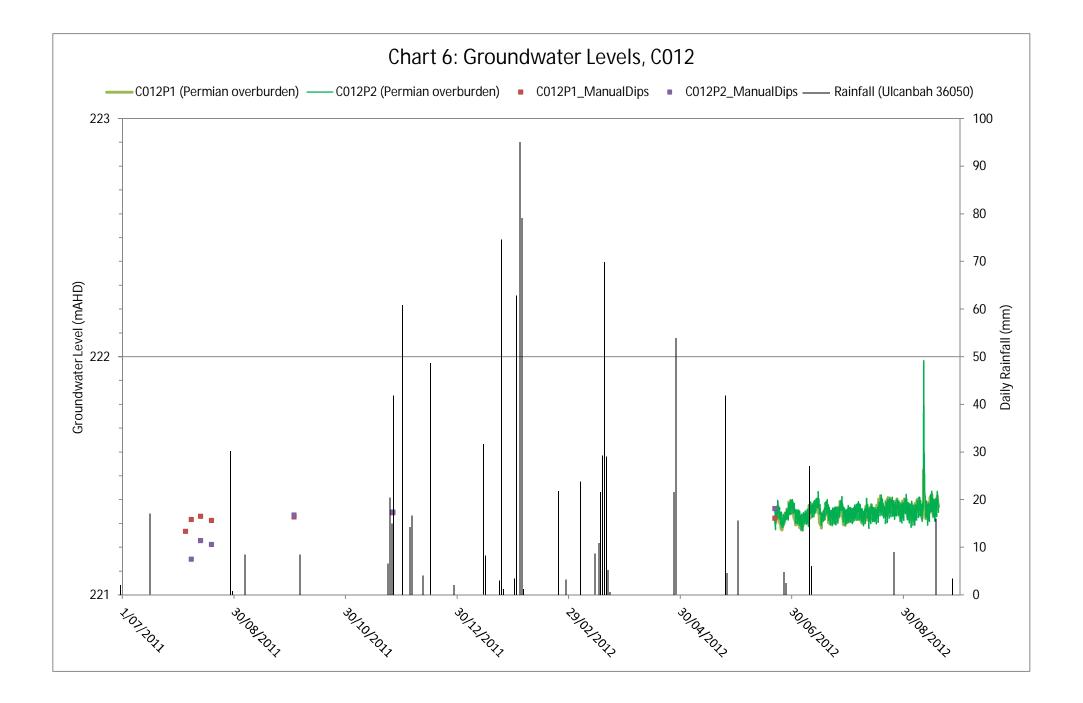


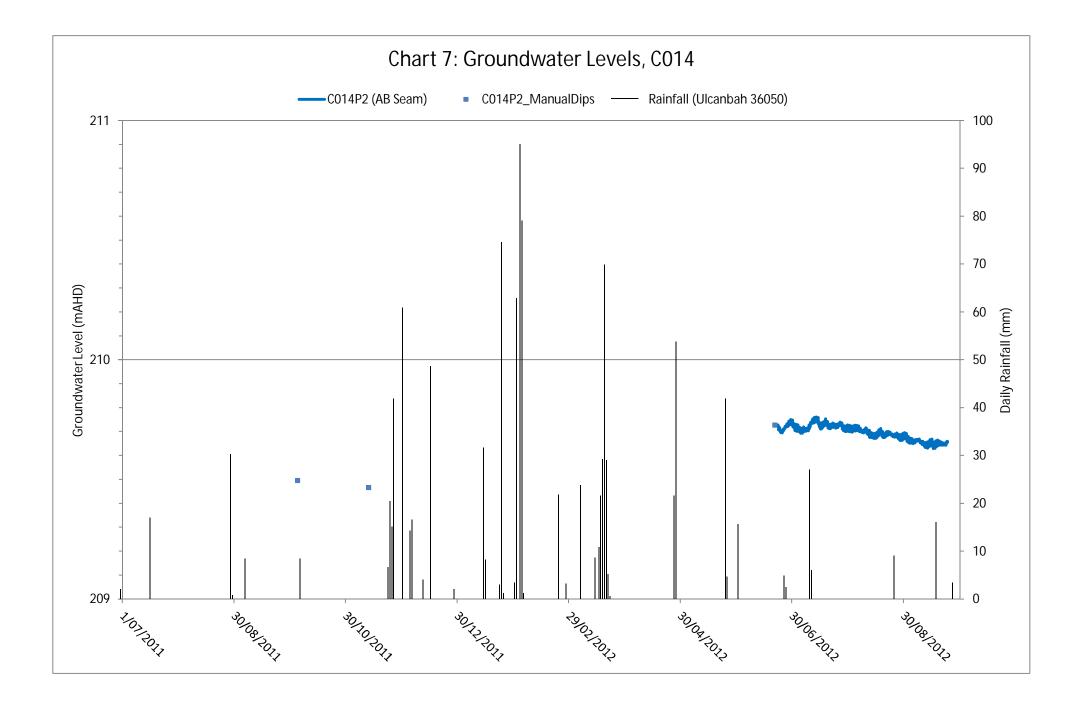

Appendix D Groundwater Levels

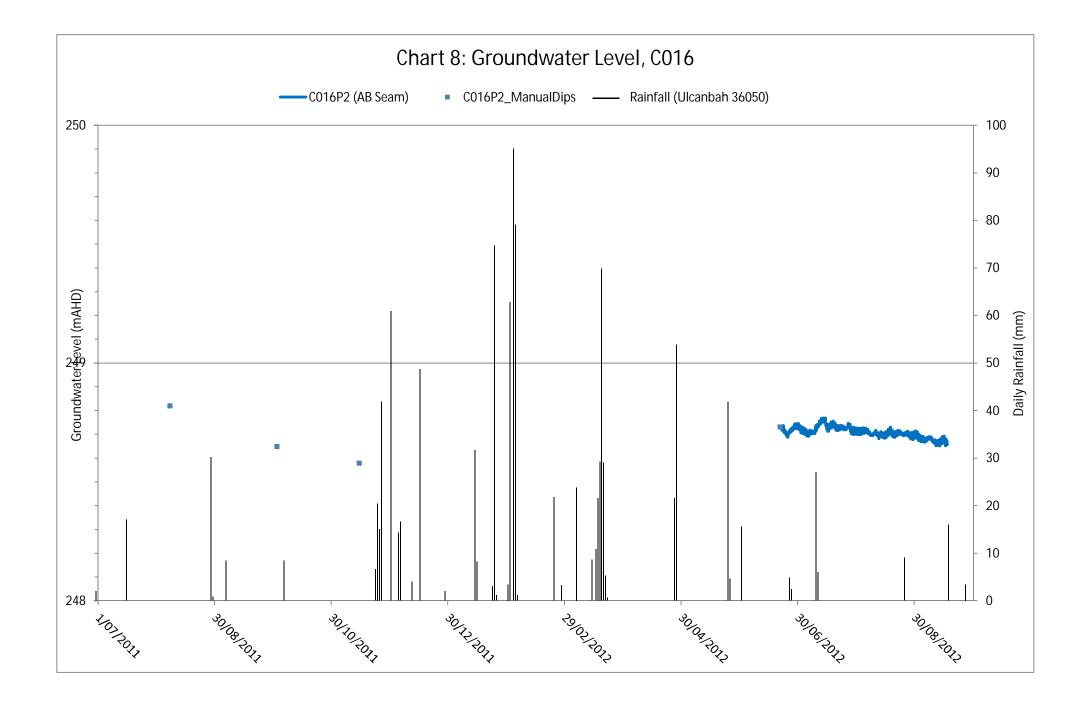

Charts 1 to 23

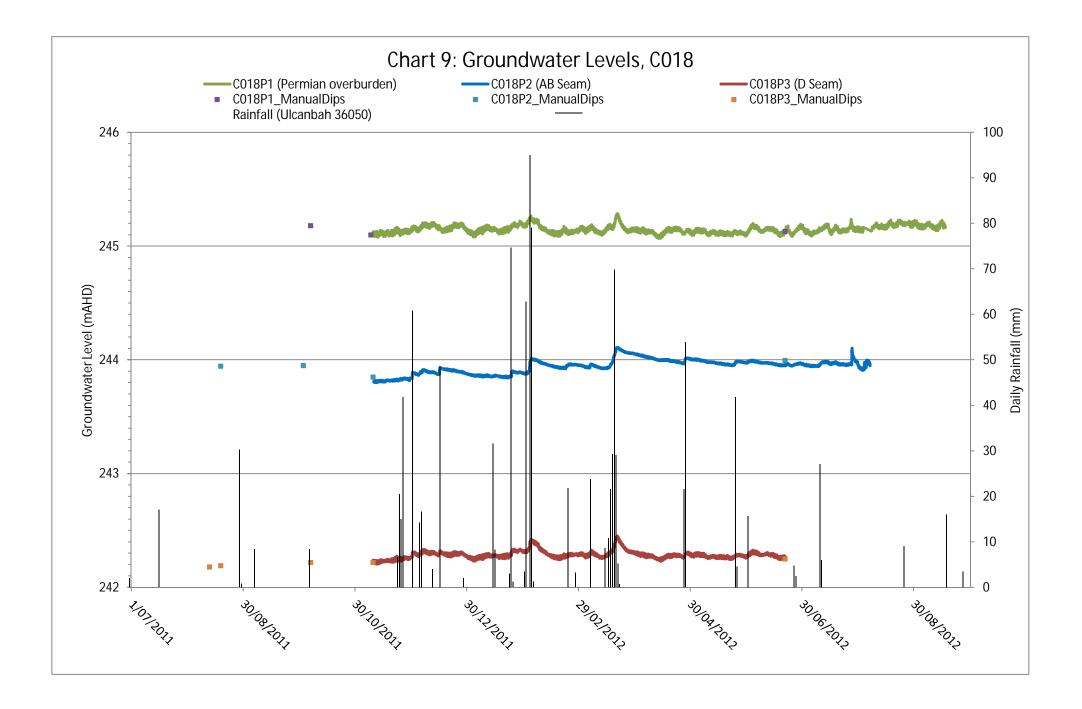


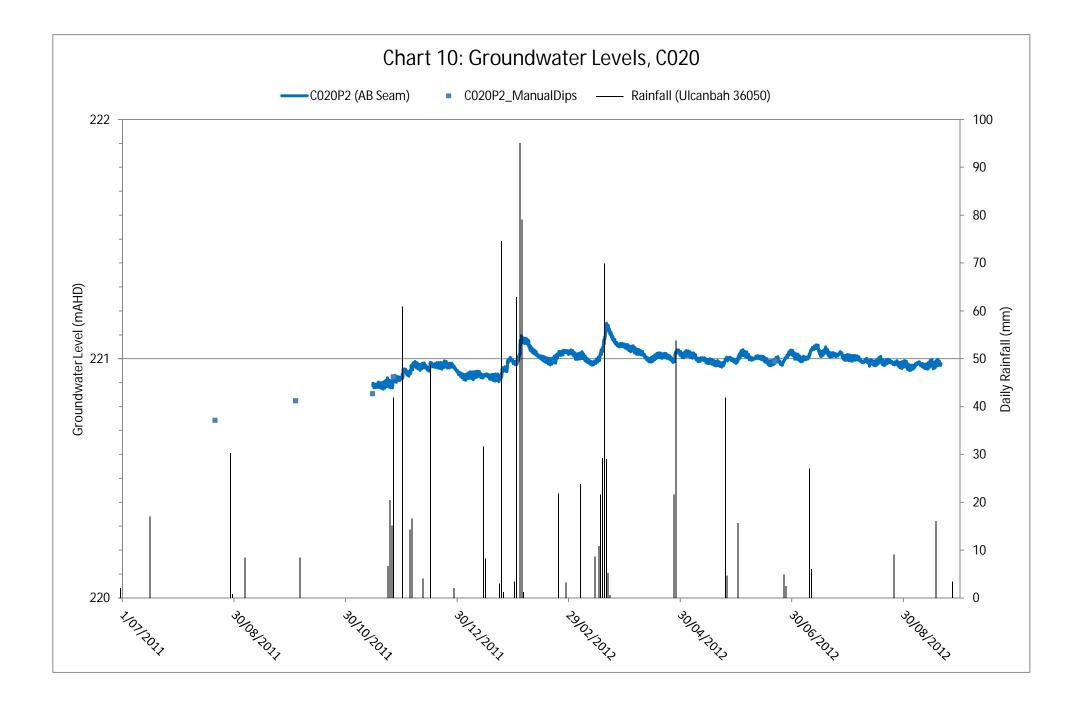

Page intentionally left blank

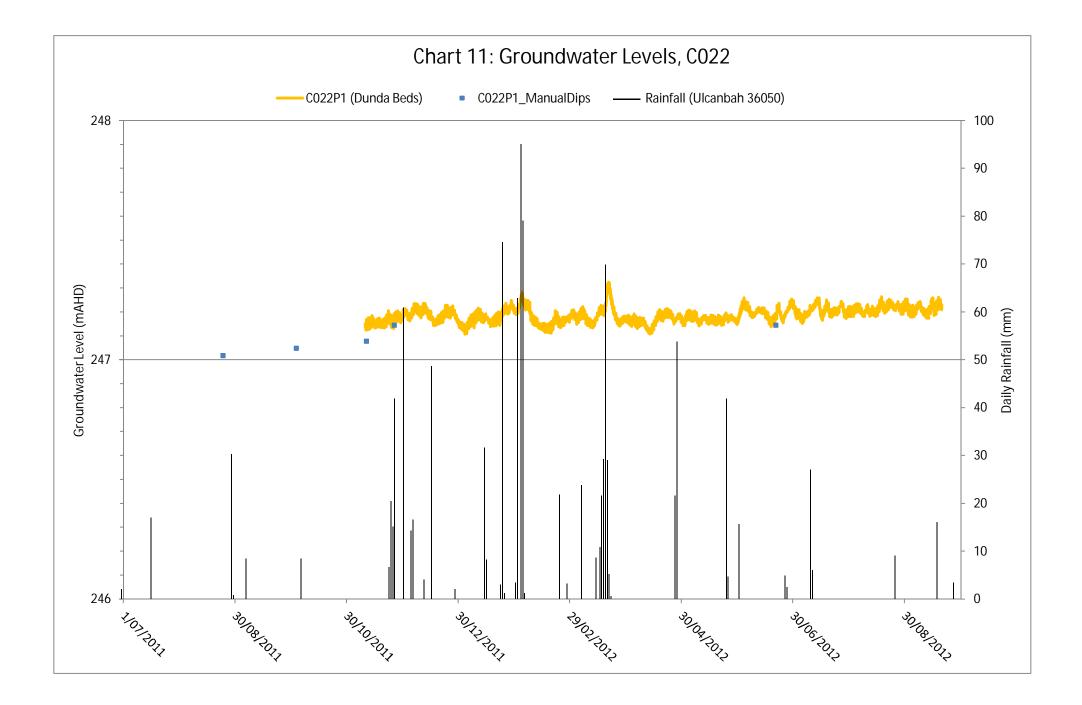


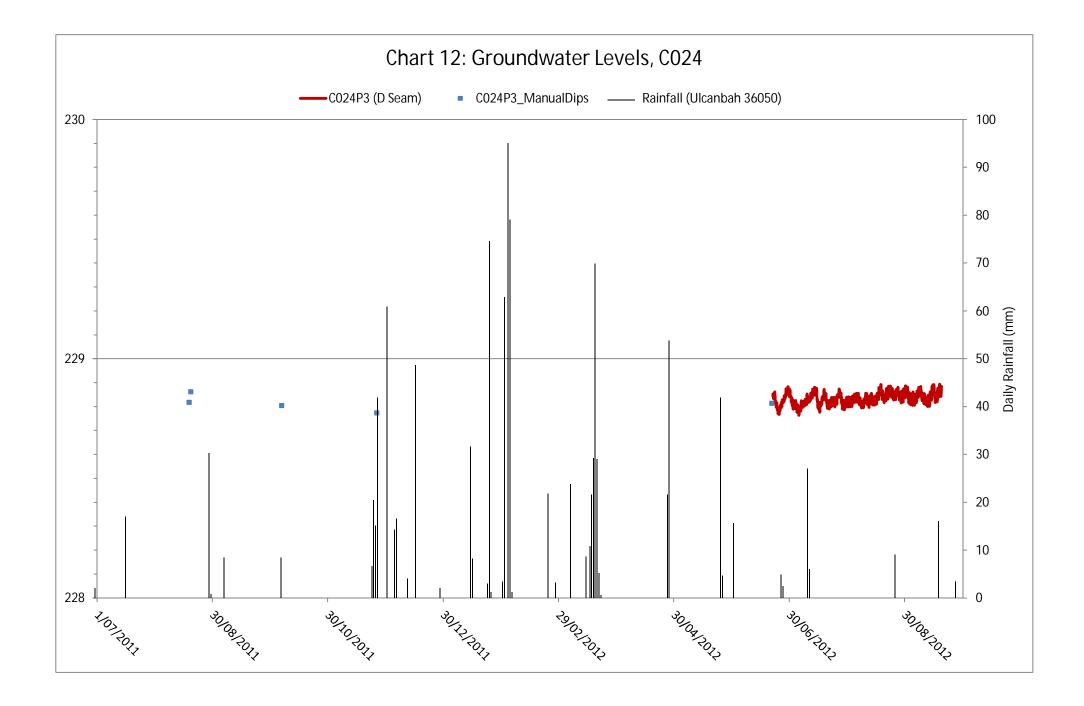


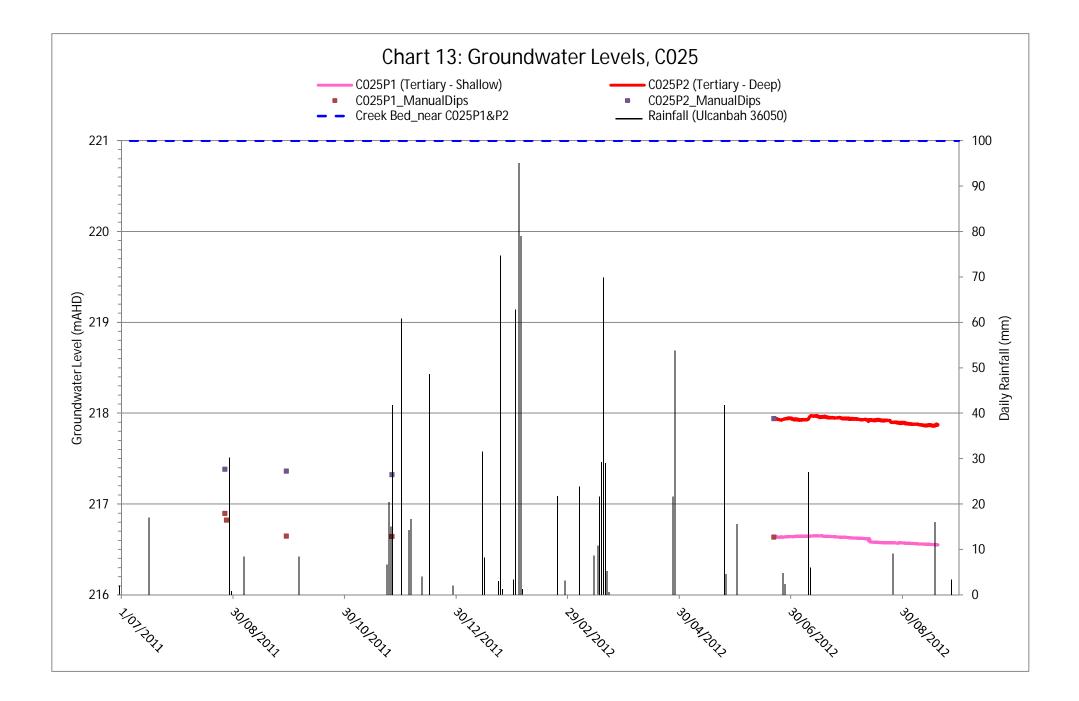


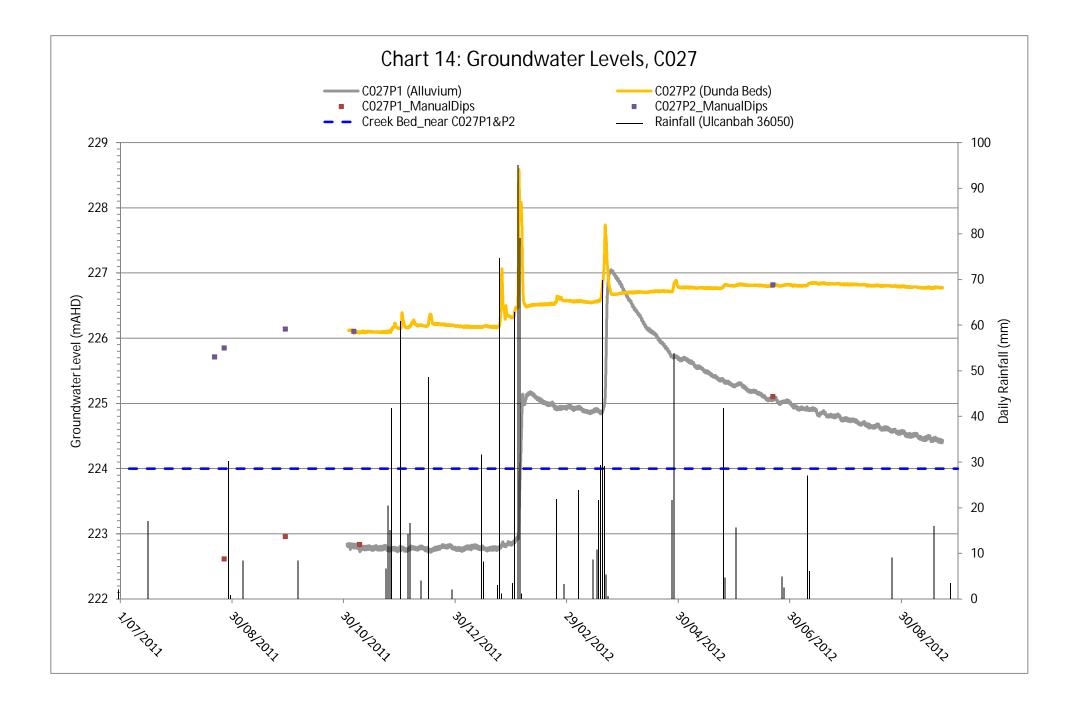


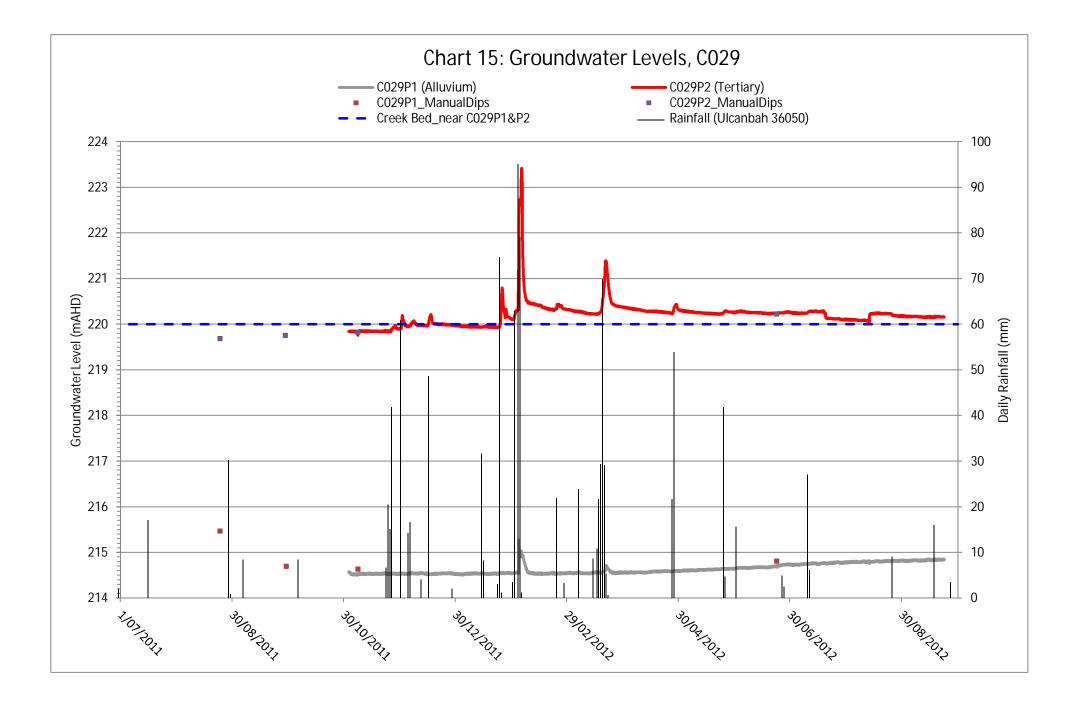


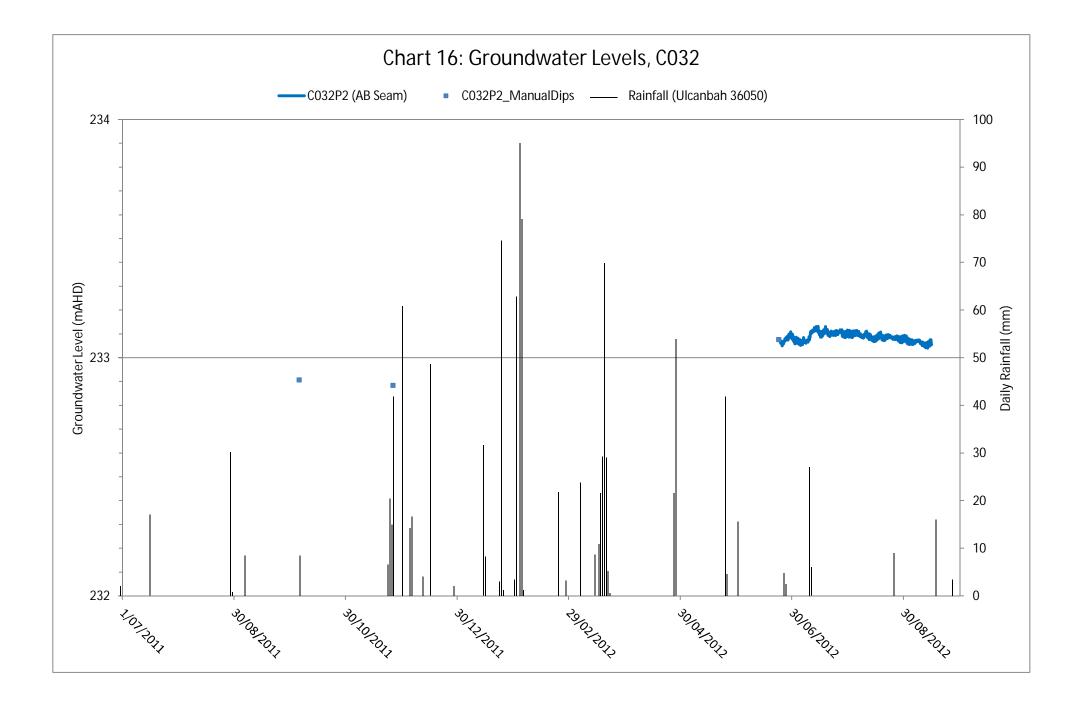


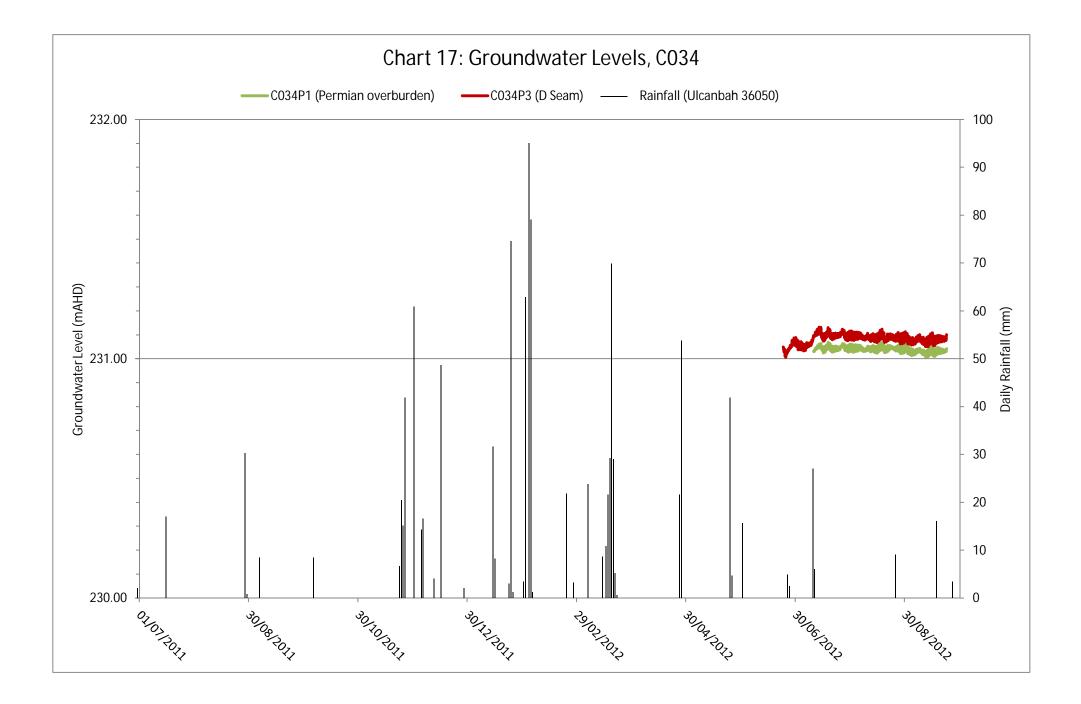


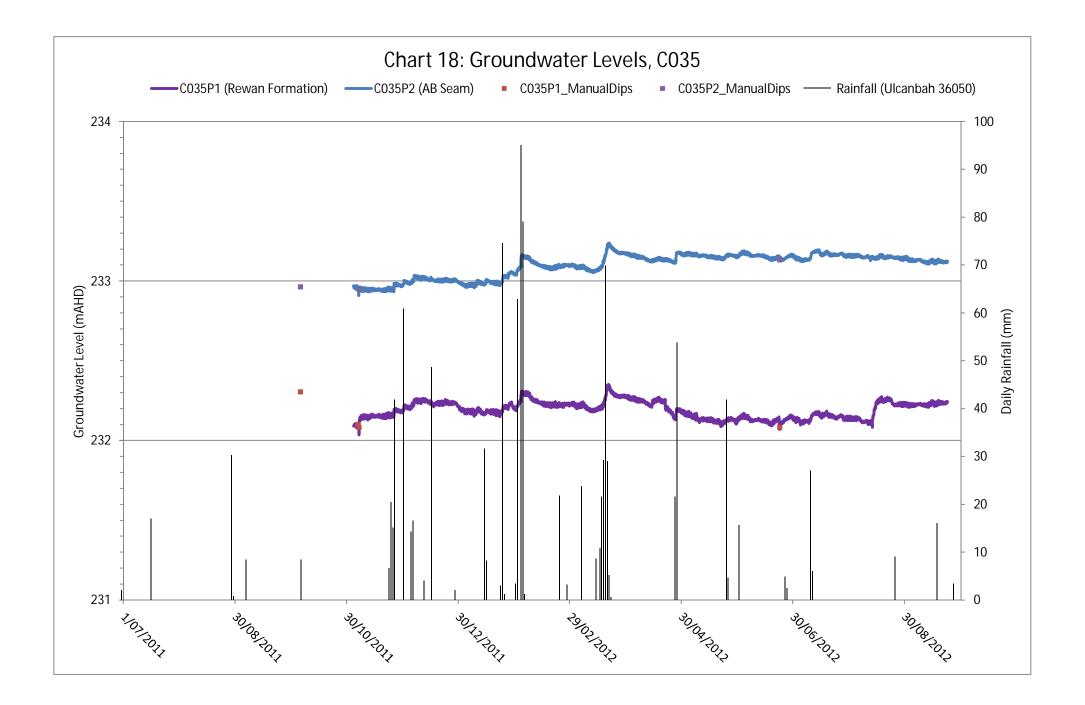


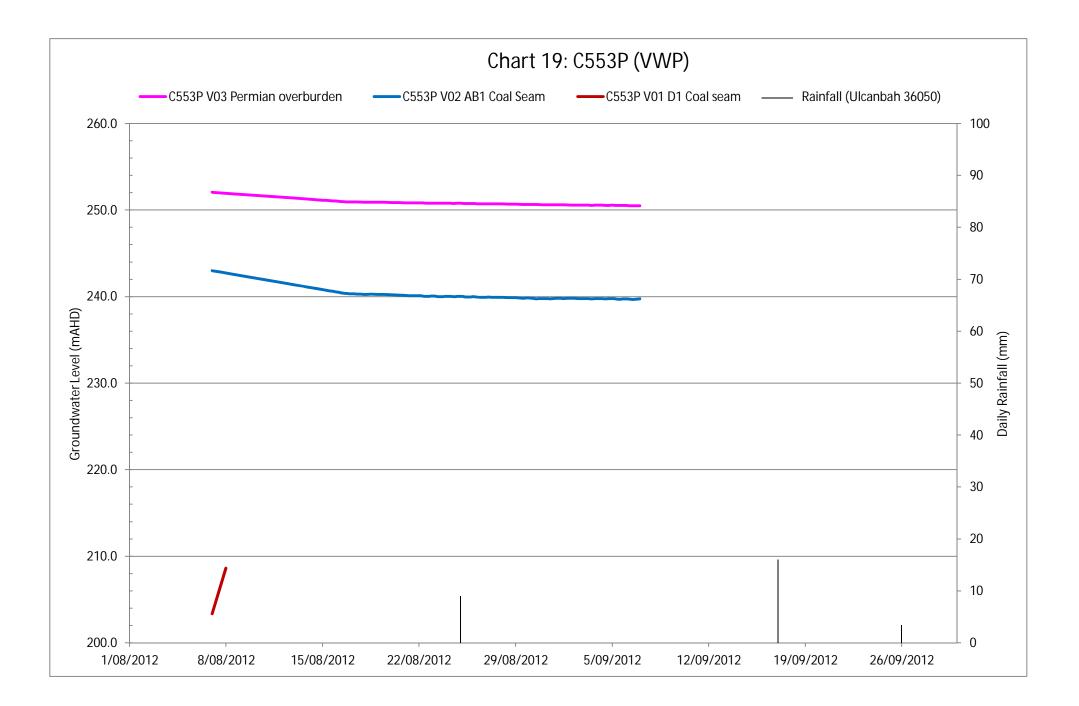


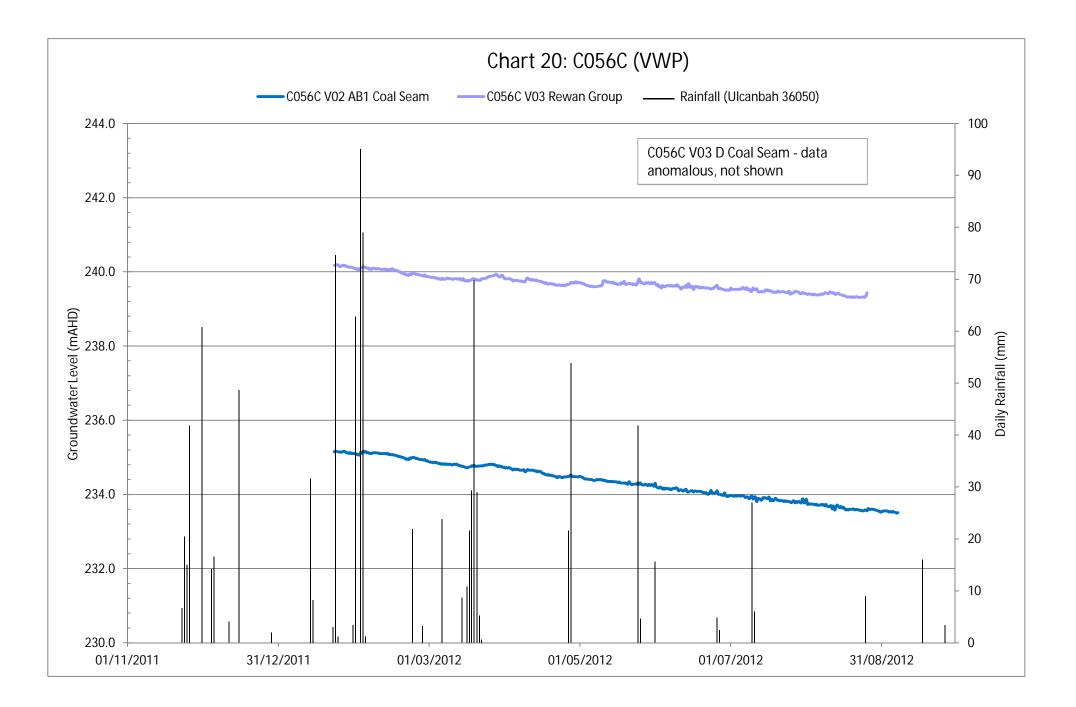


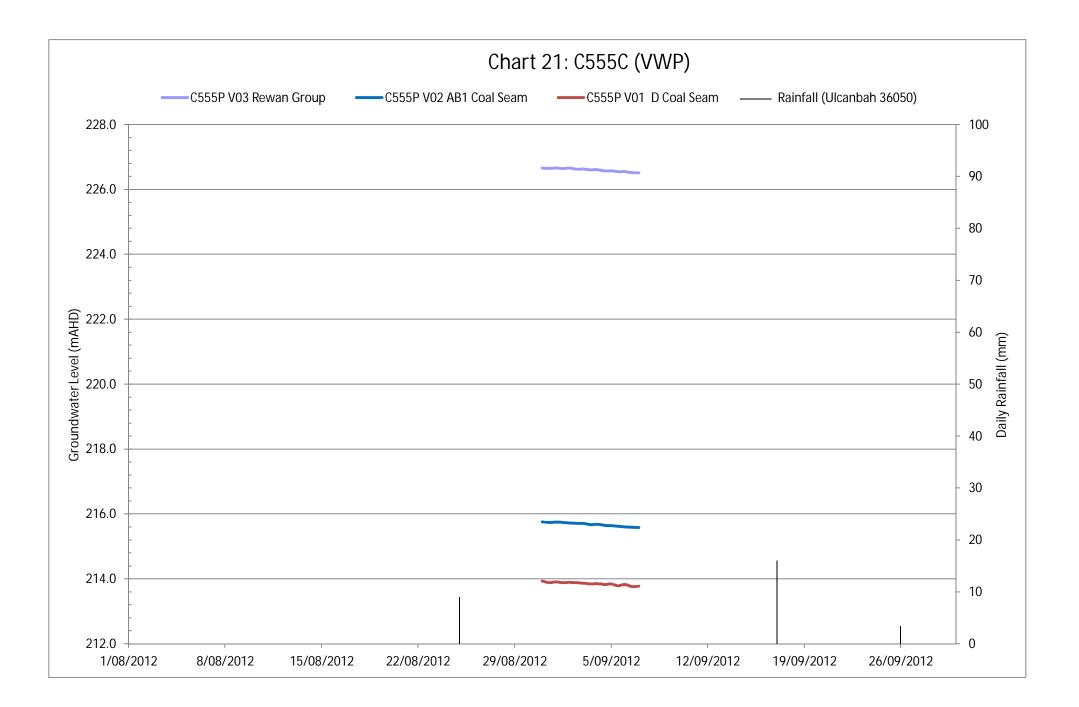


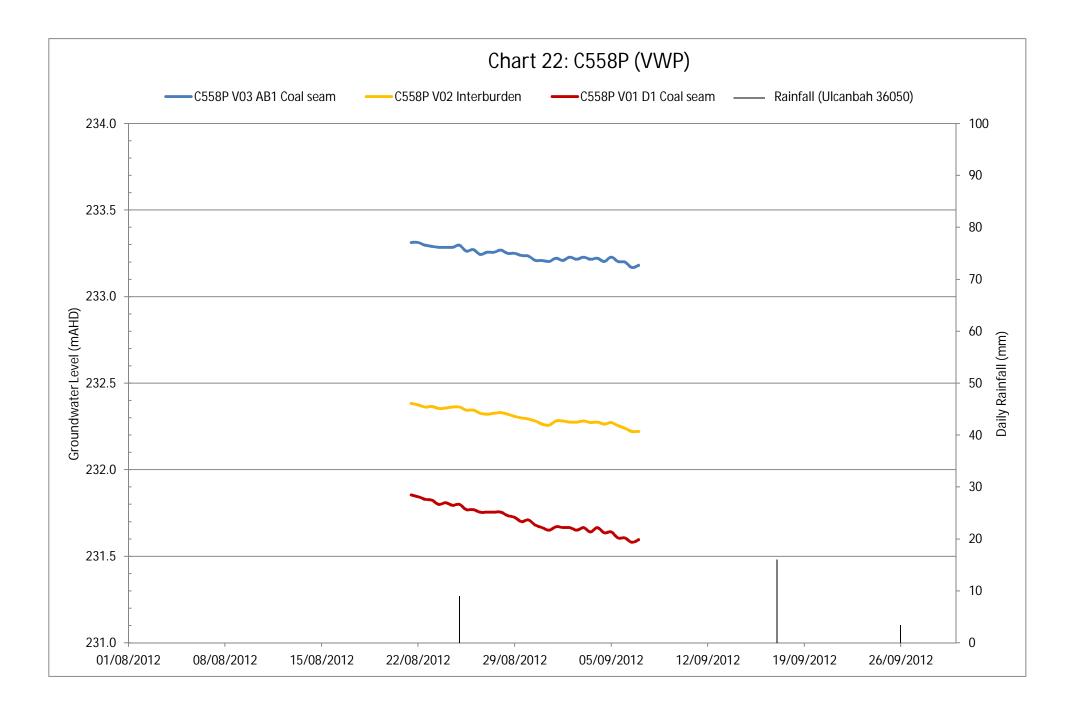


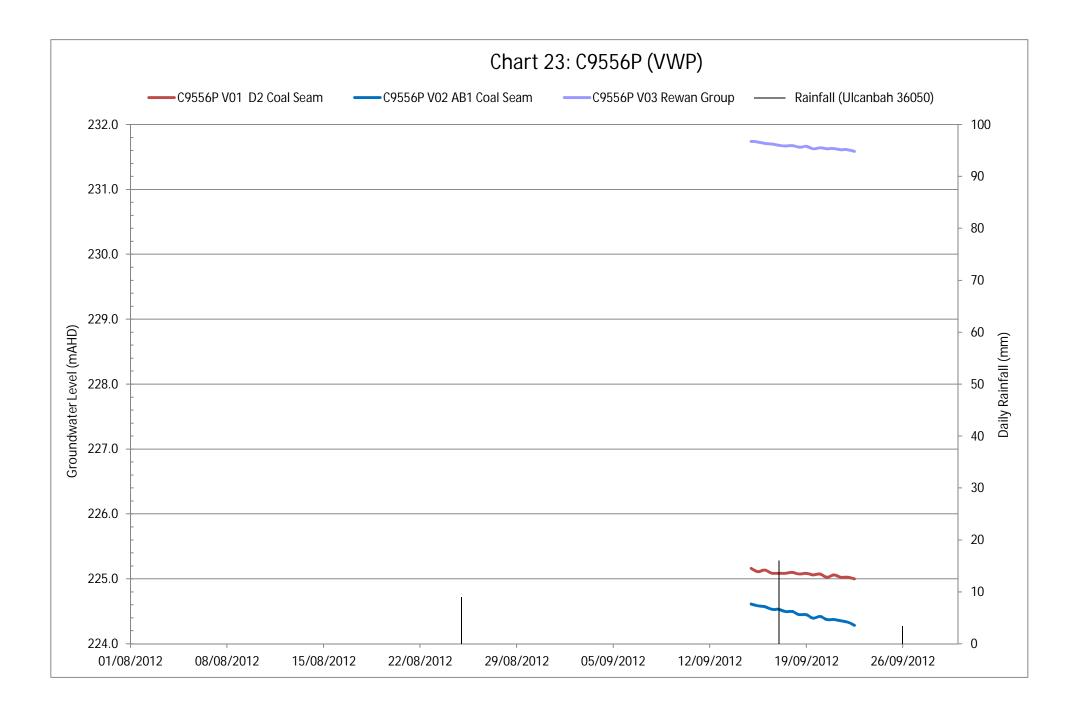












Appendix E Groundwater Quality

Laboratory Analysis Summary Tables Field Chemistry Summary Tables Laboratory QA Certificates

Page intentionally left blank

Imm Imm <th></th> <th></th> <th></th> <th></th> <th></th> <th>Fi</th> <th>eld</th> <th></th> <th></th>						Fi	eld		
Monitored Unit LocCode Time Sampled_Date 20092011 1.10 5940 -64 5.07 S710 28.9 Allavium 6027P1 811/10011 1.07 5960 -65 6.68 3800 32.2 C022P1 811/2011 1.18 6.140 -720 6.68 3800 32.5 C022P1 811/2011 1.84 6.140 -720 6.68 3801 32.5 Tentary C022P2 29092011 0.64 17500 6.38 5800 33.4 C023P2 2711/2011 0.84 17800 6.38 5800 33.4 C023P2 711/2011 0.34 1930 -176 6.58 5800 33.4 C023P2 711/2011 0.44 780 -168 5830 28.3 34.4 C023P1 211/2011 0.46 1008 -177 680 22.5 C01041 1004 340 -561 86 7.52 -27.5 34.4					_	Oxygen			
Alluvium C027P1 871/2011 1.19 5840 -64 5.97 871/0 289 C027P1 871/2011 1.07 5880 -5.97 6.68 3810 332 C027P1 871/2011 2.07 580 -5.92 6.68 3810 332 C027P1 871/2011 2.08 2.760 -0.9 7.18 18.400 322 Tertiary C025P2 229082011 1.08 7.00 6.92 8550 33.4 C029P2 279082011 1.04 1760 6.92 6.93 33.4 C029P2 27102012 2.80 6.66 10 7.72 4 28. C022P1 311/02011 1.07 338 2.3 4.9 18. 24. C022P1 311/02011 1.04 10.30 6.77 4.84 24. C027P2 270/02012 2.80 66 10 7.7 2.01 3.02 C027P2 290/92011	Monitored Unit	LocCode	Sampled_ Date-	mg/L	uS/cm	٣V	pH_Units	РРМ	00
C027P1 8/11/2011 2.07 5880 -65 6.64 3810 33.2 C029P1 23/09/2011 0.51 20.770 1/101 5.82 3810 33.2 C029P1 7/11/2011 2.86 27.600 -70 7.19 18.300 30.2 Tartiary C028P2 7/10/2011 1.46 777 6.58 7.0 262 C028P2 7/10/2011 1.46 7890 -777 6.58 38.0 30.4 C028P2 7/10/2011 1.67 38.8 23 4.8 18.8 24 C022P1 4/10/2011 1.67 38.4 6.6 6.04 187 31.1 C022P1 4/10/2011 1.78 3.43 6 6.04 180 28.5 7.5 28.0 7.5 27.5 C022P1 4/10/2011 0.78 180 4.0 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5			Time						
C027P1 8/11/2011 1.18 6140 -72 6.68 38/10 33.2 C028P1 20808/2011 0.51 20,700 -700 7.19 118,400 32.5 Fillagy C025P2 24008/2011 0.67 11560 -911 5.56 7500 30.5 C025P2 24008/2011 0.67 11560 -911 5.56 7500 30.5 C025P2 24008/2011 0.67 11560 -911 6.38 6826 33.4 C026P2 24008/2011 1.64 7800 -176 6.38 6826 33.4 C022P1 1411/2011 1.68 33.3 4.8 6.02 180 28.5 C022P1 1411/2011 0.48 34.3 6 6.04 2.6 2.7 6.63 31 C022P1 1411/2011 0.48 343 6 6.04 2.6 2.6 2.7 7.6 2.7 7.6 2.7 7.6 2.7 7.6	Alluvium								
CozeP1 29/08/2011 0.51 20/70 -101 5.82 7.19 18,40 30 Tertiary COZEP2 29/08/2011 0.67 11.500 -201 -202 26.2 COZEP2 29/08/2011 0.047 11.500 -201 5.56 7500 30.5 COZEP2 27/10/2012 0.84 13.000 -70 6.92 8530 28.5 CozeP2 27/10/2012 9.89 605 -10 7.24 -2 26.0 CozeP1 47/02011 1.67 33.8 2.3 4.9 18.8 24. Coz2P1 47/10/2011 0.46 10.06 5.77 6.02 28.0 22.1 13.1 Coz2P1 27.10 2.66 6.04 18.7 3.1 13.1 Coz2P1 47.011 0.46 10.06 5.77 6.02 27.5 27.5 27.5 Cos5P1 30.090121 5.8 455 90 7 - 2.0 3.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
CO29P1 711/2011 2.86 72.00 7.00									
Entiary C028P2 29092011 0.67 11.500 291 5.66 7500 30.5 C028P2 20092011 1.46 7890 -176 6.32 6550 33.4 Clematis Sandstone HD02 27102012 9.89 606 10 7.24 - 28 Dunda Beds C022P1 3102011 1.67 338 23 4.9 188 24 C022P1 14102011 0.78 347 9 6.10 7.74 - 28 C022P1 14102011 0.48 347 9 6.10 7.52 7.67 7.75 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Co29P2 21/12011 0.84 13.020 70 6.32 6350 32.4 CloreP2 2909/2011 1.46 7300 -176 6.33 5450 33.4 Clornatis Sandstone HD02 27/10/2012 8.89 6.06 10 7.24 - 26 Dunda Beds C022P1 31/10/2011 1.87 334 -9 6.02 10.9 28.6 C022P1 10/11/2011 1.48 343 -6 6.04 167 31.1 C022P2 50/10/2011 0.85 11.61 -60 5.77 6.62 25.5 11.0 1.0 4.100 -5.7 7.68 22.5 31.1 C022P1 50/11/2011 0.48 1.00 -5.7 7.68 27.5 25.6 31 20.5 31.1 20.2 25.6 31.0 22.1 25.6 31.0 22.1 25.6 31.0 22.1 25.6 31.0 22.1 25.6 31.0 22.1 25.0								-	
Cio29P2 29/09/2011 1.4.6 7890 -176 6.38 5850 33.4 Clematis Sandstone HD02 27/10/2012 9.89 6.06 10 7.24	Tertiary								
Colonatis Sandstone HD62 7/11/2011 0.34 10.360 -1.65 6.77 6.680 30.7 Dunda Beds C022P1 3/10/2011 1.67 338 23 4.9 188 24 Dunda Beds C022P1 1/11/2011 1.48 347 9 6.02 1890 28.6 C022P2 20/09/2011 0.46 1008 -60 5.77 6.80 28.5 C027P2 20/09/2011 0.46 1008 -60 5.71 5.649 - 27.5 HD03A 27/10/2012 1.68 7.22 - 28.6 31 C035P1 6/11/20012 0.49 3820 -30 7.7 2310 30.6 C035P1 6/11/20012 0.49 3820 -32 - 29.4 Permian Overburden C038P1 3/10/2011 0.73 20.653 11.80 28.4 C012P2 2/11/2011 1.43 18390 78 5.59 11.90 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Clematis Sandstone HD02 27/1/02/012 9.89 606 10 7.24 - 26 Dunda Beds C022P1 14/1/2011 1.67 338 23 4.9 188 24 C022P1 14/1/2011 0.78 347 9 6.02 190 28.6 C022P1 10/1/2011 1.48 343 4 6 6.04 190 28.6 C035P1 2/10/2012 2.56 561 86 7.52 - 27.5 HD03A 2/10/2012 2.56 561 86 7.52 - 26.8 C035P1 5/11/2011 0.44 43820 -28 7.5 2310 30.6 C556P1 31/02/2011 1.73 20.630 41 5.58 13.800 28.6 C035P1 5/11/2011 1.66.3 166.3 1160 6.32 13.800 30.6 C035P1 3/11/2011 1.73 20.630 411 5.58 13.800									
Dunda Bads C022P1 3/10/2011 1.67 338 23 4.9 188 24 C022P1 14/11/2011 1.78 347 9 6.02 1890 2.86. C022P2 S/01/2011 0.48 1161 6.00 5.77 6.80 2.85. C027P2 S/10/2012 1.89 7.52 - 2.7.5 H03A 27/10/2012 1.89 7.52 - 2.7.5 H03A 27/10/2012 5.86 1455 90 7 - 2.62.2 C556P1 3/00/2012 5.28 455 90 7 - 2.62.2 C556P1 3/00/2012 5.28 16.53 10.66 5.22 - 2.7.4 C036P1 1/10/2011 1.7.3 2.06.30 41 5.5.8 13.830 2.8.1 C036P1 1/10/2011 2.43 198.9 7.6 5.5.9 110.9 2.7.6 C036P1 1/10/2011 1.7.3 1.49.9<	Clematis Sandstone							-	
Ca22P1 14/11/2011 1.7.8 347 9 6.02 190 28.6 C022P1 10/11/2011 1.4.8 343 -6 6.0.4 187 31.1 C027P2 23/03/2011 0.95 1161 -60 5.77 680 7.52 - 27.5 C0355P1 R 21/02/012 2.56 561 86 7.52 - 27.5 C035P1 5/10/2011 1.0.4 4302 -28 7.5 2310 30.6 C556P1 30/04/2012 5.28 455 9.0 7 - 26.2 C035P1 5/11/2011 0.43 3820 -28 7.5 33.00 30.6 C035P1 3/10/2011 1.73 20.630 411 5.58 13.030 30.6 C012P1 2/10/2011 2.43 1839 78 5.8 1160 2.24 C012P1 2/10/2011 1.43 1896 76 6.28 1180 2.24								188	
C027P2 29009/2011 0.95 1161 400 5.77 680 285 C027P2 5/11/2011 0.46 1008 90 6.71 576 27.5 C9553P1R 2/10/2012 1.56 6.61 90 6.752 . 27.5 C035P1 5/10/2011 1.04 4100 -57 4.84 2550 31 C035P1 5/10/2011 1.04 4100 -57 2.84 2.23 7.5 2.30 30.6 30.6 3557 330.0 30.6 30.3 8.6 31.30 32.6 13.03 30.6 30.6 30.6 30.3 8.6 31.3 - 30.6 30.6 30.6 30.3 30.6 30.3 30.6 31.3 - 30.3 24.7		C022P1	14/11/2011	0.78	347	9	6.02	190	28.6
C027P2 Sfr1/2011 0.46 1008 -90 6.71 57.6 72.5 B0533P1R 21/0/2012 2.56 561 86 7.52 27.5 C035P1 6/1/2011 1.0.4 4100 -57 4.84 2550 31 C035P1 6/1/2011 0.4 3820 -28 7.5 2310 30.6 C055P1 30006/2012 5.28 455 90 7 26.2 C558P1 3002012 5.28 455 90 7 26.2 C008P1 12/10/2011 7.3 20.630 41 5.58 13.830 30.6 C012P1 8/1/2011 1.43 1996 76 6.62 1180 22.4 C012P2 12/10/2011 1.43 1996 76 6.32 444 28.3 C012P2 12/10/2011 3.67 741 5.63 444 28.3 C013P2 4/1/2011 3.67									
Cessap1R 2/10/2012 2.56 561 86 7.52 . 7.75 Rewan Group C035P1 5/10/2011 1.04 4100 -57 4.84 2550 31 C555P1 3000/02/012 5.28 455 90 7 . 282 7.5 2310 30.6 C555P1 3000/02/012 5.28 455 90 7 . 282 455 13.330 30.6 C555P1 11/0/2012 5.08 156.3 106 6.52 13.03 30.6 C008P1 12/11/2011 1.73 20.630 41 5.58 13.330 30.6 C012P1 12/11/2011 1.43 1939 76 6.52 1180 - C012P2 12/11/2011 1.43 1939 76 6.53 433 29.3 C012P2 12/11/2011 1.45 119 7.19 4.41 5.63 433 29.3 C012P2 12/11/2011 1.45 13.35 C013P1 12/11/2011 1.42 13.350 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
H03A 27/10/2012 1.89 722 1.5 6.49 - 28.8 Rewan Group C035P1 6/11/2011 0.04 4300 -57 4.84 2550 31 C035P1 6/11/2011 0.4 3820 -28 7.5 2310 30.6 C555P1 10/02012 5.28 455 90 7 - 28.4 C008P1 21/1/2011 0.73 20.830 41 5.58 13.830 28.1 C012P1 21/0/2011 1.43 1996 7.6 6.26 1180 28.4 C012P2 21/0/2011 1.43 1996 7.6 6.26 1180 28.4 C012P2 21/0/2011 1.43 1996 7.6 6.26 1180 28.4 C012P2 21/0/2011 3.27 782 58 6.33 444 29.3 C018P1 21/0/2011 3.27 782 58 6.33 444 28.0 C018P1									
Rewan Group C035P1 6/10/2011 1.0.4 4100 -5.7 4.84 2550 31 C035P1 3009/2012 5.28 455 90 7 - 26.2 C556P1 3009/2012 5.28 455 90 7 - 26.2 C556P1 1/10/2011 1.73 20.830 41 5.58 113.830 28.1 C008P1 1/10/2011 1.73 20.830 41 5.58 113.830 28.1 C0012P1 2/10/2011 1.73 20.830 41 5.58 113.83 29.7 C012P2 2/10/2011 1.38 1279 1.5 5.62 1318 - C018P1 2/10/2011 3.26 754 411 5.63 433 29.3 C018P1 2/10/2011 3.27 782 56 6.33 444 29.3 C036P2 1/10/2011 4.21 1.350 -153 7.9 8610 31 <									
C555P1 3009/2012 5.28 455 90 7 - 28.2 Permian Overburden C008P1 3/10/2011 1.73 20.830 41 5.58 13.830 28.1 C008P1 1211/2011 0.79 19.900 129 6.65 13.030 30.6 C012P1 2/10/2011 2.43 1839 78 5.59 110.90 27.6 C012P2 2/10/2011 1.38 2179 -15 5.52 1318 - C012P2 1911/2011 3.27 754 411 5.63 433 22.3 C018P1 2/10/2011 3.29 747 87 7.05 - 2.9.3 C018P1 2/10/2011 3.29 747 87 7.05 - 2.9.3 C0307P2 10/11/2011 4.2 13.350 -153 7.9 8610 31 C0307P2 10/11/2011 1.2 13.50 -153 7.9 8643 31.8	Rewan Group								
C556P1 1/10/2012 5.08 156.3 106 6.32 - 29.4 C008P1 12/1/2011 0.79 19.900 112 6.65 13.030 30.6 C012P1 2/10/2011 1.43 1996 76 6.26 1180 28.4 C012P2 13/11/2011 0.75 2440 -119 7.19 1450 30.3 C018P1 2/10/2011 3.66 754 41 56.3 433 29.3 C018P1 2/10/2011 3.67 784 41 56.3 444 23.3 C558P1 1/10/2012 3.39 247 87 7.06 - 29.5 C007P2 10/11/2011 4.2 13.50 153 7.9 8610 31.8 C007P2 10/11/2011 1.2 13.150 152 7.49 8420 31.8 C007P2 10/11/2011 0.75 3230 -137 5.92 20.20 31.1 C008P2		C035P1	6/11/2011	0.4	3820	-28	7.5	2310	30.6
Permian Overburden C008P1 1/10/2011 1.73 20.630 4.1 5.58 13.830 28.1 C008P1 12/11/2011 2.43 1839 78 5.59 1109 27.6 C012P1 8/11/2011 1.43 1996 76 6.26 1180 28.4 C012P2 2/10/2011 1.48 21.79 -15 5.52 1318 - C012P2 2/10/2011 3.66 764 41 5.63 433 29.3 C018P1 2/10/2011 3.27 782 58 6.33 444 29.3 C018P1 1/10/2011 3.27 782 58 6.33 444 29.3 C007P2 1/0/1/2011 4.2 13.350 -153 7.9 8610 31 C007P2 1/0/1/2011 1.28 13.80 -9 5.48 5.480 31.3 C007P2 1/0/1/2011 0.46 4000 -19 9.46 1169 30.9									
C008P1 12/11/2011 0.79 19.900 129 6.65 13.030 30.6 C012P1 8/11/2011 1.43 1996 76 6.626 1180 28.4 C012P2 2/10/2011 1.38 2/179 -15 5.52 1318 C012P2 13/11/2011 0.75 2440 -119 7.19 1450 30.3 C018P1 2/10/2011 3.86 754 41 5.63 433 29.3 C018P1 2/10/2011 3.39 247 87 7.05 - 29.5 C007P2 10/11/2011 1.3 13.150 -192 7.49 840 31.8 C007P2 10/11/2011 0.75 3290 -137 5.92 2020 31.1 C008P2 3/10/2011 0.75 3290 -137 5.92 2020 31.3 C014P2 4/10/2011 0.63 1960 -9 5.48 5400 31.3 C014P2	De reciere Oraceteradore								
C012P1 2/10/2011 2.43 1839 78 5.59 1100 27.6 C012P2 2/10/2011 1.43 1996 76 6.26 1180 2.8.4 C012P2 1/11/2011 1.73 2/10 1.5 5.52 1318 - C018P1 2/10/2011 3.66 754 411 5.63 444 29.3 C018P1 8/11/2011 3.27 762 58 6.33 444 29.3 C568P1 1/10/2012 3.39 247 87 7.05 - 29.5 AB Seam C007P2 10/11/2011 4.2 13.360 -153 7.9 8610 31 C007P2 10/11/2011 1.23 13.150 -192 7.49 8420 31.3 C014P2 4/10/2011 0.63 1960 -9 5.48 5480 31.3 C014P2 1/1/12011 1.26 4080 -199 12.03 4080 30.8 <	Perman Overburden								
C012P1 B/11/2011 1.43 1996 76 6.26 1180 28.4 C012P2 13/11/2011 0.75 2440 -119 7.19 1450 30.3 C018P1 2/10/2011 3.66 754 41 5.63 443 29.3 C018P1 B/11/2011 3.27 782 58 6.33 444 29.3 C038P1 M10/2012 3.39 247 87 7.05 - 29.5 C007P2 10/11/2011 4.2 13.350 -192 7.49 8410 31.8 C007P2 10/11/2011 4.2 13.350 -192 7.49 8420 31.8 C008P2 3/10/2011 0.75 3290 -137 5.92 2020 31.1 C014P2 4/10/2011 0.63 1960 -9 5.48 5480 30.3 C014P2 2/10/2011 0.72 3070 -146 10.12 1860 30.2 C014P2									
C012P2 13/11/2011 0.75 2440 -119 7.19 1450 30.3 C018P1 2/10/2011 3.66 754 41 5.63 433 29.3 C018P1 8/11/2011 3.27 782 58 6.33 444 29.3 C007P2 4/10/2011 1.1 14.210 -99 4.41 9310 26.1 C007P2 10/11/2011 4.2 13.350 -192 7.49 8420 31.8 C007P2 10/11/2011 0.75 3290 -137 5.92 2020 31.1 C008P2 3/10/2011 0.75 3290 -137 5.92 2020 31.1 C014P2 12/11/2011 1.23 13960 -9 5.48 5480 31.3 C014P2 12/11/2011 1.25 1980 -129 9.86 1169 30.9 C014P2 12/11/2011 1.26 1980 -199 12.03 4080 30.8 C016									
C018P1 2/10/2011 3.66 754 41 5.63 433 29.3 C018P1 8/11/2011 3.27 782 58 6.33 444 29.3 C558P1 1/10/2012 3.39 247 87 7.05 - 29.5 C007P2 10/11/2011 1.1 14,210 39 4.41 9310 28.1 C007P2 10/11/2011 1.23 13,150 -152 7.49 8420 31.8 C008P2 3/0/2011 0.75 3290 -137 5.92 2020 31.1 C008P2 12/11/2011 5.4 3040 -116 8.03 1820 29.8 C014P2 4/10/2011 0.63 1960 -9 5.48 5480 31.3 C014P2 2/10/2011 0.72 3070 -146 10.12 1880 25.2 C018P2 2/10/2011 1.63 1390 -57 5.41 828 30.8 C018P2			2/10/2011	1.38					-
C018P1 8/11/2011 3.27 782 58 6.33 444 29.3 AB Seam C007P2 4/10/2011 1.1 14.210 -39 4.41 9310 26.1 C007P2 10/11/2011 4.2 13.350 -153 7.9 8610 31 C007P2 10/11/2011 1.2 13.150 -192 7.44 8420 31.8 C008P2 3/10/2011 0.75 3290 -137 5.92 2020 31.1 C008P2 1/11/2011 0.63 1960 -9 5.48 5480 31.3 C014P2 1/21/2011 1.25 1980 -129 9.66 1169 30.9 C016P2 1/3/1/2011 0.72 3070 -146 10.12 1880 25.2 C016P2 1/3/1/2011 0.72 3070 -146 10.12 1880 25.2 C016P2 1/3/1/2011 0.72 6.67 1370 29.3 20.3									
C568P1 1/10/2012 3.39 247 87 7.05 - 29.5 AB Seam C007P2 10/11/2011 1.1 14.210 -39 4.41 9310 26.1 C007P2 10/11/2011 1.2 1.3,350 -153 7.9 8610 31 C008P2 10/11/2011 1.23 1.31,50 -192 7.49 8420 31.8 C008P2 12/11/2011 0.63 1960 -9 5.48 5480 31.3 C014P2 12/11/2011 0.72 3070 -146 10.12 1880 25.2 C016P2 2/10/2011 0.72 3070 -146 10.12 1880 25.2 C018P2 9/11/2011 0.66 2310 -7 5.41 828 30.8 C018P2 9/11/2011 0.66 2310 -7 2.64 1370 29.3 C018P2 9/11/2011 1.63 1354 -26 4.34 800 31.6 <									
AB Seam C007P2 4/10/2011 1.1 14.210 -39 4.41 9310 26.1 C007P2 10/11/2011 4.2 13,350 -153 7.9 8610 31 C007P2 10/11/2011 1.23 13,150 -192 7.49 8420 31.8 C008P2 12/11/2011 0.75 3290 -137 5.92 2020 31.1 C008P2 12/11/2011 0.63 1960 -9 5.48 5480 31.3 C014P2 4/10/2011 0.72 3070 -146 10.12 1880 25.2 C016P2 1/1/2011 2.46 4080 -199 12.03 4080 30.8 C018P2 9/1/2011 0.86 2310 -7 2.6 4.34 80.0 31.6 C018P2 9/1/2011 1.02 2225 -31 6.96 1321 33.4 C020P2 1/1/2011 0.86 2310 -7 2.6 4.34 800<									
C007P2 10/11/2011 4.2 13,350 -153 7.9 9610 31 C007P2 10/11/2011 1.23 13,150 -192 7.49 8420 31.8 C008P2 31/0/2011 0.75 3290 -137 5.92 2020 31.1 C008P2 12/11/2011 5.4 3040 -116 8.03 1820 29.8 C014P2 12/11/2011 0.72 3070 -146 10.12 1880 25.2 C016P2 21/0/2011 0.72 3070 -146 10.12 1880 25.2 C016P2 21/0/2011 1.61 1390 -57 5.41 828 30.8 C018P2 9/11/2011 0.02 2225 -31 6.96 1321 33.4 C020P2 3/10/2011 1.13 1694 42 4.5 1019 30.1 C032P2 7/11/2011 0.84 1354 -26 4.34 800 31.6 C032P2	AB Seam								
C008P2 3/10/2011 0.75 3290 -137 5.92 2020 31.1 C008P2 12/11/2011 5.4 3040 -116 8.03 1820 29.8 C014P2 12/11/2011 0.63 1960 -9 5.48 5480 31.3 C014P2 12/11/2011 1.25 1980 -129 9.86 1169 30.9 C016P2 12/10/2011 0.72 3070 -146 10.12 1880 25.2 C016P2 13/11/2011 2.46 4080 -199 12.03 4080 30.8 C018P2 9/11/2011 0.86 2310 -72 6.87 1370 29.3 C018P2 9/11/2011 1.02 2225 -31 6.96 1321 33.4 C020P2 14/172011 1.48 1663 -71 7.29 915 29.3 C032P2 5/10/2011 1.3 1694 42 4.5 10019 30.1 C032P2									
C008P2 12/11/2011 5.4 3040 -116 8.03 1820 29.8 C014P2 4/10/2011 0.63 1960 -9 5.48 5480 31.3 C014P2 12/11/2011 1.25 1980 -129 9.86 1169 30.9 C016P2 2/10/2011 0.72 3070 -146 10.12 1880 25.2 C016P2 13/11/2011 2.46 4080 -199 12.03 4080 30.8 C018P2 2/10/2011 1.61 1390 -57 5.41 828 30.8 C018P2 9/11/2011 0.86 2310 -72 6.87 1370 29.3 C018P2 9/11/2011 1.08 2225 -31 6.96 1321 33.4 C020P2 14/17(2011 1.48 1563 -71 7.29 915 29.3 C032P2 5/10/2011 1.53 1527 -30 - 2310 22.6 C035P2 <td></td> <td>C007P2</td> <td>10/11/2011</td> <td>1.23</td> <td>13,150</td> <td>-192</td> <td>7.49</td> <td>8420</td> <td>31.8</td>		C007P2	10/11/2011	1.23	13,150	-192	7.49	8420	31.8
C014P2 4/10/2011 0.63 1960 -9 5.48 5480 31.3 C014P2 12/11/2011 1.25 1980 -129 9.86 1169 30.9 C016P2 2/10/2011 0.72 3070 -146 10.12 1880 25.2 C016P2 2/10/2011 1.61 1390 -57 5.41 828 30.8 C018P2 2/10/2011 1.68 2310 -72 6.87 1370 29.3 C018P2 9/11/2011 1.02 2225 -31 6.96 1321 33.4 C020P2 3/10/2011 1.13 1694 42 4.5 1019 30.1 C032P2 5/10/2011 1.2 1561 -78 4.71 928 29.9 C035P2 6/10/2011 1.2 1561 -78 4.71 928 29.9 C035P2 6/11/2011 1.53 1527 -30 - 2310 28.6 C035P2									
C014P2 12/11/2011 1.25 1980 -129 9.86 1169 30.9 C016P2 2/10/2011 0.72 3070 -146 10.12 1880 25.2 C016P2 2/10/2011 1.61 1390 -57 5.41 828 30.8 C018P2 9/11/2011 0.86 2310 -72 6.87 1370 29.3 C018P2 9/11/2011 1.02 2225 -31 6.96 1321 33.4 C020P2 3/10/2011 1.13 1694 42 4.5 1019 30.1 C032P2 5/10/2011 0.84 1354 -26 4.34 800 31.6 C032P2 5/10/2011 1.53 1567 -30 - 2310 28.6 Interburden C006P1 3/10/2011 1.63 15627 -30 - 2310 28.6 C034P1 5/10/2011 1.35 4960 32 4.88 10.350 30.3									
C016P2 2/10/2011 0.72 3070 -146 10.12 1880 25.2 C016P2 13/1/2011 2.46 4080 -199 12.03 4080 30.8 C018P2 2/10/2011 1.61 1390 -57 5.41 828 30.8 C018P2 9/11/2011 0.86 2310 -72 6.87 1370 29.3 C018P2 9/11/2011 1.02 2225 -31 6.96 1321 33.4 C020P2 14/11/2011 1.49 1620 -189 8.06 949 29.1 C032P2 5/10/2011 1.48 1563 -71 7.29 915 29.3 C035P2 5/10/2011 1.2 1561 -78 4.71 928 29.9 C035P2 6/11/2011 1.61 16,020 -61 6.78 10,350 30.3 C035P2 6/11/2011 0.61 16,020 -61 6.78 10,350 30.3 C040									
C016P2 13/11/2011 2.46 4080 -199 12.03 4080 30.8 C018P2 2/10/2011 1.61 1390 -57 5.41 828 30.8 C018P2 9/11/2011 1.02 2225 -31 6.96 1321 33.4 C020P2 3/10/2011 1.13 1694 42 4.5 1019 30.1 C020P2 3/10/2011 1.49 1620 -189 8.06 949 29.1 C032P2 5/10/2011 1.48 1563 -71 7.29 915 29.3 C035P2 5/10/2011 1.53 1527 -30 - 2310 28.6 Interburden C006P1 3/10/2011 1.53 1527 -30 - 2410 28.9 C034P1 5/10/2011 1.53 1527 -30 - 2410 28.6 C006P1 3/10/2011 0.48 8250 - 4.47 5290 27.2									
C018P2 2/10/2011 1.61 1390 -57 5.41 828 30.8 C018P2 9/11/2011 0.86 2310 -72 6.87 1370 29.3 C018P2 9/11/2011 1.02 2225 -31 6.96 1321 33.4 C020P2 3/10/2011 1.13 1694 42 4.5 1019 30.1 C032P2 5/10/2011 1.49 1620 -189 8.06 949 29.1 C032P2 5/10/2011 0.84 1354 -26 4.34 800 31.6 C032P2 7/11/2011 3.48 1563 -71 7.29 915 29.3 C035P2 6/11/2011 1.53 1527 -30 - 2310 28.6 C005P1 3/10/2011 1.04 8250 - 4.47 5290 27.2 C006P1 3/0/2011 0.92 2860 -57 7.63 1720 40.8 C034P1									
C018P2 9/11/2011 1.02 2225 -31 6.96 1321 33.4 C020P2 3/10/2011 1.13 1694 42 4.5 1019 30.1 C020P2 14/11/2011 1.49 1620 -189 8.06 949 29.1 C032P2 5/10/2011 0.84 1354 -26 4.34 800 31.6 C032P2 7/11/2011 3.48 1563 -71 7.29 915 29.3 C035P2 6/11/2011 1.53 1527 -30 - 2310 28.6 Interburden C006P1 3/10/2011 1.04 8250 - 4.47 5290 27.2 C006P1 10/11/2011 0.92 2880 -57 7.63 1720 40.8 C034P1 6/11/2011 2.92 4590 12 7.5 2800 29.6 D Seam C006P3r 3/10/2011 0.8 999 -40 4.71 585 21.2									
C020P2 3/10/2011 1.13 1694 42 4.5 1019 30.1 C020P2 14/11/2011 1.49 1620 -189 8.06 949 29.1 C032P2 5/10/2011 0.84 1354 -26 4.34 800 31.6 C032P2 7/11/2011 3.48 1563 -71 7.29 915 29.3 C035P2 5/10/2011 1.2 1561 -78 4.71 928 29.9 C035P2 6/11/2011 1.53 1527 -30 - 2310 28.6 C006P1 3/10/2011 1.61 16,020 -61 6.78 10,350 30.3 C01P1 13/1/2011 0.92 2880 -57 7.63 1720 40.8 C034P1 6/11/2011 1.35 4960 32 4.88 3100 32 D Seam C006P3r 3/10/2011 0.8 999 -40 4.71 585 21.2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
C020P2 14/11/2011 1.49 1620 -189 8.06 949 29.1 C032P2 5/10/2011 0.84 1354 -26 4.34 800 31.6 C032P2 7/11/2011 3.48 1563 -71 7.29 915 29.3 C035P2 5/10/2011 1.2 1561 -78 4.71 928 29.9 C035P2 6/11/2011 1.53 1527 -30 - 2310 28.6 Interburden C006P1 3/10/2011 1.04 8250 - 4.47 5290 27.2 C006P1 10/11/2011 0.61 16,78 10,350 30.3 3 C011P1 13/11/2011 0.92 2880 -57 7.63 1720 40.8 C034P1 6/11/2011 1.35 4960 32 4.88 3100 32 D Seam C006P3r 12/11/2011 0.81 987 -120 7.71 566 29.2									
C032P2 5/10/2011 0.84 1354 -26 4.34 800 31.6 C032P2 7/11/2011 3.48 1563 -71 7.29 915 29.3 C035P2 5/10/2011 1.2 1561 -78 4.71 928 29.9 C035P2 6/11/2011 1.53 1527 -30 - 2310 28.6 Interburden C006P1 3/10/2011 1.04 8250 - 4.47 5290 27.2 C006P1 10/11/2011 0.61 16.020 -61 6.78 10,350 30.3 C011P1 13/11/2011 0.92 2880 -57 7.63 1720 40.8 C034P1 5/10/2011 1.35 4960 32 4.88 3100 32 D Seam C006P3r 12/11/2011 0.8 999 -40 4.71 585 21.2 C006P3r 10/11/2011 0.91 980 31 7.78 5663 34.9 <td></td> <td></td> <td></td> <td></td> <td></td> <td>72</td> <td></td> <td></td> <td></td>						72			
C032P2 7/11/2011 3.48 1563 -71 7.29 915 29.3 C035P2 5/10/2011 1.2 1561 -78 4.71 928 29.9 C035P2 6/11/2011 1.53 1527 -30 - 2310 28.6 Interburden C006P1 3/10/2011 1.04 8250 - 4.47 5290 27.2 C006P1 10/11/2011 0.61 16,020 -61 6.78 10,350 30.3 C011P1 13/1/2011 0.92 2880 -57 7.63 1720 40.8 C034P1 6/11/2011 2.92 4590 12 7.5 2800 29.6 D Seam C006P3r 3/10/2011 0.8 999 -40 4.71 585 21.2 C006P3r 12/11/2011 0.61 987 -120 7.71 566 29.2 C006P3r 12/11/2011 0.91 980 31 7.78 563 34.9 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
C035P2 5/10/2011 1.2 1561 -78 4.71 928 29.9 C035P2 6/11/2011 1.53 1527 -30 - 2310 28.6 C006P1 3/10/2011 1.04 8250 - 4.47 5290 27.2 C006P1 10/11/2011 0.61 16,020 -61 6.78 10,350 30.3 C01P1 13/1/2011 0.92 2880 -57 7.63 1720 40.8 C034P1 5/10/2011 1.35 4960 32 4.88 3100 32 C034P1 6/11/2011 2.92 4590 12 7.5 2800 29.6 D Seam C006P3r 3/10/2011 0.8 999 -40 4.71 585 21.2 C006P3r 12/11/2011 0.91 980 31 7.78 563 34.9 C007P3 10/11/2011 0.91 980 31 7.78 563 34.9 C0									
Interburden C006P1 3/10/2011 1.04 8250 - 4.47 5290 27.2 C006P1 10/11/2011 0.61 16,020 -61 6.78 10,350 30.3 C011P1 13/11/2011 0.92 2880 -57 7.63 1720 40.8 C034P1 5/10/2011 1.35 4960 32 4.88 3100 32 C034P1 6/11/2011 2.92 4590 12 7.5 2800 29.6 D Seam C006P3r 3/10/2011 0.8 999 -40 4.71 585 21.2 C006P3r 12/11/2011 0.61 987 -120 7.71 566 29.2 C006P3r 10/11/2011 0.91 980 31 7.78 563 34.9 C007P3 40/10/2011 0.9 1246 -82 5.04 737 28.8 C01P3 4/10/2011 1.2 980 35 5.86 5860 31.8		C035P2	5/10/2011	1.2	1561	-78		928	29.9
C006P1 10/11/2011 0.61 16,020 -61 6.78 10,350 30.3 C011P1 13/11/2011 0.92 2880 -57 7.63 1720 40.8 C034P1 5/10/2011 1.35 4960 32 4.88 3100 32 C034P1 6/11/2011 2.92 4590 12 7.5 2800 29.6 D Seam C006P3r 3/10/2011 0.8 999 -40 4.71 585 21.2 C006P3r 12/11/2011 0.61 987 -120 7.71 566 29.2 C006P3r 12/11/2011 0.91 980 31 7.78 563 34.9 C007P3 4/10/2011 0.9 1246 -82 5.04 737 28.8 C007P3 10/11/2011 1.2 980 35 5.86 5860 31.8 C011P3 4/10/2011 1.2 980 35 5.86 5860 31.8 <									
C011P1 13/11/2011 0.92 2880 -57 7.63 1720 40.8 C034P1 5/10/2011 1.35 4960 32 4.88 3100 32 C034P1 6/11/2011 2.92 4590 12 7.5 2800 29.6 D Seam C006P3r 3/10/2011 0.8 999 -40 4.71 585 21.2 C006P3r 12/11/2011 0.61 987 -120 7.71 566 29.2 C006P3r 10/11/2011 0.91 980 31 7.78 563 34.9 C007P3 4/10/2011 0.91 980 31 7.78 563 34.9 C007P3 10/11/2011 5.92 1233 -192 8.34 713 31.8 C011P3 4/10/2011 1.2 980 35 5.86 5860 31.8 C011P3 13/11/2011 3.42 982 -86 7.75 982 31.4 C	Interburden								
C034P1 5/10/2011 1.35 4960 32 4.88 3100 32 C034P1 6/11/2011 2.92 4590 12 7.5 2800 29.6 D Seam C006P3r 3/10/2011 0.8 999 -40 4.71 585 21.2 C006P3r 12/11/2011 0.61 987 -120 7.71 566 29.2 C006P3r 10/11/2011 0.91 980 31 7.78 563 34.9 C007P3 4/10/2011 0.9 1246 -82 5.04 737 28.8 C007P3 10/11/2011 5.92 1233 -192 8.34 713 31.8 C011P3 4/10/2011 1.2 980 35 5.86 5860 31.8 C011P3 13/1/2011 3.42 982 -86 7.75 982 31.4 C018P3 2/10/2011 1.89 1020 -20 5.81 594 29.8 C01									
C034P1 6/11/2011 2.92 4590 12 7.5 2800 29.6 D Seam C006P3r 3/10/2011 0.8 999 -40 4.71 585 21.2 C006P3r 12/11/2011 0.61 987 -120 7.71 566 29.2 C006P3r 10/11/2011 0.91 980 31 7.78 563 34.9 C007P3 4/10/2011 0.9 1246 -82 5.04 737 28.8 C007P3 10/11/2011 5.92 1233 -192 8.34 713 31.8 C011P3 4/10/2011 1.2 980 35 5.86 5860 31.8 C011P3 13/11/2011 3.49 982 -86 7.75 982 31.4 C018P3 2/10/2011 1.89 1020 -20 5.81 594 29.8 C018P3 9/11/2011 0.61 996 32.6 7.23 569 31.7									
D Seam C006P3r 3/10/2011 0.8 999 -40 4.71 585 21.2 C006P3r 12/11/2011 0.61 987 -120 7.71 566 29.2 C006P3r 12/11/2011 0.61 987 -120 7.71 566 29.2 C006P3r 10/11/2011 0.91 980 31 7.78 563 34.9 C007P3 4/10/2011 0.9 1246 -82 5.04 737 28.8 C007P3 10/11/2011 5.92 1233 -192 8.34 713 31.8 C011P3 10/11/2011 1.2 980 35 5.86 5860 31.8 C011P3 13/11/2011 3.42 982 -86 7.75 982 31.4 C018P3 2/10/2011 1.89 1020 -20 5.81 594 29.8 C018P3 9/11/2011 1.61 991 -60 7.06 568 -									
C006P3r10/11/20110.91980317.7856334.9C007P34/10/20110.91246-825.0473728.8C007P310/11/20115.921233-1928.3471331.8C011P34/10/20111.2980355.86586031.8C011P313/11/20113.42982-867.7598231.4C018P32/10/20111.891020-205.8159429.8C018P39/11/20110.61991-607.06568-C018P39/11/20110.6199632.67.2356931.7C024P36/10/20110.711720-724.72103331.2C024P314/11/20110.81602-1206.4993831.1	D Seam		3/10/2011	0.8			4.71	585	21.2
C007P34/10/20110.91246-825.0473728.8C007P310/11/20115.921233-1928.3471331.8C011P34/10/20111.2980355.86586031.8C011P313/11/20113.42982-867.7598231.4C018P32/10/20111.891020-205.8159429.8C018P39/11/20111.61991-607.06568-C018P39/11/20110.6199632.67.2356931.7C024P36/10/20110.711720-724.72103331.2C024P314/11/20110.81602-1206.4993831.1									
C007P3 10/11/2011 5.92 1233 -192 8.34 713 31.8 C011P3 4/10/2011 1.2 980 35 5.86 5860 31.8 C011P3 13/11/2011 3.42 982 -86 7.75 982 31.4 C018P3 2/10/2011 1.89 1020 -20 5.81 594 29.8 C018P3 9/11/2011 1.61 991 -60 7.06 568 - C018P3 9/11/2011 0.61 996 32.6 7.23 569 31.7 C024P3 6/10/2011 0.71 1720 -72 4.72 1033 31.2 C024P3 14/11/2011 0.8 1602 -120 6.49 938 31.1									
C011P34/10/20111.2980355.86586031.8C011P313/11/20113.42982-867.7598231.4C018P32/10/20111.891020-205.8159429.8C018P39/11/20111.61991-607.06568-C018P39/11/20110.6199632.67.2356931.7C024P36/10/20110.711720-724.72103331.2C024P314/11/20110.81602-1206.4993831.1									
C011P313/11/20113.42982-867.7598231.4C018P32/10/20111.891020-205.8159429.8C018P39/11/20111.61991-607.06568-C018P39/11/20110.6199632.67.2356931.7C024P36/10/20110.711720-724.72103331.2C024P314/11/20110.81602-1206.4993831.1									
C018P3 2/10/2011 1.89 1020 -20 5.81 594 29.8 C018P3 9/11/2011 1.61 991 -60 7.06 568 - C018P3 9/11/2011 0.61 996 32.6 7.23 569 31.7 C024P3 6/10/2011 0.71 1720 -72 4.72 1033 31.2 C024P3 14/11/2011 0.8 1602 -120 6.49 938 31.1									
C018P39/11/20110.6199632.67.2356931.7C024P36/10/20110.711720-724.72103331.2C024P314/11/20110.81602-1206.4993831.1									
C024P36/10/20110.711720-724.72103331.2C024P314/11/20110.81602-1206.4993831.1									
C024P3 14/11/2011 0.8 1602 -120 6.49 938 31.1									
		C024P3 C034P3	6/11/2011	2.59	1602	-120	7.5	938 943	30.1

GHD

CLIENTS PEOPLE PERFORMANCE

				Inorganio	cs			
	Bromide	Fluoride	Kjeldahl Nitrogen Total	pH (Lab)	Sulphide	тос	Total Dissolved Solids	
	mg/L	mg/L	mg/L	pH_Units	mg/L	mg/L	mg/L	
EQL	0.005	0.1	0.1	0.01	0.1	1	5	
ANZECC (2000) Ecosystems Fresh Water (95%)								

MonitoringUnit	WellCode	Sampled_Dat	e-Time			-			
ALLUVIUM	C027P1	29/09/2011	-	0.9	2.1	7	<0.1	52	3850
		8/11/2011	-	0.6	1.1	6.77	<0.1	<1	4370
		8/11/2011	-	0.7	1.1	6.91	<0.1	<1	4260
	C029P1	7/11/2011	-	0.9	1.7	7.28	<0.1	<1	20,10
TERTIARY	C025P2	29/09/2011	6.1	0.8	3.3	7.52	0.4	1	8180
		7/11/2011	-	0.6	1.8	7.07	<0.1	<1	8660
	C029P2	29/09/2011	4.95	0.6	-	7.23	0.3	13	6960
		7/11/2011	-	0.6	0.7	6.96	<0.1	<1	7780
DUNDA BEDS	C022P1	3/10/2011	0.14	0.3	<0.1	6.76	-	-	301
		6/10/2011	-	-	-	-	<0.1	<1	-
		14/11/2011	-	0.3	<0.1	6.73	<0.1	2	233
		10/11/2011	-	0.3	0.1	6.39	<0.1	<1	209
	C027P2	29/09/2011	-	0.5	2	7.25	<0.1	106	805
	002112	5/11/2011	-	0.4	0.6	6.79	<0.1	<1	949
REWAN	C035P1	5/10/2011	2.42	0.7	0.6	7.22	<0.1	<1	2290
	00001	6/11/2011	-	0.6	3.9	7.24	<0.1	<1	2990
PERMIAN OVERBURDEN	C008P1	3/10/2011	14.7	0.5	0.2	7.65	<0.1	3	14,90
ERMIANOVERBORDEN	00001 1	12/11/2011	14.7	0.6	0.2	7.23	<0.1	<1	17,20
	C012P1		-			-		-	,
	CUIZPI	2/10/2011	1.04	0.3	0.5	7.32	<0.1		1170
		4/10/2011	-	-	-	-	-	<1	-
	004050	8/11/2011	-	0.3	<0.1	6.43	<0.1	6	1350
	C012P2	2/10/2011	1.3	0.5	<0.1	7.86	-	-	1680
		4/10/2011	-	-	-	-	0.3	58	-
		13/11/2011	-	0.4	0.1	7.75	0.1	32	1560
	C018P1	2/10/2011	0.21	0.6	2.7	7.53	<0.1	-	486
		6/10/2011	-	-	-	-	-	<1	-
		8/11/2011	-	0.4	<0.1	6.5	<0.1	<1	541
AB SEAM	C007P2	4/10/2011	8.3	0.4	6.2	7.56	<0.1	13	10,30
		10/11/2011	-	0.4	2	7.95	5.3	36	10,70
		10/11/2011	-	0.4	2.1	7.73	6.2	38	10,80
	C008P2	3/10/2011	1.35	0.8	0.9	8.52	5.3	54	1920
		12/11/2011	-	0.9	1	8.27	0.9	37	1920
	C014P2	4/10/2011	0.72	1	1.1	8.61	<0.1	29	1110
		12/11/2011	-	1	1.6	9.5	<0.1	23	1340
	C016P2	2/10/2011	1.36	0.2	8.3	10.4	4.7	-	1660
	001012	6/10/2011	1.00			-		20	
		13/11/2011	-	0.3	11.7	11.5	1.9	28	1840
	C018P2	2/10/2011	1.27	0.3	0.6	7.63	0.6	-	1420
	001012	6/10/2011	-	0	-	-	-	<1	-
		9/11/2011	-	0.4	< 0.1	7.18	0.4	28	1360
		9/11/2011	-	-	0.4	7.16	0.4	16	1210
	C020D2			0.5			0.9	-	
	C020P2	3/10/2011	0.84	0.6	0.6	8.21		-	1050
		6/10/2011	-	-	-	-	<0.1	2	-
	000055	14/11/2011	-	0.6	0.6	8.2	1.5	<1	970
	C032P2	5/10/2011	0.42	0.6	0.4	8.09	0.2	36	951
		7/11/2011	-	0.7	2	7.49	<0.1	<1	1540
	C035P2	5/10/2011	0.76	0.3	0.2	7.15	0.1	1	851
		6/11/2011	-	0.3	<0.1	7.02	<0.1	11	118
NTERBURDEN	C011P1	13/11/2011	-	0.8	0.2	8.17	<0.1	31	1900
	C006P1	3/10/2011	7.9	0.7	0.5	7.74	0.2	58	8960
		10/11/2011	-	0.6	0.2	7.16	0.2	18	11,90
	C034P1	5/10/2011	2.78	0.7	0.2	7.03	<0.1	1	2870
		6/11/2011	-	0.7	<0.1	7	<0.1	<1	2810
D SEAM	C006P3r	3/10/2011	0.17	2.2	0.4	8.32	<0.1	12	587
		12/11/2011	-	2.4	0.4	8.18	<0.1	<1	620
	C006P3r	10/11/2011	-	2.2	0.5	8.04	<0.1	13	568
	C007P3	4/10/2011	0.14	2.6	0.7	8.23	0.2	33	809
	-	10/11/2011	- 1	2.6	0.4	8.31	1.3	38	760
	C011P3	4/10/2011	0.42	1.2	1.1	8.45	<0.1	8	568
	č	13/11/2011	-	1.2	0.3	8.01	<0.1	<1	608
	C018P3	2/10/2011	0.48	1.2	0.8	7.81	<0.1	-	651
		6/10/2011	-	-	-	-	-	<1	-
		9/11/2011		- 1.2	- 0.2	- 7.35	- <0.1	2	- 523
			-						
	C024D2	9/11/2011	-	1.2	0.3	7.51	0.1	5	554
	C024P3	6/10/2011	1.28	0.4	0.8	6.52	0.4	108	1150
	000 (50	14/11/2011	-	0.4	0.4	7.12	1	47	1050
	C034P3	5/10/2011	1.29	0.5	0.2	7.23	<0.1	<1	1260
	-	6/11/2011	-	0.3	<0.1	6.96	<0.1	<1	1020
	10000 (line	11/11/2011	-	0.1	0.1	6.51	< 0.1	-	396
UNKNOWN	C066 (line	11/11/2011	-	0.1	0.1	0.01	\U.1	_	030

LIENTS PEOPLE PERFORMANCE

	180-35)			••••	0	0.01			
SURFACE WATER	WQ01	6/10/2011	0.931	0.5	0.3	7.79	<0.1	11	703
		8/11/2011	-	0.6	0.5	7.91	<0.1	5	1340
	WQ03	5/10/2011	0.55	0.5	0.5	8.07	<0.1	8	859
		8/11/2011	-	0.5	0.6	8.04	<0.1	1	1350

Statistical Summary

Number of Results	26	66	65	66	66	65	66
Number of Detects	26	66	56	66	23	42	66
Minimum Concentration	0.14	0.1	<0.1	6.39	<0.1	<1	209
Minimum Detect	0.14	0.1	0.1	6.39	0.1	1	209
Maximum Concentration	14.7	2.6	11.7	11.5	6.2	108	20,100
Maximum Detect	14.7	2.6	11.7	11.5	6.2	108	20,100
Average Concentration	2.4	0.73	1.1	7.6	0.53	16	3150
Median Concentration	1.16	0.6	0.5	7.515	0.05	5	1300
Standard Deviation	3.4	0.55	1.9	0.86	1.3	23	4329
Number of Guideline Exceedances	0	0	0	0	0	0	0
Number of Guideline Exceedances(Detects Only)	0	0	0	0	0	0	0

* Calculated in ESDAT (database management software)

Lab_results_Table1.xlsm , 8/11/2012

									Μ	letals								
	a bo ∩	a ∕a ⊤	a boron (Filtered) ⊤	⊟ ⊐⊃ T	≝ Chromium (III+VI) (Filtered) ⊤	⊟ B T	≝ Copper (Filtered)	a bron (Filtered) ⊤	⊒ p T	a ⊉ ∩	⊟ ∏o ∏	a b P	a b ∏	a Belenium (Filtered) ⊤	b Bilver (Filtered) ⊤	a b T	a jo ⊤	∃ Zinc (Filtered)
EQL	0.01	0.001	0.05	0.0001	0.001	0.001	0.001	0.05	0.001	0.001	0.0001	0.001	0.001	0.01	0.001	0.001	0.01	0.005
ANZECC (2000) Ecosystems Fresh Water (95%)	0.055	0.013	0.37	0.0002	0.001		0.0014		0.0034	1.9	0.00006		0.011	0.005	0.00005			0.008

MonitoringUnit	WellCode	Sampled_Dat	t(
ALLUVIUM	C027P1	29/09/2011	0.01	0.013		-	<0.001		<0.001	16	<0.001	4.49	< 0.0001	<0.001	<0.001		<0.001	< 0.001	0.01	0.006
		8/11/2011	< 0.01		0.52	< 0.0001	0.004	0.004	0.001	29.3	< 0.001	4.43	< 0.0001	< 0.001	0.012	< 0.01	< 0.001	< 0.001	<0.01	0.019
	000054	8/11/2011	< 0.01		0.52	< 0.0001	0.004	< 0.001		27.4	< 0.001	4.55	< 0.0001	< 0.001	0.015	< 0.01	< 0.001	< 0.001	< 0.01	0.01
TERTIARY	C029P1 C025P2	7/11/2011	< 0.01	0.028	2.56	<0.0001 <0.0001	<0.001	0.003	0.006	5.62	<0.001	4.81 1.16	<0.0001 <0.0001	0.001	0.076	< 0.01	<0.001	0.05	0.02	0.013
TENTIANT	C025F2	29/09/2011 7/11/2011	0.03	0.012	1.01	<0.0001	< 0.005		<0.001	- 24.5	<0.001	2.19	< 0.0001	< 0.001	<0.001 0.001	0.05	<0.001	0.002	0.01	0.006
	C029P2	29/09/2011	< 0.01	0.006	0.92	-	<0.000			1.74	<0.001	0.448	< 0.0001	0.001	0.001	< 0.01	<0.001	< 0.001	<0.01	0.006
		7/11/2011	< 0.01	0.008	0.84	< 0.0001	0.002	0.001	0.001	6.33	< 0.001	0.655	< 0.0001	< 0.001	0.005	< 0.01	< 0.001	< 0.001	< 0.01	0.011
DUNDA BEDS	C022P1	3/10/2011	0.51	< 0.001	0.15	< 0.0001	< 0.001	0.005	< 0.001	0.5	< 0.001	0.099	< 0.0001	< 0.001	0.006	< 0.01	< 0.001	< 0.001	<0.01	0.011
		6/10/2011	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		14/11/2011	0.23	0.002	0.07	< 0.0001	<0.001	0.009	< 0.001	2.67	<0.001	0.2	< 0.0001	< 0.001	0.006	<0.01	<0.001	< 0.001	<0.01	0.028
	0007700	10/11/2011	0.63	0.001	0.11	<0.0001	0.002	0.007	< 0.001	0.76	< 0.001	0.083	< 0.0001	< 0.001	0.006	< 0.01	< 0.001	< 0.001	< 0.01	0.014
	C027P2	29/09/2011	0.09	0.019	0.22	-	< 0.001	0.007	< 0.001	24.9	< 0.001	1.78	< 0.0001	< 0.001	0.004	< 0.01	< 0.001	< 0.001	< 0.01	0.009
REWAN	C035P1	5/11/2011 5/10/2011	0.14	0.012	0.16	<0.0001 <0.0001	0.002	0.002	<0.001		<0.001	0.883	<0.0001	<0.001	0.01	<0.01	<0.001	<0.001	<0.01 <0.01	0.01 <0.005
REWAN	C035F1	6/11/2011	0.08	0.008	0.64	< 0.0001	0.001	<0.001		0.68	<0.001	0.230	< 0.0001	< 0.001	< 0.001		<0.001	< 0.001	< 0.01	0.005
PERMIAN OVERBURDEN	C008P1	3/10/2011	< 0.01		1.14	0.0003	0.004	0.002	0.002	0.29	< 0.001	0.181	< 0.0001	< 0.001	0.008	0.02	0.003	0.019	< 0.01	0.014
		12/11/2011	< 0.01	< 0.001	1.29	0.0002	0.001	0.004	0.011	0.06	< 0.001	1.6	< 0.0001	< 0.001	0.015	< 0.01	0.003	0.018	< 0.01	0.118
	C012P1	2/10/2011	0.01	< 0.001	0.41	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.05		0.182	< 0.0001	< 0.001	0.001	< 0.01	0.001	< 0.001	< 0.01	0.012
		4/10/2011	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		8/11/2011	< 0.01	< 0.001	0.32	< 0.0001	0.001	< 0.001	0.002	0.05	<0.001	0.173	< 0.0001	< 0.001	0.006	<0.01	<0.001	< 0.001	<0.01	0.037
	C012P2	2/10/2011	0.01	0.006	0.49	<0.0001	<0.001	< 0.001	<0.001	1.62	<0.001	1.32	< 0.0001	0.001	< 0.001	<0.01	<0.001	0.001	<0.01	< 0.005
		4/10/2011	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	001071	13/11/2011	0.01	0.006	0.4	< 0.0001	0.001	< 0.001	< 0.001	1.26	< 0.001	0.924	< 0.0001	< 0.001	0.003	< 0.01	< 0.001	< 0.001	< 0.01	0.034
	C018P1	2/10/2011	0.07	<0.001	0.19	<0.0001	<0.001	<0.001	<0.001	<0.05	-	0.006	<0.0001	<0.001	<0.001	<0.01	<0.001	<0.001	<0.01	0.012
		6/10/2011	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB SEAM	C007P2	8/11/2011	0.03	< 0.001	0.18	<0.0001 <0.0001	0.003	< 0.001	< 0.001	< 0.05		0.013	< 0.0001	<0.001 0.008	0.003	< 0.01	< 0.001	< 0.001	< 0.01	0.031
AB SEAM	C007P2	4/10/2011	<0.01		0.41		0.001	0.001	0.002	0.24	<0.001	0.445	<0.0001 <0.0001		<0.001		0.004	0.003	<0.01 <0.01	< 0.005
		10/11/2011 10/11/2011	< 0.01	0.002	0.51	<0.0001 0.0001	0.002	< 0.001		0.16		0.304	< 0.0001	0.001	< 0.001	<0.01 <0.01	0.003	0.002	< 0.01	0.005
	C008P2	3/10/2011	0.02	0.003	0.49	< 0.0001	< 0.002	<0.001		< 0.10		0.263	< 0.0001	0.005	< 0.001		< 0.003	<0.002	<0.01	<0.005
	000012	12/11/2011	0.02	0.004	0.3	<0.0001	0.001	<0.001	0.001	0.06	<0.001	0.361	< 0.0001	< 0.000	0.002	<0.01	<0.001	< 0.001	<0.01	0.019
	C014P2	4/10/2011	< 0.01	0.004	0.3	< 0.0001	< 0.001	0.002		0.38	< 0.001	0.084	< 0.0001	0.009	0.003	< 0.01	< 0.001	< 0.001	<0.01	< 0.005
		12/11/2011	0.42	0.004	0.24	< 0.0001	0.001	< 0.001	< 0.001	0.18		0.002	< 0.0001	0.012	0.002	<0.01	< 0.001	< 0.001	<0.01	0.007
	C016P2	2/10/2011	0.08	0.004	0.31	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.05		< 0.001	< 0.0001	0.01	< 0.001	< 0.01	< 0.001	< 0.001	< 0.01	0.006
		6/10/2011	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		13/11/2011	0.02	0.003	0.23	< 0.0001	< 0.001	< 0.001	< 0.001	0.05	< 0.001	0.001	< 0.0001	0.013	< 0.001	< 0.01	< 0.001	< 0.001	<0.01	0.005
	C018P2	2/10/2011	< 0.01	0.001	0.61	<0.0001	<0.001	<0.001	<0.001	1.13	<0.001	0.051	< 0.0001	<0.001	<0.001	<0.01	<0.001	<0.001	<0.01	0.007
		6/10/2011	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		9/11/2011	< 0.01	<0.001	0.5	<0.0001	0.003	<0.001	<0.001	0.98	<0.001	0.03	< 0.0001	<0.001	0.003	<0.01	<0.001	<0.001	<0.01	0.009
		9/11/2011	< 0.01	0.002	0.46	< 0.0001	0.003	<0.001	< 0.001	0.57	<0.001	0.06	< 0.0001	< 0.001	<0.001	< 0.01	<0.001	< 0.001	<0.01	< 0.005
	C020P2	3/10/2011	0.1	0.002	0.48	<0.0001	<0.001	<0.001	<0.001	0.06	<0.001	0.037	<0.0001	0.004	<0.001	<0.01	<0.001	<0.001	<0.01	<0.005
		6/10/2011	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	C022D2	14/11/2011	0.04	0.001	0.41	<0.0001	< 0.001	< 0.001	-	< 0.05	-	0.041	< 0.0001	0.002	< 0.001		<0.001	< 0.001	< 0.01	< 0.005
	C032P2	5/10/2011 7/11/2011	0.02	0.005	0.3	<0.0001 <0.0001	<0.001	<0.001	<0.001	0.33	<0.001	0.264	<0.0001 <0.0001	0.018	<0.001 0.002	<0.01 <0.01	<0.001	<0.001 <0.001	<0.01 <0.01	<0.005 0.005
	C035P2	5/10/2011	0.02			<0.0001														
	00001 2	6/11/2011	5.66	<0.001	0.24	<0.0001	0.005		0.002	2.24					0.003		<0.001	< 0.001	<0.01	0.01
INTERBURDEN	C011P1	13/11/2011	0.07	0.002	0.9	<0.0001	0.002	0.001	< 0.001			0.113	< 0.0001	0.007	0.009	< 0.01	< 0.001	0.004	< 0.01	0.023
	C006P1	3/10/2011	< 0.01		1.05	< 0.0001	0.004	< 0.001		1.9	< 0.001	0.891	< 0.0001	0.029	0.002	< 0.01	< 0.001	0.014	< 0.01	0.006
		10/11/2011	< 0.01		1.3	< 0.0001	0.004	0.005		3.85	< 0.001	0.687	< 0.0001	0.005	0.004	<0.01	< 0.001	0.014	< 0.01	0.008
	C034P1	5/10/2011	0.01	0.005	0.6	<0.0001		0.001	< 0.001	3.24	<0.001	0.204	< 0.0001	<0.001	< 0.001		<0.001	<0.001	<0.01	< 0.005
		6/11/2011	0.01	0.003	0.51	<0.0001	0.001	< 0.001		1.3	<0.001	0.141	< 0.0001	< 0.001	0.001	<0.01	<0.001	< 0.001	<0.01	0.01
D SEAM	C006P3r	3/10/2011	0.14	0.004	0.18	< 0.0001			<0.001		<0.001			0.002	<0.001		<0.001	<0.001	<0.01	<0.005
	0.000	12/11/2011	0.13	0.003	0.12	< 0.0001	0.001	< 0.001			< 0.001	0.038	< 0.0001	0.002	0.003	< 0.01	< 0.001	< 0.001	< 0.01	0.009
	C006P3r	10/11/2011	0.1	0.003	0.13	< 0.0001	0.003	< 0.001			< 0.001	0.036	< 0.0001	0.002	< 0.001		< 0.001	< 0.001	< 0.01	< 0.005
	C007P3	4/10/2011	0.32	0.004	0.22	< 0.0001	< 0.001	< 0.001		0.18		0.052	< 0.0001	0.019	< 0.001		<0.001	0.002	< 0.01	< 0.005
	C011P3	10/11/2011	0.22	0.003	0.22	<0.0001 <0.0001	< 0.001			0.12	< 0.001	0.042	< 0.0001	0.019	< 0.001		<0.001	0.002	< 0.01	0.01
	COTIPS	4/10/2011 13/11/2011	<0.01 0.02		0.41 0.35	<0.0001			<0.001	2.59 0.88	<0.001	0.218	<0.0001 <0.0001	0.002	<0.001	<0.01 <0.01	<0.001	<0.001 <0.001	<0.01 <0.01	<0.005 0.01
	C018P3	2/10/2011	0.02	0.002	0.35	<0.0001	< 0.001	0.001	< 0.001	0.66	<0.001	0.09	< 0.0001	0.002	< 0.001	< 0.01	<0.001	< 0.001	< 0.01	< 0.005
		6/10/2011	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		9/11/2011	0.05	0.001	0.29	<0.0001	0.002	<0.001			<0.001	0.09	< 0.0001	<0.001	0.002	<0.01	<0.001	<0.001	< 0.01	0.014
		9/11/2011	0.06	0.001	0.28	<0.0001	0.002	<0.001			<0.001	0.109	< 0.0001	0.001	< 0.001		<0.001	< 0.001	<0.01	< 0.005
	C024P3	6/10/2011	<0.01		0.3	< 0.0001	< 0.001		< 0.001		< 0.001	0.261	< 0.0001	< 0.001	< 0.001		< 0.001	< 0.001	< 0.01	< 0.005
		14/11/2011	<0.01	0.004	0.28	< 0.0001		< 0.001		8.37	<0.001	0.236	< 0.0001	< 0.001	0.009	<0.01	<0.001	<0.001	<0.01	0.044
	C034P3	5/10/2011	<0.01		0.26	<0.0001	<0.001			1.2	<0.001	0.23	< 0.0001	0.006	< 0.001		<0.001	<0.001	<0.01	<0.005
		6/11/2011	< 0.01		< 0.05		<0.001					<0.001		< 0.001	< 0.001	<0.01	<0.001	< 0.001	<0.01	< 0.005
UNKNOWN	C066 (line	11/11/2011	0.58	<0.001	0.05	<0.0001	<0.001	0.003	<0.001	0.32	<0.001	0.048	< 0.0001	<0.001	0.004	<0.01	<0.001	<0.001	<0.01	0.026
	180-35)											L								
SURFACE WATER	WQ01	6/10/2011	0.13	< 0.001		< 0.0001		<0.001		0.85		0.184	< 0.0001	< 0.001	< 0.001		< 0.001	< 0.001	<0.01	<0.005
	14/000	8/11/2011	0.12	0.001	0.12	< 0.0001	0.002	< 0.001			< 0.001	0.2	< 0.0001	< 0.001	0.001	< 0.01	< 0.001	< 0.001	< 0.01	0.022
	WQ03	5/10/2011	0.1	< 0.001		< 0.0001		< 0.001		0.5	< 0.001		< 0.0001			< 0.01		< 0.001		< 0.005
	1	8/11/2011	0.17	< 0.001	0.14	<0.0001	<0.001	< 0.001	0.002	0.72	< 0.001	0.298	< 0.0001	< 0.001	0.001	< 0.01	< 0.001	< 0.001	<0.01	< 0.005

CLIENTS PEOPLE PERFORMANCE

Statistical Summary

Number of Results	67	67	67	64	67	66	67	66	67	67	67	67	67	67	67	67	67	67
Number of Detects	44	52	66	3	31	20	19	58	0	65	0	28	36	3	5	13	4	42
Minimum Concentration	< 0.01	< 0.001	< 0.05	<0.0001	< 0.001	< 0.001	< 0.001	< 0.05	< 0.001	< 0.001	< 0.0001	< 0.001	< 0.001	<0.01	<0.001	< 0.001	<0.01	< 0.005
Minimum Detect	0.01	0.001	0.05	0.0001	0.001	0.001	0.001	0.05	ND	0.001	ND	0.001	0.001	0.01	0.001	0.001	0.01	0.005
Maximum Concentration	5.66	0.028	2.56	0.0003	0.005	0.009	0.011	29.3	< 0.001	4.81	< 0.0001	0.029	0.076	0.05	0.004	0.05	0.02	0.118
Maximum Detect	5.66	0.028	2.56	0.0003	0.005	0.009	0.011	29.3	ND	4.81	ND	0.029	0.076	0.05	0.004	0.05	0.02	0.118
Average Concentration	0.17	0.0047	0.45	5.7E-05	0.0014	0.0013	0.0011	3.3	0.0005	0.57	0.00005	0.0032	0.0037	0.006	0.0007	0.0024	0.005	0.011
Median Concentration	0.02	0.003	0.31	0.00005	0.0005	0.0005	0.0005	0.78	0.0005	0.195	0.00005	0.0005	0.001	0.005	0.0005	0.0005	0.005	0.006
Standard Deviation	0.69	0.0052	0.4	3.7E-05	0.0013	0.0018	0.0015	6.7	0	1.1	0	0.0056	0.0096	0.006	0.0007	0.007	0.002	0.016
Number of Guideline Exceedances	26	3	30	1	22	0	12	0	0	5	67	0	4	67	67	0	0	29
Number of Guideline Exceedances(Detects Only)	26	3	30	1	21	0	12	0	0	5	0	0	4	3	5	0	0	29

* Calculated in ESDAT (database management software)

			Nutri	ents					Alk	alinity							Majo	or lons				
	Ammonia as N	B Nitrate (as N)	B ∏ ∏	g ☑ Nitrogen (Total Oxidised)	a A Nitrogen (Total) ┌┌	A Phosphorus	Alkalinity (total) as CaCO3	a Alkalinity (Bicarbonate as CaCO3)	a □ □	ວ 스 Alkalinity (Hydroxide) as CaCO3	Bicarbonate	B P ⊓	요 스 고	D Chloride	g ≧ Magnesium (Filtered)	g Potassium (Filtered)	ວ 고 고	Sulphate	Sulphate (Filtered)	a 8a Anions Total ∏	a ba ∏∑	% Ionic Balance
EQL	0.01	0.01	0.01	0.01	0.1	0.01	1	1	1	1			1	1	1	1	1	1	1	0.01		0.01
ANZECC (2000) Ecosystems Fresh Water (95%)	0.9		0.7																			

MonitoringUnit	WellCode	Sampled_Dat	-		-	-	1	1				1							1.	-			-	-
ALLUVIUM	C027P1	29/09/2011		0.01	0.02	0.03		0.21	582	582	<1	<1	710	<1.2		1580		52	1070		66	57.6	58.4	0.
		8/11/2011 8/11/2011	0.88	0.01	<0.01 <0.01	0.01	1.1	<0.01	460	460	<1	<1	561.2 585.6	<1.2	26 26	1420	114	58 57	1080	141	-	-	-	
	C029P1	7/11/2011	0.93	0.02	< 0.01	0.02	1.2	0.15	480 1590	480 1590	<1 <1	<1 <1	1940	<1.2 <1.2	20 87	1210 8430	113 362	177	1080 5960	-	-	-	-	
ERTIARY	C025P2	29/09/2011	0.63	0.03	< 0.01	0.01	3.3	0.38	746	746	<1	<1	910.1	<1.2	107	4570	134	79	2700	-	54	145	136	3.
	002012	7/11/2011	1.38	0.16	<0.01	0.16	2	0.12	763	763	<1	<1	930.9	<1.2	130	3670	130	74	2680	10	-	-	-	
	C029P2	29/09/2011	-	-	-	-	-	-	259	259	<1	<1	316	<1.2	100	3950	118	58	2280	-	259	122	115	2.
		7/11/2011	0.42	0.01	<0.01	0.01	0.7	0.21	274	274	<1	<1	334.3	<1.2	95	3740	122	75	2180	246	-	-	-	
DUNDA BEDS	C022P1	3/10/2011	0.02	0.03	<0.01	0.03	<0.1	0.07	36	36	<1	<1	43.92	<1.2	2	67	4	2	55	-	16	2.94	2.87	
		6/10/2011	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
		14/11/2011	0.04	0.03	<0.01	0.03	<0.1	< 0.01	47	47	<1	<1	57.34	<1.2	3	70	4	3	56	18	-	-	-	
		10/11/2011	0.05	0.02	<0.01	0.02	0.1	< 0.01	45	45	<1	<1	54.9	<1.2	2	77	4	3	57	16	-	-	-	
	C027P2	29/09/2011	0.97	0.01	< 0.01	0.01	2	0.19	128	128	<1	<1	156.2	<1.2	4	186	9	10	161	-	8	7.97	8.2	1.
	000504	5/11/2011	0.42	0.02	< 0.01	0.02	0.6	0.02	180	180	<1	<1	219.6	<1.2	3	199	10	12	175	14	-	-	-	4
REWAN	C035P1	5/10/2011	0.1	0.05	<0.01	0.05	0.6	0.15	175	175	<1	<1	213.5	<1.2	21	1070	18	6	822	-	60	34.9	38.4	4
PERMIAN OVERBURDEN	C008P1	6/11/2011 3/10/2011	0.12	0.02	<0.01 <0.01	0.02	3.9	1.99	171	171 316	<1	<1	208.6 385.5	<1.2	20 505	909 7950	18 402	6 90	744 3680	50	- 282	- 236	-	-
	C006P1	12/11/2011	0.14	0.02	< 0.01	0.02	0.2	0.04	316 298	298	<1 <1	<1 <1	363.6	<1.2 <1.2	468	7950	402	115	3810	- 275	- 202	- 230	221	3.
	C012P1	2/10/2011	0.15	0.03	0.01	0.04	0.2	0.33	84	84	<1	<1	102.5	<1.2	26	549	29	11	334	- 275	- 56	- 18.3	- 18.5	0.
	00121 1	4/10/2011	- 0.2	-	-	- 0.04		-	-	-	-	-	-	-	- 20	-	-	-		-	-	-	-	0.
		8/11/2011	0.02	0.05	<0.01	0.05	<0.1	<0.01	82	82	<1	<1	100	<1.2	31	551	33	13	301	51	-	-	-	
	C012P2	2/10/2011	0.02	0.02	< 0.01	0.00	<0.1	<0.01	276	276	<1	<1	336.7	<1.2	78	631	25	12	442	-	49	24.3	25.5	2.
		4/10/2011	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
		13/11/2011	0.04	0.02	<0.01	0.02	0.1	<0.01	369	369	<1	<1	450.2	<1.2	84	614	30	18	384	43	-	-	-	
	C018P1	2/10/2011	0.1	0.03	0.06	0.09	2.8	0.07	100	100	<1	<1	122	<1.2	7	141	6	12	128	-	41	6.83	6.72	0
		6/10/2011	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
		8/11/2011	0.03	0.08	<0.01	0.08	<0.1	<0.01	83	83	<1	<1	101.3	<1.2	7	255	7	10	134	39	-	-	-	
AB SEAM	C007P2	4/10/2011	3.07	0.03	<0.01	0.03	6.2	1.73	205	205	<1	<1	250.1	<1.2	558	5460	234	52	2740	-	554	170	168	(
		10/11/2011	2.43	0.02	<0.01	0.02	2	< 0.01	264	264	<1	<1	322.1	<1.2	453	5230	267	66	2590	465	-	-	-	
		10/11/2011	2.48	0.01	<0.01	0.01	2.1	0.04	251	251	<1	<1	306.2	<1.2	486	4350	270	66	2620	473	-	-	-	
	C008P2	3/10/2011	0.9	0.02	<0.01	0.02	0.9	0.18	552	515	36	<1	628.3	43.21	35	755	19	20	732	-	66	33.7	35.7	2
		12/11/2011	0.85	0.01	<0.01	0.01	1	< 0.01	585	585	<1	<1	713.7	<1.2	38	683	21	20	577	31	-	-	-	
	C014P2	4/10/2011	0.82	0.02	<0.01	0.02	1.1	<0.01	390	360	30	<1	439.2	36.01	20	398	6	25	415	-	3	19.1	20.2	2
		12/11/2011	0.98	0.02	< 0.01	0.02	1.6	0.28	406	216	190	<1	263.5	228	3	406	3	33	374	<1	-	-	-	
	C016P2	2/10/2011	4.93	0.02	<0.01	0.02	8.3	0.51	314	<1	274	40	<1.22	328.9	5	735	<1	119	573	-	153	30.2	28.2	3
		6/10/2011	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
	C040D0	13/11/2011	4.32	0.02	< 0.01	0.02	11.7	< 0.01	527	<1	306	221	<1.22	367.3	4	659	<1	182	520	21	-	-	-	4
	C018P2	2/10/2011 6/10/2011	0.03	0.02	<0.01	0.02	0.6	0.3	221	221	<1	<1	269.6	<1.2	45 -	578	43 -	18	359	-	14	21	21.9	1
		9/11/2011	- 0.1	- 0.02	- <0.01	- 0.02	- <0.1	- 0.21	- 239	239	- <1	- <1	- 291.6	- <1.2	- 47	- 659	- 47	- 25	- 337	20	-	-	-	-
		9/11/2011	0.1	0.02	< 0.01	0.02	0.4	0.21	239	239	<1	<1	300.1	<1.2	47	586	47	25	306	17	-	-	-	+
	C020P2	3/10/2011	0.04	0.02	<0.01	0.02	0.4	0.23	225	225	<1	<1	274.5	<1.2	15	411	3	4	374	-	24	16.6	17.4	2
	002012	6/10/2011		-	-	-		-		-	-	-		-	-	-	-	-		-	-	-		2.
		14/11/2011	0.52	0.02	< 0.01	0.02	0.6	<0.01	257	257	<1	<1	313.5	<1.2	16	406	3	5	310	16	-	-	-	
	C032P2	5/10/2011	0.05	0.03	< 0.01	0.03	0.4	0.12	336	336	<1	<1	409.9	<1.2	24	229	6	20	257	-	5	13.3	13.4	0.
		7/11/2011	0.71	0.01	< 0.01		2	0.74		535	<1	<1	652.7	<1.2	37	934	13	11	294	<1	-	-	-	
	C035P2	5/10/2011	0.04	0.05	< 0.01	0.05	0.2	0.06	119	119	<1	<1	145.2	<1.2	12	404	8	6	280	-	11	14	13.6	1.
		6/11/2011	0.07	0.03	< 0.01	0.03	<0.1	< 0.01	120	120	<1	<1	146.4	<1.2	13	535	8	7	276	17	-	-	-	
NTERBURDEN	C011P1	13/11/2011	0.12	0.05	< 0.01	0.05	0.2	< 0.01	669	669	<1	<1	816.2	<1.2	18	539	17	14	565	91	-	-	-	
	C006P1	3/10/2011	0.46	0.02	<0.01	0.02	0.5	0.04	365	365	<1	<1	445.3	<1.2	244	4800	246	27	2560	-	573	155	144	3
		10/11/2011	0.27	0.02	<0.01	0.02	0.2	< 0.01	338	338	<1	<1	412.4	<1.2	311	6240	429	66	3080	497	-	-	-	
	C034P1	5/10/2011	0.06	0.06	<0.01	0.06	0.3	0.05	165	165	<1	<1	201.3	<1.2	62	1220	39	11	842	-	120	40.2	43.2	3
		6/11/2011	0.08	0.01	<0.01	0.01	<0.1	< 0.01	159	159	<1	<1	194	<1.2	59	1200	38	12	862	108	-	-	-	
D SEAM	C006P3r	3/10/2011	0.34	0.02	<0.01		0.4	0.08	491	485	6	<1	591.7	7.201	9	58	4	4	246	-	1	11.5	11.6	0
	000050	12/11/2011		< 0.01	< 0.01	< 0.01	0.4	0.21	454	454	<1	<1	553.9	<1.2	9	59	3	5	209	<1	-	-	-	_
	C006P3r	10/11/2011		0.02	< 0.01	0.02	0.5	0.02	458	458	<1	<1	558.8	<1.2	9	56	3	5	197	<1	-	-	-	
	C007P3	4/10/2011	0.3	0.01	< 0.01	0.01	0.7	0.14	487	487	<1	<1	594.1	<1.2	10	61	3	4	297	-	59	12.7	13.8	4
	C014D2	10/11/2011	0.43	0.02	< 0.01	0.02	0.4	0.05	548	538	9	<1	656.4	10.8	6	49	3	6	253	45	-	-	-	-
	C011P3	4/10/2011	0.21	0.03	<0.01 <0.01	0.03	1.1	0.57	258 278	245 278	13	<1	298.9	15.6	17	164	5	17	180	-	2	9.82	9.52	1
	C018P3	13/11/2011 2/10/2011	0.29 0.32	0.02	< 0.01	0.02	0.3	<0.01 0.09	179	179	<1 <1	<1 <1	339.2 218.4	<1.2 <1.2	22 22	173 213	6 6	14 9	165 189	<1	- 13	- 9.86	- 10	C
	C010F3	6/10/2011	-	0.03	-	-	0.0	0.09	-	179	<1	-	- 210.4	-	22	-	-	9	109	-	-	9.00	10	0
		9/11/2011		- 0.02	- <0.01	0.02	0.2	0.05	- 188	- 188	- <1	- <1	- 229.4	- <1.2	- 24	- 211	- 6	- 12	- 156	- 15	-	-	-	+
		9/11/2011		0.02	< 0.01	0.02	0.2	0.05	204	204	<1	<1	248.9	<1.2	24	211	6	12	158	10	-	-	-	+
	C024P3	6/10/2011		<0.02	< 0.01	<0.02	0.3	0.07	307	307	<1	<1	374.5	<1.2	23	351	51	13	270	-	2	- 16.1	- 17.7	4
	002-10	14/11/2011	0.02	<0.01	< 0.01	< 0.01	0.0	<0.01	307	307	<1	<1	374.5	<1.2	23	374	42	17	232	<1	-	-	-	4
	C034P3	5/10/2011	0.02	0.08	< 0.01	0.08	0.4	0.07	137	137	<1	<1	167.1	<1.2	32	601	14	15	424	-	51	20.8	21.6	1
	000110	6/11/2011	0.09	0.00	<0.01	0.00	<0.1	<0.01	108	108	<1	<1	131.8	<1.2	22	478	11	14	295	24	-		-	Ľ
UNKNOWN	C066 (line	11/11/2011	0.05	0.2	< 0.01	0.02	0.3	< 0.01	25	25	<1	<1	30.5	<1.2	3	158	10	6	82	10	-	-	-	
	180-35)										- 1		20.0		Ĩ			ũ						1
SURFACE WATER	WQ01	6/10/2011	0.03	0.02	<0.01	0.02	0.3	0.05	178	178	<1	<1	217.2	<1.2	13	305	13	26	237	-	9	12.4	12.7	1.
		8/11/2011		0.01	<0.01	0.01	0.5	< 0.00	211	211	<1	<1	257.4	<1.2	14	343	12	30	253	9	-	-	-	1
	WQ03	5/10/2011	0.03	0.04	< 0.01	0.04	0.5	0.04	190	190	<1	<1	231.8	<1.2	14	361	15	27	267	-	7	14.1	14.2	0.
		8/11/2011	0.03	0.02	<0.01	0.02	0.6	< 0.01	193	193	<1	<1	235.5	<1.2	14	341	14	30	234	6	-	1	-	

LIENTS PEOPLE PERFORMANCE

Statistical Summary

Number of Results	65	65	65	65	65	65	66	66	66	66	65	65	66	66	66	66	66	38	28	28	28	27
Number of Detects	64	60	3	60	56	40	66	64	8	2	63	8	66	66	64	66	66	32	28	28	28	27
Minimum Concentration	<0.01	< 0.01	<0.01	<0.01	<0.1	< 0.01	25	<1	<1	<1	<1.22	<1.2	2	49	<1	2	55	<1	1	2.94	2.87	0.36
Minimum Detect	0.02	0.01	0.01	0.01	0.1	0.02	25	25	6	40	30.5	7.201	2	49	3	2	55	6	1	2.94	2.87	0.36
Maximum Concentration	4.93	0.2	0.06	0.2	11.7	1.99	1590	1590	306	221	1940	367.3	558	8430	442	182	5960	686	573	236	221	4.85
Maximum Detect	4.93	0.2	0.06	0.2	11.7	1.99	1590	1590	306	221	1940	367.3	558	8430	442	182	5960	686	573	236	221	4.85
Average Concentration	0.55	0.028	0.006	0.03	1.1	0.16	310	293	14	4.4	359	16	72	1389	64	32	860	94	91	46	45	2.2
Median Concentration	0.2	0.02	0.005	0.02	0.5	0.05	258	242	0.5	0.5	298.9	0.6	22.5	537	14	17	322	19	45	18.7	19.35	1.97
Standard Deviation	0.95	0.032	0.007	0.032	1.9	0.34	237	240	55	28	294	66	133	2094	110	38	1159	166	151	60	57	1.4
Number of Guideline Exceedances	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances(Detects Only)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

* Calculated in ESDAT (database management software)

			Benzene	Ethylbenzene	Toluene	Xylene (o)	Xylene Total	TPH C10 - C14 Fraction	TPH C10 - C16 Fraction	TPH C15 - C28 Fraction	TPH C16 - C34 Fraction	TPH C29 - C36 Fraction	TPH C34 - C40 Fraction	TPH C6 - C 9 Fraction	TPH C6 - C10 Fraction	TPH C6 - C10 Fraction minus BTEX	Naphthalene	PAHs (Sum of Total) - Calc*
EQL			µg/L 1	µg/L 2	µg/L 2	µg/L 2	μg/L 2	mg/L 0.05	mg/L 0.1	mg/L 0.1	mg/L 0.1	mg/L 0.05	mg/L 0.1	mg/L 0.02	mg/L 0.02	mg/L 0.02	µg/L 5	µg/L
ANZECC (2000) Ecosystems	Fresh Water (95%)	950	2	2	350	2	0.05	0.1	0.1	0.1	0.05	0.1	0.02	0.02	0.02	16	
	·	·																
MonitoringUnit	WellCode	Sampled_Dat		0	0	0	0	4.45	0.4	0.4	0.4	0.05	0.4	0.05	0.04	0.04	E	5
ALLUVIUM	C027P1	29/09/2011 8/11/2011	<1 <1	<2 <2	<2 <2	<2 <2	<2 <2	1.45 <0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	<0.1 <0.1	0.35	0.34	0.34	<5 <5	<5 <5
		8/11/2011	<1	<2	<2	<2	<2	< 0.05	<0.1	0.11	<0.1	< 0.05	<0.1	0.06	0.07	0.07	<5	<5
	C029P1	7/11/2011	<1	<2	<2	<2	<2	<0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	< 0.02	< 0.02	< 0.02	<5	<5
TERTIARY	C025P2	29/09/2011	<1	<2	16	<2	<2	0.06	<0.1	<0.1	<0.1	< 0.05	<0.1	0.31	0.33	0.31	<5	<5
		7/11/2011	<1	<2	6	<2	<2	< 0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	0.06	0.06	0.05	<5	<5
	C029P2	29/09/2011	<1	<2	<2	<2	<2	0.11	< 0.1	<0.1	< 0.1	< 0.05	<0.1	< 0.02	< 0.02	< 0.02	<5	<5
DUNDA BEDS	C022P1	7/11/2011	<1	<2	<2	<2	<2	< 0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	< 0.02	< 0.02	< 0.02	<5	<5
DUNUA DEUG	C022P1	3/10/2011 6/10/2011	<1 -	<2 -	<2 -	<2 -	<2 -	<0.05	<0.1	-0.1	<0.1	<0.05	<0.1	0.04	0.04	0.04	<5 -	<5 -
		14/11/2011	- <1	- <2	- <2	<2	- <2	- <0.05	- <0.1	<0.1	<0.1	- <0.05	- <0.1	- <0.02	- <0.02	- <0.02	- <5	- <5
		10/11/2011	<1	<2	<2	<2	<2	< 0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	0.02	0.02	0.02	<5	<5
	C027P2	29/09/2011	<1	<2	<2	<2	<2	0.1	<0.1	<0.1	<0.1	< 0.05	<0.1	0.09	0.1	0.1	<5	<5
		5/11/2011	<1	<2	17	<2	<2	< 0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	0.03	0.04	0.02	<5	<5
REWAN	C035P1	5/10/2011	<1	<2	<2	<2	<2	< 0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	< 0.02	< 0.02	< 0.02	<5	<5
PERMIAN OVERBURDEN	C000D4	6/11/2011	<1	<2	<2	<2	<2	< 0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	< 0.02	< 0.02	< 0.02	<5	<5
PERMIAN OVERBURDEN	C008P1	3/10/2011 12/11/2011	<1 <1	<2 <2	<2 <2	<2 <2	<2 <2	<0.05 0.13	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	<0.1 <0.1	<0.02	<0.02	<0.02 <0.02	<5 <5	<5 <5
	C012P1	2/10/2011	<1	<2	<2	<2	<2	< 0.13	< 0.1	< 0.1	<0.1	< 0.05	<0.1	< 0.02	< 0.02	< 0.02	<5	<5
	001211	4/10/2011	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		8/11/2011	<1	<2	<2	<2	<2	< 0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	< 0.02	<0.02	< 0.02	<5	<5
	C012P2	2/10/2011	<1	<2	<2	<2	<2	< 0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	< 0.02	< 0.02	< 0.02	<5	<5
		4/10/2011	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		13/11/2011	<1	<2	<2	<2	<2	< 0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	< 0.02	< 0.02	< 0.02	<5	<5
	C018P1	2/10/2011	<1	<2	<2	<2	<2	<0.05	<0.1	<0.1	<0.1	<0.05	<0.1	<0.02	<0.02	<0.02	<5	<5
		6/10/2011 8/11/2011	- <1	- <2	- <2	- <2	- <2	- <0.05	- <0.1	- <0.1	- <0.1	- <0.05	- <0.1	- <0.02	- <0.02	- <0.02	- <5	- <5
AB SEAM	C007P2	4/10/2011	<1	<2 <2	<2 <2	<2 <2	<2 <2	< 0.05	<0.1	<0.1	<0.1	<0.05	<0.1	< 0.02	< 0.02	< 0.02	<5 <5	<5 <5
	000112	10/11/2011	<1	<2	<2	<2	<2	< 0.05	<0.1	<0.1	<0.19	< 0.05	<0.1	0.02	0.02	0.02	<5	<5
		10/11/2011	<1	<2	<2	<2	<2	< 0.05		<0.1	<0.1	< 0.05			< 0.02		<5	<5
	C008P2	3/10/2011	<1	<2	<2	<2	<2	< 0.05		<0.1	<0.1	< 0.05	<0.1	< 0.02	< 0.02		<5	<5
		12/11/2011	2	<2	5	<2	<2	< 0.05		<0.1	<0.1	< 0.05		0.02	0.03	0.02	<5	<5
	C014P2	4/10/2011	<1	<2	<2	<2	<2	< 0.05		<0.1	<0.1	< 0.05		0.17	0.18	0.18	<5	<5
	C016D2	12/11/2011 2/10/2011	<1	<2 <2	<2 8	<2 <2	<2 <2	< 0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	0.05	0.06	0.06	<5	<5
	C016P2	2/10/2011 6/10/2011	<1 -	<2	8	<2	<2	<0.05	<0.1	<0.1	<0.1	<0.05	<0.1	0.04	0.04	0.03	<5 -	<5 -
		13/11/2011	- <1	- <2	- 3	<2	- <2	- <0.05	- <0.1	- <0.1	- <0.1	- <0.05	- <0.1	0.03	0.03	0.03	- <5	- <5
	C018P2	2/10/2011	<1	<2	<2	<2	<2	< 0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	< 0.02	< 0.02	< 0.02	<5	<5
		6/10/2011	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		9/11/2011	<1	<2	<2	<2	<2	<0.05		<0.1	<0.1	< 0.05	<0.1	< 0.02		< 0.02	<5	<5
	0.000	9/11/2011	<1	<2	<2	<2	<2	< 0.05		<0.1	<0.1	< 0.05	<0.1	< 0.02			<5	<5
	C020P2	3/10/2011	<1	<2	<2	<2	<2	<0.05	<0.1	<0.1	<0.1	<0.05	<0.1	0.05	0.05	0.05	<5	<5
		6/10/2011	-	-	- 4	- <2	- <2	- <0.05	-	-	-	- <0.05	- <0.1	- 0.04	- 0.05	- 0.05	- ~5	-
	C032P2	14/11/2011 5/10/2011	<1 <1	<2 <2	4 <2	<2 <2	<2 <2	<0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05		0.04	0.05	0.05	<5 <5	<5 <5
		7/11/2011	<1	<2	<2	<2	<2	< 0.05		<0.1	<0.1	< 0.05		<0.04			<5	<5
	C035P2	5/10/2011	<1	<2	<2	<2	<2	< 0.05		<0.1	<0.1	< 0.05		< 0.02			<5	<5
		6/11/2011	<1	<2	<2	<2	<2	< 0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	< 0.02		< 0.02	<5	<5
INTERBURDEN	C011P1	13/11/2011	<1	<2	<2	<2	<2	<0.05		<0.1	<0.1	< 0.05		< 0.02			<5	<5
	C006P1	3/10/2011	<1	<2	<2	<2	<2	< 0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	0.04	0.04	0.04	<5	<5
	000404	10/11/2011	<1	<2	<2	<2	<2	< 0.05		<0.1	<0.1	< 0.05		< 0.02			<5	<5
	C034P1	5/10/2011 6/11/2011	<1 <1	<2 <2	<2 <2	<2 <2	<2 <2	<0.05 <0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	<0.1 <0.1	<0.02 <0.02			<5 <5	<5 <5
D SEAM	C006P3r	3/10/2011	<1	<2	<2	<2	<2	< 0.05	<0.1	<0.1	<0.1	< 0.05		< 0.02			<5 <5	<5
		12/11/2011	<1	<2	<2	<2	<2	< 0.05	<0.1	<0.1	<0.1	< 0.05		< 0.02			<5	<5
	C006P3r	10/11/2011	<1	<2	<2	<2	<2	< 0.05		<0.1	<0.1	< 0.05		< 0.02			<5	<5
	C007P3	4/10/2011	<1	<2	<2	<2	<2	< 0.05		<0.1	<0.1	< 0.05		0.05	0.05	0.05	<5	<5
		10/11/2011	<1	<2	<2	<2	<2	< 0.05		<0.1	<0.1	< 0.05	<0.1	< 0.02		< 0.02	<5	<5
	C011P3	4/10/2011	<1	<2	<2	<2	<2	< 0.05	< 0.1	<0.1	<0.1	< 0.05	<0.1	0.02	0.03	0.03	<5	<5
	004000	13/11/2011	<1	<2	<2	<2	<2	< 0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	< 0.02	< 0.02	< 0.02	<5	<5
	C018P3	2/10/2011	<1 -	<2	<2 -	<2 -	<2 -	<0.05	<0.1	<0.1	<0.1	<0.05	<0.1	<0.02	<0.02	<0.02	<5 -	<5 -
		6/10/2011 9/11/2011	- <1	- <2	- <2	- <2	- <2	- <0.05	- <0.1	- <0.1	- <0.1	- <0.05	- <0.1	- <0.02	- <0.02		- <5	- <5
		9/11/2011	<1	<2 <2	<2 <2	<2	<2 <2	< 0.05		<0.1	<0.1	< 0.05		< 0.02		<0.02	<5 <5	<5 <5
	C024P3	6/10/2011	<1	<2	5	<2	<2	< 0.05		<0.1	<0.1	< 0.05		0.46	0.49	0.48	<5	<5
		14/11/2011	<1	<2	4	<2	<2	0.09	<0.1	<0.1	<0.1	< 0.05	<0.1	0.34	0.36	0.36	<5	<5
	C034P3	5/10/2011	<1	<2	<2	<2	<2	<0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	< 0.02	< 0.02	<0.02	<5	<5
		6/11/2011	<1	<2	<2	<2	<2	< 0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	< 0.02	< 0.02	< 0.02	<5	<5
UNKNOWN	C066 (line	11/11/2011	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	180-35)	1	I.	1	1	1	1	1	I	1	1	1	I	I	I	I		

TPH

BTEX & MAH

PAH

CLIENTS PEOPLE PERFORMANCE

	400.05																	
	180-35)																	
SURFACE WATER	WQ01	6/10/2011	<1	<2	<2	<2	<2	< 0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	< 0.02	< 0.02	< 0.02	<5	<5
		8/11/2011	<1	<2	<2	<2	<2	< 0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	< 0.02	< 0.02	< 0.02	<5	<5
	WQ03	5/10/2011	<1	<2	<2	<2	<2	< 0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	< 0.02	< 0.02	< 0.02	<5	<5
		8/11/2011	<1	<2	<2	<2	<2	< 0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	< 0.02	< 0.02	< 0.02	<5	<5

Statistical Summary

Number of Results	69	69	69	69	69	65	65	65	65	65	65	69	69	69	69	65
Number of Detects	1	0	9	0	0	6	0	2	1	1	1	23	23	23	0	0
Minimum Concentration	<1	<2	<2	<2	<2	< 0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	< 0.02	< 0.02	< 0.02	<5	<5
Minimum Detect	2	ND	3	ND	ND	0.06	ND	0.11	0.79	0.5	0.37	0.02	0.02	0.02	ND	ND
Maximum Concentration	2	<2	17	<2	<2	1.45	<0.1	0.23	0.79	0.5	0.37	0.46	0.49	0.48	<5	<5
Maximum Detect	2	ND	17	ND	ND	1.45	ND	0.23	0.79	0.5	0.37	0.46	0.49	0.48	ND	ND
Average Concentration	0.52	1	1.9	1	1	0.053	0.05	0.05	0.06	0.032	0.06	0.042	0.044	0.043	2.5	2.5
Median Concentration	0.5	1	1	1	1	0.025	0.05	0.05	0.05	0.025	0.05	0.01	0.01	0.01	2.5	2.5
Standard Deviation	0.18	0	2.9	0	0	0.18	0	0.02	0.09	0.059	0.04	0.086	0.09	0.088	0	0
Number of Guideline Exceedances	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances(Detects Only)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

* Calculated in ESDAT (database management software)

HD

ENTS PEOPLE PERFORMANCE

EQL ANZECC (2000) Ecosystems Fresh Water (95%)

		Dis	solved Metals	Hardness Corr	ected	
Caculated Hardness	Cadmium (Filtered)	Chromium (III+VI) (Filtered)	Copper (Filtered)	Lead (Filtered)	Nickel (Filtered)	Zinc (Filtered)
mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	0.0002	0.001	0.0014	0.0034	0.011	0.008

MonitoringUnit	LocCode	Sampled Date							
ALLUVIAL	C027P1	29/09/2011	524.184	-	4.79E-05	4.40E-05	1.32E-05	4.40E-05	5.27E-04
	C027P1	8/11/2011	529.917	3.88E-06	3.80E-04	4.35E-05	1.30E-05	1.13E-03	8.71E-04
	C029P1	7/11/2011	1706.869	1.37E-06	1.82E-05	1.93E-04	2.95E-06	2.45E-03	4.19E-04
TERTIARY	C025P2	29/09/2011	818.589	2.64E-06	3.32E-04	3.01E-05	7.50E-06	3.01E-05	3.61E-04
	C025P2	7/11/2011	859.56	2.52E-06	1.60E-04	1.15E-04	7.05E-06	5.77E-05	3.46E-04
	C029P2	29/09/2011	735.27	-	3.63E-05	3.30E-05	8.60E-06	6.59E-05	3.96E-04
	C029P2	7/11/2011	739.245	2.89E-06	1.44E-04	6.56E-05	8.54E-06	3.28E-04	7.22E-04
DUNDA BEDS	C027P2	29/09/2011	51.138	-	3.23E-04	3.18E-04	2.54E-04	2.54E-03	4.45E-03
	C027P2	5/11/2011	48.641	3.25E-05	1.35E-03	3.32E-04	2.71E-04	6.63E-03	6.63E-03
	C022P1	3/10/2011	21.454	6.74E-05	6.58E-04	6.65E-04	7.65E-04	7.98E-03	1.46E-02
	C022P1	10/11/2011	21.454	6.74E-05	2.63E-03	6.65E-04	7.65E-04	7.98E-03	1.86E-02
	C022P1	14/11/2011	23.951	6.11E-05	6.01E-04	6.05E-04	6.66E-04	7.27E-03	3.39E-02
PERMIAN OVERBURDEN		3/10/2011	2907.724	5.12E-06	7.05E-05	4.10E-05	1.50E-06	1.64E-04	2.87E-04
	C008P1	12/11/2011	2987.426	3.33E-06	2.30E-05	2.20E-04	1.45E-06	3.00E-04	2.36E-03
	C012P1	2/10/2011	184.257	9.94E-06	1.13E-04	1.07E-04	4.99E-05	2.14E-04	2.57E-03
	C012P1	8/11/2011	213.202	8.73E-06	2.00E-04	3.78E-04	4.14E-05	1.13E-03	6.99E-03
	C018P1	2/10/2011	42.169	3.69E-05	3.78E-04	3.74E-04	3.24E-04	3.74E-04	8.98E-03
	C018P1	8/11/2011	46.284	3.40E-05	2.10E-03	3.46E-04	2.88E-04	2.08E-03	2.14E-02
	C012P2	2/10/2011	304.253	6.36E-06	7.48E-05	6.98E-05	2.64E-05	6.98E-05	3.49E-04
	C012P2	13/11/2011	333.198	5.87E-06	1.39E-04	6.46E-05	2.35E-05	3.88E-04	4.39E-03
REWAN	C035P1	5/10/2011	126.507	1.39E-05	1.54E-04	1.47E-04	8.04E-05	1.47E-04	7.36E-04
	C035P1	6/11/2011	124.01	1.41E-05	3.12E-04	1.50E-04	8.25E-05	1.50E-04	1.80E-03
AB SEAM	C007P2	4/10/2011	2356.236	1.03E-06	2.79E-05	4.90E-05	1.96E-06	1.23E-05	6.13E-05
	C007P2	10/11/2011	2251.44	1.07E-06	5.80E-05	2.55E-05	2.08E-06	1.27E-05	1.27E-04
	C008P2	3/10/2011	165.58	1.09E-05	1.23E-04	1.17E-04	5.71E-05	1.17E-04	5.85E-04
	C008P2	12/11/2011	181.301	1.01E-05	2.29E-04	2.17E-04	5.09E-05	4.33E-04	4.12E-03
	C014P2	4/10/2011	74.63	2.22E-05	2.37E-04	2.30E-04	1.57E-04	1.38E-03	1.15E-03
	C014P2	12/11/2011	19.836	7.23E-05	1.40E-03	7.11E-04	8.46E-04	2.84E-03	9.95E-03
	C016P2	2/10/2011	14.5425	9.52E-05	9.05E-04	9.25E-04	1.25E-03	9.25E-04	1.11E-02
	C016P2	13/11/2011	12.0455	1.13E-04	1.06E-03	1.09E-03	1.59E-03	1.09E-03	1.09E-02
	C018P2	2/10/2011	289.31	6.65E-06	7.80E-05	7.28E-05	2.81E-05	7.28E-05	1.02E-03
	C018P2	9/11/2011	297.54	6.49E-06	4.57E-04	7.11E-05	2.71E-05	2.84E-04	9.96E-04
	C020P2	3/10/2011	49.8	3.18E-05	3.30E-04	3.25E-04	2.63E-04	3.25E-04	1.62E-03
	C020P2	14/11/2011	52.297	3.05E-05	3.17E-04	3.12E-04	2.47E-04	3.12E-04	1.56E-03
	C032P2	5/10/2011	84.618	1.99E-05	2.14E-04	2.07E-04	1.34E-04	2.07E-04	1.04E-03
	C032P2	7/11/2011	145.884	1.22E-05	8.20E-04	1.30E-04	6.71E-05	5.21E-04	1.30E-03
	C035P2	5/10/2011	62.884	2.59E-05	2.73E-04	1.07E-03	1.95E-04	2.67E-04	1.33E-03
INTERBURDEN	C035P2	6/11/2011	65.381	2.50E-05	2.64E-03	5.16E-04 1.68E-05	1.86E-04	1.55E-03	5.16E-03
INTERBORDEN	C006P1 C006P1	3/10/2011 10/11/2011	1621.558 2541.902	1.43E-06 9.62E-07	1.52E-04 1.05E-04	2.30E-05	3.15E-06	6.73E-05	2.02E-04 1.84E-04
	C006P1 C011P1	13/11/2011	114.901	9.62E-07 1.51E-05	6.65E-04	1.60E-04	1.78E-06 9.08E-05	9.19E-05 2.87E-03	7.35E-03
	C011P1 C034P1	5/10/2011	315.299	6.16E-06	7.27E-05	6.77E-05	2.52E-05	6.77E-05	3.39E-04
	C034P1	6/11/2011	303.693	6.37E-06	1.50E-04	6.99E-05	2.64E-05	1.40E-04	1.40E-03
D SEAM	C006P3r	3/10/2011	38.933	3.96E-05	4.04E-04	4.01E-04	3.59E-04	4.01E-04	2.00E-03
	C006P3r	10/11/2011	34.818	4.38E-05	2.66E-03	4.41E-04	4.14E-04	4.41E-04	2.20E-03
	C006P3r	12/11/2011	34.818	4.38E-05	8.85E-04	4.41E-04	4.14E-04	2.64E-03	7.93E-03
	C007P3	4/10/2011	37.315	4.12E-05	4.18E-04	3.32E-03	3.79E-04	4.15E-04	2.08E-03
	C007P3	10/11/2011	27.327	5.43E-05	5.40E-04	5.41E-04	5.63E-04	5.41E-04	1.08E-02
	C011P3	4/10/2011	63.024	2.58E-05	2.72E-04	2.66E-04	1.95E-04	2.66E-04	1.33E-03
	C011P3	13/11/2011	79.624	2.10E-05	2.25E-04	2.18E-04	1.45E-04	4.36E-04	4.36E-03
	C018P3	2/10/2011	79.624	2.10E-05	2.25E-04	2.18E-04	1.45E-04	2.18E-04	1.09E-03
	C018P3	9/11/2011	82.121	2.04E-05	8.76E-04	2.12E-04	1.39E-04	4.25E-04	4.25E-03
	C024P3	6/10/2011	277.284	6.91E-06	8.07E-05	7.55E-05	2.97E-05	7.55E-05	3.78E-04
	C024P3	14/11/2011	230.261	8.15E-06	1.88E-04	3.54E-04	3.76E-05	1.59E-03	7.78E-03
	C034P3	5/10/2011	137.514	1.29E-05	1.43E-04	1.37E-04	7.23E-05	1.37E-04	6.85E-04
	C034P3	6/11/2011	100.199	1.71E-05	1.86E-04	1.79E-04	1.08E-04	1.79E-04	8.97E-04
SURFACE WATER	WQ01	6/10/2011	85.956	1.96E-05	2.11E-04	2.04E-04	1.31E-04	2.04E-04	1.02E-03
	WQ01	8/11/2011	84.338	1.99E-05	4.28E-04	4.15E-04	1.35E-04	4.15E-04	8.31E-03
	WQ03	5/10/2011	96.683	1.76E-05	1.92E-04	1.11E-03	1.13E-04	3.70E-04	9.25E-04
	WQ03	8/11/2011	92.568	1.83E-05	1.98E-04	7.68E-04	1.20E-04	3.84E-04	9.59E-04

Statistical Summary							
Number of Results	61	58	61	61	61	61	61
Minimum Concentration	12.0455	9.62E-07	1.82E-05	1.68E-05	1.45E-06	1.23E-05	6.13E-05
Maximum Concentration	2987.426	1.13E-04	2.66E-03	3.32E-03	1.59E-03	7.98E-03	3.39E-02
Average Concentration	426.24636	2.34E-05	4.76E-04	3.45E-04	2.09E-04	1.10E-03	4.39E-03
Median Concentration	100.199	1.74E-05	2.29E-04	2.17E-04	1.08E-04	3.70E-04	1.40E-03
Number of Guideline Exceedances		0	7	1	0	0	11

AA							norganics	S											N	letals											Nutrie	nts		
						Total				lids	d)			0	Iter					(pe		rred)		((1							
				Bromide	-Iuoride	<jeldahl <sup="" nitrogen="">-</jeldahl>	oH (Lab)	Sulphide	TOC	solved	ere	Arsenic (Filtered)	3oron (Filtered)	Cadmium (Filtered	Chromium (III+VI) (Cobalt (Filtered)	Copper (Filtered)	ron (Filtered)	-ead (Filtered)	Manganese (Filter	Mercury (Filtered)	dolybdenum (Filte	vickel (Filtered)	Selenium (Filtered	Silver (Filtered)	Jranium (Filtered)	ere	Zinc (Filtered)	as	Vitrate (as N)			Vitrogen (Total)	hosphorus
Control Control <t< th=""><th></th><th></th><th></th><th></th><th></th><th>mg/L</th><th></th><th>mg/L</th><th></th><th></th><th></th><th>mg/L</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>mg/L</th><th>mg/L</th><th></th><th>mg/L</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>						mg/L		mg/L				mg/L											mg/L	mg/L		mg/L								
MAM Biol Biol <th< th=""><th>QL ADWG (2011) Health</th><th></th><th></th><th>0.005</th><th>1.5</th><th>0.1</th><th>0.01</th><th>0.1</th><th>1</th><th>5</th><th>0.01</th><th></th><th></th><th></th><th></th><th>0.001</th><th>2</th><th>0.05</th><th></th><th>0.001</th><th></th><th></th><th></th><th></th><th></th><th></th><th>0.01</th><th>0.005</th><th>0.01</th><th></th><th>0.01</th><th>0.01</th><th>0.1</th><th>0.0</th></th<>	QL ADWG (2011) Health			0.005	1.5	0.1	0.01	0.1	1	5	0.01					0.001	2	0.05		0.001							0.01	0.005	0.01		0.01	0.01	0.1	0.0
Image Image <th< td=""><td>MonitoringUnit</td><td></td><td></td><td>Time</td><td></td><td></td><td>-</td><td>0.1</td><td>50</td><td>0050</td><td>0.04</td><td>0.010</td><td>0.00</td><td></td><td>0.001</td><td>0.004</td><td>0.001</td><td>40</td><td>0.001</td><td>4.40</td><td>0.0004</td><td>0.001</td><td>0.004</td><td>0.04</td><td>0.001</td><td>0.001</td><td>0.04</td><td>0.000</td><td>0.50</td><td>0.04</td><td>0.00</td><td>0.00</td><td></td><td></td></th<>	MonitoringUnit			Time			-	0.1	50	0050	0.04	0.010	0.00		0.001	0.004	0.001	40	0.001	4.40	0.0004	0.001	0.004	0.04	0.001	0.001	0.04	0.000	0.50	0.04	0.00	0.00		
Image: Market in the start in thestart in the start in the start in the start in the s	ALLUVIUM	C027P1		-			6.77					0.013		- <0.0001																				0.2
Harty Solution 41 51 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50<				-						4260		0.013																						<0.0
Desc Tipology Tipology Tipology Tipology	FRTIARY			- 61					<1	20,100		0.028				0.003		5.62															1.7	0.1
Corr Corr Corr Corr C			7/11/2011	-			7.07		<1	8660		0.013				<0.001		24.5		2.19	<0.0001												2	0.12
No. No. No. No. No. No. No. No		C029P2		4.95		-								-															-	-	-	-	-	- 0.2
Image: state Image: state<	DUNDA BEDS	C022P1		0.14				-	-																									0.0
NUM NUM NUM NUM NUM			6/10/2011	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Corpre Norm Norm Norm Norm <th< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>0.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.0</td></th<>				-					_		0.00																							<0.0
ONM OBM OBM OBM OBM OBM <td></td> <td>C027P2</td> <td>29/09/2011</td> <td>-</td> <td></td> <td></td> <td></td> <td><0.1</td> <td></td> <td>805</td> <td></td> <td>0.019</td> <td></td> <td>-</td> <td></td> <td>0.007</td> <td></td> <td>24.9</td> <td>< 0.001</td> <td>1.78</td> <td></td> <td>2</td> <td>0.1</td>		C027P2	29/09/2011	-				<0.1		805		0.019		-		0.007		24.9	< 0.001	1.78													2	0.1
Control Control <t< td=""><td>REWAN</td><td>C035P1</td><td></td><td>- 2.42</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0</td></t<>	REWAN	C035P1		- 2.42																														0.0
Image: constrained by the state of			6/11/2011	-	0.6		7.24	<0.1						<0.0001	0.001	<0.001	<0.001	0.68	< 0.001		<0.0001	<0.001	<0.001	<0.01	<0.001	<0.001	<0.01		0.12	0.02				1.9
Prop Prop< Pro< Prop< Prop< Pr	PERMIAN OVERBURDEN	C008P1		14.7					3	,																								0.0
Horison Horison <t< td=""><td></td><td>C012P1</td><td></td><td>1.04</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.0</td></t<>		C012P1		1.04					-																									<0.0
Diriul Diri Diri Diri				-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
Exem Exem Exe I I I I </td <td></td> <td>C018P1</td> <td></td> <td>- 0.21</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td><0.0</td>		C018P1		- 0.21					-																									<0.0
Origin (1) Circ (1)			6/10/2011	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
Nervini No.		C012P2		-				<0.1	<1																									<0.0
SEM Single Single Single Single		001212		-	-	-	-	0.3	58	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Introduct Introduct <t< td=""><td>DOCAM</td><td>000700</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>< 0.0</td></t<>	DOCAM	000700		-																														< 0.0
Description 1 1 1	AD SEAM	C007P2		-																													0.Z	1.73
Prime Prim Prime Prime			10/11/2011	-						,																							2.1	0.04
Object Place Place <t< td=""><td></td><td>C008P2</td><td></td><td>1.35</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.9</td><td>0.18</td></t<>		C008P2		1.35																													0.9	0.18
Content Diagoni 1.8 0.2 8.3 1.0.4 1.7 1.000 0.01 0.00 0.00 0.00 <		C014P2	4/10/2011	0.72		1.1	8.61	<0.1	29	1110	<0.01			<0.0001	<0.001	0.002	<0.001	0.38	<0.001	0.084	<0.0001	0.009	0.003		<0.001	<0.001	<0.01	< 0.005	0.82	0.02	<0.01	0.02	1.1	<0.0
Binomia C C C C <td></td> <td>C016P2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>23</td> <td></td> <td>0.28</td>		C016P2							23																									0.28
ChipPa Elosoni Listoni Cond Cond Cond		010-2		-	-	-	-	- 4.7	20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4.93	-	-	-	-	- 0.5
Billogiii · · · · <td></td> <td>004000</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>28</td> <td></td> <td>< 0.0</td>		004000		-					28																									< 0.0
Here High 1 0 4 0.1 7.16 0.4 0.1 0.00		C018P2		1.27	- 0.4	0.6	7.63	0.6	- <1	1420	<0.01	0.001	0.61	<0.0001	<0.001	<0.001	<0.001	1.13	<0.001	0.051	<0.0001	<0.001	<0.001	<0.01	<0.001	<0.001	<0.01	0.007	0.03	0.02	<0.01	- 0.02	0.6	0.3
Start Start <th< td=""><td></td><td></td><td>9/11/2011</td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.21</td></th<>			9/11/2011	-					-																									0.21
Here Here <th< td=""><td></td><td>C020P2</td><td></td><td>-</td><td></td><td></td><td></td><td>0.9</td><td>16</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.23</td></th<>		C020P2		-				0.9	16																									0.23
EXCUPL FORDER FORDER FORDER </td <td></td> <td>002012</td> <td>6/10/2011</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>2</td> <td>-</td>		002012	6/10/2011	-	-	-	-		2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Product Product <t< td=""><td></td><td>000000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.0</td></t<>		000000																																<0.0
EFRBURDEN Filizonti - 0.3 0.1 7.02 0.1 11 110 110 0.00 <th< td=""><td></td><td>0032F2</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td>0.74</td></th<>		0032F2		-					-																								2	0.74
TERBURDEN COOP1 1/10/2011 - 0.0 0.0.0 <		C035P2		0.76				-	1																									0.06
Initial Initial <t< td=""><td>NTERBURDEN</td><td>C006P1</td><td></td><td>7.9</td><td></td><td></td><td></td><td></td><td>58</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.0</td></t<>	NTERBURDEN	C006P1		7.9					58																									<0.0
Stable Stable<			10/11/2011	-	0.6	0.2	7.16	0.2	18	11,900	<0.01	0.01	1.3	<0.0001	0.004	0.005	0.001	3.85	<0.001	0.687	<0.0001	0.005	0.004	<0.01	<0.001	0.014	<0.01	0.008	0.27	0.02	<0.01	0.02	0.2	<0.0
Bit1/2011 - 0.7 - 0.1 - 0.001				- 2.78																														
Image: 1211/2011 - 2.4 0.4 8.18 0.01 1.01 0.001 <th< td=""><td></td><td></td><td>6/11/2011</td><td>-</td><td>0.7</td><td><0.1</td><td>7</td><td><0.1</td><td><1</td><td>2810</td><td>0.01</td><td>0.003</td><td>0.51</td><td><0.0001</td><td>0.001</td><td><0.001</td><td><0.001</td><td>1.3</td><td><0.001</td><td>0.141</td><td><0.0001</td><td><0.001</td><td>0.001</td><td><0.01</td><td><0.001</td><td><0.001</td><td><0.01</td><td>0.01</td><td>0.08</td><td>0.01</td><td><0.01</td><td>0.01</td><td><0.1</td><td><0.0</td></th<>			6/11/2011	-	0.7	<0.1	7	<0.1	<1	2810	0.01	0.003	0.51	<0.0001	0.001	<0.001	<0.001	1.3	<0.001	0.141	<0.0001	<0.001	0.001	<0.01	<0.001	<0.001	<0.01	0.01	0.08	0.01	<0.01	0.01	<0.1	<0.0
International Internat	SEAM	C006P3r		0.17																														0.0
10/11/2011 2.6 0.4 8.31 1.3 38 760 0.22 0.001 -0.01 0.01 0.01 0.01 0.001 0.001 0.001 0.01 0.001					2.2	0.5	8.04		13	568	0.1				0.003	<0.001	< 0.001	0.44	<0.001													0.02	0.5	0.0
C011P3 4/10/2011 0.42 1.2 1.1 8.45 0.01 0.004 0.01 0.001 0.01 0.0		C007P3		0.14																														
13/11/2011 - 1.2 0.3 8.01 <0.1 <1 608 0.001 0.01 0.001		C011P3		0.42																														
B/10/2011 - - - -<			13/11/2011	-	1.2	0.3	8.01	<0.1		608	0.02	0.002	0.35	<0.0001	<0.001	<0.001	<0.001	0.88	< 0.001	0.09	<0.0001	0.002	0.001	<0.01	<0.001	<0.001	<0.01	0.01	0.29	0.02	<0.01	0.02	0.3	<0.0
9/11/2011 - 1.2 0.2 7.35 cl.1 2 523 0.05 0.01 0.02 0.01 0.09 cl.001 0.001 cl.001		C018P3		0.48		0.8	7.81	<0.1	- <1		0.05	0.002		<0.0001	<0.001	0.001	<0.001		<0.001	0.122	<0.0001	0.001	-0.001	<0.01	<0.001	<0.001	<0.01	<0.005	0.32	0.03	<0.01		0.8 -	0.0
Bill Dial 1.28 0.4 0.8 6.52 0.4 108 1105 clouit 0.001 clouit 1.28 clouit clouit </td <td></td> <td></td> <td>9/11/2011</td> <td>- 1</td> <td>1.2</td> <td></td> <td></td> <td></td> <td>2</td> <td>523</td> <td></td> <td></td> <td>0.29</td> <td></td> <td></td> <td></td> <td></td> <td>0.89</td> <td></td> <td>0.02</td> <td></td> <td>0.0</td>			9/11/2011	- 1	1.2				2	523			0.29					0.89														0.02		0.0
14/11/2011 - 0.4 0.4 7.12 1 47 1050 0.01 0.001		C024P3		- 1.29																														
B/11/2011 - 0.3 0.6 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <td></td> <td></td> <td>14/11/2011</td> <td>-</td> <td>0.4</td> <td>0.4</td> <td>7.12</td> <td>1</td> <td>47</td> <td>1050</td> <td><0.01</td> <td>0.004</td> <td></td> <td><0.0001</td> <td>0.001</td> <td><0.001</td> <td>0.002</td> <td>8.37</td> <td>< 0.001</td> <td>0.236</td> <td><0.0001</td> <td><0.001</td> <td>0.009</td> <td><0.01</td> <td><0.001</td> <td><0.001</td> <td><0.01</td> <td>0.044</td> <td>0.02</td> <td><0.01</td> <td><0.01</td> <td><0.01</td> <td>0.4</td> <td><0.0</td>			14/11/2011	-	0.4	0.4	7.12	1	47	1050	<0.01	0.004		<0.0001	0.001	<0.001	0.002	8.37	< 0.001	0.236	<0.0001	<0.001	0.009	<0.01	<0.001	<0.001	<0.01	0.044	0.02	<0.01	<0.01	<0.01	0.4	<0.0
KNOWN C066 (ine 180-35) 11/11/2011 - 0.1 0.1 0.1 0.5 volume volut volut volume		C034P3																																
WQ01 9/10/2011 0.93 0.5 0.3 7.79 cl.1 11 703 0.13 <0.001 cl.001 cl.	NKNOWN	C066 (line 180-35)																																
WQ03 5/10/2011 0.55 0.5 0.5 0.5 0.1 20.01 0.01 20.001<	URFACE WATER		6/10/2011	0.931	0.5	0.3	7.79	<0.1	11	703	0.13	<0.001	0.13	<0.0001	<0.001	<0.001	<0.001	0.85	<0.001	0.184	<0.0001	<0.001	<0.001	<0.01	<0.001	<0.001	<0.01	< 0.005	0.03	0.02	<0.01	0.02	0.3	0.0
B/11/2011 - 0.5 0.6 8.04 <0.1 1 1350 0.17 <0.001 0.14 <0.0001 <0.001 0.002 0.72 <0.001 0.298 <0.0001 <0.001 0.001 <0.01 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0		W003																																
				-																														
	tatistical Summary																																	

or an other of a mining			-	-					-	-	1	-		-			-											1			_
Number of Results	26	66	65	66	66	65	66	67	67	67	64	67	66	67	66	67	67	67	67	67	67	67	67	67	67	65	65	65	65	65	65
Number of Detects	26	66	56	66	23	42	66	44	52	66	3	31	20	19	58	0	65	0	28	36	3	5	13	4	42	64	60	3	60	56	40
Minimum Concentration	0.14	0.1	<0.1	6.39	<0.1	<1	209	<0.01	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.05	< 0.001	< 0.001	< 0.0001	<0.001	< 0.001	<0.01	< 0.001	<0.001	<0.01	< 0.005	<0.01	< 0.01	< 0.01	< 0.01	<0.1	<0.0
Minimum Detect	0.14	0.1	0.1	6.39	0.1	1	209	0.01	0.001	0.05	0.0001	0.001	0.001	0.001	0.05	ND	0.001	ND	0.001	0.001	0.01	0.001	0.001	0.01	0.005	0.02	0.01	0.01	0.01	0.1	0.02
Maximum Concentration	14.7	2.6	11.7	11.5	6.2	108	20,100	5.66	0.028	2.56	0.0003	0.005	0.009	0.011	29.3	< 0.001	4.81	< 0.0001	0.029	0.076	0.05	0.004	0.05	0.02	0.118	4.93	0.2	0.06	0.2	11.7	1.99
Maximum Detect	14.7	2.6	11.7	11.5	6.2	108	20,100	5.66	0.028	2.56	0.0003	0.005	0.009	0.011	29.3	ND	4.81	ND	0.029	0.076	0.05	0.004	0.05	0.02	0.118	4.93	0.2	0.06	0.2	11.7	1.99
Average Concentration	2.4	0.73	1.1	7.6	0.53	16	3150	0.17	0.0047	0.45	0.000057	0.0014	0.0013	0.0011	3.3	0.0005	0.57	0.00005	0.0032	0.0037	0.006	0.00067	0.0024	0.0054	0.011	0.55	0.028	0.0062	0.03	1.1	0.16
Median Concentration	1.155	0.6	0.5	7.515	0.05	5	1300	0.02	0.003	0.31	0.00005	0.0005	0.0005	0.0005	0.78	0.0005	0.195	0.00005	0.0005	0.001	0.005	0.0005	0.0005	0.005	0.006	0.2	0.02	0.005	0.02	0.5	0.05
Standard Deviation	3.4	0.55	1.9	0.86	1.3	23	4329	0.69	0.0052	0.4	0.000037	0.0013	0.0018	0.0015	6.7	0	1.1	0	0.0056	0.0096	0.0058	0.00067	0.007	0.0021	0.016	0.95	0.032	0.0071	0.032	1.9	0.34
Number of Guideline Exceedances	0	5	0	0	0	0	0	0	10	0	0	0	0	0	0	0	14	0	0	1	2	0	3	0	0	0	0	0	0	0	0
Number of Guideline Exceedances(Detects Only)	0	5	0	0	0	0	0	0	10	0	0	0	0	0	0	0	14	0	0	1	2	0	3	0	0	0	0	0	0	0	0

					Alk	alinity							Majo	or lons						BTE	X & M/	AH						ТРН					PAH
			CaCO3	te as CaCO3)	as CaCO3)) as CaCO3																		n	ч	ч	ч	n	и		e	n minus BTEX	. Calc*
			Alkalinity (total) as C	Alkalinity (Bicarbonate as CaCO3)	Alkalinity (Carbonate	Alkalinity (Hydroxide) as	Bicarbonate	Carbonate	Calcium (Filtered)	Chloride	Magnesium (Filtered)	otassium (Filtered)	Sodium (Filtered)	Sulphate	Sulphate (Filtered)	Anions Total	Cations Total	onic Balance	Benzene	Ethylbenzene	Foluene	Xylene (o)	Xylene Total	TPH C10 - C14 Fraction	TPH C10 - C16 Fraction	FPH C15 - C28 Fraction	FPH C16 - C34 Fraction	FPH C29 - C36 Fraction	TPH C34 - C40 Fractior	TPH C6 - C 9 Fraction	FPH C6 - C10 Fraction	TPH C6 - C10 Fraction	Naphthalene PAHs (Sum of Total) -
EQL			mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	meq/L	meq/L	% 0.01	µg/L	μg/L 2	μg/L 2	μg/L 2	μg/L 2	mg/L 0.05	mg/L 0.1	mg/L 0.1	mg/L 0.1	mg/L 0.05	mg/L 0.1	mg/L 0.02	mg/L 0.02	mg/L 0.02	μg/L μg/L 5
ADWG (2011) Health					1					1	1	1	-	500		0.01	0.01	0.01	1.000	2 300	2 800	2	600	0.05	0.1	0.1	0.1	0.05	0.1	0.02	0.02	0.02	5
MonitoringUnit	WellCode	Sampled_Date-		500			74.0	.4.0	07	4500	444	50	4070	-	<u> </u>	57.0	50.4	0.05	.4	.0	0	.0	.0	4.45	-0.4	.0.4	.0.4	-0.05	-0.4	0.05	0.04	0.24	
ALLUVIUM	C027P1	29/09/2011 8/11/2011 8/11/2011	582 460 480	460 480	<1 <1 <1	<1 <1	561.2 585.6	<1.2 <1.2 <1.2	26 26	1580 1420 1210	114 113	58 57	1070 1080 1080	141 107	66 - -	57.6 - -	58.4 - -	0.65 - -	<1 <1 <1	<2 <2 <2	<2 <2 <2	<2 <2 <2	<2 <2	1.45 <0.05 <0.05	<0.1 <0.1 <0.1	<0.1 <0.1 0.11	<0.1 <0.1 <0.1	<0.05 <0.05 <0.05	<0.1 <0.1	0.35 0.09 0.06	0.34 0.1 0.07	0.1	<5 <5 <5 <5 <5 <5
TERTIARY	C029P1 C025P2	7/11/2011 29/09/2011 7/11/2011	1590 746 763	1590 746 763	<1 <1 <1	<1 <1 <1	1940 910.1 930.9	<1.2 <1.2 <1.2	87 107 130	8430 4570 3670	362 134 130	177 79 74	5960 2700 2680	686 - 10	- 54 -	- 145 -	- 136 -	- 3.26 -	<1 <1 <1	<2 <2 <2	<2 16 6	<2 <2 <2	<2 <2 <2	<0.05 0.06 <0.05	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.05 <0.05 <0.05	<0.1 <0.1 <0.1	<0.02 0.31 0.06	<0.02 0.33 0.06	<0.02 0.31 0.05	<5 <5 <5 <5 <5 <5
DUNDA BEDS	C029P2 C022P1	29/09/2011 7/11/2011 3/10/2011	259 274 36	259 274 36	<1 <1 <1	<1 <1 <1	316 334.3 43.92	<1.2 <1.2 <1.2		3950 3740 67	118 122 4	58 75 2	2280 2180 55	- 246	259 - 16	122 - 2.94	115 - 2.87	2.81	<1 <1 <1	<2 <2 <2	<2 <2 <2	\$ \$ \$	<2 <2 <2	0.11 <0.05 <0.05	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.05 <0.05 <0.05	<0.1 <0.1 <0.1	<0.02 <0.02 0.04	<0.02 <0.02 0.04		<5 <5 <5 <5 <5 <5
DONDADEDO	00221 1	6/10/2011 14/11/2011	- 47	- 47	- <1	- <1	- 57.34	- <1.2	- 3	- 70	- 4	- 3	- 56	- 18	-	-	-	-	- <1	- <2	- <2	- <2	- <2	- <0.05	- <0.1	- <0.1	- <0.1	- <0.05	- <0.1	- <0.02	- <0.02	- <0.02	 <5 <5
	C027P2	10/11/2011 29/09/2011 5/11/2011	45 128 180	45 128 180	<1 <1 <1	<1 <1 <1	54.9 156.2 219.6	<1.2 <1.2 <1.2	2 4 3	77 186 199	4 9 10	3 10 12	57 161 175	16 - 14	- 8 -	- 7.97 -	- 8.2 -	- 1.38 -	<1 <1 <1	<2 <2 <2	<2 <2 17	<2 <2 <2	<2 <2 <2	<0.05 0.1 <0.05	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.05 <0.05 <0.05	<0.1 <0.1 <0.1	0.02 0.09 0.03	0.02 0.1 0.04		<5 <5 <5 <5 <5 <5
	C035P1	5/10/2011 6/11/2011	175 171	175 171	<1 <1	<1 <1	213.5 208.6	<1.2 <1.2	21 20	1070 909	18 18	6	822 744	- 50	60 -	34.9	38.4	4.76	<1 <1	<2 <2	<2 <2	<2 </td <td><2<!--</td--><td><0.05 <0.05</td><td><0.1 <0.1</td><td><0.1 <0.1</td><td><0.1 <0.1</td><td><0.05</td><td><0.1 <0.1</td><td><0.02 <0.02</td><td><0.02</td><td><0.02 <0.02</td><td><5 <5 <5 <5</td></td>	<2 </td <td><0.05 <0.05</td> <td><0.1 <0.1</td> <td><0.1 <0.1</td> <td><0.1 <0.1</td> <td><0.05</td> <td><0.1 <0.1</td> <td><0.02 <0.02</td> <td><0.02</td> <td><0.02 <0.02</td> <td><5 <5 <5 <5</td>	<0.05 <0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05	<0.1 <0.1	<0.02 <0.02	<0.02	<0.02 <0.02	<5 <5 <5 <5
PERMIAN OVERBURDEN	C008P1 C012P1	3/10/2011 12/11/2011 2/10/2011	316 298 84	316 298 84	<1 <1 <1	<1 <1 <1	385.5 363.6 102.5	<1.2 <1.2 <1.2	505 468 26	7950 7530 549	402 442 29	90 115 11	3680 3810 334	- 275 -	282 - 56	236 - 18.3	221 - 18.5	3.46 - 0.43	<1 <1 <1	<2 <2 <2	<2 <2 <2	<2 <2 <2	<2 <2 <2	<0.05 0.13 <0.05	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.05 <0.05 <0.05	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02		<0.02 <0.02 <0.02	<5 <5 <5 <5 <5 <5
	C018P1	4/10/2011 8/11/2011	- 82 100	- 82	- <1 <1	- <1	- 100	- <1.2	- 31 7	- 551 141	- 33 6	- 13	- 301	- 51	- - 41	-	-	-	- <1	- <2	- <2	- <2	- <2	- <0.05	- <0.1	- <0.1 <0.1	- <0.1	- <0.05	- <0.1	- <0.02	- <0.02	-	 <5 <5
		2/10/2011 6/10/2011 8/11/2011	- 83	100 - 83	- <1	<1 - <1	122 - 101.3	<1.2 - <1.2	- 7	- 255	- 7	12 - 10	128 - 134	- - 39	-	6.83 - -	6.72 - -	0.85 - -	<1 - <1	<2 - <2	<2 - <2	<2 - <2		<0.05 - <0.05	<0.1 - <0.1	- <0.1	<0.1 - <0.1	<0.05 - <0.05	<0.1 - <0.1	<0.02 - <0.02	- <0.02	- <0.02	<5 <5 <5 <5
	C012P2	2/10/2011 4/10/2011 13/11/2011	276 - 369	276 - 369	<1 - <1	<1 - <1	336.7 - 450.2	<1.2 - <1.2	78 - 84	631 - 614	25 - 30	12 - 18	442 - 384	- - 43	49 - -			2.29 - -	<1 - <1	<2 - <2	<2 - <2	<2 - <2	<2 - <2	<0.05 - <0.05	<0.1 - <0.1	<0.1 - <0.1	<0.1 - <0.1	<0.05 - <0.05	<0.1 - <0.1	<0.02 - <0.02	-	<0.02 - <0.02	<5 <5 <5 <5
AB SEAM	C007P2	4/10/2011 10/11/2011 10/11/2011	205 264 251	205 264 251	<1 <1 <1	<1 <1 <1	250.1 322.1 306.2	<1.2 <1.2 <1.2	558 453 486	5460 5230 4350	234 267 270		2740 2590 2620	- 465 473	554 - -	170 - -	168 - -	0.6 -	<1 <1 <1	<2 <2 <2	<2 <2 <2	2	<2 <2 <2	<0.05 <0.05 <0.05	<0.1 <0.1 <0.1	0.23 <0.1 <0.1	0.79 <0.1 <0.1	0.5 <0.05 <0.05	0.37 <0.1 <0.1	<0.02 0.02 <0.02	<0.02 0.02 <0.02	<0.02 0.02 <0.02	<5 <5 <5 <5 <5 <5
	C008P2	3/10/2011 12/11/2011	552 585	515 585	36 <1	<1 <1	628.3 713.7	43.21 <1.2	38	755 683	19 21	20 20	732 577	- 31	66 -	33.7	35.7	2.8	<1 2	<2 <2	<2 5	<2 <2	<2 <2	<0.05 <0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	<0.1 <0.1	<0.02 0.02	0.03		<5 <5 <5 <5
	C014P2 C016P2	4/10/2011 12/11/2011 2/10/2011	390 406 314	360 216 <1	30 190 274	<1 <1 40	439.2 263.5 <1.22	36.01 228 328.9	20 3 5	398 406 735	6 3 <1	25 33 119	415 374 573	- <1	3 - 153	19.1 - 30.2	20.2 - 28.2	2.77 - 3.4	<1 <1 <1	<2 <2 <2	<2 <2 8	<2 <2 <2	<2 <2 <2	<0.05 <0.05 <0.05	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.05 <0.05 <0.05	<0.1 <0.1 <0.1	0.17 0.05 0.04	0.18 0.06 0.04	0.18 0.06 0.03	<5 <5 <5 <5 <5 <5
	010-2	6/10/2011 13/11/2011	- 527	<1 <1	- 306	-	<1.22 - <1.22	- 367.3	- 4	- 659	<1 <1	- 182	- 520	- - 21	-	-	-	-	<1 <1	<2 - <2	о - 3	<2 - <2	<2 - <2	<0.05	<0.1 - <0.1	<0.1 - <0.1	<0.1 - <0.1	<0.05	<0.1 - <0.1	- 0.03	- 0.03	- 0.03	 <5 <5
	C018P2	2/10/2011 6/10/2011 9/11/2011	221 - 239	221 - 239	<1 - <1	<1 - <1	269.6 - 291.6	<1.2 - <1.2	45 - 47	578 - 659	43 - 47	18 - 25	359 - 337	- - 20	14 - -	21 - -	21.9 - -	1.97 - -	<1 - <1	<2 · <2	<2 - <2	<2 - <2	<2 - <2	<0.05 - <0.05	<0.1 - <0.1	<0.1 - <0.1	<0.1 - <0.1	<0.05 - <0.05	<0.1 - <0.1	<0.02 - <0.02	- <0.02	<0.02 - <0.02	<5 <5 <5 <5
	C020P2	9/11/2011 3/10/2011 6/10/2011	246 225 -	246 225	<1 <1 -	<1 <1 -	300.1 274.5 -	<1.2 <1.2 -	43 15 -	586 411 -	40 3 -	25 4	306 374	17 - -	- 24 -	- 16.6 -	- 17.4 -	- 2.26 -	<1 <1	<2 <2	<2 <2 -	<2 <2 -	<2 <2 -	<0.05 <0.05 -	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05 -	<0.1 <0.1	<0.02 0.05 -	<0.02 0.05 -	<0.02 0.05 -	<5 <5 <5 <5
	C032P2	14/11/2011 5/10/2011 7/11/2011	257 336 535	257 336 535	<1 <1 <1	<1 <1 <1	313.5 409.9 652.7	<1.2 <1.2 <1.2	16 24 37	406 229 934	3 6 13	5 20 11	310 257 294	16 - <1	- 5 -	- 13.3 -	- 13.4 -	- 0.36 -	<1 <1 <1	<2 <2 <2	4 <2 <2	<2 <2 <2	<2 <2 <2	<0.05 <0.05 <0.05	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.05 <0.05 <0.05	<0.1 <0.1 <0.1	0.04 0.04 <0.02		0.05 0.05 <0.02	<5 <5 <5 <5 <5 <5
	C035P2	5/10/2011 6/11/2011	119 120	119 120	<1 <1	<1 <1	145.2 146.4	<1.2 <1.2	12 13	404 535	8 8	6 7	280 276	- 17	11 -	14 -	13.6	1.52	<1 <1	<2 <2	<2 <2	<2 <2	<2 <2	<0.05 <0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	<0.1 <0.1	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<5 <5 <5 <5
INTERBURDEN	C006P1 C011P1	3/10/2011 10/11/2011 13/11/2011	365 338 669		<1 <1 <1		445.3 412.4 816.2			4800 6240 539				- 497 91	573 - -	155 - -	144 - -	3.41 - -	<1 <1 <1	<2 <2 <2	<2 <2 <2			<0.05 <0.05 <0.05			<0.1 <0.1 <0.1			0.04 <0.02 <0.02	0.04 <0.02 <0.02		<5 <5 <5 <5 <5 <5
DOCAN	C034P1	5/10/2011 6/11/2011	165 159	165 159	<1 <1	<1 <1	201.3 194	<1.2 <1.2	62 59	1220 1200	39 38	11 12	842 862	- 108	120	40.2	43.2	3.58	<1 <1	<2 <2	<2 <2	<2 <2	<2 <2	<0.05 <0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	<0.1 <0.1	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<5 <5 <5 <5
D SEAM	C006P3r	3/10/2011 12/11/2011 10/11/2011	491 454 458	485 454 458	<1	<1 <1	553.9 558.8	<1.2 <1.2	9 9	58 59 56	4 3 3	5 5	246 209 197	- <1 <1	1 - -	11.5 - -	11.6 - -	0.44 - -	<1 <1 <1	<2 <2 <2	<2 <2	<2 <2	<2 <2	<0.05 <0.05 <0.05	<0.1 <0.1	<0.1	<0.1	<0.05 <0.05 <0.05	<0.1 <0.1	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<5 <5 <5 <5
	C007P3 C011P3	4/10/2011 10/11/2011 4/10/2011	487 548 258	487 538 245	<1 9 13	<1 <1		<1.2 10.8 15.6		61 49 164	3 3 5	4	297 253 180	- 45	59 - 2	12.7 - 9.82	13.8 - 9.52	4.05 - 1.57	<1 <1 <1	<2 <2 <2	<2	<2 <2 <2	<2 <2	<0.05 <0.05 <0.05		<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.05 <0.05 <0.05	<0.1	0.05 <0.02 0.02	0.05 <0.02 0.03	<0.02	<5 <5
	C018P3	13/11/2011 2/10/2011 6/10/2011 9/11/2011	278 278 179 - 188	278 278 179 - 188		<1 <1 -	339.2 218.4 -	<1.2 <1.2 - <1.2	22 22 -	173 213 - 211	6 6 6	14 9 -	165 189 - 156	<1 - - 15	- 13	9.86 - -	- - - - -	- 0.92 -	<1 <1 - <1	9 9 9 V	<2		<2 <2 -	<0.05 <0.05 - <0.05		<0.1 <0.1 - <0.1	<0.1 <0.1 <0.1 -	<0.05 <0.05 - <0.05	<0.1 <0.1	<0.02 <0.02	<0.03 <0.02 <0.02 - <0.02	<0.02 <0.02	
	C024P3	9/11/2011 6/10/2011 14/11/2011	204 307 307	204 307 307	<1 <1 <1	<1 <1 <1	248.9 374.5 374.5	<1.2 <1.2 <1.2 <1.2		211 351 374		13 17		10 - <1	- 2	- 16.1	- 17.7	- 4.85	<1 <1 <1	<2 <2 <2 <2	<2 <2 5 4	<2 <2 <2 <2	<2 <2	<0.05 <0.05 0.09	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.05 <0.05 <0.05	<0.1 <0.1	<0.02 <0.02 0.46 0.34	<0.02 <0.02 0.49 0.36	<0.02 0.48	
	C034P3	5/10/2011 6/11/2011	137 108	137 108	<1	<1 <1	167.1 131.8	<1.2 <1.2	32 22	601 478	14 11	15 14	424 295	- 24	- 51 -	20.8		- 1.93 -	<1 <1	<2 <2 <2	<2		<2 <2	<0.05 <0.05	<0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.05 <0.05 <0.05	<0.1	< 0.02	< 0.02	< 0.02	
UNKNOWN SURFACE WATER	C066 (line 180-35 WQ01) 11/11/2011 6/10/2011 8/11/2011	25 178 211	25 178 211	<1 <1 <1			<1.2 <1.2 <1.2	3	158 305	10 13 12	6 26		10 -	- 9 -	- 12.4	- 12.7	- 1.36 -		- <2	- <2	- <2	- <2	- <0.05	- <0.1	- <0.1	- <0.1 <0.1	- <0.05 <0.05		-	- <0.02 <0.02	- <0.02	 <5 <5
	WQ03	8/11/2011 5/10/2011	211 190	211 190	<1 <1	<1 <1	257.4 231.8	<1.2		343 361		30 27		9	- 7	- 14.1	- 14.2	- 0.38	<1 <1	<2 <2	<2 <2	<2 <2		<0.05	<0.1 <0.1	<0.1 <0.1	<0.1	<0.05			<0.02		<5 <5 <5 <5

Number of Results	66	66	66	66	65	65	66	66	66	66	66	38	28	28	28	27	69	69	69	69	69	65	65	65	65	65	65	69	69	69	69
Number of Detects	66	64	8	2	63	8	66	66	64	66	66	32	28	28	28	27	1	0	9	0	0	6	0	2	1	1	1	23	23	23	0
Minimum Concentration	25	<1	<1	<1	<1.22	<1.2	2	49	<1	2	55	<1	1	2.94	2.87	0.36	<1	<2	<2	<2	<2	< 0.05	<0.1	<0.1	<0.1	< 0.05	< 0.1	< 0.02	< 0.02	< 0.02	<5
Minimum Detect	25	25	6	40	30.5	7.201	2	49	3	2	55	6	1	2.94	2.87	0.36	2	ND	3	ND	ND	0.06	ND	0.11	0.79	0.5	0.37	0.02	0.02	0.02	ND
Maximum Concentration	1590	1590	306	221	1940	367.3	558	8430	442	182	5960	686	573	236	221	4.85	2	<2	17	<2	<2	1.45	<0.1	0.23	0.79	0.5	0.37	0.46	0.49	0.48	<5
Maximum Detect	1590	1590	306	221	1940	367.3	558	8430	442	182	5960	686	573	236	221	4.85	2	ND	17	ND	ND	1.45	ND	0.23	0.79	0.5	0.37	0.46	0.49	0.48	ND
Average Concentration	310	293	14	4.4	359	16	72	1389	64	32	860	94	91	46	45	2.2	0.52	1	1.9	1	1	0.053	0.05	0.054	0.061	0.032	0.055	0.042	0.044	0.043	2.5
Median Concentration	257.5	242	0.5	0.5	298.9	0.6	22.5	537	14	17	322	19	45	18.7	19.35	1.97	0.5	1	1	1	1	0.025	0.05	0.05	0.05	0.025	0.05	0.01	0.01	0.01	2.5
Standard Deviation	237	240	55	28	294	66	133	2094	110	38	1159	166	151	60	57	1.4	0.18	0	2.9	0	0	0.18	0	0.023	0.092	0.059	0.04	0.086	0.09	0.088	0
Number of Guideline Exceedances	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances(Detects Only)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0

IENTS PEOPLE PERFORMANCE

					Di	ssolved Metals H	ardness Correc	ted	
			Caculated Hardness	Cadmium (Filtered)	Chromium (III+VI) (Filtered)	Copper (Filtered)	l (Filtered)	el (Filtered)	Zinc (Filtered)
			acu	adr	hro	ldo	Lead	Nickel	inc
			mg/L	mg/L	mg/L	mg/L	ت mg/L	z mg/L	N mg/L
EQL			mg/∟	mg/∟	mg/∟	ing/∟	mg/∟	mg/∟	mg/L
ADWG (2011) Health				0.002	0.05	2	0.01	0.02	
MonitoringUnit	LocCode	Sampled Date							
ALLUVIAL	C027P1	29/09/2011	524.184	-	4.79E-05	4.40E-05	1.32E-05	4.40E-05	5.27E-04
	C027P1 C029P1	8/11/2011 7/11/2011	529.917 1706.869	3.88E-06 1.37E-06	3.80E-04 1.82E-05	4.35E-05 1.93E-04	1.30E-05 2.95E-06	1.13E-03 2.45E-03	8.71E-04 4.19E-04
TERTIARY	C025P2	29/09/2011	818.589	2.64E-06	3.32E-03	3.01E-05	7.50E-06	3.01E-05	3.61E-04
	C025P2	7/11/2011	859.56	2.52E-06	1.60E-04	1.15E-04	7.05E-06	5.77E-05	3.46E-04
	C029P2	29/09/2011	735.27	-	3.63E-05	3.30E-05	8.60E-06	6.59E-05	3.96E-04
	C029P2	7/11/2011	739.245	2.89E-06	1.44E-04	6.56E-05	8.54E-06	3.28E-04	7.22E-04
DUNDA BEDS	C022P1 C022P1	3/10/2011 10/11/2011	21.454 21.454	6.74E-05 6.74E-05	6.58E-04 2.63E-03	6.65E-04 6.65E-04	7.65E-04 7.65E-04	7.98E-03 7.98E-03	1.46E-02 1.86E-02
	C022P1 C022P1	14/11/2011	23.951	6.11E-05	6.01E-04	6.05E-04	6.66E-04	7.98E-03 7.27E-03	3.39E-02
	C027P2	29/09/2011	51.138	-	3.23E-04	3.18E-04	2.54E-04	2.54E-03	4.45E-03
	C027P2	5/11/2011	48.641	3.25E-05	1.35E-03	3.32E-04	2.71E-04	6.63E-03	6.63E-03
REWAN	C035P1	5/10/2011	126.507	1.39E-05	1.54E-04	1.47E-04	8.04E-05	1.47E-04	7.36E-04
	C035P1	6/11/2011	124.01	1.41E-05	3.12E-04	1.50E-04	8.25E-05	1.50E-04	1.80E-03
PERMIAN OVERBURDE	N C008P1 C008P1	3/10/2011 12/11/2011	2907.724 2987.426	5.12E-06 3.33E-06	7.05E-05 2.30E-05	4.10E-05 2.20E-04	1.50E-06 1.45E-06	1.64E-04 3.00E-04	2.87E-04 2.36E-03
	C012P1	2/10/2011	184.257	9.94E-06	1.13E-04	1.07E-04	4.99E-05	2.14E-04	2.57E-03
	C012P1	8/11/2011	213.202	8.73E-06	2.00E-04	3.78E-04	4.14E-05	1.13E-03	6.99E-03
	C012P2	2/10/2011	304.253	6.36E-06	7.48E-05	6.98E-05	2.64E-05	6.98E-05	3.49E-04
	C012P2	13/11/2011	333.198	5.87E-06	1.39E-04	6.46E-05	2.35E-05	3.88E-04	4.39E-03
	C018P1	2/10/2011	42.169	3.69E-05	3.78E-04	3.74E-04	3.24E-04	3.74E-04	8.98E-03
B SEAM	C018P1 C007P2	8/11/2011 4/10/2011	46.284 2356.236	3.40E-05 1.03E-06	2.10E-03 2.79E-05	3.46E-04 4.90E-05	2.88E-04 1.96E-06	2.08E-03 1.23E-05	2.14E-02 6.13E-05
ID SLAW	C007P2	10/11/2011	2251.44	1.07E-06	5.80E-05	2.55E-05	2.08E-06	1.27E-05	1.27E-04
	C008P2	3/10/2011	165.58	1.09E-05	1.23E-04	1.17E-04	5.71E-05	1.17E-04	5.85E-04
	C008P2	12/11/2011	181.301	1.01E-05	2.29E-04	2.17E-04	5.09E-05	4.33E-04	4.12E-03
	C014P2	4/10/2011	74.63	2.22E-05	2.37E-04	2.30E-04	1.57E-04	1.38E-03	1.15E-03
	C014P2	12/11/2011	19.836	7.23E-05	1.40E-03	7.11E-04	8.46E-04	2.84E-03	9.95E-03
	C016P2 C016P2	2/10/2011 13/11/2011	14.5425 12.0455	9.52E-05 1.13E-04	9.05E-04 1.06E-03	9.25E-04 1.09E-03	1.25E-03 1.59E-03	9.25E-04 1.09E-03	1.11E-02 1.09E-02
	C018P2	2/10/2011	289.31	6.65E-06	7.80E-05	7.28E-05	2.81E-05	7.28E-05	1.09L-02
	C018P2	9/11/2011	297.54	6.49E-06	4.57E-04	7.11E-05	2.71E-05	2.84E-04	9.96E-04
	C020P2	3/10/2011	49.8	3.18E-05	3.30E-04	3.25E-04	2.63E-04	3.25E-04	1.62E-03
	C020P2	14/11/2011	52.297	3.05E-05	3.17E-04	3.12E-04	2.47E-04	3.12E-04	1.56E-03
	C032P2	5/10/2011	84.618	1.99E-05	2.14E-04	2.07E-04	1.34E-04	2.07E-04	1.04E-03
	C032P2 C035P2	7/11/2011 5/10/2011	145.884 62.884	1.22E-05 2.59E-05	8.20E-04 2.73E-04	1.30E-04 1.07E-03	6.71E-05 1.95E-04	5.21E-04 2.67E-04	1.30E-03 1.33E-03
	C035P2	6/11/2011	65.381	2.59E-05 2.50E-05	2.64E-03	5.16E-04	1.95E-04 1.86E-04	1.55E-03	5.16E-03
NTERBURDEN	C006P1	3/10/2011	1621.558	1.43E-06	1.52E-04	1.68E-05	3.15E-06	6.73E-05	2.02E-04
	C006P1	10/11/2011	2541.902	9.62E-07	1.05E-04	2.30E-05	1.78E-06	9.19E-05	1.84E-04
	C011P1	13/11/2011	114.901	1.51E-05	6.65E-04	1.60E-04	9.08E-05	2.87E-03	7.35E-03
	C034P1	5/10/2011	315.299	6.16E-06	7.27E-05	6.77E-05	2.52E-05	6.77E-05	3.39E-04
SEAM	C006P3r	6/11/2011 3/10/2011	303.693	6.37E-06 3.96E-05	1.50E-04 4.04E-04	6.99E-05 4.01E-04	2.64E-05 3.59E-04	1.40E-04	1.40E-03
JEAW	C006P3r C006P3r	3/10/2011 10/11/2011	38.933 34.818	3.96E-05 4.38E-05	4.04E-04 2.66E-03	4.01E-04 4.41E-04	3.59E-04 4.14E-04	4.01E-04 4.41E-04	2.00E-03 2.20E-03
	C006P3r	12/11/2011	34.818	4.38E-05	8.85E-04	4.41E-04	4.14E-04	2.64E-03	7.93E-03
	C007P3	4/10/2011	37.315	4.12E-05	4.18E-04	3.32E-03	3.79E-04	4.15E-04	2.08E-03
	C007P3	10/11/2011	27.327	5.43E-05	5.40E-04	5.41E-04	5.63E-04	5.41E-04	1.08E-02
	C011P3	4/10/2011	63.024	2.58E-05	2.72E-04	2.66E-04	1.95E-04	2.66E-04	1.33E-03
	C011P3 C018P3	13/11/2011 2/10/2011	79.624 79.624	2.10E-05 2.10E-05	2.25E-04 2.25E-04	2.18E-04 2.18E-04	1.45E-04 1.45E-04	4.36E-04 2.18E-04	4.36E-03 1.09E-03
	C018P3 C018P3	9/11/2011	82.121	2.10E-05 2.04E-05	2.25E-04 8.76E-04	2.18E-04 2.12E-04	1.45E-04 1.39E-04	4.25E-04	4.25E-03
	C024P3	6/10/2011	277.284	6.91E-06	8.07E-05	7.55E-05	2.97E-05	7.55E-05	3.78E-04
	C024P3	14/11/2011	230.261	8.15E-06	1.88E-04	3.54E-04	3.76E-05	1.59E-03	7.78E-03
	C034P3	5/10/2011	137.514	1.29E-05	1.43E-04	1.37E-04	7.23E-05	1.37E-04	6.85E-04
	C034P3	6/11/2011	100.199	1.71E-05	1.86E-04	1.79E-04	1.08E-04	1.79E-04	8.97E-04
URFACE WATER	WQ01 WQ01	6/10/2011 8/11/2011	85.956 84.338	1.96E-05 1.99E-05	2.11E-04 4.28E-04	2.04E-04 4.15E-04	1.31E-04 1.35E-04	2.04E-04 4.15E-04	1.02E-03 8.31E-03
	WQ01 WQ03	5/10/2011	96.683	1.99E-05 1.76E-05	4.28E-04 1.92E-04	4.15E-04 1.11E-03	1.35E-04 1.13E-04	3.70E-04	9.25E-04
	WQ03	8/11/2011	92.568	1.83E-05	1.98E-04	7.68E-04	1.20E-04	3.84E-04	9.59E-04
NKNOWN	C066	11/11/2011	48.641	3.25E-05	3.36E-04	3.32E-04	2.71E-04	2.65E-03	1.72E-02
tatistical Summary			20	20	20	20	20	20	20
umber of Results umber of Detects			<u>39</u> 39	39 39	39 39	39 39	39 39	39 39	39 39
			12.0455	9.61649E-07	2.79267E-05	1.68299E-05	1.77976E-06	1.225E-05	6.12501E-0
Inimum Concentration			12.0400	0.010402 01					

Number of Results	39	39	39	39	39	39	39
Number of Detects	39	39	39	39	39	39	39
Minimum Concentration	12.0455	9.61649E-07	2.79267E-05	1.68299E-05	1.77976E-06	1.225E-05	6.12501E-05
Minimum Detect	12.0455	9.61649E-07	2.79267E-05	1.68299E-05	1.77976E-06	1.225E-05	6.12501E-05
Maximum Concentration	2541.902	0.000112635	0.002655104	0.003322861	0.001593186	0.002874222	0.01724147
Maximum Detect	2541.902	0.000112635	0.002655104	0.003322861	0.001593186	0.002874222	0.01724147
Average Concentration	324	0.000025	0.00048	0.00041	0.00023	0.00065	0.0035
Median Concentration	84.618	1.98685E-05	0.000236821	0.00021809	0.000133979	0.000369833	0.001332705
Standard Deviation	655	0.000024	0.0006	0.00057	0.00033	0.00082	0.0041
Number of Guideline Exceedances	0	0	0	0	0	0	0
Number of Guideline Exceedances(Detects Only)	0	0	0	0	0	0	0

HD

IENTS PEOPLE PERFORMANCE

			D	issolved Metals	Hardness Corre	cted	-
	⊠ Boot Caculated Hardness	b B ∑ Cadmium (Filtered)		⊒ ⊇ ⊇	≝ Bad (Filtered)	a B	⊒ Zinc (Filtered)
QL							
VZECC (2000) Irrigation (Long Term Value)		0.01	0.1	0.2	2	0.2	2

MonitoringUnit	LocCode	Sampled Date	1		1		1	1	
ALLUVIAL	C027P1	29/09/2011	5.24E+02	-	4.789E-05	4.395E-05	1.322E-05	4.395E-05	5.274E-04
	C027P1	8/11/2011	5.30E+02	3.882E-06	3.797E-04	4.355E-05	1.304E-05	1.132E-03	8.709E-04
	C029P1	7/11/2011	1.71E+03	1.371E-06	1.819E-05	1.933E-04	2.951E-06	2.449E-03	4.189E-04
TERTIARY	C025P2	29/09/2011	8.19E+02	2.636E-06	3.323E-04	3.009E-05	7.504E-06	3.009E-05	3.611E-04
	C025P2	7/11/2011	8.60E+02	2.524E-06	1.596E-04	1.155E-04	7.053E-06	5.773E-05	3.464E-04
	C029P2	29/09/2011	7.35E+02	-	3.628E-05	3.296E-05	8.601E-06	6.593E-05	3.956E-04
	C029P2	7/11/2011	7.39E+02	2.887E-06	1.445E-04	6.563E-05	8.542E-06	3.281E-04	7.219E-04
DUNDA BEDS	C022P1	3/10/2011	2.15E+01	6.739E-05	6.582E-04	6.649E-04	7.654E-04	7.979E-03	1.463E-02
	C022P1	10/11/2011	2.15E+01	6.739E-05	2.633E-03	6.649E-04	7.654E-04	7.979E-03	1.862E-02
	C022P1	14/11/2011	2.40E+01	6.110E-05	6.014E-04	6.055E-04	6.655E-04	7.266E-03	3.391E-02
	C027P2	29/09/2011	5.11E+01	0.1102 00	3.229E-04	3.178E-04	2.540E-04	2.542E-03	4.449E-03
	C027P2	5/11/2011	4.86E+01	3.252E-05	1.346E-03	3.316E-04	2.707E-04	6.631E-03	6.631E-03
REWAN									
REVVAN	C035P1	5/10/2011	1.27E+02	1.389E-05	1.536E-04	1.471E-04	8.039E-05	1.471E-04	7.357E-04
	C035P1	6/11/2011	1.24E+02	1.414E-05	3.123E-04	1.497E-04	8.246E-05	1.497E-04	1.796E-03
PERMIAN OVERBURDEN	C008P1	3/10/2011	2.91E+03	5.119E-06	7.051E-05	4.098E-05	1.500E-06	1.639E-04	2.869E-04
	C008P1	12/11/2011	2.99E+03	3.332E-06	2.299E-05	2.203E-04	1.450E-06	3.004E-04	2.363E-03
	C012P1	2/10/2011	1.84E+02	9.940E-06	1.129E-04	1.069E-04	4.987E-05	2.138E-04	2.565E-03
	C012P1	8/11/2011	2.13E+02	8.729E-06	2.003E-04	3.777E-04	4.143E-05	1.133E-03	6.987E-03
	C012P2	2/10/2011	3.04E+02	6.361E-06	7.481E-05	6.979E-05	2.638E-05	6.979E-05	3.489E-04
	C012P2	13/11/2011	3.33E+02	5.867E-06	1.389E-04	6.460E-05	2.350E-05	3.876E-04	4.393E-03
	C018P1	2/10/2011	4.22E+01	3.693E-05	3.782E-04	3.744E-04	3.245E-04	3.744E-04	8.984E-03
	C018P1	8/11/2011	4.63E+01	3.399E-05	2.102E-03	3.459E-04	2.883E-04	2.075E-03	2.144E-02
AB SEAM	C007P2	4/10/2011	2.36E+03	1.029E-06	2.793E-05	4.900E-05	1.960E-06	1.225E-05	6.125E-05
	C007P2	10/11/2011	2.25E+03	1.071E-06	5.798E-05	2.547E-05	2.076E-06	1.273E-05	1.273E-04
	C008P2	3/10/2011	1.66E+02	1.093E-05	1.232E-04	1.170E-04	5.712E-05	1.170E-04	5.852E-04
	C008P2	12/11/2011	1.81E+02	1.008E-05	2.287E-04	2.167E-04	5.090E-05	4.335E-04	4.118E-03
	C008P2 C014P2	4/10/2011	7.46E+01	2.222E-05	2.368E-04	2.304E-04	1.571E-04	1.383E-03	1.152E-03
	C014P2	12/11/2011	1.98E+01	7.226E-05	1.404E-03	7.107E-04	8.456E-04	2.843E-03	9.950E-03
	C016P2	2/10/2011	1.45E+01	9.525E-05	9.054E-04	9.253E-04	1.254E-03	9.253E-04	1.110E-02
	C016P2	13/11/2011	1.20E+01	1.126E-04	1.057E-03	1.086E-03	1.593E-03	1.086E-03	1.086E-02
	C018P2	2/10/2011	2.89E+02	6.653E-06	7.796E-05	7.284E-05	2.812E-05	7.284E-05	1.020E-03
	C018P2	9/11/2011	2.98E+02	6.489E-06	4.571E-04	7.112E-05	2.713E-05	2.845E-04	9.957E-04
	C020P2	3/10/2011	4.98E+01	3.185E-05	3.300E-04	3.250E-04	2.627E-04	3.250E-04	1.625E-03
	C020P2	14/11/2011	5.23E+01	3.049E-05	3.170E-04	3.118E-04	2.469E-04	3.118E-04	1.559E-03
	C032P2	5/10/2011	8.46E+01	1.987E-05	2.136E-04	2.071E-04	1.340E-04	2.071E-04	1.035E-03
	C032P2	7/11/2011	1.46E+02	1.224E-05	8.201E-04	1.304E-04	6.708E-05	5.214E-04	1.304E-03
	C035P2	5/10/2011	6.29E+01	2.588E-05	2.725E-04	1.066E-03	1.953E-04	2.665E-04	1.333E-03
	C035P2	6/11/2011	6.54E+01	2.500E-05	2.640E-03	5.157E-04	1.859E-04	1.547E-03	5.157E-03
INTERBURDEN	C006P1	3/10/2011	1.62E+03	1.435E-06	1.518E-04	1.683E-05	3.150E-06	6.732E-05	2.020E-04
	C006P1	10/11/2011	2.54E+03	9.616E-07	1.050E-04	2.297E-05	1.780E-06	9.188E-05	1.838E-04
	C011P1	13/11/2011	1.15E+02	1.513E-05	6.650E-04	1.597E-04	9.085E-05	2.874E-03	7.345E-03
	C034P1	5/10/2011	3.15E+02	6.162E-06	7.265E-05	6.770E-05	2.521E-05	6.770E-05	3.385E-04
D SEAM	C034P1	6/11/2011	3.04E+02	6.371E-06	1.498E-04	6.990E-05	2.644E-05	1.398E-04	1.398E-03
D SEAIVI	C006P3r	3/10/2011	3.89E+01	3.965E-05	4.038E-04	4.006E-04	3.591E-04	4.006E-04	2.003E-03
	C006P3r	10/11/2011	3.48E+01	4.379E-05	2.655E-03	4.405E-04	4.138E-04	4.405E-04	2.203E-03
	C006P3r	12/11/2011	3.48E+01	4.379E-05	8.850E-04	4.405E-04	4.138E-04	2.643E-03	7.930E-03
	C007P3	4/10/2011	3.73E+01	4.117E-05	4.181E-04	3.323E-03	3.790E-04	4.154E-04	2.077E-03
	C007P3	10/11/2011	2.73E+01	5.433E-05	5.398E-04	5.413E-04	5.629E-04	5.413E-04	1.083E-02
	C011P3	4/10/2011	6.30E+01	2.583E-05	2.720E-04	2.660E-04	1.948E-04	2.660E-04	1.330E-03
	C011P3	13/11/2011	7.96E+01	2.097E-05	2.246E-04	2.181E-04	1.447E-04	4.362E-04	4.362E-03
	C018P3	2/10/2011	7.96E+01	2.097E-05	2.246E-04	2.181E-04	1.447E-04	2.181E-04	1.090E-03
	C018P3	9/11/2011	8.21E+01	2.041E-05	8.758E-04	2.124E-04	1.392E-04	4.249E-04	4.249E-03
	C024P3	6/10/2011	2.77E+02	6.909E-06	8.073E-05	7.552E-05	2.968E-05	7.552E-05	3.776E-04
	C024P3	14/11/2011	2.30E+02	8.151E-06	1.880E-04	3.537E-04	3.757E-05	1.592E-03	7.782E-03
	C034P3	5/10/2011	1.38E+02	1.290E-05	1.435E-04	1.371E-04	7.231E-05	1.371E-04	6.853E-04
	C034P3	6/11/2011	1.00E+02	1.709E-05	1.860E-04	1.794E-04	1.081E-04	1.794E-04	8.969E-04
SURFACE WATER	WQ01	6/10/2011	8.60E+01	1.959E-05	2.109E-04	2.044E-04	1.313E-04	2.044E-04	1.022E-03
DUNFAGE WATER									
	WQ01	8/11/2011	8.43E+01	1.993E-05	4.285E-04	4.154E-04	1.345E-04	4.154E-04	8.307E-03
	WQ03	5/10/2011	9.67E+01	1.765E-05	1.915E-04	1.109E-03	1.131E-04	3.698E-04	9.246E-04
	WQ03	8/11/2011	9.26E+01	1.834E-05	1.985E-04	7.675E-04	1.195E-04	3.838E-04	9.594E-04
UNKNOWN	C066	11/11/2011	4.86E+01	3.252E-05	3.364E-04	3.316E-04	2.707E-04	2.653E-03	1.724E-02

Statistical Summary							
Number of Results	34	39	39	39	39	39	39
Number of Detects	34	39	39	39	39	39	39
Minimum Concentration	12.0455	9.61649E-07	2.79267E-05	1.68299E-05	1.77976E-06	1.225E-05	6.12501E-05
Minimum Detect	12.0455	9.61649E-07	2.79267E-05	1.68299E-05	1.77976E-06	1.225E-05	6.12501E-05
Maximum Concentration	2356.236	0.000112635	0.002655104	0.003322861	0.001593186	0.002874222	0.01724147
Maximum Detect	2356.236	0.000112635	0.002655104	0.003322861	0.001593186	0.002874222	0.01724147
Average Concentration	228	0.000025	0.00048	0.00041	0.00023	0.00065	0.0035
Median Concentration	80.8725	1.98685E-05	0.000236821	0.00021809	0.000133979	0.000369833	0.001332705
Standard Deviation	532	0.000024	0.0006	0.00057	0.00033	0.00082	0.0041
Number of Guideline Exceedances	0	0	0	0	0	0	0
Number of Guideline Exceedances(Detects Only)	0	0	0	0	0	0	0

ENTS PEOPLE PERFORMANCE

						Dissolved Metals	Hardness Corr	ected	
			sss	d)	Chromium (III+VI) (Filtered)				
			Caculated Hardness	ר (Filtered)	(I/+III) w	(Filtered)	(Filtered)	(Filtered)	ered)
			Caculate	Cadmium	Chromiu	Copper (-ead (Fil	Nickel (F	Zinc (Filtered)
			mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
EQL ANZECC (2000) Livestock				0.01	1	0.5		1	20
MonitoringUnit	LocCode	Sampled Date		0.01	I	0.5		1	20
ALLUVIAL	C027P1	29/09/2011	5.24E+02	-	4.79E-05	4.40E-05	1.32E-05	4.40E-05	5.27E-04
	C027P1 C029P1	8/11/2011 7/11/2011	5.30E+02 1.71E+03	3.88E-06 1.37E-06	3.80E-04 1.82E-05	4.35E-05 1.93E-04	1.30E-05 2.95E-06	1.13E-03 2.45E-03	8.71E-04 4.19E-04
TERTIARY	C025P2	29/09/2011	8.19E+02	2.64E-06	3.32E-04	3.01E-05	7.50E-06	3.01E-05	3.61E-04
	C025P2	7/11/2011	8.60E+02	2.52E-06	1.60E-04	1.15E-04	7.05E-06	5.77E-05	3.46E-04
	C029P2 C029P2	29/09/2011 7/11/2011	7.35E+02 7.39E+02	- 2.89E-06	3.63E-05 1.44E-04	3.30E-05 6.56E-05	8.60E-06 8.54E-06	6.59E-05 3.28E-04	3.96E-04 7.22E-04
DUNDA BEDS	C022P1	3/10/2011	2.15E+01	6.74E-05	6.58E-04	6.65E-04	7.65E-04	7.98E-03	1.46E-02
	C022P1	10/11/2011	2.15E+01	6.74E-05	2.63E-03	6.65E-04	7.65E-04	7.98E-03	1.86E-02
	C022P1 C027P2	14/11/2011 29/09/2011	2.40E+01 5.11E+01	6.11E-05 -	6.01E-04 3.23E-04	6.05E-04 3.18E-04	6.66E-04 2.54E-04	7.27E-03 2.54E-03	3.39E-02 4.45E-03
	C027P2	5/11/2011	4.86E+01	3.25E-05	1.35E-03	3.32E-04	2.71E-04	6.63E-03	6.63E-03
REWAN	C035P1	5/10/2011	1.27E+02	1.39E-05	1.54E-04	1.47E-04	8.04E-05	1.47E-04	7.36E-04
PERMIAN OVERBURDEN	C035P1 C008P1	6/11/2011 3/10/2011	1.24E+02 2.91E+03	1.41E-05 5.12E-06	3.12E-04 7.05E-05	1.50E-04 4.10E-05	8.25E-05 1.50E-06	1.50E-04 1.64E-04	1.80E-03 2.87E-04
	C008P1	12/11/2011	2.99E+03	3.33E-06	2.30E-05	2.20E-04	1.45E-06	3.00E-04	2.36E-03
	C012P1	2/10/2011	1.84E+02	9.94E-06	1.13E-04	1.07E-04	4.99E-05	2.14E-04	2.57E-03
	C012P1 C012P2	8/11/2011 2/10/2011	2.13E+02 3.04E+02	8.73E-06 6.36E-06	2.00E-04 7.48E-05	3.78E-04 6.98E-05	4.14E-05 2.64E-05	1.13E-03 6.98E-05	6.99E-03 3.49E-04
	C012P2	13/11/2011	3.33E+02	5.87E-06	1.39E-04	6.46E-05	2.35E-05	3.88E-04	4.39E-03
	C018P1	2/10/2011	4.22E+01	3.69E-05	3.78E-04	3.74E-04	3.24E-04	3.74E-04	8.98E-03
AB SEAM	C018P1 C007P2	8/11/2011 4/10/2011	4.63E+01 2.36E+03	3.40E-05 1.03E-06	2.10E-03 2.79E-05	3.46E-04 4.90E-05	2.88E-04 1.96E-06	2.08E-03 1.23E-05	2.14E-02 6.13E-05
	C007P2	10/11/2011	2.25E+03	1.07E-06	5.80E-05	2.55E-05	2.08E-06	1.27E-05	1.27E-04
	C008P2	3/10/2011	1.66E+02	1.09E-05	1.23E-04	1.17E-04	5.71E-05	1.17E-04	5.85E-04
	C008P2 C014P2	12/11/2011 4/10/2011	1.81E+02 7.46E+01	1.01E-05 2.22E-05	2.29E-04 2.37E-04	2.17E-04 2.30E-04	5.09E-05 1.57E-04	4.33E-04 1.38E-03	4.12E-03 1.15E-03
	C014P2	12/11/2011	1.98E+01	7.23E-05	1.40E-03	7.11E-04	8.46E-04	2.84E-03	9.95E-03
	C016P2	2/10/2011	1.45E+01	9.52E-05	9.05E-04	9.25E-04	1.25E-03	9.25E-04	1.11E-02
	C016P2 C018P2	13/11/2011 2/10/2011	1.20E+01 2.89E+02	1.13E-04 6.65E-06	1.06E-03 7.80E-05	1.09E-03 7.28E-05	1.59E-03 2.81E-05	1.09E-03 7.28E-05	1.09E-02 1.02E-03
	C018P2	9/11/2011	2.98E+02	6.49E-06	4.57E-04	7.11E-05	2.71E-05	2.84E-04	9.96E-04
	C020P2	3/10/2011	4.98E+01	3.18E-05	3.30E-04	3.25E-04	2.63E-04	3.25E-04	1.62E-03
	C020P2	14/11/2011	5.23E+01	3.05E-05	3.17E-04	3.12E-04	2.47E-04	3.12E-04	1.56E-03
	C032P2 C032P2	5/10/2011 7/11/2011	8.46E+01 1.46E+02	1.99E-05 1.22E-05	2.14E-04 8.20E-04	2.07E-04 1.30E-04	1.34E-04 6.71E-05	2.07E-04 5.21E-04	1.04E-03 1.30E-03
	C035P2	5/10/2011	6.29E+01	2.59E-05	2.73E-04	1.07E-03	1.95E-04	2.67E-04	1.33E-03
	C035P2	6/11/2011	6.54E+01	2.50E-05	2.64E-03 1.52E-04	5.16E-04 1.68E-05	1.86E-04	1.55E-03	5.16E-03
INTERBURDEN	C006P1 C006P1	3/10/2011 10/11/2011	1.62E+03 2.54E+03	1.43E-06 9.62E-07	1.52E-04 1.05E-04	2.30E-05	3.15E-06 1.78E-06	6.73E-05 9.19E-05	2.02E-04 1.84E-04
	C011P1	13/11/2011	1.15E+02	1.51E-05	6.65E-04	1.60E-04	9.08E-05	2.87E-03	7.35E-03
	C034P1 C034P1	5/10/2011 6/11/2011	3.15E+02 3.04E+02	6.16E-06	7.27E-05	6.77E-05	2.52E-05	6.77E-05 1.40E-04	3.39E-04
D SEAM	C034P1 C006P3r	3/10/2011	3.04E+02 3.89E+01	6.37E-06 3.96E-05	1.50E-04 4.04E-04	6.99E-05 4.01E-04	2.64E-05 3.59E-04	4.01E-04	1.40E-03 2.00E-03
	C006P3r	10/11/2011	3.48E+01	4.38E-05	2.66E-03	4.41E-04	4.14E-04	4.41E-04	2.20E-03
	C006P3r	12/11/2011	3.48E+01	4.38E-05	8.85E-04 4.18E-04	4.41E-04	4.14E-04	2.64E-03	7.93E-03
	C007P3 C007P3	4/10/2011 10/11/2011	3.73E+01 2.73E+01	4.12E-05 5.43E-05	4.18E-04 5.40E-04	3.32E-03 5.41E-04	3.79E-04 5.63E-04	4.15E-04 5.41E-04	2.08E-03 1.08E-02
	C011P3	4/10/2011	6.30E+01	2.58E-05	2.72E-04	2.66E-04	1.95E-04	2.66E-04	1.33E-03
	C011P3	13/11/2011	7.96E+01	2.10E-05	2.25E-04 2.25E-04	2.18E-04	1.45E-04	4.36E-04 2.18E-04	4.36E-03
	C018P3 C018P3	2/10/2011 9/11/2011	7.96E+01 8.21E+01	2.10E-05 2.04E-05	2.25E-04 8.76E-04	2.18E-04 2.12E-04	1.45E-04 1.39E-04	2.18E-04 4.25E-04	1.09E-03 4.25E-03
	C024P3	6/10/2011	2.77E+02	6.91E-06	8.07E-05	7.55E-05	2.97E-05	7.55E-05	3.78E-04
	C024P3	14/11/2011	2.30E+02	8.15E-06	1.88E-04	3.54E-04	3.76E-05	1.59E-03	7.78E-03
	C034P3 C034P3	5/10/2011 6/11/2011	1.38E+02 1.00E+02	1.29E-05 1.71E-05	1.43E-04 1.86E-04	1.37E-04 1.79E-04	7.23E-05 1.08E-04	1.37E-04 1.79E-04	6.85E-04 8.97E-04
SURFACE WATER	WQ01	6/10/2011	8.60E+01	1.96E-05	2.11E-04	2.04E-04	1.31E-04	2.04E-04	1.02E-03
	WQ01	8/11/2011	8.43E+01	1.99E-05	4.28E-04	4.15E-04	1.35E-04	4.15E-04	8.31E-03
	WQ03 WQ03	5/10/2011 8/11/2011	9.67E+01 9.26E+01	1.76E-05 1.83E-05	1.92E-04 1.98E-04	1.11E-03 7.68E-04	1.13E-04 1.20E-04	3.70E-04 3.84E-04	9.25E-04 9.59E-04
UNKNOWN	C066	11/11/2011	9.26E+01 4.86E+01	3.25E-05	3.36E-04	3.32E-04	2.71E-04	2.65E-03	9.59E-04 1.72E-02
Statistical Summary	0000	11/11/2011	4.000401	J.2JL-UJ	0.002-04	J.JZL-04	∠.1 1∟-04	2.00L-00	1.726-02

Statistical Summary						
Number of Results	39	39	39	39	39	39
Number of Detects	39	39	39	39	39	39
Minimum Concentration	9.61649E-07	2.79267E-05	1.68299E-05	1.77976E-06	1.225E-05	6.12501E-05
Minimum Detect	9.61649E-07	2.79267E-05	1.68299E-05	1.77976E-06	1.225E-05	6.12501E-05
Maximum Concentration	0.000112635	0.002655104	0.003322861	0.001593186	0.002874222	0.01724147
Maximum Detect	0.000112635	0.002655104	0.003322861	0.001593186	0.002874222	0.01724147
Average Concentration	0.000025	0.00048	0.00041	0.00023	0.00065	0.0035
Median Concentration	1.98685E-05	0.000236821	0.00021809	0.000133979	0.000369833	0.001332705
Standard Deviation	0.000024	0.0006	0.00057	0.00033	0.00082	0.0041
Number of Guideline Exceedances	0	0	0	0	0	0
Number of Guideline Exceedances(Detects Only)	0	0	0	0	0	0

						Inorganics	\$											Ν	letals											Nutrie	nts	
														(1																		
			nide	ide	ahl Nitrogen Total	ab)	iide		Dissolved Solids	inium (Filtered)	iic (Filtered)	Boron (Filtered)	iium (Filtered)	nium (III+VI) (Filtered)	lt (Filtered)	er (Filtered)	(Filtered)	ead (Filtered)	anese (Filtered)	cury (Filtered)	odenum (Filtered)	l (Filtered)	ium (Filtered)	(Filtered)	um (Filtered)	dium (Filtered)	Filtered)	onia as N	ate (as N)	litrite (as N)	ogen (Total Oxidised)	gen (Total) sphorus
			Brom	Fluoride	<jeldahl n<="" th=""><th>pH (Lab)</th><th>Sulphide</th><th>гос</th><th>Fotal</th><th>Alumi</th><th>Arsen</th><th>Boror</th><th>Cadm</th><th>Chror</th><th>Cobal</th><th>Copp</th><th>ron (</th><th>-ead</th><th>Mang</th><th>Mercu</th><th>Molyt</th><th>Vickel</th><th>Selen</th><th>Silver</th><th>Jrani</th><th>Vanad</th><th>Zinc (</th><th>Amme</th><th>Vitrat</th><th>Vitrite</th><th>Vitrog</th><th>Vitroç Phosl</th></jeldahl>	pH (Lab)	Sulphide	гос	Fotal	Alumi	Arsen	Boror	Cadm	Chror	Cobal	Copp	ron (-ead	Mang	Mercu	Molyt	Vickel	Selen	Silver	Jrani	Vanad	Zinc (Amme	Vitrat	Vitrite	Vitrog	Vitroç Phosl
FOI			mg/L 0.005	mg/L				mg/L	mg/L 5	mg/L 0.01	mg/L 0.001	mg/L	mg/L 0.0001	mg/L 0.001	mg/L 0.001	mg/L 0.001	mg/L	mg/L	mg/L 0.001	mg/L 0.0001	mg/L	mg/L	mg/L	mg/L	mg/L 0.001	mg/L 0.01	mg/L 0.005	mg/L	mg/L 0.01	mg/L 0.01	mg/L 0.01	mg/L mg/L 0.1 0.01
ANZECC (2000) Irrigation (0.005	0.1	0.1	6.5 - 8.5		1	5 8100	5	0.001	0.05	0.001	0.001	0.001			0.001	0.001	0.0001	0.001	0.001	0.01	0.001	0.001		2	0.01	0.01	0.01		5 0.5
MonitoringUnit ALLUVIUM	WellCode C027P1	Sampled_Date-Time 29/09/2011	-	0.9	2.1	7	<01	52	3850	0.01	0.013	0.63		<0.001	<0.001	<0.001	16	<0.001	4.49	<0.0001	<0.001	<0.001	<0.01	<0.001	<0.001	0.01	0.006	0.53	0.01	0.02	0.03	2.1 0.21
	002111	8/11/2011	-	0.6	1.1	6.77	<0.1	<1	4370	<0.01	0.015	0.52	<0.0001	0.004	0.004	0.001	29.3	<0.001	4.43	<0.0001	<0.001	0.012	<0.01	<0.001	<0.001	<0.01	0.019	0.88	0.01	<0.01	0.01	1.1 <0.01
	C029P1	8/11/2011 7/11/2011	-	0.7		6.91 7.28	<0.1 <0.1	<1 <1	4260 20,100	<0.01 <0.01	0.013	0.52 2.56	<0.0001 <0.0001	0.004	<0.001 0.003	<0.001 0.006	27.4 5.62	<0.001 <0.001	4.55 4.81	<0.0001 <0.0001	<0.001 0.001	0.015 0.076	<0.01 <0.01	<0.001 <0.001	<0.001 0.05	<0.01 0.02	0.01 0.013	0.93	0.02 0.01	<0.01 <0.01		1.2 <0.01 1.7 0.15
TERTIARY	C025P2	29/09/2011 7/11/2011	6.1	0.8		7.52 7.07	0.4 <0.1		8180 8660	0.03	0.012	1.01	<0.0001 <0.0001	0.005	- <0.001	<0.001 0.002		<0.001 <0.001	1.16 2.19	<0.0001 <0.0001	0.001	<0.001 0.001	0.05	<0.001 <0.001	0.002	0.01	0.006	0.63		<0.01 <0.01	0.03	3.3 0.38 2 0.12
	C029P2	29/09/2011	4.95	0.6	-	7.23	0.3	13	6960	<0.01	0.006	0.92	-	<0.001	<0.001	<0.001	1.74	<0.001	0.448	<0.0001	0.001	0.001	<0.01	<0.001	<0.001	<0.01	0.006	-	-	-	-	
DUNDA BEDS	C027P2	7/11/2011 29/09/2011	-	0.6	0.7	6.96 7.25	<0.1	<1 106	7780 805	<0.01	0.008	0.84	<0.0001	0.002	0.001	0.001	6.33 24.9	<0.001	0.655	<0.0001	<0.001	0.005	<0.01 <0.01	<0.001	<0.001 <0.001	<0.01 <0.01	0.011 0.009	0.42	0.01	<0.01 <0.01	0.01	0.7 0.21
		5/11/2011	-	0.4	0.6	6.79	<0.1		949	0.14	0.012	0.16	<0.0001	0.002	0.002	<0.001	11.3	<0.001	0.883	<0.0001	<0.001	0.01	<0.01	<0.001	<0.001	<0.01	0.01	0.42	0.02	<0.01	0.02	0.6 0.02
	C022P1	3/10/2011 6/10/2011	0.14	0.3		6.76	- <0.1	- <1	301	0.51	<0.001 -	0.15	<0.0001	<0.001 -	0.005	<0.001	0.5	<0.001 -	0.099	<0.0001	<0.001	0.006	<0.01 -	<0.001 -	<0.001 -	<0.01	0.011	0.02	0.03	<0.01 -	0.03	<0.1 0.07
		14/11/2011 10/11/2011	-	0.3	<0.1 0.1	6.73 6.39	<0.1	2 <1	233 209	0.23	0.002	0.07	<0.0001 <0.0001	<0.001	0.009	<0.001		<0.001	0.2	<0.0001 <0.0001	<0.001 <0.001	0.006	<0.01 <0.01	<0.001 <0.001	<0.001 <0.001	<0.01 <0.01	0.028	0.04		<0.01		<0.1 <0.01
REWAN	C035P1	5/10/2011	2.42	0.7	0.6	7.22	<0.1	<1	2290	0.08	0.008	0.64	<0.0001	<0.001	<0.001	<0.001	2.04	<0.001	0.256	<0.0001	< 0.001	<0.001	<0.01	<0.001	<0.001	<0.01	< 0.005	0.1	0.05	<0.01	0.05	0.6 0.15
PERMIAN OVERBURDEN	C008P1	6/11/2011 3/10/2011	- 14.7	0.6		7.24	<0.1 <0.1		2990 14,900	0.03	0.005	0.54	<0.0001 0.0003	0.001	<0.001 0.002	<0.001	0.68	<0.001	0.218 0.181	<0.0001 <0.0001	<0.001 <0.001	<0.001 0.008	<0.01 0.02	<0.001 0.003	<0.001 0.019	<0.01 <0.01	0.006	0.12	0.02	<0.01 <0.01	0.0-	3.9 1.99 0.2 0.04
		12/11/2011	-	0.6		7.23	<0.1	<1	17,200	<0.01	<0.001	1.29	0.0002	0.001	0.004	0.011	0.06	<0.001	1.6	<0.0001	<0.001	0.015	<0.01	0.003	0.018	<0.01	0.118	0.15	<0.01	<0.01	<0.01	0.2 <0.01
	C012P1	2/10/2011 4/10/2011	1.04	- 0.3	- 0.5	7.32	<0.1	- <1	1170 -	- 0.01	<0.001	0.41	<0.0001	<0.001	<0.001	<0.001	<0.05	<0.001	0.182	<0.0001	<0.001	0.001	<0.01	0.001	<0.001	<0.01	0.012	0.2	0.03	0.01	0.04	
	C018P1	8/11/2011 2/10/2011	- 0.21		<0.1 2.7	6.43 7.53	<0.1 <0.1		1350 486	<0.01	<0.001 <0.001	0.32	<0.0001 <0.0001	0.001	<0.001 <0.001	0.002	0.05	<0.001 <0.001		<0.0001 <0.0001	<0.001 <0.001	0.006	<0.01 <0.01	<0.001 <0.001	<0.001 <0.001	<0.01 <0.01	0.037	0.02	0.05	<0.01 0.06	0.05	<0.1 <0.01 2.8 0.07
	001011	6/10/2011	-	-	-	-	-	<1	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	C012P2	8/11/2011 2/10/2011	- 1.3		<0.1		<0.1		541 1680		<0.001 0.006	0.18	<0.0001 <0.0001	0.003	<0.001			<0.001		<0.0001		0.003	<0.01 <0.01	<0.001 <0.001	<0.001 0.001	<0.01 <0.01	0.031	0.03	0.08	<0.01 <0.01		<0.1 <0.01 <0.1 <0.01
		4/10/2011 13/11/2011	-	-	-	-	0.3		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
AB SEAM	C007P2	4/10/2011	- 8.3	0.4		7.75 7.56	0.1 <0.1		1560 10,300	0.01	0.006	0.4	<0.0001 <0.0001	0.001	<0.001 0.001	<0.001 0.002	1.26 0.24	<0.001 <0.001	0.924 0.445	<0.0001 <0.0001	<0.001 0.008	0.003 <0.001	<0.01 <0.01	<0.001 0.004	<0.001 0.003	<0.01 <0.01	0.034 <0.005	0.04 3.07	0.02	<0.01 <0.01	0.02	6.2 1.73
	C007P2	10/11/2011 10/11/2011	-	0.4		7.95 7.73	5.3 6.2		10,700	<0.01 <0.01	0.002	0.51 0.49	<0.0001 0.0001	0.002	<0.001 <0.001	0.001	0.1	<0.001 <0.001	0.304 0.285	<0.0001 <0.0001	0.001	<0.001 <0.001	<0.01 <0.01	<0.001 0.003	0.002	<0.01 <0.01	0.005	2.43 2.48		<0.01 <0.01	0.02	2 <0.01 2.1 0.04
	C008P2	3/10/2011	1.35	0.8	0.9	8.52	5.3	54	1920	0.02	0.004	0.3	<0.0001	< 0.001	<0.001	<0.001	< 0.05	<0.001	0.263	<0.0001	0.005	<0.001	<0.01	<0.001	<0.001	<0.01	< 0.005	0.9	0.02	<0.01	0.02	0.9 0.18
	C014P2	12/11/2011 4/10/2011	- 0.72	0.9	1	8.27 8.61		37 29	1920 1110	0.06	0.008	0.3	<0.0001 <0.0001	0.001	<0.001 0.002	0.001 <0.001	0.06	<0.001 <0.001	0.361 0.084	<0.0001 <0.0001	<0.001 0.009	0.002	<0.01 <0.01	<0.001 <0.001	<0.001 <0.001	<0.01 <0.01	0.019 <0.005	0.85 0.82		<0.01 <0.01	0.01 0.02	1 <0.01 1.1 <0.01
	C016P2	12/11/2011 2/10/2011	- 1.36	1		9.5 10.4	<0.1		1340 1660	0.42	0.004	0.24	<0.0001 <0.0001	0.001	<0.001 <0.001	<0.001 <0.001		<0.001 <0.001	0.002	<0.0001 <0.0001	0.012	0.002	<0.01 <0.01	<0.001 <0.001	<0.001 <0.001	<0.01 <0.01	0.007	0.98	0.02	<0.01 <0.01		1.6 0.28 8.3 0.51
	5010F2	6/10/2011	-	-	-	-	-	20	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	· ·
	C018P2	13/11/2011 2/10/2011	- 1.27	0.3		11.5 7.63	1.9 0.6	- 28	1840 1420	0.02	0.003	0.23	<0.0001 <0.0001	<0.001 <0.001	<0.001 <0.001	<0.001		<0.001	0.001 0.051	<0.0001 <0.0001	0.013	<0.001 <0.001	<0.01 <0.01	<0.001 <0.001	<0.001 <0.001	<0.01 <0.01	0.005	4.32 0.03		<0.01 <0.01	0.02	11.7 <0.01 0.6 0.3
		6/10/2011 9/11/2011	-	- 0.4	- <0.1	- 7.18	- 0.4	<1	- 1360	- <0.01	- <0.001	- 0.5	- <0.0001	- 0.003	- <0.001	- <0.001	- 0.98	- <0.001	- 0.03	- <0.0001	-	- 0.003	- <0.01	- <0.001	- <0.001	- <0.01	- 0.009	- 0.1	- 0.02	- <0.01	-	 <0.1 0.21
	C018P2	9/11/2011	-	0.5	0.4	7.26	0.9	16	1210	< 0.01	0.002	0.46	<0.0001	0.003	<0.001	<0.001	0.57	< 0.001	0.06	<0.0001	<0.001	< 0.001	<0.01	<0.001	<0.001	<0.01	< 0.005	0.31	0.02	<0.01	0.02	0.4 0.23
	C020P2	3/10/2011 6/10/2011	0.84	0.6	0.6	8.21	-	- 2	1050	0.1	0.002	0.48	<0.0001	<0.001	<0.001	<0.001	0.06	<0.001	0.037	<0.0001	0.004	<0.001	<0.01	<0.001	<0.001	<0.01	<0.005	0.04	0.03	<0.01	0.03	0.6 0.23
	0000000	14/11/2011	-	0.6		8.2	1.5	<1	970	0.04		0.41	< 0.0001	< 0.001	< 0.001	< 0.001		< 0.001		< 0.0001		< 0.001	< 0.01	< 0.001	< 0.001	< 0.01		0.52		< 0.01	0.02	
	C032P2	5/10/2011 7/11/2011	0.42	0.7	2	8.09 7.49	<0.1		951 1540	0.02	0.005	0.3	<0.0001 <0.0001	<0.001 0.003	<0.001 <0.001	<0.001 <0.001		<0.001 <0.001	0.264 0.464		0.018	<0.001 0.002	<0.01 <0.01	<0.001 <0.001	<0.001 <0.001	<0.01 <0.01	<0.005 0.005	0.05 0.71	0.01	<0.01 <0.01	0.01	0.4 0.12 2 0.74
	C035P2	5/10/2011 6/11/2011	0.76	0.3		7.15 7.02	0.1		851 1180	0.35	<0.001 <0.001	0.24	<0.0001 <0.0001	<0.001 0.005	<0.001 <0.001	0.002	1.01 2.24	<0.001 <0.001	0.136 0.128	<0.0001 <0.0001		<0.001 0.003	<0.01 <0.01	<0.001 <0.001	<0.001 <0.001	<0.01 <0.01	<0.005	0.04	0.05	<0.01 <0.01		0.2 0.06
INTERBURDEN	C006P1	3/10/2011	7.9	0.7	0.5	7.74	0.2	58	8960	<0.01	0.011		<0.0001	0.004	<0.001	<0.001	1.9	<0.001	0.891	<0.0001	0.029	0.002	<0.01	<0.001	0.014	<0.01	0.006	0.46	0.02	<0.01	0.02	0.5 0.04
	C011P1	10/11/2011 13/11/2011	E	0.6	0.2	7.16 8.17	0.2 <0.1	18 31	11,900 1900	<0.01 0.07	0.01	1.3 0.9	<0.0001 <0.0001	0.004	0.005	0.001 <0.001	3.85 <0.05	<0.001 <0.001	0.687	<0.0001 <0.0001	0.005	0.004	<0.01 <0.01	<0.001 <0.001	0.014 0.004	<0.01 <0.01	0.008	0.27	0.02	<0.01 <0.01	0.02	0.2 <0.01
	C034P1	5/10/2011 6/11/2011	2.78		0.2 <0.1	7.03		1 <1	2870	0.01	0.005	0.6	<0.0001 <0.0001	<0.001 0.001	0.001	<0.001 <0.001		<0.001 <0.001	0.204		<0.001	<0.001 0.001	<0.01 <0.01	<0.001 <0.001	<0.001 <0.001	<0.01 <0.01	<0.005 0.01	0.06	0.06	<0.01 <0.01		0.3 0.05
D SEAM	C006P3r	3/10/2011	0.17	2.2	0.4	8.32	<0.1	12	587	0.14	0.004	0.18	<0.0001	<0.001	<0.001	<0.001	0.8	<0.001	0.046	<0.0001	0.002	<0.001	<0.01	<0.001	<0.001	<0.01	< 0.005	0.34	0.02	<0.01	0.02	0.4 0.08
	C006P3r	12/11/2011 10/11/2011	-		0.4			<1 13	620 568		0.003		<0.0001 <0.0001	0.001	<0.001 <0.001	<0.001 <0.001		<0.001 <0.001		<0.0001 <0.0001		0.003	<0.01 <0.01	<0.001 <0.001	<0.001 <0.001	<0.01 <0.01			<0.01 0.02	<0.01 <0.01		0.4 0.21 0.5 0.02
	C007P3	4/10/2011	0.14	2.6	0.7	8.23	0.2	33	809	0.32	0.004	0.22	<0.0001	<0.001	<0.001		0.18	<0.001	0.052	<0.0001	0.019	<0.001	<0.01	<0.001	0.002	<0.01	< 0.005	0.3		<0.01	0.01	0.7 0.14
	C011P3	10/11/2011 4/10/2011	- 0.42	1.2	0.4	8.31 8.45	1.3 <0.1	8	760 568		0.004		<0.0001 <0.0001	<0.001 <0.001	<0.001 0.002	< 0.001	2.59	<0.001 <0.001		<0.0001 <0.0001		<0.001 <0.001	<0.01 <0.01	<0.001 <0.001	0.002 <0.001	<0.01 <0.01		0.21	0.03	<0.01 <0.01	0.03	0.4 0.05 1.1 0.57
	C018P3	13/11/2011 2/10/2011	- 0.48		0.3		<0.1 <0.1	<1	608 651		0.002		<0.0001 <0.0001	<0.001 <0.001	<0.001 0.001	<0.001 <0.001		<0.001 <0.001		<0.0001 <0.0001		0.001	<0.01 <0.01	<0.001 <0.001	<0.001 <0.001					<0.01 <0.01		0.3 <0.01 0.8 0.09
		6/10/2011	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	C018P3	9/11/2011 9/11/2011	-		0.2	7.35 7.51		2 5	523 554	0.05	0.001	0.29	<0.0001 <0.0001	0.002	<0.001 <0.001	<0.001 <0.001		<0.001 <0.001		<0.0001 <0.0001	<0.001 0.001	0.002	<0.01 <0.01	<0.001 <0.001	<0.001 <0.001		0.014 <0.005			<0.01 <0.01		0.2 0.05 0.3 0.07
	C024P3	6/10/2011	1.28	0.4	0.8	6.52	0.4	108	1150	<0.01	0.007	0.3	<0.0001	<0.001	0.001	< 0.001	14.8	< 0.001	0.261	<0.0001		<0.001	<0.01	<0.001	<0.001	<0.01	< 0.005	<0.01	<0.01	<0.01	<0.01	0.8 0.07
	C034P3	14/11/2011 5/10/2011	1.29	0.5	0.4		<0.1	<1		<0.01	0.004	0.26	<0.0001 <0.0001	0.001 <0.001			1.2	<0.001 <0.001	0.23	<0.0001	<0.001 0.006	0.009 <0.001	<0.01 <0.01	<0.001 <0.001	<0.001 <0.001		<0.005	0.14	0.08	<0.01 <0.01	0.08	0.4 <0.01 0.3 0.07
UNKNOWN	C066 (line 180-3	6/11/2011 35) 11/11/2011	-		<0.1 0.1		<0.1 <0.1	<1			<0.001 <0.001		<0.0001 <0.0001	<0.001 <0.001		<0.001 <0.001		<0.001 <0.001		<0.0001 <0.0001		<0.001 0.004	<0.01 <0.01	<0.001 <0.001	<0.001 <0.001					<0.01 <0.01		<0.1 <0.01 0.3 <0.01
SURFACE WATER	WQ01	6/10/2011	0.931	0.5	0.3	7.79	<0.1	11	703	0.13	<0.001	0.13	<0.0001	<0.001	<0.001	<0.001	0.85	<0.001	0.184	<0.0001	<0.001	<0.001	<0.01	<0.001	<0.001	<0.01	< 0.005	0.03	0.02	<0.01	0.02	0.3 0.05
	WQ03	8/11/2011 5/10/2011	- 0.55		0.5			5 8			0.001		<0.0001 <0.0001	0.002	<0.001 <0.001	<0.001 0.003		<0.001 <0.001			<0.001 <0.001	0.001	<0.01 <0.01	<0.001 <0.001	<0.001 <0.001	<0.01 <0.01			0.01 0.04	<0.01 <0.01		0.5 <0.01
		8/11/2011	-		0.6								<0.0001							<0.0001												0.6 <0.01

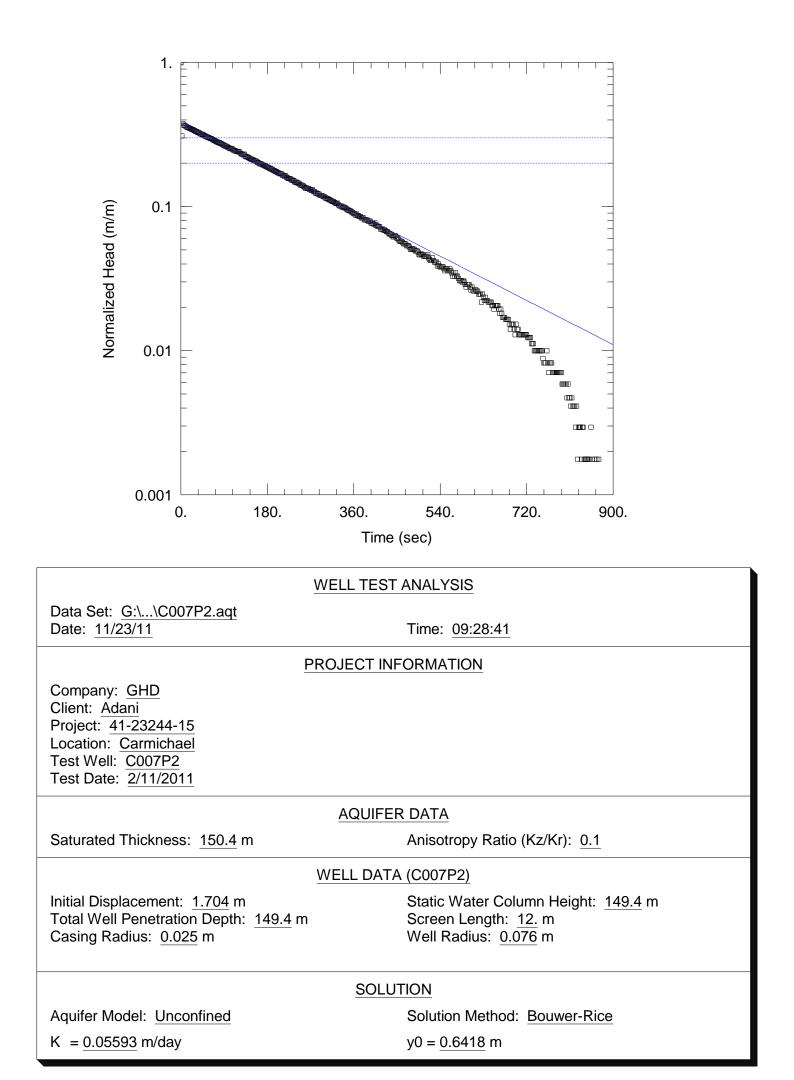
Statistical Summary																															
Number of Results	30	72	70	72	71	70	72	72	72	72	68	72	71	72	71	72	72	72	72	72	72	72	72	72	72	70	70	70	70	70	70
Number of Detects	30	72	59	72	24	43	72	47	57	71	4	32	22	20	62	0	70	0	30	39	4	5	15	4	44	69	65	3	65	59	43
Minimum Concentration	0.14	0.1	<0.1	6.39	<0.1	<1	209	< 0.01	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.05	< 0.001	< 0.001	< 0.0001	< 0.001	< 0.001	<0.01	< 0.001	< 0.001	< 0.01	< 0.005	< 0.01	< 0.01	< 0.01	< 0.01	<0.1	<0.01
Minimum Detect	0.14	0.1	0.1	6.39	0.1	1	209	0.01	0.001	0.05	0.0001	0.001	0.001	0.001	0.05	ND	0.001	ND	0.001	0.001	0.01	0.001	0.001	0.01	0.005	0.02	0.01	0.01	0.01	0.1	0.02
Maximum Concentration	14.7	2.6	11.7	11.5	6.2	108	20,100	5.66	0.028	2.56	0.0003	0.005	0.009	0.011	29.3	< 0.001	4.81	< 0.0001	0.029	0.076	0.05	0.004	0.05	0.02	0.118	4.93	0.2	0.06	0.2	11.7	1.99
Maximum Detect	14.7	2.6	11.7	11.5	6.2	108	20,100	5.66	0.028	2.56	0.0003	0.005	0.009	0.011	29.3	ND	4.81	ND	0.029	0.076	0.05	0.004	0.05	0.02	0.118	4.93	0.2	0.06	0.2	11.7	1.99
Average Concentration	2.4	0.71	1.1	7.6	0.51	16	3218	0.16	0.0047	0.46	0.00006	0.0013	0.0013	0.001	3.3	0.0005	0.57	0.00005	0.003	0.0036	0.006	0.00066	0.0025	0.0054	0.011	0.52	0.028	0.0061	0.03	1.1	0.15
Median Concentration	1.275	0.6	0.5	7.515	0.05	3.5	1340	0.02	0.003	0.335	0.00005	0.0005	0.0005	0.0005	0.8	0.0005	0.1895	0.00005	0.0005	0.001	0.005	0.0005	0.0005	0.005	0.006	0.145	0.02	0.005	0.02	0.5	0.05
Standard Deviation	3.3	0.53	1.9	0.84	1.3	24	4399	0.67	0.0051	0.39	0.000046	0.0012	0.0018	0.0015	6.7	0	1.1	0	0.0054	0.0093	0.0056	0.00064	0.0071	0.002	0.016	0.92	0.031	0.0068	0.032	1.9	0.33
Number of Guideline Exceedances	0	0	0	7	0	0	11	1	0	22	0	0	0	0	52	0	32	0	6	0	1	0	6	0	0	0	0	0	0	3	5
Number of Guideline Exceedances(Detects Only)	0	0	0	7	0	0	11	1	0	22	0	0	0	0	52	0	32	0	6	0	1	0	6	0	0	0	0	0	0	3	5

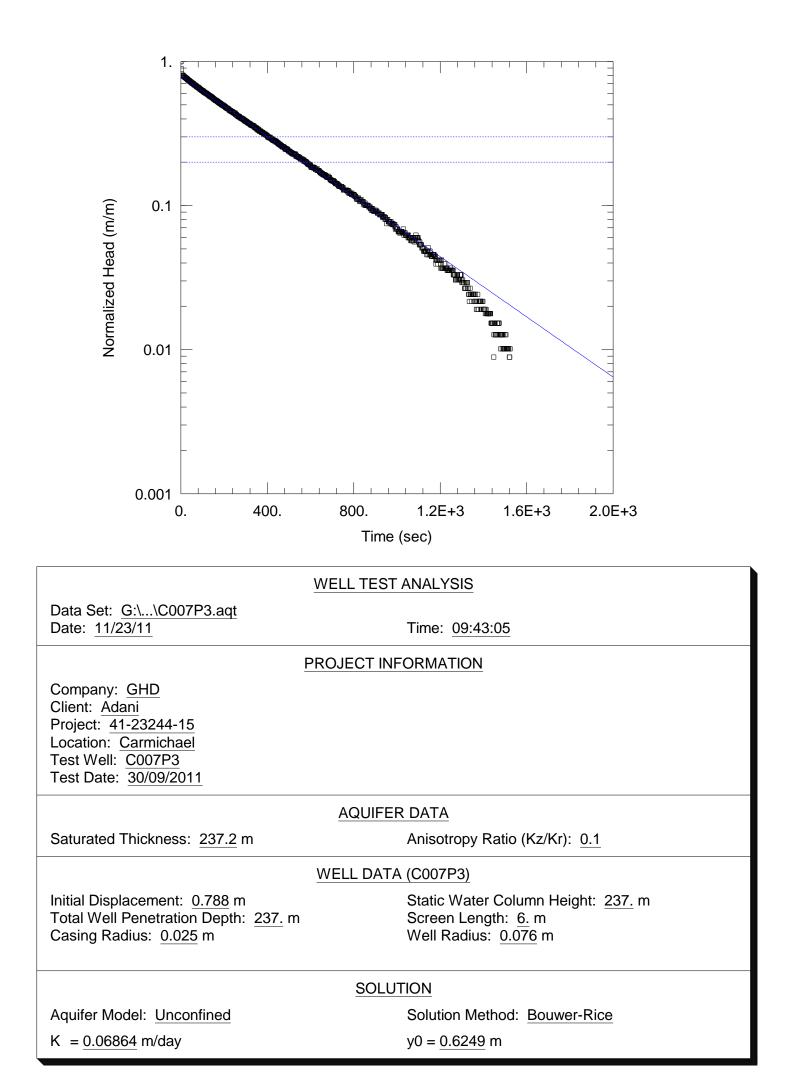
					Alk	alinity							Majo	or lons						BTE	X & M/	AH						ТРН					PAH
				3)	~	~																										втех	
			of Alkalinity (total) as CaCO3		of Alkalinity (Carbonate as CaCO3)		Bicarbonate ⊓	ରି Carbonate ୮	ଥିଥି ମୁମ୍ମ (Filtered)	T)Ba	A Magnesium (Filtered)	Botassium (Filtered)	odium (Filtered)	Sulphate	o Sulphate (Filtered)	aa Anions Total ∏	Deam Total	% Ionic Balance	д Г	ର୍ଥ Ethylbenzene	ର୍ଯ୍ ମୁସି Toluene	년 Xylene (o)	년 Xylene Total			로 TPH C15 - C28 Fraction	호 고 다	B TPH C29 - C36 Fraction	정 TPH C34 - C40 Fraction	DTPH C6 - C 9 Fraction		로 TPH C6 - C10 Fraction minus B1	5 Naphthalene 5 DAHs (Sum of Total) , Calo
EQL			1	1	1	1			1	1	1	1	1	1	1	0.01		0.01	1	2	2	2	2	0.05	0.1	0.1	0.1	0.05	0.1	0.02	0.02	0.02	5
ANZECC (2000) Irrigation (L MonitoringUnit	WellCode	Sampled_Date-Time								700			460						1.000	300	800		600										
ALLUVIUM	C027P1 C029P1	29/09/2011 8/11/2011 8/11/2011 7/11/2011	582 460 480 1590	582 460 480 1590	<1 <1	<1 <1 <1 <1	710 561.2 585.6 1940	<1.2 <1.2 <1.2 <1.2	26 26	1420 1210	111 114 113 362	52 58 57 177	1070 1080 1080 5960	141 107	66 - -	57.6 - -	58.4 - -	0.65 - -	<1 <1 <1 <1	<2 <2 <2 <2	<2 <2 <2 <2	2 2 2 2 2 2 2 2 2	<2 <2 <2 <2	1.45 <0.05 <0.05 <0.05	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 0.11 <0.1	<0.1 <0.1 <0.1 <0.1	<0.05 <0.05 <0.05 <0.05	<0.1 <0.1 <0.1 <0.1	0.35 0.09 0.06 <0.02	0.34 0.1 0.07 <0.02	0.34 0.1 0.07 <0.02	<5 < <5 < <5 < <5 <
TERTIARY	C025P2 C029P2	29/09/2011 7/11/2011 29/09/2011 7/11/2011	746 763 259 274	746 763 259 274	<1 <1 <1 <1	<1 <1 <1 <1	910.1 930.9 316 334.3	<1.2 <1.2 <1.2 <1.2	130	3670 3950	134 130 118 122	79 74 58 75	2700 2680 2280 2180	10 -	54 - 259 -	145 - 122 -	136 - 115 -	3.26 - 2.81 -	<1 <1 <1 <1	<2 <2 <2 <2	16 6 <2 <2	<2 <2 <2 <2	<2 <2 <2 <2	0.06 <0.05 0.11 <0.05	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1		<0.1 <0.1 <0.1 <0.1	0.31 0.06 <0.02 <0.02	0.33 0.06 <0.02 <0.02	0.31 0.05 <0.02 <0.02	<5 < <5 < <5 < <5 <
DUNDA BEDS	C027P2 C022P1	29/09/2011 5/11/2011 3/10/2011 6/10/2011	128 180 36 -	128 180 36 -		<1 <1 <1 -	156.2 219.6 43.92 -	<1.2 <1.2 <1.2 -	3	199	9 10 4 -	10 12 2 -	55 -	-	8 - 16 -	7.97 - 2.94 -	8.2 - 2.87 -	1.38 - - -	<1 <1 <1 -	<2 <2 <2 ·	<2 17 <2 -	<2 <2 <2 ·	2 2 2 ·	0.1 <0.05 <0.05 -	<0.1 <0.1 <0.1 -	<0.1 <0.1 <0.1 -	<0.1 <0.1 <0.1	<0.05 <0.05 <0.05 -	<0.1 <0.1 <0.1	0.09 0.03 0.04 -	0.1 0.04 0.04 -	0.1 0.02 0.04 -	<5 < <5 < <5 <
REWAN	C035P1	14/11/2011 10/11/2011 5/10/2011 6/11/2011	47 45 175 171	47 45 175 171	<1 <1 <1 <1	<1 <1 <1 <1	57.34 54.9 213.5 208.6	<1.2 <1.2 <1.2 <1.2	20	909	4 4 18 18	3 3 6 6	56 57 822 744		- - 60 -	- - 34.9 -	- - 38.4 -	- - 4.76 -	<1 <1 <1 <1	<2 <2 <2 <2	<2 <2 <2 <2 <2	<2 <2 <2 <2	<2 <2 <2 <2	<0.05 <0.05 <0.05 <0.05	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.05 <0.05 <0.05 <0.05	<0.1 <0.1 <0.1 <0.1	<0.02 0.02 <0.02 <0.02	<0.02 0.02 <0.02 <0.02	<0.02 0.02 <0.02 <0.02	<5 < <5 < <5 < <5 <
PERMIAN OVERBURDEN	C008P1 C012P1	3/10/2011 12/11/2011 2/10/2011 4/10/2011	316 298 84 -	316 298 84 -	<1 <1 <1 -	<1 <1 <1 -	385.5 363.6 102.5	<1.2 <1.2 <1.2 -	468	7530	402 442 29 -	90 115 11 -		275	282 - 56 -	236 - 18.3 -	221 - 18.5 -	3.46 - 0.43 -	<1 <1 <1 -	<2 <2 <2 -	2 2 2 2	<2 <2 <2 -		<0.05 0.13 <0.05	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.05 <0.05 <0.05 -	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02	<0.02 <0.02 <0.02	<0.02 <0.02 <0.02 -	<5 <5 <5 <5 <
	C018P1	8/11/2011 2/10/2011 6/10/2011 8/11/2011	82 100 - 83	82 100 - 83	<1 <1 - <1	7 7 7	100 122 - 101.3	<1.2 <1.2 - <1.2	31 7 - 7	551 141 - 255	33 6 - 7	13 12 - 10	301 128 - 134	51 - - 39	- 41 -	- 6.83 - -	- 6.72 -	- 0.85 -	<1 <1 - <1	<2 <2 - <2	2 2 2	& - & &	2 2 2 - 2	<0.05 <0.05 - <0.05	<0.1 <0.1 - <0.1	<0.1 <0.1 - <0.1	<0.1 <0.1 - <0.1	<0.05 <0.05 - <0.05	<0.1 <0.1 - <0.1	<0.02 <0.02 - <0.02	<0.02 <0.02 - <0.02	<0.02 <0.02 - <0.02	<5 < <5 <
AB SEAM	C012P2 C007P2	2/10/2011 4/10/2011 13/11/2011 4/10/2011	276 - 369 205	276 - 369 205	<1 - <1 <1	<1 - <1 <1	336.7 - 450.2 250.1	<1.2 - <1.2 <1.2	- 84	631 - 614	25 - 30 234	12 - 18 52	442 - 384 2740	- - 43	49 - - 554	24.3 - - 170	25.5 - - 168	2.29 - - 0.6	<1 - <1 <1	<2 - <2 <2	<2 - <2 <2	<2 - <2 <2		<0.05 - <0.05 <0.05	<0.1 - <0.1 <0.1	<0.1 - <0.1 0.23	<0.1 - <0.1 0.79	<0.05 - <0.05 0.5	<0.1 - <0.1 0.37	<0.02 - <0.02 <0.02		<0.02 - <0.02 <0.02	
	C007P2 C008P2	10/11/2011 10/11/2011 3/10/2011	264 251 552	264 251 515	<1 <1 36	<1 <1 <1	322.1 306.2 628.3	<1.2 <1.2 43.21	453 486 35	5230 4350 755	267 270 19	66 66 20	2590 2620 732	465 473 -	-	- 33.7	- 35.7	- 2.8	<1 <1 <1	<2 <2 <2	<2 <2 <2	<2 <2 <2	<2 <2 <2	<0.05 <0.05 <0.05	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.05 <0.05 <0.05	<0.1 <0.1 <0.1	0.02 <0.02 <0.02	0.02 <0.02 <0.02	0.02 <0.02 <0.02	<5 < <5 < <5 <
	C014P2 C016P2	12/11/2011 4/10/2011 12/11/2011 2/10/2011	585 390 406 314	585 360 216 <1	<1 30 190 274	<1 <1 <1 40	713.7 439.2 263.5 <1.22	<1.2 36.01 228 328.9	38 20 3 5	683 398 406 735	21 6 3 <1	20 25 33 119	577 415 374 573	31 - <1 -	- 3 - 153	- 19.1 - 30.2	- 20.2 - 28.2	- 2.77 - 3.4	2 <1 <1 <1	<2 <2 <2 <2	5 <2 <2 8	<2 <2 <2 <2	<2 <2 <2 <2 <2	<0.05 <0.05 <0.05 <0.05	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.05 <0.05 <0.05 <0.05	<0.1 <0.1 <0.1 <0.1	0.02 0.17 0.05 0.04	0.03 0.18 0.06 0.04	0.02 0.18 0.06 0.03	<5
	C018P2	6/10/2011 13/11/2011 2/10/2011 6/10/2011 9/11/2011	- 527 221 - 239	- <1 221 - 239	- 306 <1 - <1	- 221 <1 - <1	- <1.22 269.6 - 291.6	- 367.3 <1.2 - <1.2	- 4 45 - 47	578 -	- <1 43 - 47	- 182 18 - 25	- 520 359 - 337	- 21 - 20	- - 14 -	- - 21 -	- 21.9	- - 1.97 -	- <1 <1 - <1	- <2 <2 - <2	- 3 <2 - 2	- <2 <2 -	<2 -	- <0.05 <0.05 - <0.05	- <0.1 <0.1 - <0.1	- <0.1 <0.1 - <0.1	- <0.1 <0.1 - <0.1	- <0.05 <0.05 - <0.05	- <0.1 <0.1 - <0.1	- 0.03 <0.02 - <0.02	- 0.03 <0.02 - <0.02	- 0.03 <0.02 - <0.02	 <5 <1 <5 <1 <5 <1 <
	C018P2 C020P2	9/11/2011 3/10/2011 6/10/2011 14/11/2011	235 246 225 - 257	235 246 225 - 257		<1 <1 - <1	300.1 274.5 - 313.5	<1.2 <1.2 <1.2 - <1.2	47 43 15 - 16	586	40 3 - 3	25 25 4 - 5	306 374 - 310	17 - - 16	- 24 -	- 16.6 -	- 17.4 -	- 2.26 -	<1 <1 - <1	<2 <2 - <2	<2 <2 - 4	<2 <2 · ~	<2 <2 -	<0.05 <0.05 - <0.05	<0.1 <0.1 <0.1 -	<0.1 <0.1 <0.1 - <0.1	<0.1 <0.1 - <0.1	<0.05 <0.05 - <0.05	<0.1 <0.1 - <0.1	<0.02 <0.02 0.05 - 0.04		<0.02 <0.02 0.05 - 0.05	75 45 45
	C032P2 C035P2	5/10/2011 7/11/2011 5/10/2011 6/11/2011	336 535 119 120	336 535 119 120	<1 <1 <1 <1	<1 <1 <1 <1	409.9 652.7 145.2 146.4	<1.2 <1.2 <1.2 <1.2	24 37 12 13	229 934 404 535	6 13 8 8	20 11 6 7	257 294 280 276	- <1 - 17	5 - 11	13.3 - 14	13.4 - 13.6	0.36 - 1.52	<1 <1 <1 <1	<2 <2 <2 <2	<2 <2 <2 <2	<2 <2 <2 <2	<2 <2 <2 <2	<0.05 <0.05 <0.05 <0.05	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.05 <0.05 <0.05 <0.05	<0.1 <0.1 <0.1 <0.1	0.04 <0.02 <0.02 <0.02	0.05 <0.02 <0.02 <0.02	0.05 <0.02 <0.02 <0.02	
NTERBURDEN	C006P1	3/10/2011 10/11/2011 13/11/2011	365 338 669	365 338 669	<1 <1 <1	<1 <1 <1	445.3 412.4 816.2	<1.2 <1.2 <1.2	244 311 18	4800 6240 539	246 429 17	27 66 14	2560 3080 565	- 497 91	573 - -	155 - -	- 144 - -	3.41	<1 <1 <1	<2 <2 <2	<2 <2 <2	<2 <2 <2	<2 <2 <2	<0.05 <0.05 <0.05	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.05 <0.05 <0.05	<0.1 <0.1 <0.1	0.04 <0.02 <0.02	0.04 <0.02 <0.02	0.04 <0.02 <0.02	<5 < <5 < <5 <
SEAM	C034P1 C006P3r	5/10/2011 6/11/2011 3/10/2011 12/11/2011	491 454	165 159 485 454	6 <1	<1 <1 <1 <1	201.3 194 591.7 553.9	<1.2 7.201	9 9	1200 58 59	39 38 4 3	4	209	- <1	1	40.2 - 11.5 -	43.2 - 11.6 -	3.58 - 0.44 -	<1 <1 <1 <1	<2 <2	<2 <2	<2 <2	<2 <2 <2	<0.05 <0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05 <0.05 <0.05	<0.1 <0.1 <0.1 <0.1	<0.02 <0.02 <0.02	<0.02 <0.02 <0.02 <0.02	<0.02 <0.02	<5 <
	C006P3r C007P3 C011P3	10/11/2011 4/10/2011 10/11/2011 4/10/2011	458 487 548 258	458 487 538 245	<1 <1 9	<1 <1 <1 <1	558.8 594.1 656.4 298.9	<1.2 <1.2 10.8 15.6	10 6	56 61 49	3 3 3 5	5 4 6 17	197 297 253	<1 -	- 59 - 2	- 12.7 - 9.82	- 13.8 - 9.52	- 4.05 - 1.57	<1 <1 <1 <1	8 8 8 8	& & & &	<2 <2	<2 <2 <2	<0.05 <0.05	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1	<0.05 <0.05 <0.05 <0.05	<0.1 <0.1 <0.1 <0.1	<0.02 0.05 <0.02 0.02	<0.02 0.05 <0.02 0.03	<0.02 0.05 <0.02 0.03	<5 <
	C018P3	13/11/2011 2/10/2011 6/10/2011 9/11/2011	278 179 - 188	278 179 - 188	<1 <1 - <1	<1 <1 - <1	339.2 218.4 - 229.4	<1.2 <1.2 - <1.2	22 22 - 24	173 213 - 211	6 6 - 6	14 9 - 12	165 189 - 156	- - 15	- 13 - -	- 9.86 - -	- 10 - -	- 0.92 - -	<1 <1 - <1	<2 <2 - <2	<2 <2 <2 <2	<2 <2 - <2	<2 <2 - <2	<0.05 <0.05 - <0.05	<0.1 <0.1 - <0.1	<0.1 <0.1 - <0.1	<0.1 <0.1 - <0.1	<0.05 <0.05 - <0.05	<0.1 <0.1 - <0.1	<0.02 <0.02 - <0.02	<0.02 <0.02 - <0.02	<0.02 <0.02 - <0.02	<5 < <5 < <5 <
	C018P3 C024P3 C034P3	9/11/2011 6/10/2011 14/11/2011 5/10/2011 6/11/2011		204 307 307 137 108	<1 <1	<1	248.9 374.5 374.5 167.1 131.8	<1.2 <1.2 <1.2	23 27 23 32 22	351 374 601	6 51 42 14 11		232 424	<1 -	51	- 16.1 - 20.8	- 17.7 - 21.6	- 4.85 - 1.93	<1 <1 <1 <1 <1	<2	<2 5 4 <2 <2		<2 <2 <2	<0.05 <0.05 0.09 <0.05 <0.05	<0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1	<0.1	<0.05 <0.05 <0.05 <0.05 <0.05	<0.1 <0.1 <0.1 <0.1 <0.1	<0.02	<0.02 0.49 0.36 <0.02 <0.02		
UNKNOWN SURFACE WATER	C066 (line 180-35) WQ01 WQ03	6/11/2011 11/11/2011 6/10/2011 8/11/2011 5/10/2011	25 178	25 178	<1 <1 <1	<1 <1	30.5 217.2 257.4 231.8	<1.2 <1.2 <1.2	3 13 14	158	10 13	6 26 30	82	10 - 9	- 9 - 7	- 12.4 - 14.1	- 12.7 - 14.2	- 1.36 -	<1 - <1 <1 <1	- <2 <2	-	- <2 <2	- <2 <2	<0.05 - <0.05 <0.05 <0.05	- <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	- <0.1 <0.1	<0.05 <0.05 <0.05 <0.05	<0.1 - <0.1 <0.1 <0.1	- <0.02 <0.02	- <0.02	- <0.02 <0.02	 <5 <5 <5 <5
		8/11/2011		193			235.5			341			234		-	-	-	-	<1	<2	<2	<2		<0.05		<0.1		<0.05	<0.1		<0.02		

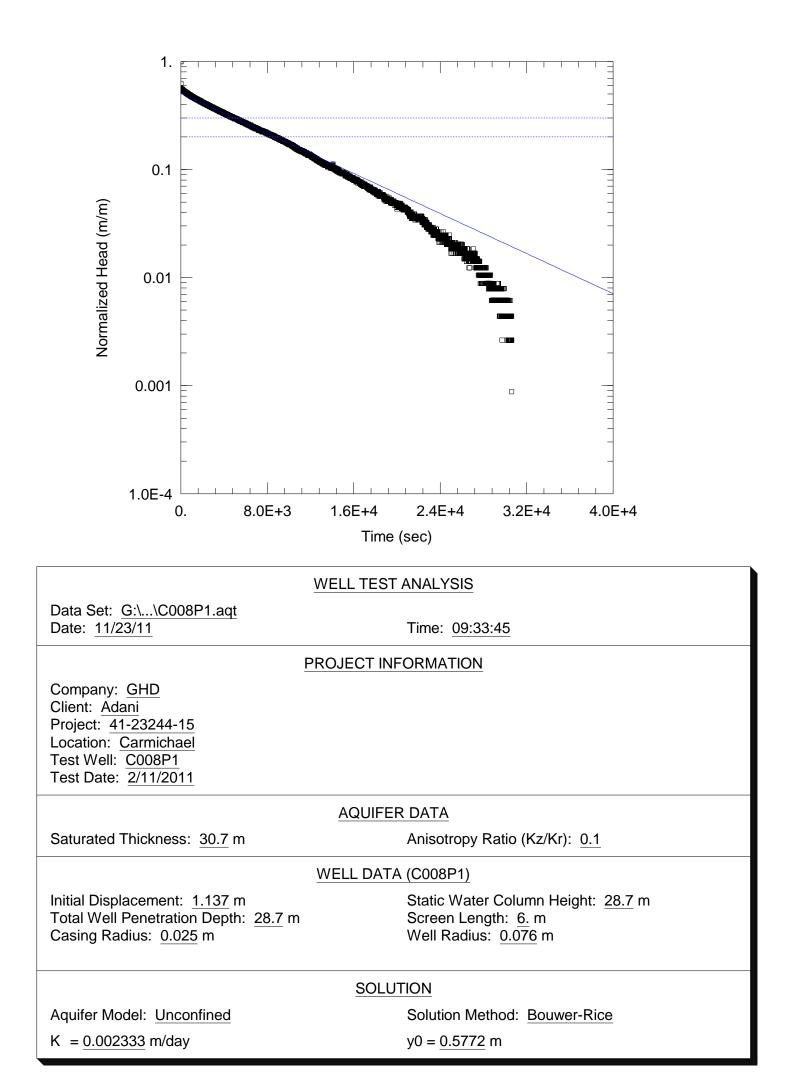
Number of Results	72	72	72	72	66	66	72	72	72	72	72	40	32	32	32	31	75	75	75	75	75	71	71	71	71	71	71	75	75	75	75	7
Number of Detects	72	70	8	2	64	8	72	72	70	72	72	34	32	32	32	31	1	0	10	0	0	7	0	2	1	1	1	25	25	25	0	1
Minimum Concentration	25	<1	<1	<1	<1.22	<1.2	2	49	<1	2	55	<1	1	2.94	2.87	0.36	<1	<2	<2	<2	<2	< 0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	< 0.02	< 0.02	< 0.02	<5	<
Minimum Detect	25	25	6	40	30.5	7.201	2	49	3	2	55	6	1	2.94	2.87	0.36	2	ND	3	ND	ND	0.06	ND	0.11	0.79	0.5	0.37	0.02	0.02	0.02	ND	N
Maximum Concentration	1590	1590	306	221	1940	367.3	558	8430	442	182	5960	686	573	238	221	4.85	2	<2	17	<2	<2	1.45	<0.1	0.23	0.79	0.5	0.37	0.46	0.49	0.48	<5	<
Maximum Detect	1590	1590	306	221	1940	367.3	558	8430	442	182	5960	686	573	238	221	4.85	2	ND	17	ND	ND	1.45	ND	0.23	0.79	0.5	0.37	0.46	0.49	0.48	ND	N
Average Concentration	304	288	12	4.1	357	16	75	1432	66	31	876	93	92	50	48	2.3	0.52	1	1.8	1	1	0.051	0.05	0.053	0.06	0.032	0.055	0.04	0.042	0.041	2.5	2
Median Concentration	257.5	242	0.5	0.5	295.25	0.6	22.5	544	14.5	14.5	335.5	19	46.5	19.95	20.9	1.97	0.5	1	1	1	1	0.025	0.05	0.05	0.05	0.025	0.05	0.01	0.01	0.01	2.5	2
Standard Deviation	228	231	53	26	292	66	137	2163	113	37	1163	162	146	66	62	1.4	0.17	0	2.8	0	0	0.17	0	0.022	0.088	0.056	0.038	0.083	0.087	0.085	0	1
Number of Guideline Exceedances	0	0	0	0	0	0	0	25	0	0	27	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Number of Guideline Exceedances(Detects Only)	0	0	0	0	0	0	0	25	0	0	27	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

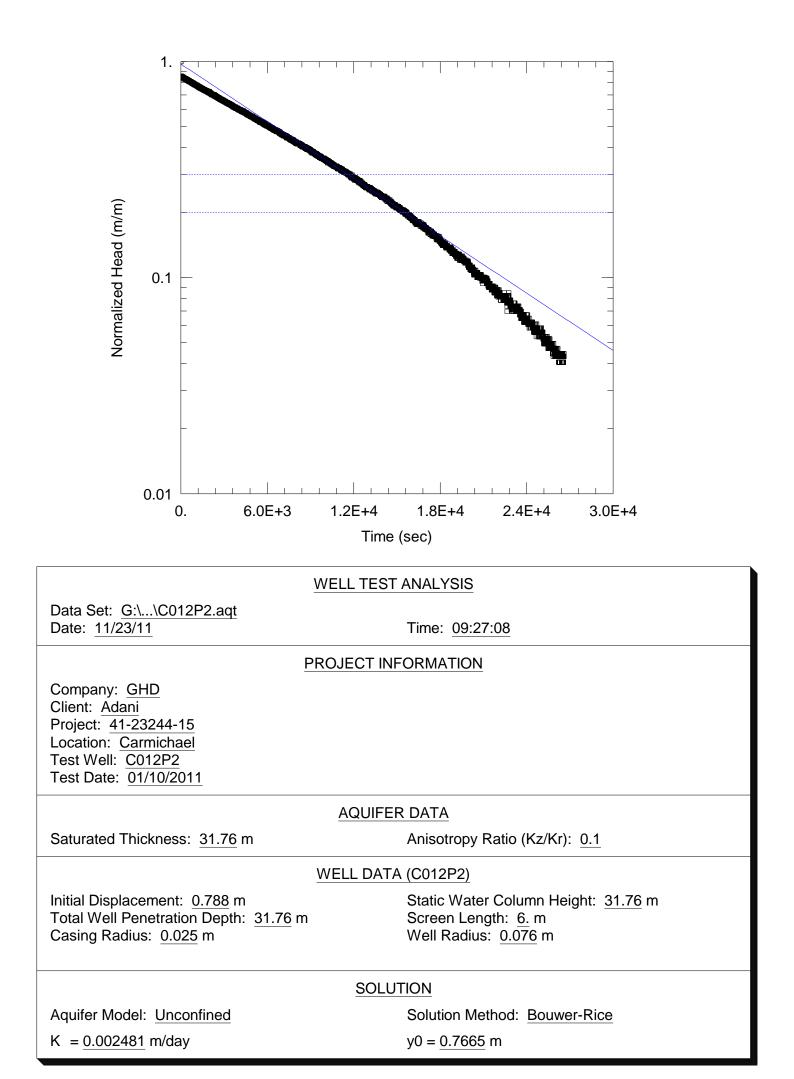
						Inorganic	s											N	letals											Nutrie	nts		
														red)																	d)		
			a	e	ıl Nitrogen Total	6	te		Dissolved Solids	ium (Filtered)	c (Filtered)	ron (Filtered)	um (Filtered)	ium (III+VI) (Filte	(Filtered)	· (Filtered)	ltered)	(Filtered)	nese (Filtered)	y (Filtered)	lenum (Filtered)	(Filtered)	nium (Filtered)	Filtered)	m (Filtered)	um (Filtered)	iltered)	nia as N	rate (as N)	(as N)	gen (Total Oxidise	ogen (Total)	lorus
			sromid	luorid	Kjeldahl	iH (Lab)	sulphide	20	otal D	lumin	vrsenic	soron (admiu	hromi	obalt	opper	ron (Filter	ead (F	langa	lercury	Aolyba	Vickel	seleniu	ilver (Jraniu	'anadi	tinc (F	/m moi	litrate	litrite (litroge	litroge	hospt
EQI			mg/L 0.005	mg/L	mg/L	pH_Units	mg/L		mg/L	mg/L 0.01	mg/L 0.001	mg/L 0.05	mg/L 0.0001	mg/L 0.001	mg/L 0.001	mg/L 0.001	 mg/L 0.05	 mg/L 0.001	mg/L 0.001	- mg/L 0.0001	 mg/L 0.001	mg/L 0.001	mg/L 0.01	mg/L 0.001	mg/L	mg/L 0.01	mg/L 0.005	mg/L 0.01	mg/L 0.01	mg/L 0.01			mg/L 0.01
ANZECC (2000) Lives	stock		0.000	2	0.1	6.5 - 8.5			5000		0.5	5	0.01	1	1		0.00	0.001	0.1		0.05	1	0.02	0.001	0.200		20	0.01	400	30			0.01
MonitoringUnit ALLUVIUM	WellCode C027P1	Sampled_Date-Time 29/09/2011		0.9	2.1	7	<0.1	52	3850	0.01	0.013	0.63		<0.001	<0.001	1 <0.001	16	<0.001	4.49	<0.0001	<0.001	<0.001	<0.01	<0.001	<0.001	0.01	0.006	0.53	0.01	0.02	0.03	2.1	0.21
LEOVION	002711	8/11/2011 8/11/2011	-	0.6	1.1	6.77 6.91	<0.1	<1	4370 4260	<0.01	0.015	0.52	<0.0001	0.004	0.004	0.001	29.3	<0.001	4.43	<0.0001	<0.001	0.012	<0.01 <0.01	<0.001 <0.001	<0.001		0.019		0.01	<0.02 <0.01 <0.01	0.03	1.1	<0.01
	C029P1	7/11/2011	-	0.9	1.7	7.28	<0.1	<1	20,100	<0.01	0.028	2.56	<0.0001	<0.001		0.006		<0.001	4.81	<0.0001	0.001	0.076	<0.01	<0.001	0.05	0.02	0.013	1.35	0.01	<0.01	0.01	1.7	0.15
TERTIARY	C025P2	29/09/2011 7/11/2011	6.1	0.8	3.3 1.8	7.52	0.4 <0.1	<1	8180 8660	<0.01	0.012	1.01	<0.0001 <0.0001	0.005	<0.001	<0.001	24.5	<0.001 <0.001	1.16 2.19	<0.0001 <0.0001	0.001	<0.001	0.05	<0.001 <0.001	<0.001	0.01	0.006	0.63 1.38	0.03	<0.01 <0.01	0.03 0.16	3.3 2	0.38
	C029P2	29/09/2011 7/11/2011	4.95 -	0.6		7.23	0.3 <0.1	<1	6960 7780	<0.01	0.006	0.92	- <0.0001	<0.001 0.002	<0.001	0.001	1.74 6.33	<0.001 <0.001	0.448	<0.0001 <0.0001	0.001	0.001	<0.01 <0.01	<0.001 <0.001	<0.001	<0.01 <0.01	0.006		0.01	<0.01			0.21
DUNDA BEDS	C027P2	29/09/2011 5/11/2011	-	0.5		7.25 6.79	<0.1 <0.1		805 949		0.019 0.012	0.22	- <0.0001	<0.001 0.002	0.007	<0.001		<0.001 <0.001	1.78 0.883	<0.0001 <0.0001	<0.001 <0.001	0.004	<0.01 <0.01	<0.001 <0.001		<0.01 <0.01	0.009	0.97	0.01	<0.01 <0.01		0.6	0.19
	C022P1	3/10/2011 6/10/2011	0.14 -	0.3	<0.1	6.76	- <0.1		301	0.51	<0.001	0.15	<0.0001	<0.001	0.005	-	0.5	<0.001	0.099	<0.0001	<0.001	0.006	<0.01	<0.001	-	<0.01	0.011	0.02	0.03	<0.01	-	-	0.07
		14/11/2011 10/11/2011	-	0.3 0.3	<0.1 0.1	6.73 6.39	<0.1	<1	233 209	0.23	0.002	0.07	<0.0001 <0.0001	<0.001 0.002	0.009	<0.001	2.67 0.76	<0.001 <0.001	0.2	<0.0001 <0.0001	<0.001 <0.001	0.006	<0.01 <0.01	<0.001 <0.001		<0.01 <0.01	0.028	0.04	0.03	<0.01 <0.01	0.02	0.1	<0.01 <0.01
REWAN	C035P1	5/10/2011 6/11/2011	2.42	0.7		7.22 7.24	<0.1 <0.1		2290 2990		0.008	0.64 0.54	<0.0001 <0.0001	<0.001 0.001				<0.001 <0.001		<0.0001 <0.0001	<0.001 <0.001	<0.001 <0.001	<0.01 <0.01	<0.001 <0.001					0.05	<0.01 <0.01			0.15
PERMIAN OVERBURDEN	C008P1	3/10/2011 12/11/2011	14.7	0.5	0.2	7.65 7.23	<0.1 <0.1		14,900		0.002	1.14 1.29	0.0003	0.004	0.002		0.29	<0.001 <0.001	0.181	<0.0001 <0.0001	<0.001 <0.001	0.008	0.02	0.003	0.019 0.018	<0.01 <0.01	0.014 0.118	0.14 0.15	0.02	<0.01 <0.01	0.02		0.04 <0.01
	C012P1	2/10/2011 4/10/2011	1.04	0.3	0.5	7.32	<0.1	- <1	1170	0.01	<0.001	0.41	<0.0001	<0.001	<0.001	- <0.001	<0.05	<0.001	0.182	<0.0001	<0.001	0.001	<0.01	0.001	<0.001	<0.01	0.012	0.2	0.03	0.01	0.04	0.5	0.33
	C018P1	8/11/2011 2/10/2011	- 0.21	0.3		6.43 7.53	<0.1 <0.1		1350 486		<0.001 <0.001	0.32	<0.0001 <0.0001	0.001	<0.001 <0.001		0.05	<0.001 <0.001	0.173	<0.0001 <0.0001	<0.001 <0.001	0.006	<0.01 <0.01	<0.001 <0.001	<0.001 <0.001	<0.01 <0.01	0.037	0.02	0.05	<0.01 0.06			<0.01 0.07
		6/10/2011 8/11/2011	-	-	- <0.1	- 6.5	-	<1 <1	- 541	- 0.03	- <0.001	- 0.18	- <0.0001	- 0.003	-	-	- <0.05	- <0.001	- 0.013	- <0.0001	- <0.001	- 0.003	- <0.01	- <0.001	-	- <0.01	- 0.031	- 0.03	-	- <0.01	- 0.08	-	- <0.01
AB SEAM	C007P2	4/10/2011 10/11/2011	8.3	0.4	6.2 2	7.56 7.95	<0.1 5.3		10,300		0.003	0.41 0.51	<0.0001 <0.0001	0.001 0.002	0.001		0.24	<0.001 <0.001	0.445	<0.0001 <0.0001	0.008	<0.001 <0.001	<0.01 <0.01	0.004	0.003	<0.01 <0.01	<0.005 0.005	3.07	0.03	<0.01 <0.01			1.73
	C008P2	10/11/2011 3/10/2011	- 1.35	0.4			6.2 5.3	38	10,800	< 0.01	0.003	0.49	0.0001	0.002	<0.001	0.001		<0.001	0.285	<0.0001	<0.001	<0.001	<0.01	0.003	0.002	<0.01	<0.005			<0.01	0.01	2.1	0.04
	C012P2	12/11/2011 2/10/2011	- 1.3	0.9	1	8.27 7.86	0.9		1920 1680	0.06	0.008	0.3	<0.0001 <0.0001 <0.0001	0.001	<0.001	0.001	0.06	<0.001	0.361	<0.0001 <0.0001 <0.0001	<0.000 <0.001	0.002	<0.01	<0.001 <0.001	<0.001	<0.01	0.019	0.85	0.01	<0.01	0.01		<0.01 <0.01
	C012P2	4/10/2011 13/11/2011	-	- 0.4	-	- 7.75	0.3	58	- 1560	-	- 0.006	- 0.4	-	-	- <0.001	-	-	-	- 0.924	- <0.0001	- <0.001	- 0.003	- <0.01	- <0.001	-	-	- 0.034	- 0.04	-	- <0.01	-	-	-
	C012P2 C014P2	4/10/2011 12/11/2011	- 0.72	1	0.1	8.61	<0.1		1110	0.01	0.004	0.3	<0.0001	0.001	0.002	<0.001		<0.001	0.084	<0.0001	0.009	0.003	<0.01	<0.001	<0.001	<0.01	<0.005	0.82	0.02	<0.01	0.02	1.1	<0.01 <0.01 0.28
	C016P2	2/10/2011	1.36	1 0.2	1.6 8.3	9.5 10.4	<0.1 4.7	-	1340 1660		0.004	0.24 0.31	<0.0001 <0.0001	0.001 <0.001	<0.001 <0.001		0.18 <0.05	<0.001 <0.001	0.002 <0.001	<0.0001 <0.0001	0.012 0.01	0.002 <0.001	<0.01 <0.01	<0.001 <0.001	<0.001 <0.001	<0.01 <0.01	0.007	0.98 4.93	0.02	<0.01 <0.01		1.6 8.3	0.28
		6/10/2011 13/11/2011	-	0.3	- 11.7	11.5	- 1.9	20 28	1840	0.02	0.003	0.23	- <0.0001	- <0.001	- <0.001		0.05	- <0.001	0.001	<0.0001	0.013	- <0.001	<0.01	<0.001	- <0.001	<0.01	0.005	4.32	0.02	- <0.01			<0.01
	C018P2	2/10/2011 6/10/2011	1.27 -	0.4	0.6	7.63	0.6	- <1	1420	<0.01 -	0.001	0.61	<0.0001	<0.001 -	<0.001	-	1.13	<0.001	0.051	<0.0001	<0.001	<0.001	<0.01	<0.001	<0.001 -	<0.01	0.007	-	0.02	<0.01	-	-	0.3
		9/11/2011 9/11/2011	-	0.4 0.5	0.4	7.18 7.26	0.4 0.9		1360 1210	-	<0.001 0.002	0.5 0.46	<0.0001 <0.0001	0.003	<0.001	<0.001	0.57	<0.001 <0.001		<0.0001 <0.0001	<0.001 <0.001	0.003 <0.001	<0.01 <0.01	<0.001 <0.001		<0.01		0.31	0.02	<0.01 <0.01	0.02	0.4	0.21 0.23
	C020P2	3/10/2011 6/10/2011	0.84	-	0.6 -	8.21	- <0.1		1050	0.1 -	0.002	0.48 -	<0.0001	<0.001	<0.001	-	-	<0.001 -	0.037	<0.0001	0.004	<0.001 -	<0.01	<0.001	<0.001	<0.01	<0.005	-	0.03	<0.01 -	-	-	-
	C032P2	14/11/2011 5/10/2011	- 0.42	0.6	0.6	8.2 8.09	1.5 0.2		970 951	0.04	0.001 0.005	0.41 0.3	<0.0001 <0.0001	<0.001 <0.001	<0.001 <0.001		<0.05 0.33	<0.001 <0.001	0.041	<0.0001 <0.0001	0.002	<0.001 <0.001	<0.01 <0.01	<0.001 <0.001	<0.001 <0.001	<0.01 <0.01	<0.005 <0.005	0.52 0.05	0.02	<0.01 <0.01			<0.01 0.12
	C035P2	7/11/2011 5/10/2011	- 0.76	0.7	2 0.2	7.49 7.15	<0.1 0.1	1	1540 851	0.02	0.013 <0.001	0.3	<0.0001 <0.0001	0.003 <0.001	<0.001 <0.001		1.4 1.01	<0.001 <0.001	0.464 0.136	<0.0001 <0.0001	0.01 <0.001	0.002 <0.001	<0.01 <0.01	<0.001 <0.001	<0.001 <0.001	<0.01 <0.01	0.005 <0.005		0.01	<0.01 <0.01	0.01 0.05	2 0.2	0.74 0.06
NTERBURDEN	C006P1	6/11/2011 3/10/2011	- 7.9	0.3	-	7.02 7.74	<0.1 0.2	11 58	1180 8960	5.66 <0.01	<0.001 0.011	0.2	<0.0001 <0.0001	0.005	<0.001 <0.001	0.001 <0.001	2.24 1.9	<0.001 <0.001	0.128 0.891	<0.0001 <0.0001	<0.001 0.029	0.003	<0.01 <0.01	<0.001 <0.001	<0.001 0.014	<0.01 <0.01	0.01	0.07 0.46	0.03	<0.01 <0.01	0.03		<0.01 0.04
	C011P1	10/11/2011 13/11/2011	-	0.6 0.8		7.16 8.17	0.2 <0.1	18 31	11,900 1900	<0.01 0.07	0.01 0.002	1.3 0.9	<0.0001 <0.0001	0.004	0.005		3.85 <0.05	<0.001 <0.001	0.687 0.113	<0.0001 <0.0001	0.005	0.004 0.009	<0.01 <0.01	<0.001 <0.001		<0.01 <0.01	0.008	0.27 0.12	0.02	<0.01 <0.01	0.02 0.05	0.2	
	C034P1	5/10/2011 6/11/2011	2.78	0.7				1 <1	2870 2810		0.005	0.6	<0.0001 <0.0001			<0.001 <0.001		<0.001 <0.001		<0.0001 <0.0001	<0.001 <0.001	<0.001 0.001	<0.01 <0.01	<0.001 <0.001					0.06	<0.01 <0.01	0.06		
D SEAM	C006P3r	3/10/2011 12/11/2011	0.17	2.2 2.4				12 <1			0.004	0.18	<0.0001 <0.0001			<0.001 <0.001		<0.001 <0.001	0.046	<0.0001 <0.0001	0.002	<0.001 0.003	<0.01 <0.01	<0.001 <0.001	<0.001				0.02	<0.01 <0.01	0.02		0.08
	C007P3	10/11/2011 4/10/2011	- 0.14	2.2	0.5	8.04	<0.1		568 809	0.1	0.003	0.13	<0.0001 <0.0001	0.003	<0.001 <0.001	<0.001	0.44	<0.001 <0.001	0.036	<0.0001 <0.0001	0.002 0.019	<0.001 <0.001	<0.01 <0.01	<0.001 <0.001	<0.001 0.002	<0.01 <0.01	< 0.005	0.33	0.02	<0.01 <0.01		0.5	0.02
	C011P3	10/11/2011 4/10/2011	- 0.42	2.6	0.4	8.31 8.45		38	760 568			0.22	<0.0001 <0.0001		<0.001	<0.001	0.12	<0.001 <0.001	0.042	<0.0001 <0.0001	0.019	<0.001 <0.001	<0.01 <0.01	<0.001 <0.001	0.002	<0.01 <0.01	0.01		0.02	<0.01 <0.01	0.02	0.4	0.05
	C018P3	13/11/2011 2/10/2011	- 0.48	1.2	0.3	8.01 7.81	<0.1	<1	608 651	0.02	0.002	0.35	<0.0001 <0.0001 <0.0001		< 0.001	<0.001	0.88	<0.001	0.09	<0.0001 <0.0001 <0.0001	0.002	0.001	<0.01	<0.001	<0.001	<0.01	0.01	0.29	0.02	<0.01	0.02	0.3	<0.01 0.09
	C018P3	6/10/2011 9/11/2011	-	- 1.2	-	- 7.35	<0.1	<1	- 523	- 0.05	- 0.001	- 0.29	- <0.0001	0.002	-	-	-	- <0.001	- 0.09	- <0.0001	-	- 0.002	- <0.01	- <0.001	-	- <0.01	- 0.014	- 0.21	- 0.02	<0.01	-	-	- 0.05
	C018F3	9/11/2011 9/11/2011 6/10/2011	- - 1.28	1.2	0.3		0.1		554	0.06	0.001	0.29	<0.0001 <0.0001 <0.0001		< 0.001	<0.001	0.4	<0.001 <0.001		<0.0001 <0.0001 <0.0001	<0.001 <0.001	<0.002 <0.001 <0.001	<0.01 <0.01 <0.01	<0.001 <0.001	<0.001	<0.01 <0.01	<0.005	0.06	0.02	<0.01 <0.01	0.02	0.3	
	C034P3	14/11/2011 5/10/2011	- 1.29	0.4	0.4	7.12	1			<0.01	0.004	0.28	<0.0001 <0.0001 <0.0001		< 0.001	0.002	8.37	<0.001	0.236	<0.0001 <0.0001 <0.0001	<0.001 <0.001 0.006	0.009	<0.01 <0.01	<0.001	<0.001	<0.01		0.02	<0.01 <0.01 0.08	<0.01	<0.01	0.4	<0.01
UNKNOWN	C034F3 C066 (line 180-35	6/11/2011	-	0.5 0.3 0.1	<0.1	6.96 6.51		<1		<0.01 <0.01 0.58	0.002 <0.001 <0.001	0.26 <0.05 0.05	<0.0001 <0.0001 <0.0001	<0.001	< 0.001	<0.001	< 0.05	<0.001 <0.001 <0.001	0.23 <0.001 0.048	<0.0001 <0.0001 <0.0001	<0.000 <0.001 <0.001	<0.001 <0.001 0.004	<0.01 <0.01	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.01 <0.01 <0.01	<0.005	0.09	0.08	<0.01 <0.01 <0.01		<0.1	0.07 <0.01 <0.01
SURFACE WATER	WQ01	6/10/2011	- 0.931	0.5	0.3	7.79	<0.1	11	703	0.13	<0.001	0.13	<0.0001	<0.001	<0.001	<0.001	0.85	<0.001	0.184	<0.0001	<0.001	<0.001	<0.01	<0.001	<0.001	<0.01	< 0.005	0.03	0.02	<0.01	0.02	0.3	0.05
	WQ03	8/11/2011 5/10/2011	- 0.55		0.5			8	1340 859	0.1	0.001	0.12	<0.0001 <0.0001		< 0.001	<0.001	0.5	<0.001	0.2	<0.0001 <0.0001	<0.001	0.001	<0.01 <0.01	<0.001 <0.001			< 0.005	0.03	0.01		0.04	0.5	<0.01
		8/11/2011	-	0.5	0.6	8.04	<0.1	1	1350	0.17	<0.001	0.14	<0.0001	<0.001	<0.001	0.002	0.72	<0.001	0.298	<0.0001	<0.001	0.001	<0.01	<0.001	<0.001	<0.01	<0.005	0.03	0.02	<0.01	0.02	0.6	<0.01
Statistical Summary Number of Results				65				64		65		65	62	65	64		64	65	65	65	65	65	65	65	65	65	65	64	64	64			64
Number of Detects Minimum Concentration	n		26 0.14	0.1	<0.1	65 6.39	<0.1	41 <1	65 209	42 <0.01		64 <0.05	3 <0.0001			<0.001		0 <0.001	63 <0.001	0 <0.0001	28 <0.001	35 <0.001	3 <0.01	5 <0.001					60 <0.01	3 <0.01	<0.01	<0.1 <	40 <0.01
Minimum Detect Maximum Concentratio	on		0.14 14.7	2.6		6.39 11.5	0.1 6.2	108	209 20,100		0.001 0.028	0.05 2.56	0.0001 0.0003	0.001 0.005	0.009	0.011	0.05 29.3	ND <0.001	0.001 4.81	ND <0.0001	0.001 0.029	0.001 0.076	0.01 0.05	0.001 0.004	0.001 0.05	0.01 0.02	0.005 0.118	0.02 4.93	0.01 0.2	0.01 0.06	0.2	11.7	0.02 1.99
Maximum Detect Average Concentration	n		14.7 2.4	2.6 0.73		11.5 7.6	6.2 0.53	108 16			0.028	2.56 0.45	0.0003	0.005	0.009		29.3 3.3	ND 0.0005	4.81 0.58	ND 0.00005	0.029	0.076	0.05	0.004	0.05	0.02	0.118	4.93 0.55	0.2 0.029	0.06	0.2 0.03		1.99 0.16
Median Concentration Standard Deviation			1.155 3.4	0.6	0.5	7.51	0.05		1340	0.02	0.003	0.31	0.00005	0.0005	0.0005	0.0005	0.74	0.0005	0.184	0.00005	0.0005	0.001	0.005	0.0005		0.005	0.006	0.205	0.02	0.005		0.5	0.05
Number of Guideline Ex		Only)	0	5	0	7	0	0	12	1	0	0	0	0	0	0	0	0	42 42	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Number of Guideline Ex	ACCEURINES (DeleCIS	0111y/	U	5	U	. /	U		14		J	U	U	U	U	U		, v	44	U	U	U			U		U	U	v	v		0	U I

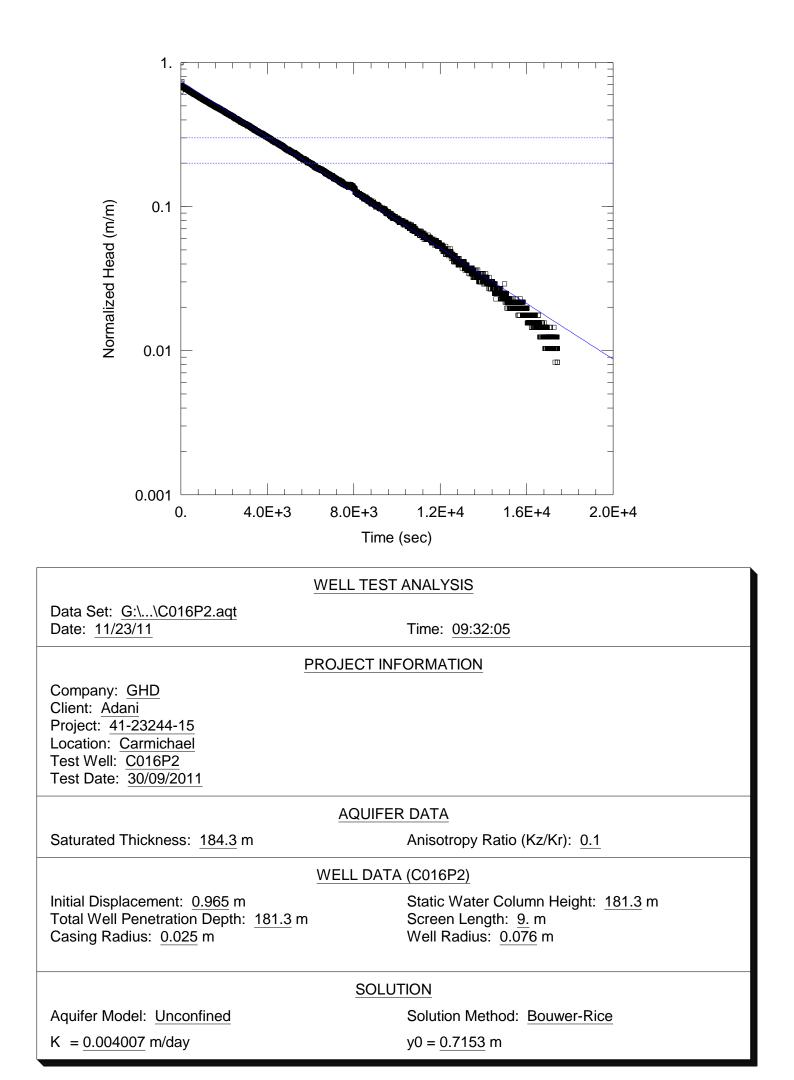
					Alka	alinity							Maio	r lons						BTEX	& MA	н						ТРН					PA	Н
			(total) as CaCO3	(Bicarbonate as CaCO3)	(Carbonate as CaCO3)	(Hydroxide) as CaCO3	a		ltered)		(Filtered)	(Filtered)	ed)		(Filtered)	a	al	е		eu			-	C14 Fraction	C16 Fraction	C28 Fraction	C34 Fraction	C36 Fraction	C40 Fraction	- C 9 Fraction	C10 Fraction	C10 Fraction minus BTEX	•	of Total) - Calc
			Alkalinity (t	Alkalinity (E	Alkalinity (C	Alkalinity (H	Bicarbonate	Carbonate	Calcium (Fi	Chloride	Magnesium	Potassium (Filtered)	Sodium (Filter	Sulphate	Sulphate (F	Anions Total	Cations Total	lonic Balan	Benzene	Ethylbenze	Toluene	Xylene (o)	Xylene Total	трн с10 - с	трн с10- с	трн с15 - с	трн С16 - С	трн С29 - С	трн сз4 - с	трн се - с	трн с6 - с1	трн с6 - с1	Naphthalen	PAHs (Sum
EQL			mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	. mg/L	mg/L	mg/L	mg/L	meq/L 0.01	meq/L 0.01	% 0.01	µg/L 1	μg/L 2	µg/L		µg/L	mg/L	mg/L 0.1	mg/L 0.1	mg/L 0.1	mg/L 0.05	mg/L	mg/L 0.02	mg/L	mg/L 0.02	μg/L 5	µg/L
ANZECC (2000) Livest	tock								1000					1000					1.000	300	800		600											
MonitoringUnit ALLUVIUM	WellCode C027P1	Sampled_Date-Time 29/09/2011	582	582	<1	<1	710	<1.2	27	1580	111	52	1070	-	66	57.6	58.4	0.65	<1	<2	<2	<2	<2	1.45	<0.1	-0.1	<0.1	<0.05	<0.1	0.35	0.34	0.34		<5
ALLO VIONI	002111	8/11/2011	460	460	<1	<1	561.2	<1.2	26	1420	114	58	1080	141	-	-	-	-	<1	<2	<2	<2	<2	<0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	0.09	0.1	0.1	<5	<5
	C029P1	8/11/2011 7/11/2011	480 1590	1590		<1 <1	585.6 1940	<1.2 <1.2	26 87	1210 8430	362	177	1080 5960	107 686	-	-	-	-	<1 <1	<2 <2	<2 <2	<2 <2			<0.1 <0.1	0.11 <0.1	<0.1 <0.1	<0.05 <0.05	<0.1 <0.1	0.06 <0.02	0.07 <0.02	0.07 <0.02	<5 <5	<5 <5
TERTIARY	C025P2	29/09/2011 7/11/2011	746 763		<1 <1	<1 <1	910.1 930.9	<1.2 <1.2	107 130	4570 3670			2700 2680	- 10	- 54	145	136	3.26	<1 <1	<2 <2	16 6	<2 <2	<2 <2		<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	<0.1 <0.1	0.31 0.06	0.33	0.31 0.05	<5 <5	<5 <5
	C029P2	29/09/2011 7/11/2011	259 274		<1 <1	<1 <1	316 334.3	<1.2 <1.2	100 95	3950 3740	118	58	2280 2180	- 246	259	122	115	2.81	<1 <1	<2 <2	<2 <2	<2 <2	<2 <2		<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	<0.1 <0.1	<0.02 <0.02	<0.02	<0.02 <0.02		<5 <5
DUNDA BEDS	C027P2	29/09/2011	128	128	<1	<1	156.2	<1.2	4	186	9	10	161	-	8	7.97	8.2	1.38	<1	<2	<2	<2	<2	0.1	<0.1	<0.1	<0.1	< 0.05	<0.1	0.09	0.1	0.1	<5	<5
	C022P1	5/11/2011 3/10/2011	180 36	180 36	<1 <1	<1 <1	219.6 43.92	<1.2 <1.2	3 2	199 67	10 4		175 55	- 14	- 16	- 2.94	- 2.87	-	<1 <1	<2 <2	17 <2	<2 <2			<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	<0.1 <0.1	0.03	0.04			<5 <5
		6/10/2011 14/11/2011	- 47	- 47	- <1	· ~	- 57.34	- <1.2	- 3	- 70	- 4	- 3	- 56	- 18	-		-	-	- <1	- <2	- <2	- <2	- <2	- <0.05	- <0.1	- <0.1	- <0.1	- <0.05	- <0.1	- <0.02	- <0.02	- <0.02	- <5	- <5
REWAN	C035P1	10/11/2011 5/10/2011	45 175	45 175	<1 <1	<1 <1	54.9 213.5	<1.2 <1.2	2 21	77 1070	4 18	3	57 822	16	- 60	- 34.9	- 38.4	- 4.76	<1 <1	<2 <2	<2	<2 <2	<2	<0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	<0.1 <0.1	0.02	0.02	0.02 <0.02	<5	<5 <5
		6/11/2011	171	171	<1	<1	208.6	<1.2	20	909	18	6	744	50	-	-	-	-	<1	<2	<2	<2	<2	<0.05	<0.1	<0.1	<0.1	<0.05	<0.1	<0.02	<0.02	<0.02	<5	<5
PERMIAN OVERBURDEN	C008P1	3/10/2011 12/11/2011	316 298	316 298	<1	<1 <1	385.5 363.6	<1.2 <1.2	505 468	7950 7530		115	3680 3810	- 275		- 236	221	3.46	<1 <1	<2 <2		<2 <2	<2	0.13	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	<0.1 <0.1		<0.02 <0.02			<5 <5
	C012P1	2/10/2011 4/10/2011	- 84	- 84	<1	<1	102.5	<1.2	- 26	549	29	11	334	-	56	18.3	18.5	0.43	<1	<2	<2	<2	<2 -	<0.05	<0.1	<0.1	<0.1	<0.05	<0.1	<0.02	<0.02	<0.02	<5	<5
	C018P1	8/11/2011	82 100	82	<1	<1	100	<1.2	31 7	551	33 6	13	301	51	-	-	-	- 0.85	<1	<2	<2	<2 <2	<2 <2		<0.1	<0.1	<0.1	< 0.05	<0.1	< 0.02	< 0.02	<0.02		<5
	CUIBFI	2/10/2011 6/10/2011	-	100	-	<1 -	- 122	<1.2 -	-	141 -	-	-	128	-	41 -	6.83 -	6.72	-	<1 -	<2 -	-	-	-	-	<0.1 -	<0.1 -	<0.1 -	<0.05 -	<0.1 -	<0.02	<0.02 -	-	-	<5 -
AB SEAM	C007P2	8/11/2011 4/10/2011	83 205	83 205	<1 <1	<1 <1	101.3 250.1	<1.2 <1.2	7 558	255 5460	7 234	_	134 2740	39	- 554	- 170	- 168	- 0.6	<1 <1	<2 <2		<2 <2			<0.1 <0.1	<0.1 0.23	<0.1 0.79	<0.05	<0.1 0.37		<0.02 <0.02			<5 <5
		10/11/2011 10/11/2011	264 251	264 251	<1 <1	<1 <1	322.1 306.2	<1.2 <1.2	453 486	5230 4350	267 270	66	2590 2620	465 473	-	•	-	-	<1 <1	<2 <2		<2 <2			<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	<0.1 <0.1	0.02	0.02	0.02	<5	<5 <5
	C008P2	3/10/2011	552	515	36	<1	628.3	43.21	35	755	19	20	732	-	66	33.7	35.7	2.8	<1	<2	<2	<2	<2	<0.05	<0.1	<0.1	<0.1	<0.05	<0.1	<0.02	<0.02	<0.02	<5	<5
	C012P2	12/11/2011 2/10/2011	585 276	585 276	<1 <1	<1 <1	713.7 336.7	<1.2 <1.2	38 78	683 631	21 25		577 442	31 -	- 49	- 24.3	- 25.5	- 2.29	2 <1	<2 <2		<2 <2			<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	<0.1 <0.1	0.02	0.03 <0.02	0.02 <0.02	<5 <5	<5 <5
	C012P2	4/10/2011 13/11/2011	- 369	- 369	- <1	- <1	- 450.2	- <1.2	- 84	- 614	- 30	- 18	- 384	- 43	-	-	-	-	- <1	- <2	- <2	- <2	- <2	- <0.05	- <0.1	- <0.1	- <0.1	- <0.05	- <0.1	- <0.02	- <0.02	- <0.02	- <5	- <5
	C014P2	4/10/2011	390	360	30	<1	439.2	36.01	20	398	6	25	415	-	3	19.1	20.2	2.77	<1	<2	<2	<2	<2	<0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	0.17	0.18	0.18	<5	<5
	C016P2	12/11/2011 2/10/2011	406 314	216 <1	190 274	<1 40	263.5 <1.22	228 328.9	3 5	406 735	3 <1	33 119	374 573	<1 -	- 153	- 30.2	- 28.2	3.4	<1 <1	<2 <2					<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	<0.1 <0.1	0.05	0.06	0.06		<5 <5
		6/10/2011 13/11/2011	- 527	- <1	- 306	- 221	- <1.22	- 367.3	- 4	- 659	- <1	- 182	- 520	- 21	-	-	-	-	- <1	- <2	- 3	- <2	- <2	- <0.05	- <0.1	- <0.1	- <0.1	- <0.05	- <0.1	- 0.03	- 0.03	- 0.03	- <5	- <5
	C018P2	2/10/2011 6/10/2011	221	221	<1	<1	269.6	<1.2	45	578	43	18	359	-	14	21	21.9	1.97	<1	<2	<2	<2	<2	<0.05	<0.1	<0.1	<0.1	<0.05	<0.1	<0.02	<0.02	<0.02	<5	<5
		9/11/2011	239	239	<1	<1	291.6	<1.2	47	659	47	25	337	20	-	-	-	-	<1	<2					<0.1	<0.1	<0.1	< 0.05	<0.1		<0.02	<0.02	<5	<5
	C020P2	9/11/2011 3/10/2011	246 225	246 225	<1 <1	<1 <1	300.1 274.5	<1.2 <1.2	43 15	586 411	40 3	25 4	306 374	17	- 24	- 16.6	- 17.4	- 2.26	<1 <1	<2 <2		<2 <2			<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	<0.1 <0.1	<0.02	<0.02 0.05	<0.02 0.05	<5 <5	<5 <5
		6/10/2011 14/11/2011	- 257	- 257	- <1	- <1	- 313.5	- <1.2	- 16	- 406	- 3	- 5	- 310	- 16	-	-	-	-	- <1	- <2	- 4	- <2	- <2	- <0.05	- <0.1	- <0.1	- <0.1	- <0.05	- <0.1	- 0.04	- 0.05	- 0.05	- <5	- <5
	C032P2	5/10/2011 7/11/2011	336 535	336 535	<1 <1	<1	409.9 652.7	<1.2 <1.2	24 37	229 934	6 13	20 11	257 294	- <1	5	13.3	13.4	0.36	<1 <1	<2 <2	<2	<2 <2	<2	<0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	<0.1 <0.1	0.04	0.05	0.05 <0.02	<5	<5 <5
	C035P2	5/10/2011	119	119	<1	<1 <1	145.2	<1.2	12	404	8	6	280	-	- 11	- 14	13.6	- 1.52	<1	<2	<2	<2	<2	<0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	<0.02	<0.02 <0.02	< 0.02	<5	<5
NTERBURDEN	C006P1	6/11/2011 3/10/2011	120 365	120 365	<1 <1	<1 <1	146.4 445.3	<1.2 <1.2	13 244	535 4800	8 246	7 27	276 2560	17	- 573	- 155	- 144	- 3.41	<1 <1	<2 <2	<2 <2				<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	<0.1 <0.1		<0.02 0.04			<5 <5
	C011P1	10/11/2011 13/11/2011	338 669	338 669	<1 <1	<1 <1	412.4 816.2	<1.2 <1.2	311 18	6240 539	429 17	66 14	3080 565	497 91	-	-	-	-	<1 <1	<2 <2					<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	<0.1 <0.1		<0.02 <0.02	<0.02 <0.02		<5 <5
	C034P1	5/10/2011	165	165	<1	<1	201.3	<1.2	62	1220	39	11	842	-	120	40.2	43.2	3.58	<1	<2	<2	<2	<2	<0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	<0.02	<0.02	< 0.02		<5
SEAM	C006P3r	6/11/2011 3/10/2011	159 491	159 485		<1 <1	194 591.7	<1.2 7.201	59 9	1200 58	4	4	862 246	108	- 1	- 11.5	- 11.6	- 0.44	<1 <1	<2 <2	<2	<2	<2	<0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	<0.1 <0.1	<0.02	<0.02 <0.02	< 0.02	<5	<5
		12/11/2011 10/11/2011	454 458	454 458	<1 <1	<1 <1	553.9 558.8	<1.2 <1.2	9 9	59 56	3	5 5	209 197	<1 <1	-	-	-	-	<1 <1	<2 <2					<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	<0.1 <0.1		<0.02 <0.02			<5 <5
	C007P3	4/10/2011 10/11/2011	487 548	487 538	<1 9	<1 <1	594.1 656.4	<1.2 10.8	10 6	61 49	3 3	4	297 253	- 45	59	12.7	13.8	4.05	<1 <1	<2 <2	<2	<2			<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	<0.1 <0.1	0.05	0.05 <0.02	0.05 <0.02		<5 <5
	C011P3	4/10/2011	258	245	13	<1	298.9	15.6	17	164	5	17	180	-	2	9.82	9.52	1.57	<1	<2	<2	<2	<2	<0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	0.02	0.03	0.03	<5	<5
	C018P3	13/11/2011 2/10/2011	278 179	278 179	<1 <1	<1 <1	339.2 218.4	<1.2 <1.2	22 22	173 213			165 189	<1 -	- 13	- 9.86	- 10	- 0.92	<1 <1	<2 <2					<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	<0.1 <0.1		<0.02 <0.02			<5 <5
	C018P3	6/10/2011 9/11/2011	- 188	- 188	- <1	- <1	- 229.4	- <1.2	- 24	- 211	-	- 12	- 156	- 15	-	-	-	-	- <1	- <2		- <2	- <2	- <0.05	- <0.1	- <0.1	- <0.1	- <0.05	- <0.1	-	- <0.02	- <0.02	- <5	- <5
	C024P3	9/11/2011 6/10/2011	204 307	204 307	<1 <1	<1 <1	248.9 374.5	<1.2 <1.2	23 27	211 351	6 51	13 17	158 270	10	- 2	- 16.1	- 17.7	- 4.85	<1 <1						<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	<0.1 <0.1		<0.02 0.49			<5 <5
		14/11/2011	307	307	<1	<1	374.5	<1.2	23	374	42	17	232	<1	-	-	-	-	<1	<2	4	<2	<2	0.09	<0.1	<0.1	<0.1	< 0.05	<0.1	0.34	0.36	0.36	<5	<5
	C034P3	5/10/2011 6/11/2011	137 108	137 108	<1 <1	<1 <1	167.1 131.8	<1.2 <1.2	32 22	601 478		15 14	424 295	- 24	51 -	20.8	21.6	1.93 -	<1 <1		<2 <2				<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	<0.1 <0.1		<0.02 <0.02	<0.02 <0.02		
UNKNOWN SURFACE WATER	C066 (line 180-35) WQ01	11/11/2011 6/10/2011	25 178	25 178	<1 <1	<1 <1	30.5 217.2	<1.2 <1.2	3 13	158 305	10 13	6 26	82 237	10	- 9	- 12.4	- 12.7	- 1.36	- <1	- <2	- <2	- <2	- <2	- <0.05	- <0.1	- <0.1	- <0.1	- <0.05	- <0.1	- <0.02	- <0.02	- <0.02	- <5	- <5
		8/11/2011	211	211	<1	<1	257.4	<1.2	14	343	12	30	253	9	-	-	-	-	<1	<2	<2	<2	<2	<0.05	<0.1	<0.1	<0.1	< 0.05	<0.1	<0.02	< 0.02	< 0.02	<5	<5
	WQ03	5/10/2011 8/11/2011	190 193	190 193	<1 <1	<1 <1	231.8 235.5	<1.2 <1.2	14 14	361 341		27 30	267 234	- 6	7	14.1 -	14.2 -	0.38 -	<1 <1	<2 <2				<0.05 <0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	<0.1 <0.1		<0.02 <0.02			
tatistical Summary			a-			A C		A C	<u>a</u> -				<u>a</u> -	<u> </u>				-			<u></u>						<u>.</u>							
Number of Results Number of Detects			65 65	65 63	65 8	65 2	65 63	65 8	65 65	65 65	65 63	65 65	65 65	37 31	28 28	28 28	28 28	27 27	64 1				64 0		64 0	64 2	64 1	64 1	64 1	64 23	64 23	64 23	64 0	64 0
Ainimum Concentration Ainimum Detect	n		25 25	<1 25	<1 6	<1 40	<1.22 30.5	<1.2 7.201	2	49 49	<1 3	2	55 55	<1 6	1	2.94 2.94	2.87 2.87	0.36	<1 2	<2 ND					<0.1 ND	<0.1 0.11	<0.1 0.79	<0.05	<0.1 0.37	<0.02 0.02	<0.02 0.02	<0.02 0.02	<5 ND	<5 ND
Aaximum Concentratio	n		1590 1590	1590	306	221 221	1940 1940	367.3	558	8430 8430	442	182 182	5960 5960	686 686	573	236 236	221 221	4.85	2	<2	17	<2	<2	1.45	<0.1 ND	0.23	0.79	0.5	0.37	0.46	0.49	0.48	<5	<5
Average Concentration	1		311	294	14	4.5	359	16	73	1405	65	32	869	97	91	46	45	2.2	0.52	1	1.9	1	1	0.053	0.05	0.054	0.062	0.032	0.055	0.044	0.047	0.045	2.5	2.5
Median Concentration Standard Deviation			258 238	245 241	0.5 55	0.5 28	298.9 294	0.6 66	23 133	539 2107			334 1165	20 168	45 151	18.7 60	19.35 57	1.97 1.4	0.5 0.19						0.05	0.05	0.05	0.025	0.05 0.04	0.01 0.089	0.01 0.093		2.5 0	2.5 0
Number of Guideline Ex Number of Guideline Ex	xceedances xceedances(Detects Onl	v)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	NOCCURING A LEGIS UNI	11	U	1 0	0	v	v	v	U	U	U	U	U	U	U	v		U		v	U	v	v	v	v	U	U	U	v	U	U		U	U

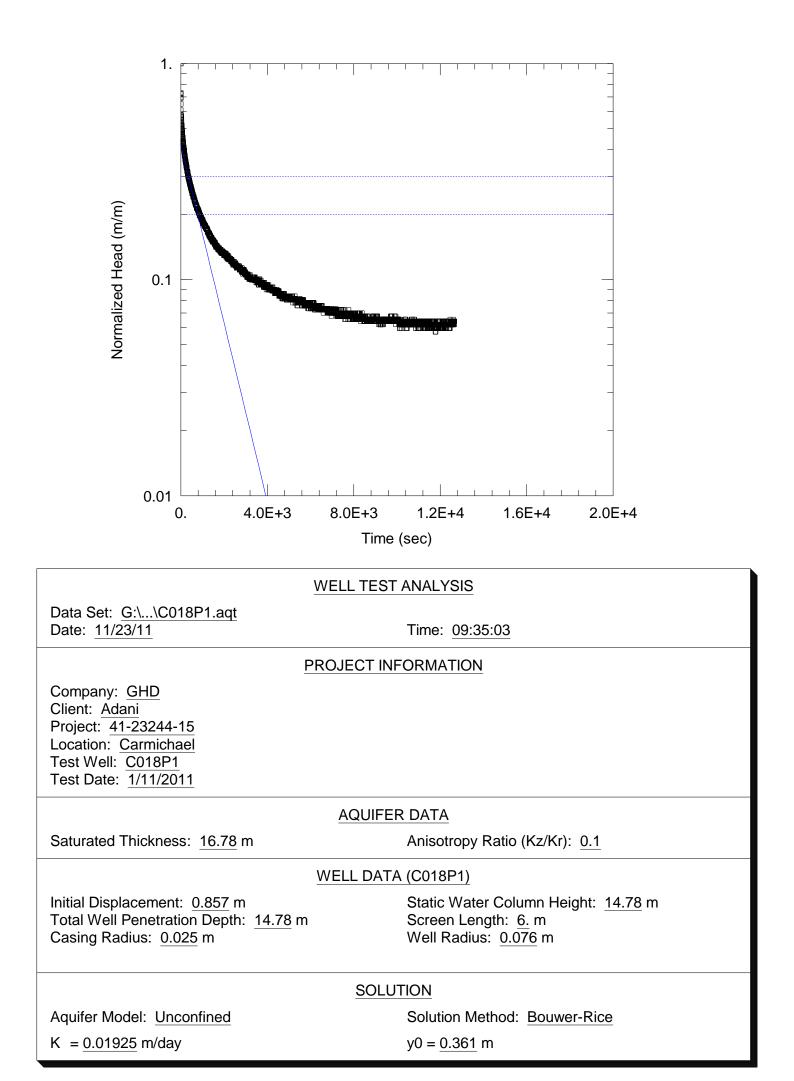


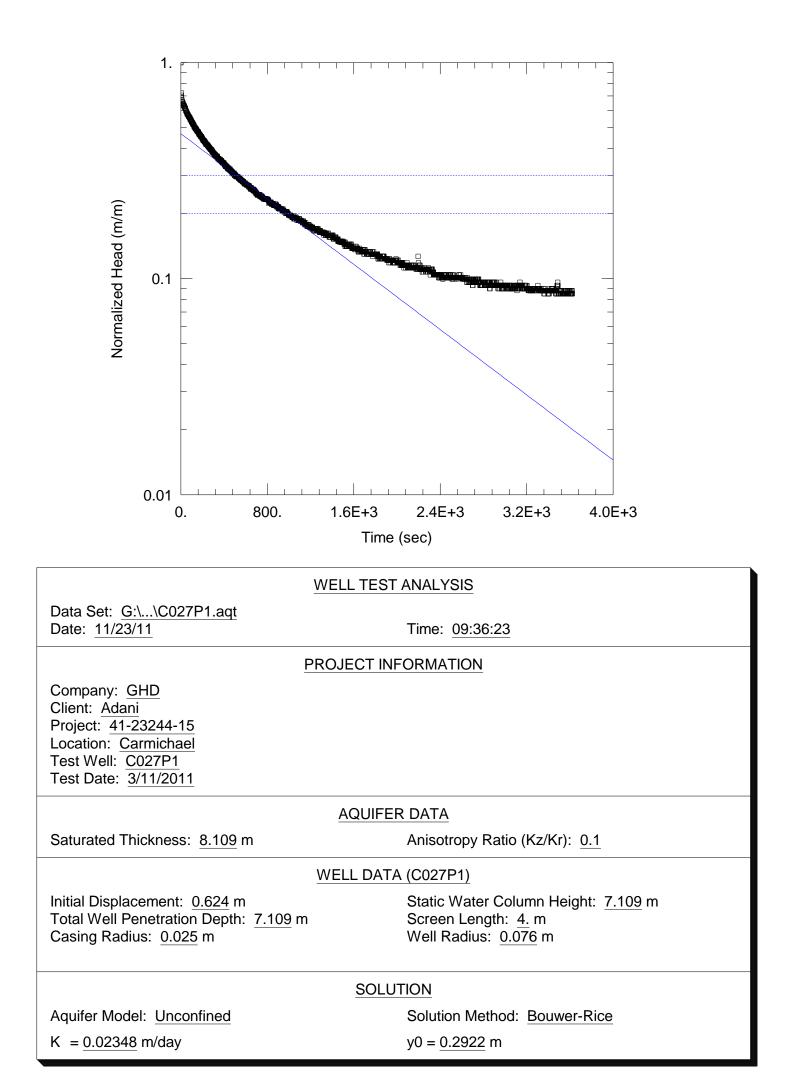

Appendix F Slug Testing

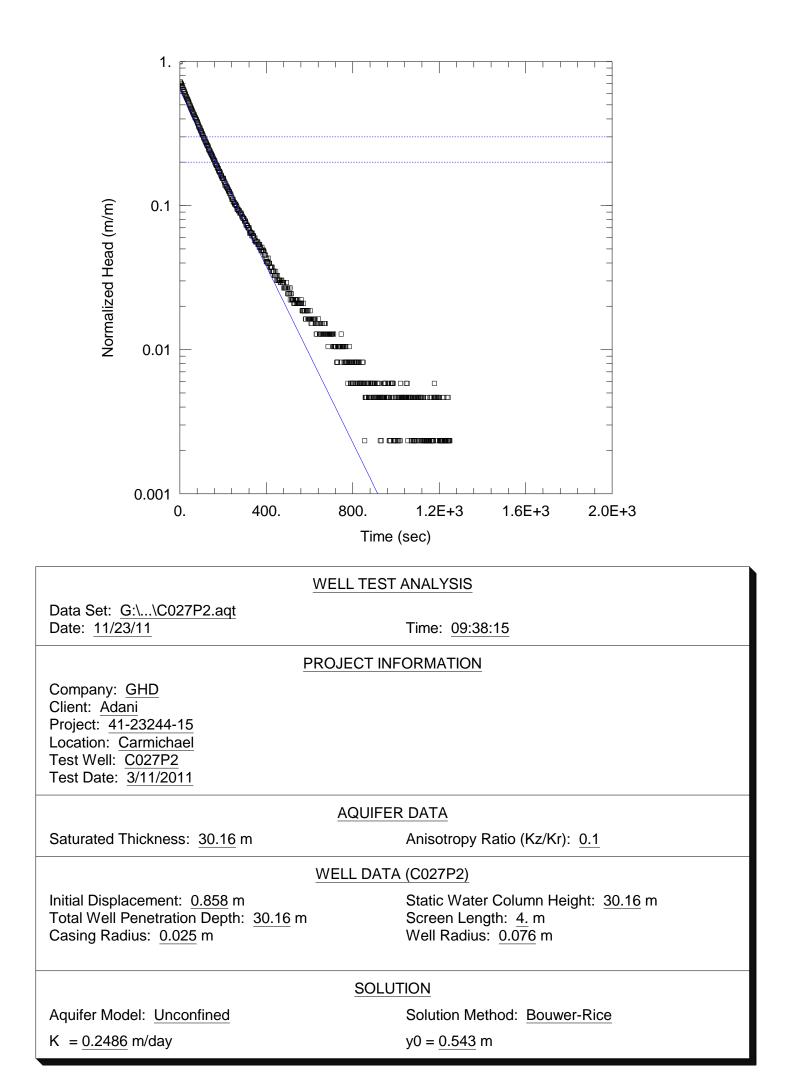

Slug Testing Analysis Data Sheets

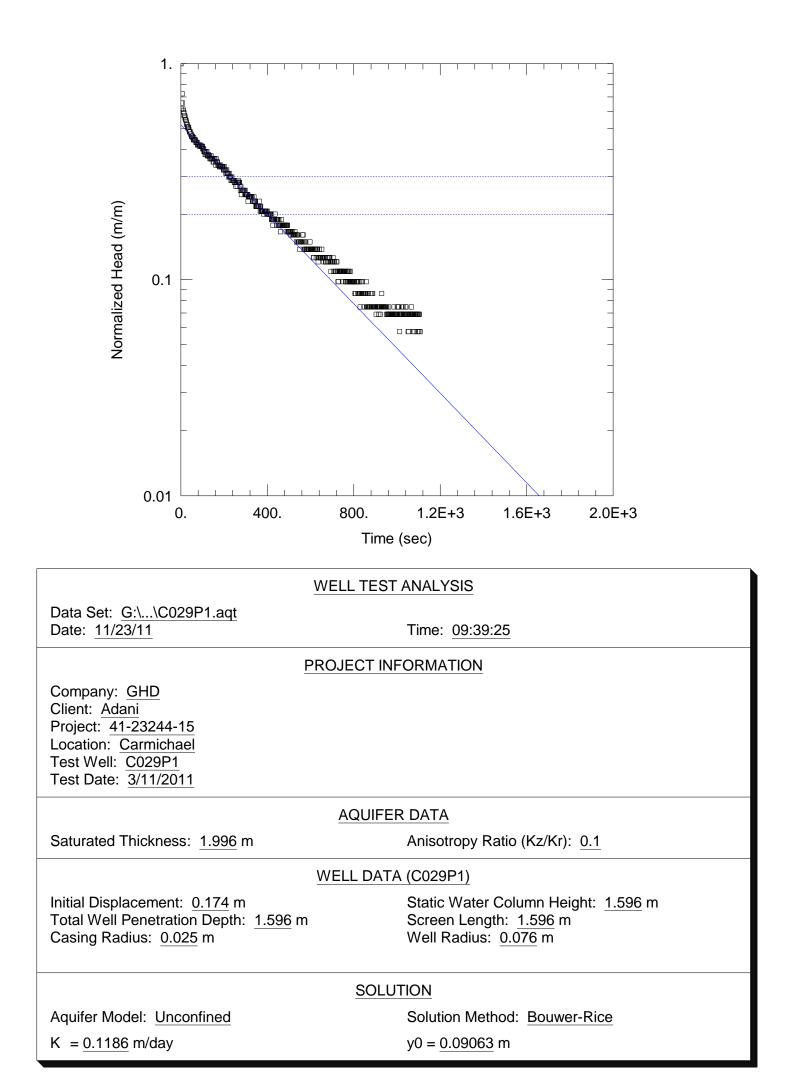


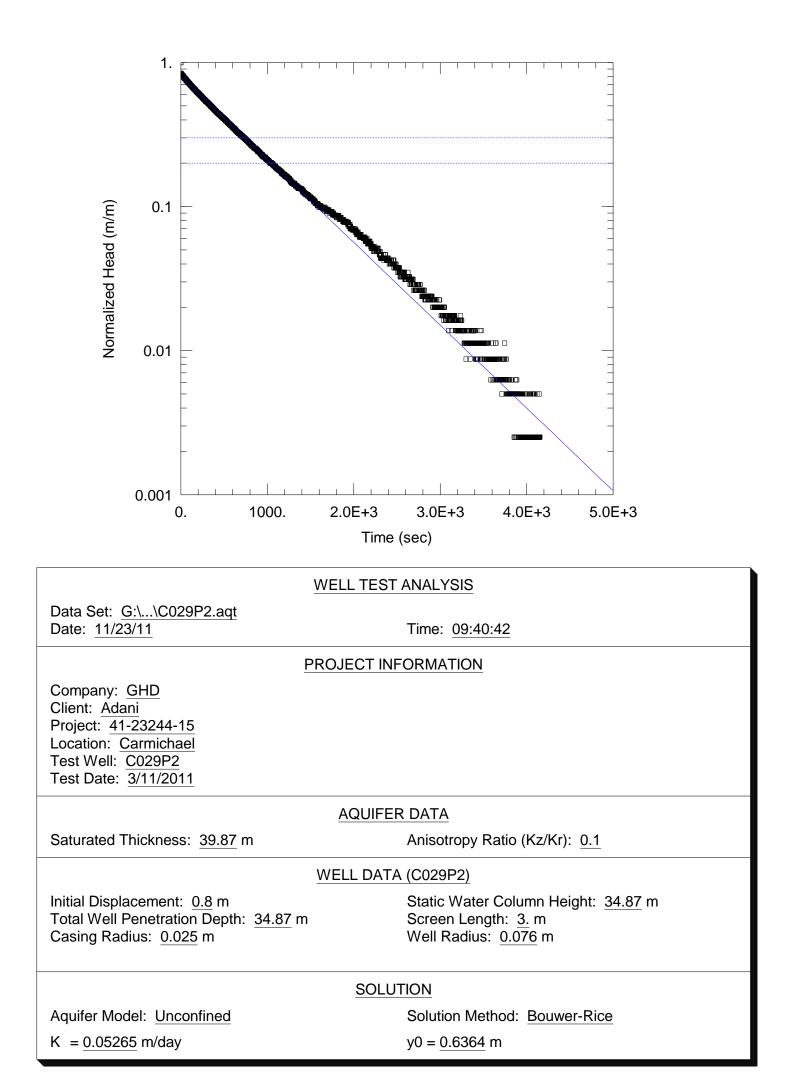

Page intentionally left blank

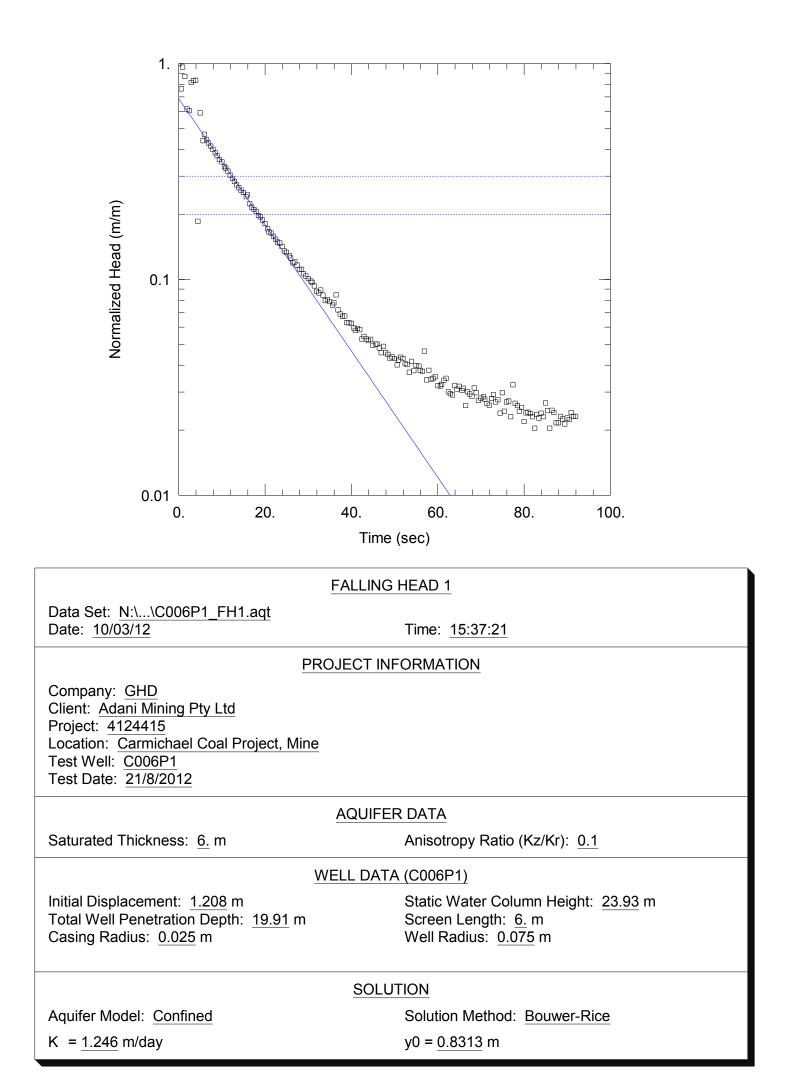


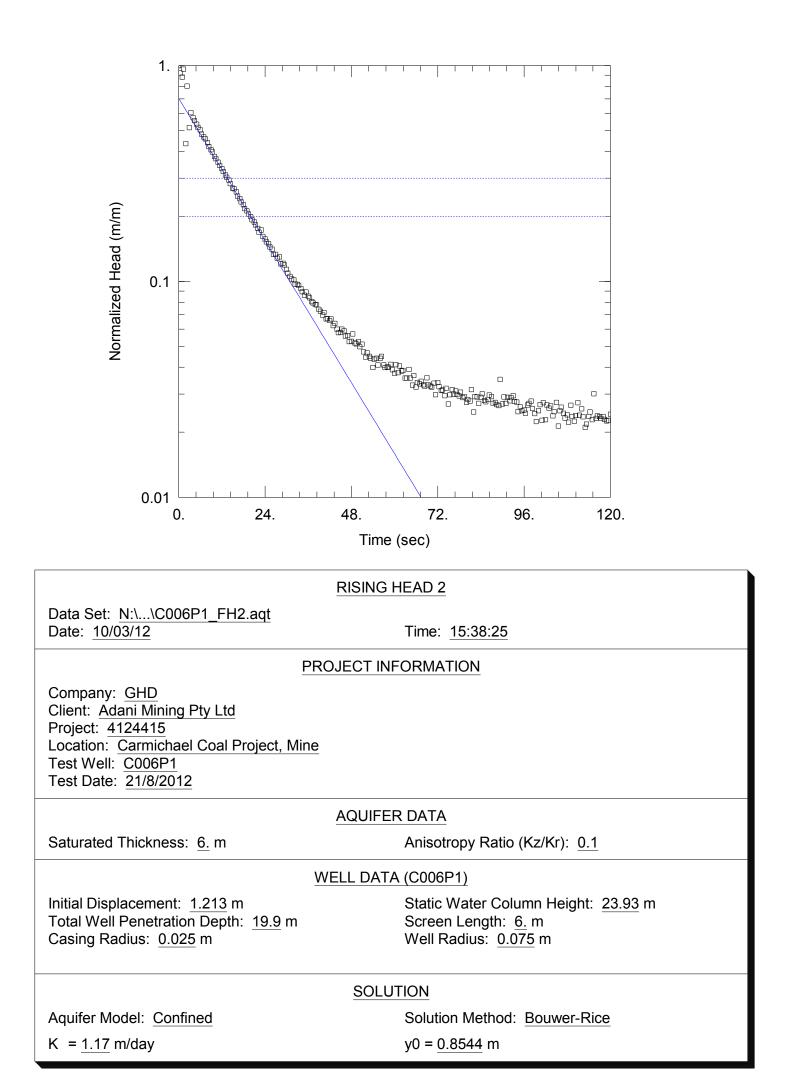


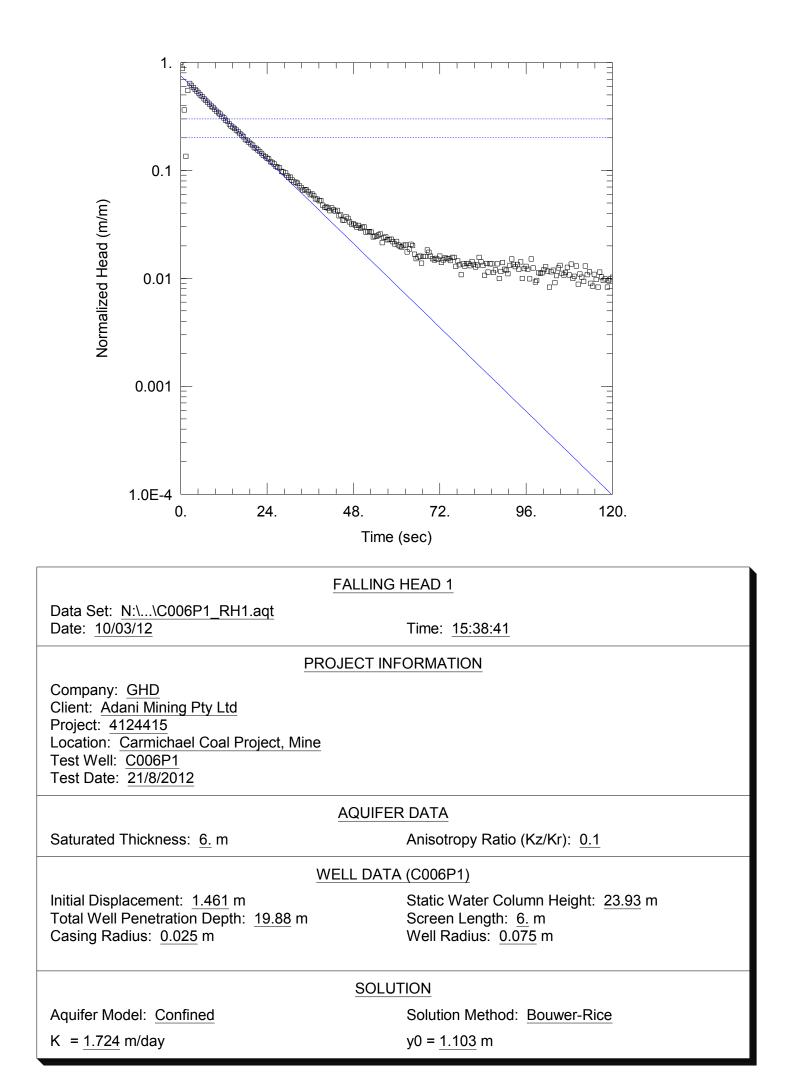


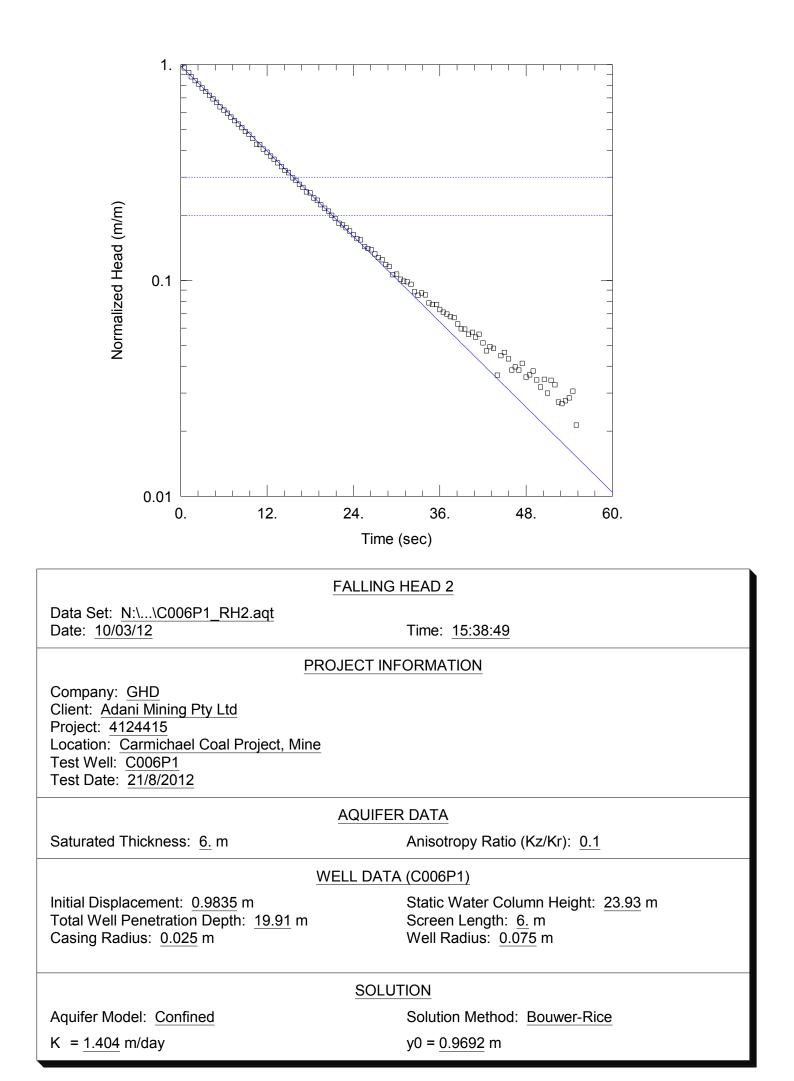


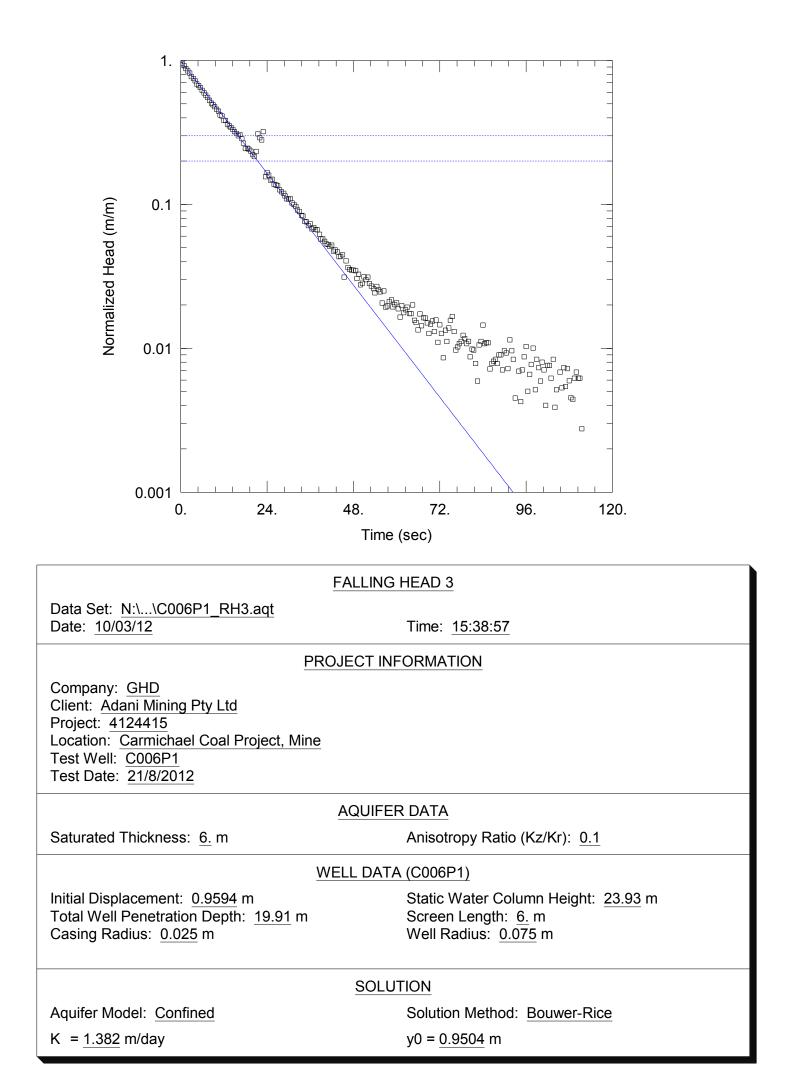


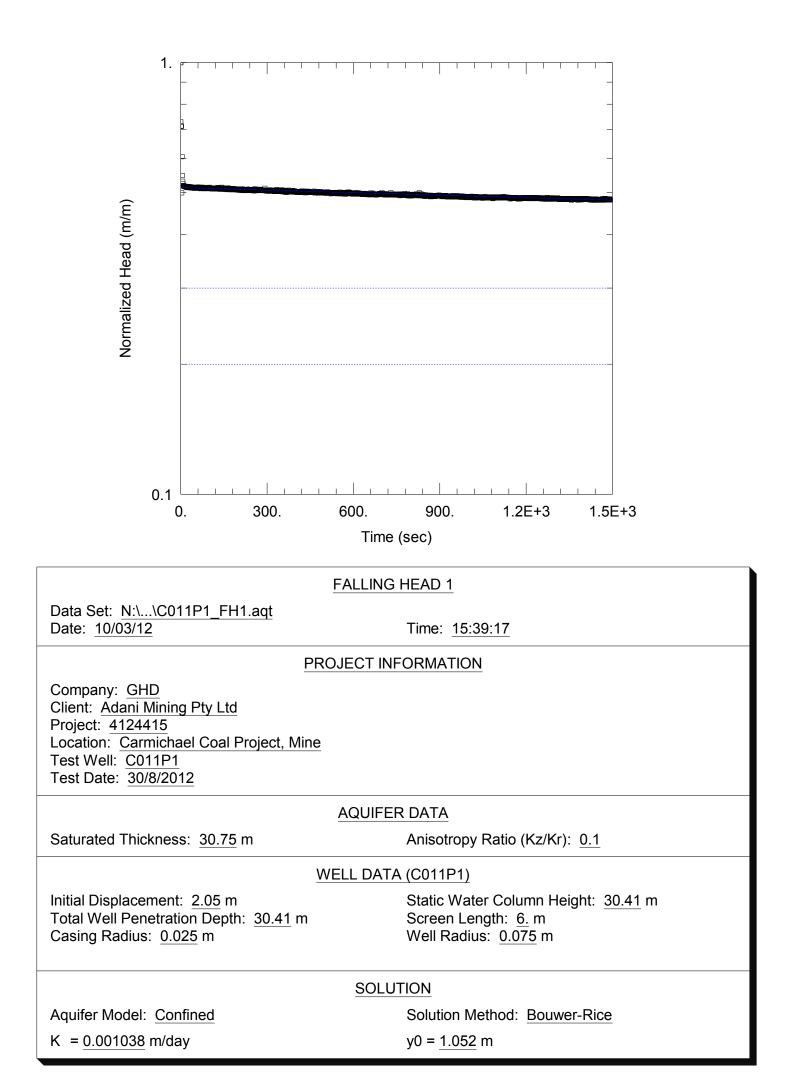


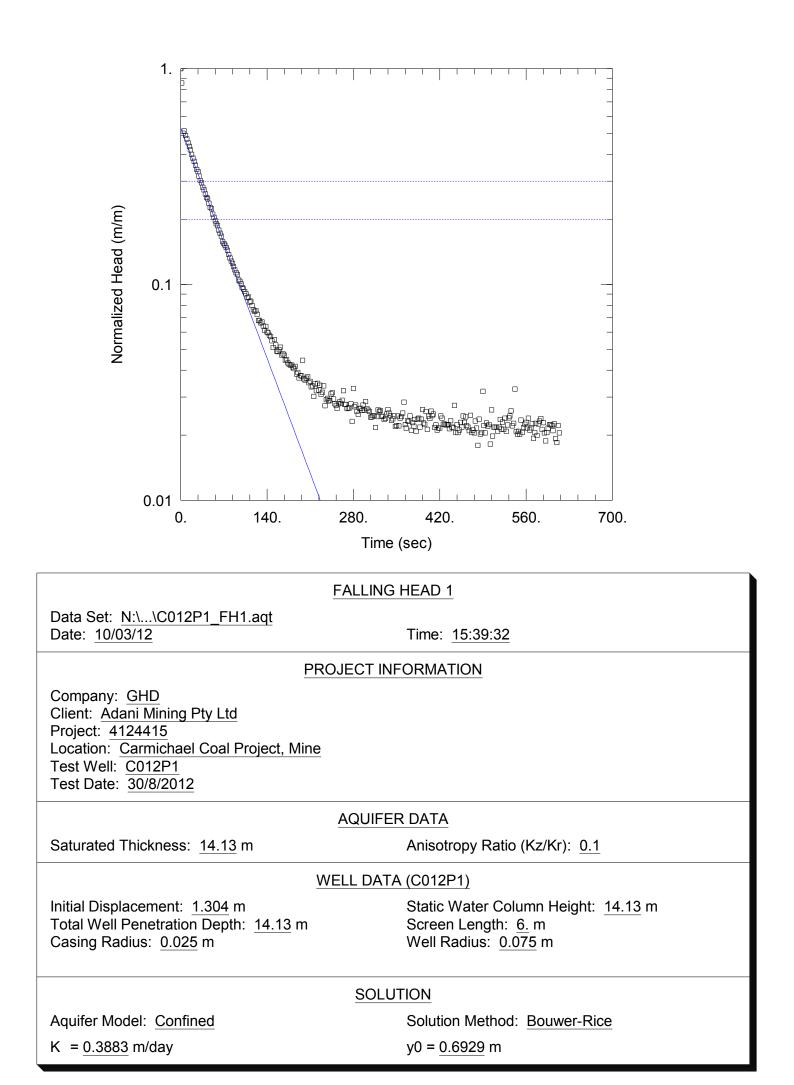


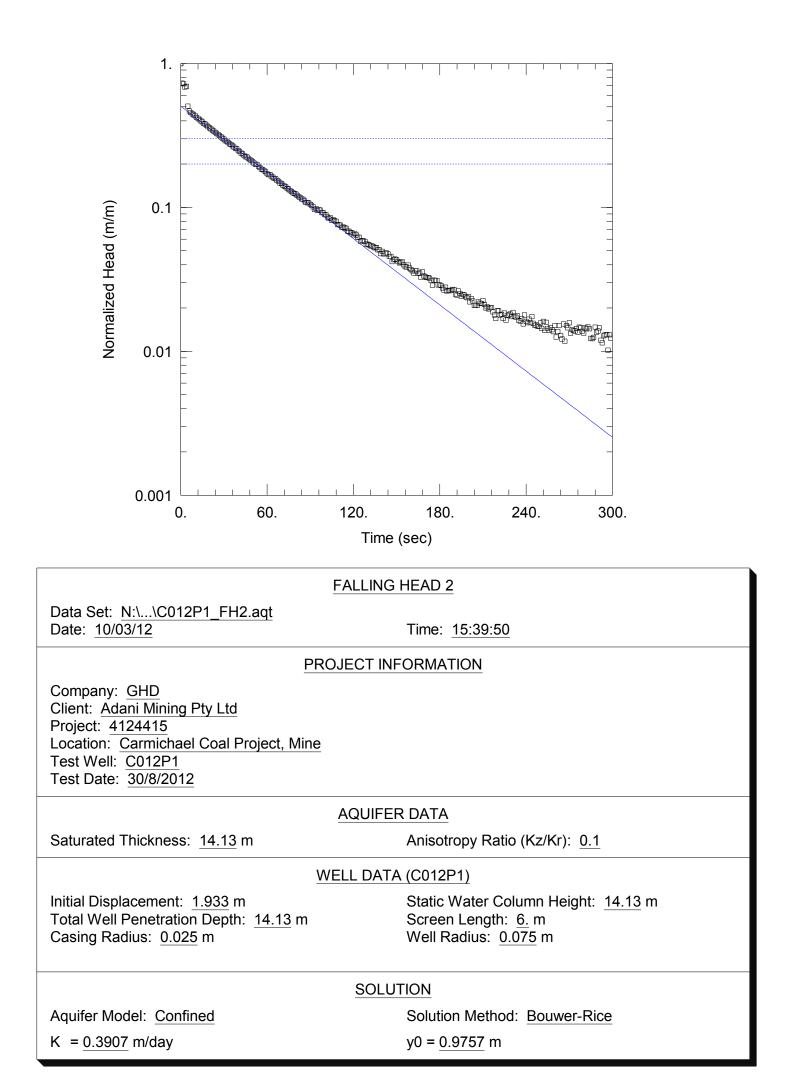


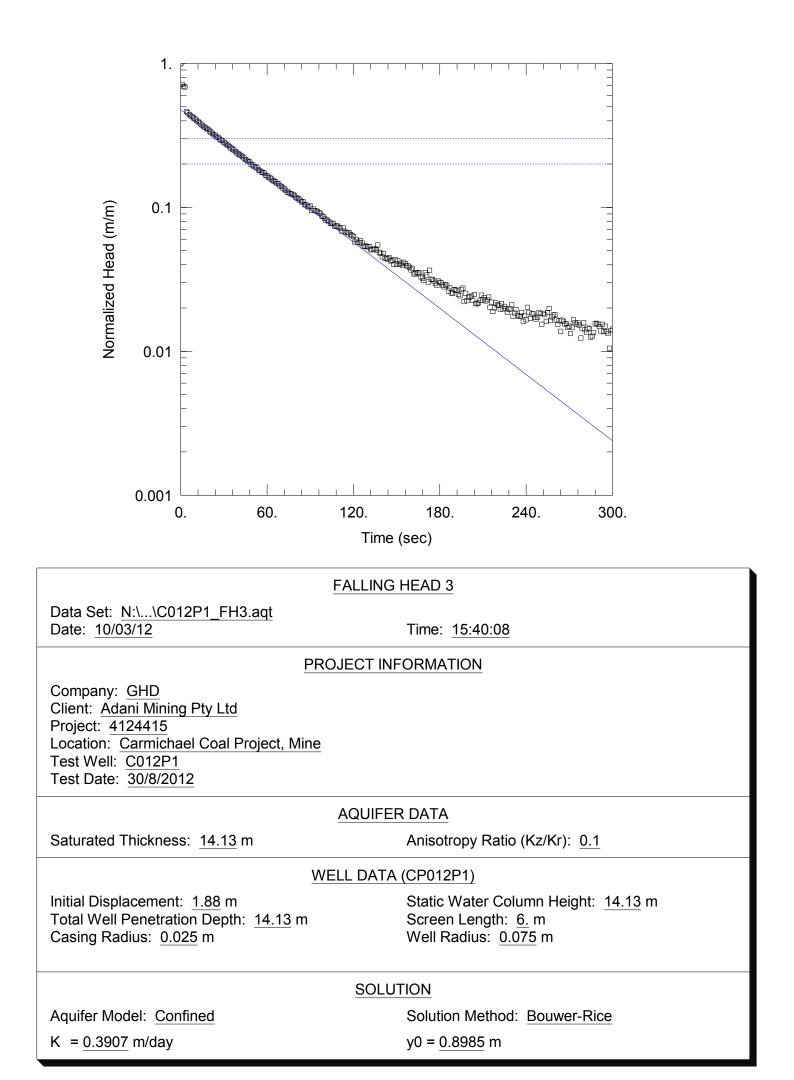


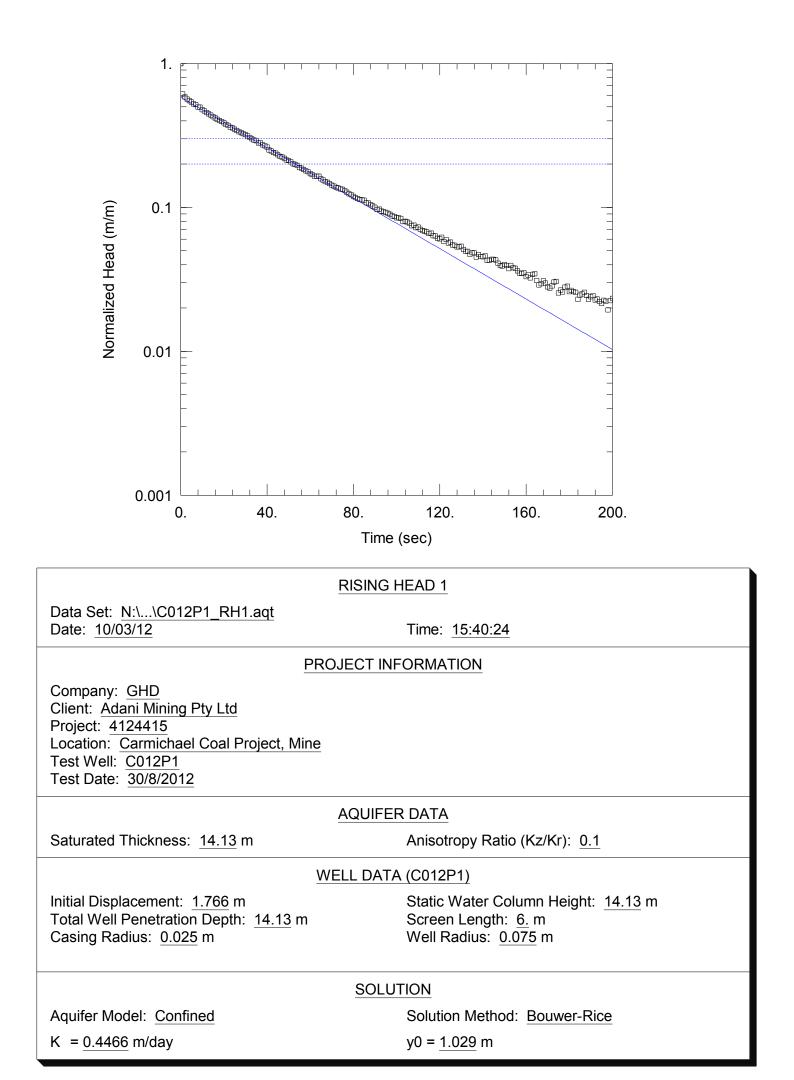




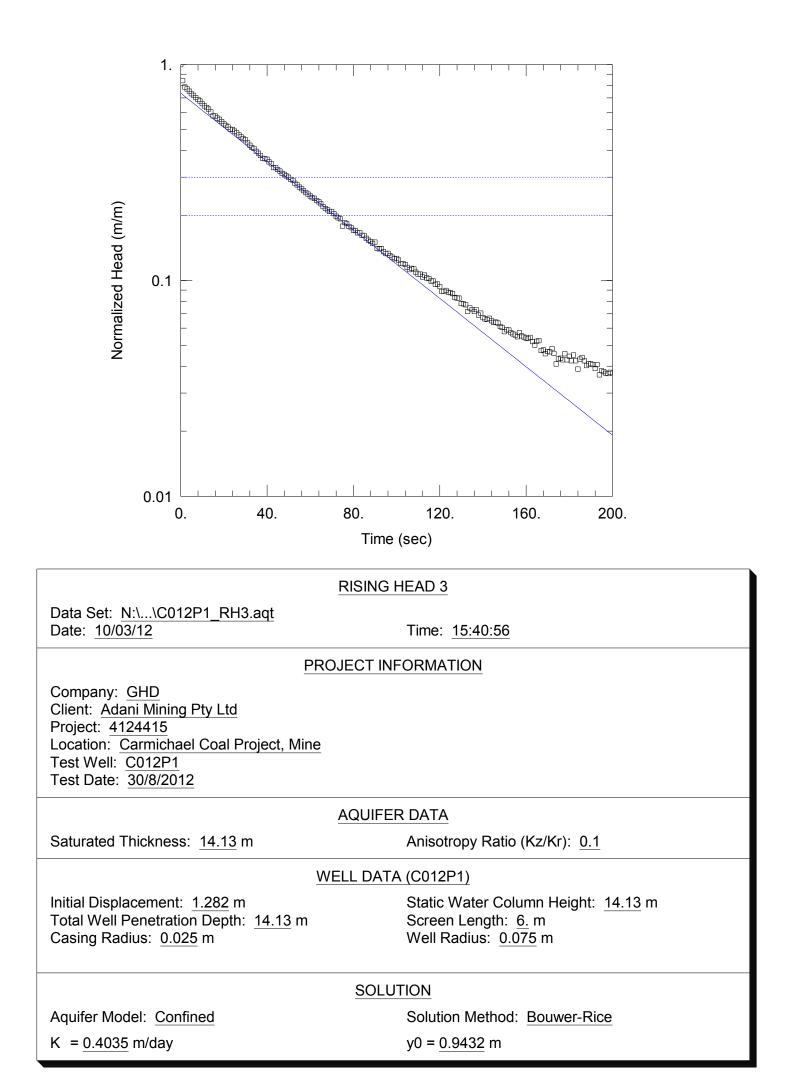


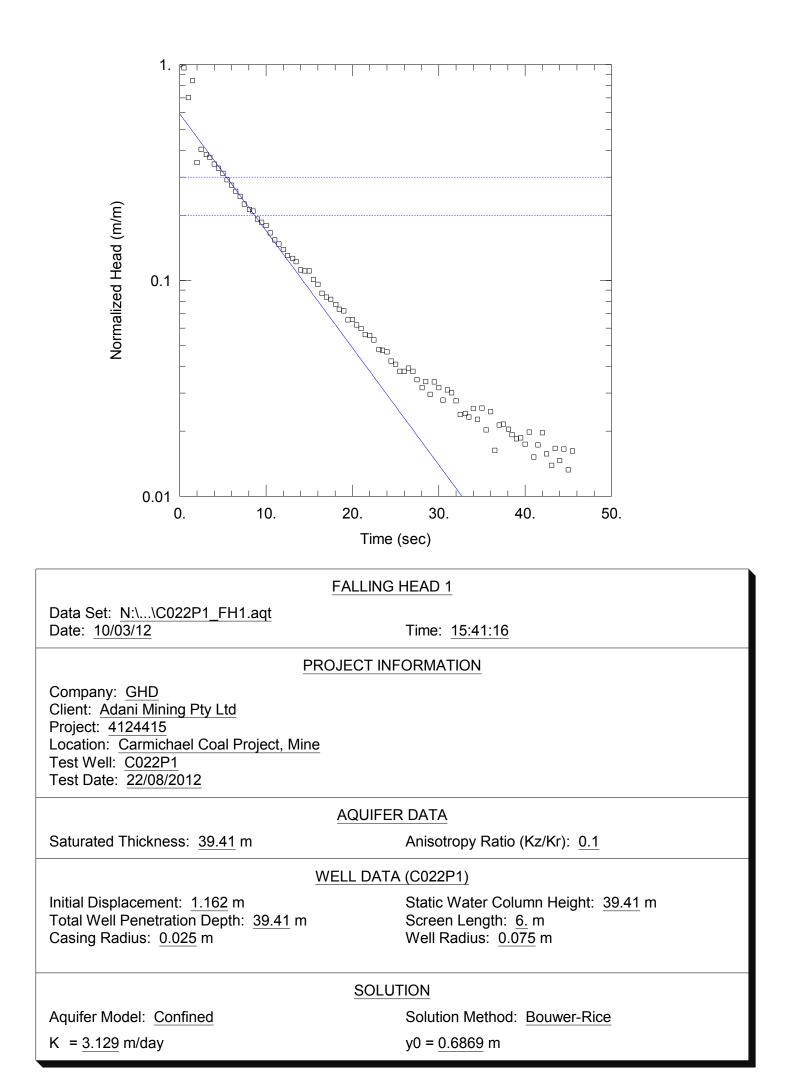


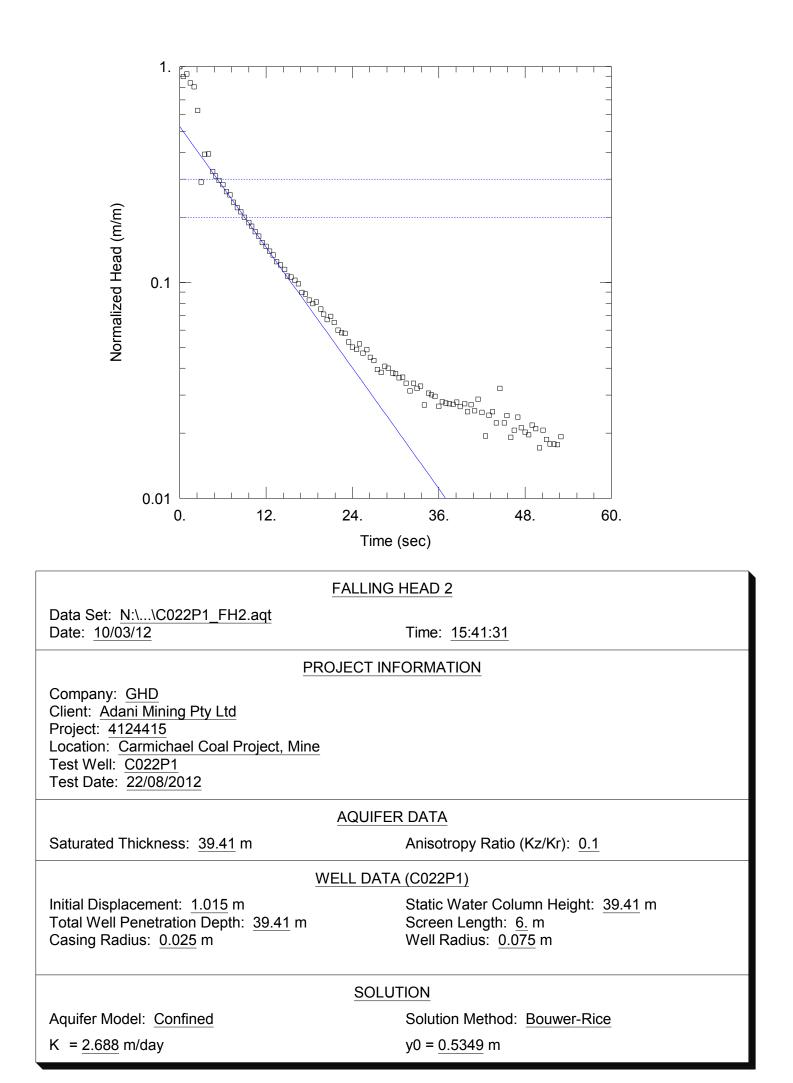


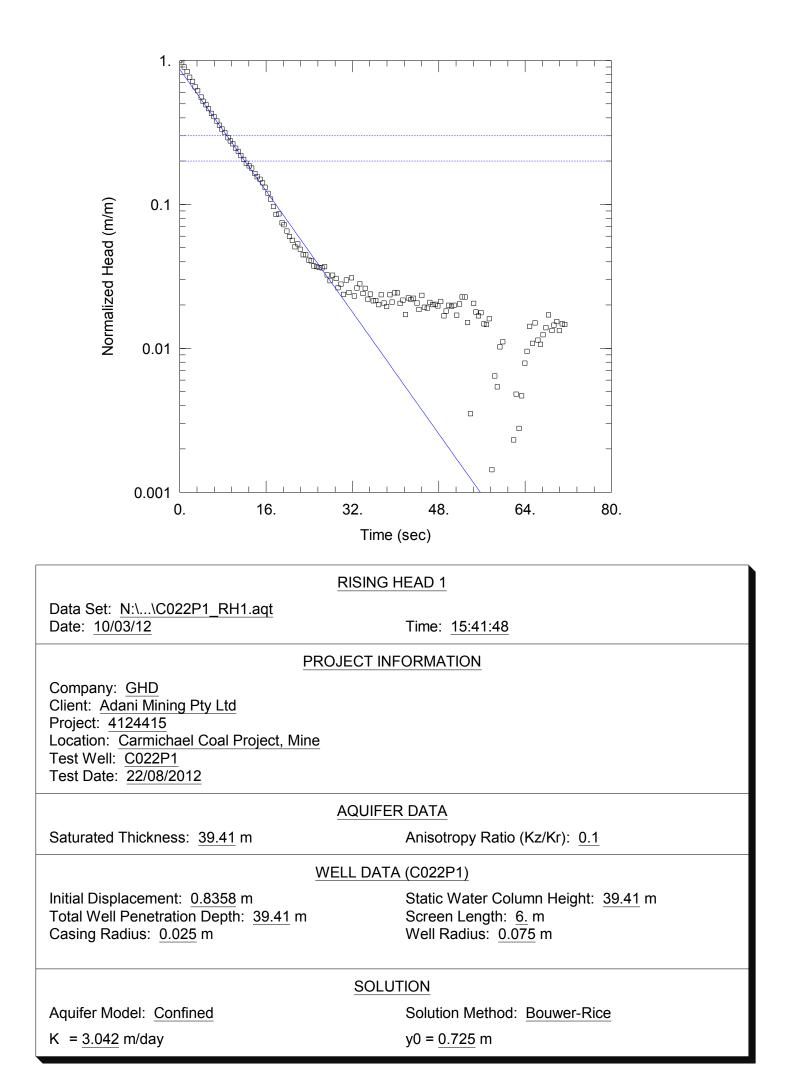


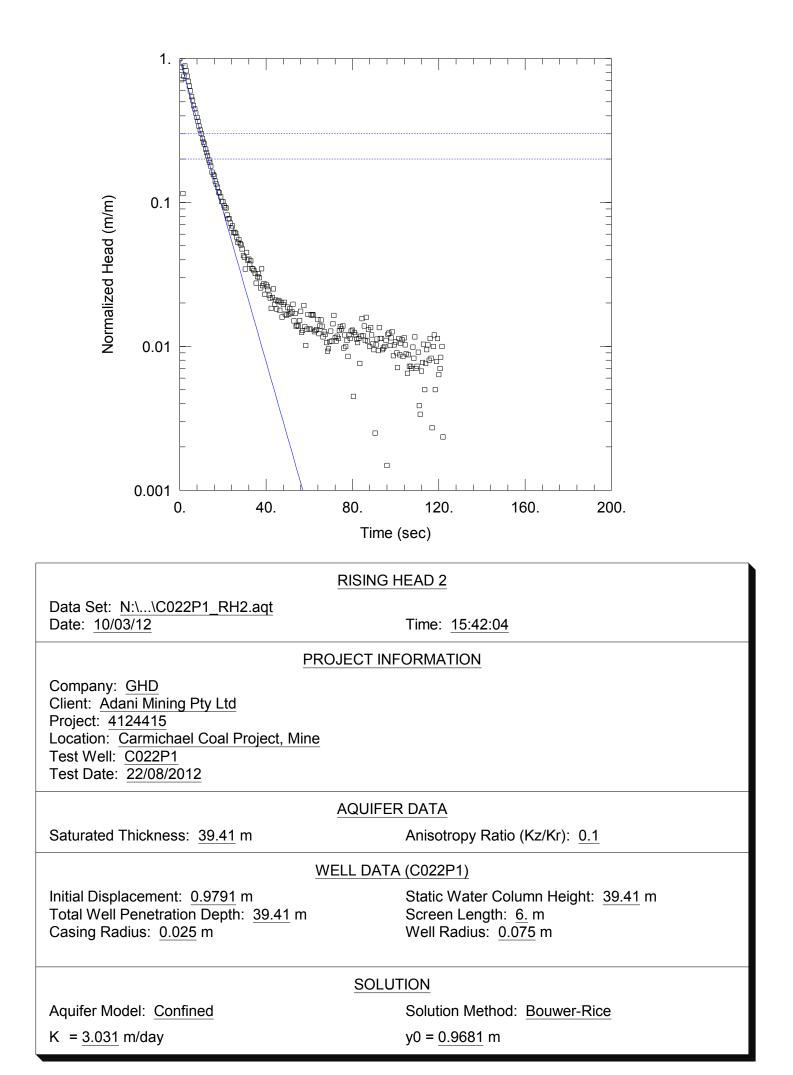


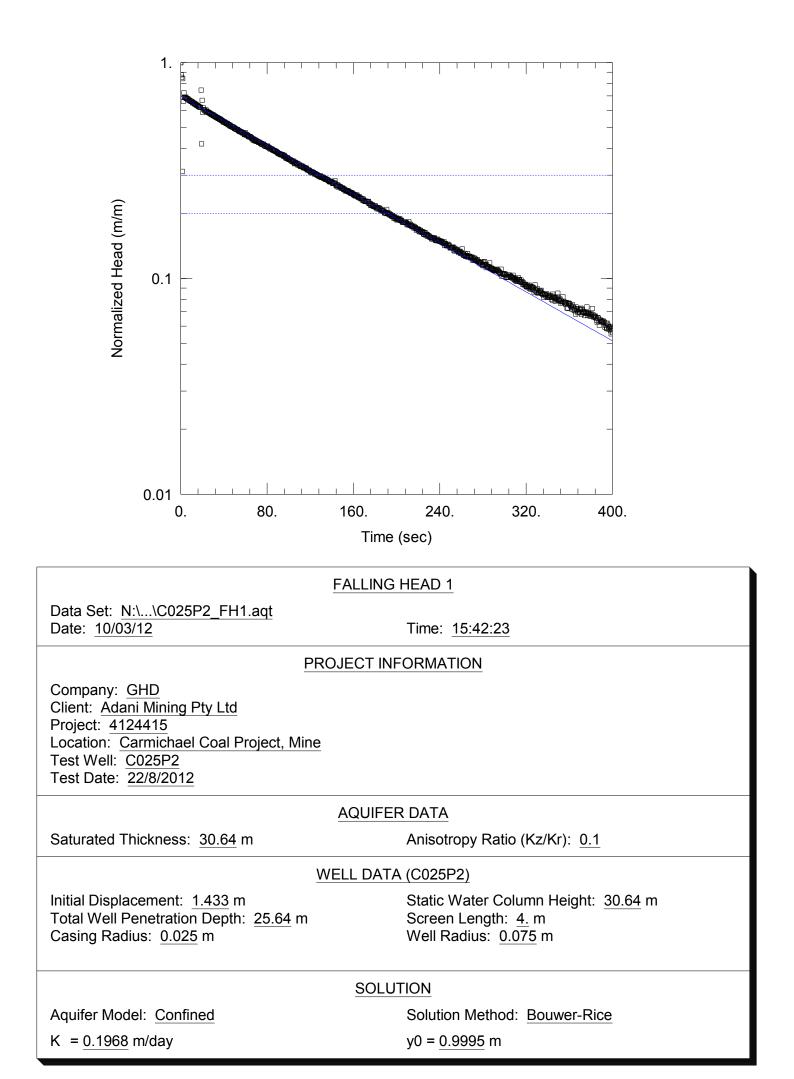


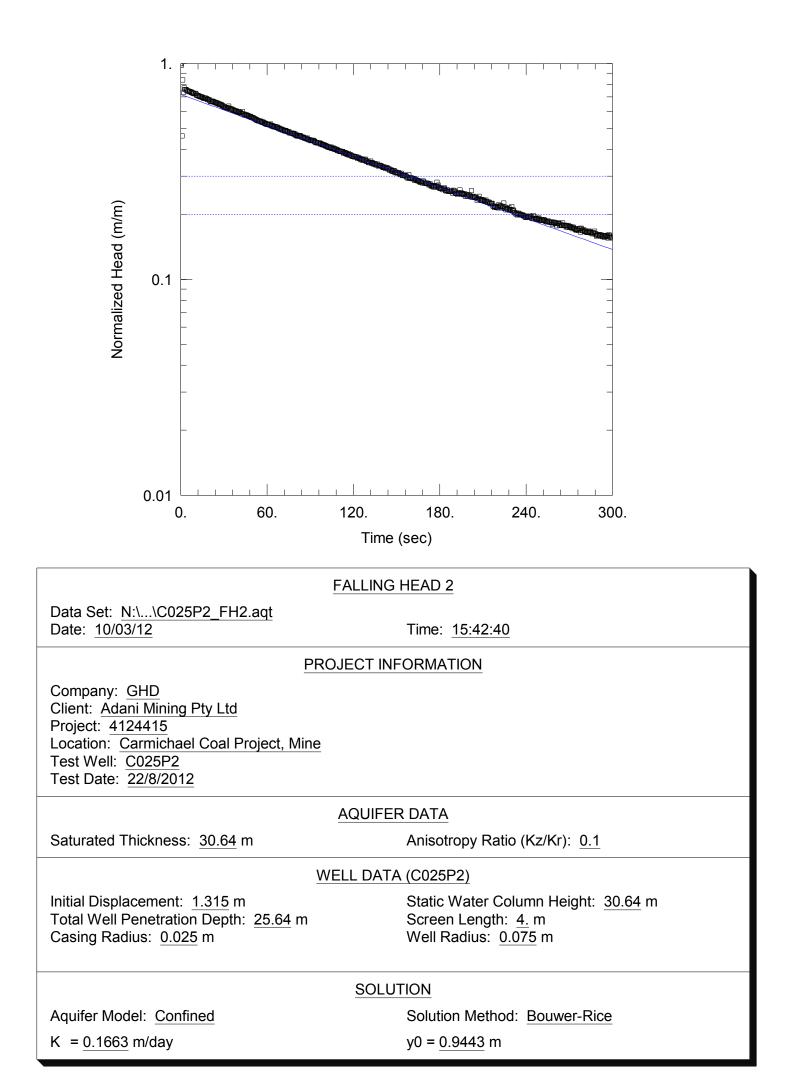


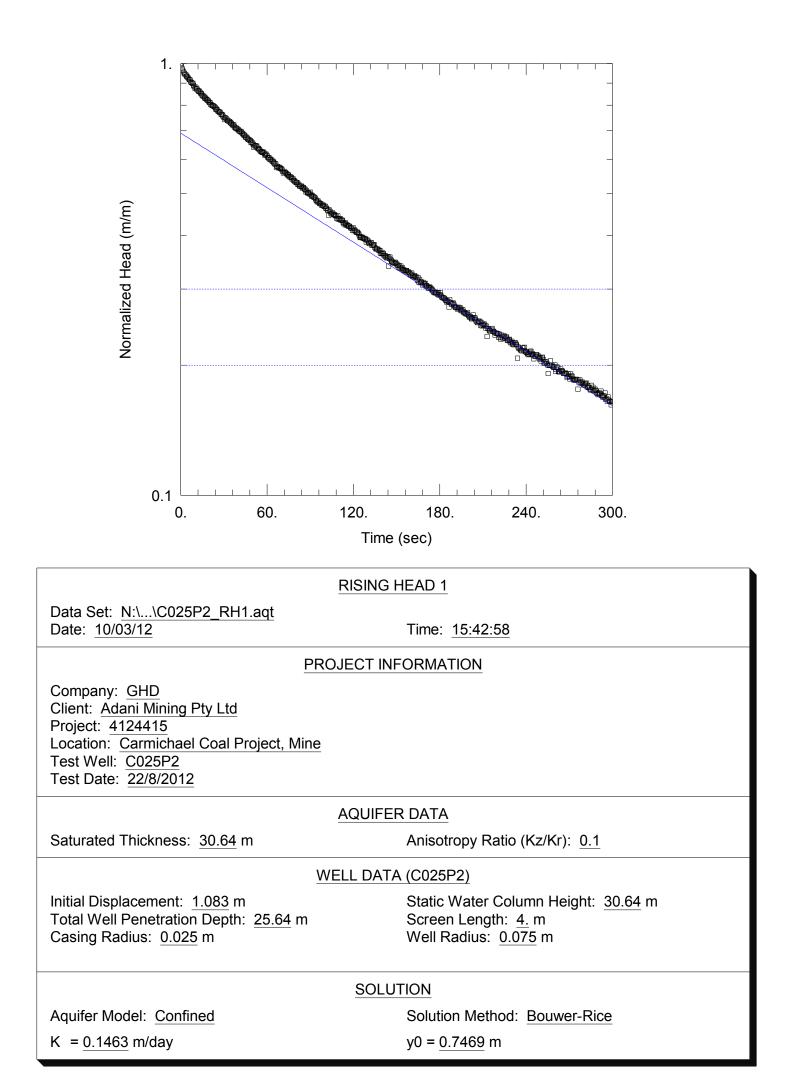


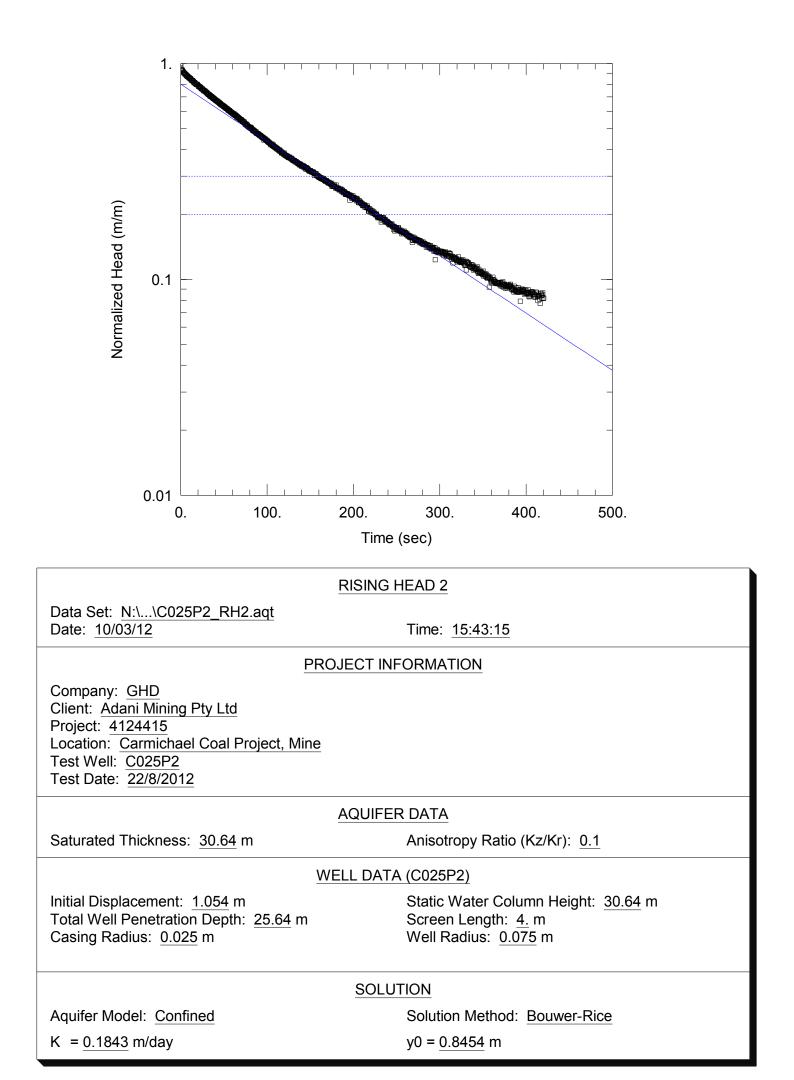


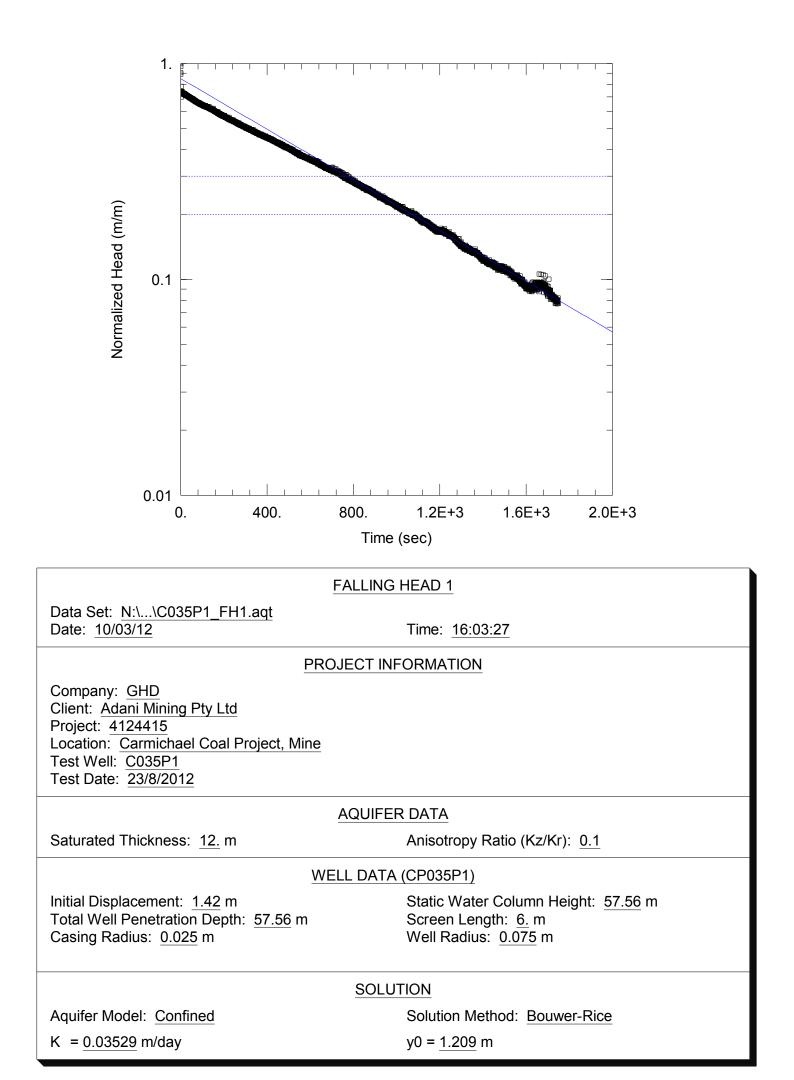


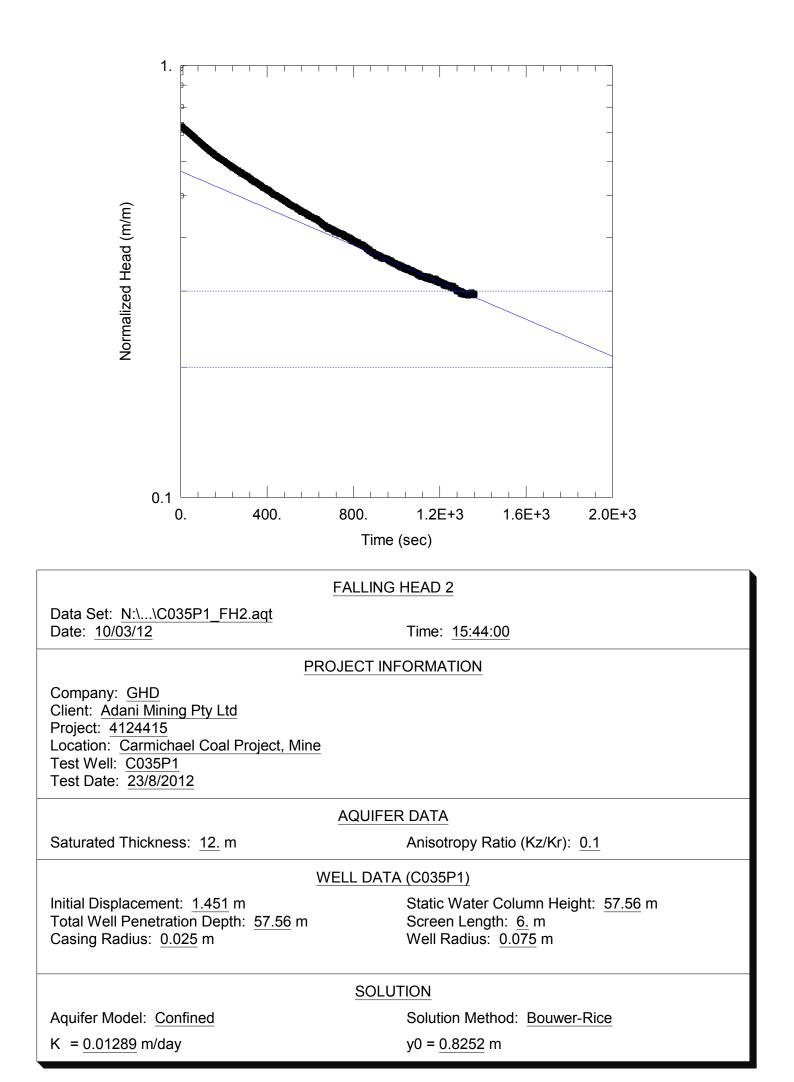


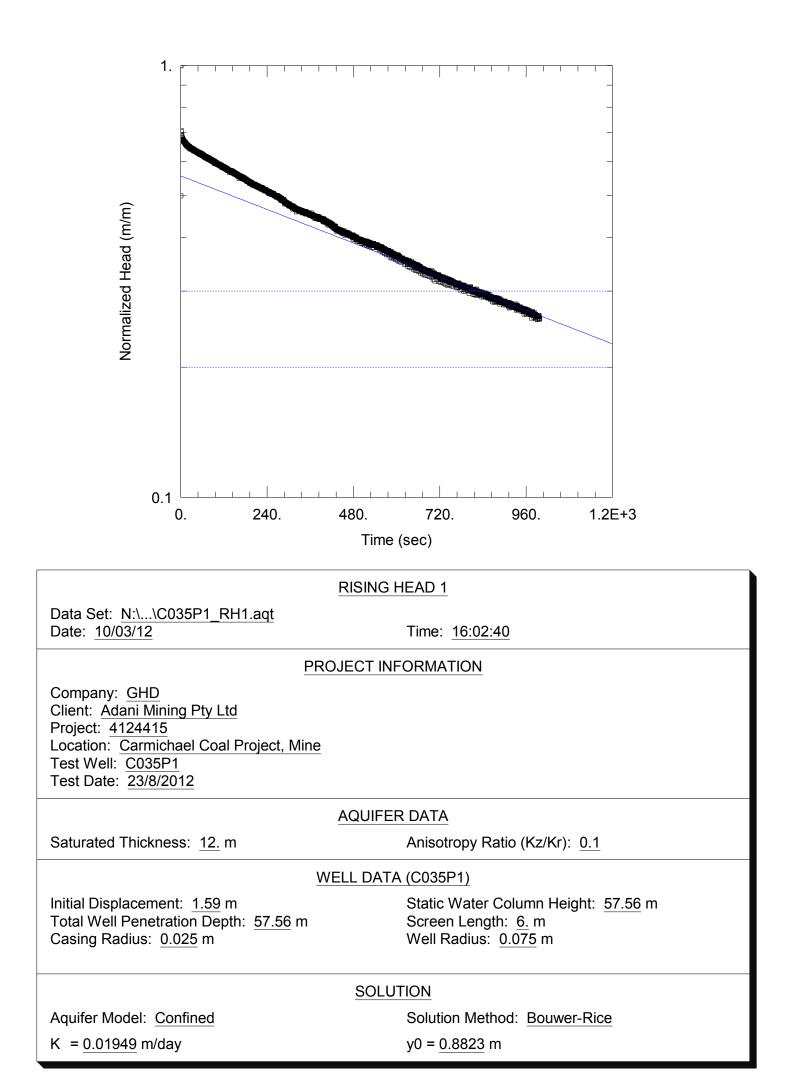


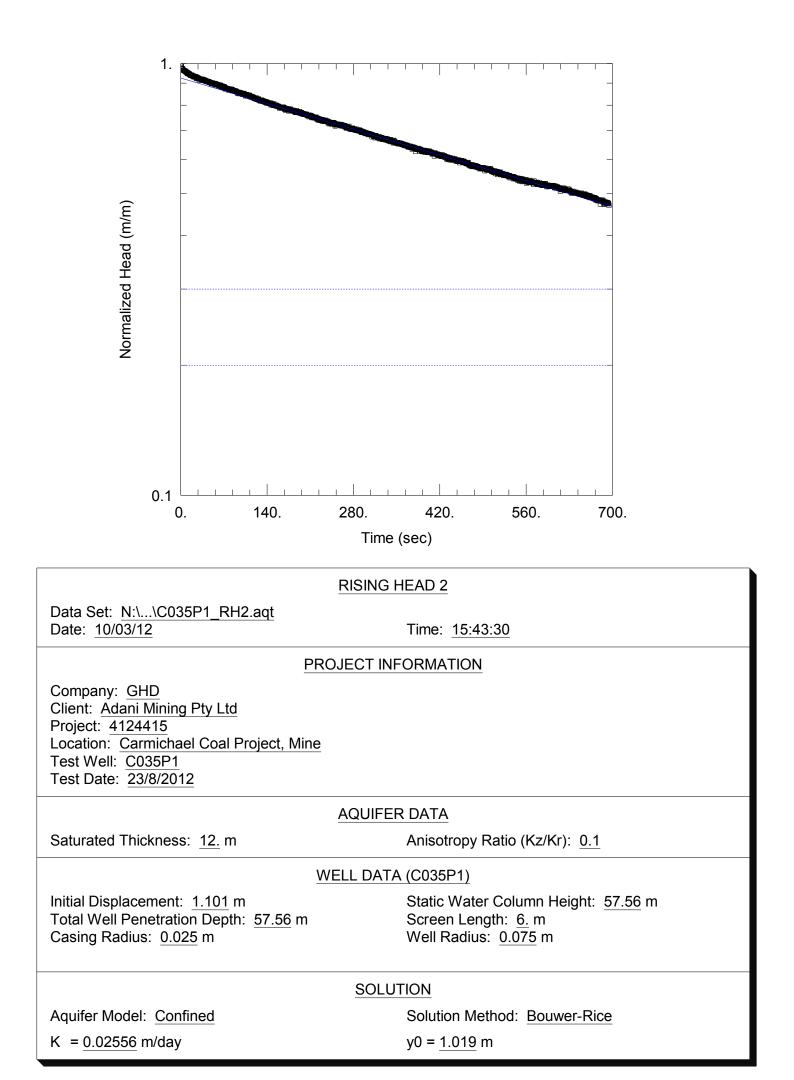


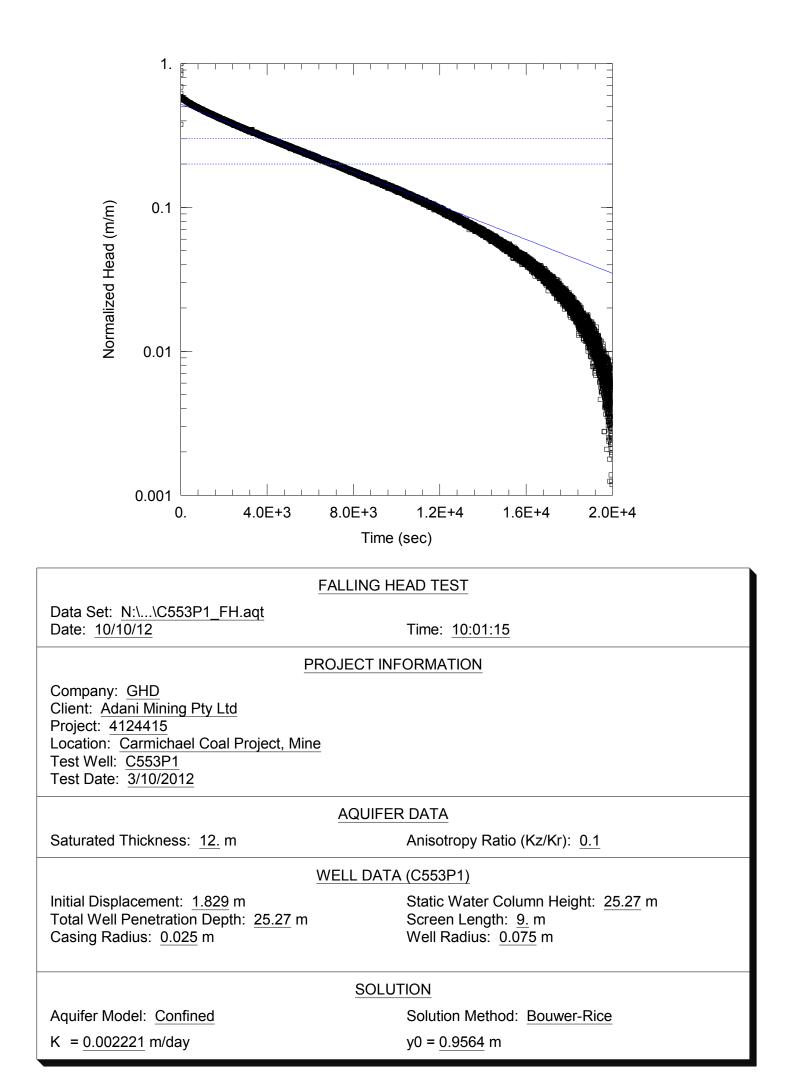


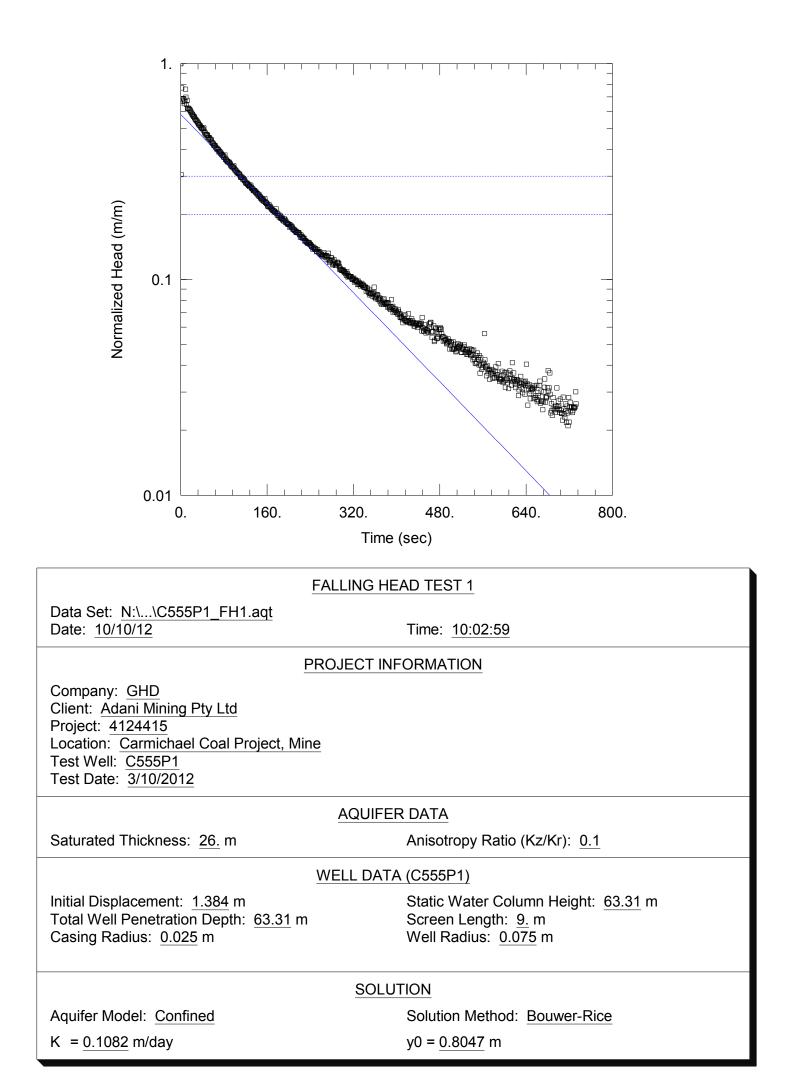


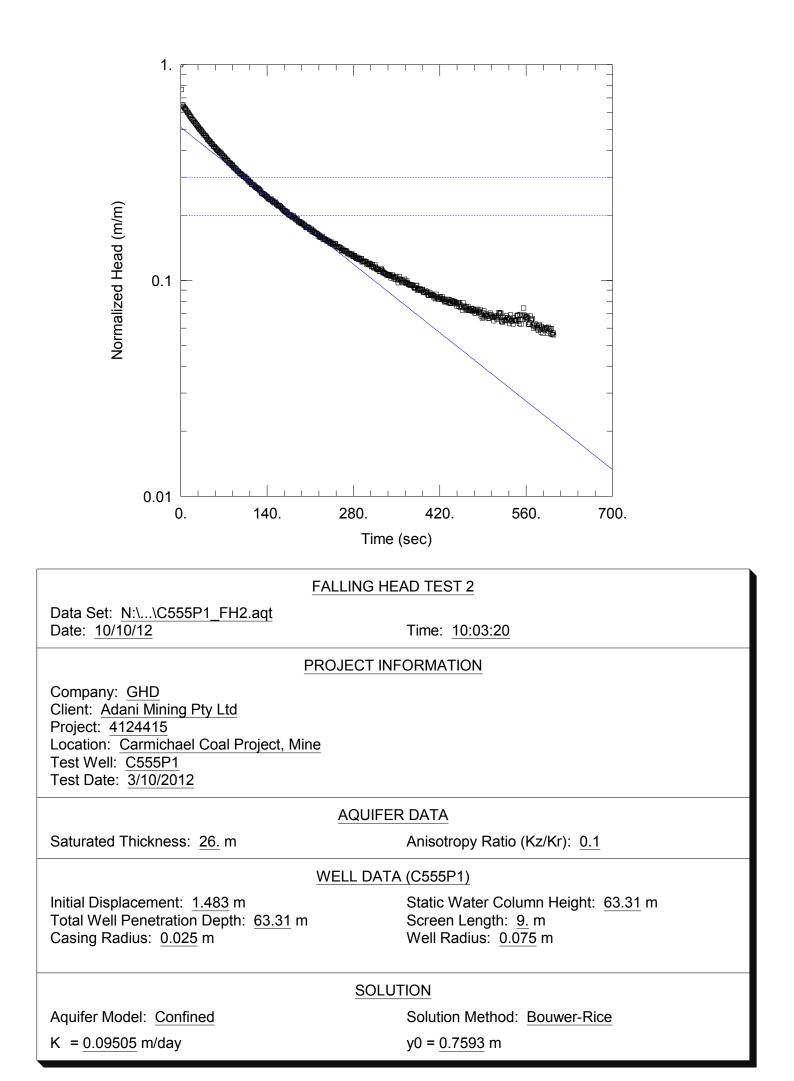


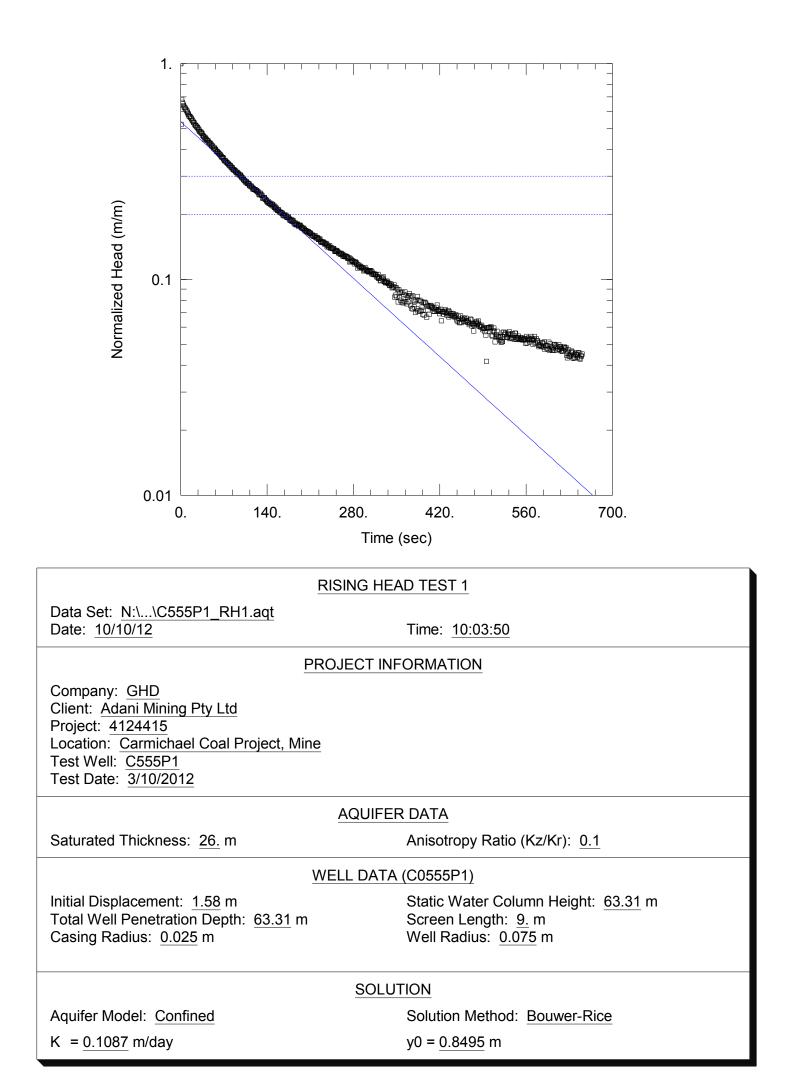


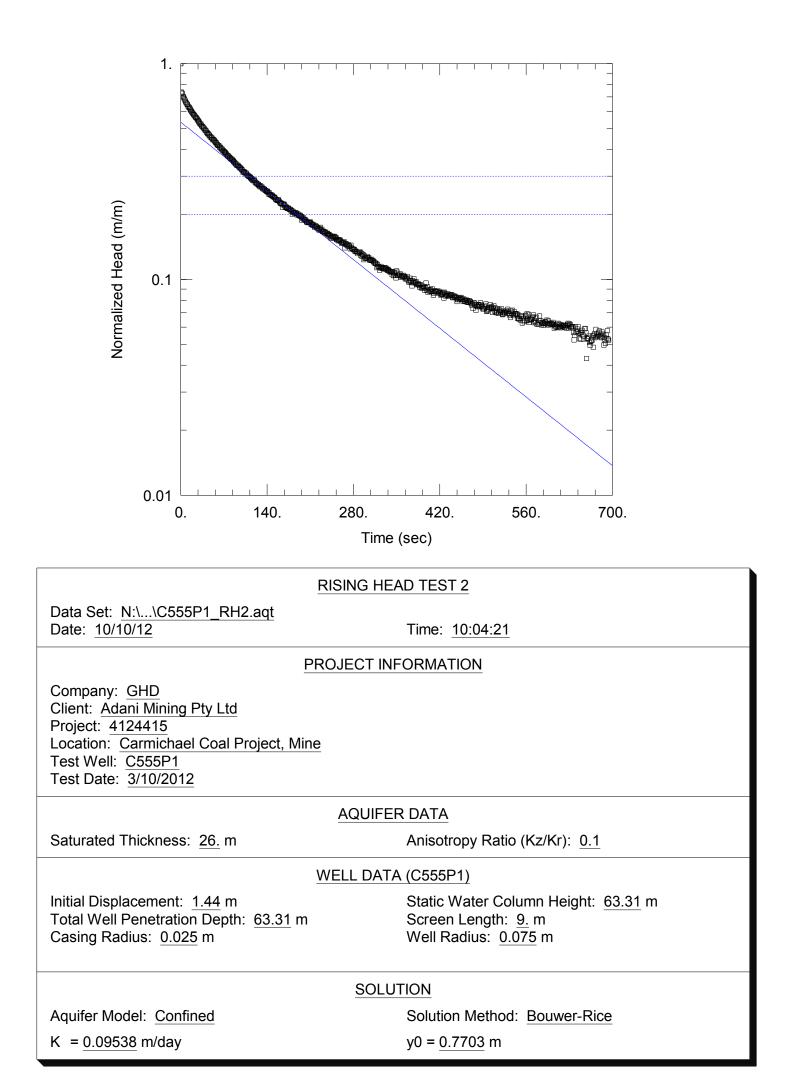


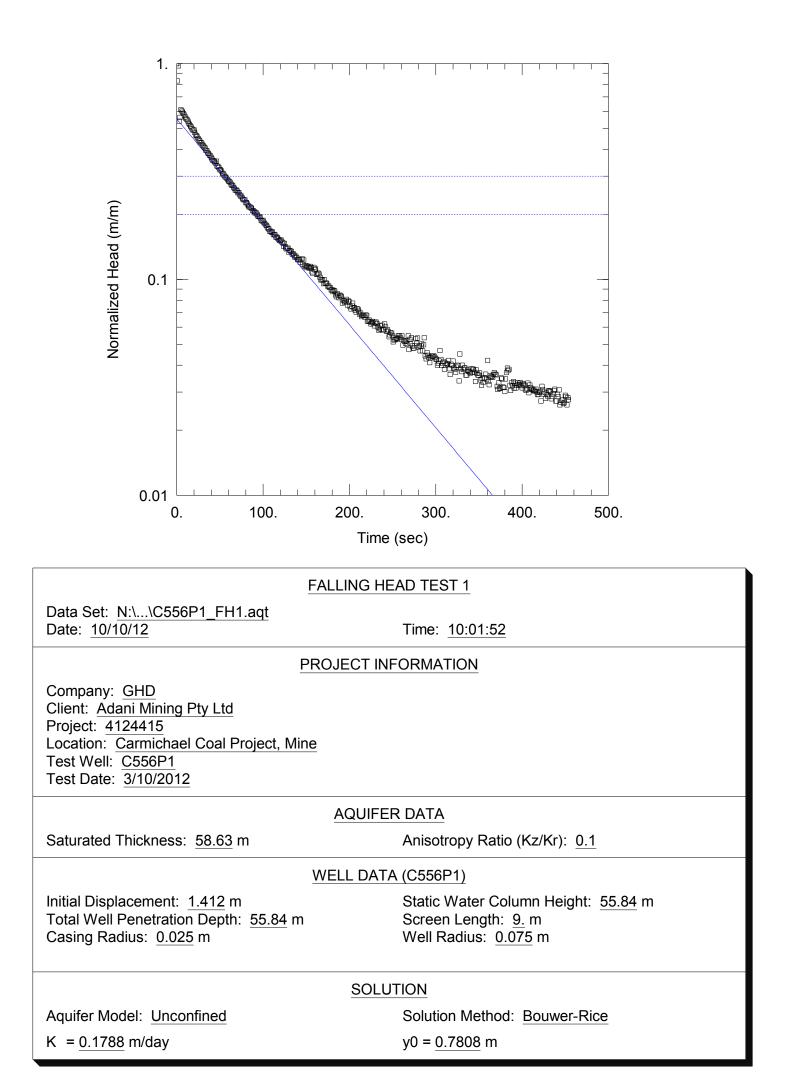


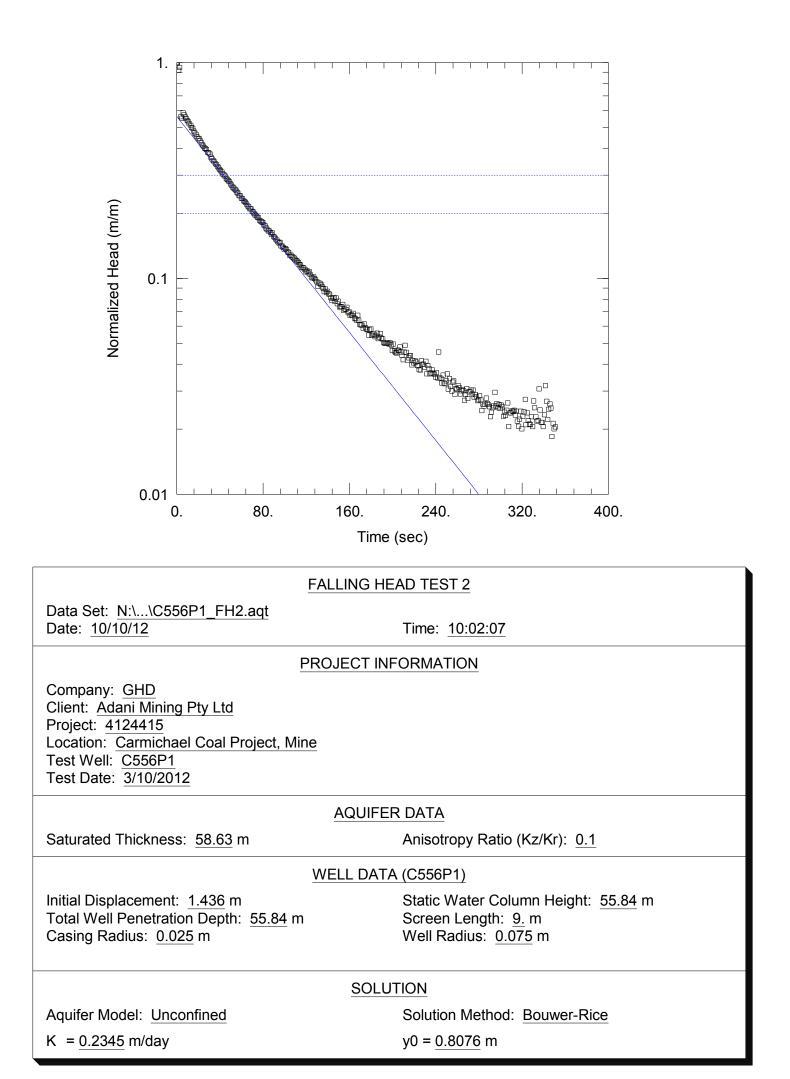


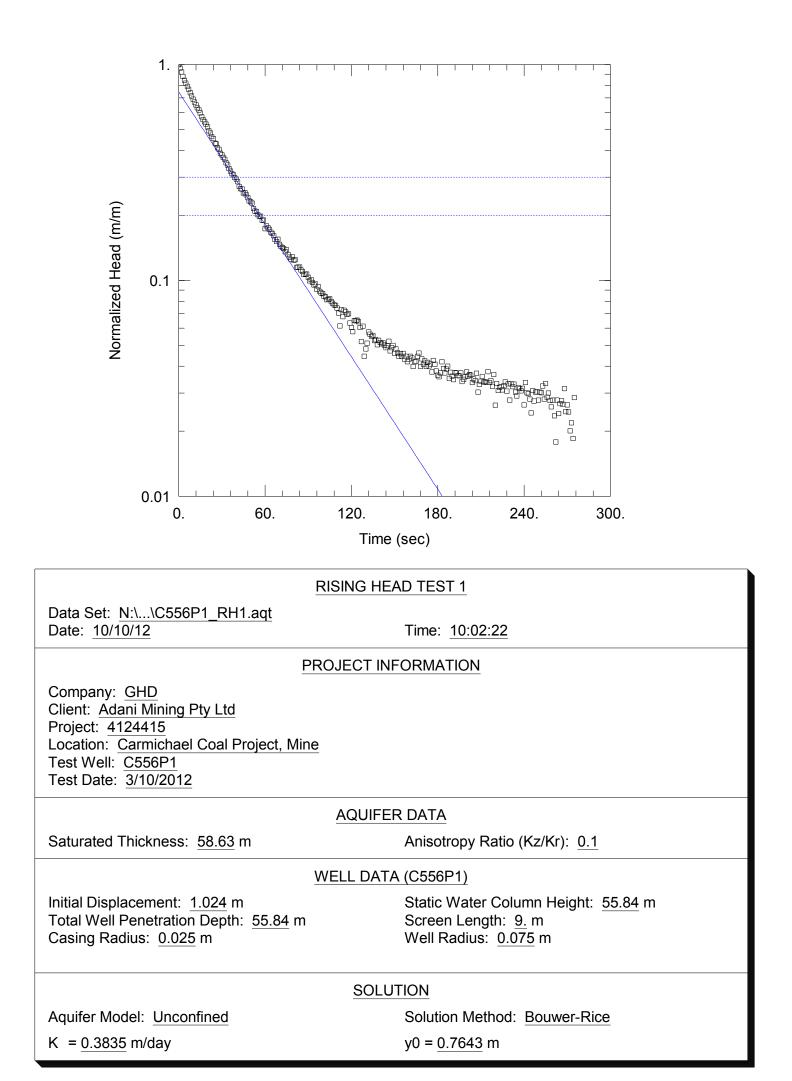


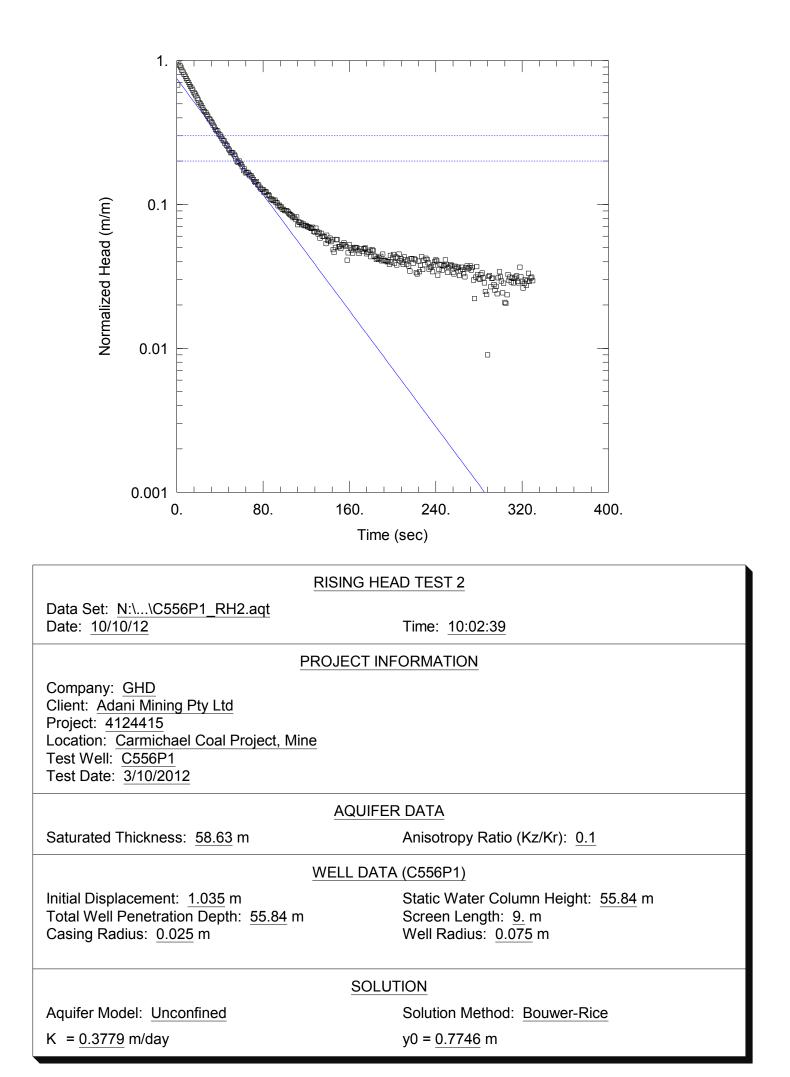


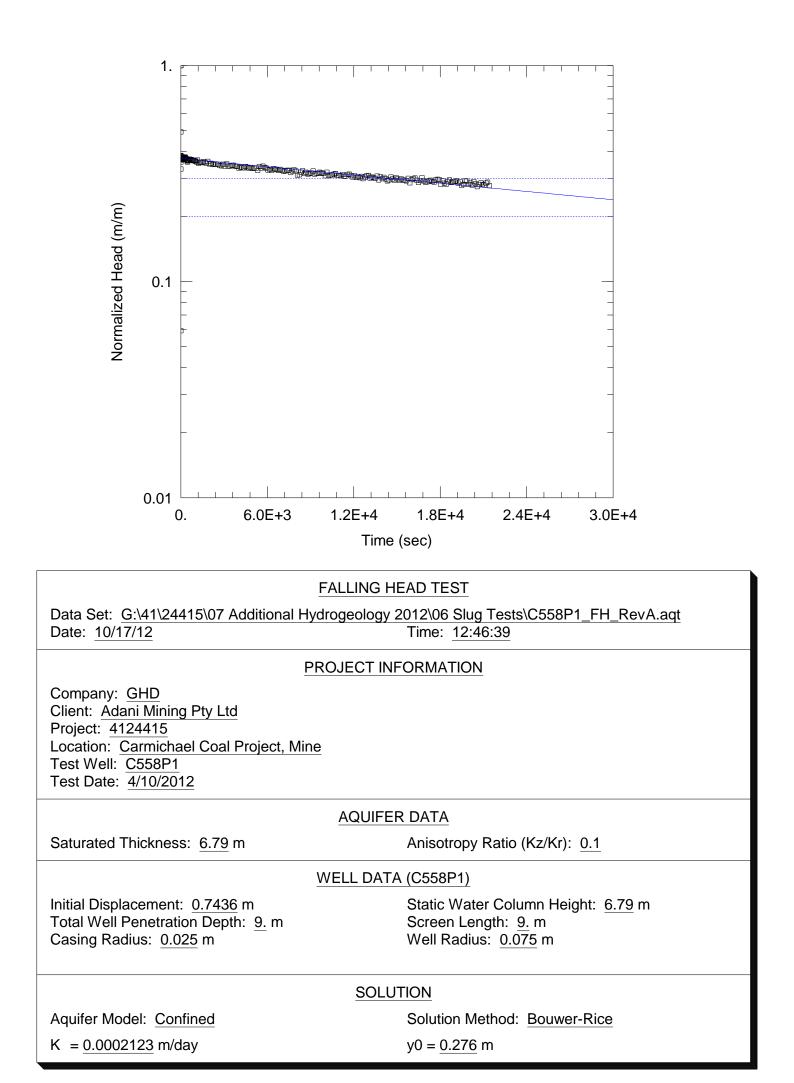


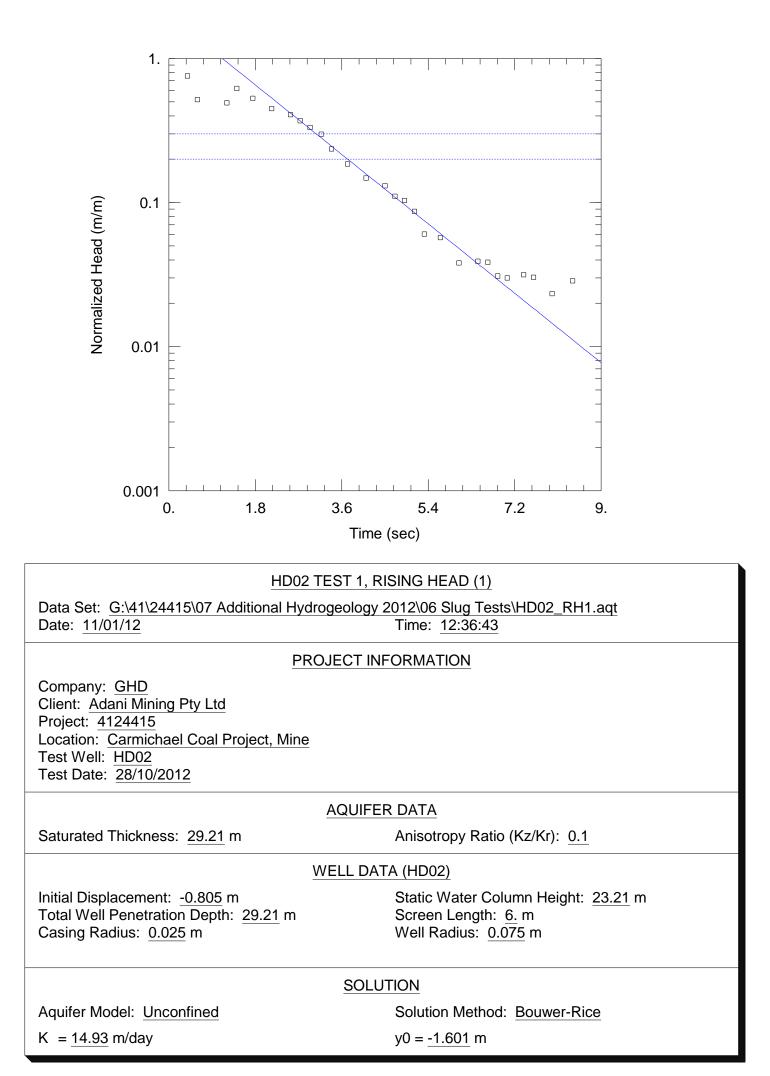


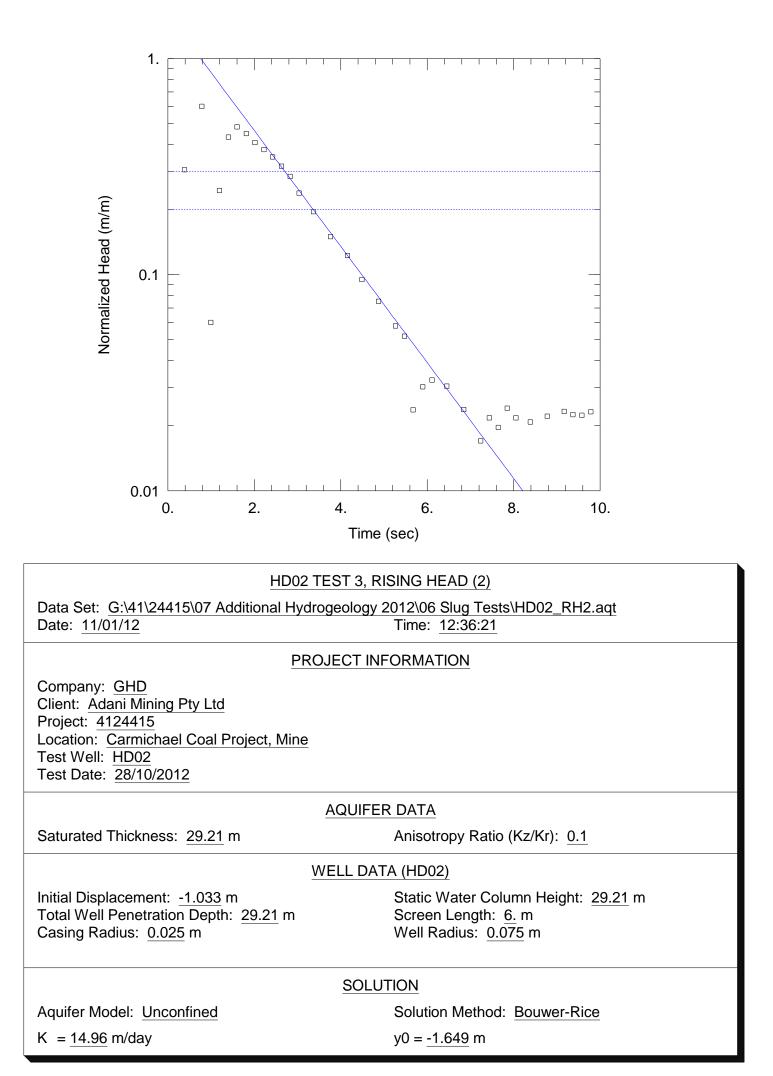


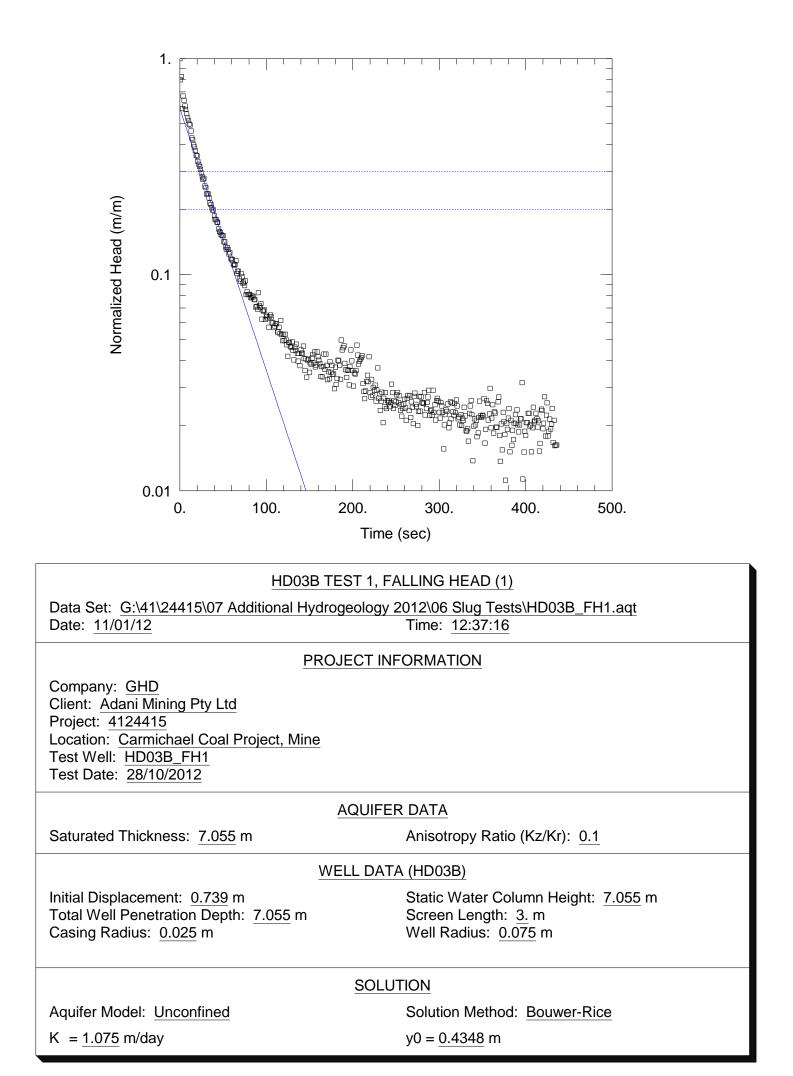


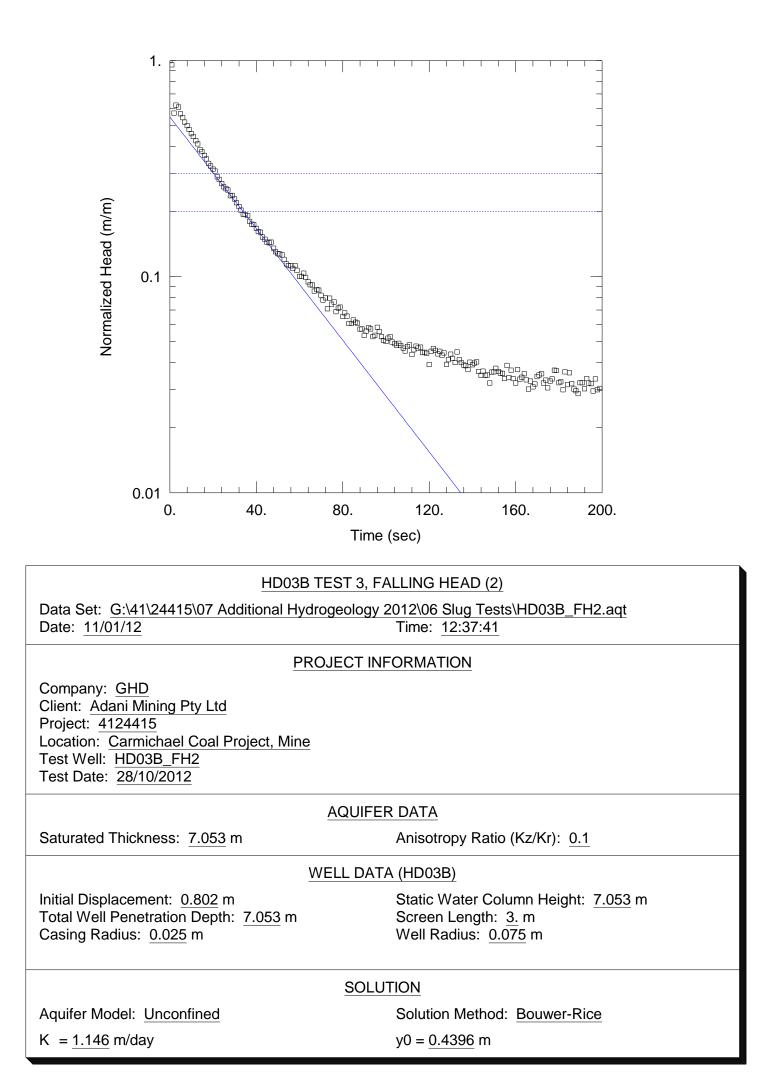


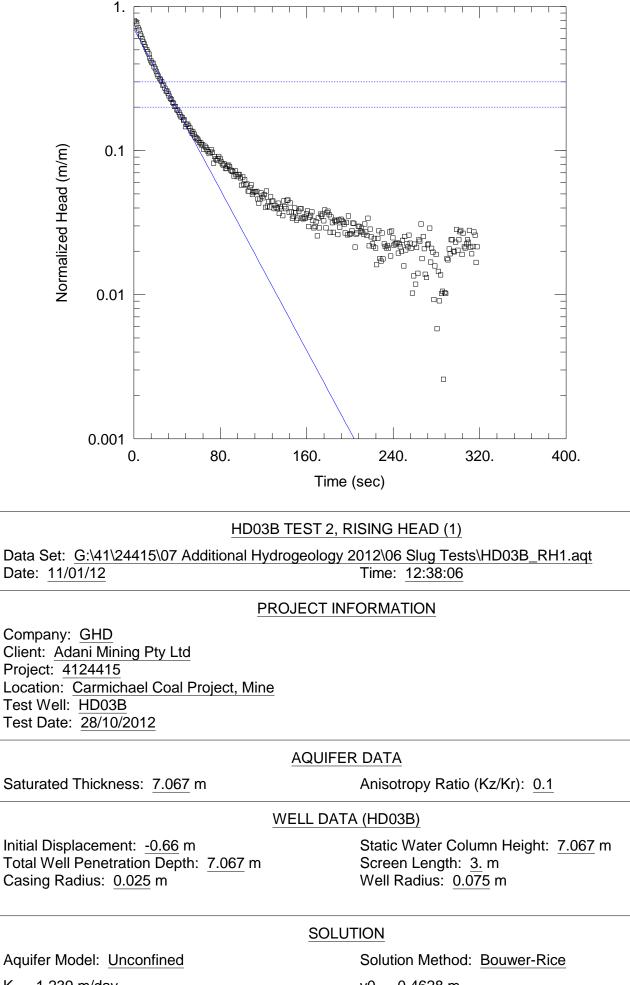


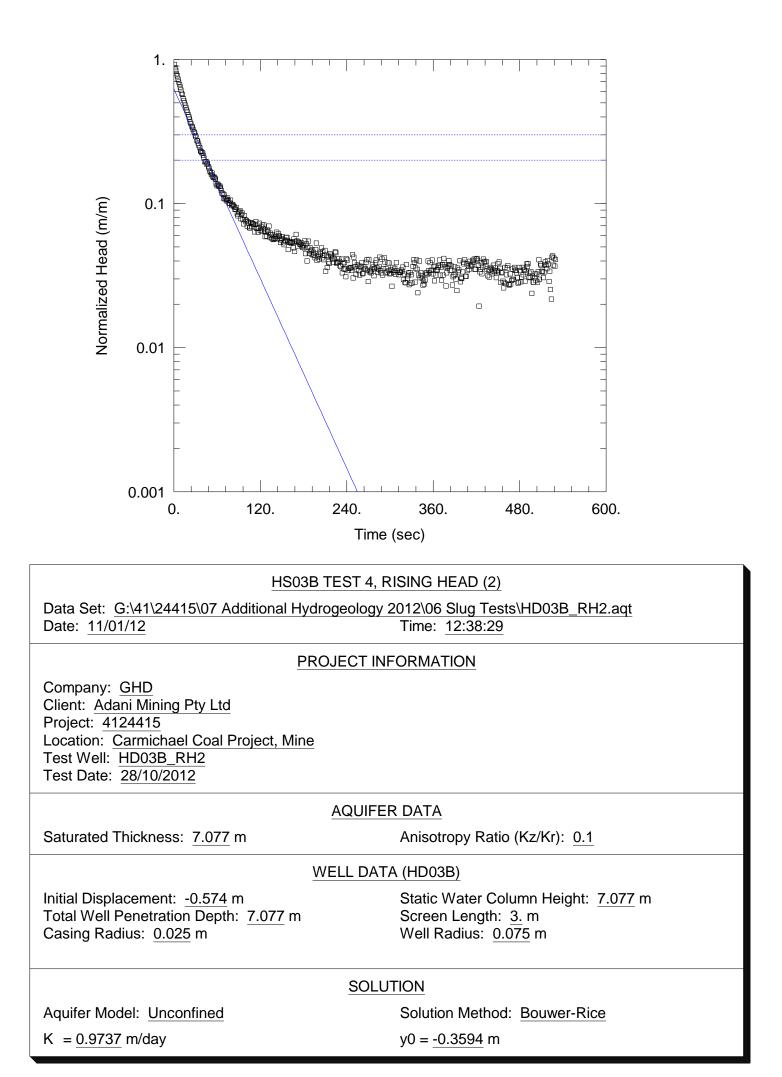












K = 1.239 m/day

y0 = -0.4628 m

Appendix G Pumping Test Results

Table G1: Pumping Test Details Table G2: Pumping Test Results Summary

Page intentionally left blank

Table G1 Summary of Pumping Test Details

Pumping Test Bore	Pumped / Screened Unit of Pump Bore	Test Flow Rate	Test Type	Estimated Aquifer Thickness (m) used in analysis
DUIC	Fullip Dole			111 di latysis
		0.3 increased to 0.5 L/S	48 hour constant rate test,	
C006	D Seam	after 24 hours	recovery test	50
			48 hour constant rate test,	
C0018	D Seam	1L/S	recovery test	70
			48 hour constant rate test,	
C035	AB Seam	2.5L/s	recovery test	17

Table G2
Summary of Pumping Test Results

		, 	•	1	1	1	T	1	1	1	· · · · · · · · · · · · · · · · · · ·
					Calculated		Calculated S/S' (ratio storativity during pumping to		Hydrauclic	Calculated Hydrauclic	
Observation Bore		Observation Data		Solution Aquifer	Transmissivity, T		storativity during	specific	Conductivity, K	Conductivity, K	
ID	Monitored Unit	Matched	Analytical Solutions Applied	Туре	(m ² /d)	Storage, S	recovery)	storage)	(m/d)	(m/s)	Remarks
Test 1 (C006)											
	Weathered										
	Permian										
C006P1	Overburden	Drawdown & recovery	-	-			-		-		No drawdown response evident
C006P3r	D Seam	Drawdown	Hantush	leaky	4.81	5.02E-05			9.61E-02		
C006P3r	D Seam	Recovery	Hantush	leaky	2.08				4.15E-02		
C006P3r	D Seam	Drawdown	Moench	leaky	9.88	3 5.41E-03			1.98E-01	2.29E-06	
C006P3r	D Seam	Recovery	Moench	leaky	5.11	1.94E-03			1.02E-01		
C006P3r	D Seam	Drawdown	Neuman	leaky	4.20				8.40E-02	9.72E-07	-
C006P3r	D Seam	Drawdown & recovery	Barker	confined	6.59		-	- 3.81E-04	1.32E-01		
C006P3r	D Seam	Drawdown	Papadopolus-Cooper	confined	12.56	5.02E-03	3		2.51E-01	2.91E-06	Good fit of solution curve to data
C006P3r	D Seam	Recovery	Papadopolus-Cooper	confined	7.10) 1.50E-02			1.42E-01		Good fit of solution curve to data
C006P3r	D Seam	Recovery	Theis (late time data)	confined	12.83		4.18E-01		2.57E-01		Good fit of solution curve to data
C006P3r	D Seam	Recovery	Theis (all data)	confined	21.68	3 -	- 1.02E-01	- 1	4.34E-01	5.02E-06	-
C006P3r	D Seam	Drawdown	Cooper-Jacob	confined	12.61	I 5.25E-03	3		2.47E-01	2.86E-06	Good fit of solution curve to data
C006P3r	D Seam	Drawdown	Dougherty-Babu	confined	12.60) 8.79E-01			2.52E-01	2.92E-06	-
Test 2 (C018)											
	Weathered				T						
	Permian										
C018P1	Overburden	Drawdown & recovery	-	-							No drawdown response evident
											Response to pumping greater at P2
											than at P3, indicates fractured rock
C018P2	AB Seam	Drawdown & recovery	Moench	leaky	4.60	2.46E-04			6.57E-02	2 7.60E-07	aquifer across AB seam, interburden
C018P3	D Seam	Drawdown	Hantush	leaky	9.41	1.42E-03	}		1.34E-01		Good fit of solution curve to data
C018P3	D Seam	Recovery	Hantush	leaky	8.04	1 2.71E-03	}		1.15E-01	1.33E-06	Good fit of solution curve to data
C018P3	D Seam	Ddown & recovery	Moench	leaky	9.32	2 1.51E-03	}		1.33E-01	1.54E-06	Good fit of solution curve to data
C018P3	D Seam	Recovery	Theis (early time data)	confined	9.41	-	- 8.64E-01	1 -	1.34E-01	1.56E-06	Good fit of solution curve to data
C018P3	D Seam	Drawdown	Cooper-Jacob	confined	10.08	3 1.09E-03	}		1.44E-01	1.67E-06	Good fit of solution curve to data
Test 3 (C035)	•	•	• •	•	•	•	•		•	•	
. , ,	Rewan	Drawdown & recovery						1			No drawdown response evident
C035F1	Rewall	Diawuuwii a recuvery	-	-							
C035P2	AB Seam	Recovery	Cooper-Jacob (late time data)	confined	55.95	5 5.80E-03		. .	3.29E+00	3.81F-05	Good fit of solution curve to data
C035P2	AB Seam	Drawdown	Dougherty-Babu	confined	68.79				4.05E+00		Good fit of solution curve to data
	AB Seam	Drawdown	Papadopolus-Cooper	confined	58.75				3.46E+00		Good fit of solution curve to data
C035P2	AB Seam	Recovery	Papadopolus-Cooper	confined	26.53			. .	1.56E+00		
	AB Seam	Drawdown	Theis	confined	60.15				3.54E+00		Good fit of solution curve to data
0030FZ	עס ארש		111613	COMMEN	00.10	0.04E-03	'I	-	3.34E+00	4.TUE-03	

Appendix H Revised Geological Interpretation Memo

Page intentionally left blank

MEMO

Level 6, 40 Creek Street GPO Box 993, Brisbane Qld 4001

> Phone + 61 (0)7 3835 3900 Fax + 61 (0)7 3835 3999

> Email: info@xenith.com.au ABN: 73 112 994 715

To: Martin Watkinson, Adani Mining Pty Ltd

CC: Barry Ward, GCS Pty Ltd

From: Troy Turner, Xenith Consulting Pty Ltd

Date: 18 October 2012

Re: Carmichael Coal Project – Changes to geological interpretation of overburden in EPC1690

Adani Mining Pty Ltd ('Adani') requested that Xenith Consulting Pty Ltd ('Xenith') undertake a review of the stratigraphic relationships of the formations present in EPC 1690, the area known as the Carmichael Coal Project (CCP) area. Xenith's works were carried out with the input of Barry Ward of Geotechinical Consulting Services Pty Ltd ('GCS') in September 2012.

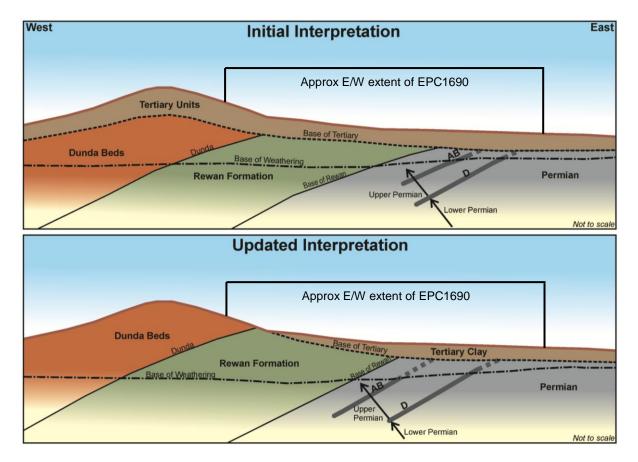
Project Background

In late 2011, Xenith provided a geological model to GHD Pty Ltd, dated November 2011 to use as the basis of a hydro-geological study. The geological model contained a total of 77 data points, collected from the Adani 2010 and 2011 drilling programmes, and 2009 Linc Energy Data.

In 2012 Adani have, and continue to conduct an extensive drilling programme in the CCP area and have significantly increased the data points within the model (324 total drill holes September 2012). In parallel to this studies have been carried out by external consultants to better understand and characterise the relationships between and behaviour of the geological units in the CCP area, particularly those in the overburden of the Permian coal measures.

The increased number of drill holes and additional studies has lead to reinterpretation of the stratigraphy overlaying the Permian coal measures in the CCP area.

Methodology


The review of the stratigraphic units that overlay the Permian coal in the CCP area was undertaken in September 2012 by Barry Ward of GSC. GCS reviewed the core photos, lithological and geophysical logs of the drill holes from the 2011 drill programme, selected data from the 2012 drilling programme and geotechnical reports produced by other consultants. From this data GCS were able to pick the base of Dunda Beds (Triassic), base of Rewan Formation (Triassic) and base of Tertiary age units. A detailed methodology of this process can be found in the extract of the GCS report in Attachment 1.

Xenith updated the current (September 2012) geological model, created in Ventyx's Minescape software, with the data produced by GCS. Figure 1 shows a schematic of the

interpretation in initial interpretation, November 2011 and the updated interpretation, September 2012.

The review concluded that the Tertiary cover was not laterally extensive across (east/west) the CCP area as previously thought, and the substantial thickness of clay that was originally interpreted in the west of the deposit due to a deeper weathering profile in Rewan Formation. It should also be noted that Triassic age strata are present at surface in the west of the lease.

Kind regards

Troy Turner

Xenith Consulting

Attachment 1: Extract from GCS report 'Geotechnical Report –Open Cut Mining'

GHD

145 Ann Street Brisbane QLD 4000 GPO Box 668 Brisbane QLD 4001 T: (07) 3316 3000 F: (07) 3316 3333 E: bnemail@ghd.com.au

© GHD 2012

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Document Status

Rev No.	Author	Reviewer		Approved for Issue			
	Addition	Name	Signature	Name	Signature	Date	
0	R Brown	K Phillipson	On File	J Keane	On File	20/02/2012	
1	R Brown	J Keane		J Keane		07/09/2012	
2	R Brown L Traverso	W Minchin		K Phillipson		09/11/2012	