

CAIRNS SHIPPING DEVELOPMENT PROJECT Revised Draft Environmental Impact Statement

APPENDIX Y: Soils Impact Assessment Proposed Pipelines: Northern Sands DMPA Report (2017)

SOILS IMPACT ASSESSMENT - PROPOSED PIPELINES NORTHERN SANDS DMPA

Cairns Shipping Development Project

REPORT

Report Number. 7 Distribution: 1 PDF Electronic copy

1546223-022-R-Rev2

Executive Summary

The CSDP will require the land based placement of up to 900,000 m³ of soft clays at the Northern Sands void DMPA.

The soft clays are to be dredged using a Trailer Suction Hopper Dredge (TSHD) discharging to a temporary floating pump out facility that will be situated between approximately 2.6 and 3.6 km north east of Yorkeys Knob. Dredge material will be pumped via a submerged steel pipeline, which will make landfall near Richters Creek mouth. From the mouth of the creek the pipeline will run to the Northern Sands DMPA mainly along cane farm headlands via a crossing of Richters Creek with up to three pipeline booster pumps being required. Tailwater is proposed to be discharged adjacent to the site or pumped to discharge at the Barron River at a location adjacent to the bridge on the Captain Cook Highway.

For most of the pipeline routes, earthworks are expected to involve clearing of vegetation where required, formation of access tracks and pipe unloading/assembly areas, and then formation of pipeline support pads. In areas where soft soils are present (e.g. mangrove areas) the pads are likely to comprise sand bags supported on a layer of geotextile placed for both separation (from underlying soils which are likely to be PASS) and reinforcement (for bearing capacity). In other areas not underlain by soft soils or PASS at the surface the pads are likely to comprise mounds of insitu soils.

At some locations (e.g. where the pipeline comes onshore, where the pipeline discharges to the Barron River and/or the banks of the creek crossing) engineered crane pads and more significant pipe support pads will probably be required. Such pads are expected to comprise imported crushed rock fill with geotextile reinforcement.

The Northern Sands site is located on the Barron River floodplain. The proposed delivery pipeline route traverses the flood plain from the shoreline to the site. Surface levels typically range from between 1 m to 2 m AHD near the shoreline rising to about 4 m AHD along the cane farm headlands to the north and south of Richters Creek and then to the Captain Cook Highway and the Northern Sands site.

Published geological information indicates that the delivery and discharge pipeline routes are underlain by Holocene aged alluvial deposits typically comprising clays, silts, sands and gravels. The surficial deposits are underlain by varying sequences of older sand and clay deposits.

Acid Sulfate Soils are present along the pipeline routes, with PASS present between the surface and depths ranging to 1 m near the banks of Richters Creek and the Barron River. Away from the creek and river banks acidic soil conditions (i.e. non PASS) are present from the surface, with PASS generally present within 2 m to 4 m of the surface.

Near the Northern Sands DMPA groundwater levels are typically between 2 m to 3 m below the ground surface or about 0.2 m to 0.5 m AHD. Groundwater levels along the pipelines routes are likely to be similar. Where the pipeline route runs close to Richters Creek or the Barron River, groundwater levels are likely to be similar to the water levels in the adjacent waterways.

Potential impacts relating to soils resulting from construction, operation and removal of the delivery and discharge pipelines include the following:

- Instability on the banks of Richters Creek or the Barron River resulting in ground displacement into the waterway.
- Instability on the banks of Richters Creek or the Barron River resulting in disturbance of PASS materials.
- Erosion on the banks of Richters Creek or the Barron River resulting in sediment discharge into the waterway.
- Earthworks required during construction of the pipeline resulting in disturbance of PASS materials and possibly generation of acidic water.

- Settlement and/or failure of pipeline support foundations, possibly resulting in disturbance of PASS materials and possibly generation of acidic water.
- Settlement and/or failure of pipeline support foundations, possibly resulting in burst or leaking pipelines.

Potential impacts related to instability are likely to be able to be mitigated by appropriate geotechnical input during detailed design and implementation of the proposed works. Other potential impacts are likely to be able to be mitigated under Construction Environmental Management Plans.

The potential impacts related to soils are assessed to be short term and reversible, irrespective of whether they are predictable or unpredictable. The risks associated with potential impacts related to soils are assessed to be low.

Table of Contents

1.0	INTRO	INTRODUCTION				
2.0	PIPELI	NE OPERATIONS	4			
3.0	DESKT	OP ASSESSMENT	5			
	3.1	Background information	5			
	3.2	Topography	6			
	3.3	Geology	6			
	3.4	Soils	6			
	3.5	Acid Sulfate Soils	6			
	3.6	Groundwater	7			
4.0		IVESTIGATIONS	7			
	4.1	Site inspection	7			
	4.2	Subsurface investigations and laboratory testing	9			
5.0	GROU	ND CONDITIONS	9			
6.0	CONST	RAINTS AND OPPORTUNITIES	10			
	6.1	Opportunities	10			
	6.2	Constraints	10			
7.0	POTEN	ITIAL IMPACTS	10			
8.0	IMPAC	T ASSESSMENT – SOILS	11			
	8.1	Methodology	11			
	8.2	Results of impact assessment	14			
9.0	REFER	ENCES	17			
10.0	IMPOR	TANT INFORMATION	17			

PROPOSED PIPELINES - NORTHERN SANDS DMPA

TABLES

Table 1: Significance criteria	12
Table 2: Classifications of the duration of identified impacts	13
Table 3: Likelihood of impact	13
Table 4: Risk matrix	13
Table 5: Risk Rating Legend	14
Table 6: Assessment of impacts	15
Table 7: Summary of assessed impacts	16

FIGURES:

Figure 1 - Proposed Pipeline Route

- Figure 2 Surface Geology
- Figure 3 Soils Map
- Figure 4 ASS Map
- Figure 5 Investigation Locations Plan

APPENDICES:

APPENDIX A Borehole Reports

APPENDIX B Laboratory Test Results

APPENDIX C Queensland Government Terms of Reference

APPENDIX D Important Information

Acronyms

- CSDP: Cairns Shipping Development Project DMPA: Dredged Material Placement Area AHD: Australian Height Datum ASS: Acid Sulfate Soil AASS: Actual Acid Sulfate Soil .
- PASS: Potential Acid Sulfate Soil

Flanagan Consulting Group (FCG) commissioned Golder Associates Pty Ltd (Golder) to provide advice related to soils and groundwater issues as part of the Revised Draft Environmental Impact Statement for the Cairns Shipping Development Project (CSDP).

The CSDP will require the land based placement of approximately 900,000 m³ of soft clays and up to 100,000 m³ of stiff clays at separate Dredge Material Placement Areas (DMPA). The stiff clays are proposed to be placed at Port North's Tingira Street property. The soft clays are proposed to be placed in the Northern Sands void DMPA.

The soft clays are to be dredged via a 5,600 m³ capacity Trailer Suction Hopper Dredge (TSHD) discharging to a temporary floating pump out facility that will be situated between approximately 2.6 and 3.6 km north east of Yorkeys Knob.

Dredge material will be pumped from the pump out facility via a submerged steel pipeline, which will make landfall near the Richters Creek mouth, thence to the Northern Sands DMPA mainly via cane farm headlands. Due to the ~8 km pipeline length that will be required to connect the pump out facility to the Northern Sands DMPA, up to three pipeline booster pumps may be required, depending on TSHD pumping capacity. Tailwater is proposed to be discharged adjacent to the site or pumped to an outfall at the Barron River highway bridge.

The aims of this report are to describe the existing soil conditions associated with delivery and discharge pipelines and to identify:

- Key soils related constraints (and opportunities) for the design and construction of the pipeline facilities required for placement of the dredged material; and
- Potential soil-related environmental impacts and mitigation/management measures.

As per advice from FCG, this report is limited to soil impacts associated with the delivery and discharge pipelines and excludes operations at the Northern Sands DMPA.

2.0 **PIPELINE OPERATIONS**

2.1 **Pipeline construction**

As outlined in Section 1.0, dredged material will be pumped from an off shore pump out facility via a submerged steel pipeline making landfall near the mouth of Richters Creek. From the shoreline the pipeline will be above ground generally running along existing cane farm headlands on the north side of the creek, prior to crossing to the south side. From the south side of the crossing the pipeline will generally run along cane farm headlands through the cane fields to the Captain Cook Highway. The pipeline will cross the highway via existing drainage culverts before entering the Northern Sands site for delivery of dredged materials. The proposed discharge pipeline will either run directly to the Barron River at a location adjacent to the site or run along existing cane farm headlands to discharge at the Barron River at a location adjacent to the bridge on the Captain Cook Highway.

It is expected that construction of the pipelines will generally only require relatively minor clearing and earthworks, however works to provide access for construction vehicles and construction plant will be required.

For most of the pipeline route, earthworks are expected to involve clearing of vegetation where required, formation of access tracks and unloading/pipe assembly areas, and then formation of pipeline support pads. In areas where soft soils are present (e.g. mangrove areas) the pads are likely to comprise sand bags supported on a layer of geotextile placed for both separation (from underlying soils which are likely to be PASS) and reinforcement (for bearing capacity). In other areas not underlain by soft soils or PASS the pads are likely to comprise mounds of insitu soils.

At some locations (e.g. where the pipeline comes onshore, where the pipeline discharges to the Barron River and/or the banks of the creek crossing) engineered crane pads and more significant pipe support pads will probably be required. Such pads are expected to comprise imported crushed rock fill with geotextile reinforcement.

As most of the pipeline routes are proposed along existing cane farm headlands, earthworks for access tracks are expected to be relatively minor. The headlands generally provide all weather access, particularly during the dry season when construction is proposed. If soft ground conditions are encountered on existing or proposed tracks, "bridging" layers comprising imported crushed rock fill (with geotextile separation and/or reinforcement if required) can be placed.

Booster pump stations are expected to comprise portable equipment supported on engineered pads comprising insitu soils. The pumps may need to be surrounded by earth bunds likely comprising insitu soils for noise reduction.

Conventional erosion and sediment control (ESC) measures would need to be implemented during the construction works (e.g. in accordance with FNQROC requirements).

2.2 Placement operations

During placement operations access will need to be maintained for fuel trucks plus other plant required during pumping. No earthworks are expected to be required during this period, other than if the pipeline breaches and discharges dredged material over the surface. If this was to occur, plant would be required for access to and "clean-up" of dredged materials. Such clean-up operations would need to involve the following:

- Containment of the dredged materials if required (e.g. by temporary bunding);
- Liming of the dredged materials to neutralise PASS and to allow "re-handling" by excavators or front end loaders;
- Excavation and transportation of the dredged materials to the Northern Sands DMPA; and
- Revegetation of disturbed areas.

2.3 Post placement operations

Following placement of the dredged material it is expected that the pipeline will be removed using similar plant to that required for construction. Pads and bunds constructed with insitu soils are likely to be excavated with material spread in nearby areas. Pads in soft soil areas are likely to be excavated with materials removed from site. Bridging layers on access tracks are likely to be excavated with materials removed from site. Bridging layers on cane farm headlands are likely to remain in place.

All disturbed areas would need to be revegetated following removal of the pipeline and access tracks (other than cane farm headlands).

3.0 DESKTOP ASSESSMENT

3.1 Background information

The Northern Sands DMPA comprises an operating sand extraction pit which is licenced to receive 'inert wastes' and potential acid sulfate soils (PASS), both of which are placed into the excavated pit below the water table. The proposed delivery pipeline route to the site is shown on Figure 1. Options for the discharge pipeline routes are also shown on Figure 1.

The proposed delivery pipeline will cross the shoreline at the mouth of Richters Creek and then generally run along existing cane headlands on the north side of the creek prior to crossing to the south side of the creek. From the south side of the creek crossing the pipeline will generally run along cane headlands across the cane fields to the Captain Cook Highway. The pipeline will cross the highway via existing drainage culverts before entering the Northern Sands site. The proposed discharge pipeline will either run directly to the Barron River at a location adjacent to the site or run along existing cane headlands to discharge at the Barron River at a location adjacent to the bridge on the Captain Cook highway.

Information on topography, geology, soils and ground conditions along the pipeline routes is presented in the following sections.

3.2 Topography

The Northern Sands site is located on the Barron River floodplain. The proposed delivery pipeline route traverses the flood plain from the shoreline to the site. Surface levels typically range from between 1 m to 2 m AHD near the shoreline rising to about 4 m AHD along the cane farm headlands to the north and south of Richters Creek and then to the Captain Cook Highway and the Northern Sands site. Surface levels across the Northern Sand site typically range from about 2 m to 5 m AHD. The Barron River runs immediately south and west of the Northern Sands site.

3.3 Geology

Published geological information from *Queensland Digital Geological Map Data 1:100,000 Cairns 8064* series Department of Natural Resources and Mines indicates that the delivery and discharge pipeline routes are underlain by Holocene aged alluvial deposits comprising clays, silts, sands and gravels. The surficial deposits are underlain by varying sequences of older sand and clay deposits, underlain by bedrock comprising Silurian/Devonian meta-sediments. A map showing the surface geology along the pipeline routes is reproduced on Figure 2.

3.4 Soils

The Commonwealth Scientific and Industrial Research Organisation (CSIRO) *Soils of Babinda -Cairns Area, North QLD* 1996 (1:50,000 scale) soils map indicates the presence of several soil units along the pipeline routes. These units are summarised below.

Route section	Soil units present
Delivery pipeline - Mouth of Richters Creek to creek crossing	Mangrove, Hull and Liverpool
Delivery pipeline - Creek crossing to Northern Sands	Mangrove, Hull, Brosnan and Liverpool
Discharge pipeline - Northern Sands to Barron River	Liverpool and Mangrove

The soil units are reproduced on Figure 3 and described below.

Unit name	Typical origin	Soil description
Mangrove	Swamps and Intertidal Zone	Saline soils of the intertidal zone.
Hull	Beach Dunes	Deep sandy soils (Tenosols).
Brosnan	Alluvium	Soils formed on beach ridges (Red Kandosol) comprising brown sandy loam over yellowish red or red sandy loam to sandy light clay.
Liverpool	Alluvium	Well drained soils formed on alluvium (Orthic Tenosol) comprising dark grey brown silty loams over yellow brown silty loam and silty clay loam to about 0.6m overlying fine sands.

3.5 Acid Sulfate Soils

Acid Sulfate Soil (ASS) is a general term applying to both a soil horizon that contains sulfides (i.e. Potential Acid Sulfate Soil - PASS) and an acid soil horizon affected by oxidation of sulfides (i.e. Actual Acid Sulfate Soil - AASS). The Department of Environment and Resource Management 2009 *Acid Sulfate Soils of Cairns North Queensland* shows the proposed pipeline routes as being mapped at a 1:50,000 scale. An extract of the DERM 2009 soil map covering the pipeline routes and showing the interpreted distribution of PASS is reproduced as Figure 4.

A review of groundwater levels from bores installed by Golder at the Northern Sands site indicates groundwater levels typically between 2 m to 3 m below the ground surface or about 0.2 m to 0.5 m AHD. Groundwater levels along the pipelines routes are likely to be similar. Where the pipeline route runs close to Richters Creek or the Barron River, groundwater levels are likely to be similar to the water levels in the adjacent waterways. A more detailed assessment of groundwater conditions in the area of the Northern Sands site is presented in Golder report 1546233-023-R-Rev0.

4.0 SITE INVESTIGATIONS

4.1 Site inspection

Initial fieldwork involved a walk-over/drive-over assessment of surface conditions along the proposed pipeline routes. An assessment of surface conditions at the location of the proposed creek crossing on the delivery pipeline route and at the proposed discharge point on the Barron River was made by boat. Photographs showing various features along the proposed pipeline routes are presented below.

Richters Creek where pipeline comes ashore

Typical headland around cane farm - north side of Richters Creek

PROPOSED PIPELINES - NORTHERN SANDS DMPA

North bank of creek crossing

South bank of creek crossing

Typical headland through cane farm south side of Richters Creek

A sampling program was undertaken to ground truth published information and develop a better understanding of near surface conditions along the proposed pipeline routes. Investigation locations were selected to assess identified geological units and soil units, and areas identified from ASS mapping.

The sampling program included:

- Eight hand auger boreholes: Seven boreholes (namely, BH01 to BH07) were located along the proposed delivery pipeline route and one borehole was located on the proposed discharge pipeline route. The boreholes were positioned within soil units with a higher potential for ASS materials being encountered. Note boreholes BH03 to BH06 were located in inferred natural soils adjacent to the cane farm headlands on the proposed pipeline route. Borehole BH02 encountered inferred fill materials from the headland. Boreholes BH01, BH07 and BH08 were located in inferred natural soils on the proposed pipeline route.
- Overwater sampling: A sample of soil (Boat Sample 1) was collected from the bed of the creek at the location where the pipeline crosses Richters Creek.

The locations of the boreholes and the boat sample are shown on Figure 5 and the borehole reports are presented in Appendix A.

Soil samples were collected from each investigation location at approximately 0.25 m depth intervals and screened with field testing for indicators of acid sulfate soil. On the basis of these field screening tests, nine samples were selected and sent for laboratory Chromium Suite analysis.

Soil sample handling, field screening and laboratory analysis were undertaken in line with the *Queensland State Planning Policy 2/02 Guideline - Acid Sulfate Soils*. Laboratory test certificates, field screening results and a summary of the laboratory test results are presented in Appendix B.

Selected sub-samples from the acid sulfate soil testing were sent for laboratory plasticity and grading tests in order to confirm field classifications of the soils encountered. Laboratory test certificates for the classification testing are also presented in Appendix B.

5.0 GROUND CONDITIONS

In general terms the soils encountered along the pipeline routes are consistent with those indicated on the geology, soils and ASS maps (Figures 2 to 4). Soil properties and ASS potential are summarised below.

Soil unit (refer Figure 3)	Relevant borehole (refer Figure 5)	Near surface soil conditions	ASS Potential
Mangrove	BH01, BH04	Soft to very soft clays and loose sands	PASS in top 0.5 m.
Hull BH06		Loose silty/clayey sands	Acidic soils to 0.5 m, PASS below 3 m
Brosnan		Firm to stiff silty/sandy clays	Acidic soils to 0.5 m, PASS below 3 - 4 m
Liverpool BH03, BH05, BH07, BH08		Firm to stiff silty/sandy clays	Acidic soils to 0.5 m, PASS below 2 - 3 m

From an ASS perspective the following ground conditions are inferred along the delivery pipeline route:

- The first 400 m to 500 m of the route from the mouth of Richters Creek has PASS present at depths between 1 m and the surface. From there to the crossing of Richters Creek, PASS is again present at depths between 1 m and the surface near the creek bank. Away from the creek bank acidic soil conditions (i.e. non PASS) are present from the surface, with PASS generally present within 2 m to 4 m of the surface;
- At the creek crossing PASS is present at depths between 1 m and the surface;

- Between Richters Creek and the Captain Cook Highway, acidic soil conditions (i.e. non PASS) are generally present from the surface with PASS generally present within 2 m to 4 m of the surface; and
- Surrounding the Northern Sands pit, acidic soil conditions (i.e. non PASS) are present from the surface, with PASS generally present within 4 m to 5m of the surface.

The following conditions are inferred along the discharge pipeline route to the Barron River bridge:

- From the Northern Sands pit to the bank of the Barron River, acidic soil conditions (i.e. non PASS) are
 present from the surface, with PASS generally present within 2 m to 4m of the surface; and
- At the river bank PASS is present at depths between 1 m and the surface.

6.0 CONSTRAINTS AND OPPORTUNITIES

6.1 **Opportunities**

Opportunities related to the construction and operation of the proposed pipelines to and from the Northern Sands DMPA are as follows:

- The proposed pipeline routes maximise the use of existing cane farm headlands.
- The proposed pipeline routes minimise the distance where PASS/soft clays need to be traversed.
- Construction of the pipeline above ground reduces the potential to disturb PASS if no significant excavations are to be carried out.
- Near surface conditions along most of the proposed routes are likely to comprise non PASS, firm to stiff silty/sandy clays (note these soils are generally adjacent to the cane farm headlands). These conditions are suitable for the likely construction methodology (i.e. supporting the pipes on pads of soil).

6.2 Constraints

Constraints related to the construction and operation of the proposed pipelines to and from the Northern Sands DMPA are as follows:

- Some areas along the delivery and discharge pipeline routes comprise soft clays at or near the surface. The presence of these soils will make construction difficult and require engineered construction access, crane pads and pipe support. There is also a potential for settlement and/or failure of pipeline support foundations to occur.
- The banks of Richters Creek and the Barron River comprise soft clays with a potential for instability to
 occur under increased loads induced by the pipelines and/or construction equipment.
- The banks of Richters Creek and the Barron River comprise PASS materials with a potential for disturbance during construction or if instability occurs.
- Clearing of vegetation on the banks of Richters Creek and the Barron River will be required for construction of the pipeline. This could lead to a higher potential for erosion to occur.

7.0 POTENTIAL IMPACTS

Potential impacts relating to soils resulting from construction, operation and removal of the delivery and discharge pipelines include the following:

- Instability on the banks of Richters Creek or the Barron River resulting in ground displacement into the waterway.
- Instability on the banks of Richters Creek or the Barron River resulting in disturbance of PASS materials.
- Erosion on the banks of Richters Creek or the Barron River resulting in sediment discharge into the waterway.

- Earthworks required during construction of the pipeline resulting in disturbance of PASS materials and possibly generation of acidic water.
- Settlement and/or failure of pipeline support foundations, possibly resulting in disturbance of PASS materials and possibly generation of acidic water.
- Settlement and/or failure of pipeline support foundations, possibly resulting in burst or leaking pipelines.

As outlined in Section 2.0, engineered crane pads and pipe support pads will probably be required in some areas. This will likely mitigate potential impacts related to soft ground conditions (e.g. instability and/or settlement). It is noted that all of the other impacts are also likely to be able to be mitigated. However, in relation to PASS impacts it is important to note that when PASS is exposed to oxygen by disturbance (via excavation or displacement) or by drainage (via dewatering or other means of lowering the water table), pyrite can oxidise and form sulfuric acid when combined with water. Sulfuric acid can leach out of these affected soils and strip metals (including iron, aluminum and heavy metals) from the surrounding soils. Acidic and metals impacted water can migrate into surface waters and groundwater.

These processes can lead to degradation of terrestrial vegetation through:

- Stunting of root growth;
- Increased toxicity from higher concentrations of aluminum, iron and manganese;
- Reduced plant minerals and nutrients; and
- Reduced resistance to pathogen attack.

Longer term impacts may include species die off and changes to vegetation cover (domination by more acid tolerant species).

The discharge of acidic water to estuarine environments may cause the following impacts:

- Increased acidity and increased iron and aluminum concentrations may be toxic to some aquatic organisms and may cause fish diseases (eg. red spot).
- Iron and aluminum precipitates can affect water quality and coat stream banks, benthic (sedimentdwelling) organisms and aquatic vegetation.
- Aquatic vegetation communities may change to become dominated by acid tolerant species.
- Deoxygenated water may also result from the secondary oxidation of the Fe₂₊ consuming oxygen and lowering the level of dissolved oxygen in surface waters.

Acidic waters can also weaken concrete and steel infrastructure such as culverts, pipes and piles.

Further assessment of soils related impacts is presented in Section 8.0

8.0 IMPACT ASSESSMENT – SOILS

8.1 Methodology

In order to address the terms of reference, guidelines and other requirements for the currently defined project, the following methodology was adopted:

- Assess impacts (based on the risk assessment format outlined below);
- Provide recommendations for mitigation by design changes; and
- Provide recommendations for mitigation by management.

Flanagan Consulting Group has extracted relevant items from the Queensland Government Terms of Reference and the Commonwealth Government Guidelines for soils studies. These items and relevant details are presented in Appendix C.

PROPOSED PIPELINES - NORTHERN SANDS DMPA

The initial assessment of impacts utilises a significance table based on that shown in Table 1.

Impact significance / consequence	Description of significance (examples)
Very High	The impact is considered critical to the decision-making process. Impacts tend to be permanent or irreversible or otherwise long term and can occur over large scale areas.
High	The impact is considered likely to be important to decision-making. Impacts tend to be permanent or irreversible or otherwise long to medium term. Impacts can occur over large or medium scale areas.
Moderate	The effects of the impact are relevant to decision making including the development of environmental mitigation measures Impacts can range from long term to short term in duration Impacts can occur over medium scale areas or otherwise represents a significant impact at the local scale
Minor	Impacts are recognisable/detectable but acceptable. These impacts are unlikely to be of importance in the decision making process. Nevertheless, they are relevant in the consideration of standard mitigation measures. Impacts tend to be short term or temporary and/or occur at local scale.
Negligible	Minimal change to the existing situation. This could include, for example, impacts which are beneath levels of detection, impacts that are within the normal bounds of variation, or impacts that are within the margin of forecasting error.

Table 1: Significance criteria

The approach to classifying the duration of identified impacts is presented in Table 2.

Table 2: Classifications of the duration of identified impacts

Relative Duration Of Impacts					
Temporary	Days to months				
Short Term	Up to one year				
Medium Term	From one to five years				
Long Term	From five to 50 years				
Permanent/Irreversible	In excess of 50 years				

The likelihood of an impact occurring is assessed as per Table 3.

Table 3: Likelihood of impact

Likelihood of Impacts	Risk probability categories
Highly Unlikely	Highly unlikely to occur but theoretically possible
Unlikely	May occur during construction of the project but probability well below 50%; unlikely, but not negligible
Possible	Less likely than not but still appreciable; probability of about 50%
Likely	Likely to occur during construction or during a 12 month timeframe; probability greater than 50%
Almost Certain	Very likely to occur as a result of the proposed project construction and/or operations; could occur multiple times during relevant impacting period

A risk rating is assigned by assessing significance versus likelihood within a risk matrix. Risk is described as the product of likelihood and significance as shown in **Table 4**.

Table 4: Risk matrix

Likelihood	Significance							
LIKeimoou	Negligible Minor		Moderate	High	Very high			
Highly Unlikely/ Rare	Negligible Negligible		Low	Medium	High			
Unlikely	Negligible	Low	Low Medium		High			
Possible	Negligible	Low	Medium	Medium	High			
Likely	Negligible	Medium	Medium	High	Extreme			
Almost Certain	Low	Medium	High	Extreme	Extreme			

The rating of risk assessed in the risk matrix is presented in **Table 5**.

Table 5: Risk Rating Legend

	An issue requiring change in project scope; almost certain to result in a 'significant' impact on the environment
	An issue requiring further detailed investigation and planning to manage and reduce risk; likely to result in a 'significant' impact on the environment
Medium Risk	An issue requiring project specific controls and procedures to manage
Low Risk	Manageable by standard mitigation and similar operating procedures
Negligible Risk	No additional management required

After assessing the nature and severity of impacts they are summarised under the following categories:

- Adverse/beneficial;
- Consequential;
- Cumulative;
- Short-term/long term;
- Reversible/irreversible; and
- Predictable/unpredictable.

8.2 Results of impact assessment

Potential impacts related to soils have been outlined in Section 7.0. All of the potential impacts are assessed as being *temporary* or *short term*. It is noted that impacts related to disturbance are likely to be able to be mitigated by appropriate geotechnical design and implementation of appropriate construction management plans.

An assessment of these impacts is presented in Table 6.

Table 6: Assessment of impacts

Primary impacting	Initial asses (statutory)mitię	sment with s gation measu		Residual assessment with additional (proposed) mitigation measures in place			
processes	Significance of impact	Likelihood of impact	Risk rating	Significance of impact		Riskrating	
Instability on the banks of Richters Creek or the Barron River resulting in ground displacement into the waterway	Moderate	Possible	Medium	Moderate	Unlikely	Low	
Instability on the banks of Richters Creek or the Barron River resulting in disturbance of PASS materials	Moderate	Possible	Medium	Moderate	Unlikely	Low	
Erosion on the banks of Richters Creek or the Barron River resulting in sediment discharge into the waterway	Minor	Unlikely	Low	Minor	Unlikely	Low	
Earthworks required during construction of the pipeline resulting in disturbance of PASS materials	Minor	Possible	Low	Minor	Possible	Low	
Disturbance of PASS results in acidic water being generated	Moderate	Unlikely	Low	Moderate	Unlikely	Low	
Settlement and/or failure of pipeline support foundations, possibly resulting in burst or leaking pipelines	Moderate	Unlikely	Low	Moderate	Unlikely	Low	

Based on the above, the risks associated with potential impacts related to soils are assessed to be low. A summary of assessed impacts is presented in Table 7.

Table 7: Summary of assessed impacts

Element	Adverse impact	Beneficial impact	Consequential impact	Cumulative impact	Short term	Lona term	Reversible	Irreversible	Predictable	Unpredictable
Soils – Soft Ground	Potential instability into the waterways. Failed material could extend into waterway. Could impact waterways if appropriate remedial works not carried out		Minimal impact as risk can be managed in design (e.g. reinforcement with high strength geotextiles or ground support with soil nails) and construction or operations (e.g. excavation of failed material and treatment if required)		x		x			х
Soils – Soft Ground	Potential failure of pipeline support foundations resulting in burst or leaking pipelines. Possible discharge of dredged materials could impact waterways if appropriate remedial works not carried out		Minimal impact as risk can be managed in design (e.g. reinforcement with high strength geotextiles) and construction or operations (e.g. containment bunds, excavation of discharged material and treatment if required)		x		x			x
Soils - ASS	Potential instability of slopes and/or foundations. PASS could be disturbed. Acidic waters could be generated if appropriate remedial works not carried out		Minimal impact as risk can be managed in design (e.g. reinforcement with high strength geotextiles or ground support with soil nails) and construction or operations (e.g. excavation of failed material and treatment if required)		x		x			х
Soils - ASS	Potential disturbance of PASS during construction or removal of pipelines Acidic waters could be generated if appropriate remedial works not carried out		Minimal impact as risk can be managed in construction (e.g. excavation of disturbed material and treatment if required)		x		x			x
Soils - Erosion	Erosion results in sediment discharge into the waterway. Could impact water quality if appropriate remedial works not carried out		Minimal impact as risk can be managed in design, construction and operations with implementation of appropriate erosion and sediment control plans/measures		x		x		x	

Based on the above, the potential impacts related to soils are assessed to be short term and reversible irrespective of whether they are predictable or unpredictable.

9.0 **REFERENCES**

Queensland Digital *Geological Map Data 1:100,000 Cairns 8064 series* Department of Natural Resources and Mines

Commonwealth Scientific and Industrial Research Organisation (CSIRO) 2013 Soils of Babinda -Cairns Area, North QLD 1996 (1:50,000 scale). Sourced from QGIS 9/2013 (DP_QLD_LAN_BBC_50K)

Manders J.A. O'Brien L.E. Morrison DW (2009). *Acid Sulfate Soils of Cairns, North Queensland* Department of Environment and Resource Management, Indooroopilly, Queensland, Australia.

Dear, S-E., Ahern, C. R., O'Brien, L. E., Dobos, S. K., McElnea, A. E., Moore, N. G. & Watling, K. M. (2014). *Queensland Acid Sulfate Soil Technical Manual: Soil Management Guidelines*. Brisbane: Department of Science, Information Technology, Innovation and the Arts, Queensland Government.

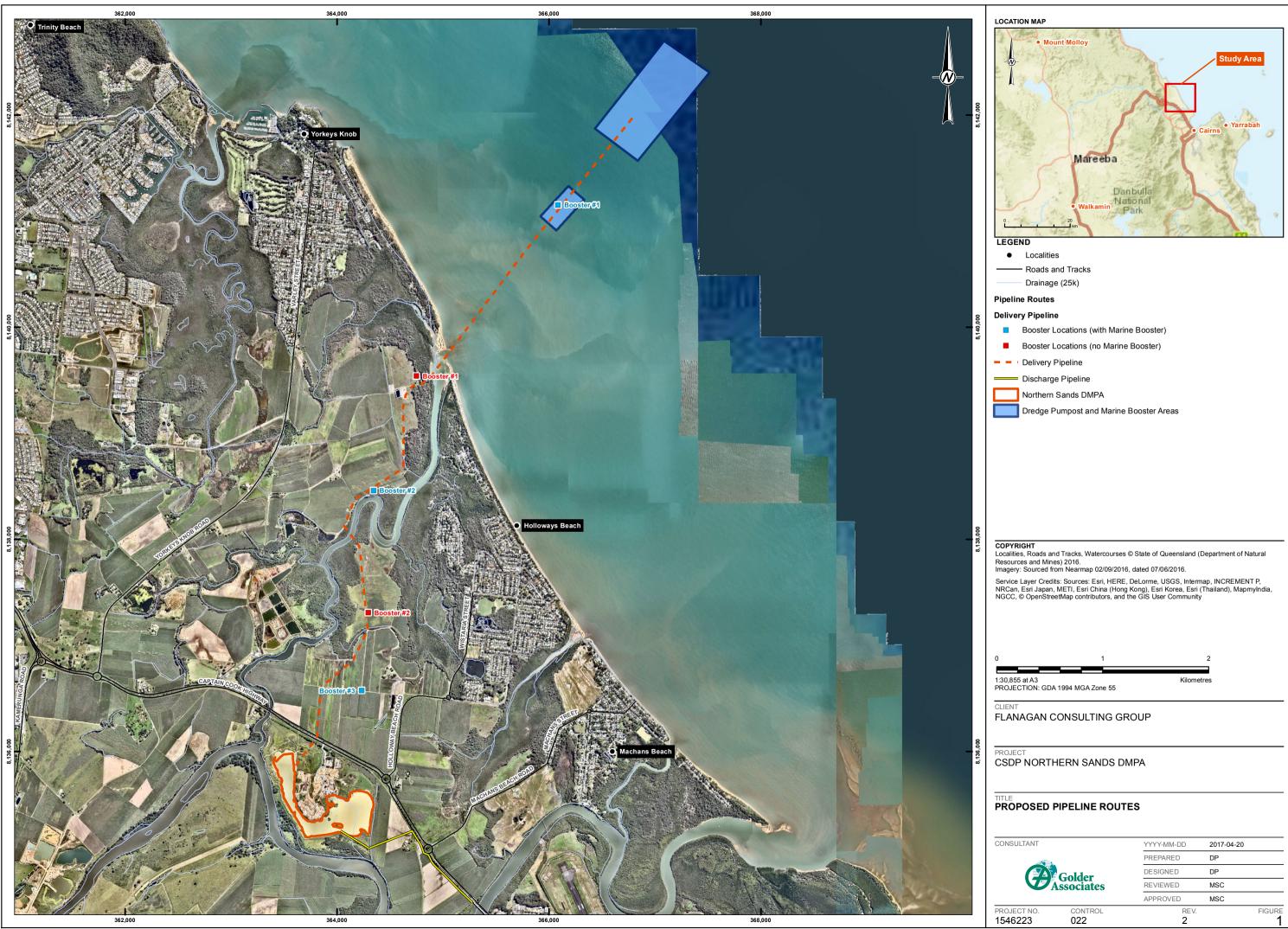
10.0 IMPORTANT INFORMATION

Your attention is drawn to the document - "Important Information", which is included as an attachment to this report. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be. The document is not intended to reduce the level of responsibility accepted by Golder Associates, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing.

GOLDER ASSOCIATES PTY LTD

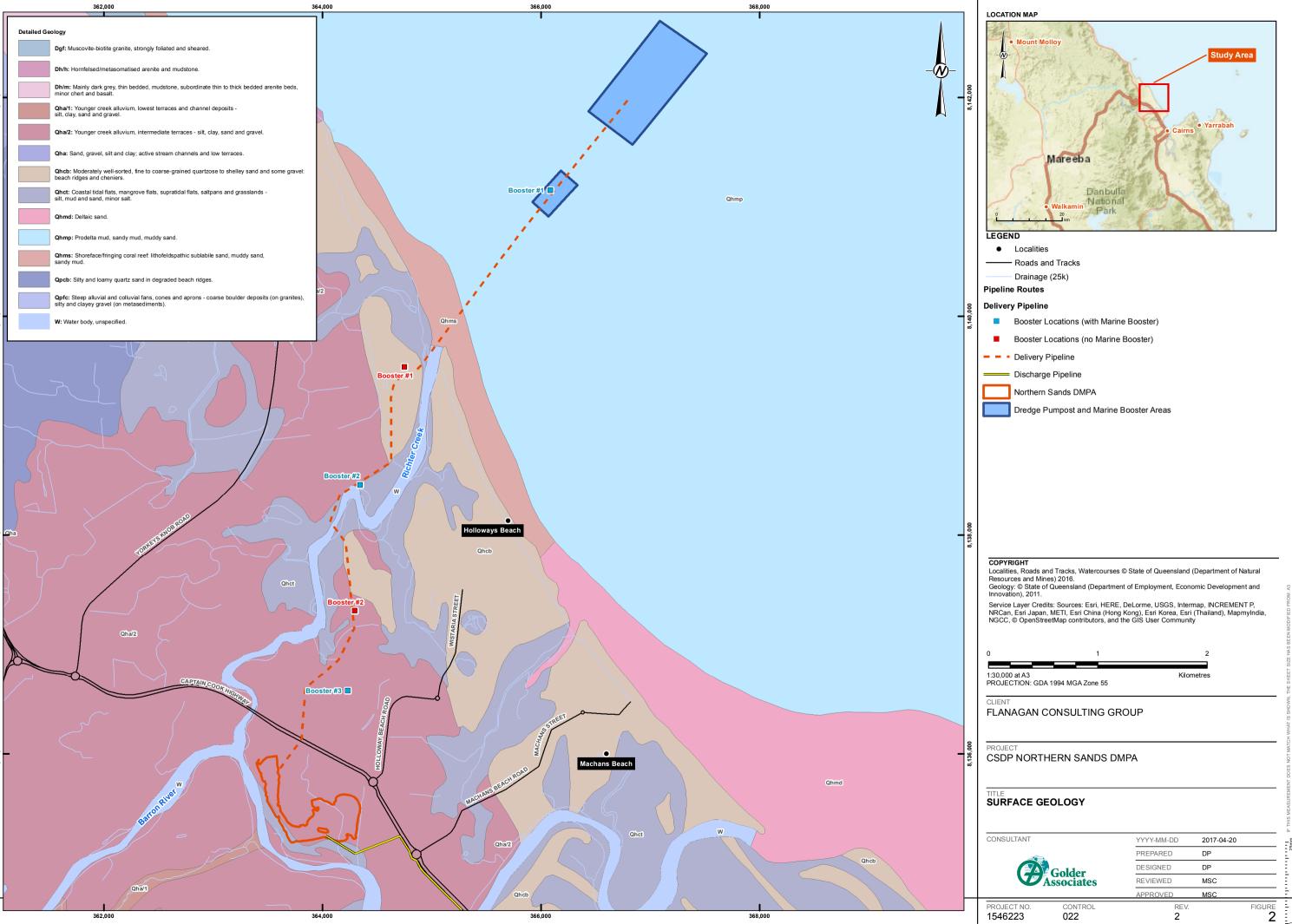
A P.O

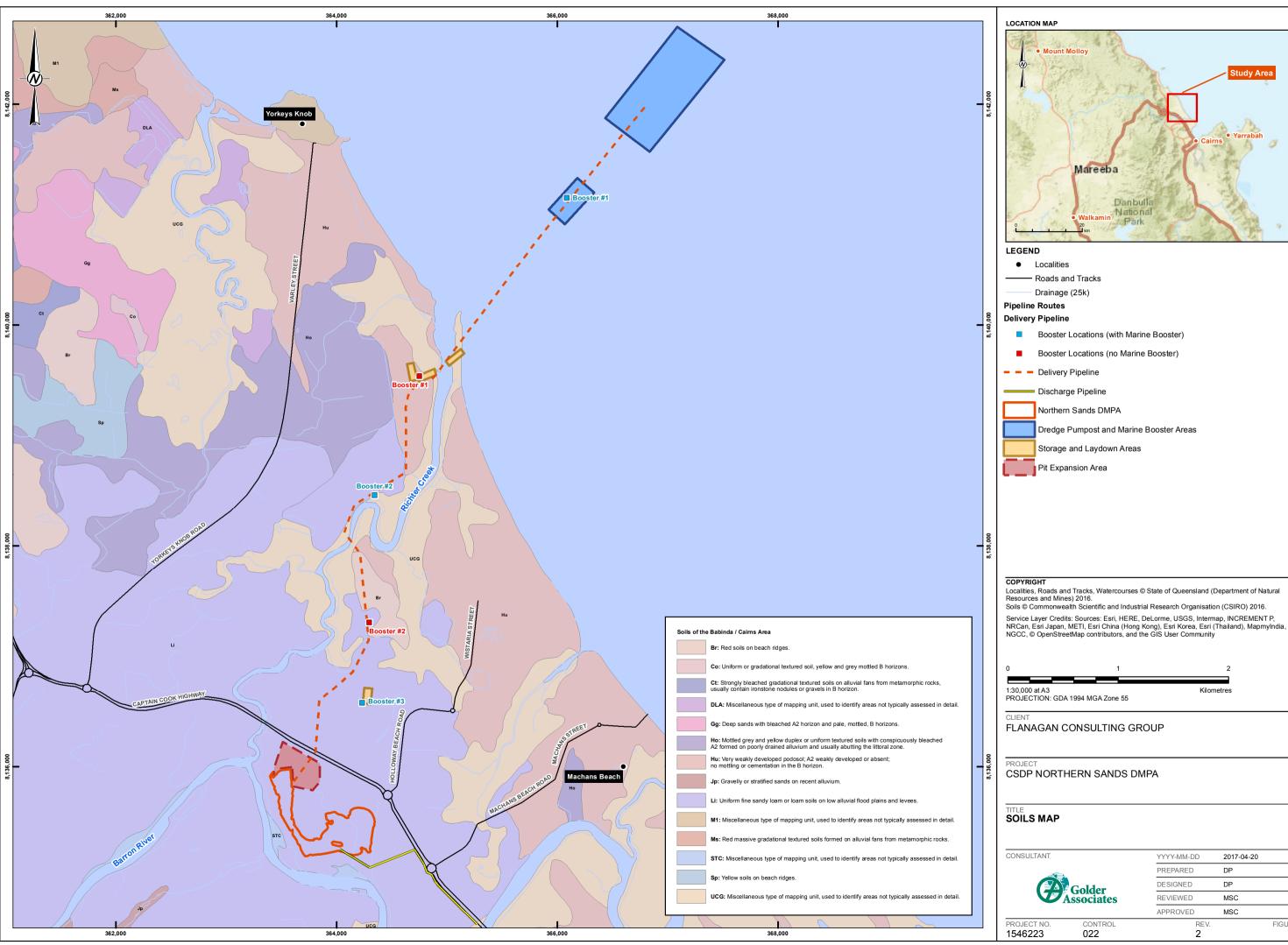
Malcolm Cook Principal Geotechnical Engineer


MSC/PKS/ow

Paul Scells Principal Geo-environmental Engineer

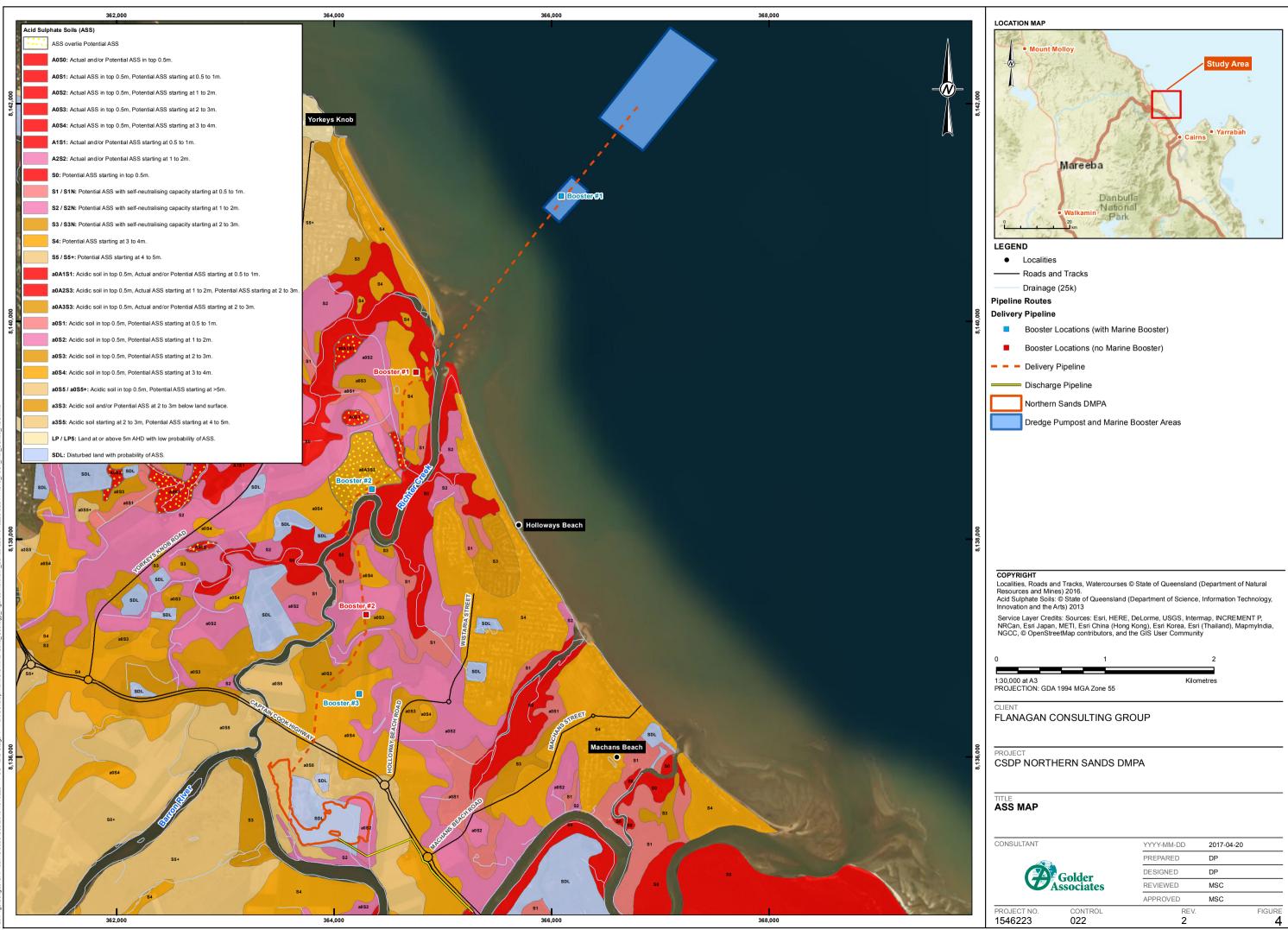
A.B.N. 64 006 107 857 Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.


j:\geo\2015\1546223 - fcg - eis stage 1 - port development\corr out\1546223-022-r-rev2 northern sands dmpa pipelines soils report final.docx


0	1	2
1:30,855 at A3		Kilometres

CONSULTANT		YYYY-MM-DD	2017-04-20	
		PREPARED	DP	
	Golder	DESIGNED	DP	
	Associates	REVIEWED	MSC	
		APPROVED	MSC	
PROJECT NO. 1546223	CONTROL	REV 2	<u>(</u>	FIGURE

CONSULTANT		YYYY-MM-DD	2017-04-20	!
		PREPARED	DP	
	Golder	DESIGNED	DP	
Associates		REVIEWED	MSC	
		APPROVED	MSC	
PROJECT NO. 1546223	CONTROL	REV.		FIGURE



Localities, Roads and Tracks, Watercourses © State of Queensland (Department of Natural Resources and Mines) 2016.

0	1	
1:30,000 at A3 PROJECTION: GDA 1	994 MGA Zone 55	Kilometre


CONSULTANT		YYYY-MM-DD	2017-04-20	
		PREPARED	DP	
	Golder	DESIGNED	DP	
	Golder Associates	REVIEWED	MSC	
		APPROVED	MSC	
PROJECT NO. 1546223	CONTROL	REV. 2		FIGURE

udy Area

0		1	
1:30,000 at A3 PROJECTION:	GDA 1994 I	MGA Zone 55	;

CONSULTANT		YYYY-MM-DD	2017-04-20	
		PREPARED	DP	
	Golder	DESIGNED	DP	
	Golder Associates	REVIEWED	MSC	
		APPROVED	MSC	
PROJECT NO. 1546223	CONTROL	REV. 2		FIGURE

CONSULTANT		YYYY-MM-DD	2017-04-20	
		PREPARED	DP	
	Golder	DESIGNED	DP	
	Golder Associates	REVIEWED	MSC	
		APPROVED	MSC	
PROJECT NO. 1546223	CONTROL	REV 2	(FIGURE

CLIENT: Flanagan Consulting Group

PROJECT: CSDP LOCATION: Northern Sands Pipeline

JOB NO: 1546223

COORDS: 364896.0 m E 8139549.0 m N MGA94 56 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 1.00 m

Visitivity (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c				scription	al Des	ateria	 Field M			a	Sampling		lling	Dri		
100 0.00-0.25 m 0.00-0.25 m <t< th=""><th>P TEST 289.6.3.2) per 100 mm 0 15 20 2</th><th>AS1289 ws per</th><th>Bl</th><th>STRUCTURE AND ADDITIONAL</th><th></th><th></th><th></th><th>USCS SYMBOL</th><th>GRAPHIC LOG</th><th>_</th><th>SAMPLE OR FIELD TEST</th><th>DEPTH RL</th><th></th><th></th><th>PENETRATION RESISTANCE</th><th>METHOD</th></t<>	P TEST 289.6.3.2) per 100 mm 0 15 20 2	AS1289 ws per	Bl	STRUCTURE AND ADDITIONAL				USCS SYMBOL	GRAPHIC LOG	_	SAMPLE OR FIELD TEST	DEPTH RL			PENETRATION RESISTANCE	METHOD
Image: Section of the section of th			ни				Silty Sandy CLAY	CL	 ð			_				
Image: Second region of the second region						_	Silty Clayey SAND	sc	× × °		0.25-0.50 m	0.30				
0.75-1.00 m 0.75-1.00 m 1.0 END OF BOREHOLE @ 1.00 m 1.1.0 Interview 1.0 Interview 1.1.0 Interview 1.1.0 Interview 1.1.0 Interview Interview Interview Interview <t< td=""><td></td><td></td><td></td><td></td><td></td><td>w</td><td>coarse to medium grained, grey, brown</td><td>X. I. X.</td><td>× [×] ×]</td><td></td><td>0.50-0.75 m</td><td>-</td><td>0.5-</td><td></td><td>L</td><td>НA</td></t<>						w	coarse to medium grained, grey, brown	X. I. X.	× [×] ×]		0.50-0.75 m	-	0.5-		L	НA
					L			. ж. ж	× ×			-				
Image: Note of the second s									× × · · · · × · · ·		0.75-1.00 m	_				
							END OF BOREHOLE @ 1.00 m	×	•••••×				—1.0 —			
												-				
												-	1.5 —			
												-				
												-				
												-				
													2.0-			
												-				
												-				
												-	2.5-			
												-				
												-				
												1				
3.0	P gINT FN. F	GAP g		to potential contamination	nces t	eferer	mpt to assess possible contamination. Any re	t atter	vithout	es only, v	chnical purposes	geote	3.0-	•		

CLIENT: Flanagan Consulting Group PROJECT: CSDP

LOCATION: Northern Sands Pipeline

GAP 8_15.0 LIB.GLB Log GAP NON-CORED FULL PAGE 1546223 HOLLOWAYS BEACH.GPJ <<DrawingFile>> 20/04/2017 16:46 8:30.004 Datget Tools

JOB NO: 1546223

COORDS: 364607.0 m E 8138892.0 m N MGA94 56 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 0.35 m

		Dril	ling		Sampling				Field M			scription					
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	AOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS		(AS128 Blows pe	TES 89.6.3 er 100 15	3.2)) mm	25
-			-0.0-							20			H				
					0.00-0.25 m		× — —×	CL	Silty CLAY low to medium plasticity, brown, (possible Fill)					v			
			-				×										-
٩	L						×			w	S - F						
_			-				×										-
			_	0.30	0.25-0.50 m		<u> </u>										-
	н								Silty Clayey GRAVEL medium grained, angular, (possible Fill)	\vdash	D						_
			-	-					END OF BOREHOLE @ 0.35 m	1				<u> </u>	<u> </u>		-
									REFUSAL								
			0.5 —														-
			_	-													-
			-	-													-
			-														
			_														.
			1.0	-													-
			-														-
			_														-
			-	-													.
			-														-
			1.5														_
			1.0														
			-	-													.
			-														-
			_														
			-														-
			2.0 —														-
			_														
			-	-													-
			-	1													.
			-	-													.
			2.5 —														-
			-	1													-
			-														-
			-	-													-
			-	1													-
			3.0 —														
			2.0	This	s report of borehole m	nust	t be re	ad in	conjunction with accompanying notes and al npt to assess possible contamination. Any re	bbrev	iatior	s. It has been prepared	for				
				geote	chnical purposes only of for information only of	y, w	/ithout	atte	npt to assess possible contamination. Any re essarily indicate the presence or absence of	eferei		to potential contamination	n are	GAP	gINT	FN.	F01h
					ion information only a	inu		neu	costing indicate the presence of absence of	5011 0	giut				gINT		RL3

CLIENT: Flanagan Consulting Group

PROJECT: CSDP LOCATION: Northern Sands Pipeline

JOB NO: 1546223

COORDS: 364648.0 m E 8138585.0 m N MGA94 56 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 1.00 m

		Dri	lling		Sampling				Field M	ateria	al De	scription					
METHOD	PENETRATION RESISTANCE	_	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE				(AS1) lows	P TE: 289.6 per 10	i.3.2) 00 mr	n
			-0.0	0.10	0.00-0.25 m		 	SC	Clayey SAND fine grained, brown	w	L						
			-	-	0.25-0.50 m		*	CL	Silty CLAY low to medium plasticity, orange brown, trace sand								
HA	м		0.5	-	0.50-0.75 m			- x x x		м	S - St						
			-	-	0.75-1.00 m		<u>~</u>	~					T				
			-	0.80	0.10-1.00 III) X X	SM	Silty Clayey SAND medium grained, grey	w	L						
			-1.0-				····		END OF BOREHOLE @ 1.00 m TARGET DEPTH								
			-														
			-	_													
			-	-													
			1.5 —														
			-	_													
			-														
			-														
			-														
			2.0-														
			-														
			-														
			-														
			2.5 —														
			-														
			-														
			-	-													
			3.0 —	geote	chnical purposes or	nly, w	/ithout	atter	conjunction with accompanying notes and a mpt to assess possible contamination. Any r essarily indicate the presence or absence of	efere	nces	to potential contamination	n are	GA	\P gIN	IT FN	I. F0 R

CLIENT: Flanagan Consulting Group

PROJECT: CSDP LOCATION: Northern Sands Pipeline

JOB NO: 1546223 COORDS: 364344.0 m E 8138454.0 m N MGA94 56 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 1.00 m

Drilling						Sampling						scription				
		PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECUVERED GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	B 0	(AS1 ows	P TEST 289.6.3. per 100 0 15	2) mm
				0.0 	-	0.00-0.25 m 0.25-0.50 m			Silty CLAY low plasticity, grey, brown							
-	НА	L		0.5	-	0.50-0.75 m 0.75-1.00 m				w	VS - S					
					-		×^	X	END OF BOREHOLE @ 1.00 m							
ttgel Tools				-	-				TARGET DEPTH							
J < <drawingfile>> 20/04/2017 16:46 8.30.004 Datgel Tools</drawingfile>				1.5 - - -	-											-
WAYS BEACH.GPJ < <drawingfile></drawingfile>					-											-
GAP 8_15.0 LIB.GLB Log GAP NON-CORED FULL PAGE 1546223 HOLLOWAYS BEACH.GP.				- 2.5 - -	-											-
GAP 8_15.0 LIB.GLB Log				3.0	geote	chnical purposes only,	without	atte	conjunction with accompanying notes and al mpt to assess possible contamination. Any ressarily indicate the presence or absence of s	efere	nces	to potential contaminatio		GA	.P gINT	FN. F01h RL3

CLIENT: Flanagan Consulting Group PROJECT: CSDP

LOCATION: Northern Sands Pipeline

JOB NO: 1546223

COORDS: 364043.0 m E 8138054.0 m N MGA94 56 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 1.00 m

Drilling						Sampling				Field M	ateria	al De	scription					
		PENETRATION RESISTANCE		DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION		CONSISTENCY DENSITY		BI 0 {	(AS1) ows	P TE: 289.6 per 10	.3.2))0 mr	
				—0.0 - -		0.00-0.25 m 0.25-0.50 m		*		Silty CLAY medium plasticity, brown, trace sand				HV HV HV	v			
	ΥL	L		- 0.5—		0.50-0.75 m					w	s						-
				-		0.75-1.00 m												
										END OF BOREHOLE @ 1.00 m TARGET DEPTH								
< <drawingfile>> 20/04/2017 16:46 8.30.004 Datgel Tools</drawingfile>				- 1.5—														-
wingFile>> 20/04/2017 16:				-														
				2.0														-
FULL PAGE 1546223 HOLLC				- 2.5—														-
GAP 8_15.0 LIB.GLB Log GAP NON-CORED FULL PAGE 1546223 HOLLOWAYS BEACH.GPJ				-														
GAP 8_15.0 LIB.GI				3.0—	geote	chnical purposes on	ly, w	/ithout	atter	conjunction with accompanying notes and al npt to assess possible contamination. Any re essarily indicate the presence or absence of	efere	nces	to potential contamination	n are	GA	P gIN	IT FN	I. F01h RL3

CLIENT: Flanagan Consulting Group

PROJECT: CSDP LOCATION: Northern Sands Pipeline

GAP 8_15.0 LIB.GLB Log GAP NON-CORED FULL PAGE 1546223 HOLLOWAYS BEACH.GPJ <<DrawingFile>> 20/04/2017 16:46 8:30.004 Datget Tools

JOB NO: 1546223

COORDS: 364186.0 m E 8137948.0 m N MGA94 56 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 1.00 m

Drilling					Sampling				Field Ma	ateria	al Des	scription					
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	BI	(AS12 lows p	P TE 289.6 per 10	.3.2))0 mr	n
			-0.0-		0.00-0.25 m		×	SM	Silty Clayey SAND fine to medium grained, grey brown								
			-	-	0.25-0.50 m				fine to medium grained, grey brown	м							
ΗA	L		0.5 —	-	0.50-0.75 m		×				L						-
			_	0.60	0.00-0.75 11		×										
							×		decreasing clay content								
			-	-	0.75.4.00		*×										
			-	-	0.75-1.00 m		××			w							
			-1.0-	_			× ×. 										
			-1.0-						END OF BOREHOLE @ 1.00 m TARGET DEPTH								
			-														
			-	-													
			-	-													
			-	_													
			1.5 —	_													_
			-														
			-	-													
			-	-													
			-	-													
			2.0 —	-													-
			-	_													
			-	1													
			-	-													
			2.5—	-													-
			-	-													
			-														
			-														
			-	1													
			3.0 —	 This	s report of borehole m	i nust	t be rea	ad in	conjunction with accompanying notes and at	brev	iatior	ns. It has been prepared	for				
				aeote	chnical purposes only	v. w	/ithout	atter	npt to assess possible contamination. Any re essarily indicate the presence or absence of s	eferei	nces	to potential contaminatio	n are	GA	P gIN	IT FN	I. F01h RL3

CLIENT: Flanagan Consulting Group PROJECT: CSDP

LOCATION: Northern Sands Pipeline

JOB NO: 1546223

COORDS: 363916.0 m E 8136606.0 m N MGA94 56 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 1.00 m SHEET: 1 OF 1 DRILL RIG: CONTRACTOR:

LOGGED: DIS DIS DIS DIS CHECKED: GZL DIS

DATE: 8/3/17 DATE: 29/3/17

		Dri	lling		Sampling				Field N			scription	RED: GZL DATE: 29/3/17											
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS		(AS Blows	CP T 1289 5 per 10	.6.3. 100	2) mm							
			-0.0	-	0.00-0.25 m			ML	Clayey SILT low liquid limit, brown, dark brown, trace sand		s							-						
			-	0.30	0.25-0.50 m			CL	Silty CLAY low plasticity, brown, dark brown															
	М		0.5—	-	0.50-0.75 m		× · · · · · · · · · · · · · · · · · · ·			М														
			-	-	0.75-1.00 m			- - -			F - St													
				-			× — — — × ×	3																
			-						END OF BOREHOLE @ 1.00 m TARGET DEPTH															
			-																					
			1.5—																					
			-																					
			2.0—																					
			-																					
			-																					
			2.5																					
			-																					
			3.0 —																					

CLIENT: Flanagan Consulting Group

PROJECT: CSDP LOCATION: Northern Sands Pipeline

JOB NO: 1546223

COORDS: 365317.0 m E 8134549.0 m N MGA94 56 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 1.00 m SHEET: 1 OF 1 DRILL RIG: CONTRACTOR:

LOGGED: DIS DA CHECKED: GZL DA

DATE: 8/3/17 DATE: 29/3/17

			Dri	lling		Sampling			Field M			scription				
	MEIHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	B	(AS1) lows	P TEST 289.6.3.2 per 100 r 0 15	nm
				0.0 	-	0.00-0.25 m 0.25-0.50 m	×		Silty Sandy CLAY medium plasticity, brown							
:	HA	L		0.5	-	0.50-0.75 m 0.75-1.00 m		x ' 11X' 11 X 11 X 11 X		w	VS - S					-
				- - 1.0	-		×	- 4 X								
				-	-				END OF BOREHOLE @ 1.00 m TARGET DEPTH							
4 Datgel Tools				-	-											
2017 16:46 8.30.004				1.5	-											
< <drawingfile>> 20/04/2017 16:46 8.30.004 Datgel Tools</drawingfile>				-	-											
				2.0	-											-
1546223 HOLLOWAN				-	-											
GAP 8_15.0 LIB.GLB Log GAP NON-CORED FULL PAGE 1546223 HOLLOWAYS BEACH.GPJ				2.5-												-
B Log GAP NON-C				-	-											
GAP 8_15.0 LIB.GL				3.0-	aeote	chnical purposes on	Iv. withou	t atte	conjunction with accompanying notes and a mpt to assess possible contamination. Any r essarily indicate the presence or absence of	efere	nces	to potential contamination	on are	GA	.P gINT F	N. F01h RL3

	Golder ssociates	USE	d on e	METHOD OF SOIL DESCRIPTION BOREHOLE AND TEST PIT REPORTS
	FILL			CLAY (CL, CI or CH)
00000	GRAVEL (GP or G	W)		$\frac{M_{L} M_{L}}{M_{L} M_{L}}$ ORGANIC SOILS (OL or OH or Pt)
	SAND (SP or SW)			
	SILT (ML or MH)			
Combinatio	ons of these basic s	mbols may be used	to indicate	mixed materials such as sandy clay.
Soil and R AS1726 -	CLASSIFICATION AND INFERRED STRATIGRAPHY Soil and Rock is classified and described in Reports of Boreholes and Test Pits using the preferred method given AS1726 – 1993, (Amdt1 – 1994 and Amdt2 – 1994), Appendix A. The material properties are assessed in the field by visual/tactile methods.			
	Particle S	ize		Plasticity Properties
Major Divi	sion Sub Division	Particle Size	40 -	
E	OULDERS	> 200 mm	.	сн
	COBBLES	63 to 200 mm		CL CI High plasticity Low plasticity Medium Clay
	Coarse	20 to 63 mm	(%)	l clay plasticity clay clay
GRAVEL	Medium	6.0 to 20 mm	Jdex	
	Fine	2.0 to 6.0 mm	드 20 - 로	- OH or MH High liquid limit
	Coarse	0.6 to 2.0 mm	Plasticity Index (%)	sitt
SAND	Medium	0.2 to 0.6 mm	e 10 -	OL or ML Low liquid
	Fine	0.075 to 0.2 mm		CL/ML Clay/Silt limit silt
	SILT	0.002 to 0.075 mm	0 -	$+ \cdots + \cdots + + + + \cdots + \cdots + \cdots + \cdots + \cdots + \cdots +$
	CLAY	< 0.002 mm]	0 10 20 30 40 50 60 70 80 Liquid Limit (%)

MOISTURE CONDITION

Symbol

Description Term

AS1726 - 1993

<i>y</i>		Beechpiten
D	Dry	Sands and gravels are free flowing. Clays & Silts may be brittle or friable and powdery.
М	Moist	Soils are darker than in the dry condition & may feel cool. Sands and gravels tend to cohere.
W	Wet	Soils exude free water. Sands and gravels tend to cohere.

CONSISTENCY AND DENSITY			_	AS17	26 - 1993		
Symbol	Term	Undrained Shear Strength		Symbol	Term	Density Index %	SPT "N" #
VS	Very Soft	0 to 12 kPa		VL	Very Loose	Less than 15	0 to 4
S	Soft	12 to 25 kPa		L	Loose	15 to 35	4 to 10
F	Firm	25 to 50 kPa		MD	Medium Dense	35 to 65	10 to 30
St	Stiff	50 to 100 kPa		D	Dense	65 to 85	30 to 50
VSt	Very Stiff	100 to 200 kPa		VD	Very Dense	Above 85	Above 50
Н	Hard	Above 200 kPa					
the materia	al. elations are not st	, consistency and densit	-	-			

equipment type.

B Ass	older ociates				-	BBREVIATIONS & TERM AND TEST PIT REPORT
	EXCAVATION METHOD		Deterministanda an		NO	Diamond Cone 47 mm
AS*	Auger Screwing		Rotary blade or		NQ	Diamond Core - 47 mm
AD*	Auger Drilling	RT	Rotary Tricone	bit	NMLC	Diamond Core - 52 mm
٧	V-Bit	RAB	Rotary Air Blast	t	HQ	Diamond Core - 63 mm
Т	TC-Bit, e.g. ADT	RC	Reverse Circula	ation	HMLC	Diamond Core – 63mm
ΗA	Hand Auger		Push Tube		BH	Tractor Mounted Backhoe
NDH	Hollow Auger		Cable Tool Rig		EX	Tracked Hydraulic Excavator
	÷		-		EE	•
TC	Diatube Coring		Jetting			Existing Excavation
/B	Washbore or Bailer		Non-destructive	3 digging	HAND	Excavated by Hand Methods
	ION/EXCAVATION RESIS	-		a affant fuana	the equipment of	and
L	Low resistance. Rapid p	-				
M 		-		-		fort from the equipment used.
Н	effort from the equipment		/ation. Further	penetration is	s possible at a si	low rate and requires significant
R	Refusal or Practical Ref digging implement or ma		rther progress p	ossible with	out the risk of da	mage or unacceptable wear to the
	ssments are subjective and or drilling tools, and the exp			tors includin	g the equipment	power, weight, condition of
WATER						
¥	Water level at da	ite shown		\triangleleft	Partial water los	s
\triangleright	Water inflow				Complete water	loss
ROUNDW BSERVED			n of groundwate e or cave in of th			as not possible due to drilling wate
GROUNDW	ERED less		strata. Inflow n			ver, groundwater could be present d the borehole/test pit been left op
SAMPLING	AND TESTING					
SPT	Standard Pa	notration To	st to AS1289.6.3	2 1 2004		
I,7,11 N=						owing 150mm seating
0/80mm					ation for that inte	erval are reported
RW	Penetration (occurred und	der the rod weig	ht only		
W	Penetration of	occurred und	der the hammer	and rod wei	ght only	
	Hammer dou	uble bouncing	a on onvil			
			y on anvii			
IB			g on anvii			
IB IS	Disturbed sa		g on anvir			
IB PS PDS	Disturbed sa Bulk disturbe	ed sample	g on anvi			
IB DS DS	Disturbed sa Bulk disturbe Gas Sample	ed sample	g on anvi			
IB DS BDS G V	Disturbed sa Bulk disturbe Gas Sample Water Samp	ed sample le	-			
HB DS BDS G V FP	Disturbed sa Bulk disturbe Gas Sample Water Samp Field permea	ed sample le ability test ov	ver section noted			
IB DS BDS S V ∵P ∵V	Disturbed sa Bulk disturbe Gas Sample Water Samp Field permea	ed sample le ability test ov	ver section noted		ır strength (sv = p	peak value, s _r = residual value)
IB DS DS DS V V P V	Disturbed sa Bulk disturbe Gas Sample Water Samp Field permea Field vane sl	ed sample le ability test ov hear test exp	ver section noted	prrected shea	ır strength (sv= p	peak value, s _r = residual value)
IB DS SDS S V P P D	Disturbed sa Bulk disturbe Gas Sample Water Samp Field permea Field vane sl Photoionisat	ed sample le ability test ov hear test exp ion Detector	ver section noted	prrected shea	ar strength (s _v = p	peak value, s _r = residual value)
ib PS EDS V P V V ID M	Disturbed sa Bulk disturbe Gas Sample Water Samp Field permea Field vane sl Photoionisat Pressuremet	ed sample le ability test ov hear test exp ion Detector ter test over	ver section noted pressed as unco reading in ppm section noted	prrected shea		beak value, s _r = residual value)
IB DS BDS G V P P P P P P P P P P P P P P P P	Disturbed sa Bulk disturbe Gas Sample Water Samp Field permea Field vane sl Photoionisat Pressuremet Pocket pene	ed sample le ability test ov hear test exp ion Detector ter test over trometer test	ver section noted pressed as unco reading in ppm section noted t expressed as i	instrument re		
IB PS PDS V P V ID M PP I63	Disturbed sa Bulk disturbe Gas Sample Water Samp Field permea Field vane sl Photoionisat Pressureme Pocket pene Thin walled t	ed sample le ability test ov hear test exp ion Detector ter test over trometer test tube sample	ver section noted pressed as unco reading in ppm section noted t expressed as i	instrument re	eading in kPa	
18 205 3005 37 77 70 70 70 70 70 70 70 70 70 70 70 70	Disturbed sa Bulk disturbe Gas Sample Water Samp Field permea Field vane sl Photoionisat Pressuremen Pocket pene Thin walled t Water pressu	ed sample le ability test ov hear test exp ion Detector ter test over trometer test tube sample ure tests	ver section noted pressed as unco reading in ppm section noted t expressed as i - number indica	instrument re	eading in kPa	
IB 205 205 3 7 7 7 10 7 10 7 10 7 10 10 10 10 10 10 10 10 10 10 10 10 10	Disturbed sa Bulk disturbe Gas Sample Water Samp Field permea Field vane sl Photoionisat Pressuremet Pocket pene Thin walled t Water press Dynamic cor	ed sample le ability test ov hear test exp ion Detector ter test over trometer test tube sample ure tests ne penetratio	ver section noted pressed as unco reading in ppm section noted t expressed as i - number indica on test	instrument re	eading in kPa	
IB SS SDS SV V PD PD PD PD PD PD PD PD PD PD	Disturbed sa Bulk disturbe Gas Sample Water Samp Field permea Field vane sl Photoionisat Pressuremen Pocket pene Thin walled t Water press Dynamic cor Static cone p	ed sample le ability test ov hear test exp ion Detector ter test over trometer test tube sample ure tests ne penetration benetration te	ver section noted pressed as unco reading in ppm section noted t expressed as i - number indica on test	prrected shea instrument re ates nominal	eading in kPa sample diamete	
HB DS BDS C P P P D P P D D P D D C P T D C P T D C P T D C P T D C P T D C P T D C P T D C P T D C P T D C P C C P C C C C C C C C C C C C C C	Disturbed sa Bulk disturbe Gas Sample Water Samp Field permea Field vane sl Photoionisat Pressuremet Pocket pene Thin walled t Water press Dynamic cor Static cone p Static cone p	ed sample le ability test ow hear test exp ion Detector ter test over trometer test tube sample ure tests he penetration benetration te benetration te tamination a	ver section noted reading in ppm section noted t expressed as i - number indica on test est est with pore pre and Odour (for	instrument re ates nominal essure (u) m specific soil (eading in kPa sample diameter easurement contamination as	r in millimetres ssessment projects)
IB SDS SDS V P D P P P P P P P P P P P P P	Disturbed sa Bulk disturbe Gas Sample Water Samp Field permea Field vane sl Photoionisat Pressuremel Pocket pene Thin walled t Water press Dynamic cor Static cone p Static cone p Static cone p	ed sample le ability test ow hear test exp ion Detector ter test over trometer test tube sample ure tests he penetration benetration to benetration to tamination a ce of contam	ver section noted pressed as unco reading in ppm section noted t expressed as i - number indica on test est est est with pore pre and Odour (for ination	essure (u) m specific soil of R = A	eading in kPa sample diameter easurement contamination as No non-natura	r in millimetres ssessment projects) al odours identified
B S DS V P V ID M P 63 VPT CP P T CP S P T u R = 0 R = 1	Disturbed sa Bulk disturbe Gas Sample Water Samp Field permea Field vane sl Photoionisat Pressuremet Pocket pene Thin walled t Water press Dynamic cor Static cone p Static cone p Static cone p Static cone p	ed sample le ability test ow hear test exp ion Detector ter test over trometer test tube sample ure tests he penetration benetration te <u>benetration te</u> tamination a be of contam	ver section noted pressed as unco reading in ppm section noted t expressed as i - number indica on test est est est with pore pre and Odour (for ination	essure (u) m specific soil of R = A R = B	eading in kPa sample diameter easurement <u>contamination as</u> No non-natura Slight non-nat	r in millimetres ssessment projects) al odours identified sural odours identified
B S DS V P V ID M P 63 VPT CP P T CP S P T u CP S R = 0 R = 1 R = 2	Disturbed sa Bulk disturbe Gas Sample Water Samp Field permea Field vane sl Photoionisat Pressuremel Pocket pene Thin walled t Water press Dynamic cor Static cone p Static cone p Static cone p Static cone p Static cone p	ed sample le ability test ow hear test exp ion Detector ter test over trometer test tube sample ure tests he penetration benetration te benetration te tamination a ce of contam visible conta tion	ver section noted pressed as unco reading in ppm section noted t expressed as i - number indica on test est est with pore pre and Odour (for ination amination	essure (u) m specific soil of R = A R = B R = C	eading in kPa sample diameter easurement <u>contamination as</u> No non-natura Slight non-natura Moderate non	r in millimetres ssessment projects) al odours identified ural odours identified -natural odours identified
IB SS SDS SDS V PD PD PD PD PD PD PD PD PD PD	Disturbed sa Bulk disturbe Gas Sample Water Samp Field permea Field vane sl Photoionisat Pressuremen Pocket pene Thin walled t Water press Dynamic cor Static cone p Static cone p	ed sample le ability test ow hear test exp ion Detector ter test over trometer test tube sample ure tests he penetration benetration te benetration te tamination a ce of contam visible conta tion	ver section noted pressed as unco reading in ppm section noted t expressed as i - number indica on test est est with pore pre and Odour (for ination amination	essure (u) m specific soil of R = A R = B	eading in kPa sample diameter easurement <u>contamination as</u> No non-natura Slight non-natura Moderate non	r in millimetres ssessment projects) al odours identified sural odours identified
IB S S S S S S S S S S S S S	Disturbed sa Bulk disturbed Gas Sample Water Samp Field permea Field vane sl Photoionisat Pressuremed Pocket pene Thin walled t Water press Dynamic cor Static cone p Static cone p Stat	ed sample le ability test ov hear test exp ion Detector ter test over trometer test tube sample ure tests he penetration benetration te benetration te contamination contamination	ver section noted pressed as unco reading in ppm section noted t expressed as i - number indica on test est est est with pore pre and Odour (for ination amination	essure (u) m specific soil o R = A R = B R = C R = D	eading in kPa sample diameter contamination as No non-natura Slight non-nat Moderate non Strong non-na	r in millimetres ssessment projects) al odours identified cural odours identified n-natural odours identified atural odours identified
HB DS BDS C P P P P P P P P P P P P P	Disturbed sa Bulk disturbe Gas Sample Water Samp Field permea Field vane sl Photoionisat Pressuremet Pocket pene Thin walled t Water press Dynamic cor Static cone p Static cone p Stati	ed sample le ability test ov hear test exp ion Detector ter test over trometer test upe sample ure tests he penetration benetration to benetration to tamination a visible contam contamination	ver section noted pressed as unco reading in ppm section noted t expressed as i - number indica on test est est with pore pre and Odour (for ination amination on	essure (u) m specific soil of R = A R = B R = C R = D Recovery (%)	eading in kPa sample diameter easurement contamination as No non-natura Slight non-nat Moderate non Strong non-na	r in millimetres ssessment projects) al odours identified sural odours identified i-natural odours identified atural odours identified atural odours identified atural odours identified
HB DS BDS FP FV PID PM PP J63 VPT DCP CPT CPT CPT CPT R = 0 R = 1 R = 2 R = 3 RCCK COR TCR = To 	Disturbed sa Bulk disturbed Gas Sample Water Samp Field permea Field vane sl Photoionisat Pressuremed Pocket pene Thin walled t Water press Dynamic cor Static cone p Static cone p Stat	ed sample le ability test ov hear test exp ion Detector ter test over trometer test upe sample ure tests he penetration benetration to benetration to tamination a visible contam contamination	ver section noted pressed as unco reading in ppm section noted t expressed as i - number indica on test est est est with pore pre and Odour (for ination amination	essure (u) m specific soil of R = A R = B R = C R = D Recovery (%)	eading in kPa sample diameter easurement contamination as No non-natura Slight non-nat Moderate non Strong non-na	r in millimetres ssessment projects) al odours identified ural odours identified -natural odours identified

Test Procedures:

Construction Sciences Pty Ltd ABN: 74 128 806 735

Address: Shed 3, 5 Commercial Place Earlville QLD 4870 Laboratory:Cairns LaboratoryPhone:0740337815Fax:0740546632

Email: Cairns@constructionsciences.net

EMERSON CLASS NUMBER REPORT

Area Description:	Northern Sands - Holloways Beach	Report Date / Page: 3/04/2017 Page 1 of
Component:	Material Classification	Client Reference/s: Submitted Samples: 29.03.2017
Location:	Holloways Beach	Internal Test Request: 11512/T/7317
Project:	Northern Sands	Lot Number:
Client Address:	216, Draper Street, Cairns	Project Number: 11512/P/699
Client:	Golder Associates Pty Ltd	Report Number: 11512/R/12538-1

AS1289.3.8.1	
--------------	--

Sample Number	11512/S/35727	11512/S/35728	11512/S/35729	11512/S/35730
ID / Client ID		-	-	-
Lot Number	-	-	-	-
Date / Time Sampled	8/03/2017	8/03/2017	8/03/2017	8/03/2017
Material Source	Northern Sands	Northern Sands	Northern Sands	Northern Sands
Material Type	Insitu Material	Insitu Material	Insitu Material	Insitu Material
Sampling Method	-	-	-	-
Water Type	Potable	Potable	Potable	Potable
Water Temperature (C°)	24	24	24	24
	BH-01	BH-05	BH-07	BH-08
	0.75 - 1.0	0.25-0.5	0.75-1.0	0.75-1.0
Soil Description	sand	Clay	clay and silt	silt and clay
			·	
Emerson Class Number	6	5	5	5

Remarks				
		tions and/or measurements included in this e to Australian/national standards.		
		mpliance with ISO/IEC 17025		
NATA	Accreditation Number:	1986		
	Corporate Site Number:	11512		
			Approved Signatory:	Anton Wespe
•			Form ID:	W34Rep Rev 1

Address: Shed 3, 5 Commercial Place

Earlville QLD 4870

 Laboratory:
 Cairns Laboratory

 Phone:
 0740337815
 Fax:
 0740546632

Email: Cairns@constructionsciences.net

MOISTURE CONTENT REPORT

Test Procedures:	A S1280 2 1 1			
Area Description:	Northern Sands - Holloways Be	Report Date / Page:	3/04/2017 Page	e 1 of 1
Component: Material Classification		Client Reference/s:	Submitted Samples: 29.03.201	7
Location:	Location: Holloways Beach		:: 11512/T/7317	
Project:	Northern Sands	Lot Number:		
Client Address:	ss: 216, Draper Street, Cairns		11512/P/699	
Client:	Golder Associates Pty Ltd	Report Number:	11512/R/12536-1	

Test Procedures:	AS1289.2.1.1			
Sample Number	11512/S/35727	11512/S/35728	11512/S/35729	11512/S/35730
ID / Client ID			-	-
Lot Number	-		-	-
Date / Time Sampled	8/03/2017	8/03/2017	8/03/2017	8/03/2017
Sampling Method		-	-	-
Date Tested	29/03/2017	29/03/2017	29/03/2017	29/03/2017
Material Source	Northern Sands	Northern Sands	Northern Sands	Northern Sands
Material Type	Insitu Material	Insitu Material	Insitu Material	Insitu Material
	BH-01	BH-05	BH-07	BH-08
	0.75 - 1.0	0.25-0.5	0.75-1.0	0.75-1.0
Moisture Content (%)	26.5	36.7	25.3	61.5

Sample Number		
ID / Client ID		
Lot Number		
Date / Time Sampled		
Sampling Method		
Date Tested		
Material Source		
Material Type		
Moisture Content (%)		

Remarks

NA'

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

1986

11512

Accreditation Nur Corporate Site Nu

lumber:	
Number:	

Shed 3, 5 Commercial Place Earlville QLD 4870

Address:

 Laboratory:
 Cairns Laboratory

 Phone:
 0740337815
 Fax:
 0740546632

Email: Cairns@constructionsciences.net

QUALITY OF MATERIALS REPORT

						1			
Client:	Golder Associ	ates Pty Ltd				Report N	lumber:	11512/R/12537-	1
Client Address:	216, Draper S	treet, Cairns				Project N	Number:	11512/P/699	
Project:	Northern Sands				Lot Num	Lot Number:			
Location:	Holloways Bea	ach				Internal	Test Request:	11512/T/7317	
Component:	Material Class	ification				Client R	eference/s:	Submitted Samp	les: 29.03.2017
Area Description:	Northern Sand	ls - Holloways B	each			Report D	Date / Page:	3/04/2017	Page 1 of 4
Test Procedures	AS1289.3.6.1,	AS1289.3.1.2, A	AS1289.3.2.1	, AS1	289.3.4.1, AS	6 1289.3.3	3.1		
Sample Number	11512/S/3572	7					E	3H-01	
Sampling Method	-						C	0.75 - 1.0	
Date Sampled	8/03/2017								
Sampled By	Client Sample	d							
Date Tested	30/03/2017				Material So	ource	Northern Sand	S	
Att. Drying Method	-				Material Ty	pe	Insitu Material		
Atterberg Preparation	-				Material De	escription	sand		
AS Sieve (mm)	Specificatio Minimum	n Percent Passing (%)	Specification Maximum			ARTICL	E SIZE DISTR	BUTION GR	APH
9.5		100			100 -				
6.7		100			90 -				
4.75		99			80				
2.36		92			70				
1.18		73		(%)	1				
0.600		43		sing	60			/	
0.300		18		Pass	50 -		/	/	
0.150		10		ent	40				
0.075		8		Percent Passing	30				
				_	1				
					20				
					10	_			
						ė		- 2,36 - 1,18	- 9,5 - 6,7 - 4,75
					0.075	0.150	0,600 0,425 0,300	ω ₆	3 7 0
							AS Sieve	e Size (mm)	
Test Result	Specificatio Minimum	ⁿ Result	Specification Maximum	Test Result		llt	Specification Minimum	Result	Specification Maximum
Liquid Limit (%)		Not Obtainabl	e	0.07	75/0.425 Fine	s Ratio		-	
Plastic Limit (%)		Not Obtainabl	e	PI x	0.425 Ratio	(%)		-	
Plastic Index (%)		Non Plastic		LS x 0.425 Ratio (%)				-	
Linear Shrinkage (%)		0.5		Linear Shrinkage Defects -					•
3 ()									

Remarks

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

Accreditation Number: Corporate Site Number: 1986 11512

Shed 3, 5 Commercial Place Earlville QLD 4870

Address:

 Laboratory:
 Cairns Laboratory

 Phone:
 0740337815
 Fax:
 0740546632

Email: Cairns@constructionsciences.net

QUALITY OF MATERIALS REPORT

Client:	Golder Associate	es Pty Ltd				Report N	lumber:	11512/R/12537-1	
Client Address:	216, Draper Stre	et, Cairns				Project N	Number:	11512/P/699	
Project:	Northern Sands	orthern Sands				Lot Num	ber:		
Location:	Holloways Beac	oways Beach				Internal	Test Request:	11512/T/7317	
Component:	Material Classific	cation				Client R	eference/s:	Submitted Sample	es: 29.03.2017
Area Description:	Northern Sands	- Holloways B	each			Report D	Date / Page:	3/04/2017	Page 2 of 4
Test Procedures	AS1289.3.6.1, A	S1289.3.1.2, /	AS1289.3.2.1	AS12	89.3.4.1, A	61289.2.1	.1, AS 1289.3.3.	1	
Sample Number	11512/S/35728						E	8H-05	
Sampling Method	-						0	.25-0.5	
Date Sampled	8/03/2017								
Sampled By	Client Sampled								
Date Tested	30/03/2017				Material So	ource	Northern Sand	S	
Att. Drying Method	Oven Dried				Material Ty	/pe	Insitu Material		
Atterberg Preparation	Dry Sieved				Material De	escription	Clay		
AS Sieve (mm)	Specification Minimum	Percent Passing (%)	Specification Maximum			ARTICLE	E SIZE DISTR	IBUTION GRA	РН
9.5		100		1	.00	-			
6.7		100			90				
4.75		100			80 1				
2.36		100		_	70				
1.18		100		(%)	1				
0.600		99		sing	60				
0.300		97		Pass	50]				
0.150		93		ent	40				
0.075		79		Percent Passing (%)	30				
					1				
					20				
					10				
					0 1				
					0,075	0,150	· 0,600 · 0,425 · 0,300	· 2.36 - 1.18	- 9,5 - 6,7 - 4,75
)75	5			vi , , ,
							AS Sieve	Size (mm)	
Test Result	Specification Minimum	Result	Specification Maximum		Test Resu	ılt	Specification Minimum	Result	Specification Maximum
Liquid Limit (%)		31		0.07	5/0.425 Fine	s Ratio		-	
Plastic Limit (%)		19	PI x 0.425 Ratio			(%)		-	
Plastic Index (%)		12	LS x 0.425 Ratio			(%)		-	
Linear Shrinkage (%)		4.5		Line	ar Shrinkage	Defects	-		

Remarks

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

Accreditation Number: Corporate Site Number: 1986 11512

Shed 3, 5 Commercial Place Earlville QLD 4870

Address:

 Laboratory:
 Cairns Laboratory

 Phone:
 0740337815
 Fax:
 0740546632

Email: Cairns@constructionsciences.net

QUALITY OF MATERIALS REPORT

Client:	Golder Associate	es Pty Ltd				Report N	lumber:	11512/R/12537-1	
Client Address:	216, Draper Stre	et, Cairns				Project N	Number:	11512/P/699	
Project:	Northern Sands	Northern Sands				Lot Num	ber:		
Location:	Holloways Beac	lloways Beach				Internal	Test Request:	11512/T/7317	
Component:	Material Classific	cation				Client Re	eference/s:	Submitted Sample	es: 29.03.2017
Area Description:	Northern Sands	- Holloways B	each			Report D	Date / Page:	3/04/2017	Page 3 of 4
Test Procedures	AS1289.3.6.1, A	S1289.3.1.2, /	AS1289.3.2.1,	AS12	89.3.4.1, AS	51289.2.1	.1, AS 1289.3.3.	1	
Sample Number	11512/S/35729						E	3H-07	
Sampling Method	-						().75-1.0	
Date Sampled	8/03/2017								
Sampled By	Client Sampled								
Date Tested	30/03/2017				Material So	ource	Northern Sand	s	
Att. Drying Method	Oven Dried				Material Ty	/pe	Insitu Material		
Atterberg Preparation	Dry Sieved				Material D	escription	clay and silt		
AS Sieve (mm)	Specification Minimum	Percent Passing (%)	Specification Maximum			ARTICLE	E SIZE DISTR	RIBUTION GRA	РН
9.5		100		1	00				
6.7		100			90 -				
4.75		98			80	/			
2.36		96			70				
1.18		94		(%)	1				
0.600		92		guis	60				
0.300		89		Pass	50				
0.150		74		ent	40				
0.075		73		Percent Passing (%)	30				
				_	-				
					20				
					10 -				
					0 1				
					0,075	0,150	- 0,600 - 0,425 - 0,300	· 2.36 · 1.18	9,5 6,7 4,75
					075	150	8 5 8	ω ő	3 7 8
							AS Sieve	e Size (mm)	
Test Result	Specification Minimum	Result	Specification Maximum		Test Resu	ılt	Specification Minimum	Result	Specification Maximum
Liquid Limit (%)		33		0.07	5/0.425 Fine	s Ratio		-	
Plastic Limit (%)		20	PI x 0.425 Ratio			(%)		-	
Plastic Index (%)		13	LS x 0.425 Ratio			(%)		-	
Linear Shrinkage (%)		4.5		Linea	ar Shrinkage	e Defects	-		

Remarks

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

Accreditation Number: Corporate Site Number: 1986 11512

Shed 3, 5 Commercial Place Earlville QLD 4870

Address:

 Laboratory:
 Cairns Laboratory

 Phone:
 0740337815
 Fax:
 0740546632

Email: Cairns@constructionsciences.net

QUALITY OF MATERIALS REPORT

Client:	Golder Associate	es Pty Ltd				Report N	lumber:	11512/R/12537-1	
Client Address:	216, Draper Stre	et, Cairns				Project N	lumber:	11512/P/699	
Project:	Northern Sands					Lot Num	ber:		
Location:	Holloways Beac	h				Internal	Test Request:	11512/T/7317	
Component:	Material Classific	cation				Client Re	eference/s:	Submitted Sample	es: 29.03.2017
Area Description:	Northern Sands	- Holloways B	each			Report D)ate / Page:	3/04/2017	Page 4 of 4
Test Procedures	AS1289.3.6.1, A	S1289.3.1.2, /	AS1289.3.2.1,	AS12	89.3.4.1, A	61289.2.1	.1, AS 1289.3.3.	1	
Sample Number	11512/S/35730						E	3H-08	
Sampling Method	-						C	0.75-1.0	
Date Sampled	8/03/2017								
Sampled By	Client Sampled								
Date Tested	30/03/2017				Material So	ource	Northern Sand	s	
Att. Drying Method	Oven Dried				Material Ty	/pe	Insitu Material		
Atterberg Preparation	Dry Sieved				Material D	escription	silt and clay		
AS Sieve (mm)	Specification Minimum	Percent Passing (%)	Specification Maximum			ARTICLE	E SIZE DISTR	IBUTION GRA	РН
9.5		100		1	00		-		
6.7		100			90				
4.75		99			80	/			
2.36		97		_	70				
1.18		96		(%)	-				
0.600		94		sing	60				
0.300		85		Pass	50]				
0.150		75		ent	40				
0.075		66		Percent Passing (%)	30				
					1				
					20				
					10				
					0 1				
					0,075	0,150	0,600 0,425 0,300	· 2,36 · 1,18	9,5 6,7 4,75
)75	5			vi , , ,
							AS Sieve	e Size (mm)	
Test Result	Specification Minimum	Result	Specification Maximum		Test Resu	ılt	Specification Minimum	Result	Specification Maximum
Liquid Limit (%)		44		0.07	5/0.425 Fine	s Ratio		-	
Plastic Limit (%)		28	PI x 0.425 Ratio			(%)		-	
Plastic Index (%)		16	LS x 0.425 Ratio			(%)		-	
Linear Shrinkage (%)		6.5		Linea	ar Shrinkage	Defects	-		

Remarks

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

Accreditation Number: Corporate Site Number: 1986 11512

ANALYTICAL REPORT

ontact	Darcy Simpson	Manager	Jon Dicker
Client	GOLDER ASSOCIATES PTY LTD	Laboratory	SGS Cairns Environmental
Address	PO BOX 5823 216 DRAPER ST CAIRNS QLD 4870	Address	Unit 2, 58 Comport St Portsmith QLD 4870
Telephone	07 4054 8200	Telephone	+61 07 4035 5111
Facsimile	07 4054 8201	Facsimile	+61 07 4035 5122
Email	dasimpson@golder.com.au	Email	AU.Environmental.Cairns@sgs.com
Project	1546223	SGS Reference	CE126763 R0
Order Number	1546223	Date Received	10 Apr 2017
Samples	1	Date Reported	13 Apr 2017

COMMENTS .

Accredited for compliance with ISO/IEC 17025-Testing. NATA accredited laboratory 2562(3146)

SIGNATORIES _

Anthony Nilsson Operations Manager

Jon Dicker Manager Northern QLD

Horsmond

Leanne Orsmond Quality & Microbiology Coordinator

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 2 58 Comport St

t Portsmith QLD 4870

Australia t +61 7 4035 5111 f +61 7 4035 5122

www.sgs.com.au

ANALYTICAL REPORT

				nple Number	
				ample Matrix	
			S	ample Depth	0.0-0.3
				Sample Date	
			S	ample Name	BOAT SAMPLE 1
Parameter			Units	LOR	
Moisture Content	Method: AN002	Tested: 10/4/2017			
% Moisture			%w/w	0.5	51

TAA (Titratable Actual Acidity) Method: AN219 Tested: 13/4/2017

pH KCI	pH Units	-	4.5
Titratable Actual Acidity	kg H2SO4/T	0.25	2.6
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	52
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	0.08

Chromium Reducible Sulphur (CRS) Method: AN217 Tested: 13/4/2017

Chromium Reducible Sulphur (Scr)	%	0.005	1.9
Chromium Reducible Sulphur (Scr)	moles H+/T	5	1200

QC SUMMARY

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : *the absolute difference of the two results divided by the average of the two results as a percentage*. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Chromium Reducible Sulphur (CRS) Method: ME-(AU)-[ENV]AN217

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Chromium Reducible Sulphur (Scr)	LB045269	%	0.005	<0.005	0%	86%
Chromium Reducible Sulphur (Scr)	LB045269	moles H+/T	5	<5		

TAA (Titratable Actual Acidity) Method: ME-(AU)-[ENV]AN219

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
рН КСІ	LB045270	pH Units	-	5.9	0%	101%
Titratable Actual Acidity	LB045270	kg H2SO4/T	0.25	<0.25	0%	NA
Titratable Actual Acidity (TAA) moles H+/tonne	LB045270	moles H+/T	5	<5	0%	92%
Titratable Actual Acidity (TAA) S%w/w	LB045270	%w/w S	0.01	<0.01	0%	92%

METHOD SUMMARY

	- METHOD	METHODOLOGY SUMMARY
	AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
	AN217	Dried pulped sample is mixed with acid and chromium metal in a rapid distillation unit to produce hydrogen sulfide (H2S) which is collected and titrated with iodine (I2(aq)) to measure SCR.
	AN219	Dried pulped sample is extracted for 4 hours in a 1 M KCl solution. The ratio of sample to solution is 1:40. The extract is titrated for acidity. Calcium, magnesium, and sulfur are determined by ICP-AES.

FOOTNOTES _

IS	Insufficient sample for analysis.	LOR	Limit of Reporting
LNR	Sample listed, but not received.	¢↓	Raised or Lowered Limit of Reporting
*	NATA accreditation does not cover the	QFH	QC result is above the upper tolerance
	performance of this service.	QFL	QC result is below the lower tolerance
**	Indicative data, theoretical holding time exceeded.	-	The sample was not analysed for this analyte
		NVL	Not Validated

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : <u>http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf</u>

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

Test Location	Depth (m - I	•	Material Description	pH _{FIELD}	рН _{ксі}	sTAA Converted to %S*	Existing Acidity %S (sTAA + 0.75 x S _{NAS})	Chromium Reducible Sulfur (S _{CR}) %S	Acid Neutralising Capacity %CaCO3 (if pH more than 6.5)	Net Acidity %S (S _{CR} +Existing Acidity - ANC/FF)	Is This AASS	ls This PASS	Liming Rate for Existing Acidity (Neutralises AASS only) (kg/m3)	(Neutralises both AASS &
BH01	0.25	0.50	Clayey SAND	8.96	5.3	0.020	0.020	0.880		0.900	No	YES	NA	68.1
BH02	0.00	0.25	Silty CLAY	4.75	4.5	0.040	0.040	< 0.005		0.040	Possible Organic Acidity	No	3.0	NA
BH03	0.75	1.00	Clayey SAND	8.00	5.7	< 0.010	0.000	< 0.005		0.000	No	No	NA	NA
BH04	0.00	0.25	Silty CLAY	7.97	6.4	< 0.010	0.000	0.150		0.150	No	YES	NA	11.3
BH05	0.75	1.00	Silty CLAY	4.60	5.0	0.030	0.030	< 0.005		0.030	No	No	NA	NA
BH06	0.00	0.25	Clayey SAND	4.80	6.2	< 0.010	0.000	< 0.005		0.000	No	No	NA	NA
BH07	0.25	0.50	Silty CLAY	4.20	4.6	0.020	0.020	< 0.005		0.020	No	No	NA	NA
BH08	0.25	0.50	Silty CLAY	5.60	6.4	< 0.010	0.000	0.006		0.006	No	No	NA	NA
BOAT SAMPLE 1	0.00	0.30	Silty CLAY	5.75	4.5	0.080	0.080	1.900		1.980	YES	YES	6.0	149.7

Note: * Equivalent oxidisable sulfur calculated as TAA/30.59

Liming rates assume a bulk density of 1.60 t/m3 Fineness Factor = 1.5

TABLE 1

SUMMARY OF ACID SULFATE TEST RESULTS

FCG Client Job Title Cairns Port Development

Holloways Beach Location

Input By: DS Date:24 April 20 Checked By: MSC Date:24 April 2017

pH FIELD TESTS

Method: As per the Guidelines for Sampling and Analysis of Lowland Acid Sulfate Soils (ASS) in Queensland 1998.

Client : FCG	Project Number :	1546223
Project : Northern Sands Pipeline	Tested By/Date :	8/03/2017
Location : Holloways Beach	Checked By / Date :	13/04/2017
pH Meter No. : - Date pH Meter Calibrated : 8/03/2017	pH Peroxide : pH Distilled Water :	

	Depth (m)							PASS Potentia	
Hole No.			Soil Type	рН	pH fox	reaction	high	medium	low
BH01	0	0.25		9.0	2.6	1	х		
	0.25	0.5		9.0	1.8	4	Х		
	0.5	0.75		8.4	1.8	4	х		
	0.75	1		8.2	1.8	4	х		
BH02	0	0.25		4.8	2.9	1	х		
BH03	0	0.25		8.0	4.9	1			х
	0.25	0.5		8.1	7.1	1			х
	0.5	0.75		8.1	2.9	1	х		
	0.75	1		8.0	2.4	1	х		
BH04	0	0.25		8.0	2.9	1	х		
	0.25	0.5		8.0	2.7	1	x		
	0.5	0.75		7.5	2.7	1	х		
	0.75	1		7.6	2.8	1	х		
BH05	0	0.25		5.5	4.3	1			х
	0.25	0.5		5.2	4.1	1			х
	0.5	0.75		4.6	3.7	1			х
	0.75	1		4.6	3.3	1			х
BH06	0	0.25		4.8	4.7	1			х
	0.25	0.5		4.5	4.6	1			x
	0.5	0.75		4.5	4.6	1			x
	0.75	1		4.4	4.6	1			x
BH07	0	0.25		4.5	2.7	1	х		X
Brior	0.25	0.5		4.2	2.4	1			
	0.25	0.75		4.2	3.2	1	Х		
	0.5	1		4.3	4.8	3		x	х
D LI00									
BH08	0	0.25		5.8	3.8	1			х
	0.25	0.5		5.6	2.7	1	х		
	0.5	0.75		5.4	3.9	1		+ +	х
	0.75	1		5.8	2.3	3	х		
OAT SAMPLE 1	0	0.3		5.8	1.1	4	х		

APPENDIX C

Queensland Government Terms of Reference Commonwealth Guidelines

Queensland Government Terms of Reference

Flanagan Consulting Group has extracted relevant items from the Queensland Government Terms of Reference for soils studies. These items and relevant details are presented below. Items that are not in scope are shaded grey in the table. The section of this report where each item is discussed is also shown in the table.

Relevant Queensland Government ToR - Soils

ToR	Title	Details	Comments
4.1.2	Dredge spoil disposal	Bore logs at a frequency and depth, and with material characterisation sufficient to determine potential displacement of material and/or the need for excavation	Refer Section 4.2, Fig 5
		Contaminant assessment of material potential displaced or excavated consistent with the NAGD	
		Acid sulfate soil survey of material potentially displaced or excavated consistent with the Guidelines for Sampling and Analysis of Lowland Acid Sulfate Soils (ASS) in Queensland 1998 (Ahern et al. 1998)	Refer Section 3.5, 4.2 & 5.0
4.2	Location	Location of natural features including intertidal sand and mud banks, wetland areas including Port of Cairns and Trinity Inlet Wetland	Refer Fig 1
5.2.3	Topography, geology and soils	Provide a description, map and a series of cross-sections of the geology of the project area relevant to the project components.	Refer Figs 1 to 4
		Assess the potential for acid sulfate soils in accordance with:	
		Queensland Acid Sulfate Soil Technical Manual	Refer Section 3.5, 4.2 & 5.0
		 Guidelines for Sampling and Analysis of Lowland Acid Sulfate Soils (ASS) in Queensland 1998 (Ahern et al. 1998) 	Refer Section 3.5, 4.2 & 5.0
		 State Planning Policy 2/02: Planning and Managing Development Involving Acid Sulfate Soils (Department of Natural Resources and Mines & Department of Local Government and Planning 2002a) 	Refer Section 3.5, 4.2 & 5.0
		 State Planning Policy 2/02 Guideline: Acid Sulfate Soils (Department of Natural Resources and Mines & Department of Local Government and Planning 2002b). 	Refer Section 3.5, 4.2 & 5.0
		Provide geotechnical information on the soils' stability and suitability for construction of project facilities.	Refer Section 2.0
		Identify any erosion management techniques to be used. Provide details of an erosion monitoring program (including rehabilitation measures for erosion problems identified during construction), and detail acceptable mitigation strategies. Summarise methods proposed to prevent or control erosion with regard to:	

PROPOSED PIPELINES - NORTHERN SANDS DMPA

ToR	Title	Details	Comments
		 the Soil Erosion and Sediment Control—Engineering Guidelines for Queensland Construction Sites (Institution of Engineers Australia 1996) 	Refer Section 2.1
		the Guideline: EPA Best Practice Urban Stormwater Management— Erosion and Sediment Control (Environmental Protection Agency 2008a)	Refer Section 2.1
		preventing soil loss in order to maintain land capability/suitability	Refer Section 2.1
		preventing degradation of local waterways.	Refer Section 2.1
		Discuss the potential for acid generation from disturbance of acid sulfate soils during earthworks and construction, and propose measures to manage soils and mitigate impacts for all site earthworks and construction activities. Should action criteria be triggered by acid generating potential as a result of testing, provide a site-specific acid sulfate soils management plan prepared in accordance with: Queensland Acid Sulfate Soil Technical Manual)	Refer Section 2.0, 3.5, 4.2 & 5.0
		 State Planning Policy 2/02: Planning and Managing Development Involving Acid Sulfate Soils (Department of Natural Resources and Mines & Department of Local Government and Planning 2002a) 	Refer Section 2.0, 3.5, 4.2 & 5.0
		Provide details of any potential impacts to the topography or geomorphology associated with the project and proposed mitigation measures, including: - a discussion of the project in the context of major topographic features and any measures taken to avoid or minimise impact to such relevant coastal geomorphology, characterised and supported by illustrative mapping	Refer Section 2.0, 3.2 & 5.0
5.2.3	Topography, geology and soils	Provide details of any potential impacts to the topography or geomorphology associated with the project and proposed mitigation measures, including:	Refer Section 2.0, 3.2 & 5.0
5.2.3	Topography, geology and soils	Discussion of the project in the context of major topographic features and any measures taken to avoid or minimise impact to such.	Refer Section 2.0, 3.2 & 5.0

Commonwealth Guidelines

Flanagan Consulting Group has extracted relevant items from the Commonwealth Guidelines for soils studies. These items and relevant details are presented below. Items that are not in scope are shaded grey in the table. The section of this report where each item is discussed is also shown in the table.

Guideline	Title	Details	Comments
5.9	The Existing Environment	This section must provide a description of the project area including baseline condition and trends of coastal, terrestrial and marine environments, including hydrology, sediment characteristics, sediment flows, geography, flora and fauna, cultural and heritage values, and all relevant socio- economic considerations. This section must link to the proposal description, potential impacts, and proposed avoidance, mitigation, adaptive management framework and/or offset measures throughout the life of the project including pre- construction, construction, operation, and any decommissioning. This section is to also identify and reference any relevant (published and unpublished) studies undertaken in the area which will assist in describing patterns and trends in the environment. Acute and chronic) from geotechnical activities (such as blasting (such as blasting (such as blasting (such as blasting pile driving), impacts of increased marine underwater marine species, including the impacts from noise at varying from each project component (considering the variables e.g. depth, wave height, bottom profile); impacts from proposal on air quality impacts; dredged material and impacts from increased shipping	anu 5.0
5.9	The Existing Environment	The section must include a description of the environment of the proposal site and the surrounding areas that may be affected by the action. This must include the following information:	Refer Sections 3.0, 4.0 and 5.0
5.9	The Existing Environment	b) A detailed assessment of the nature, extent, likelihood and consequence of the likely short-term and long-term impacts including but not limited to: description of the risks and potential impacts disposal impacts	Refer Section 8.0
5.9	The Existing Environment	e) Any technical data, including modelling, and other information used or needed to make a detailed assessment of the relevant impacts;	Refer Sections 3.0, 4.0 and 5.0
5.9	The Existing Environment	h) Consideration of potential impacts throughout the life of the proposal – from preconstruction, construction through to operation and any decommissioning;	Refer Sections 7.0 & 8.0
5.9	The Existing Environment	 Impacts on the existing use of the area and nearby areas that may be affected by the proposed action; 	Refer Sections 7.0 & 8.0

Relevant Commonwealth Government Guidelines

PROPOSED PIPELINES - NORTHERN SANDS DMPA

Guideline	Title	Details	Comments
5.10	Relevant Impact of the Proposed Action	The EIS must include a description of all of the relevant impacts of the action. Relevant impacts (both direct and indirect) are impacts that the action will have or is likely to have on a matter protected by a controlling provision (as listed in the preamble of this document). This section must provide clear linkages with the existing environmental values described in section 5.9 and proposed avoidance, safeguards, management and mitigation measures described in section 5.11. Impacts during all phases of the project must be addressed. This section must include:	Refer Sections 7.0 and 8.0
	Relevant Impact of the Proposed Action	a) A description of the framework used to assess impacts, including risk assessment processes based on an approved standard;	Refer Section 8.0
5.10	Relevant Impact of the Proposed Action	b) A detailed assessment of the nature, extent, likelihood and consequence of the likely short- term and long-term impacts including but not limited to: description of the risks and potential impacts (acute and chronic) from geotechnical activities (such as blasting and pile driving), impacts of increased marine underwater noise on marine species, including the impacts from noise at varying distances from each project component (considering the environmental variables e.g. depth, wave height, bottom profile); impacts from the proposal on air quality impacts; dredging and dredged material disposal impacts and impacts from increased shipping;	Refer Section 8.0
5.10	Relevant Impact of the Proposed Action	c) A statement whether any relevant impacts are likely to be unknown, unpredictable, irreversible or sub-lethal (reversible over time) and what confidence level is placed on the predictions of relevant impacts;	Refer Section 8.0
	Relevant Impact of the Proposed Action	d) Analysis of the significance of the impacts;	Refer Section 8.0
5.10	Relevant Impact of the Proposed Action	e) Any technical data, including modelling, and other information used or needed to make a detailed assessment of the relevant impacts;	Refer Sections 3.0, 4.0 and 5.0
5.10	Relevant Impact of the Proposed Action	f) Consideration of potential impacts throughout the life of the proposal – from preconstruction, construction through to operation and any decommissioning;	Refer Sections 7.0 and 8.0
	Dredging and Dredged Material	h) Assessment of the risk and potential impacts of acid sulfate soils (ASS) and potential acid sulfate soils (PASS);	Refer Section 3.4, 4.2 & 5.0

PROPOSED PIPELINES - NORTHERN SANDS DMPA

Guideline	Title	Details	Comments
5.11	Proposed avoidance, safeguards, management and mitigation measures	The EIS must provide information on proposed avoidance, safeguards and mitigation measures to deal with the impacts of the action. Specific and detailed descriptions of proposed measures must be provided and substantiated, based on best available practices/standards and must include the following elements.	Refer Section 8.0
5.11	Proposed avoidance, safeguards, management and mitigation measures	a) Identify the level of risk associated with potential impacts already identified and those that require mitigation, monitoring or management to avoid or reduce impacts to an acceptable level;	Refer Section 8.0
5.11	Proposed avoidance, safeguards, management and mitigation measures	b) A consolidated list of measures proposed to be undertaken to avoid, prevent, minimise or compensate (in priority order) for the impacts of the action (as specified in section 5.10), including: i. A description of proposed avoidance, safeguards and mitigation measures to deal with impacts of the action, including measures proposed to be taken by State governments, local governments or the proponent; ii. Assessment of the expected or predicted effectiveness of the measures; iii. Any statutory or policy basis for the mitigation measures; iv. The cost of the mitigation measures; and v. The resulting risk level for that impact post- avoidance, mitigation and/or management.	Refer Section 8.0
5.11	Proposed avoidance, safeguards, management and mitigation	c) Particular focus must be given to: i. Determining factors in the planning of the proposal so as to avoid damage to the environment;	Refer Section 8.0

The document ("Report") to which this page is attached and which this page forms a part of, has been issued by Golder Associates Pty Ltd ("Golder") subject to the important limitations and other qualifications set out below.

This Report constitutes or is part of services ("Services") provided by Golder to its client ("Client") under and subject to a contract between Golder and its Client ("Contract"). The contents of this page are not intended to and do not alter Golder's obligations (including any limits on those obligations) to its Client under the Contract.

This Report is provided for use solely by Golder's Client and persons acting on the Client's behalf, such as its professional advisers. Golder is responsible only to its Client for this Report. Golder has no responsibility to any other person who relies or makes decisions based upon this Report or who makes any other use of this Report. Golder accepts no responsibility for any loss or damage suffered by any person other than its Client as a result of any reliance upon any part of this Report, decisions made based upon this Report or any other use of it.

This Report has been prepared in the context of the circumstances and purposes referred to in, or derived from, the Contract and Golder accepts no responsibility for use of the Report, in whole or in part, in any other context or circumstance or for any other purpose.

The scope of Golder's Services and the period of time they relate to are determined by the Contract and are subject to restrictions and limitations set out in the Contract. If a service or other work is not expressly referred to in this Report, do not assume that it has been provided or performed. If a matter is not addressed in this Report, do not assume that any determination has been made by Golder in regards to it.

At any location relevant to the Services conditions may exist which were not detected by Golder, in particular due to the specific scope of the investigation Golder has been engaged to undertake. Conditions can only be verified at the exact location of any tests undertaken. Variations in conditions may occur between tested locations and there may be conditions which have not been revealed by the investigation and which have not therefore been taken into account in this Report.

Golder accepts no responsibility for and makes no representation as to the accuracy or completeness of the information provided to it by or on behalf of the Client or sourced from any third party. Golder has assumed that such information is correct unless otherwise stated and no responsibility is accepted by Golder for incomplete or inaccurate data supplied by its Client or any other person for whom Golder is not responsible. Golder has not taken account of matters that may have existed when the Report was prepared but which were only later disclosed to Golder.

Having regard to the matters referred to in the previous paragraphs on this page in particular, carrying out the Services has allowed Golder to form no more than an opinion as to the actual conditions at any relevant location. That opinion is necessarily constrained by the extent of the information collected by Golder or otherwise made available to Golder. Further, the passage of time may affect the accuracy, applicability or usefulness of the opinions, assessments or other information in this Report. This Report is based upon the information and other circumstances that existed and were known to Golder when the Services were performed and this Report was prepared. Golder has not considered the effect of any possible future developments including physical changes to any relevant location or changes to any laws or regulations relevant to such location.

Where permitted by the Contract, Golder may have retained subconsultants affiliated with Golder to provide some or all of the Services. However, it is Golder which remains solely responsible for the Services and there is no legal recourse against any of Golder's affiliated companies or the employees, officers or directors of any of them.

By date, or revision, the Report supersedes any prior report or other document issued by Golder dealing with any matter that is addressed in the Report.

Any uncertainty as to the extent to which this Report can be used or relied upon in any respect should be referred to Golder for clarification.

At Golder Associates we strive to be the most respected global company providing consulting, design, and construction services in earth, environment, and related areas of energy. Employee owned since our formation in 1960, our focus, unique culture and operating environment offer opportunities and the freedom to excel, which attracts the leading specialists in our fields. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees who operate from offices located throughout Africa, Asia, Australasia, Europe, North America, and South America.

Africa Asia Australasia Europe North America South America

solutions@golder.com www.golder.com

Golder Associates Pty Ltd 216 Draper Street Cairns, Queensland 4870 Australia T: +61 7 4054 8200

