

CAIRNS SHIPPING DEVELOPMENT PROJECT Revised Draft Environmental Impact Statement

APPENDIX L: Groundwater Values Assessment Northern Sands Report (2016)

BASELINE HYDROGEOLOGICAL ASSESSMENT NORTHERN SANDS

Cairns Shipping Development Project

Submitted to: Mr Pat Flanagan Flanagan Consulting Group ~Transmission Via Email pat@flanaganconsulting.com.au~

REPORT

Report Number. Distribution: 1 PDF

1546223-012-R-Rev4

Table of Contents

1.0	INTRO	DUCTION	1
2.0	SITE S	ETTING	2
	2.1	Site Background Information	2
	2.2	Climate	2
	2.3	Drainage and Topography	3
	2.4	Regional Geology and Hydrogeology	3
	2.5	Groundwater Dependant Ecosystems	6
3.0	GROUI	NDWATER CONDITIONS ON SITE	6
	3.1	Stratigraphy	6
	3.2	Groundwater Levels	7
	3.3	Groundwater Quality	8
	3.4	Hydraulic Conductivity	9
	3.5	Porosity	. 10
	3.6	Conceptual Hydrogeological Model	. 10
4.0	CONST	RAINTS AND OPPORTUNITIES	. 11
5.0	ASSES	SMENT OF IMPACTS	. 11
	5.1	Groundwater modelling	. 11
	5.2	Impacts on the upper unconfined aquifer and shallow soils to the north and east of Narelle Lake	. 12
	5.3	Impacts on the Barron River	. 12
6.0	REFER	ENCES	. 13
7.0	IMPOR	TANT INFORMATION	. 13

FIGURES

- Figure 1 Locality Plan Northern Sands Site
- Figure 2 Hydrographic Survey
- Figure 3 Geology Northern Sands Site
- Figure 4 Groundwater Levels at Registered Bores
- Figure 5 Hydrographs for Registered Groundwater Bores
- Figure 6 Groundwater Quality at Registered Bores
- Figure 7 Groundwater Dependant Ecosystems Northern Sands
- Figure 8 Investigation and Well Locations
- Figure 9 NW-SE Inferred Subsurface Section
- Figure 10 SW-NE Inferred Subsurface Long-Section
- Figure 11 Monitoring Bores in the Vicinity of Northern Sands
- Figure 12 Hydrographs for Monitoring Bores at the Northern Sands Site
- Figure 13 Groundwater Quality in Vicinity of Northern Sands Site
- Figure 14 Water Level Monitoring BH01 and BH03
- Figure 15 Slug Test Results BH01
- Figure 16 Slug Test Results BH02
- Figure 17 Slug Test Results BH03
- Figure 18 Slug Test Results GA04
- Figure 19 Conceptual Hydrogeological Model
- Figure 20 Location of Cross Sectional Models
- Figure 21 SeepW Cross Sectional Models
- Figure 22 SeepW Boundary Conditions
- Figure 23 Profiles of Increase in Concentration with Distance from Lake Section 1
- Figure 24 Profiles of Increase in Concentration with Distance from Lake Section 2
- Figure 25 Salinity Distribution after 90 Days Filling Section 1
- Figure 26 Salinity Distribution after 90 Days Filling Section 2
- Figure 27 Approximate Extent of Increase in Salinity in Upper Sand layer

APPENDICES APPENDIX A Summary details of registered groundwater bores

APPENDIX B Water quality data for registered groundwater bores

APPENDIX C Onsite Groundwater Quality Information

APPENDIX D 2016 Borehole and CPT Reports

APPENDIX E Water Quality Laboratory Results and Field Data.

APPENDIX F Soil Laboratory Test Results

APPENDIX G Hydraulic Conductivity Testing Results.

APPENDIX H Important information relating to this document

GLOSSARY, ACRONYMS, ABBREVIATIONS

Term	Meaning
AHD	Australian Height Datum
bgl	below ground level
BOM	Bureau of Meteorology
COD	chemical oxygen demand
CSD	Cairns Shipping Development
°C	Degrees Celsius
DEHP	Department of Environment and Heritage Protection
DNRM	Department of Natural Resources and Mines
EC	electrical conductivity
EIS	Environmental Impact Statement
FCG	Flanagan Consulting Group
Golder	Golder Associates Pty Ltd
km	kilometre
m	metre
mm	millimetre
bwl	below water level
m/s	metres per second
mm/day	millimetre per day
m²/day	square metres per day
m ³	cubic metres
m³/day	cubic metres per day
μS/cm	micro-Siemens per centimeter
PASS	Potential Acid Sulphate Soils

1.0 INTRODUCTION

Flanagan Consulting Group (FCG) commissioned Golder Associates Pty Ltd (Golder) to provide advice and assessment of groundwater issues as part of the Revised Draft Environmental Impact Statement (EIS) for the Cairns Shipping Development (CSD) project.

The recalibrated CSD project involves the following:

- Reduced channel widening and deepening plus dredging of the swing basin and berth pockets in the inner port area (capital dredging). This will result in a total capital dredging volume of ~800 000 m³. This is an in-situ material volume calculated as occurring between current maintenance dredging depths and the enlarged channel target depths including insurance depth and appropriate minimal over-dredging allowances.
- Land placement of capital dredged material at the following sites (i.e. with both being the subject of the Revised Draft EIS):
 - Northern Sands (an existing void in the Barron River delta created by past sand extraction and now used for burial of 'inert' construction and demolition fill and a limited quantity of Potential Acid Sulphate Soils (PASS).
 - East Trinity (a new bunded site or sites within the general East Trinity area).

This report is addresses the placement of capital dredged material at the Northern Sands site – an existing void in the Barron Delta as shown on Figure 1. Conceptual placement of dredged materials at Northern Sands would have the following requirements:

- A pumping delivery line along one of the route options shown on Figure 1 including:
 - A floating pump-out facility.
 - The conceptual design for the pipeline includes 1 m diameter welded steel pipe on the seabed and creek bed where appropriate, and flanged steel section above ground on temporary earth pads. Booster stations will be positioned along the pipeline at various locations (possible locations are shown on Figure 1).
- Dredged material will be pumped into the sand pit (which may be enlarged prior to dredging operations) with identified PASS material placed in the deeper portion of the pit and covered by self-neutralising material. PASS will be placed to achieve a final surface at least 1 m below the permanent water table. Other self-neutralising material will also be placed below the permanent water table (subject to final design and approvals).
- Provision for tailwater treatment subject to preliminary concept design.

This report is based on additional studies and is an update of Golder 1546223-012-R-Rev1 Stage1B-Groundwater Report Northern Sands dated 22 November 2016, which was largely based on desktop studies.

The aims of the overall studies were to describe the existing groundwater conditions associated with the Northern Sands site and to identify:

- Key groundwater related constraints (and opportunities) to design and construction of the facilities required for placement of the dredged material.
- Potential groundwater related environmental impacts and mitigation/management measures.

It should be noted that where relevant this report supersedes the previous report.

2.0 SITE SETTING

2.1 Site Background Information

The Northern Sands site covers an area of about 84 hectares and is located on the Barron River floodplain. The site contains an operating sand pit and is licenced to receive 'inert wastes' and PASS, both of which are placed into the excavated pit below the water table. The current sand pit covers an area of about 25 hectares and is known as "Narelle Lake." It should be noted that the existing pit may be enlarged by either deepening the eastern section or by extension into an area located to the north of the pit (see Figure 1).

2.2 Climate

The climate of the Cairns region and that of the Study Area is tropical with weather patterns consisting of very wet summers and drier winters. Key climatological and weather data was obtained from the nearest weather station, located at the Cairns Airport (Bureau of Meteorology (BOM) Station Number 031011) and is summarised below:

- Mean annual monthly maximum temperature is 29.0° Celsius (°C); with highest temperatures in December and January.
- Mean annual monthly minimum temperature is 20.8°C; with lowest temperatures in July.
- Mean annual rainfall is 1999.7 millimetres (mm) with highest rainfall in January through March.
- Mean number of days of rain greater than or equal to 1 mm is 119.6 days per year.
- Mean annual 9 am humidity is 72%; with February, March, and April having the highest humidity.
- Mean annual 3 pm humidity is 62% with February having the highest humidity.

Mean monthly rainfall and evaporation are presented in Table 1 and the annual rainfall from 2005 to 2015 is presented in Table 2.

Table 1: Mean rainfall and calculated evaporation data at the Cairns Airport (Weather Station Numbe	r
031011). Source: Bureau of Meteorology (2016).	

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Mean rainfall 1942 to 2016 (mm)	390	448	419	195	92	48	30	27	33	46	94	178
Mean evaporation 1965 to 2016 (mm)	198	164	180	162	152	141	155	174	201	233	225	223.

Note: data is rounded to the nearest millimetre

 Table 2: Annual total rainfall data between 2005 and 2015 at the Cairns Airport (Weather Station Number 031011). Source: Bureau of Meteorology (2016).

Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015*
Rainfall (mm)	1471	2289	1813	2215	2199	2660	2623	2003	1269	1826	1897

Note: data is rounded to the nearest millimetre

*Not quality controlled by BOM (2016)

The Cairns region experiences cyclonic storms on a regular basis with extreme rainfall events every two to eight years. Runoff intensity and storm surges from the sea would be expected. Significant rainfalls of 100 mm/day or greater can occur at any time during most of the year. Due to the proximity of the site area to tidally influenced streams and the nature of the local hydrologic conditions, episodic extreme weather events would also be expected. The topography consists of low lying coastal plains which may be influenced by storm surge impacts and large storm run-off or flood events.

2.3 Drainage and Topography

The topography of the Northern Sands site is characterised by alluvial terraces near the Barron River and flat coastal plains extending from the west of the site and east toward the ocean. Ground surface levels across the site typically range from about 5.5 m to 2 m Australia Height Datum (m AHD). Recent hydrographic survey (July 2016 by Ports North) of the pit indicates excavation levels typically in the range of -1.5 m to - 2.5 m AHD across the majority of the pit, apart from the southern and eastern sections of the pit where excavation levels range from -6.5 m to -14.5 m AHD. Contours of the elevation of the base of the lake from the recent hydrographic survey are shown on Figure 2.

The Barron River, Thomatis Creek and Narelle Lake are the dominant drainage features in the site area. The Barron River lies to the immediate south and west of the site, and averages about 150 m in width with an assumed bed level of around -2 m AHD. Narelle Lake is the main surface water feature on the site with a water level around 0.5 m AHD indicated in the July 2016 hydrographic survey.

2.4 Regional Geology and Hydrogeology

The Northern Sands site is located on the alluvial fan and delta of the Barron River. Unconsolidated sediments reach thicknesses of up to around 90 m, in the area to the immediate north-east of the site, as shown below in Plate 1 (reproduced from QLD Water Resources Commission, 1982). Surface geology in the area of the site is shown on Figure 3.

Plate 1 – Thickness of Unconsolidated Alluvium

Bedrock which underlies the unconsolidated sediments is exposed in the Macalister Ranges which outcrop to the west of the delta. Bedrock comprises Silurian/Devonian age metasediments (sedimentary rocks that have undergone some degree of metamorphism) comprising inter-bedded phyllite, schist, quartzite and chert beds which generally strike north to south.

Erosion of the bedrock has resulted in the formation of the Barron River floodplain that stretches from Trinity Beach to the north of the site to south of the Cairns Airport. The floodplain is underlain by unconsolidated Quaternary age alluvial deposits of sands, gravels, silts and clays.

Stratigraphic information available from the Queensland Registered Groundwater database (GWDB) (DNRM, 2016) within 2 km of the site indicates that the Quaternary age sediments are comprised of the following:

- Younger (Holocene age) alluvial deposits that generally range from surface to depths of 90 m. This
 sequence is associated with channel systems and consists of sand, silt and mud deposits, as well as
 minor gravel beds.
- Coastal (Holocene age) deposits in tidal mangrove and supratidal flats. These are located to the west and to the east of the site and consist of silt, sand and mud. This sequence is deposited in a marine environment with tidal influences from the Coral Sea. During transgressional and regressional periods, changes in sea levels, beach type sand, or silt and clay deposits would inter-tongue with terrestrial deposits.

There are two major aquifers in the Barron River delta within the unconsolidated sediments (QLD Water Resources Commission, 1982):

- An upper, unconfined aquifer varying in thickness from about 2 m to 11 m, which is overlain by up to 5 m of beach ridge deposits or clayey strata.
- A lower, confined or semi-confined aquifer, separated from the upper aquifer by a clay layer of varying thickness from around 3 m to around 25 m. The lower aquifer includes numerous inter-fingering clay layers.

Bore yields of up to 1500 m³/day are reported for these aquifers; however, the potential for use of this water for various beneficial uses is impacted by the salinity of the groundwater. Poor water quality is observed up to 3 km from the coast (QLD Water Resources Commission, 1982).

Twenty-four registered bores are located within 2 km of the Northern Sands site as shown on Figure 4. Summary details of the registered bores are provided in Appendix A. The range of measured groundwater levels in these registered bores over the period from 1976 to 2016 are also shown on Figure 4. Hydrographs showing the variation in groundwater level over time for the registered groundwater bores are presented on Figure 5.

Figures 4 and 5 indicate that groundwater levels are generally lower in the vicinity of Thomatis Creek. QLD Water Resources (1982) states that "it seems likely that for most of the year, Thomatis/Richter Creek and a major part of the Barron River are effluent streams, acting as a line sink draining water from the aquifer system". This is illustrated in Plate 2 below, reproduced from that report. It is also noted that relatively low groundwater levels have been recorded in registered bores 11000025 and 11000031, which are located in the vicinity of low-lying mangrove areas. It is also noted that relatively low groundwater levels have been recorded in 11000032 and 11000049 which are located within 300 m of Narelle Lake, towards the east. These lower groundwater levels were recorded between 1977 and 2005. It is not known whether the lower groundwater levels at these bores is associated with the lake, or groundwater extraction.

Plate 2 – Groundwater Flow across the Barron Delta

Water quality parameters from the registered bores are shown on Figure 6, and further information on groundwater quality parameters for the registered bores is provided in Appendix B.

Pumping tests carried out for the QLD Water Resources Commission 1982 study indicate transmissivities in the range of around 1500 to 6800 square metres per day (m^2 /day) for the upper unconfined aquifer (corresponding to values of hydraulic conductivity in the range of $2x10^{-3}$ to $4x10^{-3}$ m/s), and around 550 to 3900 m²/day for the lower confined aquifer.

2.5 Groundwater Dependant Ecosystems

Groundwater Dependent Ecosystems (GDE) are defined as ecosystems whose ecological processes and biodiversity are wholly, or partially, reliant on groundwater. Examples of GDEs include wetlands, vegetation, mound springs, river base flows, plus saline discharges, springs, mangroves. GDEs may include aquatic ecosystems in rivers and streams that receive groundwater baseflow.

Information on potential groundwater dependent ecosystems is available from the National Atlas of Groundwater Dependent Ecosystems. Based on information from this atlas, the potential for groundwater dependent ecosystems in surface water bodies and for vegetation in the vicinity of the site is shown in Figure 7. Further information on groundwater dependent ecosystems is presented in the Terrestrial Ecology report - Northern Sands (Biotropica, August 2016).

Figure 7 indicates the presence of vegetation with a high potential for groundwater interaction between Narelle Lake and the Barron River along the western and southern boundaries of the lake. The reaches of Thomatis Creek and Barron River in the vicinity of the Northern Sands site are indicated to have moderate potential for groundwater interaction.

3.0 GROUNDWATER CONDITIONS ON SITE

3.1 Stratigraphy

Previous subsurface investigations carried out on and adjacent to the Northern Sands site include the following:

- Borehole investigation carried out by Probin Pty Ltd in 2007. This work comprised 21 No. boreholes to depths ranging between approximately 15 m to 24 m below ground level (m bgl) on the subject site.
- Borehole investigation carried out by GEO Investigate in 2013. This work comprised 10 No. boreholes within the existing lake to depths ranging from 18 m to 30 m below water level (m bwl).
- Cone Penetrometer Testing (CPT) carried out by GEO Investigate in July 2016. This work comprised 30 No. CPT's to depths ranging from approximately 8 m to 24 m bgl on the subject site.
- Borehole investigation carried out by Golder in 1995. This work comprised 10 No. boreholes to depths ranging approximately 6 m bgl to the north of the subject site.
- Cone Penetrometer Testing (CPT) carried out by GEO Investigate in July 2016. This work comprised 14 No. CPT's to depths ranging from approximately 11.6 m to 14.7 m bgl to the north of the subject site.

Additional subsurface investigations carried out for these studies on and adjacent to the Northern Sands site include the following:

- Groundwater monitoring borehole installation, sampling and testing by Golder in September 2016 and November 2016. This work comprised 5 No. boreholes to depths ranging from approximately 1.4 m to 12 m bgl on the subject site. Borehole reports are presented in Appendix D.
- Cone Penetrometer Testing (CPT) carried out by Golder in November 2016. This work comprised 7 No. CPT's to depths ranging from approximately 9.8 m to 18.5 m bgl to the east of the subject site. CPT reports are presented in Appendix D.

The investigation locations are shown on Figure 8. Inferred subsurface cross-sections (utilising information from registered groundwater bores as well as the investigations outlined above) are presented in Figures 9 and 10.

The inferred subsurface conditions in the site area are broadly consistent with the published geology and generally comprises the following sequence.

- Sandy silty clay typically above -1 m AHD.
- Sand/gravelly sand broadly between 3 m to -7 m AHD.
- Silty clay broadly between 0 m to -16 m AHD and ranging in thickness from around 3 m to around 6 m. This layer may not be continuous although it is shown to be so in Figures 9 and 10.
- Sand/gravelly sand broadly between -6 m AHD to a maximum depth below -25 m AHD.
- Silty clay broadly between 14 m AHD to a maximum depth below -36 m AHD, and with a
 maximum measured thickness of 12 m.
- Gravelly sand/sandy gravel below -20 m to -22 m AHD, to a maximum depth of -37 m AHD in registered monitoring bores RN139211 and RN11000053.

The upper two sand/gravelly sand units (and the 3 m to 6 m thick clayey interbed in the site area) are interpreted to represent the upper unconfined regional aquifer. The lower gravelly sand/sandy gravel unit encountered below -20 m to -22m AHD is interpreted to represent the lower semi-confined/confined regional aquifer.

3.2 Groundwater Levels

Six shallow groundwater monitoring bores (UG1, UG2, BH2, BH3, BH4a and BH5a) have been installed by others at the locations shown on Figure 11. The depth of the monitoring bores ranges between 3.9 m and 8.5 m bgl, however further information regarding the construction of these bores is not available. Hydrographs of groundwater levels and the water levels in the lake between mid-2009 and mid-2016 (information provided by Landline Consulting – environmental consultants to Northern Sands operations) are shown on Figure 12. It was suspected that the recorded lake levels may be approximately 0.5 m above the actual water levels (i.e. actual lake water levels may be approximately 0.5 m below those illustrated in Figure 12). Recent survey of groundwater and lake water levels by Golder confirmed these suspicions in the historical data, however, the data in Figure 12 has not been adjusted from that provided by Landline Consulting.

Notwithstanding the potential error in the lake water levels, the pattern of variation of groundwater levels matches the pattern of variation in the lake level. Measured groundwater levels generally vary between -0.3 m and 1.0 m AHD. It is likely that the groundwater levels in the monitoring bores closest to the Barron River are impacted by tidal fluctuations in the Barron River, and that in particular, measured groundwater levels lower than 0 m AHD are likely to reflect low tide conditions at or close to the time of measurement.

Four shallow groundwater monitoring bores (BH01, BH02, BH03 and GA04) were installed by Golder at the locations shown on Figure 11. The depth of these monitoring bores ranges between 5.5 m and 12 m bgl. Construction information for these monitoring bores are presented on the borehole reports in Appendix D and summarised in Table 4. These boreholes were developed after their installation by purging at least 5 well volumes to remove drilling influences in the bores and to assist groundwater representative of the aquifer to flow into the monitoring bore. Along with purging 5 well volumes from each bore, water quality parameters were monitored until parameters stabilised.

Data logging pressure transducers were installed in BH01 and BH03 in September 2016 to record groundwater levels at 1 hour intervals. Hydrographs of groundwater levels at BH01 and BH03 from 29 September to 22 November 2016 are presented in Figure 14. Groundwater level ranges are summarised in Table 4. The hydrographs for BH01 and BH03 show a response to rainfall and tidal influence of approximately 0.10 m.

Borehole ID	Easting*	Northing*	Elevation (m AHD)	Standpipe Stick up (m)
BH01	363627.63	8136178.11	2.64	0.67
BH02	364376.67	8135447.11	2.13	0.63
BH03	364301.50	8135126.42	1.97	0.67
GA04	364331.65	8135689.89	3.58	0.90

Table 3: Monitoring bore location and level

*Coordinates system: GDA 94 zone 55

Table 4: Monitoring bore construction information and water levels

Borehole	Bore depth	Screened		Aquifer	Water Level Range		
ID	(m bgİ)	(m bgl)	Soli description	type	*(m bgl)	*(m AHD)	
BH01	6.0	3.0 to 6.0	Sand	Unconfined	2.18 to 2.64	0.17 to 0.46	
BH02	6.0	3.0 to 6.0	Clayey sand	Unconfined	1.93	0.2	
BH03	12.0	6.0 to 12.0	Clayey sand and clay	Unconfined	1.47 to 1.76	0.18 to 0.51	
GA04	5.5	3.5 to 5.5	Sand	Unconfined	3.29	0.29	

*Where data is not presented in a range, only a single data point exists.

The nearest measurement of river levels in the Barron River is at Cairns Airport, approximately 2 km downstream of the site. Records from this station indicate a long-term average river level of 0.5 m AHD. Comparison with the groundwater levels illustrated in Figure 12 indicates that the long term average groundwater levels close to the river, and the lake level, are similar to the average river level.

Given the above information, 0 m AHD has been adopted as the lowest permanent water level in the lake.

3.3 **Groundwater Quality**

Monitoring bores BH2, BH3, BH4a and BH5a have been sampled and tested monthly by others (Landline Consulting) from September 2014 to April 2016 for the following parameters:

- Aluminum
 - Copper

EC

Lead

- Sulphate
- Arsenic
- Total Nitrogen

Total Phosphorus

- CadmiumChloride
 - Iron

- Zinc
- Chromium
 Mercury
- COD (Chemical

 pH oxygen demand)

Copies of plots showing the results of water quality testing are presented in Appendix C.

Ranges of EC and pH at monitoring bores and regional groundwater bores in the area of Narelle Lake are shown in Figure 13. The EC in Narelle Lake between September 2011 and March 2016 varied between 200 S/cm and 1000 μ S/cm. It is noted that registered groundwater bores 11000049 and 11000033 to the immediate east of Narelle Lake have high recorded EC ranging from 19 000 μ S/cm to 38 000 μ S/cm. The measured EC at these two registered groundwater bores is higher than at all other registered groundwater bores within a 2 km radius where water quality measurements are available.

Golder monitoring bores BH01, BH02, BH03 were sampled on 29 September and 22 November 2016, and GA04 was sampled on 24 November 2016. Groundwater samples from BH01, BH02, BH3 and GA04 were forwarded under chain of custody to SGS (a NATA accredited laboratory) for testing. Samples were analysed for the following parameters. It should be noted that only aluminium, iron and total iron were tested during the 29 September 2016 sampling event.

- Alkalinity
 EC
 Sulphate
- Aluminium Iron TDS
- Anions
 Magnesium
 Total hardness
- Calcium
 pH
 Total Iron
- Cation
 Potassium
 Total Nitrogen
- Chloride
 Sodium

The field data and laboratory results are presented in Appendix E and summarized in Table 5.

Monitoring bore	pH range lab results	pH range field results	EC range (μS/cm) lab results	EC range (μS/cm) field results	Salinity
BH01	6.8 to 7.0	6.5 to 7.2	230 to 250	300 to 373	Fresh water
BH02	7.7 to 7.9	6.7 to 8.0	9,300 to 11,000	8,000 to 10,000	Brackish water
BH03	7.9	7.2 to 10.2	24,000	25,500 to 26,540	Brackish water
GA04	6.5	5.74	160	148	Fresh water

Table 5: Field and laboratory pH and salinity results

3.4 Hydraulic Conductivity

Slug tests were carried out at BH01, BH02, BH03 and GA04 during field investigations in November 2016. Two falling and two rising head test were conducted at each bore location. Data was recorded by a pressure transducer recording water level every second in conjunction with manual water level measurement during the test. Hydraulic conductivities estimated from the falling and rising head tests conducted at each bore are presented in Figures 15 to 18 and summarised in

Table 6.

Talsma tests were carried out within the upper clay layer at the location of GA04 and GA05. Laboratory plasticity and grading tests were carried out to confirm soil classifications at the locations of the Talsma tests. The results of the laboratory testing on the soils are presented in Appendix F. The results of the Talsma tests are presented in Appendix G and are summarised in Table 6.

Test Location	t Location depth Soil description range (m)		Method used	Hydraulic conductivity K (m/s)
BH01	3.0 to 6.0	Sand	Hvorslev	2 x 10 ⁻⁴
BH02	3.0 to 6.0	Clayey sand	Hvorslev	9 x 10 ⁻⁷
BH03	6.0 to 12.0	Clayey sand	Hvorslev	3 x 10 ⁻⁴
GA04	3.5 to 5.5	Sand	Hvorslev	2 x 10 ⁻³
GA04	0.3 to1.4	Sandy clay	Talsma equation	7 x 10 ⁻⁷
GA05	0.3 to 1.5	Sandy clay	Talsma equation	1 x 10 ⁻⁷

Table 6: Field hydraulic conductivity testing results

3.5 **Porosity**

Samples of the upper sands from GA04 and at GA05 were forwarded for laboratory testing to assess their maximum/minimum densities. Relative density of the sands was inferred from the results of Cone Penetrometer Testing at nearby test locations. The in situ density of the sands was then assessed by comparing the inferred relative density with the maximum/minimum densities achieved in the laboratory testing. Void ratios and porosities for the upper sand formation were calculated based on the interpreted insitu dry densities. Results of the laboratory testing are presented in Appendix F and the assessed porosity results are presented in Table 7.

Sample	Inferred Density Ratio (%) from CPT	Inferred <i>in situ</i> Density (t/m³)	Inferred Dry Density (t/m ³)	Moisture Content (%)	Void Ratio (e)	Porosity (n)
GA04 (Brown Sand)	45	1.62	1.27	27.5	1.08	0.52
GA04 (Brown Sand)	96	1.86	1.46	27.5	0.82	0.45
GA05 (Yellow Sand)	45	1.67	1.46	14.0	0.81	0.45
GA05 (Yellow Sand)	96	1.87	1.64	14.0	0.61	0.38

Table 7: Assessed porosity for upper sand formation.

A porosity of 0.38 was adopted for the groundwater modelling.

3.6 Conceptual Hydrogeological Model

A conceptual hydrogeological model for the Northern Sands site is illustrated in Figure 19. The following points are noted regarding this conceptual model:

- The Northern Sands site is underlain by an upper unconfined aquifer and a lower confined or semiconfined aquifer. Both of these aquifers extend broadly across the Barron River delta.
- In the area of the Northern Sands site, the upper unconfined aquifer includes a 3 m to 5 m thick clayey interbed, which may or may not be laterally continuous. The upper aquifer is recharged directly by rainfall.
- The overall direction of groundwater flow in the upper unconfined aquifer is towards the Barron River and Thomatis Creek, as discussed in QLD Water Resources Commission (1982). Close to these streams, groundwater exchange will occur as a result of tidal fluctuations in the streams.
- Groundwater in the deep confined aquifer is towards the coast. Recharge to this aquifer occurs further to the west where the confining unit is absent in some areas.

In the current condition, the groundwater level in the lake is similar to the groundwater level in the upper unconfined aquifer. When the lake level is raised during the period of placement of dredged material along with large volumes of seawater, a hydraulic gradient away from the lake will be created, and saline water will flow away from the lake. In the early stages of placement, saline water from the lake will also flow downwards through areas where the clayey interbed has been removed by sand extraction operations in the lake. It is likely, however, that this flow will diminish significantly over time as a result of the low permeability of dredged material which will fill the base of the lake.

4.0 CONSTRAINTS AND OPPORTUNITIES

Dredged material will be placed in the sand pit along with large volumes of seawater, within an area on the eastern side of the existing lake. The lake will be deepened prior to dredging and bunded where required to contain the dredged material and tailwater. Water levels in the lake could be raised to between 3 m to 5 m AHD during placement of the dredged material. As a consequence, the lake level in this area will be at a level above the groundwater level in the surrounding aquifer and above the level in the Barron River for this period. The seepage rate out of the lake during this period will be significantly lower than the flow rate delivered to the lake with the dredged material, and thus the majority of the delivered water will need to be managed through tailwater ponds. The proposed concepts for tailwater management have been developed by BMT JFA and are outlined in their Dredged Material Placement Assessment, 2016.

As noted above, saline water will flow radially away from the lake during the period that the lake level is artificially raised. Along the southern boundary of the lake, this water will flow through the upper sandy layer towards the Barron River, with the potential to impact on the salinity of the river. Along the remainder of the perimeter of the lake, water will flow out into the upper unconfined aquifer both horizontally through the sandy materials exposed around the edges of the lake and through the area where the clayey interbed has been removed by sand extraction operations in the lake, with the potential to impact on water quality in this aquifer.

The potential for unacceptable impacts on water quality in the Barron River and in the upper unconfined aquifer may constrain the approach to placement of dredged material at the Northern Sands site, and require management measures to mitigate impacts.

5.0 ASSESSMENT OF IMPACTS

5.1 Groundwater modelling

As discussed in Section 3.6, a conceptual hydrogeological model for the Northern Sands site was prepared as shown in Figure 19. The conceptual model is based on the inferred subsurface cross-section shown in Figure 9.

Prior to groundwater modelling all of the additional information on ground conditions from the current studies and from historical investigations in the vicinity was collated, and the ground model for the site area was updated. In order to provide an assessment of saline water flow away from the lake during the period of increased lake water level, two simplified cross-sectional numerical models were developed, based on the inferred subsurface conditions along the SW to NE and NW to SE oriented cross-sections as shown in Figure 20. The simplified cross-sectional models are shown in Figure 21, noting that the profile of the lake is based on the assumption that the eastern end of the existing pit will be expanded prior to disposal operations.

The finite element software SEEP/W was used to develop a variably saturated, density dependent solute transport model. Parameters for the modelling were based on the results of the fieldwork and laboratory testing as appropriate. The adopted boundary conditions are shown in Figure 22.

During the placement of dredged material, the water level in the lake will be raised and the lake filled with saline water. Modelling has been carried out for lake levels at RL 3 m AHD, RL 4 m AHD and RL 5 m AHD. Placement of the dredged material has been modelled in 4 sequential steps (0 to15 days, 15 to 30 days, 30 to 60 days and 60 to 90 days), with placement of the dredged material in a series of horizontal lifts to raise the dredged material level to -1 m AHD over a period of approximately 90 days. It has been assumed that the dredged material will have a hydraulic conductivity of 1 x 10^{-7} m/s.

5.2 Impacts on the upper unconfined aquifer and shallow soils to the north and east of Narelle Lake

Results from the groundwater models for Sections 1 and 2 are presented in Figures 23 to 26. Figures 25 and 26 show contours of the salinity concentration under increased lake levels during the period of disposal. Figures 23 and 24 show profiles of the **increase** in salinity concentration above the existing concentration (i.e. prior to disposal) with distance away from the lake. The profiles are based on salinity concentrations in the upper sand layer immediately below the near surface clay layer. The results show that in the sand layer, the area impacted by an increase in salinity increases with increased lake levels during the period of disposal. A summary of the approximate distance from the lake impacted by an increase in salinity is provided in Table 8. These distances are also shown on Figure 27.

Section	Level of water in disposal area	Approximate maximum distance to which increased concentration extends			
	RL 3m AHD	50 m			
Section 1	RL 4 m AHD	65 m			
	RL 5 m AHD	80 m			
	RL 3m AHD	90 m			
Section 2	RL 4 m AHD	110 m			
	RL 5 m AHD	130 m			

Table 8: Extent of increase in salinity in upper sand layer

The results of the modelling indicate that the hydraulic gradient remains downwards throughout the period considered in the modelling (i.e. up to 2 years after the start of placement of dredged material). This downward hydraulic gradient will limit the extent to which salt can migrate upwards into the near surface clay layer and it is assessed that negligible changes in the salinity of the near surface clay will occur.

5.3 Impacts on the Barron River

The potential flow rate and solute transport rate between the lake and the Barron River during the period of increased lake water level was preliminarily assessed during previous studies, noting that at that stage a lower lake level was adopted and that a different lake configuration was proposed. The previous estimate of the total seepage volume into the Barron River was based on an assumption that the lake level would be raised across the entire area of the existing lake. The length of river adjacent to the lake will be reduced for the currently proposed approach, which will offset the effect of the higher lake levels within the disposal area.

The previous studies indicated that the steady state groundwater seepage from the lake to the river was estimated to be 4800 m³/day as a result of the increase in lake level. The estimated time for breakthrough of the saline water plume from the lake to the river was estimated to be 40 to 80 days after raising the level in the lake. After the breakthrough the salinity of the seepage water would be equal to the concentration in the lake. The previous studies did not account for a progressive diminishing in the rate of seepage as dredged material was placed in the lake.

The results of the current modelling indicate that the groundwater seepage from the lake to the river during the period of the raised water level in the lake will reach a rate of 3100 m³/day with a salt flux of 450 g/s for a lake level in the disposal area of RL 5 m AHD.

Potential impacts of the seepage on water quality in the Barron River have been addressed by BMT WBM in their Marine Water Quality report, 2016.

6.0 **REFERENCES**

- Biotropica, August 2016.
- Bureau of Meteorology (BOM), 2016, Climate Data, access 16 December 2016 <http://www.bom.gov.au/>
- Department of Natural Resources and Mines (DNRM), Groundwater Database, QLD Globe, 2016, State of Queensland <accessed 09 August 2016>.
- Landline Consulting, 2016, *Northern Sands Lake and Bore Stats,* Prepared for Flanagan Consulting Group, Queensland, Australia, 20 July 2016.
- Probin Pty Ltd (2007), Sand Resource Evaluation, Prepared for Northern Sands Pty Ltd, Queensland Australia, 27 April 2007.
- QLD Water Resources Commission (1982). Barron River Groundwater Investigations Groundwater Resources of the Barron River Coastal Plan. Record 1982/23, Ref: E158, December 1982.
- Golder Associates Pty Ltd (Golder), 2016, Stage1B-Groundwater Report Northern Sands, Prepared for Flanagan Consulting Group, Cairns shipping development project.

7.0 IMPORTANT INFORMATION

Your attention is drawn to the document - "Important Information relating to this report", which is included as Appendix H. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be. The document is not intended to reduce the level of responsibility accepted by Golder Associates, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing.

Report Signature Page

GOLDER ASSOCIATES PTY LTD

Scott Fidler Principal

Jennifer Lallier Hydrogeologist

JL/DB/SRF/MSC/ow

A.B.N. 64 006 107 857

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

j:\geo\2015\1546223 - fcg - eis stage 1 - port development\corr out\stage 1b hydrogeology assessment\northern sands\report 012 rev4\1546223-012-r-rev4 baseline hydrogeological assessment northern sands.docx

FIGURES

0	1	2
1:30,000 at A3		Kilometres

PROJECT	
CAIRNS SHIPPING DEVELOPMEN	FEIS:

CONSULTANT		YYYY-MM-DD	2016-09-29	
		PREPARED	DP	
Golder	DESIGNED	DP		
	REVIEWED	DS		
	APPROVED	DS		
PROJECT NO. 1546223	CONTROL 012	REV 4	(.	FIGURE

LOCATION MAP tudv Area Yarrabah irns Trinity Dinden Forest National Reserve Park

LEGEND

- Localities •
- Monitoring Borehole Locations
- Roads and Tracks
- Drainage (25k)
- Northern Sands Site

COPYRIGHT

Geology: © State of Queensland (Department of Employment, Economic Development and Innovation), 2011. All other data © State of Queensland (Department of Natural Resources and Mines) 2016.

Service Layer Credits: Sources: Esri, HERE, DeLorme, USGS, Intermap, increment P Corp., NRCAN, Esri Japan, METI, Esri China (Hong Kong), Esri (Thailand), MapmyIndia, © OpenStreetMap contributors, and the GIS User Community

	2		
L			
	-		

CLIEN

	2
Kilometr	es

1:30,000 at A3 PROJECTION: GDA 1994 MGA Zone 55

FLANAGAN CONSULTING GROUP

PROJECT CAIRNS SHIPPING DEVELOPMENT EIS

DETAILED GEOLOGY: NORTHERN SANDS SITE

CONSULTANT		YYYY-MM-DD	2017-01-20	
		PREPARED	DP	
Golder	DESIGNED	DP		
	REVIEWED	DS		
	APPROVED	DS		
PROJECT NO. 1546223	CONTROL 012	REV 4	-	FIGURE

LOCATION MAP	
ECCATION MAP	Study Area Yarrabah • Cairns Trinity Forest Reserve
LEGEND	

Localities

- Registered Groundwater Bores 4
- Roads and Tracks
- Drainage (25k)
- Northern Sands Site

COPYRIGHT All data © State of Queensland (Department of Natural Resources and Mines) 2016.

Service Layer Credits: Sources: Esri, HERE, DeLorme, USGS, Intermap, increment P Corp., NRCAN, Esri Japan, METI, Esri China (Hong Kong), Esri (Thailand), MapmyIndia, © OpenStreetMap contributors, and the GIS User Community

0.5

Kilometres

1:20,000 at A3 PROJECTION: GDA 1994 MGA Zone 55

CLIENT FLANAGAN CONSULTING GROUP

PROJECT CAIRNS SHIPPING DEVELOPMENT EIS

GROUNDWATER LEVELS AT REGISTERED BORES

CONSULTANT		YYYY-MM-DD	2016-09-19	
		PREPARED	DP	
Golder	DESIGNED	DP		
	REVIEWED	DS		
	APPROVED	DS		
PROJECT NO. 1546223	CONTROL 012	REV 4		FIGURE

CONSULTANT		YYYY-MM-DD	2016-09-19	
		PREPARED	DP	
Golder	DESIGNED	DP		
	REVIEWED	SF		
	APPROVED	SF		
PROJECT NO. 1546223	CONTROL 012	REV 4		FIGURE

LEGEND

- Localities
 - Roads and Tracks
 - Drainage (25k)
- Northern Sands Site

Groundwater Dependent Ecosystems (GDE)

GDE Reliant on Surface Expression of Groundwater

(rivers, springs, wetlands)

- Moderate potential for GW interaction
 - Low potential for GW interaction

GDE Reliant on Subsurface Groundwater

Vegetation

- High potential for GW interaction
- Moderate potential for GW interaction
- Low potential for GW interaction

COPYRIGHT

Groundwater Dependent Ecosystems: © Commonwealth of Australia (Bureau of Meteorology)

Groundwater Dependent Leosystems, Council, 2012. 2012. All other data © State of Queensland (Department of Natural Resources and Mines) 2016. Service Layer Credits: Sources: Esri, HERE, DeLorme, USGS, Intermap, increment P Corp., NRCAN, Esri Japan, METI, Esri China (Hong Kong), Esri (Thailand), MapmyIndia, © OpenStreetMap contributors, and the GIS User Community

0	1	2
1:30,000 at A3		Kilometres

PROJECTION: GDA 1994 MGA Zone 55

CLIENT FLANAGAN CONSULTING GROUP

PROJECT CAIRNS SHIPPING DEVELOPMENT EIS

GROUNDWATER DEPENDENT ECOSYSTEMS: NORTHERN SANDS

CONSULTANT		YYYY-MM-DD	2016-09-19	
Golder	PREPARED	DP		
	DESIGNED	DP		
	REVIEWED	DS		
	APPROVED	DS		
PROJECT NO. 1546223	CONTROL 012	REV. 4		FIGURE

CONSULTANT		YYYY-MM-DD	2017-01-2	23
Colder		PREPARED	DP	
		DESIGNED	DP	
Associates	REVIEWED	DS		
	APPROVED	DS		
PROJECT NO. 1546223	CONTROL 012	REV 4		FIGURE

\golder.gds\GAP\Cairns\Jobs\Geo\2015\1546223 - FCG - EIS Stage 1 - Port Development\CORR OUT\Stage 1B Hydrogeology Assessment\Northern Sands\Report012 Rev3\Figures

LOCATION MAP	
	Study Area
	Yarrabah
	Cairns Trinity
Dinden	Forest
National	Reserve
T dire	S C. think
LEGEND	

- Localities
- Registered Groundwater Bores ٠
- Roads and Tracks
- Drainage (25k)
- Northern Sands Site

CLIEN

COPYRIGHT All data © State of Queensland (Department of Natural Resources and Mines) 2016.

Service Layer Credits: Sources: Esri, HERE, DeLorme, USGS, Intermap, increment P Corp., NRCAN, Esri Japan, METI, Esri China (Hong Kong), Esri (Thailand), MapmyIndia, © OpenStreetMap contributors, and the GIS User Community

0.5

0	0.25	0.5

1:12,500 at A3 Kilometres PROJECTION: GDA 1994 MGA Zone 55

FLANAGAN CONSULTING GROUP

PROJECT CAIRNS SHIPPING DEVELOPMENT EIS

MONITORING BORES IN THE VICINITY OF NORTHERN SANDS SITE

CONSULTANT		YYYY-MM-DD	2017-01-20	
		PREPARED	DP	
		DESIGNED	DP	
Associates	Associates	REVIEWED	DS	
		APPROVED	DS	
PROJECT NO. 1546223	CONTROL 012	REV 4	-	FIGURE

	Flanagan Consulting Group			Cairns Shipping Development EIS			
Golder	DRAWN	JL	date 19/9	/16	Hydrographs for Monitoring Bores at the		ng Bores at the
Associates	CHECKED	SRF	DATE 19/9	/16	Northern Sands Site		s Site
	SCALE			SHEET SIZE	PROJECT No	REVISION	FIGURE No
				A4	1546223-012	4	FIGURE 12

0	0.2	25

CONSULTANT		YYYY-MM-DD	2017-01-20	
-74		PREPARED	DP	
Coldor		DESIGNED	DP	
Associates	Associates	REVIEWED	SF	
		APPROVED	SF	
PROJECT NO. 1546223	CONTROL	REV. 4		FIGURE

C:\Users\mcook\Documents\AA PN Dredge Spoil Disposal\Groundwater Report\Figures\[F015 SWL BH02.xlsx]Landscape

Ngolder.gds/GAP/Caims/Jobs/Geo/2015/1546223 - FCG - EIS Stage 1 - Port Development/CORR OUT/Stage 1B Hydrogeology Assessment/Northern Sands/Report/012 Rev3/Figures/Figures/Figures/Figures/Distribution of 2 crossections.xixx/Landscape

\lgolder.gds\GAP\Cairns\Jobs\Geol2015\1546223 - FCG - EIS Stage 1 - Port Development\CORR OUT\Stage 1B Hydrogeology Assessment\Northern Sands\Report012 Rev3|Figures\Figures\Figures\Vertication of 2 crossections.xlsx\Landscape

Ngolder.gds/GAPICairns/Jobs/Geo/2015/1546223 - FCG - EIS Stage 1 - Port Development/CORR OUT/Stage 1B Hydrogeology Assessment/Northern Sands/Report012 Rev3/Figures/Figure

Ngolder.gdsiGAPiCaimsUobsiGeoi20151546223 - FCG - EIS Stage 1 - Port Development/TECHNICAL DOCiAnalysis/Northern Sand Hydraulic testing and groundwater monitoring/Slug test(Slug test graph for report/GA04 slug test graph.slx)Landscape

ligolder.gds/GAP/Cairns/Jobs/Geo/2015/1546223 - FCG - EIS Stage 1 - Port Development/CORR OUT/Stage 1B Hydrogeology Assessment/Northern Sands/Report012 Rev3/Figures/Figures/Figures/I Figures/I Fig

Ngolder.gds\GAP\Cairns\Jobs\Geol201511546223 - FCG - EIS Stage 1 - Port Development\CORR OUT\Stage 1B Hydrogeology Assessment\Northern Sands\Report012 Rev3\Figures\Figures\Figures\Figures\Figures\Figures\Figures

Ngolder.gds\GAP\Cairns\Jobs\Geo\2015\1546223 - FCG - EIS Stage 1 - Port Development\CORR OUT\Stage 1B Hydrogeology Assessment\Northern Sands\Report012 Rev3\Figures

🔲 0 - 2,000 g/m³
📃 2,000 - 4,000 g/m³
□ 4,000 - 6,000 g/m³
🔲 6,000 - 8,000 g/m³
🔲 8,000 - 10,000 g/m³
■ 10,000 - 12,000 g/m³
■ 12,000 - 14,000 g/m³
■ 14,000 - 16,000 g/m³
■ 16,000 - 18,000 g/m³
■ 18,000 - 20,000 g/m³
20,000 - 22,000 g/m ³
22,000 - 24,000 g/m ³
□ 24,000 - 26,000 g/m³
□ 26,000 - 28,000 g/m³
□ 28,000 - 30,000 g/m³
30,000 - 32,000 g/m³
■ 32,000 - 34,000 g/m³
■ 34,000 - 36,000 g/m³

Golder	Flanagan Co	nsulting Group	Cairns Shipping Development EIS		
		DATE 23/01/17	Concentration contours at completion of filling – Section 1		
	CHECKED MSC	DATE 23/01/17			
	SCALE Not to Sca	le	PROJECT № 1546223-012	FIGURE NO 25 3 A3	

Path: \\gobder.gds\CAP\Cairns\Lobs\Geo\2015\1546223 - FCG - EIS Stage 1 - Port Development\GIS\MXD\Hydro_Assessment\1546223-012-R-Rev1_F008_Nth_Sands_investigations.my

LOCATION MAP
Study Area Study Area Yarr aba Cairns Trinity Fore st Re serve
LEGEND
Localities Sections
Investigation Locations —— Roads and Tracks
GW Monitoring Bore —— Watercourses (25k)
Probin Boreholes
GEO Investigate
↔ Well Locations
Pipeline Route Options
Northern Sands Placement Area
Pit Expansion Area
Booster Locations
Booster Locations
Inbound Aquis - No Marine Booster
= = Inhound Pineline
Inbound Pipeline
Inbound Pipeline
COPYRIGHT Localities, Roads and Tracks, Watercourses © State of Queensland (Department of Natural Resources and Mines) 2016. Imagery: Sourced from Nearmap 02/09/2016, dated 07/06/2016. Service Layer Credits: Sources: Esri, HERE, DeLorme, USGS, Intermap, increment P Corp., NRCAN, Esri Japan, METI, Esri China (Hong Kong), Esri (Thailand), MapmyIndia, © OpenStreetMap contributors, and the GIS User Community
0 0.25 0.5 1:10,000 at A3 Kilometres PROJECTION: GDA 1994 MGA Zone 55
CLIENT FLANAGAN CONSULTING GROUP
CAIRNS SHIPPING DEVELOPMENT EIS
APPROXIMATE EXTENT OF INCREASE IN SALINITY IN UPPER SAND LAYER
CONSULTANT VVVV MM DD 2017 01 22

 CONSULTANT
 YYYY-MM-DD
 2017-01-23

 PREPARED
 DP

 DESIGNED
 DP

 REVIEWED
 DS

 APPROVED
 DS

 PROJECT NO.
 CONTROL
 REV.

 1546223
 012
 4

25mm IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET S

APPENDIX A

Summary details of registered groundwater bores

Registered Borehole ID	Latitude	Longitude	Year of Purpose installation or drilling		Status
45021	-16.8492	145.7066	Water supply	1974	Existing
45028	-16.8506	145.7031	Water supply	1974	Existing
45032	-16.8509	145.7075	Water supply	1974	Abandoned and destroyed
45041	-16.8592	145.7019	Water supply	1975	Existing
45042	-16.8582	145.7032	Water supply	1975	Existing
45043	-16.8607	145.7056	Water supply	1975	Existing
45457	-16.8594	145.7078	Water supply	1983	Existing
72350	-16.8571	145.729	Water supply	1986	Existing
72509	-16.8489	145.7128	Water supply	1991	Existing
109374	-16.8481	145.7064	Water supply	no data	Existing
139211	-16.8524	145.716	Water supply	2007	Abandoned and destroyed
11000024	-16.8475	145.716	Water resources investigation	1977	Abandoned but still useable
11000025	-16.8464	145.7283	Sub-Artesian monitoring	1977	Abandoned but still useable
11000029	-16.8608	145.7006	Water resources investigation	1976	Existing
11000030	-16.8518	145.7174	Water resources investigation	no data	Abandoned and destroyed
11000031	-16.8503	145.7291	Water resources investigation	1976	Abandoned but still useable
11000032	-16.8591	145.7288	Water resources investigation	1976	Abandoned but still useable
11000033	-16.862	145.7345	Water resources investigation	1976	Existing
11000034	-16.8564	145.7394	Water resources investigation	1977	Abandoned but still useable
11000039	-16.8689	145.7161	Water resources investigation	1977	Abandoned and destroyed
11000049	-16.8578	145.7269	Water resources investigation	1981	Existing
11000053	-16.8685	145.7158	Water resources investigation	1981	Existing
11000070	-16.8443	145.7241	Water resources investigation	1977	Abandoned and destroyed
11000156	-16.8503	145.7167	No data	2010	Existing

Table A1: Registered bore details.

Historical groundwater depth information for existing groundwater wells located within 2 km in the surroundings and adjacent to the Northern Sand Site that was available from the DNRM groundwater database is summarised in Table A2.

Borehole ID	Bore depth	Screened Interval	Screened formation	Stratigraphy	Aquifer	Standing Water Level Range	
	(m bgl)	(m bgl)	(m bgl)		type	*(m bgl)	*(m AHD)
45021	5.5	0.0 to 5.5	No data	No data	Shallow	2.4	No data
45028	6.0	0.0 to 6.1	Gravel and sand	Barron river alluvium	Shallow	3.0	No data
45032	6.1	1.8 to 6.1	Gravel and sand	Barron river alluvium	Shallow	3.4	No data
45041	7.6	0.0 to 7.6	No data	No data	Shallow	No data	No data
45042	7.6	0.0 to 7.6	No data	No data	Shallow	No data	No data
45043	7.6	0.0 to 7.6	No data	No data	Shallow	No data	No data
45457	6.5	5.5 to 6.5	Coarse sand	Barron river alluvium	Shallow	2.2	No data
72350	12.2	6.1 to12.2	Coarse sand	Barron river alluvium	Shallow	3.7	No data
72509	11.0	4.5 to 5.5 and 8.5 to 10.0	Mud/coarse sand	Barron river alluvium	Shallow	1.5	No data
109374	No data	No data	No data	No data	NA	No data	No data
139211	66.0	no data	Mud, sand and gravel	Barron river alluvium	Deep	No data	No data
11000024 A	74.0	62.0 to 74.0	Gravel	Quaternary sediment	Deep	1.2 to 4.3	1.0 to 4.1
11000024 B	No data	No data	No data	Quaternary sediment	NA	1.8 to 3.9	1.3 to 3.4
11000025	No data	24.0 to 36.0	Gravel	Quaternary sediment	Deep	1.0 to 1.8	0.2 to 1.0
11000029	30.0	24.0 to 30.0	Gravel	Quaternary sediment	Deep	4.0 to 6.2	0.4 to 2.5
11000030	No data	No data	No data	No data	NA	1.9 to 4.02	-0.8 to 1.4
11000031	85.5	4.0 to 13.0	Gravel	Quaternary sediment	Deep	0.5 to 2.9	-0.2 to 2.2
11000032	88.0	28.0 to 34.0	Gravel	Quaternary sediment	Deep	3.6 to 5.2	0.1 to 1.7
11000033	90.0	24.0 to 36.0	Gravel	Quaternary sediment	Deep	1.3 to 2.5	0.7 to 2.2
11000034	90.0	38.0 to 56.0	Gravel sand and clay	Quaternary sediment	Deep	1.7 to 2.5	1.7 to 2.5
11000039	72.0	30.0 to 42.0	Gravel	Quaternary sediment	Deep	3.0 to 4.2	0.5 to 1.2

Borehole ID	Bore depth	Screened Interval	Screened formation	Stratigraphy	Aquifer type	Standing Water Level Range	
	(m bgl)	(m bgl)	(m bgl)			*(m bgl)	*(m AHD)
11000049	36.0	25.9 to 27.9	Gravel	Quaternary sediment	Deep	3.2 to 4.4	0.0 to 1.1
11000053 A	42.0	30.1 to 32.1	Gravel	Quaternary sediment	Deep	2.4 to 4.4	0.4 to 2.5
11000053 B	42.0	8.2 to 10.2	Sandy clay and fine to coarse sand	Quaternary sediment	Shallow	1.5 to 4.3	0.5 to 3.3
11000070	73.0	23.0 to 35.0	Sand, gravel and clay	Quaternary sediment	Deep	1.4	no data
11000156	26.0	14.0 to 26.0	Sand, gravel and clay	Barron river alluvium	Deep	2.4 to 4.0	0.01 to 0.8

* Where data is not presented in a range, only a single data point exists.

APPENDIX B

Water quality data for registered groundwater bores

Water quality parameters for registered bores in the vicinity of the site are available from the Queensland Groundwater Database (GWDB). Bore reports in the database include field parameter measurements for pH and Electrical conductivity (EC), while other analytes are available in some instances where samples have been collected.

Cation and anion concentrations for each groundwater sample were converted to milliequivalents per litre (meq/L) and plotted as percentages of their respective totals in two triangles of the Piper diagram reported in Figure B1 which differentiates groundwater types based on the relative major ion composition.

Table B1 presents the pH, EC and water classification of the registered bores where information is available. Most of the registered bores are classified as a dominant sodium and chloride water types with a mix with sulphate.

Figure B1: Piper diagram for samples from the Queensland GWDB (DNRM, 2016) within 2 km of the Northern Sand site.

Registered Bore	pH range*	EC range (µS/cm)*	Salinity	Water type from piper diagram	
45021	No data	No data	NA		
45028	No data	No data	Potable water	NA	
45032	7.2	295	Neutral and freshwater	CI+S042-+HC03-	
45041	No data	No data	NA	NA	
45042	No data	No data	NA	NA	
45043	No data	No data	NA	NA	
45457	No data	No data	Potable water	NA	
72350	No data	No data	NA	NA	
72509	No data	313	Freshwater	NA	
109374	No data	No data	NA	NA	
139211	No data	6 000 to 7 500	Slightly brackish	NA	
11000024A	6.7 to 7.5	656 to 34 000	Slightly acidic/neutral and freshwater to highly brackish	CI+S04 ²⁻ +HC03 ⁻	
11000024B	No data	No data	NA	NA	
11000025	7.8	26 500	Neutral, highly brackish	Cl+ Na+ S04 ²	
11000029	6.3 to 7.6	128 to 1 251	Slightly acidic to neutral, freshwater	Cl+S0₄²-+HC0₃ ⁻ and Na+K, Ca+Mg	
11000030			Slightly acidic to neutral, freshwater		
11000031	6.7	17 500	Slightly acidic and brackish	Na+K, Ca+Mg	
11000032	6.7	3 800	Slightly acidic and slightly brackish	Cl+ Na+ S04 ²	
11000033	6.7 to 7.8	19 360 to 37 700	Slightly acidic to slightly alkaline and brackish to highly brackish	Cl+ Na+ S04 ²	
11000034	7.1	700	Neutral and freshwater	Na+K, Ca+Mg	
11000039	6.4 to 7.6	700 to 17 500	Slightly acidic to slightly alkaline and freshwater to brackish	Cl+S0₄²-+HC0₃ ⁻ and Na+K, Ca+Mg	
11000049	6.6 to 7.9	29 700 to 31 000	Slightly acidic to slightly alkaline and brackish to highly brackish	CI+S04 ²⁻ +HC03 ⁻	
11000053 A	6.3 to 7.5	360 to 4 190	Slightly acidic to neutral and freshwater to slightly brackish	CI+S04 ²⁻ +HC03 ⁻	
11000070	No data	No data	NA	NA	
11000156	7.1	9 650	Neutral and slightly brackish	CI+S04 ²⁻ +HC03 ⁻	

Table B1: pH, EC and water type classification at registered bores

APPENDIX C

Onsite Groundwater Quality Information

Figure B2: Piper diagram for samples from BH01, BH02, BH03 and GA04.

20 July 2016

Compiled by Dean Jones of Landline Consulting on request of Tom Hedley for Flanagan Consulting Group representing Ports North.

Northern Sands Lake and Bore Stats.

The first three charts are derived from regular monitoring of the Lake undertaken by Northern Sands using handheld multiparametric water quality metre calibrated by Landline Consulting.

Landline Consulting, 07 4091 6364

The next group of charts represent samples collected from Northern Sand site bores and lake. Samples are collected monthly and analysed by NATA approved facility. Most charts represent data collected over the last 24 months which is used for examination and interpretation for regular report. Additional historical data, dating back in most cases to 2005, can be provided upon request. However due to the changes in bore numbers over this period it may take some time to collate data.

Please note that Bore 3 (BH3) experiences regular exceedences across many parameters. However it's close proximity to the Barron is believed to be responsible for these irregularities and not related to the Lake.

Data for Flanagan Consulting Group **2016**

Data for Flanagan Consulting Group **2016**

Data for Flanagan Consulting Group **2016**

APPENDIX D

2016 Borehole and CPT Reports

REPORT OF BOREHOLE: BH1

CLIENT: FCG PROJECT: Revised EIA LOCATION: Northern Sands JOB NO: 1546223 COORDS: 363630.0 m E 8136179.0 m N MGA94 56 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 6.00 m SHEET: 1 OF 1 DRILL RIG: HV1 CONTRACTOR: LOGGED: DSS CHECKED: MSC

DATE: 20/9/16 DATE: 19/12/16

		Dri	lling		Sampling				Field Material Desc	riptio	on					_
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	P	IEZO	OMETE	R DETAILS	
			-			T										T
			-	-									-		— Stick up	
			0	0.20		+			TOPSOIL		vs					t
			-	0.20					Clayey SAND grey						Comont	
			-							м					50mm PVC	
			-	-											casing	
			1—	1.00					Sandy CLAY					X		
			-	-					grey							
			-	-			• • •			D					Bentonite	
			-	-				5								
			2				<u> </u>					* . *				.
			-	-			<u> </u>									
			-	-			•••••				Ve				Soud	
5			-	-			<u> </u>								Sand	
н			-	3.00			• • •									
AD			3—	0.00					SAND coarse grained, grey							
			-	-				}								
2			-	-				1								
8			-	-				1								
5			4 —	-				1		w						
			-	-]								
1			-					}			s				Factory Slotted 500 mm PVC	
			-	-				1							Screen	
			5—	-				1								
			-	-				1								
			-	-]								
			-	-]								
				1												
j P			-	-					END OF BOREHOLE @ 6.00 m GROUNDWATER NOT ENCOUNTERED							
			-	-												
	-			T	his report of borehole	e mu nlv	st be r	ead i	n conjunction with accompanying notes and abbreviations.	It has	s bee	n prepare	d foi	rials		
))				0.111	(enco	ountere	ed. A	s such it should not be relied upon for geotechnical purpose	es.					GAP gINT FN. F)10 RL:

REPORT OF BOREHOLE: BH2

CLIENT:FCGPROJECT:Revised EIALOCATION:Northern SandsJOB NO:1546223

COORDS: 364376.0 m E 8135443.0 m N MGA94 56 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 6.00 m SHEET: 1 OF 1 DRILL RIG: HV1 CONTRACTOR: LOGGED: DSS CHECKED: MSC

DATE: 20/9/16 DATE: 19/12/16

		Dril	lling		Sampling				Field Material Desc	riptio	on		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	PIEZOMETER	DETAILS
			-	-									— Stick up
				0.20					TOPSOIL Clayey SAND medium grained, grey	м	vs	-	— Cement — 50mm PVC casing
		2m∑	- - 2	2.00					Clayey SAND fine grained, grey				— Bentonite
ADH	L		- - 3—	-						w			— Sand
			- - 4 - -	-						м	S		Factory Slotted 500 mm PVC
			- 5 - -										Screen
·			6 	-			•		END OF BOREHOLE @ 6.00 m GROUNDWATER ENCOUNTERED @ 2.00 m DEPTH			<u>, , , , , , , , , , , , , , , , , , , </u>	
	1	L]	I	T envir	i his report of borehole onmental purposes or é	nly, v	st be re without ountere	ead ii t atte ed. A	n conjunction with accompanying notes and abbreviations. mpt to consider geotechnical properties or the geotechnical s such it should not be relied upon for geotechnical purpose	It has signi es.	s bee ficanc	n prepared for be of the materials	GAP gINT FN. F(F

(Golder							REPORT OF BOREHOLE: BH3						
CL	IENT	:	FCG					со	ORDS: 364302.0 m E 8135127.0 m N MGA94 56	:	SHEE DRILI	et: 1 of 1 L RIG: HV1		
PR		CT:	Revise	d EIA m Sands				SU	SURFACE RL: DATUM: AHD CONTRACTOR:					
JO	B NC):	154622	23	2			HO	LE DEPTH: 12.00 m CHECKED: MSC DATE: 19/1					
		Dri	lling		Sampling				Field Material Des	criptio	on			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	PIEZOMETER DETAILS		
			-									Stick up		
		Zm∑	0 2	0.20					TOPSOIL Clayey SAND grey Sandy CLAY medium plasticity, grey	M	vs	Cement		
			-					- - - - - -			_	- Bentonite -		
ADH	L		4 — - - 6 —	6.00				- - - - - - - - - - - - - - - - - - -	Clavey SAND	w	s	Sand		
			- - 8 - -	9.50					grey	М		Factory Slotted 500 mm PVC Screen		
	М			10.00				2	CLAY Sandy CLAY red	D	St			
									END OF BOREHOLE @ 12.00 m GROUNDWATER ENCOUNTERED @ 2.00 m DEPTH					
	This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for environmental purposes only, without attempt to consider geotechnical properties or the geotechnical significance of the materials encountered. As such it should not be relied upon for geotechnical purposes. GAP gINT FN. F01d RL3													

GAP 8_10.0 LIB.GLB Log GAP NON-CORED FULL PAGE 1546223 CONTAM NORTHERN SANDS.GPJ <<DrawingFilles> 20/01/2017 15:55 8:30.004 Datgel Tools

REPORT OF BOREHOLE: GA04

CLIENT:Flanagan Consulting GroupPROJECT:EIS Stage 1- Port DevelopmentLOCATION:Northern SandsJOB NO:1546223

COORDS: 364331.6 m E 8135689.9 m N MGA94 56 SURFACE RL: 3.58 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 6.00 m SHEET: 1 OF 1 DRILL RIG: Ezi Probe CONTRACTOR: LOGGED: JL CHECKED: MSC

DATE: 23/11/16 DATE: 19/12/16

		D	rilling		Sar	npling			Field Material Desc	riptic	n				
METHOD	PENETRATION	RESISTANCE WATER	DEPTH (metres)	DEP1 RL	SAMPI FIELD	LE OR TEST	RECOVERED GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY		PIEZOMETI	ER DETAILS	
				-									-	0.9mm Stick up	,
			0-	3.58					TOPSOIL: Sandy Silty CLAY high plasticity, brown, fine sand, with some roots <2mm	D					
				- 3.21			×	X	Sandy Silty CLAY high plasticity, brown						
				2.58			×	×	Sandy Silty CLAY high plasticity, pale brown, orange, fine to coarse grained sand, trace fine quartz gravel					 50mm UPVC class 18 Blank casing Cement/grout 	-
			2	-			× 	2. X		D - N	F				-
				- <u>2.46</u> - <u>1.12</u> - <u>2.70</u>	_			×	Silty SAND						
ΡΤ			3	0.78			× —		grained, subangular gravel Sandy Silty CLAY high plasticity, brown, grey, fine to coarse grained sand Silty SAND					Bentonite	-
		<		- <u>3.50</u> _0.08			× ×		fine to coarse grained, grey, brown, orange brown, with some fine quartz gravel SAND medium to coarse grained, orange brown, with some fine to medium quartz gravel						
gel Tools			4 -	_		× × × ×							50mm UPVC class 18, Screen, 1mm aparture size	-	
8.30.004 Dat				- 5.00			× × ×			w	L			 Gravel pack 	
20/01/2017 16:43			5	-1.42			× × × ×		SAND medium to coarse grained, grey, orange brown, with some silt, trace dark grey, fine to medium grained, shale gravel						-
ngFile>> 2			6	-			×××								
J < <drawi< td=""><td></td><td></td><td></td><td>2.42</td><td></td><td></td><td></td><td></td><td>END OF BOREHOLE @ 6.00 m</td><td></td><td></td><td></td><td></td><td></td><td></td></drawi<>				2.42					END OF BOREHOLE @ 6.00 m						
W-NE.GP				_											
AGAN S			7	_											-
223 FLAN				_											
GE 1546				-											
FULL PA			8	_											-
CORED				-											
P NON-(_											
Log GA			9	_											-
-IB.GLB				-				<u> </u>			Ļ				
SAP 8_10.01				h geo	I his report o /drogeologica technical prop	t borehole n al purposes perties or po	nust be r only, with tential c	ead i hout a ontan	n conjunction with accompanying notes and abbreviations. attempt to assess geotechnical properties or possible contain nination are for information only and do not necessarily indic of the properties stated.	it has minati ate th	ion. A	n prepai Any refe esence c	red for rence to or absence	GAP gINT FN. F	01d RI 3
									· ·					ſ	

	Difference LIENT: Flanagan Consulting Group ROJECT: Port Development ETS S1 DCATION: Northern Sands DB NO: 1546223							CO SUF INC HOI	REPORT (ORDS: MGA94 56 RFACE RL: DATUM: AHD LINATION: -90° LE DEPTH: 1.50 m	OF	B SHEE DRILI CON ⁻ LOGO CHEO	CREHOLE: GA05 ET: 1 OF 1 _ RIG: Eziprobe IRACTOR: Golder GED: JJP DATE: 28/1/16 CKED: MSC DATE: 19/12/10	6
ETHOD	ENETRATION ESISTANCE	ATER DI	EPTH betres)	DEPTH	SAMPLE OR FIELD TEST	ECOVERED	RAPHIC OG	SCS SYMBOL	Field Material Desc		ONSISTENCY U	STRUCTURE AND ADDITIONAL OBSERVATIONS	
W	R R	<u>×</u>	0.5 - 0.5	0.45		8		ML SM	TOPSOIL: Sandy SILT fine to medium, grey brown, with some rootlets and clay Silty SAND	<u>₹</u> ŭ	I St		_
ΡΤ	L	GWNE	- - - 1.0	1 20	GA05-DS1 0.60-0.90 m		× × × × × × × × × × × ×		tine grained, grey brown and grey, with some clay, (approx. 40% fines content)	м	MD		
			- - 1.5	-	GA05-DS2 1.20-1.50 m		×	CI	Silty CLAY grey, with trace red brown pockets, with some fine grained sand and organics END OF BOREHOLE @ 1.50 m		F		
				-					TARGET DEPTH GROUNDWATER ENCOUNTERED @ m DEPTH				
				-									
				-									
			3.0	-									
			3.5	-									
			4.0	-									
			- 4.5— -	-									
			5.0 —	T geot	his report of borehole his report of borehole	e mus	st be r	ead ii atten	n conjunction with accompanying notes and abbreviations. In to assess possible contamination. Any references to po	It has	s beer	n prepared for amination are for	

GAP 8_10.0LB.GLB_Log_GAP.CPTU PIEZO CONE 2_1546223.CPT DATA ONLY.GPU_<<DrawingFile>> 23/01/2017 14:19_8.30.004_Datget Tools

GAP 8_10.0 LIB.GLB Log GAP CPTU PIEZO CONE 2 1545223 CPT DATA ONLY.GPJ <<DrawingFile>> 23/01/2017 14:19 8.30.004 Datgel Tools

GAP 8_10.0 LIB.GLB Log GAP CPTU PIEZO CONE 2 1546223 CPT DATA ONLY.GPJ <<DrawingFile>> 23/01/2017 14:19 8.30.004 Datgel Tools

	Golder ssociates	USEI) ON	B	ME ⁻ BOREH		d of And	SO SO TES	IL D St f	esc Pit r	RIPT EPOI	ION RTS
	FILL					CLAY	(CL, C	I or CH)			
0000	GRAVEL (GP or G	W)				ORGA	NIC S	oils (C)L or (OH or P	t)	
	SAND (SP or SW)				· 0 ·	COBB	LES oi	BOULI	DERS			
× × × × × × × × ×	SILT (ML or MH)											
Combinatio	ons of these basic sy	mbols may be used	to indica	te	mixed mate	rials suc	h as s	andy cla	ay.			
CLASSIF Soil and R AS1726 – visual/tactil	ICATION AND IN Rock is classified an 1993, (Amdt1 – 19 e methods.	FERRED STRATION nd described in Rep 94 and Amdt2 – 199	GRAPH orts of E 04), Appe	Y Boi end	reholes and dix A. The	Test F materia	Pits usi Il prop	ng the erties a	prefe re ass	rred me sessed	ethod giv in the fi	/en in eld by
	Particle S	bize	Plasticity Properties									
Major Divi	ision Sub Division	Particle Size	4	0 -								
E	BOULDERS	> 200 mm								СН		
	COBBLES	63 to 200 mm	3	0	- Low	CL		CI Medium	Hig	h plasticity clay		
	Coarse	20 to 63 mm	(%)		2011	clay		plasticity clay				
GRAVEL	Medium	6.0 to 20 mm	ude)	_ ا					1			
	Fine	2.0 to 6.0 mm	ity –	۰Ţ	-			/		OH o High liqi	r MH uid limit	
	Coarse	0.6 to 2.0 mm	astic	_ 1						si	it	
SAND	Medium	0.2 to 0.6 mm	Ľ ¹	υ	-		$ \land$	OL or ML Low liquid	i			
	Fine	0.075 to 0.2 mm			CL/ML Clay/S	ilt juid limit silt		limit silt				
	SILT	0.002 to 0.075 mm		0 +	10	20	20	40			70	
	< 0.002 mm		U	0 10	20	Liqu	40 Iid Limit	(%)	00	10	00	

MOISTURE CONDITION

Symbol	
D	

Μ

Term Description

Sands and gravels are free flowing. Clays & Silts may be brittle or friable and powdery. Dry Moist Soils are darker than in the dry condition & may feel cool. Sands and gravels tend to cohere. W Wet Soils exude free water. Sands and gravels tend to cohere.

AS1726 - 1993

CONSIST	ENCY AND DE	NSITY	_	AS17	26 - 1993						
Symbol	Term	Undrained Shear Strength		Symbol	Term	Density Index %	SPT "N" #				
VS	Very Soft	0 to 12 kPa		VL	Very Loose	Less than 15	0 to 4				
S	S Soft 12 to 25 kPa L Loose 15 to 35 4 to 10										
F	F Firm 25 to 50 kPa MD Medium Dense 35 to 65 10 to 30										
St Stiff 50 to 100 kPa D Dense 65 to							30 to 50				
VSt	Very Stiff	100 to 200 kPa		VD	Very Dense	Above 85	Above 50				
Н	Hard	Above 200 kPa									
In the absence of test results, consistency and density may be assessed from correlations with the observed behaviour of the material. # SPT correlations are not stated in AS1726 – 1993, and may be subject to corrections for overburden pressure and equipment type.											

G Go Asso	lder ociates		EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT REPORTS						
DRILLING/E	XCAVATION METHO	D							
AS*	Auger Screwing	RD	Rotary blade o	r drag bit	NQ	Diamond Core - 47 mm			
AD*	Auger Drilling	RT	Rotary Tricone	bit	NMLC	Diamond Core - 52 mm			
*V	V-Bit	RAB	Rotary Air Blas	st	HQ	Diamond Core - 63 mm			
*T	TC-Bit, e.g. ADT	RC	Reverse Circul	ation	HMLC	Diamond Core – 63mm			
HA	Hand Auger	PT	Push Tube		BH	Tractor Mounted Backhoe			
ADH	Hollow Auger	СТ	Cable Tool Rig	I	EX	Tracked Hydraulic Excavator			
DTC	Diatube Coring	JET	Jetting		EE	Existing Excavation			
WB	Washbore or Bailer	NDD	Non-destructiv	e digging	HAND	Excavated by Hand Methods			
PENETRATI			noonible with litt	la offart from t	the equipment u	and			
L	Low resistance. Ra				ine equipment u	seu.			
м	Medium resistance	 Excavation/popertration/excap 	ssible at an acc	eptable rate w	vith moderate ef	fort from the equipment used.			
	effort from the equip	ment.		penetration is					
R	Refusal or Practica digging implement o	I Refusal. No f r machine.	urther progress	possible withc	out the risk of da	mage or unacceptable wear to the			
These asses excavation of	sments are subjective r drilling tools, and the	and are dependent experience of t	dent on many fa he operator.	ctors includinę	g the equipment	power, weight, condition of			
WATER									
¥	Water level	at date shown		\triangleleft	Partial water los	s			
\triangleright	Water inflow	/			Complete water	loss			
GROUNDWA OBSERVED	ATER NOT	The observation surface seepage	on of groundwate ge or cave in of t	er, whether pi the borehole/t	resent or not, w est pit.	as not possible due to drilling water,			
GROUNDWA ENCOUNTE	ATER NOT RED	The borehole/t less permeable for a longer pe	est pit was dry s e strata. Inflow riod.	soon after exc may have bee	cavation. Howe	ver, groundwater could be present in d the borehole/test pit been left open			
SAMPLING	AND TESTING								
SPT	Standar	d Penetration T	est to AS1289.6	3.1-2004					
4711 N-1	8 4711-	- Blows per 150	mm N – Blow	s ner 300mm	nenetration follo	owing 150mm seating			
30/80mm	Where u	practical refusal	occurs, the blow	s and penetra	ation for that inte	erval are reported			
RW	Penetra	tion occurred ur	nder the rod weig	ght only					
HW	Penetra	tion occurred ur	nder the hamme	r and rod weig	ght only				
HB	Hamme	r double bounci	ng on anvil						
DS	Disturbe	ed sample							
BDS	Bulk dis	turbed sample							
G	Gas Sa	mple							
W	Water S	ample	war agation note	d					
FP EV	Field ye	ne shear test e	ver section note	u orrected shea	r strength (s. – r	peak value, s. – residual value)			
PID	Photoio	nisation Detecto	or reading in por	1	i su chgui (sv – p				
PM	Pressur	emeter test ove	r section noted						
PP	Pocket	penetrometer te	st expressed as	instrument re	ading in kPa				
U63	Thin wa	lled tube sample	e - number indic	ates nominal s	sample diamete	r in millimetres			
WPT	Water p	ressure tests	ion toot						
CPT	Dynami Static o	c cone penetration	ton lesi						
CPTu	Static c	one penetration	test with pore pr	essure (u) me	easurement				
Ranking of V	Visually Observable	Contamination	and Odour (for	specific soil o	contamination as	ssessment projects)			
R = 0	No visible evi	dence of contar	nination	R = A	No non-natura	al odours identified			
R = 1	Slight eviden	ce of visible con	tamination	R = B	Slight non-nat	tural odours identified			
R = 2	Visible contai	mination		R = C	Moderate non	-natural odours identified			
R = 3	Significant vis	sible contaminat	ion	R = D	Strong non-na	atural odours identified			
		00		Dooblog (0/)		D - Book Quality Designation (0/)			
1 CK = 10 tr	ai Core Recovery (%)	SC	r = Solid Core	Recovery (%)	RC	L = ROCK Quality Designation (%)			
$=\frac{\text{Length of}}{1 \text{ constitution}}$	$\frac{1}{10000000000000000000000000000000000$	$= \sum$ Leng	th of cylindrical c	ore recovered	$\times 100 = \sum$	Axial lengths of core > 100 mm × 100			
Lengtr			Length of core	run		Length of core run			

APPENDIX E

Water Quality Laboratory Results and Field Data.

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Darcy Simpson	Manager	Jon Dicker
Client	GOLDER ASSOCIATES PTY LTD	Laboratory	SGS Cairns Environmental
Address	PO BOX 5823 216 DRAPER ST CAIRNS QLD 4870	Address	Unit 2, 58 Comport St Portsmith QLD 4870
Telephone	07 4054 8200	Telephone	+61 07 4035 5111
Facsimile	07 4054 8201	Facsimile	+61 07 4035 5122
Email	dasimpson@golder.com.au	Email	AU.Environmental.Cairns@sgs.com
Project	1546223 Northern Sands	SGS Reference	CE123168 R0
Order Number	(Not specified)	Date Received	29 Sep 2016
Samples	3	Date Reported	11 Oct 2016

COMMENTS .

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(3146)

SIGNATORIES _

Anthony Nilsson Operations Manager

Maristela Ganzan Metals Team Leader

Jon Dicker Manager Northern QLD

Horsmond

Leanne Orsmond Quality & Microbiology Coordinator

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 2 58 Comport St

St Portsmith QLD 4870

Australia t +61 7 4035 5111 f +61 7 4035 5122

www.sgs.com.au

CE123168 R0

	Si	ample Number Sample Matrix Sample Date Sample Name	CE123168.001 Water 29 Sep 2016 BH01	CE123168.002 Water 29 Sep 2016 BH02	CE123168.003 Water 29 Sep 2016 BH03
Parameter	Units	LOR			
pH in water Method: AN101 Tested: 29/9/2016					
pH**	pH Units	0.1	7.0	7.7	7.9
Conductivity and TDS by Calculation - Water Method: AN106	Tested: 2	9/9/2016			
Conductivity @ 25 C	µS/cm	5	230	11000	24000
Total Dissolved Solids (by calculation)	mg/L	10	140	6300	15000
Alkalinity Method: AN135 Tested: 29/9/2016					
Total Alkalinity as CaCO3	mg/L	5	41	1000	2300
Bicarbonate Alkalinity as CaCO3	mg/L	5	41	1000	2300
Carbonate Alkalinity as CaCO3	mg/L	5	<5	<5	<5
Hydroxide Alkalinity as CaCO3	mg/L	5	<5	<5	<5
Acidity and Free CO2 Method: AN140 Tested: 29/9/2016					
Acidity to pH 8.3	mg CaCO3/L	5	58	200	250
Chloride by Discrete Analyser in Water Method: AN274 Test	ted: 5/10/20	16			
Chloride, Cl	mg/L	1	36	3000	7900
Metals in Water (Dissolved) by ICPOES Method: AN320/AN32	1 Tested:	10/10/2016			

Aluminium, Al 0.005 <0.005 0.012 0.021 mg/L Iron, Fe 0.005 0.048 0.31 0.16 mg/L Sulphur as Sulphate, SO4 mg/L 0.5 28 14 7.4

	Sam Sa Sa Sa	ple Number mple Matrix ample Date umple Name	CE123168.001 Water 29 Sep 2016 BH01	CE123168.002 Water 29 Sep 2016 BH02	CE123168.003 Water 29 Sep 2016 BH03
Parameter	Units	LOR			
Metals in Water (Total) by ICPOES Method: AN022/AN320	Tested: 5/10/2	016			
Total Iron	mg/L	0.005	10	470	1.8

QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Acidity and Free CO2 Method: ME-(AU)-[ENV]AN140

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Acidity to pH 8.3	LB039825	mg CaCO3/L	5	<5	0%	NA

Alkalinity Method: ME-(AU)-[ENV]AN135

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Total Alkalinity as CaCO3	LB039828	mg/L	5	<5	3 - 11%	103%
Bicarbonate Alkalinity as CaCO3	LB039828	mg/L	5	<5		
Carbonate Alkalinity as CaCO3	LB039828	mg/L	5	<5		
Hydroxide Alkalinity as CaCO3	LB039828	mg/L	5	<5		

Chloride by Discrete Analyser in Water Method: ME-(AU)-[ENV]AN274

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Chloride, Cl	LB039925	mg/L	1	<1	1 - 3%	107%

Conductivity and TDS by Calculation - Water Method: ME-(AU)-[ENV]AN106

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Conductivity @ 25 C	LB039828	µS/cm	5	<5	0 - 1%	99%
Total Dissolved Solids (by calculation)	LB039828	mg/L	10	<10	1%	NA

Metals in Water (Total) by ICPOES Method: ME-(AU)-[ENV]AN022/AN320

Parameter	QC	Units	LOR	LCS
	Reference			%Recovery
Total Iron	LB039917	mg/L	0.005	102%

Metals in Water (Dissolved) by ICPOES Method: ME-(AU)-[ENV]AN320/AN321

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Aluminium, Al	LB040030	mg/L	0.005	<0.005	3%	99%
Iron, Fe	LB040030	mg/L	0.005	<0.005	0%	105%
Sulphur as Sulphate, SO4	LB040030	mg/L	0.5	<0.5	3%	NA

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : *the absolute difference of the two results divided by the average of the two results as a percentage*. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

pH in water	Method: ME-(AU)-[ENV]AN101						
Parameter		QC	Units	LOR	MB	DUP %RPD	LCS
		Reference					%Recovery
nH**		LB039828	nH Units	0.1	5.5	0%	NA

METHOD SUMMARY

METHOD	
METHOD	METHODOLOGY SUMMARY
AN022/AN320	Total (acid soluble) Metals by ICP-OES: Samples are digested in nitric or nitric and hydrochloric acids prior to analysis for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA 2510 B.
AN135	Alkalinity (and forms of) by Titration: The sample is titrated with standard acid to pH 8.3 (P titre) and pH 4.5 (T titre) and permanent and/or total alkalinity calculated. The results are expressed as equivalents of calcium carbonate or recalculated as bicarbonate, carbonate and hydroxide. Reference APHA 2320. Internal Reference AN135
AN140	Acidity by Titration: The water sample is titrated with sodium hydroxide to designated pH end point. In a sample containing only carbon dioxide, bicarbonates and carbonates, titration to pH 8.3 at 25°C corresponds to stoichiometric neutralisation of carbonic acid to bicarbonate. Method reference APHA 2310 B.
AN274	Chloride by Aquakem DA: Chloride reacts with mercuric thiocyanate forming a mercuric chloride complex. In the presence of ferric iron, highly coloured ferric thiocyanate is formed which is proportional to the chloride concentration. Reference APHA 4500Cl-
AN320	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.
AN320/AN321	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320/AN321	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.
Calculation	Free and Total Carbon Dioxide may be calculated using alkalinity forms only when the samples TDS is <500mg/L. If TDS is >500mg/L free or total carbon dioxide cannot be reported . APHA4500CO2 D.

FOOTNOTES _

IS	Insufficient sample for analysis.
LNR	Sample listed, but not received.
*	NATA accreditation does not cover the
	performance of this service.
**	Indicative data, theoretical holding time exceeded.

LOR Limit of Reporting

- ↑↓ Raised or Lowered Limit of Reporting
- QFH QC result is above the upper tolerance QFL QC result is below the lower tolerance
 - The sample was not analysed for this analyte
- NVL Not Validated
- Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Darcy Simpson	Manager	Jon Dicker
Client	GOLDER ASSOCIATES PTY LTD	Laboratory	SGS Cairns Environmental
Address	PO BOX 5823 216 DRAPER ST CAIRNS QLD 4870	Address	Unit 2, 58 Comport St Portsmith QLD 4870
elephone	07 4054 8200	Telephone	+61 07 4035 5111
acsimile	07 4054 8201	Facsimile	+61 07 4035 5122
mail	dasimpson@golder.com.au	Email	AU.Environmental.Cairns@sgs.com
Project	1546223 Northern Sands	SGS Reference	CE124163 R0
Order Number	(Not specified)	Date Received	23 Nov 2016
amples	3	Date Reported	02 Dec 2016

COMMENTS .

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(3146)

For determination of soluble metals, filtered sample was not received so samples were laboratory filtered on receipt. This may give soluble metals results that do not represent the concentrations present at the time of sampling.

SIGNATORIES _

Anthony Nilsson Operations Manager

Maristela Ganzan Metals Team Leader

Jon Dicker Manager Northern QLD

Horsmond

Leanne Orsmond Quality & Microbiology Coordinator

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 2 58 Comport St

St Portsmith QLD 4870

Australia t +61 7 4035 5111 f +61 7 4035 5122

www.sgs.com.au Member of the SGS Group

CE124163 R0

	Sai	nple Number	CE124163.001	CE124163.002	CE124163.003
	S	ample Matrix	Water	Water	Water
		Sample Date	22 Nov 2016	22 Nov 2016	22 Nov 2016
	S	Sample Name	BH01	BH02	BH03
Parameter	Units	LOR			
pH in water Method: AN101 Tested: 23/11/2016					
рН**	pH Units	0.1	6.8	7.9	7.9
Conductivity and TDS by Calculation - Water Method: AN106	Tested: 23	/11/2016	050	0000	04000
Conductivity @ 25 C	µs/cm	5	200	9300	24000
Total Dissolved Solids (by calculation)	mg/L	10	150	5600	14000
Alkalinity Method: AN135 Tested: 23/11/2016					
Total Alkalinity as CaCO3	mg/L	5	46	1100	2200
Bicarbonate Alkalinity as CaCO3	mg/L	5	46	1100	2200
Carbonate Alkalinity as CaCO3	mg/L	5	<5	<5	<5
Hydroxide Alkalinity as CaCO3	mg/L	5	<5	<5	<5
Chloride by Discrete Analyser in Water Method: AN274 Test	ed: 25/11/20	16			

Chloride, Cl	mg/L	1	36	2500	7800

Metals in Water (Dissolved) by ICPOES Method: AN320/AN321 Tested: 28/11/2016

Calcium, Ca	mg/L	0.1	6.5	65	200
Magnesium, Mg	mg/L	0.1	9.6	160	580
Potassium, K	mg/L	0.1	3.0	100	270
Sodium, Na	mg/L	0.5	26	1600	4800
Sulphur as Sulphate, SO4	mg/L	0.5	23	11	13
Total Hardness by Calculation	mg CaCO3/L	1	56	810	2900

Calculation of Anion-Cation Balance (SAR Calc) Method: AN121 Tested: 2/12/2016

Sum of Cation Milliequivalents*	meq/L	-	2.32	90.2	272
Sum of Anion Milliequivalents*	meq/L	-	2.43	93.5	264
Anion-Cation Balance	%	-100	-2.4	-1.8	1.5

QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Alkalinity Method: ME-(AU)-[ENV]AN135

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Total Alkalinity as CaCO3	LB041247	mg/L	5	<5	0 - 5%	107 - 115%
Bicarbonate Alkalinity as CaCO3	LB041247	mg/L	5	<5		
Carbonate Alkalinity as CaCO3	LB041247	mg/L	5	<5		
Hydroxide Alkalinity as CaCO3	LB041247	mg/L	5	<5		

Chloride by Discrete Analyser in Water Method: ME-(AU)-[ENV]AN274

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Chloride, Cl	LB041309	mg/L	1	<1	0 - 1%	104%

Conductivity and TDS by Calculation - Water Method: ME-(AU)-[ENV]AN106

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Conductivity @ 25 C	LB041247	µS/cm	5	<5	0 - 1%	98 - 101%
Total Dissolved Solids (by calculation)	LB041247	mg/L	10	<10	0 - 1%	NA

Metals in Water (Dissolved) by ICPOES Method: ME-(AU)-[ENV]AN320/AN321

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Calcium, Ca	LB041329	mg/L	0.1	<0.1		103%	111%
Magnesium, Mg	LB041329	mg/L	0.1	<0.1		100%	106%
Potassium, K	LB041329	mg/L	0.1	<0.1		103%	113%
Sodium, Na	LB041329	mg/L	0.5	<0.5	0%	96%	100%
Sulphur as Sulphate, SO4	LB041329	mg/L	0.5	<0.5	0%	NA	
Total Hardness by Calculation	LB041329	mg CaCO3/L	1	<1			

pH in water Method: ME-(AU)-[ENV]AN101

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
pH**	LB041247	pH Units	0.1	5.6 - 6.2	0 - 4%	NA

METHOD SUMMARY

in 21110 B	METHODOLOGI SUMMART
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA 2510 B.
AN121	This method is used to calculation the balance of major Anions and Cations in water samples and converts major ion concentration to milliequivalents and then summed. Anions sum and Cation sum is calculated as a difference and expressed as a percentage.
AN135	Alkalinity (and forms of) by Titration: The sample is titrated with standard acid to pH 8.3 (P titre) and pH 4.5 (T titre) and permanent and/or total alkalinity calculated. The results are expressed as equivalents of calcium carbonate or recalculated as bicarbonate, carbonate and hydroxide. Reference APHA 2320. Internal Reference AN135
AN274	Chloride by Aquakem DA: Chloride reacts with mercuric thiocyanate forming a mercuric chloride complex. In the presence of ferric iron, highly coloured ferric thiocyanate is formed which is proportional to the chloride concentration. Reference APHA 4500CI-
AN320/AN321	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320/AN321	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.
Calculation	Free and Total Carbon Dioxide may be calculated using alkalinity forms only when the samples TDS is <500mg/L. If TDS is >500mg/L free or total carbon dioxide cannot be reported. APHA4500CO2 D.

FOOTNOTES _

Samples analysed as received.

IS	Insufficient sample for analysis.
LNR	Sample listed, but not received.
*	NATA accreditation does not cover the
	performance of this service.
**	Indicative data, theoretical holding time exceeded.

LOR Limit of Reporting

- ↑↓ Raised or Lowered Limit of ReportingQFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance
 - The sample was not analysed for this analyte
- NVL Not Validated

Solid samples expressed on a dry weight basis. Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing

the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAIL	.8
Contact	Darcy Simpson	Manager	Jon Dicker
Client	GOLDER ASSOCIATES PTY LTD	Laboratory	SGS Cairns Environmental
Address	PO BOX 5823 216 DRAPER ST CAIRNS QLD 4870	Address	Unit 2, 58 Comport St Portsmith QLD 4870
Telephone	07 4054 8200	Telephone	+61 07 4035 5111
Facsimile	07 4054 8201	Facsimile	+61 07 4035 5122
Email	dasimpson@golder.com.au	Email	AU.Environmental.Cairns@sgs.com
Project	1546223 Northern Sands	SGS Reference	CE124163 R0
Order Number	(Not specified)	Date Received	23 Nov 2016
Samples	3	Date Reported	02 Dec 2016

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Cairns Environmental laboratory).

SAMPLE SUMMARY

SGS Australia Pty Ltd ABN 44 000 964 278

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Alkalinity							Method: N	/IE-(AU)-[ENV]AN135
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH01	CE124163.001	LB041247	22 Nov 2016	23 Nov 2016	23 Nov 2016	23 Nov 2016	23 Nov 2016	23 Nov 2016
BH02	CE124163.002	LB041247	22 Nov 2016	23 Nov 2016	23 Nov 2016	23 Nov 2016	23 Nov 2016	23 Nov 2016
BH03	CE124163.003	LB041247	22 Nov 2016	23 Nov 2016	23 Nov 2016	23 Nov 2016	23 Nov 2016	23 Nov 2016
Chloride by Discrete Analys	er in Water						Method: N	IE-(AU)-[ENV]AN274
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH01	CE124163.001	LB041309	22 Nov 2016	23 Nov 2016	20 Dec 2016	25 Nov 2016	20 Dec 2016	28 Nov 2016
BH02	CE124163.002	LB041309	22 Nov 2016	23 Nov 2016	20 Dec 2016	25 Nov 2016	20 Dec 2016	28 Nov 2016
BH03	CE124163.003	LB041309	22 Nov 2016	23 Nov 2016	20 Dec 2016	25 Nov 2016	20 Dec 2016	28 Nov 2016
Conductivity and TDS by Ca	lculation - Water						Method: N	/IE-(AU)-[ENV]AN106
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH01	CE124163.001	LB041247	22 Nov 2016	23 Nov 2016	20 Dec 2016	23 Nov 2016	20 Dec 2016	23 Nov 2016
BH02	CE124163.002	LB041247	22 Nov 2016	23 Nov 2016	20 Dec 2016	23 Nov 2016	20 Dec 2016	23 Nov 2016
BH03	CE124163.003	LB041247	22 Nov 2016	23 Nov 2016	20 Dec 2016	23 Nov 2016	20 Dec 2016	23 Nov 2016
Metals in Water (Dissolved)	by ICPOES						Method: ME-(AU)	-[ENV]AN320/AN321
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH01	CE124163.001	LB041329	22 Nov 2016	23 Nov 2016	21 May 2017	28 Nov 2016	21 May 2017	28 Nov 2016
BH02	CE124163.002	LB041329	22 Nov 2016	23 Nov 2016	21 May 2017	28 Nov 2016	21 May 2017	28 Nov 2016
BH03	CE124163.003	LB041329	22 Nov 2016	23 Nov 2016	21 May 2017	28 Nov 2016	21 May 2017	28 Nov 2016
pH in water							Method: N	/IE-(AU)-[ENV]AN101
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH01	CE124163.001	LB041247	22 Nov 2016	23 Nov 2016	23 Nov 2016	23 Nov 2016	23 Nov 2016	23 Nov 2016
BH02	CE124163.002	LB041247	22 Nov 2016	23 Nov 2016	23 Nov 2016	23 Nov 2016	23 Nov 2016	23 Nov 2016
BH03	CE124163.003	LB041247	22 Nov 2016	23 Nov 2016	23 Nov 2016	23 Nov 2016	23 Nov 2016	23 Nov 2016

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

METHOD BLANKS

CE124163 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

pH**

pH**

Method: ME-(AU)-[ENV]AN135

Alkalinity			Metho	od: ME-(AU)-[ENV]AN135
Sample Number	Parameter	Units	LOR	Result
LB041247.001	Total Alkalinity as CaCO3	mg/L	5	<5
LB041247.028	Total Alkalinity as CaCO3	mg/L	5	<5
LB041247.055	Total Alkalinity as CaCO3	mg/L	5	<5
LB041247.082	Total Alkalinity as CaCO3	mg/L	5	<5
Chloride by Discrete Analyser in Water			Metho	od: ME-(AU)-[ENV]AN274
Sample Number	Parameter	Units	LOR	Result
LB041309.001	Chloride, Cl	mg/L	1	<1
LB041309.024	Chloride, Cl	mg/L	1	<1

Conductivity and TDS by Calculation - Water

Conductivity and TDS by Calculation - Water			Metho	od: ME-(AU)-[ENV]AN106
Sample Number	Parameter	Units	LOR	Result
LB041247.001	Conductivity @ 25 C	µS/cm	5	<5
	Parameter Conductivity @ 25 C Total Dissolved Solids (by calculation) Conductivity @ 25 C Total Dissolved Solids (by calculation) Conductivity @ 25 C Total Dissolved Solids (by calculation) Conductivity @ 25 C Total Dissolved Solids (by calculation) Conductivity @ 25 C Total Dissolved Solids (by calculation) Conductivity @ 25 C Total Dissolved Solids (by calculation) Canductivity @ 25 C Total Dissolved Solids (by calculation) Canductivity @ 25 C Total Dissolved Solids (by calculation) Canductivity @ 25 C Total Dissolved Solids (by calculation) Canductivity @ 25 C Total Dissolved Solids (by calculation) Vertain Dissolved Solids (by calculation) Vertain Dissolved Solids (by calculation) Vertain Dissolved Solids (by calculation) Parameter Parameter pH** pH**	mg/L	10	<10
LB041247.028	Conductivity @ 25 C	µS/cm	5	<5
	Total Dissolved Solids (by calculation)	mg/L	10	<10
LB041247.055	Conductivity @ 25 C	μS/cm	5	<5
	Total Dissolved Solids (by calculation)	mg/L	10	<10
LB041247.082	Conductivity @ 25 C	µS/cm	5	<5
	Total Dissolved Solids (by calculation)	mg/L	10	<10
Metals in Water (Dissolved) by ICPOES			Method: ME-	(AU)-[ENV]AN320/AN321
Sample Number	Parameter	Units	LOR	Result
LB041329.001	Calcium, Ca	mg/L	0.1	<0.1
	Magnesium, Mg	mg/L	0.1	<0.1
	Potassium, K	mg/L	0.1	<0.1
	Sodium, Na	mg/L	0.5	<0.5
pH in water			Metho	od: ME-(AU)-[ENV]AN101
Sample Number	Parameter	Units	LOR	Result
LB041247.001	pH**	pH Units	0.1	5.6
LB041247.028	pH**	pH Units	0.1	6.2

pH Units

pH Units

0.1

0.1

5.8

5.8

LB041247.055

LB041247.082

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Alkalinity

Method: ME-(AU)-[ENV]AN135

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
CE124106.001	LB041247.123	Total Alkalinity as CaCO3	mg/L	5	81	80	21	2
	LB041247.132	Total Alkalinity as CaCO3	mg/L	5	81	80	21	2
CE124111.001	LB041247.125	Total Alkalinity as CaCO3	mg/L	5	380	380	16	0
CE124122.001	LB041247.126	Total Alkalinity as CaCO3	mg/L	5	5	6	105	5
CE124125.001	LB041247.127	Total Alkalinity as CaCO3	mg/L	5	200	200	17	1
CE124133.001	LB041247.128	Total Alkalinity as CaCO3	mg/L	5	120	130	19	1
CE124141.001	LB041247.129	Total Alkalinity as CaCO3	mg/L	5	20	17	42	15
CE124142.001	LB041247.130	Total Alkalinity as CaCO3	mg/L	5	240	240	17	0
CE124145.001	LB041247.134	Total Alkalinity as CaCO3	mg/L	5	510	500	16	1
CE124145.011	LB041247.135	Total Alkalinity as CaCO3	mg/L	5	830	850	16	2
CE124146.001	LB041247.137	Total Alkalinity as CaCO3	mg/L	5	14	14	50	1
CE124163.001	LB041247.140	Total Alkalinity as CaCO3	mg/L	5	46	46	26	0
- Chloride by Discrete Analyser in Water Method: ME-(AU)-[ENV]AN:							ENVJAN274	

Parameter LOR Original Duplicate Criteria % RPD % Original Duplicate Units CE124143.001 LB041309.005 Chloride, Cl mg/L 1 33 32 18 1 CE124145.006 LB041309.016 450 Chloride, Cl 450 15 0 mg/L 1 CE124146.005 LB041309.030 Chloride, Cl mg/L 1 17 17 21 0

Conductivity and TDS by Calculation - Water

Conductivity and	TDS by Calculation - Water					Meth	od: ME-(AU)-	ENVJAN106
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
CE124106.001	LB041247.123	Conductivity @ 25 C	µS/cm	5	150	150	16	1
		Total Dissolved Solids (by calculation)	mg/L	10	88	88	17	1
	LB041247.132	Conductivity @ 25 C	µS/cm	5	150	150	16	1
		Total Dissolved Solids (by calculation)	mg/L	10	88	88	17	1
CE124111.001	LB041247.125	Conductivity @ 25 C	µS/cm	5	1000	1100	15	1
CE124125.001	LB041247.127	Conductivity @ 25 C	µS/cm	5	770	780	15	0
CE124133.001	LB041247.128	Conductivity @ 25 C	µS/cm	5	530	530	15	0
		Total Dissolved Solids (by calculation)	mg/L	10	320	320	16	0
CE124141.001	LB041247.129	Conductivity @ 25 C	µS/cm	5	11.944000244	11.473461151	1 20	1
CE124142.001	LB041247.130	Conductivity @ 25 C	µS/cm	5	680	680	15	1
	LB041247.131	Conductivity @ 25 C	µS/cm	5	680	680	Criteria % 16 17 16 17 16 17 15 15 15 15 15 15 15 16 11 20 15 15 16 17 19 16 16 16 2-(AU)-[ENV]AN 16 17	1
CE124146.001	LB041247.144	Conductivity @ 25 C	µS/cm	5	89	88	17	1
		Total Dissolved Solids (by calculation)	mg/L	10	53	53	Criteria % 16 17 16 17 15 15 15 15 16 1 20 15 15 15 15 15 16 1 20 15 15 16 1 20 15 5 5 15 16 15 15 15 15 15 15 15 15 15 15	1
CE124163.001	LB041247.147	Conductivity @ 25 C	µS/cm	5	250	250	16	1
		Total Dissolved Solids (by calculation)	mg/L	10	150	150	16	1
Metals in Water (I	Dissolved) by ICPOES					Method: ME	-(AU)-[ENV]A	N320/AN321
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
CE124171.001	LB041329.014	Sodium, Na	mg/L	0.5	35	35	16	0
		Sulphur as Sulphate, SO4	mg/L	0.5	28	28	17	0

nH in water

pH in water						Meth	od: ME-(AU)-	[ENV]AN101
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
CE124106.001	LB041247.123	pH**	pH Units	0.1	7.7	7.8	16	0
	LB041247.132	pH**	pH Units	0.1	7.7	7.8	16	0
CE124111.001	LB041247.125	pH**	pH Units	0.1	7.4	7.3	16	2
	LB041247.134	pH**	pH Units	0.1	7.4	7.3	16	2
CE124122.001	LB041247.126	pH**	pH Units	0.1	6.4	6.6	17	3
	LB041247.135	pH**	pH Units	0.1	6.4	6.6	17	3
CE124125.001	LB041247.127	pH**	pH Units	0.1	7.9	7.9	16	0
	LB041247.136	pH**	pH Units	0.1	7.9	7.9	16	0
CE124133.001	LB041247.128	pH**	pH Units	0.1	8.0	8.1	16	1
	LB041247.137	pH**	pH Units	0.1	8.0	8.1	16	1
CE124141.001	LB041247.129	pH**	pH Units	0.1	6.8	6.6	16	2
	LB041247.138	pH**	pH Units	0.1	6.8	6.6	16	2
CE124142.001	LB041247.130	pH**	pH Units	0.1	7.5	7.5	16	0
	LB041247.131	pH**	pH Units	0.1	7.5	7.8	16	4
	LB041247.139	pH**	pH Units	0.1	7.5	7.5	16	0
	LB041247.140	pH**	pH Units	0.1	7.5	7.8	16	4
CE124145.001	LB041247.141	pH**	pH Units	0.1	7.9	7.9	16	0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

pH in water (continu	ied)					Meth	nod: ME-(AU)-	ENVJAN101
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
CE124145.011	LB041247.142	pH**	pH Units	0.1	7.9	8.0	16	1
CE124146.001	LB041247.144	pH**	pH Units	0.1	7.1	7.0	16	1
CE124157.001	LB041247.145	pH**	pH Units	0.1	6.8	6.9	16	2
CE124157.011	LB041247.146	pH**	pH Units	0.1	7.0	7.0	16	0
CE124163.001	LB041247.147	pH**	pH Units	0.1	6.8	6.8	16	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Alkalinity					N	lethod: ME-(A	U)-[ENV]AN135
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB041247.002	Total Alkalinity as CaCO3	mg/L	5	64	59.5	80 - 120	107
LB041247.003	Total Alkalinity as CaCO3	mg/L	5	240	229	80 - 120	104
LB041247.029	Total Alkalinity as CaCO3	mg/L	5	69	59.5	80 - 120	115
LB041247.030	Total Alkalinity as CaCO3	mg/L	5	240	229	80 - 120	103
LB041247.056	Total Alkalinity as CaCO3	mg/L	5	67	59.5	80 - 120	113
LB041247.057	Total Alkalinity as CaCO3	mg/L	5	240	229	80 - 120	104
LB041247.083	Total Alkalinity as CaCO3	mg/L	5	65	59.5	80 - 120	108
LB041247.084	Total Alkalinity as CaCO3	mg/L	5	240	229	80 - 120	103
Chloride by Discrete Analyser in Water					N	lethod: ME-(A	U)-[ENV]AN274
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB041309.002	Chloride, Cl	mg/L	1	130	125	80 - 120	103
LB041309.003	Chloride, Cl	mg/L	1	10	10	80 - 120	104
LB041309.025	Chloride, Cl	mg/L	1	130	125	80 - 120	103
LB041309.026	Chloride, Cl	mg/L	1	10	10	80 - 120	104
Conductivity and TDS by Calculation -	Nater				N	lethod: ME-(A	U)-[ENV]AN106
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB041247.004	Conductivity @ 25 C	µS/cm	5	300	303	90 - 110	98
LB041247.005	Conductivity @ 25 C	µS/cm	5	59000	58670	90 - 110	100
LB041247.031	Conductivity @ 25 C	µS/cm	5	290	303	90 - 110	97
LB041247.032	Conductivity @ 25 C	µS/cm	5	59000	58670	90 - 110	100
LB041247.058	Conductivity @ 25 C	µS/cm	5	310	303	90 - 110	102
LB041247.059	Conductivity @ 25 C	µS/cm	5	59000	58670	90 - 110	100
LB041247.085	Conductivity @ 25 C	µS/cm	5	310	303	90 - 110	101
LB041247.086	Conductivity @ 25 C	µS/cm	5	59000	58670	90 - 110	100
Metals in Water (Dissolved) by ICPOE	8				Method:	ME-(AU)-[EN	V]AN320/AN321
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB041329.002	Calcium, Ca	mg/L	0.1	21	20	80 - 120	103
	Magnesium, Mg	mg/L	0.1	20	20	80 - 120	100
	Potassium, K	mg/L	0.1	21	20	80 - 120	103
	Sodium, Na	mg/L	0.5	19	20	80 - 120	96
pH in water					N	lethod: ME-(A	U)-[ENV]AN101
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB041247.006	pH**	pH Units	0.1	7.4	7.415	98 - 102	100
LB041247.033	pH**	pH Units	0.1	7.4	7.415	98 - 102	100
LB041247.060	pH**	pH Units	0.1	7.4	7.415	98 - 102	100

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Metals in Water (Dissolved) by ICPOES Method: ME-(E-(AU)-[ENV]AN320/AN321			
QC Sample	Sample Number	Parameter	Unit	s LOR	Result	Original	Spike	Recovery%
CE124146.001	LB041329.004	Calcium, Ca	mg/L	0.1	57	1.8	50	111
		Magnesium, Mg	mg/L	0.1	55	1.6	50	106
		Potassium, K	mg/L	0.1	58	1.3	50	113
		Sodium, Na	mg/L	0.5	62	13	50	100

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ⁽²⁾ RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ^④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: - (9) Low surrogate recovery due to the sample emulsifying during extraction.
- 10 Legionella Test Result <10 cfu/mL Control Strategy (1) Maintain Monthly Program or at least 3-monthly monitoring. Maintain water treatment program (11) Legionella Test Result <1000 cfu/mL Control Strategy (2) Investigate problem. Review water treatment program. Take necessary remedial action (including immediate online disinfection) and undertake control strategy 3. (12) Control Strategy (3) Retest water within 3 to 7 days of plant operation. If not detected, continue to retest water every 3 to 7 days until 2 consecutive samples return readings of 'not detected', then repeat control strategy (1). If detected at <100 cfu/mL, repeat control strategy (2) If detected at >100 cfu/mL, investigate the problem and review water treatment program, and immediately carry out online decontamination. If detected at >1000 cfu/mL, undertake control strategy (4). ദ്ര Legionella Test Result >1000 cfu/mL Control Strategy (4) Investigate problem. Review water treatment program. Take necessary remedial action (including immediate online decontamination) and undertake control strategy (5). (14) Control Strategy (5) Retest water within 3 to 7 days of plant operation. If not detected, continue to retest water every 3 to 7 days until 2 consecutive samples return readings of 'not detected', then repeat control strategy (1). If detected at <100 cfu/mL, repeat control strategy (1) If detected at >100 and <1000 cfu/mL, investigate the problem and review water treatment program, immediately carry out online decontamination.
 - and repeat control strategy (5).
 - If detected at >1000 cfu/mL, investigate and review the water treatment program,
 - immediately carry out system decontamination
- and repeat control strategy (5). BHPC - Test Result < 100 000 cfu/mL Control Strategy (1) Maintain Monthly Program. Maintain water treatment program.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

16 HPC Test Result > 100 000 cfu/mL <5 000 000 cfu/mL Control Strategy (2) Investigate problem. Review water treatment program. Take necessary remedial action (including immediate online disinfection) and undertake control strategy 3. 17 Control Strategy (3) Retest water within 3 to 7 days of plant operation. If the test result is <100 000 cfu/mL, repeat control strategy (1) If the test result is >100 000 cfu/mL but <5 000 000 cfu/mL, undertake control strategy (2). If the test result is >5 000 000 cfu/mL, undertake control strategy (4). (18) HPC Test Result >5 000 000 cfu/mL Control Strategy (4) Investigate problem. Review water treatment program. Take necessary remedial action (including immediate online disinfection) and undertake control strategy (5). (19) Control Strategy (5) Retest water within 3 to 7 days of plant operation. If the test result is <100 000 cfu/mL, repeat control strategy (1) If the test result is >100 000 cfu/mL but <5 000 000 cfu/mL, undertake control strategy (4). If the test result is >5 000 000 cfu/mL, investigate the problem. review the water treatment program, and carry out immediate online decontamination. 20 Enterococci - Median result should not exceed 230 cfu/100mL (maximum number in any one sample: 450-700 cfu/100mL) Sourced from NHMRC (National Health and Medical Research Council) & NWQMS (National Water Quality Management Strategy) -Australian Guidelines for Recreational Use of Water. Version Oct 2000.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

[†] Refer to Analytical Report comments for further information.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Darcy Simpson	Manager	Jon Dicker
Client	GOLDER ASSOCIATES PTY LTD	Laboratory	SGS Cairns Environmental
Address	PO BOX 5823 216 DRAPER ST CAIRNS QLD 4870	Address	Unit 2, 58 Comport St Portsmith QLD 4870
Telephone	07 4054 8200	Telephone	+61 07 4035 5111
Facsimile	07 4054 8201	Facsimile	+61 07 4035 5122
Email	dasimpson@golder.com.au	Email	AU.Environmental.Cairns@sgs.com
Project	1546223 Northern Sands	SGS Reference	CE124214 R0
Order Number	(Not specified)	Date Received	25 Nov 2016
Samples	1	Date Reported	07 Dec 2016

COMMENTS .

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(3146)

SIGNATORIES _

Anthony Nilsson Operations Manager

Maristela Ganzan Metals Team Leader

Jon Dicker Manager Northern QLD

Horsmond

Leanne Orsmond Quality & Microbiology Coordinator

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 2 58 Comport St

St Portsmith QLD 4870

Australia t +61 7 4035 5111 f +61 7 4035 5122

www.sgs.com.au

ANALYTICAL REPORT

	Sam Sa Sa Sa	CE124214.001 Water 25 Nov 2016 GA04	
Parameter	Units	LOR	
pH in water Method: AN101 Tested: 25/11/2016			
pH**	pH Units	0.1	6.5

Conductivity and TDS by Calculation - Water Method: AN106 Tested: 25/11/2016

Conductivity @ 25 C	µS/cm	5	160
Total Dissolved Solids (by calculation)	mg/L	10	93

Alkalinity Method: AN135 Tested: 25/11/2016

Total Alkalinity as CaCO3	mg/L	5	50
Bicarbonate Alkalinity as CaCO3	mg/L	5	50
Carbonate Alkalinity as CaCO3	mg/L	5	<5
Hydroxide Alkalinity as CaCO3	mg/L	5	<5

Chloride by Discrete Analyser in Water Method: AN274 Tested: 30/11/2016

Chloride, Cl	mg/L	1	29

Metals in Water (Dissolved) by ICPOES Method: AN320/AN321 Tested: 5/12/2016

Calcium, Ca	mg/L	0.1	8.0
Magnesium, Mg	mg/L	0.1	3.2
Potassium, K	mg/L	0.1	0.8
Sodium, Na	mg/L	0.5	17
Sulphur as Sulphate, SO4	mg/L	0.5	23
Total Hardness by Calculation	mg CaCO3/L	1	33

ANALYTICAL REPORT

	San Sa Sa S	Sample Number CE124214.001 Sample Matrix Water Sample Date 25 Nov 2016 Sample Name GA04			
Parameter	Units	LOR			
Calculation of Anion-Cation Balance (SAR Calc) Method: AN1	21 Tested:	6/12/2016			
Sum of Cation Milliequivalents*	meq/L	-	1.43		
Sum of Anion Milliequivalents*	meq/L	-	2.27		
Anion-Cation Balance	%	-100	-23		

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Alkalinity Method: ME-(AU)-[ENV]AN135

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Total Alkalinity as CaCO3	LB041324	mg/L	5	<5	110 - 119%
Bicarbonate Alkalinity as CaCO3	LB041324	mg/L	5	<5	
Carbonate Alkalinity as CaCO3	LB041324	mg/L	5	<5	
Hydroxide Alkalinity as CaCO3	LB041324	mg/L	5	<5	

Chloride by Discrete Analyser in Water Method: ME-(AU)-[ENV]AN274

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Chloride, Cl	LB041417	mg/L	1	<1	0 - 2%	104%

Conductivity and TDS by Calculation - Water Method: ME-(AU)-[ENV]AN106

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Conductivity @ 25 C	LB041324	µS/cm	5	<5	99 - 100%
Total Dissolved Solids (by calculation)	LB041324	mg/L	10	<10	NA

Metals in Water (Dissolved) by ICPOES Method: ME-(AU)-[ENV]AN320/AN321

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Calcium, Ca	LB041532	mg/L	0.1	<0.1		103%	NVL
Magnesium, Mg	LB041532	mg/L	0.1	<0.1		101%	NVL
Potassium, K	LB041532	mg/L	0.1	<0.1		107%	NVL
Sodium, Na	LB041532	mg/L	0.5	<0.5		97%	NVL
Sulphur as Sulphate, SO4	LB041532	mg/L	0.5	<0.5	NVL	NA	
Total Hardness by Calculation	LB041532	mg CaCO3/L	1	<1			

pH in water Method: ME-(AU)-[ENV]AN101

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
рН**	LB041324	pH Units	0.1	5.6 - 5.7	100%

METHOD SUMMARY

	METHODOLOGY SUMMARY
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA 2510 B.
AN121	This method is used to calculation the balance of major Anions and Cations in water samples and converts major ion concentration to milliequivalents and then summed. Anions sum and Cation sum is calculated as a difference and expressed as a percentage.
AN135	Alkalinity (and forms of) by Titration: The sample is titrated with standard acid to pH 8.3 (P titre) and pH 4.5 (T titre) and permanent and/or total alkalinity calculated. The results are expressed as equivalents of calcium carbonate or recalculated as bicarbonate, carbonate and hydroxide. Reference APHA 2320. Internal Reference AN135
AN274	Chloride by Aquakem DA: Chloride reacts with mercuric thiocyanate forming a mercuric chloride complex. In the presence of ferric iron, highly coloured ferric thiocyanate is formed which is proportional to the chloride concentration. Reference APHA 4500CI-
AN320/AN321	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320/AN321	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.
Calculation	Free and Total Carbon Dioxide may be calculated using alkalinity forms only when the samples TDS is <500mg/L. If TDS is >500mg/L free or total carbon dioxide cannot be reported. APHA4500CO2 D.

FOOTNOTES _

IS	Insufficient sample for analysis.
LNR	Sample listed, but not received.
*	NATA accreditation does not cover the
	performance of this service.
**	Indicative data, theoretical holding time exceeded.

LOR Limit of Reporting

- ↑↓ Raised or Lowered Limit of Reporting
- QFH QC result is above the upper tolerance QFL QC result is below the lower tolerance
 - The sample was not analysed for this analyte
- NVL Not Validated

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAIL	.8
Contact	Darcy Simpson	Manager	Jon Dicker
Client	GOLDER ASSOCIATES PTY LTD	Laboratory	SGS Cairns Environmental
Address	PO BOX 5823 216 DRAPER ST CAIRNS QLD 4870	Address	Unit 2, 58 Comport St Portsmith QLD 4870
Telephone	07 4054 8200	Telephone	+61 07 4035 5111
Facsimile	07 4054 8201	Facsimile	+61 07 4035 5122
Email	dasimpson@golder.com.au	Email	AU.Environmental.Cairns@sgs.com
Project	1546223 Northern Sands	SGS Reference	CE124214 R0
Order Number	(Not specified)	Date Received	25 Nov 2016
Samples	1	Date Reported	07 Dec 2016

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Cairns Environmental laboratory).

- SAMPLE SUMMARY				
Samples clearly labelled	Yes	Complete documentation received	Yes	
Sample container provider	SGS	Sample cooling method	Ice	
Samples received in correct containers	Yes	Sample counts by matrix	1 water	
Date documentation received	25/11/2016	Type of documentation received	COC	
Number of eskies/boxes received	1	Samples received in good order	Yes	
Samples received without headspace	Yes	Sample temperature upon receipt	Chilled	
Sufficient sample for analysis	Yes	Turnaround time requested	standard	
· · ·		·		

SGS Australia Pty Ltd ABN 44 000 964 278

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Allentinthe							Matheadal	
Aikaimity							Metriod: 1	ME-(AO)-[EIAV]AIA135
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
GA04	CE124214.001	LB041324	25 Nov 2016	25 Nov 2016	26 Nov 2016	25 Nov 2016	26 Nov 2016	25 Nov 2016
Chloride by Discrete Analy	yser in Water						Method:	ME-(AU)-[ENV]AN274
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
GA04	CE124214.001	LB041417	25 Nov 2016	25 Nov 2016	23 Dec 2016	30 Nov 2016	23 Dec 2016	01 Dec 2016
Conductivity and TDS by	Calculation - Water						Method: I	ME-(AU)-[ENV]AN106
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
GA04	CE124214.001	LB041324	25 Nov 2016	25 Nov 2016	23 Dec 2016	25 Nov 2016	23 Dec 2016	25 Nov 2016
Metals in Water (Dissolve	d) by ICPOES						Method: ME-(AU)-[ENV]AN320/AN321
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
GA04	CE124214.001	LB041532	25 Nov 2016	25 Nov 2016	24 May 2017	05 Dec 2016	24 May 2017	06 Dec 2016

Method: ME-(AU)-[ENV]AN101

pH in water					Method:	ME-(AU)-[ENV]AN101		
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
GA04	CE124214.001	LB041324	25 Nov 2016	25 Nov 2016	26 Nov 2016	25 Nov 2016	26 Nov 2016	25 Nov 2016

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

METHOD BLANKS

CE124214 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Method: ME-(AU)-[ENV]AN135

Alkalinity			Meth	od: ME-(AU)-[ENV]AN135
Sample Number	Parameter	Units	LOR	Result
LB041324.001	Total Alkalinity as CaCO3	mg/L	5	<5
LB041324.028	Total Alkalinity as CaCO3	mg/L	5	<5

Chloride by Discrete Analyser in Water			Meth	od: ME-(AU)-[ENV]AN274
Sample Number	Parameter	Units	LOR	Result
LB041417.001	Chloride, Cl	mg/L	1	<1
LB041417.024	Chloride, Cl	mg/L	1	<1
LB041417.047	Chloride, Cl	mg/L	1	<1
LB041417.070	Chloride, Cl	mg/L	1	<1
Conductivity and TDS by Calculation - Water			Meth	od: ME-(AU)-[ENV]AN106
Sample Number	Parameter	Units	LOR	Result
LB041324.001	Conductivity @ 25 C	µS/cm	5	<5
	Total Dissolved Solids (by calculation)	mg/L	10	<10
LB041324.028	Conductivity @ 25 C	µS/cm	5	<5
	Total Dissolved Solids (by calculation)	mg/L	10	<10
Metals in Water (Dissolved) by ICPOES			Method: ME-	-(AU)-[ENV]AN320/AN321
Sample Number	Parameter	Units	LOR	Result
LB041532.001	Calcium, Ca	mg/L	0.1	<0.1
	Magnesium, Mg	mg/L	0.1	<0.1
	Potassium, K	mg/L	0.1	<0.1
	Sodium, Na	mg/L	0.5	<0.5
pH in water			Meth	od: ME-(AU)-[ENV]AN101
Sample Number	Parameter	Units	LOR	Result
LB041324.001	pH**	pH Units	0.1	5.7
LB041324.028	pH**	pH Units	0.1	5.6

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Chloride by Discret	e Analyser in Water					Meth	od: ME-(AU)-	[ENV]AN274
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
CE124193.001	LB041417.005	Chloride, Cl	mg/L	1	590	590	15	1
CE124202.010	LB041417.016	Chloride, Cl	mg/L	1	167.414	168.798	16	1
CE124202.030	LB041417.041	Chloride, Cl	mg/L	1	173.93	169.787	16	2
CE124202.040	LB041417.055	Chloride, Cl	mg/L	1	731.413	722.563	15	1
CE124241.002	LB041417.066	Chloride, Cl	mg/L	1	16974.816	16908.926	15	0
CE124241.012	LB041417.080	Chloride, Cl	mg/L	1	544.711	536.859	15	1
CE124242.001	LB041417.091	Chloride, Cl	mg/L	1	210	210	15	0
Metals in Water (D	issolved) by ICPOES					Method: ME	-(AU)-[ENV]A	N320/AN321
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
CE124298.006	LB041532.014	Sulphur as Sulphate, SO4	mg/L	0.5	44.9664	45.0432	16	0
CE124298.009	LB041532.018	Sulphur as Sulphate, SO4	mg/L	0.5	0.2559888	0.2457522	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Alkalinity					N	Nethod: ME-(A	U)-[ENV]AN135
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB041324.002	Total Alkalinity as CaCO3	mg/L	5	71	59.5	80 - 120	119
LB041324.003	Total Alkalinity as CaCO3	mg/L	5	230	229	80 - 120	102
LB041324.029	Total Alkalinity as CaCO3	mg/L	5	66	59.5	80 - 120	110
LB041324.030	Total Alkalinity as CaCO3	mg/L	5	230	229	80 - 120	102
Chloride by Discrete Analyser in Water					N	/lethod: ME-(A	U)-[ENV]AN274
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB041417.002	Chloride, Cl	mg/L	1	130	125	80 - 120	104
LB041417.003	Chloride, Cl	mg/L	1	10	10	80 - 120	104
LB041417.025	Chloride, Cl	mg/L	1	130	125	80 - 120	104
LB041417.026	Chloride, Cl	mg/L	1	10	10	80 - 120	104
LB041417.048	Chloride, Cl	mg/L	1	130	125	80 - 120	104
LB041417.049	Chloride, Cl	mg/L	1	10	10	80 - 120	104
LB041417.071	Chloride, Cl	mg/L	1	130	125	80 - 120	104
LB041417.072	Chloride, Cl	mg/L	1	10	10	80 - 120	104
Conductivity and TDS by Calculation -	Water				N	/lethod: ME-(A	U)-[ENV]AN106
Conductivity and TDS by Calculation - Sample Number	Water Parameter	Units	LOR	Result	N Expected	<mark>/lethod: ME-(A</mark> Criteria %	NU)-[ENV]AN106 Recovery %
Conductivity and TDS by Calculation - Sample Number LB041324.004	Water Parameter Conductivity @ 25 C	Units µS/cm	LOR 5	Result 310	K Expected 303	<mark>/lethod: ME-(A</mark> Criteria % 90 - 110	NU)-[ENV]AN106 Recovery % 102
Conductivity and TDS by Calculation - Sample Number LB041324.004 LB041324.005	Water Parameter Conductivity @ 25 C Conductivity @ 25 C	Units µS/cm µS/cm	LOR 5 5	Result 310 58000	K Expected 303 58670	Aethod: ME-(A Criteria % 90 - 110 90 - 110	U)-[ENV]AN106 Recovery % 102 100
Conductivity and TDS by Calculation - Sample Number LB041324.004 LB041324.005 LB041324.031	Water Parameter Conductivity @ 25 C Conductivity @ 25 C Conductivity @ 25 C	Units μS/cm μS/cm μS/cm	LOR 5 5 5	Result 310 58000 310	Expected 303 58670 303	Aethod: ME-(A Criteria % 90 - 110 90 - 110 90 - 110	U)-[ENV]AN106 Recovery % 102 100 102
Conductivity and TDS by Calculation - Sample Number LB041324.004 LB041324.005 LB041324.005 LB041324.031 LB041324.032	Water Parameter Conductivity @ 25 C	Units μS/cm μS/cm μS/cm μS/cm	LOR 5 5 5 5 5	Result 310 58000 310 58000	Expected 303 58670 303 58670	Aethod: ME-(A Criteria % 90 - 110 90 - 110 90 - 110 90 - 110	U)-[ENV]AN106 Recovery % 102 100 102 99
Conductivity and TDS by Calculation - Sample Number LB041324.004 LB041324.005 LB041324.031 LB041324.032 Metals in Water (Dissolved) by ICPOE	Water Parameter Conductivity @ 25 C Conductivity @ 25 C Conductivity @ 25 C Conductivity @ 25 C S	Units µS/cm µS/cm µS/cm	LOR 5 5 5 5 5	Result 310 58000 310 58000	Expected 303 58670 303 58670 Method:	Aethod: ME-(A Criteria % 90 - 110 90 - 110 90 - 110 90 - 110 ME-(AU)-[EN	U)-[ENV]AN106 Recovery % 102 100 102 99 V]AN320/AN321
Conductivity and TDS by Calculation - Sample Number LB041324.004 LB041324.005 LB041324.031 LB041324.032 Metals in Water (Dissolved) by ICPOE Sample Number	Water Parameter Conductivity @ 25 C Conductivity @ 25 C Conductivity @ 25 C Conductivity @ 25 C S Parameter	Units µS/cm µS/cm µS/cm µS/cm Units	LOR 5 5 5 5 LOR	Result 310 58000 310 58000 Result	Expected 303 58670 303 58670 Method: Expected	Aethod: ME-(A Criteria % 90 - 110 90 - 110 90 - 110 90 - 110 ME-(AU)-[EN Criteria %	U)-[ENV]AN106 Recovery % 102 100 102 99 V]AN320/AN321 Recovery %
Conductivity and TDS by Calculation - Sample Number LB041324.004 LB041324.005 LB041324.031 LB041324.032 Metals in Water (Dissolved) by ICPOE Sample Number LB041532.002	Water Parameter Conductivity @ 25 C Conductivity @ 25 C Conductivity @ 25 C Conductivity @ 25 C S Parameter Calcium, Ca	Units µS/cm µS/cm µS/cm Units mg/L	LOR 5 5 5 5 LOR 0.1	Result 310 58000 310 58000 310 58000	Expected 303 58670 303 58670 303 58670 Method: Expected 20	Aethod: ME-(A Criteria % 90 - 110 90 - 110 90 - 110 90 - 110 ME-(AU)-[EN Criteria % 80 - 120	U)-[ENV]AN106 Recovery % 102 100 102 99 V]AN320/AN321 Recovery % 103
Conductivity and TDS by Calculation - Sample Number LB041324.004 LB041324.005 LB041324.031 LB041324.032 Metals in Water (Dissolved) by ICPOE Sample Number LB041532.002	Water Parameter Conductivity @ 25 C Conductivity @ 25 C Conductivity @ 25 C Conductivity @ 25 C S Parameter Calcium, Ca Magnesium, Mg	Units μS/cm μS/cm μS/cm Units mg/L mg/L	LOR 5 5 5 5 5 LOR 0.1 0.1	Result 310 58000 310 58000 310 58000	Expected 303 58670 303 58670 Method: Expected 20 20	Aethod: ME-(A Criteria % 90 - 110 90 - 110 90 - 110 90 - 110 ME-(AU)-[EN] Criteria % 80 - 120 80 - 120	U)-[ENV]AN106 Recovery % 102 100 102 99 V]AN320/AN321 Recovery % 103 101
Conductivity and TDS by Calculation - Sample Number LB041324.004 LB041324.005 LB041324.031 LB041324.032 Metals in Water (Dissolved) by ICPOE Sample Number LB041532.002	Water Parameter Conductivity @ 25 C S Parameter Calcium, Ca Magnesium, Mg Potassium, K	Units μS/cm μS/cm μS/cm Units mg/L mg/L mg/L	LOR 5 5 5 5 5 0.1 0.1 0.1 0.1	Result 310 58000 310 58000 310 58000 310 58000 21 20 21	Expected 303 58670 303 58670 Method: 20 20 20 20 20	Aethod: ME-(A Criteria % 90 - 110 90 - 110 90 - 110 90 - 110 ME-(AU)-[ENN Criteria % 80 - 120 80 - 120 80 - 120	U)-[ENV]AN106 Recovery % 102 100 102 99 V]AN320/AN321 Recovery % 103 101 107
Conductivity and TDS by Calculation - Sample Number LB041324.004 LB041324.005 LB041324.031 LB041324.032 Metals in Water (Dissolved) by ICPOE Sample Number LB041532.002	Water Parameter Conductivity @ 25 C S Parameter Calcium, Ca Magnesium, Mg Potassium, K Sodium, Na	Units μS/cm μS/cm μS/cm gs/cm mg/c mg/L mg/L mg/L	LOR 5 5 5 5 0.1 0.1 0.1 0.1 0.5	Result 310 58000 310 58000 310 58000 310 58000 310 58000 310 58000 310 58000 21 20 21 19	Expected 303 58670 303 58670 Method: 20	Aethod: ME-(A Criteria % 90 - 110 90 - 110 90 - 110 90 - 110 ME-(AU)-[ENN Criteria % 80 - 120 80 - 120 80 - 120 80 - 120	KU)-[ENV]AN106 Recovery % 102 100 102 99 VJAN320/AN321 Recovery % 103 101 107 97
Conductivity and TDS by Calculation - Sample Number LB041324.004 LB041324.005 LB041324.031 LB041324.032 Metals in Water (Dissolved) by ICPOE Sample Number LB041532.002 PH in water	Water Parameter Conductivity @ 25 C Conductivity @ 25 C Conductivity @ 25 C Conductivity @ 25 C S Parameter Calcium, Ca Magnesium, Mg Potassium, K Sodium, Na	Units μS/cm μS/cm μS/cm g/cm mg/cm mg/L mg/L mg/L mg/L	LOR 5 5 5 5 0.1 0.1 0.1 0.1 0.5	Result 310 58000 310 58000 21 20 21 19	Expected 303 58670 303 58670 Method: Expected 20 20 20 20 20 20 20 20 20	Aethod: ME-(A Criteria % 90 - 110 90 - 110 90 - 110 90 - 110 ME-(AU)-[EN] Criteria % 80 - 120 80 - 120 80 - 120 80 - 120 40thod: ME-(A	U)-[ENV]AN106 Recovery % 102 100 102 99 VJAN320/AN321 Recovery % 103 101 107 97 VJ-[ENV]AN101
Conductivity and TDS by Calculation - Sample Number LB041324.004 LB041324.005 LB041324.031 LB041324.032 Metals in Water (Dissolved) by ICPOE Sample Number LB041532.002 PH in water Sample Number	Water Parameter Conductivity @ 25 C Conductivity @ 25 C Conductivity @ 25 C Conductivity @ 25 C S Parameter Calcium, Ca Magnesium, Mg Potassium, K Sodium, Na Parameter	Units µS/cm µS/cm µS/cm Units mg/L mg/L mg/L Mg/L Units	LOR 5 5 5 5 0.1 0.1 0.1 0.1 0.1 0.5	Result 310 58000 310 58000 21 20 21 19 Result	Expected 303 58670 303 58670 Method: Expected 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20	Aethod: ME-(A Criteria % 90 - 110 90 - 110 90 - 110 90 - 110 90 - 110 ME-(AU)-[EN] Criteria % 80 - 120 80 - 120 80 - 120 80 - 120 Aethod: ME-(A Criteria %	U)-[ENV]AN106 Recovery % 102 100 102 99 VJAN320/AN321 Recovery % 103 101 107 97 VJ-[ENV]AN101 Recovery %
Conductivity and TDS by Calculation - Sample Number LB041324.004 LB041324.005 LB041324.031 LB041324.032 Metals in Water (Dissolved) by ICPOE Sample Number LB041532.002 PH in water Sample Number LB041324.006	Water Parameter Conductivity @ 25 C Conductivity @ 25 C Conductivity @ 25 C Conductivity @ 25 C S Parameter Calcium, Ca Magnesium, Mg Potassium, K Sodium, Na	Units µS/cm µS/cm µS/cm Units mg/L mg/L mg/L mg/L Mg/L Mg/L Mg/L	LOR 5 5 5	Result 310 58000 310 58000 21 20 21 19 Result 7.4	Expected 303 58670 303 58670 Method: Expected 20	Aethod: ME-(A Criteria % 90 - 110 90 - 110 90 - 110 90 - 110 ME-(AU)-[EN] Criteria % 80 - 120 80 - 120 80 - 120 Aethod: ME-(A Criteria % 98 - 102	U)-[ENV]AN106 Recovery % 102 100 102 99 VJAN320/AN321 Recovery % 103 101 107 97 U)-[ENV]AN101 Recovery % 100

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Metals in Water ((Dissolved) by ICPOES					Method: M	E-(AU)-[ENV]AN320/AN321
QC Sample	Sample Number	Parameter	Units	s LOR	Result	Original	Spike	Recovery%
CE124214.001	LB041532.004	Calcium, Ca	mg/L	0.1	59	8.0	50	103
		Magnesium, Mg	mg/L	0.1	52	3.2	50	98
		Potassium, K	mg/L	0.1	54	0.8	50	106
		Sodium, Na	mg/L	0.5	63	17	50	93

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ⁽²⁾ RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ^④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: - (9) Low surrogate recovery due to the sample emulsifying during extraction.
- 10 Legionella Test Result <10 cfu/mL Control Strategy (1) Maintain Monthly Program or at least 3-monthly monitoring. Maintain water treatment program (11) Legionella Test Result <1000 cfu/mL Control Strategy (2) Investigate problem. Review water treatment program. Take necessary remedial action (including immediate online disinfection) and undertake control strategy 3. (12) Control Strategy (3) Retest water within 3 to 7 days of plant operation. If not detected, continue to retest water every 3 to 7 days until 2 consecutive samples return readings of 'not detected', then repeat control strategy (1). If detected at <100 cfu/mL, repeat control strategy (2) If detected at >100 cfu/mL, investigate the problem and review water treatment program, and immediately carry out online decontamination. If detected at >1000 cfu/mL, undertake control strategy (4). ദ്ര Legionella Test Result >1000 cfu/mL Control Strategy (4) Investigate problem. Review water treatment program. Take necessary remedial action (including immediate online decontamination) and undertake control strategy (5). (14) Control Strategy (5) Retest water within 3 to 7 days of plant operation. If not detected, continue to retest water every 3 to 7 days until 2 consecutive samples return readings of 'not detected', then repeat control strategy (1). If detected at <100 cfu/mL, repeat control strategy (1) If detected at >100 and <1000 cfu/mL, investigate the problem and review water treatment program, immediately carry out online decontamination.
 - and repeat control strategy (5).
 - If detected at >1000 cfu/mL, investigate and review the water treatment program,
 - immediately carry out system decontamination and repeat control strategy (5).
- B HPC Test Result < 100 000 cfu/mL Control Strategy (1) Maintain Monthly Program. Maintain water treatment program.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

16 HPC Test Result > 100 000 cfu/mL <5 000 000 cfu/mL Control Strategy (2) Investigate problem. Review water treatment program. Take necessary remedial action (including immediate online disinfection) and undertake control strategy 3. 17 Control Strategy (3) Retest water within 3 to 7 days of plant operation. If the test result is <100 000 cfu/mL, repeat control strategy (1) If the test result is >100 000 cfu/mL but <5 000 000 cfu/mL, undertake control strategy (2). If the test result is >5 000 000 cfu/mL, undertake control strategy (4). (18) HPC Test Result >5 000 000 cfu/mL Control Strategy (4) Investigate problem. Review water treatment program. Take necessary remedial action (including immediate online disinfection) and undertake control strategy (5). (19) Control Strategy (5) Retest water within 3 to 7 days of plant operation. If the test result is <100 000 cfu/mL, repeat control strategy (1) If the test result is >100 000 cfu/mL but <5 000 000 cfu/mL, undertake control strategy (4). If the test result is >5 000 000 cfu/mL, investigate the problem. review the water treatment program, and carry out immediate online decontamination. 20 Enterococci - Median result should not exceed 230 cfu/100mL (maximum number in any one sample: 450-700 cfu/100mL) Sourced from NHMRC (National Health and Medical Research Council) & NWQMS (National Water Quality Management Strategy) -Australian Guidelines for Recreational Use of Water. Version Oct 2000.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

[†] Refer to Analytical Report comments for further information.

GROUNDWATER SAMPLING RECORD FORM FOR THREE WELL VOLUME METHOD

Golder ociates **PROJECT INFORMATION Project Number:** Date Client: Sampled By: Wattern Sand project Site Location: GROUNDWATER WELL DATA 3.087 - 3x2-66 13:23 Information from file BORE ID Surveyed reference point 6x3= Note? dites Depth of well (from log) m Diameter of well (inc filter pack) (mm) Height of filter pack (m) Standard reference point is top of PVC standpipe Information recorded on site mbRP - metres below top of reference point Diameter of standpipe (mm) man Standpipe stick up (m) Time Interface probe used? YES / NO Depth to water (mbRP) mor Depth to product (mbRP) Total depth of well (mbRP) m 0-500 Depth to water (mbRP) Thickness of sediment on base of well (m) Thickness of product (m) Height of water in standpipe (m) X Well volume (L) Water column above filter pack, well volume wihtin 50mm standpipe is 2 litres/m Estimation of Standing Well Volumes for 50 mm diameter standpipes, for height of water column within filter pack Well diameter (standpipe plus filter pack) 100mm 115mm 120mm 125mm 150mm 200mm Litres per lineal meter of water in bore 3.7 4.5 4.8 5.1 6.7 10.8 **PURGING RECORD** Time Volume Conductivity (mS Temp Redox pH Dissolved Appearance Purged (L) or (LS) (colour, turbidity, odour, etc) Potential Oxygen (mg/L) (°C) (mV)20 rechilos Ca 0 200 Total vol. purged (L) No. bore vol. purged Purging Time (minutes) Sconethind × Depth to water at end of purging (mbRP) Purging Method: dru'mg Im ond W SAMPLING RECORD Warme Sampling method: Sample ID. Time sampled: Samples filtered for metals?: Sample Appearance: Colour Turbidity Low Medium / High Odour Hydrocarbon sheen? Sample Container and Preservation: Duplicate sample taken? / Dup ID .: OBSERVATIONS W. 1. 1. 19 3. 08 Weather Conditions: Temperature Precipitation Notes: JaNo GAP Form No. 37 RL 0

GROUNDWATER SAMPLING RECORD FORM FOR THREE WELL VOLUME METHOD

1

Project Site GROUNDWATT Information from Surveyed reference Depth of well (from Diameter of well (information record Diameter of standy Standpipe stick up Time Depth to water of standy Standpipe stick up Time Depth to water (mail Total depth of well Chickness of sedim Height of water in so Vell volume (L) Vater column above stimation of Standir Vell diameter (stand itres per lineal meter PURGING RECO ime V Pury 2, 2, 4, 2 2, 3 2, 3 2, 3 2, 3 2, 3 2, 3 2, 3 2	ct Number Client e Location ER WELL n file nce point m log) (inc filter pack (m) orded on s dpipe (mm) p (m) DRP) Il (mbRP) ment on ba standpipe e filter pack, ing Well Vol dpipe plus fi er of water in DRD	r: 15462 :: Nat DATA ack) (mm) ite ack) (mm) ite mbice se of well (m) (m) well volume within 5 umes for 50 mm diar ter pack) n bore Conductivity (mS or ps)	Aen Sa Aen Sa 60 7-20 7-20 7-20 60 7-20 7-20 7-20 60 500mm standpip 100mm 3.7	m m m m o 2.3 be is 2 litres/m bes, for height of 115mm 4.5	water column w 120mm 4.8	Date Sampled By Note: Standard refere mbRP - metres Interface probe Depth to produc Depth to produc Depth to water (Thickness of pro	BORE ID BORE ID Ince point is top below top of refe used? t (mbRP) mbRP) pduct (m)	0 PVC standpipe erence point YES / NO
Site GROUNDWATI Information from Surveyed reference Depth of well (from Diameter of well (in Height of filter pace Information recon Diameter of standy Standpipe stick up Fime Depth to water (gat Total depth of well hickness of sedim Height of water in s Vell volume (L) Vater column above stimation of Standir Vell volume (L) Vater column above stimation of Standir Vell diameter (stand tres per lineal mete URGING RECO ime V Code	e Location ER WELL m file nee point m log) (inc filter pack (inc filter pack) ment on bas standpipe e filter pack (ing Well Vol dpipe plus fi er of water in ORD	Conductivity (mS	Aenn Sar Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr	m m n n 2 3 be is 2 litres/m bes, for height of 115mm 4.5	water column w 120mm 4.8	Note: Standard refere mbRP - metres Interface probe Depth to produc Depth to water (Thickness of pro- ithin filter pack 125mm 5.1	BORE ID Ince point is top below top of refe used? t (mbRP) mbRP) iduct (m)	of PVC standpipe erence point YES / NO
GROUNDWATI	ER WELL In file Ince point In log) (inc filter pack (inc filter pack (inc filter pack (inc filter pack (inc) (inc (inc)	ACK) (mm) ite ite Markov se of well (m) (m) well volume wihtin 5 umes for 50 mm diar iter pack) n bore Conductivity (mS or ps)	50mm standpip 100mm 3.7 Temp	m m o 2 3 be is 2 litres/m bes, for height of 115mm 4.5	water column w 120mm 4.8	Note: Standard refere mbRP - metres Interface probe Depth to produc Depth to water (Thickness of pro- thin filter pack 125mm 5.1	BORE ID Ince point is top below top of refe used? t (mbRP) mbRP) pduct (m) 150mm 6.7	of PVC standpipe erence point YES / NO
Information from Surveyed reference Depth of well (from Diameter of well (in Height of filter pace Information reco. Diameter of standy Standpipe stick up Time Depth to water (mail Total depth of well Inickness of sedim Height of water in s Vell volume (L) Vater column above stimation of Standir Vell volume (L) Vater column above stimation of Standir Vell diameter (stand itres per lineal meter PURGING RECO ime V Que 2 4 9 Que 2 4	n file nce point m log) (inc filter pack (inc filter pack))	ack) (mm) <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i> <i>ite</i>	50mm standpip 100mm 3.7	m pe is 2 litres/m pes, for height of 115mm 4.5	water column w 120mm 4.8	Note: Standard refere mbRP - metres Interface probe Depth to produc Depth to water (Thickness of pro- ithin filter pack 125mm 5.1	BORE ID Ince point is top below top of refe used? t (mbRP) mbRP) oduct (m)	of PVC standpipe erence point YES / NO
Surveyed reference Depth of well (from Diameter of well (if Height of filter pace Information recon Diameter of stand Standpipe stick up Time Depth to water (met Total depth of well Total depth of well Thickness of sedim Height of water in so Nell volume (L) Nater column above Estimation of Standir Vell diameter (standir Vell diameter (standir Vertices of sedim Vertices	ice point m log) (inc filter pack (inc filter pack) (inc filter pack) (inc filter pack) (inc filter pack) (inc filter pack) (inc filter pack) (ing Well Vol dpipe plus filter pack) (ing Well Vol dpipe plus filter of water in ORD Volume rged (L)	ite	50mm standpip 100mm 3.7 Temp	m pe is 2 litres/m pes, for height of 115mm 4.5	water column w 120mm 4.8	Note: Standard refere mbRP - metres Interface probe Depth to produc Depth to water (Thickness of pro- ithin filter pack 125mm 5.1	ince point is top below top of refe used? t (mbRP) mbRP) oduct (m)	of PVC standpipe erence point YES / NO
Depth of well (fror Diameter of well (i Height of filter pace Information recon Diameter of standy Standpipe stick up Time Depth to water (main Total depth of well Thickness of sedim Height of water in so Well volume (L) Water column above Estimation of Standir Well diameter (stand itres per lineal mete PURGING RECO Time V Pure 2022 20 Total vol. pu epth to water at en urging Method:	m log) (inc filter pack (m) orded on s dpipe (mm) p (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)	ack) (mm) ite ite BBCC se of well (m) (m) well volume wihtin 5 umes for 50 mm diar iter pack) n bore Conductivity (mS oppin)	50mm standpip meter standpip 100mm 3.7	mm 2 3 De is 2 litres/m bes, for height of 115mm 4.5	water column w 120mm 4.8	Note: Standard refere mbRP - metres Interface probe Depth to produc Depth to water (Thickness of pro ithin filter pack 125mm 5.1	nce point is top below top of refe used? t (mbRP) mbRP) oduct (m)	of PVC standpipe erence point YES / NO
Diameter of well (i Height of filter pace Information recon Diameter of stand Standpipe stick up Time Depth to water (mi Total depth of well Thickness of sedim Height of water in s Well volume (L) Nater column above Estimation of Standir Well diameter (stand itres per lineal mete PURGING RECO ime V Purg 2 2 4 9 7 7 4 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	(inc filter pack (m) proded on s dpipe (mm) p (m) abRP) II (mbRP) ment on ba standpipe e filter pack, ing Well Vol dpipe plus fi er of water in DRD /olume rged (L)	ite ite ite ite ite ite se of well (m) (m) well volume wihtin 5 umes for 50 mm diar iter pack) n bore Conductivity (mS oppin)	50mm standpip 100mm 3.7 Temp	poe is 2 litres/m bes, for height of 115mm 4.5	water column w 120mm 4.8	Standard refere mbRP - metres Interface probe Depth to produc Depth to water (Thickness of pro thin filter pack 125mm 5.1	ence point is top below top of refe used? <u>t (mbRP)</u> mbRP) oduct (m) <u>150mm</u> 6.7	of PVC standpipe erence point YES / NO
Height of filter pac Information reco. Diameter of stand Standpipe stick up Time Depth to water (mil Total depth of well Thickness of sedim Height of water in s Vell volume (L) Vater column above stimation of Standir Vell diameter (stand itres per lineal meter PURGING RECO ime V Pure 2 2 4 1 2 3 2 2 3 2 3 2	ck (m) proded on s dpipe (mm) p (m) abRP) ment on ba standpipe e filter pack, ing Well Vol dpipe plus fi er of water in ORD /olume rged (L)	ite Se of well (m) (m) well volume wihtin 5 umes for 50 mm diar ter pack) n bore Conductivity (mS option	50mm standpip neter standpip 100mm 3.7	pe is 2 litres/m bes, for height of 115mm 4.5	water column w 120mm 4.8	Standard refere mbRP - metres Interface probe Depth to produc Depth to water (Thickness of pro ithin filter pack 125mm 5.1	ence point is top below top of refe used? t (mbRP) mbRP) oduct (m) 150mm 6.7	of PVC standpipe erence point YES / NO
Information reco Diameter of stand Standpipe stick up Time Depth to water (mi Total depth of well Thickness of sedin Height of water in s Vell volume (L) Vater column above stimation of Standir Vell diameter (stand itres per lineal meter PURGING RECO Time V Pure 2022 0 700	e filter pack, ing Well Vol dpipe plus fi er of water in ORD	ite	50mm standpip neter standpip 100mm 3.7	pe is 2 litres/m bes, for height of 115mm 4.5	water column w 120mm 4.8	mbRP - metres	below top of refe used? t (mbRP) mbRP) oduct (m) 150mm 6.7	YES / NO
Diameter of stand Standpipe stick up Time Depth to water (m) Total depth of well Thickness of sedin Height of water in s Well volume (L) Nater column above stimation of Standir Vell diameter (standir Vell diameter (standir Vergenter (standir	p (m) p (m) hbRP) ll (mbRP) ment on ba standpipe e filter pack, ing Well Vol dpipe plus fi dpipe plus fi cer of water in ORD Volume rged (L)	well volume wihtin 5 umes for 50 mm diar ter pack) n bore	50mm standpip 100mm 3.7 Temp	pe is 2 litres/m bes, for height of 115mm 4.5	water column w 120mm 4.8	Interface probe Depth to produc Depth to water (Thickness of pro ithin filter pack 125mm 5.1	used? t (mbRP) mbRP) oduct (m) 150mm 6.7	YES / NO
Standpipe stick up Time Depth to water (mi Total depth of well Thickness of sedin Height of water in s Nell volume (L) Vater column above Stimation of Standir Vell diameter (standir Vell d	p (m) abRP) II (mbRP) ment on ba standpipe e filter pack, ing Well Vol dpipe plus fi er of water in ORD Volume rged (L)	well volume wihtin 5 umes for 50 mm diar ter pack) n bore	Comm standpip neter standpip 100mm 3.7	be is 2 litres/m bes, for height of 115mm 4.5	water column w 120mm 4.8	Interface probe Depth to produc Depth to water (Thickness of pro ithin filter pack 125mm 5.1	used? :t (mbRP) mbRP) oduct (m) 150mm 6.7	200mm
Time Depth to water (m) Depth to water (m) Total depth of well Thickness of sedin Height of water in s Well volume (L) Water column above Estimation of Standir Well diameter (stand itres per lineal mete PURGING RECO Time V URGING RECO Total vol. pu Epth to water at en urging Method:	abRP) II (mbRP) ment on ba standpipe e filter pack, ing Well Vol dpipe plus fi er of water in ORD /olume rged (L)	well volume wihtin 5 umes for 50 mm diar ter pack) n bore	00mm standpip neter standpip 100mm 3.7	be is 2 litres/m bes, for height of 115mm 4.5	water column w 120mm 4.8	Interface probe Depth to produc Depth to water (Thickness of pro ithin filter pack 125mm 5.1	used? t (mbRP) mbRP) oduct (m) 150mm 6.7	200mm
Depth to water (m) Total depth of well Thickness of sedin Height of water in s Well volume (L) Water column above Estimation of Standir Well diameter (stand itres per lineal meter PURGING RECO Time V Pury 2,24,2 2,32,4 Total vol. pu epth to water at en urging Method:	I (mbRP) II (mbRP) ment on ba standpipe e filter pack, ing Well Vol dpipe plus fi er of water in ORD /olume rged (L)	(m) well volume wihtin 5 umes for 50 mm diar ter pack) n bore	00mm standpip meter standpip 100mm 3.7 Temp	2 3 be is 2 litres/m bes, for height of 115mm 4.5	water column w 120mm 4.8	Depth to produc Depth to water (Thickness of pro ithin filter pack 125mm 5.1	t (mbRP) (mbRP) oduct (m) 150mm 6.7	200mm
Total depth of well Thickness of sedin Height of water in s Well volume (L) Nater column above Estimation of Standir Vell diameter (stand itres per lineal mete PURGING RECO ime V Purg 2.24 2.32 2.34 3.35 3.45 3.45 3.45 3.45 3.46 <td< td=""><td>II (mbRP) ment on ba standpipe e filter pack, ing Well Vol dpipe plus fi er of water in ORD /olume rged (L)</td><td>mbfec se of well (m) (m) well volume wihtin 5 umes for 50 mm diar tter pack) n bore Conductivity (mS</td><td>50mm standpip meter standpip 100mm 3.7 Temp</td><td>be is 2 litres/m bes, for height of 115mm 4.5</td><td>water column w 120mm 4.8</td><td>Depth to water (Thickness of pro ithin filter pack 125mm 5.1</td><td>mbRP) oduct (m) 150mm 6.7</td><td>200mm</td></td<>	II (mbRP) ment on ba standpipe e filter pack, ing Well Vol dpipe plus fi er of water in ORD /olume rged (L)	mbfec se of well (m) (m) well volume wihtin 5 umes for 50 mm diar tter pack) n bore Conductivity (mS	50mm standpip meter standpip 100mm 3.7 Temp	be is 2 litres/m bes, for height of 115mm 4.5	water column w 120mm 4.8	Depth to water (Thickness of pro ithin filter pack 125mm 5.1	mbRP) oduct (m) 150mm 6.7	200mm
Thickness of sedin Height of water in s Well volume (L) Water column above Estimation of Standir Well diameter (stand itres per lineal mete PURGING RECO Time V Purg 2024 7024 7024 7024 7024 7024 7024 7024	ment on ba standpipe e filter pack, ing Well Vol dpipe plus fi er of water in ORD /olume rged (L)	se of well (m) (m) well volume wihtin 5 umes for 50 mm diar ter pack) n bore Conductivity (mS	50mm standpip meter standpip 100mm 3.7 Temp	be is 2 litres/m bes, for height of 115mm 4.5	water column w 120mm 4.8	Thickness of pro ithin filter pack 125mm 5.1	150mm 6.7	200mm
Height of water in s Well volume (L) Water column above Stimation of Standir Vell diameter (stand itres per lineal mete PURGING RECO ime V Purg 2.24 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.33 2.33 2.34 2.35 2.34 2.34 2.35 2.34 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 3.45 3.5 3.6 3.7 3.7 3.8 Total vol. pu apth t	standpipe e filter pack, ing Well Vol dpipe plus fi er of water in ORD Volume rged (L)	(m) well volume wihtin 5 umes for 50 mm diar (ter pack) n bore Conductivity (mS	50mm standpip meter standpip 100mm 3.7 Temp	be is 2 litres/m bes, for height of 115mm 4.5	water column w 120mm 4.8	ithin filter pack 125mm 5.1	150mm 6.7	200mm
Vell volume (L) Vater column above Stimation of Standir Vell diameter (stand itres per lineal mete VIRGING RECO ime V Pury 2024 202 202 202 202 202 202 202 202 20	e filter pack, ing Well Vol dpipe plus fi er of water in ORD Volume rged (L)	well volume wihtin 5 umes for 50 mm diar Iter pack) n bore Conductivity (mS	50mm standpip meter standpip 100mm 3.7 Temp	be is 2 litres/m bes, for height of 115mm 4.5	water column w 120mm 4.8	ithin filter pack 125mm 5.1	150mm 6.7	200mm
Vater column above Estimation of Standir Vell diameter (stand itres per lineal meter PURGING RECC ime V Purg 2.24 2.32	e filter pack, ing Well Vol dpipe plus fi er of water in ORD /olume rged (L)	well volume wihtin 5 umes for 50 mm diar ter pack) n bore Conductivity (mS	50mm standpip meter standpip 100mm 3.7 Temp	be is 2 litres/m bes, for height of 115mm 4.5	water column w 120mm 4.8	ithin filter pack 125mm 5.1	150mm 6.7	200mm
stimation of Standir Vell diameter (stand itres per lineal meter PURGING RECC ime V Pury 2024 2024 2024 2024 2024 2024 2024 202	ing Well Vol dpipe plus fi er of water i ORD /olume rged (L)	umes for 50 mm diar ter pack) n bore Conductivity (mS	meter standpip 100mm 3.7 Temp	bes, for height of 115mm 4.5	water column wi 120mm 4.8	ithin filter pack 125mm 5.1	150mm 6.7	200mm
Total vol. pu reging Method:	Appe plus fi er of water in ORD Volume rged (L)	Conductivity (mS	3.7 Temp	115mm 4.5	120mm 4.8	125mm 5.1	150mm 6.7	200mm
PURGING RECC	ORD /olume rged (L)	Conductivity (mS	Temp		4.0	5.1	0./	40.0
PURGING RECC	Volume rged (L)	Conductivity (mS	Temp	and the second		the state of the second s		10.8
ime V Pur 2024 2027 2027 2027 2027 2027 2027 2027	/olume rged (L)	Conductivity (mS	Temp		A state of the	and the state		
Pur 2.24 9 7.32 7 7.32 7 7	rged (L)	or as		рН	Redox	Dissolved	Δορο	arance
2.24 2.24 2.32 2.32 Total vol. pu epth to water at en urging Method:	25		(°C)		Potential	Oxygen (mg/L)	(colour, turbic	dity, odour. etc)
Total vol. pu Potal vol. pu epth to water at en urging Method:	5		-		, (mV)			
Total vol. pu reth to water at en urging Method:		8000	6-44	9.2	77	0.2	Broken	Highanhi
Total vol. pu Poth to water at en urging Method:	10	8000	2639	9.86	39	0.8		1
Total vol. pu epth to water at en	120	7880	26:34	8.9	20	-0.6	9	11
Total vol. pu Potal vol. pu epth to water at en urging Method:	et l	8000	26.68	2.65	65	-0		11.
Total vol. pu epth to water at en	0	8000	682	1960	20	-0.7	11	Ame
Total vol. pu Total vol. pu epth to water at en urging Method:	33	8000	26.91	7.00	82	-0.)	lor	of Silvor
epth to water at en	5+	8000	6.54	60 00	99	-0-1	1	L
epth to water at en urging Method:	urgea (L)		No. bo	re vol. purged		Purging	Time (minutes)	
urging Method:	nd of purgi	ng (mbRP)	19	00				
0 0	-	1	12 Ven	le avono		attende and	a. Den	Sec. 3.4
AMPLING RECC	ORD		TA PRIME	- O- H	E MATTIC MARTIN			
	UNU	en an anna a' sherradh ei frans	equility and the second	And States and States and	and a state of the second			
ampling method:		Watera	amp	144	· · · · · ·	Sample ID.	BHOZ	
me sampled:	2	.40	0 0	and the second	Samples filte	red for metals?:	Yes (Nd)	2748
imple Appearance		11 A.		1			~	
Colour	15	lows	N.	1 - and	Turbidity	Low / Mediu	m / High	1 2 2 ° °
Odour	SI	ight organic	2	Hydroca	arbon sheen?	N	0	
imple Container a	and Prese	rvation:	1 110	Dupli	cate sample ta	ken? / Dup ID.:	NO	A Start
		1 green	Dolte		the second	1.1	6	-
		<u> </u>		11		1	1.98	
				120	2000	×	2 4	- A
		The Difference of the local di		-	AVE -			
SERVATIONS					A CONTRACTOR	- 12 - 17 - 17 - 17 - 17 - 17 - 17 - 17		1
Weather Co-	ditions	Tomporation	0	1	and the second second	······································	I I O	-
weather Cond	unions:	Precipitation		2m		253: IN	1.	
Notes:	(0	Mr.	4		1	1
Notes.		CO PUL	4	Julalo	eller	2.55 (U.	
					00	/		
-								

PROJECT	INFORMATI	ON					The way is	
Project Number: 1511 009					BOON ADED OF the Inde	all which and the second	501	1117
P	roject Numbe	: 17 46 42	3	-		Date Sempled Bu	- 24	0110
	Site Location	r hulb	up Sand	mareat		Sampled by	75	
		·· (X110	MI Senti	A. M. Cel			a and the second se	KIE/ CONTRACTOR
GROUNDV	VATER WELL	DATA		A THE AND AND A SEA		and the first		San Station
Information	from file						BORE ID	BHO.
Surveyed re	lerence point]			
Depth of well	I (from log)]	Note:		
Diameter of	well (inc filter p	ack) (mm)]			
Height of filte	er pack (m)			· · · · · · · · · · · · · · · · · · ·		Standard refere	ence point is top	of PVC standpi
Information	recorded on s	lite	T		1	mbRP - metres	below top of refe	erence point
Diameter of	standpipe (mm)	1			-			
Time	ск ир (m)		2.10		4	Interfece net -	used?	VECIN
Depth to wot	er (mb	1RC ac	19:10		4	Depth to produ	t (mhPD)	TES / NO
Total denth	f well (mbpp)	marr	6:20	0 120		Depth to water	(mbRP)	
Thickness of	sediment on b	ase of well (m)	11:31	- 1 lim		Thickness of pro	oduct (m)	
Height of wa	er in standpipe	(m)				Lindandob or pro		
Well volume	(L)	dallar ann an	1		3 8	alitant	MANA	D
Water column	above filter pack	, well volume wihtin	50mm standpir	be is 2 litres/m	velbidor	me		
Estimation of s	standing Well Vo	lumes for 50 mm dia	imeter standpip	es, for height of	water column wi	thin filter pack		
Well diameter	(standpipe plus f	ilter pack)	100mm	115mm	120mm	125mm	150mm	200mm
Litres per linea	i meter of water	in bore	3./	4.5	4.8	5.1	6.7	10.8
PURGING F	ECORD			and the second		setting and	a frank a far a far	
Time	Volume	Conductivity ms	Temp	рН	Redox	Dissolved	Appe	earance
	Purged (L)	or µS)	(°C)	pri	Potential (mV)	Oxygen (mg/L)	(colour, turbi	dity, odour, etc
3.14	0	25:46	25.92	8.86	165	0-5	Raum	MGOH
3.15	20	7.79	25.5	200	185	1	11	.1
PA	20	TET	25.83	\$ TT	144	007	11	/
210	HO	25.47	25.82	8-10	148	6.0	11	
3.75	43	25-40	26.03	678	15t	6.9	11	
3:23	53	25.79	Top	69	159	Q:7	11	
3.05	38	1212	60	+-24	146	0-3	Time (minute a)	1
lotaly	ol. purged (L)	11	NO. DO	re vol. purged	11	Purging	lime (minutes)	L
Depth to wate	r at end of purc	ing (mbRP)		105				
Purging Metho	od:	Lou lou	Vena	Rmp				
SAMDI INC	RECORD	NING CONTRACTOR		1 1 1				· • • • • • • • • • • • • • • • • • • •
SAMPLING	RECORD	A DUCE AND REAL PARTY	S-PORTS	2562 DO 1560	North Son Part	进行在外的 的上升的		Reden Production
Sampling met	nod:	Water	ra PI	mp		Sample ID.	B	103
Time sampled		2,20	V	0	Samples filte	red for metals?:	Yes / No	
Sample Appea	irance:	1					~	
Colour	nange	Brown		p (recentroscore	Turbidity	Low / Medi	un / High	
Odour	0	poo		Hydroc	arbon sheen?	NO	0.0	
Sample Cont	liner and Pres	ervation:	~~ I	- In Dup	licate sample ta	aken? / Dup ID.:	NO	
		- Lop	Jun '	ente				
			-					
OBSERVATI	ONS							
Weathe	Conditions:	Temperature:		35				
		Precipitation :		ink				1
		and a second	11	111	1.	101	2 0	1
Notes:		Qu	II CIUN	av z	10 .	1001/1	A de	(

GROUNDWATER SAMPLING RECORD FORM FIELD PARAMETER MEASUREMENTS

PROJECT INFORMATION

Client:

Project:

FCC

Location: NS

GROUNDWATER BORE DATA

Diameter of Column (mm)	125
Diameter of Bore (mm)	50
Standing Water Level (m TOC)	2.29
Total Depth of Bore (m TOC)	4.57
Depth of Water in Column (m)	35
Standpipe stick up (m)	0.5

PURGING RECORD

Project No: 1546203 Date of Sampling: 25.9.16

Sampled By:

BORE	ID	BHOI

Interface probe used?	Yes No
Depth to product (m TOC)	
Depth to water (m TOC)	2.99
Thickness of product (mm)	-

	Volume Purged (L)	Dissolved Oxygen (mg/L)	Temperature (C)	TDS (ppm / ppt)	pH	Conductivity (uS*, mS)	Redox Potential	Turbidity (NTU)	Other
	10	0.9	22.37	0.15	9.23	0:30	99.	600	-10.0
┝	15	0.4	22.25	0.15	6.52	0:30	142	196.	-10-
Ļ	30	0.2	22.25	0.15	6.49	0:30	170	175	10.9
	i							 	
	Total volum	ne ourged (L)	145	No fore vel	Luna and	~			
		ne purgea (L)	40	No. bore voli	umes purged	2	Purging	Time (minutes)	9 1

(Prior to sampling consecutive measurements for pH vaule should be within 0.1 pH units, for conductivity, selinity and dissolved oxygen should be within 10% and temperature should be within 0.5 °C.)

SAMPLING RECORD								
Samples Taken	? (YE8/NO				Containe	: Preservation		
Duplicate sample takent	? YES AND				Vi	H ₂ SO ₄ / other	n C	
Samples filtered?	YES /	for Metals / e	other:		500ml Glas	s Done / other		
Filter Method:	0.45 mm filter &	syringe / othe	er :		500 ml Plasti			
Water Quality Meter type					1 I Plasti	H ₂ SO ₄ / other	;	
Water Dipper type:	8				200 ml Plasti	NaOH-/ other:	ACID	WASH
Pumping Method:	Submersible Pu	mp / Disposab	le Baiter / of	their:	200 mL Glass	HNO ₃ / other:		
OBSERVATIONS			/	000				
Samples:	Colour:	CLERK	cen 6	Turbidity	Low / Me	ium / High		
	Odour:	_	Hydro	carbon sheen?	Yes	/ No		
Weather Conditions:	Sampling Day	Rain	-	Temperature	31			
	Previous Week	Rain		Temperature				
Notes:								
					<u></u>			
reference information: Estimation of S	tanding Well Volumes fo	x 50mm diameter \	Velis					
- Dack)	75mm	100mm	/125mm	150mm	200mm	Note: Typical		
Lives per mean meter of water in well	2.7	3.7	(5.1	6.7	10.8	Eziprope well fameler =75com		

Sampling procedures are based on AS/NZS 5667.11:1998 Water Quality - Sampling Part 11: Guidance on sampling of groundwaters

GROUNDWATER SAMPLING RECORD FORM FIELD PARAMETER MEASUREMENTS

PROJECT INFORMATION

Client:

Project:

Location:

GROUNDWATER BORE DATA

FCG

NORTHERM

12000

Diameter of Column (mm)	135
Diameter of Bore (mm)	50
Standing Water Level (m TOC)	2.294
Total Depth of Bore (m TOC)	5.220
Depth of Water in Column (m)	3.0
Standpipe stick up (m)	0-6

Ргоје	ct No: 1546223	
Date of Sam	pling: 29,9116	
Sample	ed By:	
	BORE	0 B402 B402
2m	Interface probe used?	(Yes / No
	Depth to product (m TOC)	1.500

Depth to water (m TOC) Thickness of product (mm)

PURGING RECORD

Volume Purged (L)	Dissolved Oxygen (mg/L)	Temperature (C)	TDS (ppm / ppt)	рН	Conductivity (uS, mS)	Redox Potential	Turbidity (NTU)	Other]
15	0.0	23.03	5.95	8.89	10.54	19	770	HEANY	5.41
30	0.0	22.72	5.59	8.00	10.08	-22	127.5		DARK
	[
					_				
I									
						-	1000		
Total volu	me purged (L)		No. bore volu	mes purged		Puraino	Time (minutes)		

(Prior to sampling consecutive measuements for pH vaule should be within 0.1 pH units, for conductivity, salinity and dissolved oxygen should be within 10% and temperature should be within 0.5 °C.)

SAMPLING RECORD								
Samples Taken	? Des/NO				Containe	r: P	reservation	
Duplicate sample taken	? YES/				Via	al 🗌 🛛 🖌	I₂SO₄ / other:	
Samples filtered?	YES/NO	for Metals / oth	er:		500ml Glas	s 🗌 🛛	none / other:	
Filter Method:	0.45 mm filter &	syringe / other:			500 ml Plasti	· 🖸 /	none sother:	
Water Quality Meter type	YEORA	<u>L</u>			1 l Plasti	° 🗆 y	2SO4 / other:	
Water Dipper type	:_ <u>I</u> P				200 ml Plastic	c 🔲 🛛 N	laOH / other;	
Pumping Method	: Submersible Pur	np / Disposable	Bailer / or	ther: WAD-Co	200 mL Glass	s 🗹 🕇	NO ₃ 7 other:	NONE AC.
OBSERVATIONS		Prov. Maria		- 62	10	-		- wee
Samples:	Colour:	GREY		Turbidity	Low / Med	dium / High		~~<
	Odour:	NIL	Hydro	ocarbon sheen?	Yes	10		
Weather Conditions:	Sampling Day	Rain		Temperature	31			
	Previous Week	Rain		Temperature		-		
Notes:								
Reference Information: Estimation of 5		50000 dismates Weil						
Her Clameter (Cashig provinter	75mm	100mm	3 125mm	150mm	200mm	Note: Typical		
Dack)						Ezinmhe woll		

1

AST'S CAR APING Golder Associates

GROUNDWATER SAMPLING RECORD FORM FIELD PARAMETER MEASUREMENTS

PROJECT INFORMATION

GROUNDWATER BORE DATA

FCG Client: Project:

Location:

Diameter of Column (mm)

Standing Water Level (m TOC)

Total Depth of Bore (m TOC)

Depth of Water in Column (m)

Diameter of Bore (mm)

FLGProject No:1546223NORTHERN SANDS HYDRO Date of Sampling:29.9.16NORTHERN SANDSSampled By:1045

BORE ID BHOR

11

201

Interface probe used?	(Yes)/ No
Depth to product (m TOC)	
Depth to water (m TOC)	2.41
Thickness of product (mm)	

PURGING RECORD

Standpipe stick up (m)

Volume Purged (L)	Dissolved Oxygen (mg/L)	Temperature (C)	TDS (ppm / ppt)	рН	Conductivity	Redox Potential	Turbidity (NTU)	Other]
5	0.0	22.32	16.11	8.52	26.36	65	600	RED/BR-	
25	0.0	22.28	16-19	9.58	26.45	7	600	CLEAR.	VG:
50	0.0	22.28	16.2.3	10.21	26.54	-3	600	11 11	
		_							4
Total volume purged (L)			No. bore vol	umes purged		Purging	Time (minutes)		

(Prior to sampling consecutive measurements for pH vaule should be within 0.1 pH units, for conductivity, salinity and dissolved oxygen should be within 10% and temperature should be within 0.5 °C.)

125

50

2:41

11.28

0.65

SAMPLING RECORD	6					
Samples Taken	? KESPNQ				Containe	r: Preservation:
Duplicate sample taken?	YES/10				Vi	af H ₂ SO ₄ / other:
Samples filtered?	YES / NO	for Metals /	other:		500ml Glas	s D none) other:
Filter Method:	0.45 mm filter &	syringe / oth	ег:		500 ml Plasti	c I none / other:
Water Quality Meter type:	YEOK	46			1 I Plasti	c ☐ > H₂\$O₄ / other:
Water Dipper type:	<u>_1P</u>		_		200 ml Plasti	c 📑 NaOH / other:
Pumping Method:	Submersible Pur	np / Disposat	le Bailer / oth	er:	200 mL Glass	s 🔲 HNO3 / other:
OBSERVATIONS		- 0	050			
Samples:	Colour:	BROWN	-1(8)	Turbidity	Low / Me	dium / High)
	Odour:	MIC	Hydroc	arbon sheen?	Yes	×/16
Weather Conditions:	Sampling Day	Rain	-	Temperature	21	
	Previous Week	Rain		Temperature		-
Notes:	- WE	LL	DIPPEL	AF	TER "	EAMBLING
	IN	ERR	02.			
Reference Information: Estimation of S	landing Well Volumes fo	r 50mm diameter)	Vells			
men Dreimeter (Ceberg pills hiter	75mm	100mm	12 <u>5</u> mm	150mm	200mm	Note: Typical
Litres per lineal meter of water in well	2.7	3.7	(5.1)	6.7	10.8	diameter =75mm
Sampling procedures are based on AS.	NZS 5667 11-1908 Web	n Ovelika Semeli	The Part 11: Culdan			

alderportal/Cws/CorparateServices/GAIMS/GAIMSAustrafie/GAIMSNQOILocal Office Forms/NOO Forms/Wa http:// o - GW Sampling Form.stu

Well	DTW	DTL
B403	7-41	10.0
RH02	2.294	53
BHOL	2.99	5.3
		, in the second se

GROUNDWATER SAMPLING RECORD FORM FOR THREE WELL VOLUME METHOD

25-0118

and the Mas

-

200mm

PROJECT INFORMATION		
Project Number: Client: Site Location:	546223 FCG NORTHERAT SANK	Date: 23 Sampled By:
GROUNDWATER WELL DAT	۸	
Information from file		BORE ID

Surveyed reference point	ter.C
Depth of well (from log)	6.4
Diameter of well (inc filter pack) (mm)	100
Height of filter pack (m)	4-3
Information recorded on site	
Diameter of standpipe (mm)	50 0-0
Standpipe stick up (m)	0.9
Тіте	0730
Depth to water (mbRP)	4.171
Total depth of well (mbRP)	6.4
Thickness of sediment on base of well (m)	~
Height of water in standpipe (m)	2.3
Well volume (L)	_ 7 _

Note:

21L

Standard reference point is top of PVC standpipe mbRP - metres below top of reference point

BORE ID

Interface probe used?	YES / NO
Depth to product (mbRP)	
Depth to water (mbRP)	and 71
Thickness of product (m)	

150mm

Water column above filter pack, well volume within 50mm standpipe is 2 litres/m

Estimation of Standing Well Volumes for 50 mm diameter-standpipes, for height of water column within filter pack Well diameter (standpipe plus filter pack) Litres per lineal meter of water in bore (100mm 115mm 120mm 125mm 3.7 4.5 4.8 5.1

6.7 10.8 Contra Libration PURGING RECORD . 4 . the dre the 1.0 Time Volume Conductivity (mS Temp Redox Т pН Т Т Dissolved Annearance

Purged (L)	or µS)	(°C)		Potential (mV)	Oxygen (mg/L)	(colour, turbidity	, odour, etc)
0730 7	142	21-56	5.67	453	= 12.4	BROW MAY	TGOUNN
0733 14	140	22.76	5-70	58-450	~0.9	m / m	/ 4
0736 24	148	22-68	5.74	457	-0.4	4	4
						·	
Total vol. purged (L)		No. bor	e vol. purged		Purging	Time (minutes)	
Depth to water at end of purpi	na (mbRP)	4+1	7			201	1
Purging Method:	IN ANTRI	4 7	hill	VOI			
Sampling method: 4.7 Time sampled: 0 Sample Appearance: Colour 6 Odour 7 Sample Container and Prese	ewn rvation:	NIL	Hydroc Dupi	/ Samples filter Turbidity arbon sheen? cate sample tal	Sample ID ed for metals?: Low / Mediu ken? / Dup ID.:	Yes / 6	
OBSERVATIONS Weather Conditions: Notes:	Temperature: Precipitation :	H	07				
	·				90.	GAP Form	No. 37
			6.4				RL 0

3

APPENDIX F

Soil Laboratory Test Results

Address:

Shed 3, 5 Commercial Place Earlville QLD 4870
 Laborator
 Cairns Laboratory

 Phone:
 0740337815
 Fax:
 0740546632

Email: cnz.lab@cardno.com.au

MINIMUM / MAXIMUM DENSITY REPORT

Client:	Golder Associates Pty Ltd		Report Number:	11512/R/11062-1	
Client Address:	216, Draper Street, Cairns		Project Number:	11512/P/592	
Project:	General Testing		Lot Number:	BH1-002	
Location:	North Queensland		Internal Test Request:	11512/T/6454	
Component:	Compliance Testing		Client Reference/s:	Baron River Delta	
Area Description:			Report Date / Page:	1/12/2016	Page 1 of 2
Test Procedures:	AS1289.5.5.1			GA04	
Sample Number	11512/S/31833			Brown Sand	
Sampling Method	Tested As Received				
Date Sampled	25/11/2016				
Sampled By	Client Sampled	Material So	ource Supplied Sample	s	
Date Tested	30/11/2016	Material Ty	rpe QAA Sample		

Maximum Dry Density Result			
Size of Mould Used (Litres)	1.0		
Maximum Dry Density (t/m³)	1.88		

Minimum Dry Density Result			
Size of Mould Used (Litres)	1.0		
Minimum Dry Density (t/m³)	1.46		

Remarks				
$\boldsymbol{\wedge}$	results of the tests, calibration document are traceable to Accredited for compli	s and/or measurements included Australian/national standards. iance with ISO/IEC 17025	in	Mado
ΝΔΤΔ	Accreditation Number:	1986		ere
	Corporate Site Number:	11512		
			opproved Signatory:	Peter Gode
•			Form ID:	W19Rep Rev 1

Earlville QLD 4870

Laborator Cairns Laboratory Phone: 0740337815 Fax: 0740546632

Email: cnz.lab@cardno.com.au

MINIMUM / MAXIMUM DENSITY REPORT

a
Page 2 of 2

Maximum Dry Density Result			
Size of Mould Used (Litres)	1.0		
Maximum Dry Density (t/m³)	1.89		

Minimum Dry Density Result					
Size of Mould Used (Litres)	1.0				
Minimum Dry Density (t/m³)	1.52				

Remarks				
Λ	results of the tests, calibrations document are traceable to Accredited for compli	s and/or measurements included Australian/national standards. ance with ISO/IEC 17025	in	Aroclo
ΝΔΤΔ	Accreditation Number:	1986		ecca
	Corporate Site Number:	11512		
			opproved Signatory:	Peter Gode
•			Form ID:	W19Rep Rev 1

Address:

Shed 3, 5 Commercial Place Earlville QLD 4870 LaboratorCairns LaboratoryPhone:0740337815Fax:0740546632

Email: cnz.lab@cardno.com.au

MOISTURE CONTENT REPORT

Client:	Golder Associates Pty Ltd	Report Number:	11512/R/11061-1	
Client Address:	216, Draper Street, Cairns	Project Number:	11512/P/592	
Project:	General Testing	Lot Number:	BH1-002	
Location:	North Queensland	Internal Test Request:	11512/T/6454	
Component:	Compliance Testing	Client Reference/s:	Baron River Delta	
Area Description:		Report Date / Page:	1/12/2016	Page 1 of 1

Test Procedures:	AS1289.2.1.1	
Sample Number	11512/S/31833	11512/S/31834
ID / Client ID	-	-
Lot Number	BH1-002	BH1-002
Date / Time Sampled	25/11/2016	25/11/2016
Sampling Method	Tested As Received	Tested As Received
Date Tested	29/11/2016	29/11/2016
Material Source	Supplied Samples	Supplied Samples
Material Type	QAA Sample	QAA Sample
	GA04	GA05
	Brown Sand	Yellow Sand
Moisture Content (%)	27.5	14.0

Sample Number		
ID / Client ID		
Lot Number		
Date / Time Sampled		
Sampling Method		
Date Tested		
Material Source		
Material Type		
Moisture Content (%)		

Remarks

results of the tests, calibrations and/or measurements included in document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

1986

11512

Abode

Accreditation Number: Corporate Site Number:

opproved Signatory: Peter Gode Form ID: W20Rep Rev 1

Earlville QLD 4870

Laborator Cairns Laboratory Phone: 0740337815 Fax: 0740546632

Email: cnz.lab@cardno.com.au

ATTERBERG LIMITS REPORT

Client:	Golder Associates F	Pty Ltd		Report Number:	11512/R/11063-1		
Client Address:	216, Draper Street,	Cairns		Project Number:	11512/P/592		
Project:	General Testing			Lot Number:			
Location:	North Queensland			Internal Test Request:	11512/T/6454		
Component:	Compliance Testing			Client Reference/s:	Baron River Delta		
Area Description:				Report Date / Page:	1/12/2016	Page 1 of 2	
Test Procedures:	AS1289.3.1.2, AS 1	289.3.3.1, AS1289.3.2.1, AS12	289.3.4.1	·			
Sample Number	11512/S/31833			Sampl	e Location		
Sampling Method	Tested As Received		GA04				
Date Sampled	25/11/2016		Brown Sand				
Sampled By	Client Sampled						
Date Tested	30/11/2016						
Att. Drying Method	-		Material Source Supplied Samples				
Atterberg Preparation	-		Material Type QAA Sample				
Material Description	-						
		Atterberg L	imits Result	\$			
Atterberg Limit		Specification Minimum		Test Result	Specificati	on Maximum	
Liquid Limit (%)				Not Obtainable			
Plastic Limit (%)				Not Obtainable			
Plasticity Index (%)				Non Plastic			
Linear Shrinkage (%)				-			
Linear Shrinkage Defe	ects:	-	·				

Remarks e results of the tests, calibrations and/or measurements included in document are traceable to Australian/national standards. Mode Accredited for compliance with ISO/IEC 17025 1986 Accreditation Number: Corporate Site Number: 11512 pproved Signatory: Peter Gode Form ID: W11bRep Rev 1

Earlville QLD 4870

Laborator Cairns Laboratory Phone: 0740337815 Fax: 0740546632

Email: cnz.lab@cardno.com.au

ATTERBERG LIMITS REPORT

Client:	Golder Associates F	ty Ltd		Report Number:	11512/R/11063	-1	
Client Address:	216, Draper Street,	Cairns		Project Number:	11512/P/592		
Project:	General Testing			Lot Number:	BH1-002		
Location:	North Queensland			Internal Test Request:	11512/T/6454		
Component:	Compliance Testing			Client Reference/s:	Baron River De	Ita	
Area Description:				Report Date / Page:	1/12/2016	Page 2 of 2	
Test Procedures:	AS1289.3.1.2, AS 12	289.3.3.1, AS1289.3.2.1, AS12	289.3.4.1				
Sample Number	11512/S/31834			Sample Location			
Sampling Method	Tested As Received		GA05				
Date Sampled	25/11/2016		Yellow Sand				
Sampled By	Client Sampled						
Date Tested	1/12/2016						
Att. Drying Method	-		Material Source Supplied Samples				
Atterberg Preparation	-		Material Type QAA Sample				
Material Description	-						
		Atterberg L	imits Result	S			
Atterberg Limit		Specification Minimum		Test Result	Specifi	cation Maximum	
Liquid Limit (%)			Not Obtainable				
Plastic Limit (%)			Not Obtainable				
Plasticity Index (%)			Non Plastic				
Linear Shrinkage (%)				-			
Linear Shrinkage Mou	ld Length / Defects:	Mould Length: 150.0mm / -	•				

Remarks e results of the tests, calibrations and/or measurements included in document are traceable to Australian/national standards. Mode Accredited for compliance with ISO/IEC 17025 1986 Accreditation Number: Corporate Site Number: 11512 pproved Signatory: Peter Gode Form ID: W11bRep Rev 1

Shed 3, 5 Commercial Place Earlville QLD 4870
 Laboratory:
 Cairns Laboratory

 Phone:
 0740337815
 Fax:
 0740546632

Email: cnz.lab@cardno.com.au

QUALITY OF MATERIALS REPORT

Client:	Golder Associat	es Pty Ltd				Report I	Number:	11512/R/11246-1	
Client Address:	216, Draper Stre	et, Cairns				Project I	Number:	11512/P/677	
Project:	Project No.: 1546223 Contact: Joseph Parisi						nber:		
Location:	Cairns					Internal	Test Request:	11512/T/6529	
Component:	Soil Testing					Client R	eference/s:	PO: Q003655 Sut	omitted 02-12-16
Area Description:	Submitted samp	les				Report [Date / Page:	9/12/2016	Page 1 of 4
Test Procedures	AS1289.3.6.1, A	S1289.3.1.2, /	AS1289.3.2.1,	AS1	289.3.4.1, AS	51289.2.1	.1, AS 1289.3.3	3.1	
Sample Number	11512/S/32143							GA04-DS1	
Sampling Method	Tested As Rece	ived						Depth: 0.5-0.8m	
Date Sampled	2/12/2016								
Sampled By	Client Sampled								
Date Tested	6/12/2016				Material So	ource	Not Supplied		
Att. Drying Method	Oven Dried				Material Ty	/pe	Not Supplied	(Not Supplied)	
Atterberg Preparation	Dry Sieved				Material De	escription	-		
AS Sieve (mm)	Specification Minimum	Percent Passing (%)	Specification Maximum		P	ARTICL	E SIZE DIST	RIBUTION GRAP	Ή
19.0		100			100				
9.5		100			1				
4.75		100			80	/			
2.36		97		(9)					
1.18		92		6) Đ	60				
0.600		88		Issin					
0.425		87		it Pa	-				
0.300		86		rcen	40				
0.150		75		Pe	-				
0.075		62			20				
					1				
					o 4				
					0.0	21	0.0 	4.7 2.3 1.1	19,1 13.: 9,5
					75	8	8 % 8	0 0 U	NO
							AS Siev	e Size (mm)	
Test Result	Specification Minimum	Result	Specification Maximum		Test Resu	ılt	Specification Minimum	Result	Specification Maximum
Liquid Limit (%)		27		0.07	75/0.425 Fine	es Ratio		0.71	
Plastic Limit (%)		19		P I x	0.425 Ratio	(%)		696.0	
Plastic Index (%)		8		LS>	x 0.425 Ratio	(%)		435.0	
Linear Shrinkage (%)		5.0		Part	ticle Size Dis	t. Moistur	e Content (%)	7.9	
Linear Shrinkage Defe	cts Nil	-							

Remarks

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 Accreditation Number: 1986

Accreditation Number:1986Corporate Site Number:11512

Z

Approved Signatory: Kyle Jeffries Form ID: W85MCRep Rev 1

Shed 3, 5 Commercial Place Earlville QLD 4870

Laboratory: Cairns Laboratory Fax: 0740546632 0740337815 Phone:

Email: cnz.lab@cardno.com.au

QUALITY OF MATERIALS REPORT

Client:	Golder Associ	ates Ptv I td				Report I	Number:	11512/R/11246-1	
Client Address:	216 Dropor S	troot Coirna				Broject	Numbor	11512/D/677	
	210, Draper Street, Calms					FIOJECT		11312/F/077	
Project:	Project No.: 1	546223 Contact:	Joseph Paris	i		Lot Num	nber:		
Location:	Cairns					Internal	Test Request:	11512/T/6529	
Component:	Soil Testing					Client R	eference/s:	PO: Q003655 Sub	mitted 02-12-16
Area Description:	Submitted san	nples				Report I	Date / Page:	9/12/2016	Page 2 of 4
Test Procedures	AS1289.3.6.1,	AS1289.3.1.2,	AS1289.3.2.1	, AS1	289.3.4.1, AS	61289.2.1	.1, AS 1289.3.3	.1	
Sample Number	11512/S/3214	4					(GA04-DS2	
Sampling Method	Tested As Red	ceived					Γ	Depth: 1.2-1.5m	
Date Sampled	2/12/2016								
Sampled By	Client Sample	d							
Date Tested	6/12/2016				Material So	ource	Not Supplied		
Att. Drying Method	Oven Dried				Material Ty	/pe	Not Supplied (Not Supplied)	
Atterberg Preparation	Dry Sieved				Material De	escription	-		
AS Sieve (mm)	Specificatio Minimum	n Percent Passing (%)	Specification Maximum		P	ARTICL	E SIZE DISTR	RIBUTION GRAP	н
19.0		100			100			÷	
9.5		100]	/			
4.75		100			80				
2.36		99		(%					
1.18		98		5) Đị	60				
0.600		96		assir					
0.425		95		nt Pö					
0.300		93		croel	40				
0.150		75		Pe	-				
0.075		58			20				
					1				
					0 4,		·		
					0.0	0.1	0.0 0.4	4.7 2.3	19.(13.; 9.5
					75	8	8 8 8		10 0
							AS Sieve	e Size (mm)	•
Test Result	Specificatio Minimum	ⁿ Result	Specification Maximum		Test Resu	ılt	Specification Minimum	Result	Specification Maximum
Liquid Limit (%)		29		0.07	75/0.425 Fine	s Ratio		0.61	
Plastic Limit (%)		19		PI x	0.425 Ratio	(%)		954.0	
Plastic Index (%)		10		LS	x 0.425 Ratio	(%)		572.4	
Linear Shrinkage (%)		6.0		Par	ticle Size Dis	t. Moistur	e Content (%)	11.5	
Linear Shrinkage Defe	cts Nil								

Remarks

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 Accreditation Number: 1986

11512

Corporate Site Number:

Form ID: W85MCRep Rev 1

Shed 3, 5 Commercial Place Earlville QLD 4870
 Laboratory:
 Cairns Laboratory

 Phone:
 0740337815
 Fax:
 0740546632

Email: cnz.lab@cardno.com.au

QUALITY OF MATERIALS REPORT

Client:	Golder Associate	es Pty Ltd				Report N	Number:	11512/R/11246-1	
Client Address:	216, Draper Stre	eet, Cairns				Project I	Number:	11512/P/677	
Project:	Project No.: 1546223 Contact: Joseph Parisi						ıber:		
Location:	Cairns					Internal	Test Request:	11512/T/6529	
Component:	Soil Testing					Client R	eference/s:	PO: Q003655 Sub	omitted 02-12-16
Area Description:	Submitted samp	les				Report [Date / Page:	9/12/2016	Page 3 of 4
Test Procedures	AS1289.3.6.1, A	S1289.3.1.2, /	AS1289.3.2.1,	AS12	289.3.4.1, AS	51289.2.1	.1, AS 1289.3.3	.1	
Sample Number	11512/S/32145							GA05-DS1	
Sampling Method	Tested As Rece	ived					l	Depth: 0.6-0.9m	
Date Sampled	2/12/2016								
Sampled By	Client Sampled								
Date Tested	6/12/2016				Material So	ource	Not Supplied		
Att. Drying Method	Oven Dried				Material Ty	/pe	Not Supplied (Not Supplied)	
Atterberg Preparation	Dry Sieved				Material De	escription	-		
AS Sieve (mm)	Specification Minimum	Percent Passing (%)	Specification Maximum		P	ARTICL	E SIZE DIST	RIBUTION GRAP	'n
19.0		100		1	.00			• •	
2.36		100			1				
1.18		100			80				
0.600		100		(9)	-	/			
0.425		99		6) B	60 /				
0.300		97		Issin	~ /				
0.150		78		it Pa					
0.075		44		roen	40				
				Pe					
					20				
					0 4				
					0	0	0.00	1.1	19. 9.5
					175	8	8 7 8	ത്ഗ്	1 N N O
							AS Sieve	e Size (mm)	
Test Result	Specification Minimum	Result	Specification Maximum		Test Resu	ult	Specification Minimum	Result	Specification Maximum
Liquid Limit (%)		21		0.07	5/0.425 Fine	es Ratio		0.45	
Plastic Limit (%)		17		РIх	0.425 Ratio	(%)		396.4	
Plastic Index (%)		4		LS x	0.425 Ratio	(%)		99.1	
Linear Shrinkage (%)		1.0		Parti	cle Size Dis	t. Moistur	e Content (%)	9.6	
Linear Shrinkage Defe	cts Nil		•	•					

Remarks

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 Accreditation Number: 1986

1986 11512

Approved Signatory: Kyle Jeffries Form ID: W85MCRep Rev 1

Shed 3, 5 Commercial Place Earlville QLD 4870
 Laboratory:
 Cairns Laboratory

 Phone:
 0740337815
 Fax:
 0740546632

Email: cnz.lab@cardno.com.au

QUALITY OF MATERIALS REPORT

Client:	Golder Associat	es Pty Ltd				Report N	Number:	11512/R/11246-1	
Client Address:	216, Draper Stre	et, Cairns				Project I	Number:	11512/P/677	
Project:	Project No.: 1546223 Contact: Joseph Parisi						Lot Number:		
Location:	Cairns					Internal	Test Request:	11512/T/6529	
Component:	Soil Testing					Client R	eference/s:	PO: Q003655 Sub	mitted 02-12-16
Area Description:	Submitted samp	les				Report [Date / Page:	9/12/2016	Page 4 of 4
Test Procedures	AS1289.3.6.1, A	S1289.3.1.2, /	AS1289.3.2.1,	AS1	289.3.4.1, AS	51289.2.1	.1, AS 1289.3.3.	1	
Sample Number	11512/S/32146						(GA05-DS2	
Sampling Method	Tested As Rece	ived					C	Depth: 1.2-1.5m	
Date Sampled	2/12/2016								
Sampled By	Client Sampled								
Date Tested	6/12/2016				Material So	ource	Not Supplied		
Att. Drying Method	Oven Dried				Material Ty	/pe	Not Supplied (Not Supplied)	
Atterberg Preparation	Dry Sieved				Material De	escription	-		
AS Sieve (mm)	Specification Minimum	Percent Passing (%)	Specification Maximum		P	ARTICL	E SIZE DISTR	IBUTION GRAP	Н
19.0		100			100				
2.36		100			1				
1.18		99			80 /				
0.600		98		(9)					
0.425		98		6) D	60				
0.300		97		ssin					
0.150		88		t Pa	-				
0.075		72		rcen	40				
				Pe					
					20				
					-				
					o <u> </u>				
					Ö	ġ	0.00	1.1	- 19. 9.5
					075	50	8 8 8	50 X X	V N N O
							AS Sieve	Size (mm)	
Test Result	Specification Minimum	Result	Specification Maximum		Test Resu	ult	Specification Minimum	Result	Specification Maximum
Liquid Limit (%)		35		0.07	75/0.425 Fine	es Ratio		0.74	
Plastic Limit (%)		20		PI x	0.425 Ratio	(%)		1464.0	
Plastic Index (%)		15		LS	x 0.425 Ratio	(%)		829.6	
Linear Shrinkage (%)		8.5		Par	ticle Size Dis	t. Moistur	e Content (%)	28.8	
Linear Shrinkage Defe	cts Curling								

Remarks

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 Accreditation Number: 1986

Corporate Site Number:

1986 11512

Approved Signatory: Kyle Jeffries Form ID: W85MCRep Rev 1

APPENDIX G

Hydraulic Conductivity Testing Results.

APPENDIX H

Important information relating to this document

The document ("Report") to which this page is attached and which this page forms a part of, has been issued by Golder Associates Pty Ltd ("Golder") subject to the important limitations and other qualifications set out below.

This Report constitutes or is part of services ("Services") provided by Golder to its client ("Client") under and subject to a contract between Golder and its Client ("Contract"). The contents of this page are not intended to and do not alter Golder's obligations (including any limits on those obligations) to its Client under the Contract.

This Report is provided for use solely by Golder's Client and persons acting on the Client's behalf, such as its professional advisers. Golder is responsible only to its Client for this Report. Golder has no responsibility to any other person who relies or makes decisions based upon this Report or who makes any other use of this Report. Golder accepts no responsibility for any loss or damage suffered by any person other than its Client as a result of any reliance upon any part of this Report, decisions made based upon this Report or any other use of it.

This Report has been prepared in the context of the circumstances and purposes referred to in, or derived from, the Contract and Golder accepts no responsibility for use of the Report, in whole or in part, in any other context or circumstance or for any other purpose.

The scope of Golder's Services and the period of time they relate to are determined by the Contract and are subject to restrictions and limitations set out in the Contract. If a service or other work is not expressly referred to in this Report, do not assume that it has been provided or performed. If a matter is not addressed in this Report, do not assume that any determination has been made by Golder in regards to it.

At any location relevant to the Services conditions may exist which were not detected by Golder, in particular due to the specific scope of the investigation Golder has been engaged to undertake. Conditions can only be verified at the exact location of any tests undertaken. Variations in conditions may occur between tested locations and there may be conditions which have not been revealed by the investigation and which have not therefore been taken into account in this Report.

Golder accepts no responsibility for and makes no representation as to the accuracy or completeness of the information provided to it by or on behalf of the Client or sourced from any third party. Golder has assumed that such information is correct unless otherwise stated and no responsibility is accepted by Golder for incomplete or inaccurate data supplied by its Client or any other person for whom Golder is not responsible. Golder has not taken account of matters that may have existed when the Report was prepared but which were only later disclosed to Golder.

Having regard to the matters referred to in the previous paragraphs on this page in particular, carrying out the Services has allowed Golder to form no more than an opinion as to the actual conditions at any relevant location. That opinion is necessarily constrained by the extent of the information collected by Golder or otherwise made available to Golder. Further, the passage of time may affect the accuracy, applicability or usefulness of the opinions, assessments or other information in this Report. This Report is based upon the information and other circumstances that existed and were known to Golder when the Services were performed and this Report was prepared. Golder has not considered the effect of any possible future developments including physical changes to any relevant location or changes to any laws or regulations relevant to such location.

Where permitted by the Contract, Golder may have retained subconsultants affiliated with Golder to provide some or all of the Services. However, it is Golder which remains solely responsible for the Services and there is no legal recourse against any of Golder's affiliated companies or the employees, officers or directors of any of them.

By date, or revision, the Report supersedes any prior report or other document issued by Golder dealing with any matter that is addressed in the Report.

Any uncertainty as to the extent to which this Report can be used or relied upon in any respect should be referred to Golder for clarification.

As a global, employee-owned organisation with over 50 years of experience, Golder Associates is driven by our purpose to engineer earth's development while preserving earth's integrity. We deliver solutions that help our clients achieve their sustainable development goals by providing a wide range of independent consulting, design and construction services in our specialist areas of earth, environment and energy.

For more information, visit golder.com

Africa
 Australasia
 + 61 3 8862 3500

 Europe
 + 44 1628 851851

 North America
 + 1 800 275 3281

 South America
 + 56 2 2616 2000

+ 86 21 6258 5522

solutions@golder.com

Golder Associates Pty Ltd 147 Coronation Drive Milton, Queensland 4064 Australia T: +61 7 3721 5400

