

Australia Pacific LNG Project

Volume 5: Attachments

Attachment 48: High Pressure Gas Network – Preliminary Safety Management Study –

Gas Fields

Contents

1.		Introdu	ction	4
2.		Descrip	otion of Pipelines	5
	2.1	Route I	Description	6
		2.1.1	Fairview to Spring Gully Pipeline	6
		2.1.2	Spring Gully to Wallumbilla Loop	6
		2.1.3	Combabula Lateral and Spur Lines	6
		2.1.4	Condabri South Lateral and Spur Lines	7
		2.1.5	DDPS Pipeline Related Links	7
	2.2	Pipelin	e facilities	8
	2.3	Control	Systems	10
	2.4	Basic F	Pipeline Design Parameters	11
3.		Safety	management study process	13
	3.1	Study 7	Геат	13
	3.2	Activitie	es Undertaken	13
4.		Locatio	n analysis	16
	4.1	AS 288	5 Location Classifications	16
	4.2	Discus	sion of Location Classifications	16
5.		Failure	and Consequence Analysis	18
	5.1	Penetra	ation Resistance	18
	5.2	Energy	Release and Radiation	18
6.		Threat	controls	19
	6.1	Externa	al Interference Protection	19
		6.1.1	Physical Controls	19
		6.1.2	Procedural Controls	20
	6.2	Control	s by Design	20
7.		Threat	identification	21
	7.1	Review	of Typical Threats	21
		7.1.1	External Interference	21
		7.1.2	Road Crossings	21
		7.1.3	Rail Crossings	22
		7.1.4	Corrosion	22
		7.1.5	Natural Events	22
		7.1.6	Electrical Effects	23

0a5 1 101	us		
	7.1.7	Operations and Maintenance Activities	
	7.1.8	Construction Defects	23
	7.1.9	Design Defects	24
	7.1.10	Material Defects	24
	7.1.11	Intentional Damage	25
	7.1.12	Earthquake	25
	7.1.13	Future Blasting	25
7.2	Review	of Location-Specific Threats	26
	7.2.1	Fairview to Spring Gully Loop	26
	7.2.2	Surface Facilities	26
	7.2.3	Eastern Section of the DDPS Pipeline	26
8.	Study of	outcomes and recommendations	27
8.1	Study (Outcomes	27
	8.1.1	Summary of Evaluation Results	27
	8.1.2	Discussion of Other Key Outcomes	27
8.2	Study I	Recommendations	28
	8.2.1	Design Phase	28
	8.2.2	Safety and Operating Plan (SAOP)	28
	8.2.3	Other	28

Figures

Tables

Table 2.1	Proposed aboveground facilities and approximate KPs	. 8
Table 2.2	Common Pipeline Design Parameters	11
Table 2.3	Design Parameters by Diameter	12

Appendices

Appendix A	Abbreviations
Appendix B	Map of HP Pipelines Network
Appendix C	Safety Management Study Record

1. Introduction

The APLNG Project is currently preparing an EIS submission in accordance with Terms of Reference issued by the Co-ordinator Generals Department.

Section 6.1.1 of those Terms states in part:

"A risk assessment in accordance with Australia/New Zealand Standard AS/NZS 2885 Gas and Liquid Petroleum Pipelines should be conducted on the gas transmission pipeline from the gas processing plant(s) to the LNG plant on Curtis Island. The results of the Location Analysis and Threat Analysis and calculation of 'measurement lengths' should be presented together with management strategies which will be employed to deliver the safety principles of the Standard that require risks to be reduced to as low as reasonably practical, low or negligible."

Although not stated explicitly in the paragraph above, it is clear that the "risk assessment" mentioned is in fact a Safety Management Study as detailed in AS2885 (Section 2 and various Appendices).

This document records the outcomes of the preliminary Safety Management Study of the APLNG high pressure field gathering pipelines (called the HP Gas Network) within the Walloons Gas Fields.

The Upstream portion of the APLNG Project also includes a high pressure mainline to Gladstone, which was the subject of a separate Preliminary Safety Management Study and Report.

2. Description of Pipelines

This section describes the proposed network of high pressure pipelines to collect gas from a number of compressor stations (spur lines) in the producing fields and deliver it to the Mainline Pipeline System.

The HP Gas Network is shown on the map at Appendix 1. The commencement of the Main Pipeline System to the Gladstone LNG Plant is also identified on this figure.

The HP Gas Network consists of the following:

- Fairview to Spring Gully Pipeline;
- Spring Gully to Wallumbilla Loop;
- Combabula Lateral, including the ;
 - Pine Hills Spur Line;
 - Reedy Creek Spur Line;
 - Combabula 2 Spur Line;
 - Combabula 1 Spur Line;
 - Ramyard Spur Line;
- Condabri South Lateral, including the;
 - Condabri South Nodal Spur Line;
 - Condabri South Spur Line;
 - Condabri Central Spur Line;
- DDPS Pipeline related supply, including:
 - DDPS Condabri Link;
 - Talinga Spur Line (existing);
 - Orana Spur Line;
 - Kainama Spur Line;
- Associated pig launchers and receivers (scraper stations);
- Connections for future GPFs; and
- Mainline Valve facilities.

It is planned that the HP Gas Network will include the installation of fibre optic cable along the pipeline(s). (The need to install the fibre optic into a conduit shall be determined during FEED).

The HP Gas Network is free flow as the Gas Processing Facilities (GPFs) include discharge compressors. Additional booster compression at the Talinga Metering Station may be required to flow gas from the spur lines feeding the eastern section of the existing DDPS Pipeline into the western section of the existing DDPS Pipeline before delivery to the DDPS Condabri Link.

The design, construction, operation and rehabilitation will be in accordance with AS2885.

These pipelines and their associated infrastructure form the Scope of this Safety Management Study.

2.1 Route Description

The methodology for determining the location of the proposed pipeline routes was based on application of the following criteria and related constraints:

- Land Use, Social Aspects and Topography
- Environmental and Cultural Heritage
- Construction and operation requirements
- Engineering
- Safety
- Commercial

Before selecting the preferred route, field surveys were conducted by specialists to assess engineering, construction, social and environmental risk and opportunities.

The HP Gas Network will be located in a predominantly rural area with few residents and little other existing major infrastructure development.

The HP Gas Network consists of several new major pipelines, many shorter spur lines, and utilises the existing DDPS pipeline through planned linkages. As shown on Appendix 1 the HP Gas Network forms a large loop around the producing fields connected at both ends to the mainline to Gladstone.

2.1.1 Fairview to Spring Gully Pipeline

The Fairview to Spring Gully Pipeline will run for approximately 40 km in a south-east direction from the Fairview PCS to Spring Gully GPF. This route passes through relatively hilly forested terrain.

2.1.2 Spring Gully to Wallumbilla Loop

The existing Spring Gully to Wallumbilla pipeline will be looped over a length of approximately 75 km in the north-south direction from the Spring Gully GPF to the Wallumbilla Hub, with a receipt/delivery point facility at Coxton Creek.

2.1.3 Combabula Lateral and Spur Lines

The Combabula Lateral and connecting spur lines collect gas from the GPFs of the Combabula-Ramyard gas field as well as gas from the Fairview and Spring Gully gas fields via a connection to the Spring Gully to Wallumbilla Loop (from the Coxton Creek off-take facility). The Combabula Lateral connects with the Main Pipeline System at the start of the Woleebee Lateral.

Approximate lengths, start and finish locations for pipelines included within this portion of the HP Gas Network are:

Table 2.1

Pipeline	Approx km	End points
Combabula Lateral	85 km	East-west orientation from the receipt point from the Spring Gully to
		Wallumbilla Loop to the start of the Woleebee start of the Woleebee

Volume 5: Attachments Attachment 48: High Pressure Gas Network – Preliminary Safety Management Study – Gas Fields

Pipeline	Approx km	End points
		Lateral at GPF Wol_01
Pine Hills Spur Line	1 km	Connects GPF MUG_06 to the Combabula Lateral at KP10
Reedy Creek Spur Line	1 km	Connects GPF RCK_04a to the Combabula Lateral at KP35
Combabula 2 Spur Line	15 km	Connects GPF COM_03a to the Combabula Lateral at the Combabula Scraper Station (KP50)
Combabula 1 Spur Line	1 km	Connects GPF LUK_02a to the Combabula Lateral at the Combabula Scraper Station (KP50)
Ramyard Spur Line	1 km	Connects GPF HCK_01a to the Combabula Lateral at KP65

2.1.4 Condabri South Lateral and Spur Lines

The Condabri South Lateral and spur lines collect gas from the GPFs in the Condabri gas fields as well as gas via the DDPS Condabri Link and deliver to the Condabri Lateral of the Main APLNG Pipeline system. Pipeline approximate lengths, start and finish locations are:

Table 2.2

Pipeline	Approx km	End points
Condabri South Lateral	45 km	A north-south orientation from the end of the Condabri South Spur Line to the Condabri Lateral at GPF CNN 04
Condabri South Spur Line	1 km	Connects GPF CNS_03 to the start of the Condabri South Lateral
Condabri South Spur Line	1 km	Connects GPF CON_01b to the Condabri South Lateral
Condabri Central Spur Line	1 km	Connects GPF CON_02 to the Condabri South Lateral

2.1.5 DDPS Pipeline Related Links

Gas from the GPFs of the Talinga/Orana/Kainama gas field feed gas to the existing DDPS Pipeline. The DDPS Condabri Link takes receipt of this gas and connects to the Condabri South Lateral.

Pipeline approximate lengths, start and finish locations are:

Table 2.3

Pipeline	Approx km	End points
DDPS Condabri Link	5 km	Carries gas from the DDPS Pipeline west of the Talinga Metering Station to the Condabri South Lateral at the Condabri DN500/DN900 Launcher-Receiver Facility
Talinga Spur Line (existing)	1 km	Connects GPF at Talinga to the DDPS Pipeine at the Talinga Metering Station

Volume 5: Attachments Attachment 48: High Pressure Gas Network – Preliminary Safety Management Study – Gas Fields

Pipeline	Approx km	End points
Orana North Spur Line	15 km	Connects GPF ORA_04 to the DDPS Pipeline
Orana Spur Line	1 km	Connects GPF ORA_03b to the Orana North Spur Line
Kainama Spur Line	7 km	GPF KIA_01a to the DDPS Pipeline

The addition of these spur lines to the DDPS Pipeline will alter the flow considerably and, based on the current design, would prevent pigs being run through the eastern section, as flows will be from both ends toward the middle, where there are no pig receivers.

Alternative designs for the eastern section of the DDPS shall be evaluated during FEED that will achieve supply requirements of the DDPS and APLNG, and enable pig operations of the eastern section. Alternative designs shall consider the spur line receipt points, and locations for compression or pressure regulation.

2.2 Pipeline facilities

Table 2.4 shows the aboveground facilities currently proposed to form part of the HP Gas Network.

Pipeline	KP	Facility	Comment
FSG Pipeline	0	FSG Launcher Facility	Metering (TBC)
			DN300 Launcher
	40	FSG Receiver Facility	DN300 Receiver
SGW Loop	0	SGW Loop Launcher Facility	DN500 Launcher
	40	SGW Loop MLV (Coxton	MLV
		Creek)	Combabula Lateral Tie-in
	85	SGW Loop Receiver	DN500 Receiver
		Facility	Metering (TBC)
Combabula Lateral	0	Combabula Launcher Facility	DN600 Launcher
	10	Receipt Point for Pine Hills Spur Line	DN300 Receiver provision
	35	MLV 01	DN600 MLV
			DN 300 Receiver provision for Reedy Creek Spur Line
	50	Combabula	DN600/DN750 Launcher-Receiver
		DN600/DN750 Launcher- Receiver Facility	Receiver for DN400 Combabula 2 Spur Line
		Neceiver r achilty	DN 300 Receiver provision for DN300 Combabula 1

Table 2.4 Proposed aboveground facilities and approximate KPs

Volume 5: Attachments

Attachment 48: High Pressure Gas Network – Preliminary Safety Management Study – Gas Fields

Pipeline	KP	Facility	Comment
			Spur Line
	65	MLV 03	DN750 MLV
			DN300 Receiver provision for Ramyard Spur Line
			Future receipt point Carinya GPFs
	85	Combabula Receiver	DN750 Receiver
		Facility	Future receipt point Woleebee GPFs
Pine Hills Spur Line	0	Launcher Facility	Provision for DN300 Launcher
Reedy Creek Spur Line	0	Launcher Facility	Provision for DN300 Launcher
Combabula 2 Spur Line	0	Launcher Facility	DN400 Launcher
Comabula 1 Spur Line	0	Launcher Facility	Provision for DN300 Launcher
Ramyard Spur Line	0	Launcher Facility	Provision for DN300 Launcher
Condabri South	0	Condabri South Launcher	DN400 Launcher
Lateral		Facility	Receipt point Condabri South Spur Line
	15	Condabri South	DN400 Receiver
		DN400/DN500 Launcher- Receiver Facility	DN500 Launcher
		Receiver raciity	MLV
			Receiver provision for Condabri 2 Spur Line
	30	Condabri South	DN500 Receiver
		DN500/DN900 Launcher-	DN900 Launcher
		Receiver Facility	DDPS Condabri Link receipt point
			DN300 Receiver provision for Condabri 1 Spur Lin
Condabri South Spur Line	0	Launcher Facility	Provision for DN300 Launcher
Condabri South Nodal Spur Line	0	Launcher Facility	Provision for DN300 Launcher
Condabri Central Spur Line	0	Launcher Facility	Provision for DN300 Launcher
DDPS Condabri	0 DDPS Condabri Link		Metering
Link		Launcher Facility	Water Heater (TBC)
			Pressure Regulation (TBC)

Volume 5: Attachments

Attachment 48: High Pressure Gas Network – Preliminary Safety Management Study – Gas Fields

Pipeline	KP	Facility	Comment
			DN500 Launcher
	5	DDPS Condabri Link Receiver Facility	DN500 Receiver
DDPS Pipeline	-	Booster compression at existing Talinga Meter Station	or DDPS to be confirmed during FEED
	~155	Receipt Point for Orana Spur Line	DN300 Receiver provision
	~190	Receipt Point for Kainama Spur Line	DN300 Receiver provision
Kenya Spur Line	0	Booster compression to flow gas into DDPS above 10 MPag.	To be confirmed during FEED
Orana Spur Line	0	Launcher Facility	Provision for DN300 Launcher
Kainama Spur Line	0	Launcher Facility	Provision for DN300 Launcher

Opportunities to rationalise the pre-FEED design and reduce the number of facilities have been identified. Rationalisation of the following shall be evaluated during FEED:

- Use DN500 instead of DN400 for KP0 to KP15 of the Condabri South Lateral to eliminate a launcher-receiver;
- Eliminate the launcher-receiver facility at the Condabri South Lateral (DN900) to Condabri Lateral (DN900) connection;
- Eliminate the launcher-receiver facility at the Combabula Lateral (DN750) to Woleebee Lateral (DN750) connection.

For a more detailed description of the proposed nature of the MLV sites, scraper stations, and meter stations refer to the HP Gas Network Design Basis Q-LNG03-50-PH-0001.

2.3 Control Systems

Local transmitters, indicators, and other instrumentation at each site will be connected via hard wiring to a local terminal/control panel to be located in a site hut, and powered either by mains power or solar power, both with battery back-up.

Each site will be capable of either remote operation or local (electronic or manual) operation.

Fibre Optic Cable will be used to provide both data and voice communications between each site controls hut and the Operations Control Centre (expected to be located in Brisbane).

Pressure of the gas delivered from the GPFs will be controlled by the discharge pressure of the compressor(s) within the GPF. A secondary overpressure protection level will be provided by an emergency shutdown valve downstream of the compressor at the start of each pipeline. It is assumed that these ESD valves will be located with the GPFs (to be confirmed during FEED).

Volume 5: Attachments Attachment 48: High Pressure Gas Network – Preliminary Safety Management Study – Gas Fields

Subject to final decisions during FEED, there are some locations within the HP Gas Network at which there are changes in the MAOP. Design for pressure control at all such locations will have two levels of overpressure protection, for example a pressure regulation skid and an ESD valve triggered by a separate transmitter. This requirement may be waived at the start of the Mainline if the MAOP of the HP Gas Network and Main Pipeline System are determined during FEED to be the same.

2.4 Basic Pipeline Design Parameters

Following are the key design parameters of the pipelines.

Table 2.5	Common	Pipeline	Design	Parameters
-----------	--------	-----------------	--------	------------

Parameter	Specification
Design temperature	Maximum: 60 ⁰ c
	Minimum: 10 ⁰ c
Design life	50 yr
Pipeline coating	Three-layer polyethylene (3LPE) or Fusion Bonded Epoxy (FBE)
Internal lining	COPON or equivalent, factory applied
Maximum allowable operating pressure	15.3 MPa
Cathodic protection	External coating and impressed current cathodic protection
Depth of cover	Generally – minimum 750mm
	Residential, Agricultural – minimum 900mm
	Deep Ploughing – minimum 900mm
	Road crossings / road reserves – minimum 1200 mm
	Watercourse crossings – minimum 1200 mm
	Railway – minimum 2000 mm
	GSDA – minimum 1200 mm
Non Destructive Testing	Testing of welded joints and hydrostatic pressure testing of the pipeline in accordance with AS2885
Buried Marker Tape	Installed at open cut roads, throughout Heavy Industrial Secondary
	Land Classification and other risk areas as defined in the Risk Assessment.
	กองของเปซีปน.
Pipeline Monitoring System	SCADA system for remote monitoring and control of all facilities at each end of the pipeline; periodic patrolling along the pipeline.

Diameter	Approx. Length (km)	Standard Wall Thickness (mm)	Heavy Wall Thickness (mm)	Induction Bends Wall Thickness (mm)	12.6 kW/m ² Radiation Contour (m)	4.7 kW/m ² Radiation Contour (m)
DN300 (12")	65	8.71	11.59	12.23	224	374
DN400 (16")	31	8.72	11.60	12.23	299	498
DN500 (20")	95	10.09	12.04	12.68	399	656
DN600 (24")	50	12.10	14.45	15.21	490	797
DN750 (30")	35	15.13	18.06	19.02	631	1038
DN900 (36")	15	18.15	21.67	22.82	771	1267
	291					

Table 2.6 Design Parameters by Diameter

3. Safety management study process

3.1 Study Team

The Safety Management Study team comprised the following personnel:

Table 3.1

Organisation	Role
APLNG	Pipeline Engineer
APLNG	Engineering Manager - Pipelines
APLNG	Deputy Project Manager - Pipelines
APLNG	HP Gas Network Pipeline Engineer
APLNG	Operations Representative
APLNG	Upstream Health and Safety
APING	EIS Co-ordinator
	Compliance, Risk, and Op'ns.
	· · · · · ·
warsh Risk Consulting	Risk Engineer
Metcalfe Engineering	Facilitator
	APLNG APLNG APLNG APLNG APLNG APLNG APLNG APLNG APLNG Marsh Risk Consulting

(Note - Not all were available full-time)

3.2 Activities Undertaken

Planning for the Safety Management Study included review of the requirements of both AS2885 and the Terms of Reference for the Environmental Impact Statement. Available data was reviewed and collated into an early draft revision of this report and distributed to selected attendees. Although some threats and mitigations were defined in the draft revision for information, the primary means of identifying the potential threats and appropriate control measures was the workshop itself, as required by AS2885.

The workshop was held on Thursday 10 December, 2009 and facilitated by Ted Metcalfe of Metcalfe Engineering Consultants Pty Ltd. A series of slides were used as an agenda to guide the preliminary discussion session, which included a detailed description of the pipelines supported by maps, schematics, and drawings.

The Safety Management Study process as defined in AS2885 was reviewed with the aid of the flow diagram shown at Figure 3.1. The differences between design, physical and procedural controls were reviewed and the importance of applying a combination of such controls was emphasised. The Scope of Pipelines applicable to the Study were discussed and agreed.

The group then reviewed the AS2885 definitions of Severity class in terms of People, Supply, and the Environment and agreed that these text descriptions seemed appropriate.

However, the suggested *numerical* allocations of cost and schedule consequences to each of the Severity classes (from previous transmission pipeline projects) were reviewed and after some

Volume 5: Attachments Attachment 48: High Pressure Gas Network – Preliminary Safety Management Study – Gas Fields

discussion it was agreed that the information necessary to understanding the ranking of consequences for this project in terms of cost and schedule figures was not available to the participants. It was agreed to proceed as far as practical without having defined cost and schedule figures to compare consequences of the threats identified.

The actual identification and assessment portion of the workshop then progressed, on the basis of threats previously identified with encouragement that the group should feel free to define additional threats where considered applicable. Assessments of severity and frequency were discussed, agreed, and recorded on the spreadsheet, which automatically assigned the risk level by inspection of the AS 2885 matrix.

As required by the defined process, in each case for which the assessed risk was greater than Low or Negligible, additional control measures were defined, recorded, and assigned for close-out, and the assessments repeated to ensure that Low or Negligible could be achieved with the additional measures.

The process requires that where evaluation after **additional** control measures was still Intermediate, then consideration must be given to whether or not the threat with the control measures in place could be deemed ALARP (As Low As Reasonably Practicable). This requires agreement and documentation that "the cost of any additional controls would be grossly disproportionate to the benefit gained". Threats remaining above Intermediate are not acceptable.

Following the workshop the record of activities was edited for typos and references, and this draft Report was distributed to attendees for review and comment.

This Report with participant comments incorporated forms the documented record of the Preliminary Safety Management Study of the APLNG HP Pipelines Network.

AS 2885.1-2007

28

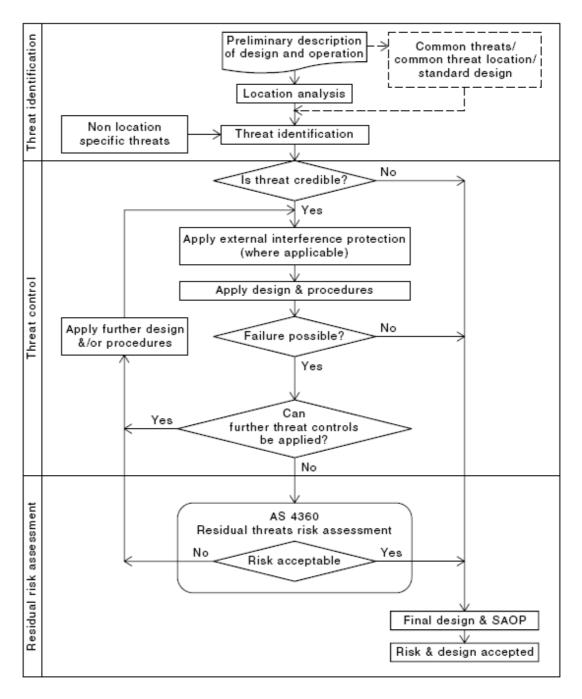


Figure 3.1 Safety Management Study Process

4. Location analysis

The terrain of the project area is generally rural in land use, flat to undulating with some areas of forested hilly terrain, particularly from Fairview to Spring Gully.

Much of the route is in areas of low population density with limited infrastructure development. There are some areas of remnant forest vegetation but the pipeline route avoids these where possible.

4.1 AS 2885 Location Classifications

Brief descriptions of the primary location classes given in AS2885 are:

- Rural (R1) Land that is unused, undeveloped or is used for rural activities.
- Rural Residential (R2) Land that is occupied by single residence blocks typically in range 1 ha to 5 ha.
- **Residential (T1)** Land that is developed for community living (i.e. where multiple dwelling exist in proximity to each other and are served by common public utilities).
- **High Density (T2)** Land that is developed for high density community use (i.e. where multistorey development predominates or where large numbers of people congregate in the normal use of the area).

Brief descriptions of the secondary location classes are:

- Sensitive Use (S) Area's where consequence of failure may be increased, (i.e schools, hospital and aged care facilities). T2-design requirements apply in Sensitive areas.
- **Industrial (I)** Industrial location are land that poses a wide range of threats because of its development. T1-design requirements apply in Industrial areas.
- Heavy Industrial (HI) Site development or zoned for use of heavy industry or for toxic industrial use.
- **Submerged (W)** land that is continuously or occasionally inundated with water, (i.e lakes, harbours, flood plains, watercourses and creeks), whether permanent or seasonal.
- **Common Infrastructure Corridor (CIC)** multiple infrastructure developments within a common easement or reserve.

4.2 Discussion of Location Classifications

After review of both available mapping and Google Earth images, it was agreed by the workshop that with a few exceptions, the entire project area of the HP Gas Networks could be classified as R1.

During FEED the production of more detailed Alignment Sheets will consider and apply other classifications in limited areas, such as R2 where a greater population density exists or is likely to exist in future.

Areas in close proximity to compression and processing facilities, or where significant CSG or mining activity will occur, may warrant a secondary classification as Industrial however it is unlikely that other secondary classifications will be applied.

Only three specific areas were considered as potentially representing different threats, and these were:

- The Fairview to Spring Gully Loop (as it is parallel and adjacent to an existing operating pipeline),
- The Surface Facilities and the equipment within them, and
- The eastern section of the existing DDPS pipeline, as the proposed flows may prevent integrity monitoring by intelligent pig under some conditions.

5. Failure and Consequence Analysis

The pipelines under review in this Safety Management Study are all have a design pressure of 15.3 MPag and are proposed to built from steel rated to API 5L X-70.

Table 2.3 above provides wall thicknesses for each diameter.

5.1 **Penetration Resistance**

Section 4 of the referenced document "Network Design Calculations Pre-FEED Q-LNG03-50-TR-0001" provides a detailed treatment of matters relating to penetration resistance for the HP Gas Networks pipelines diameters and wall thicknesses.

For the HP Gas Network, the assumed largest excavator was 55 t, which is consistent with the Main Pipeline System assumption and is the largest excavator considered by AS2885.1 Appendix M. While it is not expected that excavators of this size will operate frequently in the project area, other threats such as coal seam drilling equipment will operate frequently, particularly nearby the small diameter (DN300 and DN400) spur lines to GPFs.

In accordance with AS2885.1 Appendix M and Table M5, a B factor of 0.75 was selected for the standard wall pipe, and 1.0 for heavy wall pipe. The SMS agreed that these B factors were reasonable but recognised the need to review penetration resistance when better data become available on earth moving equipment activity and ability to penetrate.

The wall thicknesses for DN300 and DN400 line pipe required for pressure containment were increased slightly to achieve the 55 t penetration resistance. All other pressure containment wall thicknesses were sufficient to resist penetration.

The resulting wall thicknesses are listed in Table 2.3 above.

5.2 Energy Release and Radiation

Table 2.3 above also provides measurement distances for the nominated radiation contours for each diameter.

Given the outcomes of the penetration resistance preliminary design, a full bore rupture of any of the pipelines in the HP Gas Network is so unlikely as to be not credible.

However, the Safety Management Study is also required to consider the potential for corrosionrelated loss of pressure containment integrity, and as with the Mainlines SMS workshop, a threat of undetected corrosion was agreed as a potential cause of full bore pipeline rupture.

6. Threat controls

A significant number of threats to any buried pipeline are associated with third party activities which inadvertently contact and cause damage to the pipeline. As further detailed following, AS2885 requires certain Controls be put in place as External Interference Protection.

Design practices are also used to protect the pipeline against typical threats, and other control mechanisms may also be implemented, also as discussed following.

6.1 External Interference Protection

AS2885 nominates minimum requirements for both Physical and Procedural Controls which can be applied to reduce the probability of particular third party interference threats.

The following shall apply:

- a) A minimum of 1 physical control and 2 procedural controls shall be applied in R1 and R2 location classes.
- b) A minimum of 2 physical control and 2 procedural controls shall be applied in T1 and T2 location classes.
- c) For each control, all reasonably practicable methods shall be adopted.
- d) Physical controls for protection against high powered boring equipment or cable installation rippers shall not be considered absolute.
- e) In CIC location class, agreements to control the activities of each user shall be implemented with other users of the CIC wherever possible.

6.1.1 Physical Controls

AS2885 defines Physical Controls as follows:

Table 6	.1
---------	----

Physical Controls	Methods
Separation	Burial (depth of cover)
	Exclusion (Fencing, access prevented)
	Physical Barrier (Crash barrier, concrete slabs/coating)
Resistance to Penetration	Wall thickness (if adequate to prevent penetration)
	Barriers preventing penetration

6.1.2 Procedural Controls

Procedural Controls per AS2885 are as follows:

Table 6.2

Procedural Controls	Methods
Pipeline Awareness	Landowner / Third Party Liaison
	Community Awareness Program
	One Call service (Dial Before You Dig)
	Marker Signs or Marker Tape
	Activity Agreements with other entities
External Interference Detection	Planning Notification Zones
	Patrolling
	Remote Intrusion Monitoring

6.2 Controls by Design

The following are examples of design measures which will be implemented in a number of locations to protect the pipeline against potential threats.

Road Crossings:

- Extra depth of cover across the entire road easement.
- Extra wall thickness if required by potential loading.
- Concrete slabs in the areas of future table drain maintenance.
- Marker tape for the entire road easement.

Watercourse Crossings:

- Extra depth of cover.
- Concrete mechanical/weight protection if warranted by stream scour potential.
- Careful rehabilitation of banks to prevent future erosion.

7. Threat identification

This section summarises Typical and Location Specific Threats to the pipeline, and proposed application of Controls for each.

7.1 Review of Typical Threats

There are a number of threats which may be present generally or repeated at many places along the pipeline, and are not specific to defined locations.

Examples of these are readily listed as shown below, each with the mitigation currently proposed by the project.

(These were pre-populated for information and consideration only, and were then validated by the actual Safety Management Workshop.)

7.1.1 External Interference

Table 7.1

Mitigation Proposed
Depth of cover
Marker Signs and Tape
Activity Agreements
Depth of cover
Marker Signs and Tape
Liaison Programs
Extra depth of cover
Marker Signs
Liaison Programs

7.1.2 Road Crossings

Potential Threat	Mitigation Proposed
Traffic Loads	Extra depth of cover
	Liaison with haulage companies
	Marker signs
Maintenance of Table Drains	Extra depth of cover
	Concrete slabs
	Marker tape

7.1.3 Rail Crossings

Table 7.3

Potential Threat	Mitigation Proposed
Derailment	Extra depth of cover
	Concrete slabs (??)
	Marker signs
Maintenance	Extra depth of cover
	Liaison with railway authorities
	Marker signs
Fatigue	Extra depth of cover
	Extra wall thickness
	Liaison with railway authorities

7.1.4 Corrosion

Table 7.4

Potential Threat	Mitigation Proposed
Internal	Full time gas quality monitoring.
	Periodic intelligent pig for metal loss.
	Low point drain check ??
External	Quality external coating.
	Periodic DCVG inspection.
	Periodic intelligent pig for metal loss.

7.1.5 Natural Events

Potential Threat	Mitigation Proposed		
Land Slip	Routing to avoid potential slip areas.		
	Routine patrols to observe movement.		
	Design??		
Subsidence (Natural or Mining)	Routing to avoid potential subsidence areas.		
(Sinkholes, Underground mining,	Liaison with mining /gasification companies.		
underground coal gasification)	Routine patrols to observe movement.		

Potential Threat	Mitigation Proposed
Floods	Buoyancy control in flood-prone areas.
Scour	Extra depth of cover in water courses.
	Concrete protection in scour-prone locations.

7.1.6 Electrical Effects

Table 7.6

Potential Threat	Mitigation Proposed			
Induced Voltages	Design of earthing systems.			
	Procedures and training during construction and during operations.			
Fault Currents	Design of earthing systems.			
Lightning	Design of earthing systems.			
	Procedures to stop work during lightning activity.			
	Surge arrestors.			
Power Failures	Back-up battery systems.			

7.1.7 Operations and Maintenance Activities

Table 7.7

Potential Threat	Mitigation Proposed			
Overpressure	Design of over-pressure protection systems.			
	Monitoring and alarm via SCADA system.			
	Training to ensure by-pass is prevented.			
Repair Dig-ups	Procedures and training.			
	Accurate location prior to excavation.			
Maintenance of Equipment	Regular audits of equipment condition.			
	Application of recommended programs.			

7.1.8 Construction Defects

Potential Threat	Mitigation Proposed
Coating Damage	Approved handling procedures.
	Backfill specification.

Volume 5: Attachments

Attachment 48: High Pressure Gas Network – Preliminary Safety Management Study – Gas Fields

Potential Threat	Mitigation Proposed
	Holiday detection on installation.
Failed Field Joint Coating	Qualified coating application procedure approval.
	Design selection of appropriate system.
	Holiday detection after completion.
Dents and Wrinkles	Qualified bending procedure approval.
	Visual and internal gauge inspection.
Weld Quality	Qualified weld procedures approval.
	NDT inspection.
	Hydrostatic pressure and leak test.
Backfill quality	Backfill quality specification.
	Inspection during construction.
	DCVG follow-up inspection.
Blasting procedures	Qualified blasting procedures.
	Licensed personnel for design and implementation of blast programs.
	Exclusion zones.

7.1.9 Design Defects

Table 7.9

Potential Threat	Mitigation Proposed			
Stress Corrosion Cracking	Engineering design and metal specification.			
	High quality coating.			
	Temperature control.			
	Periodic intelligent pig inspection for cracking.			
Incorrect wall thickness	Engineering design QA and audit procedures.			
	Inspection on receipt.			
	Hydrostatic pressure test.			
Inadequate functionality	Operations and Maintenance input to engineering design.			
	HAZOP and CHAZOP studies.			
	Pre-commissioning inspection and testing.			

7.1.10 Material Defects

Mitigation Proposed				
Engineering Design and QA.				
Inspections and QA in the pipe mills.				
Engineering coating selection.				
QA in the coating material supply and application.				
Engineering Design specifications.				
QA and Inspection and Test Plans during fabrication.				
Inspection and acceptance on receipt.				
Pre-commissioning testing and inspection.				

7.1.11 Intentional Damage

Table 7.11

Potential Threat	Mitigation Proposed
Wilful Damage External	Markers and warning signs.
(Vandalism, Terrorism, Sabotage)	Security fencing and locks.
	Routine patrols.
	CCTV installations in critical facilities??
Wilful Damage Internal (Sabotage)	Employee background checks.
	Human Resources management.
	Other??

7.1.12 Earthquake

A full evaluation of the potential for damaging earthquake in the vicinity of the HP Gas Network has not yet been completed, however reference to Geoscience Australia mapping indicates that there is little or no earthquake activity in this area.

7.1.13 Future Blasting

The pipeline route has intentionally avoided all known areas of likely future infrastructure development, or design has taken those into consideration.

It is possible that in future another third party will seek to conduct blasting in the vicinity of the pipeline for infrastructure development, quarrying, or mining. The proposed community liaison program and notification requirements would ensure that APLNG is aware of the proposed blasting and has the opportunity to evaluate and if appropriate, approve the blasting.

7.2 Review of Location-Specific Threats

Three areas were considered to be distinct from the general pipeline in terms of land use, population density, or potential threat to the pipeline. The threats associated with each are briefly described following.

7.2.1 Fairview to Spring Gully Loop

The requirement to construct a new pipeline in close proximity to an existing operating pipeline over some distance presents threats to the existing pipeline, which are to be considered by this workshop. These include:

- Damage with or without penetration to the existing pipeline, either during construction or during future maintenance activities.
- Some potential that a failure of either pipeline in future could affect the other pipeline.

7.2.2 Surface Facilities

The fenced surface facilities represent potential threats such as:

- Damage from local bushfires.
- Vandalism or theft.
- Mistakes during operations activities such as pigging.

7.2.3 Eastern Section of the DDPS Pipeline

The existing DDPS pipeline was designed to flow from west to east to deliver gas to the Darling Downs Power Station (DDPS), and has intermediate pig launching and receiving facilities at the Talinga Metering Station only. Design of the HP Gas Network however includes a major link west of the TMS between the DDPS Pipeline and the Condabri South Lateral, as well as a number of production spur lines adding produced gas east of the TMS.

Under normal operation of the eastern section of the DDPS Pipeline, the power station demand would result in flow to the east but the HP Gas Network demand via the DDPS Condabri Link will result in flow to the west. Under these conditions a pig launched at the western end of the DDPS pipeline could not be received at the power station.

The extent to which this impacts on the ability to launch and receive intelligent pigs as part of an integrity monitoring program was considered by the workshop.

There was some discussion as to whether or not the Spur Lines connecting the processing facilities to the Laterals were potentially subject to different threats, and the workshop agreed that the Spur Lines and the Laterals were no different in terms of threats, despite different diameters and service.

8. Study outcomes and recommendations

The details of the Safety Management Study assessment are recorded in the worksheets referenced from Appendix 2.

8.1 Study Outcomes

8.1.1 Summary of Evaluation Results

A total of 55 threats were identified, nearly all of which were in the category of Typical threats.

As happened at the Mainlines SMS workshop, a number of threats were initially ranked as Intermediate, but additional controls could not be defined to allow the threat to be re-evaluated as Low.

Table 8.1

No.	Threat	Initial	Re-rank	lssue
2	Third party activity at pipeline crossing (with penetration)	Int.	ALARP	Discussed and agreed that any additional controls would not provide further reduction of the threat.
5	Third party activity other than at crossing, with penetration	Int.	N/A	Further field research required.
7	Deep ripping with penetration	Int.	N/A	Better understanding of potential use of rippers in field area is required.
10	Liquid carryover from processing plants	Int.	N/A	Ranking high on probability, not consequence. Further study of an existing CSG pipeline for liquids is proposed.
13	Undetected corrosion leads to rupture	Int.	Int.	Recommendation for annual leak detection survey.
19	Induced voltage leads to corrosion.	Int.	N/A	Study during FEED regarding proximity to existing and proposed new HV power lines.
31	Stress Corrosion Cracking	Int.	N/A	Further study is proposed during FEED.

Some other threats, although initially ranked as Low, resulted in recommendations.

8.1.2 Discussion of Other Key Outcomes

Undetected Corrosion

Wall thicknesses nominated for the diameters under study are all such that rupture due to penetration associated with third party interference is not a credible scenario. However, the workshop agreed that

Volume 5: Attachments Attachment 48: High Pressure Gas Network – Preliminary Safety Management Study – Gas Fields

undetected corrosion leading to rupture (as recently occurred on Varanus Island in WA) represented a valid threat, and this was taken as the All Controls Fail scenario.

If indeed all controls did fail and widespread corrosion went undetected to the point of pipeline rupture, then the consequences of rupture in terms of radiation impact distances indicated in Section 5.2 above would eventuate.

Penetration by Drilling

The participants expressed some concern regarding the potential for future CSG drilling operations (either APLNG or other proponents) to damage the pipelines. Although the concept of penetration resistance to excavator teeth is reasonably well understood, the ability of pipelines to withstand sustained attack from drilling machinery is not as well understood.

8.2 Study Recommendations

The HP Gas Networks SMS has generated almost the same recommendations as were defined at the Mainlines SMS.

8.2.1 Design Phase

- 1. Improved understanding of the size and nature of equipment likely to be used in development of new infrastructure near the pipeline.
- 2. Study of the potential for liquid carryover into the pipeline from the processing plants, and the success or otherwise of routine pigging of an existing CSG pipeline.
- 3. Seismic Study of the pipeline route.
- 4. Geotechnical investigation of any areas of potential natural subsidence (sinkholes).
- 5. Hydrological Study of potential for Flooding along the pipeline route; as well as potential for migration of watercourse banks during flood periods.
- 6. Improved understanding of potential developments in the GSDA.
- 7. Further study of the potential for Stress Corrosion Cracking.
- 8. SMS workshops should be held again at the end of the FEED phase, and a final Detailed Safety Management Study held at the end of Detailed Design.

8.2.2 Safety and Operating Plan (SAOP)

Operations should develop and implement an annual leak detection survey over the pipeline.

8.2.3 Other

In addition to the above, this SMS recommends that Origin Energy management provide policy direction on matters of security particularly as regards terrorism.

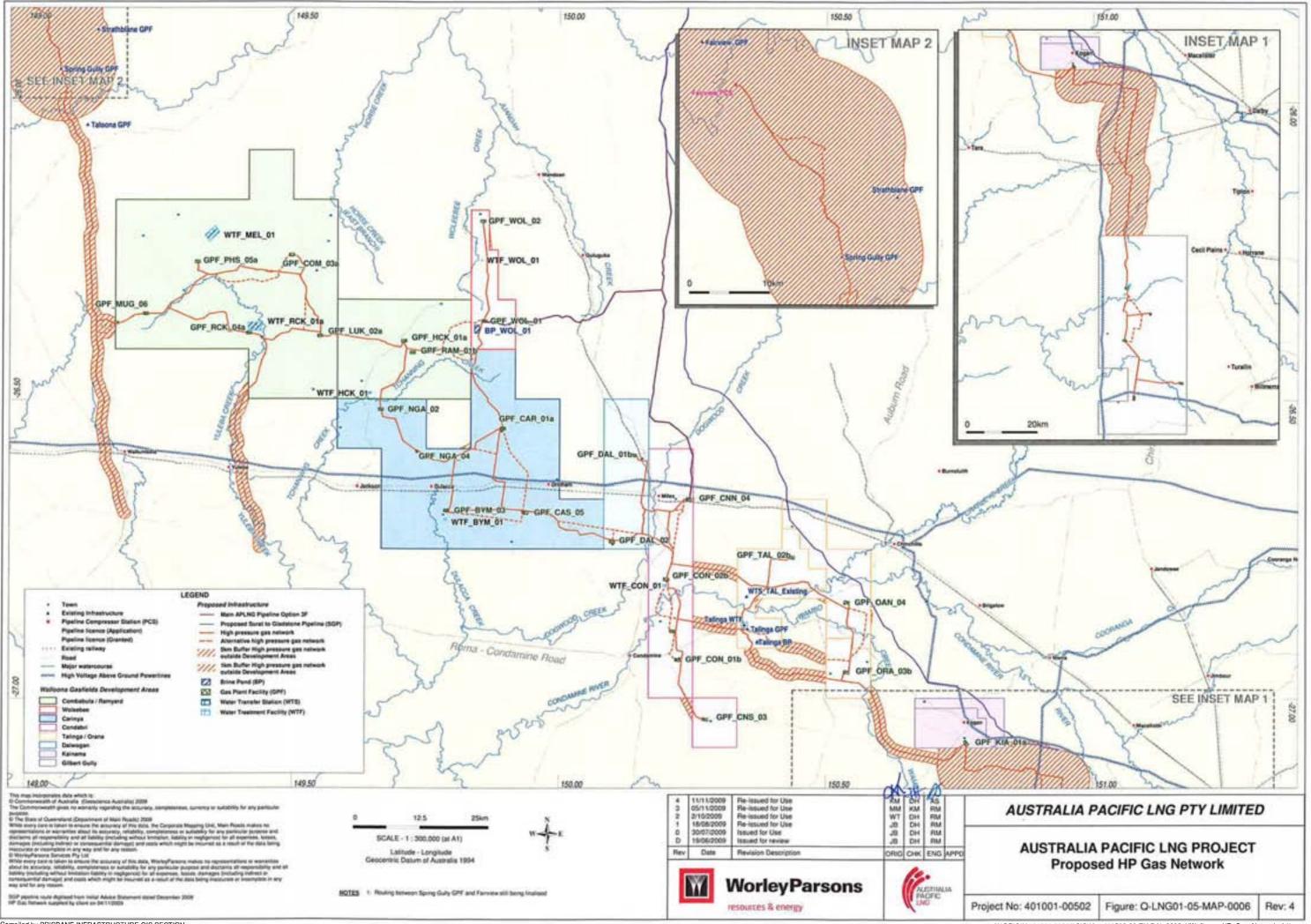
References

Terms of Reference for an Environmental Impact Statement Australia Pacific LNG Project – Under Part 4 of the *State Development and Public Works Organisation Act 1971*(The Coordinator-General - December 2009)

AS 2885.1-2007 Pipelines-Gas and liquid petroleum Part 1: Design and construction (as amended 2009)

Network Design Basis Q-LNG03-50-PH-0001

Network Design Calculations Pre-FEED Q-LNG03-50-TR-0001



Appendix A Abbreviations

3LPE Three layer polyethyene ALARP As Low As Reasonably Practicable APLNG Australian Pacific LNG (Origin/ConocoPhillips) AS Australian Standard CCIC Callide Common Infrastructure Corridor CDL Critical Defect Length CP Cathodic Protection CSG Coal Seam Gas DCVG Direct Current Voltage Gradient DDPS Darling Downs Power Station DN Nominal Diameter EIS Environmental Impact Statement ERW Electric Resistance Welded FEED Front-End Engineering Design GPF Gas Processing Facility GSDA Gladstone State Development Area HAZOP Hazard and operability study HDD Horizontal Directional Drilling HP High Pressure KR Kilometre LNG Liquefied Natural Gas MAOP Maximum Allowable Operating Pressure MLV Mainline Valve MPa Megapascal NDT Non-Destructive Testing PCS Pipeline Compressor Station<	Acronym	Meaning			
APLNG Australian Pacific LNG (Origin/ConocoPhillips) AS Australian Standard CCIC Callide Common Infrastructure Corridor CDL Critical Defect Length CP Cathodic Protection CSG Coal Seam Gas DCVG Direct Current Voltage Gradient DDPS Darling Downs Power Station DN Nominal Diameter EIS Environmental Impact Statement ERW Electric Resistance Welded FEED Front-End Engineering Design GPF Gas Processing Facility GSDA Gladstone State Development Area HAZOP Hazard and operability study HDD Horizontal Directional Drilling HP High Pressure KP Kilometre post Km kilometre LNG Liquefied Natural Gas MAOP Maximum Allowable Operating Pressure MLV Mainline Valve MPa Megapascal NDT Non-Destructive Testing PCS Pipeline Compressor Station PFD Process Flow Diagram	3LPE	Three layer polyethyene			
AS Australian Standard CCIC Callide Common Infrastructure Corridor CDL Critical Defect Length CP Cathodic Protection CSG Coal Seam Gas DCVG Direct Current Voltage Gradient DDPS Darling Downs Power Station DN Nominal Diameter EIS Environmental Impact Statement ERW Electric Resistance Welded FEED Front-End Engineering Design GPF Gas Processing Facility GSDA Gladstone State Development Area HAZOP Hazard and operability study HDD Horizontal Directional Drilling HP High Pressure KP Kilometre post Km kilometre LNG Liquefied Natural Gas MAOP Maximum Allowable Operating Pressure MLV Mainline Valve MPa Megapascal NDT Non-Destructive Testing PCS Pipeline Compressor Station PFD Process Flow Diagram QA Queensland RP Recommended	ALARP	As Low As Reasonably Practicable			
CCIC Callide Common Infrastructure Corridor CDL Critical Defect Length CP Cathodic Protection CSG Coal Seam Gas DCVG Direct Current Voltage Gradient DDPS Darling Downs Power Station DN Nominal Diameter EIS Environmental Impact Statement ERW Electric Resistance Welded FEED Front-End Engineering Design GSDA Gladstone State Development Area HAZOP Hazard and operability study HDD Horizontal Directional Drilling HP High Pressure KP Kilometre post Km kilometre LNG Liquefied Natural Gas MAOP Maximum Allowable Operating Pressure MLV Mainline Valve MPa Megapascal NDT Non-Destructive Testing PCS Pipeline Compressor Station PFD Process Flow Diagram QA Quality Assurance QGC Queensland RP Recommended Practice ROW Right of Way <td>APLNG</td> <td colspan="4">Australian Pacific LNG (Origin/ConocoPhillips)</td>	APLNG	Australian Pacific LNG (Origin/ConocoPhillips)			
CDL Critical Defect Length CP Cathodic Protection CSG Coal Seam Gas DCVG Direct Current Voltage Gradient DDPS Darling Downs Power Station DN Nominal Diameter EIS Environmental Impact Statement ERW Electric Resistance Welded FEED Front-End Engineering Design GPF Gas Processing Facility GSDA Gladstone State Development Area HAZOP Hazard and operability study HDD Horizontal Directional Drilling HP High Pressure KP Kilometre post Km kilometre LNG Liquefied Natural Gas MAOP Maximum Allowable Operating Pressure MLV Mainline Valve MPa Megapascal NDT Non-Destructive Testing PFD Process Flow Diagram QA Quality Assurance QGC Queensland RP Recommended Practice ROW Right of Way SAOP Safety and Operating Plan <	AS	Australian Standard			
CP Cathodic Protection CSG Coal Seam Gas DCVG Direct Current Voltage Gradient DDPS Darling Downs Power Station DN Nominal Diameter EIS Environmental Impact Statement ERW Electric Resistance Welded FEED Front-End Engineering Design GPF Gas Processing Facility GSDA Gladstone State Development Area HAZOP Hazard and operability study HDD Horizontal Directional Drilling HP High Pressure KP Kilometre post Km kilometre LNG Liquefied Natural Gas MAOP Maximum Allowable Operating Pressure MLV Mainline Valve MPa Megapascal NDT Non-Destructive Testing PCS Pipeline Compressor Station PFD Process Flow Diagram QA Quality Assurance QGC Queensland Gas Company QId Queensland Gas Company QId Queensland Practice ROW Right of Way	CCIC	Callide Common Infrastructure Corridor			
CSG Coal Seam Gas DCVG Direct Current Voltage Gradient DDPS Darling Downs Power Station DN Nominal Diameter EIS Environmental Impact Statement ERW Electric Resistance Welded FEED Front-End Engineering Design GPF Gas Processing Facility GSDA Gladstone State Development Area HAZOP Hazard and operability study HDD Horizontal Directional Drilling HP High Pressure KP Kilometre post Km kilometre LNG Liquefied Natural Gas MAOP Maximum Allowable Operating Pressure MLV Mainline Valve MPa Megapascal NDT Non-Destructive Testing PCS Pipeline Compressor Station PFD Process Flow Diagram QA Quality Assurance QGC Queensland Gas Company QId Queensland Gas Company QId Queensland Practice ROW Right of Way SAOP Safety and Operating Plan	CDL	Critical Defect Length			
DCVG Direct Current Voltage Gradient DDPS Darling Downs Power Station DN Nominal Diameter EIS Environmental Impact Statement ERW Electric Resistance Welded FEED Front-End Engineering Design GPF Gas Processing Facility GSDA Gladstone State Development Area HAZOP Hazard and operability study HDD Horizontal Directional Drilling HP High Pressure KP Kilometre post Km kilometre LNG Liquefied Natural Gas MAOP Maximum Allowable Operating Pressure MLV Mainline Valve MPa Megapascal NDT Non-Destructive Testing PFD Process Flow Diagram QA Quality Assurance QGC Queensland RP Recommended Practice ROW Right of Way SAOP Safety and Operating Plan SCADA Supervisory Control and Data Acquisition	СР	Cathodic Protection			
DDPS Darling Downs Power Station DN Nominal Diameter EIS Environmental Impact Statement ERW Electric Resistance Welded FEED Front-End Engineering Design GPF Gas Processing Facility GSDA Gladstone State Development Area HAZOP Hazard and operability study HDD Horizontal Directional Drilling HP High Pressure KP Kilometre post Km kilometre LNG Liquefied Natural Gas MAOP Maximum Allowable Operating Pressure MLV Mainline Valve MPa Megapascal NDT Non-Destructive Testing PFD Process Flow Diagram QA Quality Assurance QGC Queensland RP Recommended Practice ROW Right of Way SAOP Safety and Operating Plan SCADA Supervisory Control and Data Acquisition SMS Safety Management Study	CSG	Coal Seam Gas			
DN Nominal Diameter EIS Environmental Impact Statement ERW Electric Resistance Welded FEED Front-End Engineering Design GPF Gas Processing Facility GSDA Gladstone State Development Area HAZOP Hazard and operability study HDD Horizontal Directional Drilling HP High Pressure KP Kilometre post Km kilometre LNG Liquefied Natural Gas MAOP Maximum Allowable Operating Pressure MLV Mainline Valve MPa Megapascal NDT Non-Destructive Testing PFD Process Flow Diagram QA Quality Assurance QGC Queensland RP Recommended Practice ROW Right of Way SAOP Safety and Operating Plan SCADA Supervisory Control and Data Acquisition	DCVG	Direct Current Voltage Gradient			
EIS Environmental Impact Statement ERW Electric Resistance Welded FEED Front-End Engineering Design GPF Gas Processing Facility GSDA Gladstone State Development Area HAZOP Hazard and operability study HDD Horizontal Directional Drilling HP High Pressure KP Kilometre post Km kilometre LNG Liquefied Natural Gas MAOP Maximum Allowable Operating Pressure MLV Mainline Valve MPa Megapascal NDT Non-Destructive Testing PFD Process Flow Diagram QA Quality Assurance QGC Queensland Gas Company QId Queensland RP Recommended Practice ROW Right of Way SAOP Safety and Operating Plan SCADA Supervisory Control and Data Acquisition	DDPS	Darling Downs Power Station			
ERW Electric Resistance Welded FEED Front-End Engineering Design GPF Gas Processing Facility GSDA Gladstone State Development Area HAZOP Hazard and operability study HDD Horizontal Directional Drilling HP High Pressure KP Kilometre post Km kilometre LNG Liquefied Natural Gas MAOP Maximum Allowable Operating Pressure MLV Mainline Valve MPa Megapascal NDT Non-Destructive Testing PCS Pipeline Compressor Station PFD Process Flow Diagram QA Quality Assurance QGC Queensland Gas Company QId Queensland RP Recommended Practice ROW Right of Way SAOP Safety and Operating Plan SCADA Supervisory Control and Data Acquisition	DN	Nominal Diameter			
FEED Front-End Engineering Design GPF Gas Processing Facility GSDA Gladstone State Development Area HAZOP Hazard and operability study HDD Horizontal Directional Drilling HP High Pressure KP Kilometre post Km kilometre LNG Liquefied Natural Gas MAOP Maximum Allowable Operating Pressure MLV Mainline Valve MPa Megapascal NDT Non-Destructive Testing PCS Pipeline Compressor Station PFD Process Flow Diagram QA Quality Assurance QGC Queensland Gas Company Qld Queensland RP Recommended Practice ROW Right of Way SAOP Safety and Operating Plan SCADA Supervisory Control and Data Acquisition	EIS	Environmental Impact Statement			
GPFGas Processing FacilityGSDAGladstone State Development AreaHAZOPHazard and operability studyHDDHorizontal Directional DrillingHPHigh PressureKPKilometre postKmkilometreLNGLiquefied Natural GasMAOPMaximum Allowable Operating PressureMLVMainline ValveMPaMegapascalNDTNon-Destructive TestingPCSPipeline Compressor StationPFDProcess Flow DiagramQAQuality AssuranceQGCQueensland Gas CompanyQIdQueensland PracticeROWRight of WaySAOPSafety and Operating PlanSCADASupervisory Control and Data AcquisitionSMSSafety Management Study	ERW	Electric Resistance Welded			
GSDA Gladstone State Development Area HAZOP Hazard and operability study HDD Horizontal Directional Drilling HP High Pressure KP Kilometre post Km kilometre LNG Liquefied Natural Gas MAOP Maximum Allowable Operating Pressure MLV Mainline Valve MPa Megapascal NDT Non-Destructive Testing PFD Process Flow Diagram QA Quality Assurance QGC Queensland RP Recommended Practice ROW Right of Way SAOP Safety and Operating Plan SCADA Supervisory Control and Data Acquisition	FEED	Front-End Engineering Design			
HAZOPHazard and operability studyHDDHorizontal Directional DrillingHPHigh PressureKPKilometre postKmkilometreLNGLiquefied Natural GasMAOPMaximum Allowable Operating PressureMLVMainline ValveMPaMegapascalNDTNon-Destructive TestingPCSPipeline Compressor StationPFDProcess Flow DiagramQAQuality AssuranceQGCQueenslandRPRecommended PracticeROWRight of WaySAOPSafety and Operating PlanSMSSafety Management Study	GPF	Gas Processing Facility			
HDDHorizontal Directional DrillingHPHigh PressureKPKilometre postKmkilometreLNGLiquefied Natural GasMAOPMaximum Allowable Operating PressureMLVMainline ValveMPaMegapascalNDTNon-Destructive TestingPCSPipeline Compressor StationPFDProcess Flow DiagramQAQuality AssuranceQGCQueensland Gas CompanyQIdQueenslandRPRecommended PracticeROWRight of WaySAOPSafety and Operating PlanSCADASupervisory Control and Data Acquisition	GSDA	Gladstone State Development Area			
HPHigh PressureKPKilometre postKmkilometreLNGLiquefied Natural GasMAOPMaximum Allowable Operating PressureMLVMainline ValveMPaMegapascalNDTNon-Destructive TestingPCSPipeline Compressor StationPFDProcess Flow DiagramQAQuality AssuranceQGCQueensland Gas CompanyQIdQueensland PracticeRPRecommended PracticeROWRight of WaySAOPSafety and Operating PlanSCADASupervisory Control and Data Acquisition	HAZOP	Hazard and operability study			
KP Kilometre post Km kilometre LNG Liquefied Natural Gas MAOP Maximum Allowable Operating Pressure MLV Mainline Valve MPa Megapascal NDT Non-Destructive Testing PCS Pipeline Compressor Station PFD Process Flow Diagram QA Quality Assurance QGC Queensland Gas Company QId Queensland RP Recommended Practice ROW Right of Way SAOP Safety and Operating Plan SCADA Supervisory Control and Data Acquisition SMS Safety Management Study	HDD	Horizontal Directional Drilling			
Km kilometre LNG Liquefied Natural Gas MAOP Maximum Allowable Operating Pressure MLV Mainline Valve MPa Megapascal NDT Non-Destructive Testing PCS Pipeline Compressor Station PFD Process Flow Diagram QA Quality Assurance QGC Queensland Gas Company Qld Queensland RP Recommended Practice ROW Right of Way SAOP Safety and Operating Plan SCADA Supervisory Control and Data Acquisition SMS Safety Management Study	HP	High Pressure			
LNGLiquefied Natural GasMAOPMaximum Allowable Operating PressureMLVMainline ValveMPaMegapascalNDTNon-Destructive TestingPCSPipeline Compressor StationPFDProcess Flow DiagramQAQuality AssuranceQGCQueensland Gas CompanyQIdQueenslandRPRecommended PracticeROWRight of WaySAOPSafety and Operating PlanSCADASupervisory Control and Data AcquisitionSMSSafety Management Study	KP	Kilometre post			
MAOP Maximum Allowable Operating Pressure MLV Mainline Valve MPa Megapascal NDT Non-Destructive Testing PCS Pipeline Compressor Station PFD Process Flow Diagram QA Quality Assurance QGC Queensland Gas Company QId Queensland RP Recommended Practice ROW Right of Way SAOP Safety and Operating Plan SCADA Supervisory Control and Data Acquisition SMS Safety Management Study	Km	kilometre			
MLVMainline ValveMPaMegapascalNDTNon-Destructive TestingPCSPipeline Compressor StationPFDProcess Flow DiagramQAQuality AssuranceQGCQueensland Gas CompanyQldQueenslandRPRecommended PracticeROWRight of WaySAOPSafety and Operating PlanSCADASupervisory Control and Data AcquisitionSMSSafety Management Study	LNG	Liquefied Natural Gas			
MPaMegapascalNDTNon-Destructive TestingPCSPipeline Compressor StationPFDProcess Flow DiagramQAQuality AssuranceQGCQueensland Gas CompanyQldQueenslandRPRecommended PracticeROWRight of WaySAOPSafety and Operating PlanSCADASupervisory Control and Data AcquisitionSMSSafety Management Study	MAOP	Maximum Allowable Operating Pressure			
NDT Non-Destructive Testing PCS Pipeline Compressor Station PFD Process Flow Diagram QA Quality Assurance QGC Queensland Gas Company Qld Queensland RP Recommended Practice ROW Right of Way SAOP Safety and Operating Plan SCADA Supervisory Control and Data Acquisition SMS Safety Management Study	MLV	Mainline Valve			
PCS Pipeline Compressor Station PFD Process Flow Diagram QA Quality Assurance QGC Queensland Gas Company Qld Queensland RP Recommended Practice ROW Right of Way SAOP Safety and Operating Plan SCADA Supervisory Control and Data Acquisition SMS Safety Management Study	MPa	Megapascal			
PFD Process Flow Diagram QA Quality Assurance QGC Queensland Gas Company Qld Queensland RP Recommended Practice ROW Right of Way SAOP Safety and Operating Plan SCADA Supervisory Control and Data Acquisition SMS Safety Management Study	NDT	Non-Destructive Testing			
QA Quality Assurance QGC Queensland Gas Company Qld Queensland RP Recommended Practice ROW Right of Way SAOP Safety and Operating Plan SCADA Supervisory Control and Data Acquisition SMS Safety Management Study	PCS	Pipeline Compressor Station			
QGC Queensland Gas Company Qld Queensland RP Recommended Practice ROW Right of Way SAOP Safety and Operating Plan SCADA Supervisory Control and Data Acquisition SMS Safety Management Study	PFD	Process Flow Diagram			
Qld Queensland RP Recommended Practice ROW Right of Way SAOP Safety and Operating Plan SCADA Supervisory Control and Data Acquisition SMS Safety Management Study	QA	Quality Assurance			
RP Recommended Practice ROW Right of Way SAOP Safety and Operating Plan SCADA Supervisory Control and Data Acquisition SMS Safety Management Study	QGC	Queensland Gas Company			
ROWRight of WaySAOPSafety and Operating PlanSCADASupervisory Control and Data AcquisitionSMSSafety Management Study	Qld	Queensland			
SAOP Safety and Operating Plan SCADA Supervisory Control and Data Acquisition SMS Safety Management Study	RP	Recommended Practice			
SCADA Supervisory Control and Data Acquisition SMS Safety Management Study	ROW	Right of Way			
SMS Safety Management Study	SAOP	Safety and Operating Plan			
	SCADA	Supervisory Control and Data Acquisition			
TMS Talinga Metering Station	SMS	Safety Management Study			
	TMS	Talinga Metering Station			

Appendix B Map of HP Pipelines Network

Compiled by BRISBANE INFRASTRUCTURE GIS SECTION

K:\ORIGIN\401001-00502\GIS\Maps\00502-00-EN-DAL-0002-4(Walloons_HP_Gas_Network_A1).wor

Appendix C Safety Management Study Record

SAFETY M	ANAGEMENT	STUDY IN ACCO	ORDANCE WITH	AS2885.1	
			Project:	HP Pipelin	e Networks
	uction fields		Client:	API	LNG
			Date:	10-D	ec-09
			Facilitator:	Ted M	letcalfe
of Interest: nment.					
ASURES					1
	Catastropic	Major	Severe	Minor	Trivial
People	Multiple fatalities.	A few fatalities and/or life threatening injuries.	Hospitalisation required.	First Aid required.	Mimimal impact.
Supply / Commercial Impact	Long term interruption	Prolonged interruption or long term restriction.	Short term interruption or long term restriction.	Short term interruption or restriction; alternatives available.	No impact.
Environment	Widespread effects. Permanent major changes.	Major off-site impact. Long term severe effects. Rectification difficult.	Local short term effects. Easily rectified.	Very localised and short term. Easily rectified.	No effect. Negligible residual
Cost from	\$500,000	\$100,000	\$10,000	\$1,000	Zero
up to	??	\$500,000	\$100,000	\$10,000	\$1,000
Sabadula	One month	One week	Full working day	Fow bours	No lost time.
			· · ·		Few hours
				3 <i>j</i>	Trivial
133L3.	Catastropic	Wajoi	Severe	WIIIO	IIIvidi
Frequent	Extreme	Extreme	High	Intermediate	Low
Occasional	Extreme	High	Intermediate	Low	Low
Unlikely	High	High	Intermediate	Low	Negligible
Remote	High	Intermediate	Low	Negligible	Negligible
Hypothetical	Intermediate	Low	Negligible	Negligible	Negligible
				Type of Threat	
				External Interference	Ext
everity costs and	d durations for each	study scope and		Corrosion Natural Event	Corr
				Electrical Effect	Elec
ed but deemed r	non-credible, with re	easons.	Operatio		
Consider an "All controls fail" worst case scenario and assess.					
	Sonano ana 200500	•		Intentional Damage	
				Other	Oth
	erest: eration of: n the CSG prod / Surface Facili of Interest: nment. ASURES People Supply / Commercial Impact Environment Environment Cost from up to Schedule up to SSES: Frequent Occasional Unlikely Remote Hypothetical	Prest:	rrest: image: constraint of: in the CSG production fields / Surface Facilities of Interest: inment. ASURES People Multiple fatalities. A few fatalities and/or life threatening injuries. Supply / Commercial Impact Impact Long term restriction. Environment Widespread effects. Permanent major changes. Permanent major changes. Stop to ?? Stolo (000 up to ?? Stolo (000 up to ?? Stolo (000 up to ?? Stolo (000 stolo (000 up to ?? Stolo (000 stolo (000 up to ??) Stolo (000 up to ??) Stolo (000 stolo (000 up to ??) Stolo (000 up to ??) Stolo (000 stolo (000 up to ??) Stolo (000 stolo (000 up to ??) Stolo (000 up to ??) Stolo (000 stolo (000 up to ??) Major ff-site (100 thep (100 thep (100 thep (100 thep (100 thep (1	rest: rest: restion of: In the CSG production fields / Surface Facilities	eration of: nthe CSG production fields Client: API / Surface Facilities Date: 10-D Of Interest: nment. Facilitator: Ted M ASURES Catastropic Major Severe Minor ASURES Catastropic Major Severe Minor People Multiple fatalities. A few fatalities. Hospitalisation First Aid required. Supply / Long term Prolonged Interruption or long interruption or long interruption or long effects. Short term Short term. Permanent major changes. Permanent major Cons term. Easily rectified. Easily rectified. Stoct from \$500,000 \$10,000 \$10,000 \$10,000 \$10,000 Schedule One month One week Full working day Few hours up to ?? \$500,000 \$10,000 \$10,000 \$10,000 Stoctastropic Major Severe Minor Easily rectified. Bactification One week Full working day Few hours Easily rectified. Stoctestropic Major <t< td=""></t<>

	PROJECT:		HP PIPELINES NETWORK			SECTION:	Typical Threats						
No.	Threat	Category	Consequences	Frequency	Severity	Existing (Must have one Physical and two i R1	g Controls Procedural if External Interference in area)	Risk Rank	Additional Risk Reduction / Corrective Actions Required	Frequency	Severity	Revised Risk Rank	Responsible for Close-out
	(Specifically identify potential threatening event)		(Identify key negative consequences; or reason why non-credible.)			Physical / Design	Procedural / Awareness						(Individual)
	Example Only - Pipeline punctured by post hole driller.	Ext	Hydrocarbon leak. Personnel injury. Equipment damage.	Unl	Sev	Burial ,	Warning Signs	Int	Liason with local landowners and contractors. Permit to Work and supervision.	Rem	Sev	Low	Operations Manager
	TYPICAL THREATS (Relevant to entire pipeline or	to se	veral locations on pipeline):	1	<u> </u>				<u> </u>	<u> </u>	<u></u>	<u> </u>	
1.0	Activity by third party damages pipeline at pipeline crossing point (no loss of containment).	Ext	Coating damage Surface scoring.	Occ	Mir	Depth of Cover Separation between buried services.	Marker Signs Agreements in place with other asset owners. "Others" are also CSG operators and are aware of risks.	Low					
2.0	Activity by third party damages pipeline at pipeline crossing point (With penetration).	Ext	Coating damage requiring repair. Surface scoring. Loss of containment.	Unl	Sev	Depth of Cover. Wall thickness. Separation between buried services. Network loop arrangement provides alternative flow path to Gladstone mainline.	Marker Signs DBYD Agreements in place with other asset owners."Others" are also CSG operators and are aware of risks.	Int	ALARP. Additional physical and procedural measures considered but deemed overly expensive (full length slabbing, constant patrols and surveillance, etc.)				
3.0	Activity by third party damages pipeline at road/rail crossing point (no loss of containment).	Ext	Coating damage Surface scoring.	Unl	Mir	Depth of Cover Additional wall thickness (if required) at crossings.	Marker Signs Agreements in place with other asset owners.	Low					
4.0	Activity by third party damages pipeline at road/rail crossing point (Penetration).	Ext	Coating damage requiring repair. Surface scoring. Loss of containment.	Нур	Ma	Depth of Cover. Additional wall thickness (if required) at crossings.	Marker Signs DBYD Agreements in place with other asset owners.	Low					
5.0	Activity by third party damages pipeline <u>other than</u> at crossing point. (Other CSG development activities; dam construction, mining, etc.)	Ext	Coating damage requiring repair. Surface scoring. Possible penetration and loss of containment.	Occ	Sev	Depth of Cover Wall thickness. Alternative gas supply flow paths are available.	Marker Signs Liaison programs with local entities to advise of pipeline location and to learn of proposed future development. Higher level of local supervision available in the production field area.	Int	Requires re-consideration after collection of more information regarding the size of equipment potentially used in the area for future developments.			#N/A	Engineering Manager
6.0	Deep ripping or blade ploughing or irrigation channel construction damages pipeline.	Ext	Severe coating damage. Scoring of metal surface. Potential for loss of containment.	Occ	Mir	Extra Depth of Cover in agricultural areas.	Marker Signs Liaison programs with local farmers.	Low	Need further research in discussion with landholders regarding potential activities to allow determination of appropriate depth of cover.			#N/A	Engineering Manager
7.0	Deep ripping or blade ploughing or irrigation channel construction damages pipeline.	Ext	Severe coating damage. Scoring of metal surface. Assume small penetration.	Rem	Ma	Extra Depth of Cover in agricultural areas.	Marker Signs Liaison programs with local farmers.	Int	Need further research in discussion with landholders regarding potential activities to allow determination of appropriate depth of cover.			#N/A	Engineering Manager
8.0	Heavy traffic loads damage pipeline at a point not designed as a road crossing.	Ext	Some deformation possible.	Occ	Mir	Design calculation.	Liaison with drilling rig companies and landowners. Warning marker signs.	Low	FEED to consider heavy loads at points not designed as road crossings.			#N/A	Engineering Manager

No.	Threat	Category	Consequences	Frequency	Severity	(Must have one Physical and two F	Controls Procedural if External Interference in area)	Risk Rank	Additional Risk Reduction / Corrective Actions Required	Frequency	Severity	Revised Risk Rank	Responsible for Close-out
	(Specifically identify potential threatening event)		(Identify key negative consequences; or reason why non-credible.)			Physical / Design	Procedural / Awareness						(Individual)
	Derailed train damages pipeline.	Ext	Barely credible. Possible pipe deformation and coating damage.	Нур	Sev		N/A	Neg				#N/A	
	Liquid carryover from processing facilities into pipeline.	O&M	Accumulating liquid slug. LNG Plant feed gas quality issues.	Fre	Min	Coalescing filters at LNG Plant inlet.	Laterals may be pigged routinely to check for glycol accumulation.	Int	Additional study of an existing CSG pipeline is required to assist resolution. Consider drip pots at low points in main pipelines.			#N/A	Engineering Manager
	Internal Corrosion damages pipeline.	Corr	Metal loss. Pinhole leak.	Нур	Мај	Transmission gas quality monitoring.	Periodic intelligent pigging to check for metal loss.	Low				#N/A	
	External corrosion damages pipeline. (Pinhole leak only)	Corr	Loss of containment Metal loss.	Rem	Sev	High quality external coating (specs and installation procedures.). CP system design.	Monitoring of CP system operation. Routine DCVG survey. Routine intelligent pigging. Warning markers to prevent damage to coating.	Low				#N/A	
	External corrosion damages pipeline. PROPOSED AS "ALL CONTROLS FAIL" SCENARIO	Corr	Widespread metal loss. Loss of containment (rupture)	Rem	Мај	High quality external coating (specs and installation procedures.). CP system.	Monitoring of CP system operation. Routine DCVG survey. Routine intelligent pigging. Warning markers to prevent initial damage to coating.	Int	Consider annual leak detection survey for this pipeline system.	Нур	Cat	Int	Operations Manager
	Land slip damages pipeline; probably side slope related.	Nat	Deformation. Exceed design strain limits.	Rem	Sev	Route selection to avoid potential land slip areas. Slope stabilisation specified in high potential areas.	Routine patrols to note movements.	Low				#N/A	
15.0	Natural subsidence (sink holes, etc.)	Nat	(Review of threat still in progress)			(not yet specifically considered in route selection)	Routine patrols to note movements.	#N/A	Further study required.			#N/A	Engineering Manager
	Man-made subsidence (underground activities eg. Coal to liquids)	Ext	Uneven settlement of the pipeline. Potential to exceed design strain limits.	Нур	Min	Route selection to avoid existing and future underground developments.	Liaison programs.	Neg	Need to confirm future development activity proposed by any coal gasification operator.			#N/A	Engineering Manager
17.0	Flood activity exposes and damages pipeline.	Nat	Pipe floats to surface. Coating damage.	Rem	Min	Buoyancy control in potential flood areas.	Routine patrols.	Neg	To be further addressed in FEED.			#N/A	Engineering Manager
	Scour activity exposes and damages pipeline in watercourses.	Nat	Coating damage. Potential for flood debris to impact and strain pipe.	Rem	Sev	Depth of cover. Concrete mechanical protection. Bank rehabilitation after construction.	Routine patrols to identify bank progression.	Low	To be further addressed in FEED.			#N/A	Engineering Manager
	Induced HV power line voltage effects cause corrosion.	Corr	Metal loss.	Unl	Sev	Earthing and CP system design. High quality coating system.	DCVG and intelligent pig surveys.	Int	Further investigation required during FEED regarding proposed HV line locations.			#N/A	Engineering Manager
	Induced HV power line voltage effects injure workers.	Cons	Possible shock to personnel during construction.	Rem	Sev	Earthing and CP system design. High quality coating system.	Procedures to earth pipe during construction.	Low				#N/A	
	HV Fault currents damage coating and pipeline.	Elec	Coating damage. Possible pitting.	Rem	Min	Earthing and CP system design.		Neg				#N/A	

No.	Threat	Category	Consequences	Frequency	Severity	(Must have one Physical and two F	Existing Controls (Must have one Physical and two Procedural if External Interference in R1 area)			Frequency	Severity	Revised Risk Rank	Responsible for Close-out
	(Specifically identify potential threatening event)		(Identify key negative consequences; or reason why non-credible.)			Physical / Design	Procedural / Awareness						(Individual)
22.0	Lightning damages pipeline.	Nat	Pinhole leak. Coating damage.	Rem	Sev	Design of earthing systems. Surge arrestors.		Low				#N/A	
23.0	Power Supply Failure causes system shutdown.		(Not really a threat to the pipeline)	Нур	Sev	Battery back-up system. MLV to be fail last position controls design.		Neg				#N/A	
24.0	Pipeline overpressure during operations.	O&M	Exceeding design strain limit. (Rupture not credible.)	Нур	Мај	Overpressure protection design. SCADA monitoring and alarms. Compressor capability limited.	Operations training.	Low				#N/A	
25.0	Repair dig-up accidently damages pipeline.	O&M	Coating damage. Scoring of the pipe surface.	Occ	Min	Wall thickness.	Pipeline location procedures. Operations training. Machinery size limitation.	Low				#N/A	
26.0	Construction Defect - Damaged Coating	Cons	Potential corrosion if not repaired.	Occ	Min	Construction Specification Backfill Specification	Inspection and QA checks. (DCVG) Job training.	Low				#N/A	
27.0	Construction Defect - Incorrectly applied Field Joint Coating	Cons	Potential corrosion if not repaired.	Occ	Min	Field Joint Coating application procedures. Design selection of appropriate system.	Qualified coating application procedure approval. Holiday detection after completion.	Low				#N/A	
28.0	Construction Defect - Dents and Wrinkles in Pipe	Cons	Pipe local deformation.	Occ	Min	Material and Bend Specifications.	Bend Procedure Qualification QA checks/guage plate.	Low				#N/A	
29.0	Construction Defect - Failed Weld Undetected	Cons	Pinhole leak.	Нур	Sev	Welding specification.	Weld procedure qualification. QA and NDT checks. Hydrotest. DCVG Survey post-construction.	Neg				#N/A	
30.0	Incorrect Construction Blasting damages nearby infrastructure	Cons	Repair costs.	Rem	Min	Design of blasting charge size and timing.	Licenced personnel. Approved procedures. Pre and Post blast inspections.	Neg				#N/A	
31.0	Design Defect - Stress Corrosion Cracking	Des	MAOP limitation. Repair costs for clocksprings, etc.	Rem	Мај	Engineering Design and metallurgical specifications. High quality coating specified.	QA inspections in pipe mill. Process temperature control. Periodic intelligent pig inspection for cracks.	Int	Additional study required during FEED			#N/A	Engineering Manager
32.0	Incorrect Wall Thickness / Material Strength supplied.	Des	Replacement costs. Delay.	Rem	Min	Engineering Design and Specification.	Audit of design. MDR Review. Inspection in pipe mill; QA. Hydrotest.	Neg				#N/A	
33.0	Inadequate system functionality.	Des	Restricted operations.	Unl	Min	O&M input to Design.	HAZOP. CHAZOP. Pre-commissioning inspection. Post commissioning testing.	Low				#N/A	
34.0	Material Defect - Poor Steel Quality	Des	Replacement costs. Delay.	Rem	Min	Engineering Design.	QA and inspection in pipe mills. Hydrotest.	Neg				#N/A	
35.0	Material Defect - Poor Quality Coating Material or Application	Des	Replacement costs. Delay.	Rem	Min	Engineering Design and Specification.	QA inspections in coating mill. Holiday testing during construction. DCVG survey post-construction.	Neg				#N/A	

No.	Threat	Category	Consequences	Frequency	Severity	Existing (Must have one Physical and two f R1	J Controls Procedural if External Interference in area)	Risk Rank	Additional Risk Reduction / Corrective Actions Required	Frequency	Severity	Revised Risk Rank	Responsible for Close-out
	(Specifically identify potential threatening event)		(Identify key negative consequences; or reason why non-credible.)			Physical / Design	Procedural / Awareness						(Individual)
	Material Defect - Failure of Proprietary Equipment	Des	Replacement costs. Delay.	Rem	Min	Engineering Design and Specification.	Inspection and QA checks on fabrication and receipt. Pre-commissioning testing and inspections.	Neg				#N/A	
	Wilful Damage External (Vandalism, Terrorism)	Int	Possible rupture.	Нур	Sev	Security Fencing and monitoring at facility sites. High strength steel and wall thickness.	N/A	Neg	Warrants elevation to senior management for consideration as part of an overall security plan implementation.			#N/A	Project Manager
	Wilful Damage Internal (Sabotage)	Int	System shut-down or restriction. (Rupture unlikely)	Unl	Min		Employee interview and reference checks. Human resources management.	Low	Warrants elevation to senior management for consideration as part of an overall security plan implementation.			#N/A	Project Manager
39.0	Earthquake	Nat	Deformation of pipe. Coating defect.	Нур	Min	Not a known earthquake area.		Neg				#N/A	
	Future Blasting by others near pipeline.		Deformation of pipe. Coating defect.	Rem	Min	Depth of cover. Selected backfill.	Liaison programs. Warning markers.	Neg				#N/A	
	CP systems from adjacent pipelines interfere with each other	Corr	Coating defect. Localised corrosion.	Occ	Min	Coordination during design between parties with pipelines in the same area.	System monitoring. Routine intelligent pigging to detect metal loss.	Low				#N/A	
	Water pipeline leak damages gas pipeline		Salts in water cause corrosion if coating has defect.	Rem	Min	High quality coating. CP system design.	DCVG and intelligent pig surveys. Routine patrols to note water leaks.	Neg				#N/A	

	PROJECT:		HP PIPELINES NETWORK			SECTION:	Location Specific Threats						
No.	Threat	Category	Consequences	Frequency	Severity	Existing (Must have one Physical and two f R1	g Controls Procedural if External Interference in area)	Risk Rank	Additional Risk Reduction / Corrective Actions Required	Frequency	Severity	Revised Risk Rank	Responsible for Close-out
	(Specifically identify potential threatening event)		(Identify key negative consequences; or reason why non-credible.)			Physical / Design	Procedural / Awareness						(Individual)
	SPRING GULLY TO WALLUMBILLA LOOPING:		ł	I	1	4	ł		ł				
1.0	Construction activity hits existing pipeline.		Deformation and gouge.	Rem	Mir	Same easement, but minimum n separation between the pipelines.	Existing pipeline and easement are internally owned.	Neg					
2.0	Construction activity hits existing.		Loss of containment.	Нур	Ма	Same easement, but minimum j separation between the pipelines.	Existing pipeline and easement are internally owned.	Low					
3.0	Future maintenance activity on one pipeline contacts the other.		Deformation and gouge.	Rem	Mir	Wall thickness. n	Same operator both pipelines. As-built information readily available.	Neg				#N/A	
4.0	Knock-on effect of an incident on one pipeline affecting the other.		Theoretical rupture, but not credible with adequate separation distance.	Нур	Ca	Separation distance. Other pipeline designed and operated to AS2885 as well.	Research reports considered during design to assist setting minimum separation distance.	Int	ALARP. Alternative of acquiring new easement for entire distance not practical.			#N/A	
								#N/A				#N/A	
	SURFACE FACILITY SITES (SCRAPERS AND MLV'S):		(INCLUDING ABOVE GROUND SECTIONS INSIDE FENCE)				•			•			
1.0	Vandalism and Theft	Ext	Damage, potential shutdown of facility.	Rem	Mir	Secure fencing, locked gates. Door opening alarms connected to n SCADA. Consider locking enclosures for key instrumentation.	Warning signs. Public awareness and liaison	Neg				#N/A	
2.0	Bushfire		Scorching and minor equipment damage, potential shutdown of facility.	Unl	Mir	Cleared area outside of fence. n	Operations personnel respond to affected facilities when fire reported.	Low				#N/A	
3.0	Operator error (particularly pigging)	O&M	Shutdown. Equipment damage.	Unl	Mir	HAZOP. ⁿ Operations input to design.	Training Job procedures.	Low				#N/A	
4.0	Low temperature effects during station venting.	Des	Piping damage.	Нур	Mir	Material selection. ⁿ Modelling during design.	Training Job procedures.	Neg				#N/A	
5.0	Low temperature effects from MLV pipeline section venting.	Des	Piping damage.	Нур	Mir	Material selection. n Modelling during design.	Training Job procedures.	Neg					
6.0	Flood damage	Nat	Sites inaccessible. Potential equipment damage.	Rem	Mir	Intentional location above known n flood levels.		Neg				#N/A	
	REVERSING FLOW IN DDPS (INCLUDING ABOVE GROUND EASTERN SECTION: SECTIONS INSIDE FENCE)				I								
1.0	Reversing flow prevents running intelligent pigs.	O&M	Lack of integrity monitoring. Non-compliance with licence conditions.			Design does not currently prevent this situation developing under certain flow conditions.		#N/A	Study and development of alternatives or appropriate management procedures required during FEED. This represents a change of service for DDPS.			#N/A	Engineering Manager

No.	Threat	Category	Consequences	Frequency	Severity	(Must have one Physical and two F	Controls Procedural if External Interference in area)	Risk Rank	Additional Risk Reduction / Corrective Actions Required	Frequency	Severity	Revised Risk Rank	Responsible for Close-out
	(Specifically identify potential threatening event)		(Identify key negative consequences; or reason why non-credible.)			Physical / Design	Procedural / Awareness						(Individual)
	Potential to back-pressure Kenya compressor (rated only at 10.0 Mpag)					DDPS HAZOP has already dealt with this. Overpressure protection is already existing.		#N/A				#N/A	
	Increased operating pressure in DDPS eastern end will result in greater heating load at Power Station.		Additional heater capacity required.					#N/A	Study and development of alternatives or appropriate management procedures required during FEED. This represents a change of service for DDPS.			#N/A	