

%) `A]`Y`=ff][Uhjcb`Dfc^YVM @UbX`Gi]HJV]`]hmGhi Xm

Flinders Shire Council

Cairns Office: Level 1, 320 Sheridan Street, PO Box 5678 Cairns QLD 4870 P: 61 7 4034 5300 F: 61 7 4034 5301
 Townsville Office:

 Suite 2A, Level 1, 41 Denham Street,

 PO Box 539 Townsville QLD 4810

 P: 61 7 4796 9444

 F: 61 7 4796 9410

www.natres.com.au

NRA Reference: FSC 15 Mile Cover letter_R01.docx

8 March 2019

Flinders Shire Council PO Box 274 Hughenden QLD 4821

Attention: Robyn Young, Rural Services Manager

Dear Robyn

RE: 15 Mile Irrigation Project Land Suitability Study - Final Report

Please find enclosed the final report for the 15 Mile Irrigation Project Land Suitability Study.

The report provides information on portions of land within the 15 Mile project area that have been assessed as suitable, in terms of topography, climate and soil attributes, for production of irrigated table grape, citrus and avocado crops. For all proposed land uses, the project area contains portions of land with suitability Class 3 (*Suitable land with moderate limitations*).

This report has been compiled by Dr Andrew Butler (NRA) who has graduate and post graduate qualifications in Soil Science and is a Certified Professional Soil Scientist (Accreditation No. S00422). The report has been prepared using field survey data and interpretation provided by Mr. Jon Burgess (Director of Soil Mapping and Monitoring Pty Ltd). Jon holds a BAgrSc (Hons) (majoring in Land Resource Science) and has demonstrated expertise in soil and landscape mapping, geomorphology and regolith characterisation, field based pedology, soil classification, analysis and interpretation, land suitability evaluation and Strategic Cropping Land assessment.

Please let me know if you require GIS data layers for the land suitability maps in this report or Excel spreadsheets of the limitation classes assigned to each unique mapping area (UMA) to assist with your development approvals.

If you have any questions regarding the enclosed document, please do not hesitate to contact me on (07) 4034 5300 or <u>andrew@natres.com.au</u>.

Yours sincerely

NRA Environmental Consultants

Andrew Butler

Principal Environmental Consultant

Encl: 15 Mile Irrigation Project Land Suitability Study – final report

© Natural Resource Assessments Pty Ltd

This document is the property of Natural Resource Assessments Pty Ltd. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. Unauthorised use of this document in any form whatsoever is prohibited.

Document Control Summary

NRA Filepath:	F:\AAA\447_FSC\447000_Land Suitability Study 15 Mile Ag Project\Rpt\2_full report\Body report\FSC 15 Mile IAD Project - Final Rpt_R01.docx						
Status:	R01 (Final)Date of Issue:8 March 2019						
Project Manager:	Andrew Butler						
Title:	15 Mile Irrigation Project Land Suitability Study						
Client:	Flinders Shire Council						
Client Contact:	Robyn Young, Rural Services Manager						
Copies Dispatched:	1 PDF (by email)						
Other Info or Requirements:	Final report supersedes prepared.	and replaces all previous	documentation				

NRA Environmental Consultants

Report Summary						
Key Words	Land suitability, irrigation, Flinders Shire Council, FSC, 15 Mile, Impact Assessment Report					
Abstract	This report details the findings of a soil survey and assessment of land suitability for production of irrigated table grape, citrus and avocado crops on the 15 Mile project area.					

Citation

This report should be cited as: NRA 2019, *15 Mile Irrigation Project Land Suitability Study*, R01 (Final), prepared by NRA Environmental Consultants for Flinders Shire Council, 8 March 2019.

Quality Assurance							
Author	Technical	Editor	Document	Approved for Issue by QA Manager			
	Review		version	Date	Signature		
Andrew Butler PhD, BSc(Hons), CEnvP, CPSS Jon Burgess BAgrSc(Hons) Soil Mapping and Monitoring Pty Ltd	Tim Anderson MAgrSc, BAgrSc(Hons)	Fim Anderson MAgrSc, Kate Steyn BAgrSc(Hons)		8/3/19	Foly		
		1	1				

© Natural Resource Assessments Pty Ltd

This document is the property of Natural Resource Assessments Pty Ltd. Apart from any use as permitted under the Copyright Act 1968 all other rights are reserved. Unauthorised use of this document in any form whatsoever is prohibited.

Certified Integrated Management System AS/NZS ISO 9001:2015 (Quality) AS/NZS ISO 14001:2015 (Environment) AS/NZS 4801:2001 (Safety)

Limitations of this Report

The information in this report is for the exclusive use of Flinders Shire Council, the only intended beneficiary of our work. NRA cannot be held liable for third party reliance on this document. This disclaimer brings the limitations of the investigations to the attention of the reader. The information herein could be different if the information upon which it is based is determined to be inaccurate or incomplete. The results of work carried out by others may have been used in the preparation of this report. These results have been used in good faith, and we are not responsible for their accuracy. The information herein is a professionally accurate account of the site conditions at the time of investigations; it is prepared in the context of inherent limitations associated with any investigation of this type. It has been formulated in the context of published guidelines, legislation in force at the date of this report, field observations, discussions with site personnel, and results of laboratory analyses. Any change to published guidelines or legislation may change the opinions of NRA expressed in this document. NRA's opinions in this document are subject to modification if additional information is obtained through further investigation, observations or analysis. They relate solely and exclusively to environmental management matters, and are based on the technical and practical experience of environmental practitioners. They are not presented as legal advice, nor do they represent decisions from the regulatory agencies charged with the administration of the relevant Acts. Any advice, opinions or recommendations contained in this document should be read and relied upon only in the context of the document as a whole and are considered current as of the date of this document.

Table of Contents

Glos	sary .			i
Exec	utive	Summa	ary	ii
1.	Intro	duction	۱	1
	1.1	Back	ground	1
	1.2	Scope	9	1
2.	Proje	ect Dese	cription and Physical Environment	3
	2.1	Locat	ion	3
	2.2	Existi	ng land use	3
	2.3	Propo	osed land use	3
	2.4	Clima	te	5
	2.5	Geolo	ogy	6
	2.6	Торо	graphy and land systems	6
3.	Meth	ods		9
	3.1	Deskt	op review	9
		3.1.1	Soil resources and land evaluation	9
		3.1.2	Land suitability frameworks	11
		3.1.3	Desktop review outcomes	11
	3.2	Detail	ed field survey	13
		3.2.1	Survey team	13
		3.2.2	Technical standards, guidelines and texts	13
		3.2.3	Mapping scale and sampling intensity	13
		3.2.4	Field survey	15
		326	Data interpretation and calculated soil attributes	10
	33	Land	suitability assessment for irrigated agriculture	18
	0.0	3.3.1	Land suitability classes	18
		3.3.2	Land suitability assessment framework - land use	
			requirements and limitations	19
4.	Soil	and Lar	nd Resources	24
	4.1	Comp surve	pleted ground observation densities and validation of y scale	of 24
	4.2	Soil la	andscape framework	24
	4.3	Soil u	nit descriptions	31
5.	Land	l Suitab	ility Assessment	56
	5.1	Land	suitability for table grapes	62
	5.2	Land	suitability for citrus	62
	5.3	Land	suitability for avocados	63

6.	Refe	rences	64
	5.4	Summary of land suitability outcomes	.63

Tables

Table 1:	Hughenden Airport summary climate statistics (2001 to 2018) (BOM 2019b)	5
Table 2:	Surface geology mapping units	6
Table 3:	Guidelines, industry standards and reference texts used during the 15 Mile investigation	13
Table 4:	Ground observation types required by <i>Guidelines for</i> <i>Coordinated Projects involving Clearing for Agriculture</i> <i>(Land Suitability Requirement)</i> (DNRME 2018)	14
Table 5:	Definitions for land suitability classes 1-5 (DNRM & DSITIA 2015)	19
Table 6:	Land use limitations considered during the assessment of land suitability for the 15 Mile project	20
Table 7:	Data review and outcomes of assessment of land suitability limitations related to climate and wind erosion	22
Table 8:	Comparison of completed survey statistics with minimum recommendations for 1: 25 000 scale mapping	24
Table 9:	Soil landscape framework for the 15 Mile project area	26
Table 10:	Soil and landscape attribute definitions	31
Table 11:	Land suitability classes and constraining limitations for the 15 Mile project area	57
Table 12:	Summary of the extent (ha) of suitable (Classes 1, 2 and 3) and unsuitable land (Classes 4 and 5) within the 15 Mile project area*	63

Figures

Figure 1: Project site and location	4
Figure 2: Geology mapped in the project area	. 7
Figure 3: Topography of the project area	8
Figure 4: Soil and Land Information (SALI) sites	10

Figure 5: Locations of ground observations and soil unit boundaries	.25
Figure 6: Distribution of soil units	.33
Figure 7: Land suitability for table grapes	. 59
Figure 8: Land suitability for citrus	.60
Figure 9: Land suitability for avocados	.61

Appendices

- Appendix 1: Project Scope
- **Appendix 2: Soil Survey Field Sheets**
- Appendix 3: Soil Map Boundary Observation Notes
- Appendix 4: Soil Analytical Methods and Testing Program
- Appendix 5: Salinity Screening Data from Detailed Site Profiles
- Appendix 6: Mean Soil Unit Salinity Data
- Appendix 7: Analytical Data and Soil Profile Descriptions for Representative (Analysed) Sites
- **Appendix 8: Laboratory Certificates of Analysis**
- Appendix 9: Calculated Attribute Data Methods and Results
- Appendix 10: Land Suitability Framework Review and Adopted Decision Rules
- Appendix 11: Land Suitability Assessment Results for Each Soil Unit
- Appendix 12: Land Suitability Assessment Results for Each UMA (Mapping Polygon)

Glossary

This glossary includes a selection of terms used in this report that are uncommon or unfamiliar.

Backplain (BKP)	Large flat resulting from aggradation by over-bank stream flow at some distance from the stream channel often characterised by a high water table and
	the presence of swamps or lakes; part of a covered plain landform pattern.
Epipedal	A structured A (surface) horizon, commonly blocky or polyhedral structure, with a moderate to strong grade and no surface crust (<i>ie</i> not self-mulching).
Gilgai microrelief	A small, ephemeral pool formed from a depression in the soil surface in
	expanding clay soils. The pools are commonly a few metres wide and less than
	30 cm deep; however, in some instances, they may be several metres deep and up to 100 m wide.
Land suitability	The fitness of a given area for a land utilisation type (usually crop specific), commonly expressed as a set of discrete classes numbered from Class 1 (completely suited) to Class 5 (completely unsuited). Land is classified on the basis of a specified land use and a rating of 'suitable' assumes production is optimal with minimal degradation to the land resource and the wider environment in the long-term. The land suitability classification depends on the severity of limitations associated with the land use being considered. These, in turn, are determined by the land use requirements of the crop, the inherent characteristics of the land, and the season of crop growth.
Scroll (SCR)	Long, curved very low ridge built up by channelled stream flow and left relict by channel migration. Part of a meander plain landform pattern.
Scroll plain (SRP)	Large flat resulting from aggradation by channelled stream flow as a stream migrates from side to side; the dominant element of a meander plain landform pattern. This landform element may include occurrences of scroll, swale and oxbow.
Self-mulching	Soil surface that, when dry, is composed of easily disturbed small aggregates resulting from extensive swelling and shrinking from wetting and drying. The aggregates naturally fall apart as the soil dries to form a loose surface mulch.
Terrace plain (TEP)	Large or very large flat aggraded by channelled or over-bank stream flow, standing above a scarp and no longer frequently inundated; part of a former flood plain.

Executive Summary

Background

Flinders Shire Council (FSC) has acquired the former reserve known as '15 Mile', a freehold property, which FSC intends to reconfigure into viable agricultural development blocks, obtain suitable water licences and promote to private investors. The 15 Mile project area is Lot 168 on Plan SP262319 (approximately 918 ha) and is approximately 12 km west-northwest of Hughenden in the upper Flinders River catchment.

As the development involves the clearing of native vegetation, FSC wishes to apply for a 'coordinated project involving clearing for agriculture'. Under the *State Development Assessment Provisions: State Code 16: Native vegetation clearing* (SDAP State Code 16), clearing for an agricultural coordinated project is only to be undertaken where the land is *suitable for agriculture having regard to topography, climate and soil attributes* (Performance Outcome 29 – SDAP State Code 16). The performance outcome can be met by demonstrating that the land is suitable for agriculture in accordance with the *Guidelines for Coordinated Projects involving Clearing for Agriculture* (DNRME 2018).

NRA Environmental Consultants (NRA) was commissioned by FSC to undertake a land suitability study of the 15 Mile project area to determine whether the project fulfils Performance Outcome 29 under SDAP State Code 16. NRA partnered with Soil Mapping and Monitoring Pty Ltd to undertake the soil survey and land suitability assessment for this project.

Proposed land use

The proposed land uses for the project area include irrigated table grapes, avocados and citrus crops (the Initial Advice Statement (IAS) indicated a preliminary area of 344 ha subject to the land suitability assessment presented in this report), farming infrastructure and low value crops (the IAS indicated a preliminary area of 101 ha with no target crops specified), water storage (25.5 ha), and the balance (447.5 ha) comprising environmental buffers for watercourses, wetlands and regulated vegetation.

Soil resource survey

Desktop review

As required by Part 5 (Scope) of the FSC request for tender dated 8 October 2018 and *Guidelines for Coordinated Projects involving Clearing for Agriculture*, version 1.00 effective as of 2 November 2018 (DNRME 2018), a desktop review of available relevant information was undertaken. The scale of the land resource and land evaluation assessments conducted to date is only suitable for regional scale planning at best. The information provides some indication of likely land quality and limitations and provides background information that can be used to inform more detailed surveys.

A reconnaissance survey was not considered necessary and the detailed field survey (at a scale of 1:25,000 or better) was considered the most appropriate means of assessing land suitability for regulatory assessment and project planning purposes.

Field survey

Approach

The field soil survey was undertaken by a team of qualified agricultural scientists, each with over 30 years' work experience in soil survey, soil resource assessment and soil management.

The survey methods and the data recorded were in accordance with guidelines, industry standards or reference texts including:

- *Guideline for Coordinated Projects Involving Clearing for Agriculture (Land Suitability Requirement)*, version 1
- Guidelines for Surveying Soil and Land Resources, Second Edition
- Australian Soil and Land Survey Field Handbook, Third Edition
- The Australian Soil Classification, Second Edition.

Soil investigations were undertaken in December 2018 using a vehicle-mounted hydraulic coring rig capable of capturing and extracting 75 mm intact soil cores to depths of 4.5 m. The type and nature of the soil and landscape data collected during the field survey were consistent with industry standards and the detailed requirements of the project scope of works and the *Guideline for Coordinated Projects Involving Clearing for Agriculture (Land Suitability Requirement)*.

Soil unit boundaries inferred from the desktop review were verified and adjusted during fieldwork, and final linework was scanned and digitised following the completion of the field investigation. Mapped polygons delineated during the study represent recognisable and repeatable combinations of landform, soil unit and associated vegetation.

Mapping scale and sampling intensity

The number of ground observations made during the survey (*ie* the sampling intensity) was guided by the *Guidelines for Surveying Soil and Land Resources*, Second Edition. A total of 135 ground observations were documented during the field survey. The number and type of observations made were sufficient to meet the minimum requirements to achieve a mapping scale of 1:25,000 (or better) as directed by the *Guideline for Coordinated Projects Involving Clearing for Agriculture (Land Suitability Requirement)*.

Soil sampling and analysis

Ten profiles (including 2 deep borings) were fully analysed as representative sites covering the major soil units identified in the project area. Due to the recognised regional salinity risk, a further 21 profiles (including a further 2 deep borings) were analysed for salinity. All soil analysis was undertaken by a suitably accredited laboratory that specialises in the analysis of agricultural soil samples.

Soil units

A total of 11 soil units were delineated across three soil landscapes (described in **Section 4.3**). The best quality soils on the site were in elevated positions on the alluvial terrace plain fronting the Flinders River. These were very deep, moderately well drained, non-saline, clay loamy surfaced, black or brown structured gradational earths. Very deep, salt affected cracking clays and scalded sodic non-cracking clays dominated the lower lying alluvial backplains. Very deep self-mulching cracking clays overlying Cretaceous sedimentary rocks were found on the higher ground to the far west of the project area.

Land suitability assessment

Approach

The suitability framework developed for this project is based on the five standard land suitability classes nominated in *Guidelines for Agricultural Land Evaluation in Queensland* and presented in the table below. Suitability outcomes decrease progressively from Class 1 to Class 5, and reflect increasing levels of production or environmental constraints. Land in Classes 1, 2 and 3 for a given land use is regarded as 'suitable' for this purpose.

Land suitability class	Definition	Description
1	Suitable land with negligible limitations	Highly productive land requiring only simple management practices to maintain sustainable production.
2	Suitable land with minor limitations	Land with minor limitations that either constrain production or require more than the simple management practices of Class 1 land to maintain sustainable production.
3	Suitable land with moderate limitations	Land with moderate limitations that further constrain production or require more than the management practices of Class 2 land to maintain sustainable production.
4	Unsuitable land with severe limitations	Currently unsuitable land with severe limitations that preclude successful or sustained use under existing conditions. Future changes in knowledge, economics or technology may alter this.
5	Unsuitable land with extreme limitations	Land with extreme limitations that preclude any possibility of successful or sustained use, either now or in the future.

The attributes used to characterise the land quality (and hence determine its suitability for a given land use) are called land use limitations (or simply 'limitations' *eg* degree of rockiness, soil wetness, frequency of frost). For this project, limitations and the decision rules used to apply a suitability classification to each limitation were selected from the following sources as directed by the officers from the Department of Natural Resources and Mines and Energy (DNRME):

- Regional Land Suitability Frameworks for Queensland
- Flinders and Gilbert Agricultural Resource Assessment (FGARA)
- Northern Australia Water Resource Assessment (NAWRA)
- Inland Burdekin Regional Suitability Framework (developed for the Charters Towers Agricultural Precinct (CTAP) project).

For each land use (irrigated table grapes, citrus and avocado), decision rules were developed for 18 limitations.

Land suitability outcomes

For each soil unit, the information on soil quality and land attributes collected through the field assessment and laboratory analysis were assessed against the decision rules for each of the 18 limitations selected for this project (**Appendix 10, Table 2**). This provides an assessment of the land suitability class value for each limitation and an overall suitability class value for the most limiting attribute). This process was undertaken for each combination of soil unit and crop type.

Two of the 11 soil units described were found to be wholly or partly suitable, with moderate limitations, for irrigated table grapes and citrus production. One of the soil units described was found to be suitable, with moderate limitations, for irrigated avocado production. A full description of the limitations that apply to each land use is presented in **Section 5** of the report.

The outcome of the assessment for each soil unit is summarised below and presented in maps in **Section 5**.

Land Suitability Class	Table grapes (ha)	Citrus (ha)	Avocado (ha)
Class 1	0	0	0
Class 2	0	0	0
Class 3	370.4	370.4	311.0
Class 4	220.5	220.5	194.7
Class 5	297.3	297.3	382.4

Conclusion

The land suitability assessment found that:

- 370.4 ha of land in the 15 Mile project area was found to be suitable (*ie* Class 3) for irrigated table grapes production
- 370.4 ha of land in the 15 Mile project area was found to be suitable (*ie* Class 3) for irrigated citrus production
- 311.0 ha of land in the 15 Mile project area was found to be suitable (*ie* Class 3) for irrigated avocado production.

The land area found to be suitable for the selected irrigated horticultural crops is similar to that indicated in the IAS for the 15 Mile Irrigation Project (344 ha).

1. Introduction

1.1 Background

Flinders Shire Council (FSC) wishes to promote the shire as a centre for private sector investment in irrigated agricultural development by demonstrating that the shire possesses the principal elements of suitable land, climate and water supplies. Such developments are seen as crucial to improve the employment prospects for current and future residents and hopefully reverse the current rate of population decline.

FSC has acquired the former reserve known as '15 Mile', a freehold property that FSC intends to reconfigure into viable agricultural development blocks, obtain suitable water licences and promote to private investors.

Intensively grown, efficiently irrigated, low volume, high value, horticultural crops will result in a higher and more sustainable return than broad acre, low-return, high volume crops. These types of enterprises would also meet FSC's goals of providing employment prospects for residents and encouraging migration of skilled workers to the shire.

The development would involve the clearing of native vegetation. A party wanting to clear native vegetation is required by the Queensland *Planning Act* 2016 to apply to the relevant assessment manager. FSC wishes to apply for a 'coordinated project involving clearing for agriculture'. Under the *State Development Assessment Provisions: State Code 16: Native vegetation clearing* (SDAP State Code 16), clearing for an agricultural coordinated project is only to be undertaken where the land is *suitable for agriculture having regard to topography, climate and soil attributes* (Performance Outcome 29 – SDAP State Code 16). The performance outcome can be met by demonstrating that the land is suitable for agriculture in accordance with the *Guidelines for Coordinated Projects involving Clearing for Agriculture (Land Suitability Requirement)* (Version 1.00, effective as of 2 November 2018) (DNRME 2018).

NRA Environmental Consultants (NRA) was commissioned by FSC to undertake a land suitability study of the 15 Mile project area to determine whether the project fulfils Performance Outcome 29 under SDAP State Code 16. NRA partnered with Soil Mapping and Monitoring Pty Ltd to undertake the soil survey and land suitability assessment for this project.

1.2 Scope

The scope was provided in the request for tender dated 8 October 2018 (FSC 2018) and cross-referenced many of the requirements presented in *Guideline for Coordinated Projects involving Clearing for Agriculture (Land Suitability Requirement)* (Version 1.00) (DNRME 2018). The scope is reproduced in **Appendix 1**.

NRA's proposed approach was documented in a proposal dated 5 November 2018. NRA offered to prepare a preliminary report prior to the initiation of fieldwork based on the desktop component of the scope of works.

A preliminary desktop report was provided on 12 December 2018 (NRA 2018). The preliminary report provided:

• the desktop component of the land suitability assessment based on the framework documented in DNRME (2018) (now incorporated into this report)

- information on the approach to fieldwork and land suitability assessment
- initial advice to FSC on the quality of the land according to the outcomes of previous land resource surveys and land suitability assessments conducted at various scales.

2. Project Description and Physical Environment

2.1 Location

The 15 Mile project area is Lot 168 on Plan SP262319 (**Figure 1**). It is 918 ha and is approximately 12 km west-north-west of Hughenden. The project area is in the upper Flinders River catchment, and the property boundary straddles the alluvial plains of the main channel of the Flinders River and adjacent areas of Mitchell Grassland.

2.2 Existing land use

The following land use description is based on the 15 Mile Irrigated Agricultural Development Project Initial Advice Statement, August 2018 (GHD 2018).

Lot 168 on Plan SP262319 was previously part of the 15 Mile Reserve, which also included sections of the adjacent Lot 167 on Plan SP262319. The 15 Mile Reserve formed part of the Queensland Stock Route network prescribed under the Queensland *Stock Route Management Act* 2002 and was managed by FSC and the DNRME.

The 15 Mile Reserve has a Stock Route Watering Facility, which consists of a solar pump that fills two 38 kL tanks, a trough, and a dam at the southern end of the reserve. The reserve is agisted on a 1 month agistment permit basis.

FSC purchased the site from the Queensland Government in 2016. It is still currently used for cattle grazing.

It is understood that there is no history of irrigated agricultural development within the 15 Mile project area. Irrigated agricultural production has previously been attempted on the rolling downs landscape immediately to the south, and is in limited production on isolated land parcels on the Flinders River floodplain approximately 15 km to the north-west of the project area.

2.3 Proposed land use

The proposed land uses for the project area, confirmed by FSC, include production of irrigated table grapes, avocados and citrus crops (the Initial Advice Statement (IAS) indicated a preliminary area of 344 ha subject to the land suitability assessment), farming infrastructure and low value crops (IAS indicated a preliminary area of 101 ha with no target crops specified), water storage (25.5 ha), and the balance (447.5 ha) comprising environmental buffers for watercourses, wetlands and regulated vegetation.

It is understood that the target crops have been selected based on climatic adaptation, investor interest, market demand, niche harvest window and likely production potential.

Recommended print size: A4

While agricultural production in the region is currently limited, effort has been taken to identify suitable agricultural land as evidenced by the major studies covering the Flinders and neighbouring catchments (*eg The Flinders and Gilbert Agricultural Resource Assessment* (FGARA) and the *Land Suitability of the Fitzroy, Darwin and Mitchell catchments and part of the Northern Australia Water Resource Assessment* (NAWRA), both conducted by CSIRO). These studies have identified areas with agricultural potential that warrant further assessment at an appropriate scale.

2.4 Climate

The Flinders River catchment has a hot and dry semi-arid climate (Petheram *et al.* 2013). The climate is seasonal, with a wet season occurring between December and March and an extended dry season between April and November. The nearest active Bureau of Meteorology weather station is at the Hughenden Airport (station number 30022). Average annual rainfall for the station is 442 mm (2001 to 2018) with a range from 130 to 932 mm (BOM 2019a). In the Flinders River catchment, 88% of the rainfall occurs in the wet season (Petheram *et al.* 2013).

Summary climate statistics for the Hughenden Airport are presented in Table 1.

Parameter	January	February	March	April	May	June	July	August	September	October	November	December
Mean max. temperature (°C)	35.8	35.2	34.5	32.2	28.8	26.0	26.1	28.1	32.3	35.3	36.6	37.4
Highest temperature (°C)	44.2	43.2	42.5	37.8	37.1	34.0	34.6	37.6	39.8	42.6	43.6	43.9
Mean no. days ≥40 °C	3.0	1.1	0.3	0	0	0	0	0	0	1.8	3.0	6.3
Mean min. temperature (°C)	23.7	22.7	21.6	18.2	13.7	10.7	9.6	10.4	15.4	19	21.9	23.5
Lowest temperature (°C)	16.3	12.8	12.0	6.0	1.9	0.2	-2.0	-0.5	4.0	6.1	12.6	13.0
Mean no. days ≤2 °C	0	0	0	0	0.1	0.8	2.1	0.7	0	0	0	0
Mean monthly rainfall (mm)	118.1	80.1	34.8	17.6	5.3	18.6	13.7	8.2	8.3	16.2	46.1	66.5
Median monthly rainfall (mm)	111.9	51.5	22.5	1.0	1.9	0.5	0.3	0	0.5	5.6	39	41.3

Table 1: Hughenden Airport summary climate statistics (2001 to 2018) (BOM
2019b)

Turner and Hughes (1983) identify that in the upper Flinders River catchment, heat wave conditions are common, commencing in September and peaking in November and December, and frosts are generally light and infrequent.

The Scientific Information for Land Owners climate database (using the Data Drill climate data interpolation service) provided by the Queensland Government has been used to assess climatic limitations against the land suitability decision rules selected for the project. **Section 3.3** provides for further details of the method used.

2.5 Geology

Digital surface geology mapping (scale 1:100,000) on Queensland Globe (Queensland Government 2018) identifies two geological mapping units in the project area (the Lower Cretaceous Ranmoor Member and Quaternary alluvium), and three more in the vicinity (Toolebuc Formation, Allaru Mudstone, Quaternary colluvial and residual deposits).

Each of these units is described in **Table 2**. The spatial relationships of the geological units are shown on **Figure 2**.

Mapped geology unit	Description
Qa-QLD	Clay, silt, sand and gravel; flood-plain alluvium [*]
Qr-QLD	Clay, silt, sand, gravel and soil; colluvial and residual deposits [*]
Ranmoor Member	Mudstone, in part carbonaceous, calcareous siltstone [†]
Toolebuc Formation	Limestone, calcareous bituminous shale, coquinite [†]
Allaru Mudstone	Primarily blue-grey mudstone (partly pyritic) and interbedded calcareous
	siltstone, cone-in-cone limestone and lesser sandstone [†]
Sources:	

Table 2: Surface geology mapping units

Queensland Government (2018).

[†] Geoscience Australia (undated)

2.6 Topography and land systems

GHD (2018) describes the topography of the project area as sloping from approximately 300 m AHD (Australian Height Datum) in the south-east to approximately 290 m AHD in the north-west.

The variation in topography reflects the underlying geology and patterns of deposition and erosion within the Flinders River alluvial plain. A 1 m elevation contour map based on Shuttle Radar Topography Mission 1 arc-second digital elevation model (DEM) data for the project site is provided on **Figure 3**.

The DEM shows the transition between slightly higher elevations associated with the land on the Cretaceous sediments of the Rolling Downs (Mitchell Grass plains¹) to the far south and west of the project site and the Quaternary alluvial deposits that comprise the bulk of the site. This aligns with the land systems mapping (CSIRO 1964; scale 1:1,000,000) that described two units in the project area: the Gregory and Julia land systems.

The Gregory land system is described as a constructional land surface of covered plains of fine and coarse-textured alluvia with Mitchell Grass pastures or arid sparse low woodland over arid short grasses with levees of lighter structured soils with frontage woodland over frontage grass. The Julia land system is described as a destructional land surface or eroding plains consisting of rolling Mitchell Grass plains that occupy most of the southern part of the Carpentaria and inland plains.

¹ The terms Mitchell Grass plains, Mitchell Grass Downs or Rolling Downs are used in the various published resources reviewed. They refer to the same landform unit (but reference either underlying geology or overlying vegetation cover) and are often used interchangeably.

Recommended print size: A4

3. Methods

3.1 Desktop review

The approach to this desktop review is based on Part 5 (Scope) of the FSC request for tender dated 8 October 2018 (FSC 2018) and *Guidelines for Coordinated Projects involving Clearing for Agriculture* (DNRME 2018) (in particular Section 4.4).

The desktop review was used to:

- provide information to guide the field effort
- provide information on decision rules to guide the land suitability assessment
- identify preliminary mapping units and provide an indication on the soil type(s) present in the area to allow effective allocation of resources for the field survey stage
- provide preliminary indication of land quality and potential site constraints to guide the field sampling and analysis decisions
- determine the need for a reconnaissance and/or detailed field assessment
- identify any critical data gaps that can be targeted during the field survey.

The desktop review examined available information relevant to the project area including:

- geology mapping and reports
- topographic mapping
- remote sensing data
- aerial photographs and satellite imagery
- existing soils and land resource reports, maps and associated information.

3.1.1 Soil resources and land evaluation

The following resources were reviewed to provide information on soil distribution, land quality and likely constraints:

- Atlas of Australian Soils, scale 1:2,000,000 (NRIC 1991, Northcote et al. 1960-1968)
- *Upper Flinders River Irrigation Proposal*, scale 1:250,000 (Turner & Hughes 1983). This included soil mapping and land evaluation.
- *Flinders and Gilbert Agricultural Resource Assessment* undertaken by CSIRO (Bartley *et al.* 2013, Petheram *et al.* 2013).

Soil survey data collected in Queensland is stored in the Queensland Government Soil and Land Information (SALI) database. Site listing reports are available in SALI for Turner and Hughes (1983) (Survey code FLN) and Bartley *et al.* (2013) (Survey code LSGARA). The site listing reports provide soil profile and site descriptions with a range of associated physical and chemical data.

Of the reports available from the local area, one (FLN2) is from within the project area, and the remaining reports are from locally similar landforms or geology (*eg* Rolling Downs and alluvial plains) (**Figure 4**). The data was reviewed to provide information on the types of soils likely to be encountered during the field survey and range of properties and limitations that may be present.

Recommended print size: A4

3.1.2 Land suitability frameworks

After discussion with officers from DNRME (Neil Enderlin and Mellissa Spry, teleconference, 7 December 2018), the documents listed below were used to source appropriate decision rules for land suitability assessment for this project. The development of regional decision rules has evolved in recent years, and the various projects have used slightly different sets of attributes depending on the purpose of the project and the location.

- *Regional Land Suitability Frameworks for Queensland*, which includes decision rules for irrigated grapes, citrus and avocado crops for the Gulf Plains area that includes the project site (DNRM & DSITIA 2013)
- Land Suitability: Technical Methods used for the Flinders and Gilbert Agricultural Resource Assessment (FGARA) project and based on the Gulf Plains decision rules above (Bartley et al. 2013)
- Land suitability of the Fitzroy, Darwin and Mitchell Catchments prepared for the Northern Australia Water Resource Assessment (NAWRA) (Thomas et al. 2018). The decision rules for the Mitchell River catchment were reviewed as being most applicable to this project. This source does not include decision rules for grapes
- Inland Burdekin Regional Suitability Framework (developed for the Charters Towers Agricultural Precinct (CTAP) project) (DNRME (unpublished)). This is the most contemporary set of decision rules for irrigated horticultural crops for inland northern Queensland and was recommended as a primary source by Neil Enderlin, Natural Resource Management Officer, Land Resource Assessment, Planning Services North, DNRME. This source does not include decision rules for grapes.

The logic behind the selection of the rules applied for this project are presented in **Section 3.3**.

3.1.3 Desktop review outcomes

Soils and soil distribution

There is general consensus across the reviewed land resource and soil survey reports about the distribution of landform units and major soil types across the project area. The mapping is largely consistent with boundaries in surface geology and with features visible from satellite imagery and topography.

On the Rolling Downs landform units, the soils appear to be relatively uniform and well characterised by previous surveys *ie* deep to very deep self-mulching vertosols. The SALI database indicates that in the area surrounding the project, subsoils may be strongly sodic and saline below 0.5-0.9 m and often containing gypsum and carbonate segregations (typified by SALI profiles FLN1, FLN2, FLN6001, FLN6002, LSGARA1 and LSGARA60). Depending on the landscape position, this could indicate potential for salt mobilisation and redistribution down-gradient (secondary salinity potential).

Turner and Hughes (1983) confirmed high soil variability on the Flinders River alluvium. Only a small number of profiles in the SALI database are from the alluvial plains around the 15 Mile project area. From the selection of profiles available (LSGARA3, LSGARA38 and LSGARA1019), the soils range from deep clayey Orthic Tenosols (soils with very little profile development – usually recently formed) to deep clayey Brown Dermosols (non-cracking clay soils) to very deep Brown Vertosols (cracking clay soils). A common feature of the SALI profiles close to the project area is the presence of sodicity and salinity in the subsoil.

The review indicated that the detailed field survey should pay particular attention to the assessment of landscape complexity and soil heterogeneity, drainage status, sodicity and salinity.

Land evaluation and suitability for target crops

As the cracking clay soils in the Rolling Downs are largely unsuited to tree cropping, the soils formed on alluvium were highlighted as the soils with the greatest potential in the *15 Mile Irrigated Agricultural Development Project Initial Advice Statement* (GHD 2018).

Turner and Hughes (1983) considered the soils of the Flinders River Alluvium (a range of Sododols, Vertosols and Rudosols and/or Tenosols,) to be unsuited to irrigated cropping due to high soil variability (severe limitation for all soils), extensive scalding (surface soil condition - a moderate limitation for all soils) and impeded drainage (wetness - a severe limitation for the Sodosols and Rudosols/Tenosols).

The mapping produced by the FGARA project (Bartley *et al.* 2013) indicated that the majority of land within the 15 Mile project area may be:

- suitable with moderate limitations for trickle irrigated grape (land suitability class 3)
- suitable with moderate limitations for trickle irrigated citrus (land suitability class 3)
- marginal (presently considered unsuitable due to severe limitations) for trickle irrigated avocado (land suitability class 4).

The information available was conflicting, but what it did reveal was that:

- soil distribution may be complex and conditions could vary over a short distance
- some soils likely to be present may have limitations that could affect their suitability for irrigated tree crops (soil complexity, surface soil condition, wetness, effective rooting depth and salinity/sodicity)
- there is some potential for irrigated horticulture and further site-specific assessment is warranted.

Need for more detailed project-specific information

The *Upper Flinders Irrigation Proposal* (Turner & Hughes 1983) included a broad land capability assessment rather than a detailed crop suitability assessment, and no crop-specific decision rules were provided. The mapping was conducted at 1:250,000 scale, which is appropriate for regional planning or the identification of areas that warrant further detailed assessment.

The FGARA project (Bartley *et al.* 2013) included modelling of land suitability based on digital soil mapping data. For the four primary investigation areas targeted (including land around Hughenden), the aim was to reach a mapping scale equivalent to 1:100,000 in traditional soil mapping and for secondary areas a scale equivalent to 1:500,000 (CSIRO 2012). This scale is suitable for regional planning or pre-feasibility assessments.

The scale of the assessments conducted to date is only suitable for regional planning at best. The information provides some indication of likely land quality and limitations and provides background information that can be used to inform more detailed surveys.

A reconnaissance survey was not considered necessary and the detailed field survey (at a scale of 1:25,000 or better) was considered the most appropriate method to assess land suitability for regulatory assessment and project planning purposes.

3.2 Detailed field survey

3.2.1 Survey team

The detailed field survey and data interpretation was undertaken by Jon Burgess, Director of Soil Mapping and Monitoring Pty Ltd (SMM), who is a qualified agricultural scientist (land resources) with over 30 years' experience in soil and landscape assessment for agricultural and resource development in the Northern Territory and Queensland. Jon was assisted in the field by Bevan Emmerton, an agricultural scientist (land resources) with over 30 years' experience.

The survey team members:

- understand landscapes for the purpose of mapping and describing soils types, soil attributes and limitations
- are competent in the description of soils in accordance with the *Australian Soil and Land Survey Field Handbook* (NCST 2009) and mapping them at a property scale in accordance with the *Guidelines for Surveying Soil and Land Resources* (McKenzie *et al.* 2008)
- are competent in undertaking agricultural land suitability assessments considering key soil attributes and land limitations in accordance with the *Guidelines for Agricultural Land Evaluation in Queensland* (DNRM & DSITI 2015).

3.2.2 Technical standards, guidelines and texts

Field survey methods and related technical assessments used for the 15 Mile investigation are in accordance with the industry standards, guidelines and texts presented in **Table 3**.

Table 3: Guidelines, industry standards and reference texts used during the15 Mile investigation

Soil survey and sampling intensity				
• DNRME 2018, Guideline for Coordinated Projects involving Clearing for Agriculture (Land				
Suitability Requirement), Version 1				
Soil, landscape and vegetation field assessment				
• McKenzie et al. 2008, Guidelines for Surveying Soil and Land Resources, Second Edition				
• National Committee on Soil and Terrain (NCST) 2009, Australian Soil and Land Survey Field				
Handbook, Third Edition				

Munsell Color 2010, Munsell Soil-Color Charts: with genuine Munsell color chips
 Soil closeification

Soil classification

• Isbell, RF and the National Committee on Soil and Terrain 2016, *The Australian Soil Classification*, Second Edition

Soil analytical methods, data interpretation and assessment

- Rayment, GE and Lyons, D 2011, Soil Chemical Methods Australasia
- Hazelton P and Murphy B, 2016. *Interpreting soil test results: what do all the numbers mean?* Third Edition
- McKenzie et al. 2002, Soil Physical Measurement and Interpretation for Land Evaluation

3.2.3 Mapping scale and sampling intensity

Mapping of the 15 Mile project area was captured and presented at a scale of 1: 25 000 in accordance with the scope of works and the requirements documented in the *Guidelines for Coordinated Projects Involving Clearing for Agriculture (Land Suitability Requirement)* (DNRME 2018). This scale is also appropriate for the project area size and degree of landscape complexity.

Required ground observation densities

DNRME (2018) does not provide a minimum sampling intensity but directs applicants to the *Guidelines for Surveying Soil and Land Resources* (McKenzie *et al.* 2008). Schoknecht *et al.* (2008) (Chapter 14 of the *Guidelines for Surveying Soil and Land Resources*) provide a guide to sampling density for conventional mapping projects in landscapes of moderate complexity. For a survey at the 1:25 000 scale, they nominate a minimum acceptable density of between 1 observation per 25 ha and a recommended range of between 1 observation per 6.25 ha to 12.5 ha.

Adequate numbers of detailed soil profile sites are important to define modal soil and landscape characteristics, while carefully selected representative analytical sites provide quantification of physical and chemical characteristics important for agricultural development. Map boundary observations provide limited data (typically brief diagnostic notes or coded field map annotations), but are important to improve spatial reliability and mapping confidence.

Although DNRME (2018) provides minimum requirements for the types of observations to be made (see **Table 4**), it does not nominate how many of each observation type is required². Schoknecht *et al.* (2008) recommend data collection comprising of a minimum of 10-30% detailed soil profile descriptions (for modal soil characteristics), 1-5% profiles for sampling (also referred to as representative or analysed sites), 1-5% deep borings (to investigate local hydrology) and 60-88% map boundary observations (to delineate soil changes and landscape variability on the ground).

Table 4:Ground observation types required by Guidelines for Coordinated
Projects involving Clearing for Agriculture (Land Suitability
Requirement) (DNRME 2018)

Observation type	Purpose and data collected
Detailed soil profile sites (S)	Landscape description, soil morphology, associated vegetation
	and some additional salinity analysis
Representative analysed sites (A)	Landscape description, soil morphology, full soil chemistry and
	physical data, associated vegetation
Deep borings (D)	Landscape description, soil morphology, salinity characteristics,
	associated vegetation
Semi-detailed check sites (C)	Cored field site with sufficient distinguishing soil and landscape
	data to verify the assigned soil unit
Map boundary observations (M)	Rapid check site or simple map boundary observation
	(information recorded)

Based on the recommendations of Schoknecht *et al.* (2008), mapping of the 918 ha³ 15 Mile project area at a 1: 25 000 scale would require a minimum of 73 ground observations comprising 7-22 detailed field sites, 1-4 representative analytical sites, 1-4 deep cores and a further 43-64 map boundary observations. This was used as a guide for the field survey.

Details of the field methods use for each observation type are presented below.

² DNRME (2018) only states that each 'typical' soil requires at least one analysed site.

³ The initial survey design was based on 918 ha as advised. The mapping extent of the two portions of the lot comprising the project area and the easement between the portions of the lot covers 888.6 ha.

3.2.4 Field survey

Initial landscape interpretation conducted during the desktop review stage incorporated geological mapping, digital elevation model (DEM) analysis, imagery patterns and observable landscape features to delineate preliminary soil units prior to field investigation. Proposed sampling locations were selected during this process to ensure full characterisation of the proposed units.

The field survey was undertaken in December 2018. Soil unit boundaries were verified and adjusted during fieldwork, and final linework was scanned and digitised following the completion of the field investigation. Mapped polygons delineated during the study represent recognisable and repeatable combinations of landform, soil units and associated vegetation.

Profile sampling methods

Soil investigations were undertaken using a vehicle-mounted hydraulic coring rig capable of capturing and extracting 75 mm intact soil cores to depths of 4.5 m. Profiles were extruded into sample trays in the field (with minimal core disruption) for immediate description and sampling (**Plate 1**).

Plate 1: Vehicle-mounted hydraulic corer and core extrusion into sample tray

Detailed field sites were drilled to a minimum depth of 1.5 m (or until refusal). In the soil units with the greatest potential suitability for the target crops, two deep boring were made to depths of 3.5 m (to loose gravelly sand) and 4.5 m.

In addition, the arisings from four water drillers boreholes to between 18 and 24 m deep (arranged as 1 m deep chip samples) were described and sampled to investigate salt loads within the regolith (basement recorded at between 14 and 18 m).

Detailed field description

All field descriptions were documented in accordance with standards outlined by the National Committee on Soil and Terrain (2009), Hnatiuk *et al.* (2009) and Isbell and NCST (2016). Field observations recorded included:

- datum/GPS coordinates (MGA), surveyor, date, observation class and method
- site photographs landscape, vegetation, soil profile and soil surface
- Australian Soil Classification
- land use/disturbance
- geology/parent material, landform (pattern and element), slope, relief/modal slope class, substrate lithology

- site disturbance, erosion features, microrelief, surface coarse fragments, rock outcrop, surface condition, site drainage, permeability properties, vegetation characteristics
- detailed soil profile morphology soil horizons, boundaries, texture, colour, mottling, bleaching, structure, cutans, consistence, gravel, segregations, substrate material (where present), sand fraction and field assessment of dispersive behaviour
- field tests for dispersion and slaking (**Plate 2**), fine earth CaCO₃ effervescence and manganese segregations.

Plate 2: Slaking and dispersion field testing (intact soil aggregates at the top and reworked sample below)

Vegetation structural and floristic characteristics were recorded at each detailed field site, in accordance with the conventions and terminology in the *Australian Soil and Land Survey Handbook* (NCST 2009). Descriptions were in sufficient detail to convey useful information about the relationship between vegetation communities and each soil unit. The information is not intended to provide detailed vegetation data or mapping.

The field sheets from all detailed sites (inclusive of deep bores and semi-detailed check sites) are presented in **Appendix 2.**

Map boundary observations

Soil boundary site observations were made in sufficient detail to differentiate between recognised soil units. Details of the notes recorded are presented in **Appendix 3**.

3.2.5 Soil sampling and laboratory analysis

Sampling program

At all detailed field sites (including deep bores), samples of surface soil and subsoil materials were collected at standard 0.1 m intervals to 0.3 m and at 0.3 m depth intervals below 0.3 m (*ie* A1 surface depth, 0.1-0.2 m, 0.2-0.3 m, 0.5-0.6 m, 0.8-0.9 m, 1.1-1.2 m and 1.4-1.5 m)

plus selected intermediate depths, where required. At each site, sample depths were correlated with soil profile descriptions to ensure all soil horizons were captured, and horizon boundaries were not compromised (Baker & Eldershaw 1993).

In addition, for the two deep cores described in detail, samples were collected at 0.3 m intervals below 1.5 m to 3.3 m (*ie* 1.8 m, 2.1 m, 2.4 m, 2.7 m, 3.0 m and 3.3 m).

Samples from two of the four water driller's core chips were taken at 1 m intervals (bulk samples) to 14 m and analysed at 2 m intervals from 2 m to provide additional salinity data below the standard detailed profile depths.

Sample selection and laboratory analyses

The desktop review identified salinity as a potential significant constraint and this was considered in the selection of samples for analysis. The selection of sites for analysis and the nature of the analytical suite chosen were designed to ensure adequate spatial distribution and full characterisation of the expected range of soil properties in each significant soil unit identified.

A full description of the analyses performed and a summary of the number of samples analysed is presented in **Appendix 4**.

Laboratory pH, $EC_{1:5}$ and $Cl_{1:5}$ were measured at standard depths to 1.5 m (at intervals described above) at all detailed field sites⁴ to provide a comprehensive dataset of profile salinity trends and leaching characteristics across the entire 15 Mile project area. Deep samples (>1.5 m depth) were also screened for salinity to improve the salinity hazard assessment.

Soil pH, EC_{1:5} and Cl_{1:5} results for all depths at all field sites are presented in **Appendix 5**, while mean pH, EC_{1:5} and Cl_{1:5} data, measured ranges (to highlight variability within the data) and calculated EC_e values are summarised for each soil unit in **Appendix 6**. Salinity findings are also presented graphically for each soil unit in **Section 4.3**.

Full laboratory analysis is necessary to characterise the chemistry and particle size characteristics of soil resources, and to quantify key soil attributes used in the assessment of agricultural land suitability including erosion hazard. Analytical sites were carefully selected to ensure coverage of all major soil units and their spatial extent to assess the severity and distribution of soil-based constraints likely to impact irrigated horticultural development.

Full profile physical and chemical analysis (including cation chemistry, sodicity and dispersion, particle size analysis and soil water retention characteristics) was carried out on samples at each standard depth to 1.5 m from representative soil unit profiles (also referred to as analysed sites) and surface soils from these profiles were analysed for inherent fertility.

For widely distributed larger soil units (A1 and A2), more than one analysed profile was selected. Minor soil units considered to have limited agricultural potential (A1e, A3 and B2g) were not included in the selection of analysed sites. However, salinity screening was carried out on samples from these soil units.

Analytical data for the 10 analysed sites are presented in **Appendix 7**. Further explanation and discussion of the data (including correlation with profile morphology and quantification

⁴ All detailed field sites with the exception of water drillers bore sites 8 and 9.

of important physical and chemical characteristics) is presented in the modal soil profiles presented in the soil unit description pages in **Section 4.3**.

All laboratory analyses were undertaken by Agricultural Chemistry Pty Ltd., at their laboratory in Ipswich, Queensland. This is an Australasian Soil and Plant Analysis Council (ASPAC) accredited laboratory with extensive experience in agricultural soil and water testing for government and industry. The certificates of analysis (and quality control data) are presented in **Appendix 8**.

3.2.6 Data interpretation and calculated soil attributes

Assessment criteria used to interpret and rate analytical findings followed those defined by Bruce and Rayment (1982), Baker and Eldershaw (1993), Peverill *et al.* (1999), Burgess (2003a, b) and Hazelton and Murphy (2016).

Laboratory and field data have been used to estimate important soil attributes used in the assessment of land suitability including:

- effective rooting depth (ERD)
- plant available water capacity (PAWC to 1.0 m and 1.5 m)
- depth-weighted profile mean (WPM) saturated paste extract electrical conductivity (EC_e)
- soil erodibility (K factor).

The methods used to calculate these attributes are described in **Appendix 9** together with a summary of the outcomes for each soil unit.

3.3 Land suitability assessment for irrigated agriculture

Land suitability involves determining the potential of land for pre-defined land uses and identifying any associated production constraints that may require different degrees of management or resource inputs. A 'land use' is a combination of crop type (*eg* avocado) and management system (*eg* trickle irrigation).

The attributes used to characterise the land (and hence determine its suitability for a given land use) are called land use limitations (or simply 'limitations' *eg* degree of rockiness, wetness, frequency of frost). Land is considered less suitable as the severity of constraining limitations increases. Typically, this reflects either:

- reduced potential for production; and/or
- increased inputs to achieve acceptable production; and/or
- increased inputs to prepare the land successfully; and/or
- increased inputs to prevent land degradation.

3.3.1 Land suitability classes

The suitability framework developed for this project is land use specific and uses five standard land suitability classes (DNRM & DSITI 2015) to describe differing levels of potential agricultural success. Suitability outcomes decrease progressively from Class 1 to Class 5, and reflect increasing levels of production or environmental constraints. Suitable land is defined as land that can attain optimum, sustainable production with current technology, while minimising degradation to the land resource and environment in the short, medium- and long-term.

Definitions for each land suitability class in DNRM and DSITIA (2015) are reproduced in **Table 5**.

Class	Definition	Description
1	Suitable land with	Highly productive land requiring only simple management
	negligible limitations	practices to maintain sustainable production.
2	Suitable land with	Land with minor limitations that either constrain production or
	minor limitations	require more than the simple management practices of Class 1
		land to maintain sustainable production.
3	Suitable land with	Land with moderate limitations that further constrain production
	moderate limitations	or require more than the management practices of Class 2 land to
		maintain sustainable production.
4	Unsuitable land with	Currently unsuitable land with severe limitations that preclude
	severe limitations	successful or sustained use under existing conditions. Future
		changes in knowledge, economics or technology may alter this.
5	Unsuitable land with	Land with extreme limitations that preclude any possibility of
	extreme limitations	successful or sustained use, either now or in the future.

Table 5: Definitions for land suitability classes 1-5 (DNRM & DSITIA 2015)

Classes 1, 2 and 3 are considered suitable for a specified land use, as the benefits from using the land outweigh the inputs required to initiate and maintain sustainable production in the long-term. Class 1 land is the most productive. The difference between Class 1 and Class 2 or 3 land reflects differences in the level of production constraints and the need for additional inputs to achieve a similar level of productivity.

Class 4 land is considered currently unsuitable for a specified land use, due to the severity of one or more limitations. The premise is that land use inputs and costs (economic and environmental) needed to achieve and maintain sustainable production, outweigh the benefits from using the land in the long-term. Although "currently unsuitable", it is possible that future agronomic or technological advances could enable some level of environmentally sustainable, economic production on these lands. However, significant improvements in the management of constraining limitations would be required before such production was realised.

Class 5 land is considered permanently unsuitable for a specified land use. It has limitations that singly or in aggregate are so extreme that any benefits from using the land could never justify the inputs and costs (economic and environmental) required to achieve and maintain sustainable production. Irrespective of future changes in climate, economics, agronomic knowledge, resource utilisation, technology or environmental management, it is unlikely that Class 5 land would ever be suited to agricultural development. Typical examples include land constrained by steep terrain, severe or frequent flooding, very rocky lands and strongly saline areas.

Each land use has a different set of land requirements and for each limitation, there is a threshold that determines if land is suitable or unsuitable for a specific land use.

3.3.2 Land suitability assessment framework - land use requirements and limitations

As noted in **Section 3.1.2**, the land suitability framework developed for this project has been based on a review of the limitations and decision rules nominated for other studies in the surrounding area. The decision rules applied to each land attribute/limitation for these studies were compared (**Appendix 10, Table 1**).

Following the review, eighteen potential soil and land limitations were identified as important for assessing the suitability of the area for irrigated horticultural production. These were:

- climatic limitations climate stress heat (Cs), frost (Cf), temperature minimum (Ct)
- **landscape limitations** wind erosion (A), water erosion (E), flooding (F), salinity (Sa), discharge potential (Ss), microrelief (Tm), wetness (W), soil complexity (Xs), topographic complexity (Xt)
- soil profile limitations infiltration soil profile recharge (Ir), soil water availability (M), soil depth to physical root barrier (Pd), rockiness (R)
- soil physical limitations surface soil condition (Ps)
- soil nutrient limitations nutrient balance pH soil reaction trend (Nr).

Table 6 describes the desirable requirement associated with each potential limitation and the information used to assess the degree of potential limitation.

Table 6: Land use limitations considered during the assessment of land suitability for the 15 Mile project

Code	Limitation	Land use requirement(s)	Attributes used to assess
А	Wind erosion	Minimal soil loss or crop damage from wind erosion	Assessment based on surface soil texture characteristics, rainfall (<500 mm) and Sodosol presence or absence
Cf	Frost	Frost free (dry season April to October)	Days of potential frost (as defined by the Bureau of Meteorology) per year
Cs	Climate stress (heat)	Free of temperature extremes that could damage crops / productivity. Prolonged high temperatures	Days over 40°C
Ct	Temperature (minimums)	Favourable year-round temperature conditions for crop production	Monthly mean minimum temperature during growing season
E	Water erosion	Minimal soil loss from water erosion	Estimated erosion hazard based on % slope and calculated soil erodibility (K factor) of the surface soil
F	Flooding	Minimal impact from damaging floods	Estimated average flood recurrence interval (ARI); based on local elevation, landscape position (particularly proximity to and size of nearby drainage systems and size of conforming catchment)
Ir	Infiltration - soil profile recharge	Permeability to irrigation infiltration	Whole soil profile permeability
М	Soil water availability	Adequate soil water storage to maintain plant growth and maximise irrigation efficiency	Estimated plant available water capacity (mm/1.0 m or 1.5 m) from particle size analyses summed over horizon thickness and effective rooting depth
Nr	Nutrient balance - soil reaction trend (pH)	Absence of induced deficiencies or toxicities caused by pH extremes	Soil pH
Pd	Soil depth to physical root barrier	Adequate soil depth for physical plant support and root crop harvesting	Depth to rock, hardpan, continuous gravel layer or other impenetrable feature
Ps	Physical restrictions (Soil surface	Minimal soil based restrictions to germination and seedbed	Surface soil condition, structure, texture and sand fraction; ESP of surface soil (and plough zone where relevant)

Code	Limitation	Land use Attributes used to assess		
	condition and soil texture/structure)	preparation		
R	Rockiness	Minimal impact from gravel, stone and rock at the soil surface	Surface coarse fragment size and abundance (%)	
Sa	Salinity	Low levels of soluble salts in the soil profile	Mean profile soil salinity and landscape indicators; salt tolerant vegetation	
Ss	Discharge potential	Minimal susceptibility to salinity impacts from irrigation	Landscape position, soil profile salinity, evidence of seepage or "wicking", depth to water table	
Tm	Microrelief	Level land surface for tillage and crop production	Size of gilgai microrelief	
W	Wetness	Adequate drainage for soil aeration and minimal waterlogging	Drainage class and profile permeability; indicators include depth to and degree of bleaching, mottling, Mn segregations, gley features, soil colour, texture, structure; vegetation characteristics; field evidence of water saturation; presence of impermeable layers	
Xs	Soil complexity	Uniform production areas with managerially similar soils	soil variability; size and shape of mapped soil units and intensity of fragmentation	
Xt	Topographic complexity	Minimal dissection of the soil landscape and short range slope variability	Distribution and density of watercourses gullies and dissected features	

The decision rules adopted for each limitation and for each selected land use are presented in **Appendix 10, Table 2**. The combined framework describes the limitations, attribute values and subclass decision rules used to assess irrigated horticultural potential within the 15 Mile project area. For climate and flooding limitations, commentary is provided below.

Assessment of climate limitations

The climate data required to assess climate (climate stress (Cs), frost (Cf), temperature - minimum (Ct)) and wind erosion (A) limitations (which considered annual rainfall) was obtained from the Scientific Information for Land Owners (SILO) climate database. SILO datasets are constructed from observational records provided by the Bureau of Meteorology. SILO interpolates the raw data, which may contain missing values, to derive datasets that are both spatially and temporally complete (DES 2016). This provides a continuous daily time series of data (starting from 1889) at either recording stations or grid points across Australia. A 100 year dataset (01/01/1918 – 31/12/2017) of point data from grid point -20.80N 144.05E was obtained. The datasets used, the decision rules applied and the review outcomes are shown in **Table 7**.

Limitation	Basis for	Data set	Valuo	Resulting limitation class for each land use		
Limitation	decision rule	used	value	Table grapes	Citrus	Avocado
Climate stress (Cs)	Average number of days per year with daily maximum temperatures >40°C	Daily maximum temperature data	10 days (5-20 days/year)	3	3	3
Frost (Cf)	Average number of days per year with daily minimum temperatures <2°C	Daily minimum temperature data	l day (<2 days/year)	2	2	2
Temperature - minimum (Ct)	Average number of months per year with mean monthly minimum temperatures of $<15^{\circ}C$	Monthly minimum temperature data	4.3 months (>4 months)	1	1	2
Wind erosion (A)	Average annual rainfall above or below 500 mm	Annualised monthly rainfall data	458 mm (<500 mm)	NA Also dependent on surface soil texture	NA Also dependent on surface soil texture	NA Also dependent on surface soil texture

Table 7: Data review and outcomes of assessment of land suitability limitations related to climate and wind erosion

Assessment of flooding limitations

FSC does not have flood mapping for the project area (Robyn Young, FSC, *pers. comm.* 13 December 2018). According to GHD (2018), although the lower Flinders River catchment is known to be prone to flooding, the project area has not been identified as having a significant history of flooding (for 2000 to 2010) and is not susceptible to long periods of inundation. Field observations indicated that the swales and backplains receive regular inundation. This was supported by anecdotal evidence collected by the survey team from neighbouring landholders in December 2018, who indicated that the river frontage area had not been flooded in living memory (approximately 50 years) but that overflows from the Flinders River did affect the back of the property. With local relief approximately 5-6 m above the incised channel, the river frontage area would be above the major flood level (set at a river height 4.0 m at Hughenden). Adjacent scroll plains at slightly lower elevation are likely to be within the major flood level. Data from the Bureau of Meteorology (BOM 2018) for flooding at Hughenden indicates that flood peak has reached major flood level (4 m) on six occasions in the last 70 years and reached over 5 m on three of these occasions.

During the 2019 floods, Robyn Young from FSC (*pers. comm.* 14 February 2019) advised that the area drained well after the initial rain. However, when the whole of the upstream catchment drained, due to flooding downstream, water backed-up in the Flinders River and

the whole of the project area was inundated. However, Robyn Young reported that the inundation on higher ground did not last more than a day.

In the absence of detailed flood hazard data, flood height records at Hughenden, site observations of flooding or inundation evidence and localised changes in elevation together with local knowledge about flood occurrence and severity have been used to inform the assessment of flooding limitations.

4. Soil and Land Resources

4.1 Completed ground observation densities and validation of survey scale

Completed survey statistics for the 15 Mile project area are presented in **Table 8**. The total number of observations was 135, that is 184% of the minimum recommended by Schoknecht *et al.* (2008) or equivalent to the minimum recommended number of observations for mapping at a scale of approximately 1:15,000. The proportion of each observation type made was within the range recommended by Schoknecht *et al.* (2008) with the exception of the proportion of analysed sites, which was greater (better) than that recommended. The survey statistics in **Table 8** confirm that the sampling intensity and proportion of different observation types is consistent with the requirements for 1:25 000 scale mapping and provides an appropriate level of data capture to support the project's aims to meet guideline requirements.

	Total	Detailed field sites	Analytical sites	Deep cores	Semi- detailed check sites	Map boundary observations
Minimum recommended number	73	7-22	1-4	1-4	NA	43-64
Proportion of observations	-	10-30%	1-5%	1-5%	NA	60-88%
Completed ground observations	135	29 [#]	10^	4*	8*	96
Proportion of observations	-	23%	7%	3%	6%	71%

Table 8: Comparison of completed survey statistics with minimum recommendations for 1: 25 000 scale mapping

[#] This includes all fully described detailed sites, analysed sites and detailed deep borings sites.

^ This includes two detailed deep cores that were analysed as per standard profiles.

^{*}Two detailed deep borings were made and a further four sites described from water driller's bore chips. The two detailed deep bore sites were fully analysed and two of the drillers bore were analysed for salinity characteristics to depth and were included in the deep bore sample counts. The remaining two water driller's bore chip descriptions have been counted as semi-detailed check sites.

The locations of the ground observations are provided on **Figure 5** together with the boundaries of the soil units described in **Section 4.3**.

4.2 Soil landscape framework

Field observations confirmed the presence of land systems described by CSIRO (1964). Three major landscape units have been identified, each with a distinct set of associated soils and vegetation communities. A brief description of the landscape units and their distribution is provided below.

The nature of the soils and associated vegetation communities that have developed within these landscapes is described in **Table 9**. Soil unit codes used in **Table 9** comprise a primary letter code denoting lithologic landscape, a second number code that signifies a recognised combination of soil and vegetation. Additional letter codes indicate specific variants and phases (eg g - gilgaied, e - eroded).

Recommended print size: A3

Table 9: Soil landscape framework for the 15 Mile project area

Unit	Soil landscape description	Dominant Vegetation	Sites	Area (ha)	
Land	Landscape A: Flinders River terrace alluvium – regionally provenanced micaceous alluvium deposited by overbank flow from the Flinders River (Qa)				
Eleva	ted, level terrace plains; local relief 5-6 m above the incised river channel and 2-3 m ab	ove the clay backplains; slopes ≤	0.5%		
A1	Very deep (>1.5 m), hardsetting to firm, clay loamy surfaced, black or brown structured gradational earth with moderate to strong blocky structure (5-20 mm) in the upper subsoil (CLS-LMC, fine to medium sand fraction); over buried micaceous alluvial sand and/or gravel and/or and clay deposits from or below 0.5-1.0 m. (Black or Brown Dermosol, occasional Black or Brown Chromosol).	Ghost Gum, large-fruited Bloodwood and Bauhinia with occasional River Red Gum and/or Coolibah	1, 2 , 3, 7 , 8, 9, 10, 15, 17, 19, 22, 23, 24 , 32	311.0	
Erode	ed terrace plain margins (adjacent to incised swales or oxbows); local relief 1-2 m below	v the elevated terrace plains; slop	bes mostly 3-10%		
A1e	A1 eroded variant – As for Soil A1; but with variably developed A horizons that have been partially or completely stripped; moderately to severely sheet eroded, but with minimal rill or gully development. (Black Dermosol).	Bauhinia with shrubby <i>Eremophila sp.</i> (Butterbush)	31	12.5	
Less slope	Less elevated, level to very gently undulating scroll plains; local relief 1-2 m below the elevated terrace plains and 1-2 m above the clay backplains; slopes ≤ 1.0%				
A2	Very deep (>1.5 m), hardsetting to firm pedal, black or grey non-cracking to cracking clay with moderate to strong blocky (or occasionally lenticular) (5-20 mm) structure throughout the subsoil (LMC-MHC, often fine sandy); buried micaceous alluvial sand and/or gravel and/or and clay deposits not encountered before 1.5 m. (Black Dermosol, less commonly Black Vertosol).	Coolibah with occasional Bauhinia; less commonly Coolibah- Bauhinia scrub	12, 18, 21, 25, 29, 33, 37	140.8	
Low channel benches and incised terrace swales and oxbows; local relief 2-3m below the elevated terrace plains; slopes mostly ≤ 3.0%, up to 20% on incised sideslopes					
A3	Very deep (>1.5 m), hardsetting, clay loamy surfaced, brown structured gradational earth with weak to moderate blocky structure (10-20 mm) in the upper subsoil (CL-LC, fine sandy); over buried micaceous alluvial sand and/or gravel and/or and clay deposits from or below 0.5 m. (Brown Dermosol).	River Red Gum	11	33.3	
A4	Very deep (>1.5 m), moderately to strongly self-mulching, black cracking clay with a moderately thick to thick (0.02-0.05 m), coarse granular (2-5 mm) surface (MC-MHC), over a coarse blocky (20-100 mm) upper subsoil (HC) and strong lenticular (5-100 mm) lower subsoil (HC); over buried micaceous alluvial sand and/or gravel and/or and clay deposits below 1.5 m. (Self-mulching Aquic Vertosol).	Coolibah or Coolibah - River Red Gum	<mark>16</mark> , <mark>30</mark>	58.0	

Unit	Soil landscape description	Dominant Vegetation	Sites	Area (ha)
Lands depos	Landscape B: Flinders River backplain alluvium – locally sourced, non-micaceous clayey alluvium overlying older regionally provenanced micaceous deposits (Qa)			
Local	ly inundated, level clay backplains; local relief 2-3 m below the elevated terrace plains;	slopes ≤ 0.5%		
B1	Very deep (>1.5 m), weakly to strongly self-mulching, grey or brown cracking clay with a thin to moderately thick (0.02-0.03 m), fine granular (<2 mm) surface (LC-MC, often silty/fine sandy), over a strong blocky (5-20 mm) upper subsoil (MC) and strong lenticular (5-50 mm) lower subsoil (MC-MHC); over buried micaceous sandy clay deposits (CLS-SLMC) from or below 0.9->1.5 m. (Epipedal/Self-mulching Grey or Brown Vertosol).	Mitchell Grass open downs	6 , 35	55.1
B2	Very deep (>1.5 m), hardsetting, firm pedal or weakly self-mulching, black or brown cracking clay with an inconsistent, thin (0.02 m), fine granular (<2 mm) to blocky (2-20 mm) surface (LC –LMC fine sandy), over a strong blocky (5-20 mm) upper subsoil (LMC fine sandy) and moderate to strong blocky/lenticular (5-50 mm) lower subsoil (MC-MHC fine sandy); over buried micaceous sandy clay deposits (SCL-SLC medium/coarse sand fraction) from or below 0.7->1.5 m. (Epipedal Black or Brown Vertosol).	Sparse Boree scrub with associated Coolibah and Bauhinia	14, 36, <mark>38</mark> , <mark>39</mark>	98.5
B2g	B2 gilgaied phase – Very deep (>1.5 m), gilgaied (lattice or shallow melonhole VI 0.3 m, HI 15 m), moderately to strongly self-mulching, grey or black cracking clay with a moderately thick (0.03 m), fine granular (<2 mm) surface (MC), over a strong blocky to lenticular (10-20 mm) upper subsoil (MHC) and strong lenticular (5-100 mm) lower subsoil (MHC); over buried micaceous sandy clay deposits (MC fine sand fraction) from or below 1.3->1.5 m. (Self-mulching Black or Grey Vertosol).	Boree scrub with associated Coolibah and Bauhinia	5	21.4
Local	lly inundated, scalded backplains; local relief 2-3 m below the elevated terrace plains; s	lopes ≤ 0.5%		
B3	Very deep (>1.5 m), severely scalded, hardsetting and often crusted, black (or occasionally brown) sodic non-cracking clay (or sodic texture contrast soil where residual A horizons remain intact) with moderate to strong blocky structure (5-20 mm) throughout the subsoil (LMC - MHC); buried horizons (where present) are >1.5 m. (Black (or occasionally Brown) Dermosol/Sodosol).	Severely scalded and un-vegetated; or with isolated Boree, Coolibah and Bauhinia	4, 13, <mark>20</mark> , <mark>28</mark> , 34	106.8
Land	scape C: Fine-grained Cretaceous sedimentary rocks (labile mudstone, minor siltstone) (Kur)		
Gently undulating, elevated plains and low rises; local relief 5-10 m above the Flinders River alluvium; slopes 0.5-2.0%				
C1	Very deep (>1.5 m), weakly gilgaied (linear VI <0.15 m, HI 6 m), strongly self-mulching, red or brown cracking clay (MC-HC subsoil), with a thick (>0.06 m), fine granular (<2 mm) surface (MC), over a strong blocky to lenticular (2-20 mm) upper subsoil (MC-MHC), and strong lenticular (5-100 mm) lower subsoil (HC); over in-situ Cretaceous mudstone from 1.6 m. (Self-mulching Red or Brown Vertosol).	Mitchell Grass open downs	26	20.6

Unit	Soil landscape description	Dominant Vegetation	Sites	Area (ha)
Footslopes of the gently undulating, elevated plains and low rises (Soil C1); local relief 3-8 m above the Flinders River alluvium; slopes 2.0-5.0%				
C2	Very deep (>1.5 m), gravelly (2-20% rounded quartz), hardsetting, firm pedal or moderately to strongly self-mulching, brown cracking clay (subsoil - MC-MHC), with an inconsistent, thin to moderately thick (≤ 0.04 m), fine granular (<2 mm) to fine blocky (2-5 mm) surface (FSLC), over a strong blocky (5-20 mm) upper subsoil (MC), and strong lenticular (2-200 mm) lower subsoil (MC-MHC). (Epipedal or Self-mulching Brown Vertosol).	Boree scrub	27	30.0

Blue highlight = Full representative analytical profile; includes deep core profiles 12 and 24 which have additional pH, EC Cl data at standard depths to 3.3 m.

No highlight = detailed site with pH, EC Cl data at standard depths. Yellow highlight = deep cores with pH, EC Cl data at 2 m depth intervals to 14 m. Yellow highlight = deep cores described to 14 m+ but without salinity data. Green highlight = semi-detailed check sites with indicative morphological data but no analytical data.

Two landscape units occur on the Quaternary Alluvium (Qa). Landscape A occurs on regionally provenanced, micaceous terrace alluvium deposited by overbank flow from the Flinders River. This landscape consists of landscape elements built up by overland flow from the Flinders River channel and the past migration of the meander bends within the flood plain. There are large areas of level elevated terrace plain (TEP) on the river frontage standing high above the incised Flinders River channel that are unlikely to be frequently flooded (**Plate 3**). There are also large areas of level to very gently undulating scroll plains (visible on the aerial imagery in the north-east and centre of the project area (**Plate 4**). This landscape is incised with prior stream channels and isolated or ephemeral oxbows (**Plate 5**).

Plate 3: Typical topography of the elevated alluvial terrace on Quaternary Alluvium

Plate 4: Very gently undulating scroll plains on Quaternary Alluvium

Plate 5: Incised terrace swale on Quaternary Alluvium

Landscape B occurs on locally sourced, non-micaceous clayey backplain alluvium overlying older regionally provenanced micaceous deposits. The area is flat with local relief 2-3 m below the TEP and is locally inundated (**Plate 6**). This backplain (BKP) landscape generally occurs further away from the channel behind the TEP and covers a large portion of the southern part of the project area. The area is dominated by cracking clay soils and has extensive scaled areas devoid of vegetation particularly through the centre of the site. In places, there is no groundcover and topsoil has been removed by wind and/or water erosion (**Plate 6**). There are better drained areas on the margins of Landscape B backplains closer to the river that have soils that also occur in Landscape A (Soil Unit A2). Although morphologically similar to the soils on the TEP, these soils are affected by subsoil salinity indicative of impeded landscape drainage and active salinity accession within the backplains (due to discharge from the adjacent rolling downs) (see soil unit pages in **Section 4.3** for more detail).

Plate 6: Level backplain on Quaternary Alluvium with Mitchell Grass on the left and severe scalds on the right

Landscape C is the Rolling Downs country on mudstones of the Cretaceous sediments and is isolated to the north-west section of the project area and extends to the south outside of the project boundary. This area is also dominated by cracking clay soils (**Plate 7**).

Plate 7: Gently undulating, elevated plains of the Rolling Downs on Cretaceous sediments

4.3 Soil unit descriptions

The following section provides a summary of field descriptions, analytical data and interpreted attributes for soil units described in the project area. Soil unit nomenclature is split according to landscape age (youngest to oldest) and landscape position and further subdivided on the basis of soil unit and vegetation characteristics.

Information presented for each soil unit includes landscape description, detailed soil profile morphology, dominant vegetation, soil chemistry, physical soil attributes (based on data in **Appendices 5, 6, 7 and 9**), limitations to agricultural development and land suitability outcomes for irrigated horticulture (for the crops selected) (see descriptions of the data presented in **Table 10**). Data interpretation uses ratings and classes defined by Bruce and Rayment (1982), Baker and Eldershaw (1993), Peverill *et al.* (1999), Hazelton and Murphy (2016) and Burgess (2003a, b).

The distribution of soil units is shown in Figure 6.

Soil or landscape attribute	Description
Geological	Geological formation, dominant lithology and weathering status of the parent
landscape	material.
Landform	Dominant relief/modal slope class, landform pattern and typical slope range.
Soil concept	A conceptual soil description summarising distinguishing profile features and parent material.
Soil classification	Australian Soil Classification – Suborder/Soil Order (Isbell & NCST 2016).
Runoff, permeability and drainage	Estimates as defined by the National Committee on Soil and Terrain (NCST) (2009).
	Surface condition as defined by the NCST (2009).
Surface features	Presence or absence of microrelief (type, degree of development, size and dominance of components).
	Estimates of gravel and rock as defined by the NCST (2009).
Dominant vegetation	Summary of the dominant mid/upper stratum species and structure

Table 10: Soil and landscape attribute definitions

Soil or landscape attribute	Description
Modal soil profile description Descriptions of the depth, horizon designation, dominant colour, m texture, structure, segregations, gravel and field pH of the major so and underlying substrate as defined by the NCST (2009): estimates effective rooting depth (ERD), plant available water capacity (PAV surface soil erodibility (K factor).	
Root zone salinity	Assessment of the severity and distribution of soluble salt loads and effective rooting depth (ERD) of the soil.
	Summary of the fertility status and ratings for organic carbon, total nitrogen and available phosphorus, potassium, calcium, minor elements, sulfur and micronutrients.
Soil analytical summary	Important soil chemistry attributes of the surface soil and subsoil including pH, electrical conductivity, soluble chloride, cation exchange capacity, exchangeable cations, cation dominance, ESP, sodicity and dispersive behaviour (R1).
	Important physical soil characteristics including clay content, sand fraction, clay mineralogy and dispersion.
Limitations to horticultural development	Inherent climatic, landscape or soil based factors that affect or potentially limit irrigated horticultural development, such as surface rock, salinity and drainage.
Land suitability outcomes	Land suitability findings for irrigated avocados, citrus and table grapes.

Soil Unit A1	Bloodwood terrace plains		
Geological landscape:	Flinders River terrace alluvium – regionally provenanced micaceous alluvium deposited by overbank flow from the Flinders River (Qa).		
Landform:	Elevated, level terrace plains; local relief 5-6 m above the incised river channel and 2-3 m above the clay backplains; slopes $\leq 0.5\%$.		
Soil concept:	Very deep (>1.5 m), hardsetting to firm, clay loamy surfaced, black or brown structured gradational earth with moderate to strong blocky structure (5-20 mm) in the upper subsoil (CLS-LMC, fine to medium sand fraction); over buried micaceous alluvial sand and/or gravel and/or and clay deposits from or below 0.5-1.0 m.		
Aust. Soli Classification:	Black or Brown Dermosol, occasional Black or Brown Chromosol.		
Runoff, perm., drainage:	Slow runoff; moderately permeable (occ. slowly permeable); moderately well-drained.		
Surface features:	Hardsetting, occ. firm; non-cracking; non-gilgaied; non-gravelly; no outcrop; no termitaria.		
Dominant vegetation:	Ghost gum, large-fruited bloodwood and bauhinia with occasional river red		
Investigation area:	Total area mapped: No. of Field sites: 14 Analysed sites: 2, 24		

Hardsetting sandy clay loamy surface (Site 24).

Typical bloodwood - ghost gum vegetation on the terrace plain (Site 22)

Modal Soil Profile Description

The **surface soil** (A1) is a black (10YR 2/1, 3/2) or brown (3/3, 4/3), sandy clay loam to clay loam sandy (fine sand), with massive to weak subangular blocky (5-20 mm) structure; non-gravelly; few to common very fine (<1 mm diameter) roots; field pH 6.5-8.5. Lower depth 0.05- 0.1 m. Abrupt to clear change.

The **upper subsoil** (B21) is a black (10YR 2/2, 3/1-2) or brown (10YR 3/3), clay loam sandy to light medium clay (fine to medium sand), with moderate to strong angular blocky (5-20 mm) structure; non-gravelly; few to common very fine (<1 mm diameter) roots; field pH 6.5-8.5. Lower depth 0.4-0.5 m. Clear to gradual change. The **lower subsoil** (B22) is a black (10YR 3/2) or brown (10YR 3/3, 4/3), sandy clay loam to clay loam sandy (fine to medium sand), with weak to strong angular blocky (5-20 mm) structure; occasional <2-20% <2 mm calcareous soft segregations; few to common very fine (<1 mm diameter) roots; field pH 6.0-8.5. Lower depth 0.5-1.0 m. Clear to gradual change.

Buried horizons (2D) are brown (10YR 3/3-4, 4/3-4, 5/3) or yellow (10YR 6/4), sand to sandy loam grading coarser and sandier with depth; with massive structure and sandy or earthy fabric; nongravelly; roots absent or few very fine (<1 mm diameter) roots; field pH 7.0-9.0. Buried layers (including coarse gravel beds and clay lenses) are randomly distributed stratigraphically and spatially, and were laid down by stream channel movements during scroll plain development. They vary enormously in terms of thickness and sequencing. Deposits can be shallow (0.5 m), but are most common below 0.8-1.0 m. All deposits (including clay layers) have a consistent visible micaceous sand fraction. PAWC to 1.0 m: PAWC to 1.5 m: K factor: 63-71 mm 100-110 mm 0.040-0.043 (high)

Soil Unit A1

Bloodwood terrace plains

Root zone salinity

Median salinity levels are very low (Cl <50 mg/kg) throughout, and effective rooting depth (ERD) >1.5 m. Salinity curves lack a recognizable equilibrium "salt bulge", and salinity characteristics confirm the landscape is subject to regular leaching and deep drainage towards the incised stream channel (6m deep) of the Flinders River.

Soil analytical summary

The soil has a beneficial organic fraction with low to moderate organic carbon, and moderate to high total nitrogen levels. Inorganic nutrients are above sufficiency levels with high to very high phosphorous and potassium, moderate to high calcium, and moderate micronutrients levels (copper and zinc). The only exception is sulfate which is low to very low. Soil pH values are neutral to alkaline (range 6.4-8.7) in the upper profile (0-0.6 m), and strongly alkaline (range 7.8-8.9) at depth (0.9-1.5 m). CEC values are low to moderate (range 6-19 cmol/kg) in both surface and subsoil horizons, but vary significantly in buried layers. CEC/clay ratios are moderate to high throughout (range 0.5-0.9), and suggest the clay fraction is of mixed mineralogy with moderate to high activity. Profiles are non-saline (EC_e <2 dS/m, Cl<50mg/kg), non-sodic (ESP <1%), moderately well-drained and moderately permeable.

Clay content is low to moderate (range 9-21%) in surface horizons, and gradually increases to moderate levels (range 16-28%) in the subsoil. Buried horizons are highly variable (range <10-37%). The surface soil is massive to weakly structured, with an elevated fine sand/ silt fraction (51-64%); and will be prone to slaking and pulverescent behaviour following aggressive tillage. The subsoil has similar fine sand/ silt characteristics, but is moderately to strongly structured (blocky). Buried layers to 1.5 m are predominantly massive and sandy. Profiles are rigid throughout and lack sodicity and salinity constraints. Laboratory measured dispersion is moderate to high in the surface soil (R1 0.74-0.89), high in the subsoil (0.82-0.87) and highly variable in buried layers (0.6-0.99). Values reflect inherent instability within the fine sand/silt fraction (rather than a dispersive clay fraction).

Limitations to horticultural development

Identified constraints are either minor or moderate and include heat stress(Cs), frost (Cf), temperature (minimum) (Ct) (avocados only), flooding (F), infiltration/recharge (Ir), soil water storage to 1.0m (M) (citrus and table grapes only), nutrient balance (Nr) (citrus only), surface soil condition (Ps) and soil wetness (W).

Land suitability outcomes

Soil Unit A1 is suitable with moderate limitations (Class 3) for irrigated table grapes, citrus and avocado production. Land suitability criteria and suitability assessment are presented in **Appendices 10 and 11**.

Profile at Site 1 with loose sand from 0.8m

Driller's core to 24m at Site 8; soil first 2-3m (far right)

Soil Unit A1e	Eroded terrace plain margins	
Geological landscape:	Flinders River terrace alluvium – regionally provenanced micaceous alluvium deposited by overbank flow from the Flinders River (Oa).	
Landform:	Eroded terrace plain margins (adjacent to incised swales or oxbows); local relief 1-2 m below the elevated terrace plains; slopes mostly 3-10%.	
Soil concept:	As for Soil A1; but with variably developed A horizons that have been partially or completely stripped by moderate to severe sheet erosion and limited rill and gully development.	
Aust. Soil Classification:	Black Dermosol.	
Runoff, perm., drainage:	Moderately rapid runoff; slowly permeable; moderately well-drained.	
Surface features:	Firm or hardsetting; non-cracking; non-gilgaied; non-gravelly; no outcrop.	
Dominant vegetation:	Bauhinia with shrubby Eremophila sp.	
Investigation area:	Total area mapped:No. of Field sites: 1Analysed site:- NA12.5 ha	

Severely sheet eroded terrace margins with bauhinia and shrubby butterbush at Site 31

Modal Soil Profile Description

Rill formation and localised sheet wash on terrace sideslopes at Site 31

#

The **surface soil** (A1) is a black (10YR 3/2), sandy clay loam (medium to coarse sand), with weak subangular blocky (10-20 mm) structure; non-gravelly; common very fine (<1 mm diameter) roots; field pH 6.5-7.0. Lower depth 0.1 m. Gradual change. The **upper subsoil** (B21) is a black (10YR 3/2), clay loam sandy (medium to coarse sand), with moderate angular blocky (5-10 mm) structure; non-gravelly; few very fine (<1 mm diameter) roots; field pH 6.5-7.5. Lower depth 0.6 m. Diffuse change. The **lower subsoil** (B22, B23) is a brown (10YR 3/3, 4/3), light medium clay grading to sandy light clay at depth (fine to medium sand), with moderate to strong angular blocky to prismatic (10-50 mm) structure; <2-10% <2 mm calcareous nodules and soft segregations; 2-10% faint yellow mottles at depth; few very fine (<1 mm diameter) roots; field pH 8.0-8.5. Profile is typically deeper than 1.5 m.

Buried horizons (2D) were not observed but are likely and would have similar characteristics to those described for Soil A1. PAWC to 1.0 m: PAWC to 1.5 m: K factor:

PAWC and K facto	r data are based	on data from	Soil A1 – Site 2
------------------	------------------	--------------	------------------

Soil Unit A1e

Eroded terrace plain margins

Root zone salinity

Median salinity levels are very low (Cl \leq 0 mg/kg) throughout, and effective rooting depth (ERD) \geq 1.5 m. Salinity curves lack a recognizable equilibrium "salt bulge", and salinity characteristics confirm the landscape is subject to regular leaching and deep drainage towards the incised oxbow feature that sits adjacent.

Soil analytical summary

Salinity analyses confirm Soil A1e and Soil A1 have similar leaching profiles and are developed from the same alluvium. Erosion features on Soil A1e are the product of overgrazing and higher gradients (3-10%) around terrace margins, and not different physical or chemical soil attributes. Soil analytical data and interpretations from Soil A1 (Site 24) provided below can be applied equally to Soil A1e.

The soil has a modest organic fraction with low organic carbon, and moderate total nitrogen levels. Inorganic nutrients are above sufficiency levels with high phosphorous and potassium, moderate calcium, and moderate micronutrients levels (copper and zinc). The only exception is sulfate which is very low. Soil pH values are neutral to slightly alkaline (range 6.7-7.7) in the upper profile (0-0.6 m), and alkaline (range 8.0-8.3) below. CEC values are low (range 6-9 cmol/kg) in both surface and subsoil horizons. CEC/clay ratios are moderate throughout (range 0.5-0.7), and suggest the clay fraction is of mixed mineralogy with moderate activity. Profiles are non-saline (EC_e <2 dS/m, Cl<50mg/kg), non-sodic (ESP <1%), moderately well-drained and slowly permeable.

Clay content is low (range 9-18%) throughout the profile. The surface soil is weakly structured, with an elevated fine sand/ silt fraction (51-53%); and will be prone to slaking and pulverescent behaviour following aggressive tillage. The subsoil has similar fine sand/ silt characteristics, but is moderately to strongly structured (blocky to prismatic). Profiles are rigid throughout and lack sodicity and salinity constraints. Laboratory measured dispersion is high in the surface soil (R1 0.81-0.89) and high in the subsoil (0.86-0.87). Values reflect inherent instability within the fine sand/silt fraction (rather than a dispersive clay fraction).

Limitations to horticultural development

Identified constraints range from minor or extreme and include heat stress (Cs), frost (Cf), temperature (minimum) (Ct) (avocados only), water erosion (E), flooding(F), infiltration/recharge (Ir), soil water storage to 1.0m (M) (citrus and table grapes only), nutrient balance (Nr) (citrus only), surface soil condition (Ps), discharge potential (Ss), soil wetness (W) and topographic complexity (Xt).

Land suitability outcomes

Soil Unit Ale is unsuitable (Class 5) for irrigated table grapes, citrus and avocado production. Land suitability criteria and suitability assessment are presented in **Appendices 10 and 11**.

Analysed sites:12, 25

Soil Unit A2	Coolibah scroll plains
Geological landscape:	Flinders River terrace alluvium – regionally provenanced micaceous alluvium deposited by overbank flow from the Flinders River (Qa).
Landform:	Less elevated, level to very gently undulating scroll plains; local relief 1-2 m below the elevated terrace plains and 1-2 m above the clay backplains; slopes $\leq 1.0\%$.
Soil concept:	Very deep (>1.5 m), hardsetting to firm pedal, black or grey non-cracking to cracking clay with moderate to strong blocky (or occasionally lenticular) (5-20 mm) structure throughout the subsoil (LMC-MHC, often fine sandy); buried micaceous alluvial sand and/or gravel and/or and clay deposits not encountered before 1.5 m.
ASCSoil Classification:	Black Dermosol, less commonly Black Vertosol.
Runoff, perm., drainage:	Very slow to slow runoff; slowly permeable; moderately well-drained or occasionally imperfectly drained.
Surface features:	Hardsetting to firm pedal; non-cracking, less commonly cracking; non-gilgaied, rarely minor lattice gilgai (VI 0.2 m HI 25 m); non-gravelly; no outcrop; no termitaria.
Dominant vegetation:	Coolibah with occasional bauhinia; less commonly coolibah- bauhinia scrub.

Investigation area:

Typical coolibah scroll plain at Site 12

Modal Soil Profile Description

No. of Field sites: 7

Deep core to 3.5m at Site 12 - black Blocky surface structure at Site 25 Vertosol over river sand (from 2.4m)

The surface soil (A1) is a black (10YR 3/2) or grey (10YR 4/2), rarely mottled (10-20% <5 mm distinct orange mottles), clay loam sandy to light medium clay (with fine sand), with weak to strong granular (<2 mm) to subangular blocky (2-20 mm) structure; non-gravelly; few to common very fine (<1 mm diameter) roots; field pH 6.5-7.5. Lower depth typically 0.03-0.08 m, occasionally thicker (0.2-0.25 m). Abrupt to clear change. The upper subsoil (B21) is a black (10YR 3/1, 3/2) or grey (10YR 4/1), rarely mottled (2-10% <5 mm faint brown mottles), light medium to medium clay (with fine to medium sand), with moderate to strong angular blocky (5-20 mm) structure; non-gravelly; few to common very fine to fine (<1-2 mm diameter) roots; field pH 6.5-8.5. Lower depth 0.2-0.5 m. Gradual to diffuse change.

The lower subsoil (B22, B23, B24) is a black (10YR 3/1, 3/2) or brown (7.5YR, 10YR 3/3, 4/3, 4/4), rarely mottled (2-20% <5-15 mm distinct brown or orange mottles), light clay to medium heavy clay (with fine to medium sand), with moderate to strong angular blocky to lenticular (5-100 mm) structure; common <2-10% <2-6 mm calcareous nodules and soft segregations and rare <2% <2 mm gypsum crystals; often few to common very fine to fine (<1-2 mm diameter) roots; field pH 7.5-9.0. Profiles are typically deeper than 1.5 m.

Buried horizons (2D) occur below 1.5m, and are similar to deposits beneath Soils A1 and A1e; brown (10YR 3/3-4, 4/3-4, 5/3) or yellow (10YR 6/4), sand to sandy loam grading coarser and sandier with depth; with massive structure and sandy or earthy fabric; non-gravelly; roots absent or few very fine (<1 mm diameter) roots; field pH 7.0-9.0. Buried layers (including coarse gravel beds and clay lenses) were laid down by stream channel movements during scroll plain development and vary enormously in terms of thickness and sequencing. Deposits typically have a visible consistent micaceous sand fraction.

PAWC to 1.0 m:	PAWC to 1.5 m:	K factor:
37-104 mm	37-133 mm	0.057-0.071
(ERD 0.3->1.5 m)	(ERD 0.3->1.5 m)	(high to very high)

Soil Unit A2

Coolibah scroll plains

Root zone salinity

Two groups with differing salinity characteristics are recognised within the A2 soil. The first group have nonsaline profiles and are associated with the elevated terrace plains (Sites 12, 18 - A2 TEP), while the second group have significant subsoil salinity, and lie adjacent to or form part of the low lying backplain landscape (Sites 21, 25 - A2 BKP). Salinity levels for the elevated A2 TEP group are very low (Cl <50 mg/kg) throughout, and the effective rooting depth (ERD) is >1.5 m. Salinity curves for this group lack a recognizable equilibrium "salt bulge", and salinity characteristics confirm the landscape is subject to leaching and deep drainage towards the incised stream channel (6m deep) of the Flinders River. Subsoil salinity levels for the less elevated A2 BKP group are moderate to high (Cl 800-1000 mg/kg) below 0.3-0.5m, and have a recognizable equilibrium "salt bulge" (i.e. the "salt bulge" remains constant) below this depth. The start of the "salt bulge" marks the long-term wetting front and effective rooting depth for this group, and is indicative of impeded landscape drainage and active salinity accession within the backplains (due to discharge from the adjacent rolling downs).

Soil analytical summary

Organic carbon levels are moderate and total nitrogen levels are high to very high and confirm the soil has a significant organic fraction. Macronutrient levels are elevated with high to very high levels of calcium, phosphorous and potassium and moderate levels of sulfate, while micronutrients (copper and zinc) levels are moderate. Soil pH values indicate soil profiles are neutral at the surface (6.7-7.3), slightly alkaline to alkaline (7.5-8.5) in the upper profile (to 0.6m) and alkaline to strongly alkaline (8.1-9.0) at depth. CEC values (range 21-31 cmol/kg) are moderate to high and CEC/clay ratios (range 0.5-1.0) are moderate to very high, suggesting the clay fraction is of mixed mineralogy with moderate to high activity.

Clay content for the dominant non-cracking clays (Dermosols) is moderate (range 21-37%) in the surface and upper subsoil to 0.3 m, and increasing to high levels (range 43-48%) in the subsoil. The surface soil is weakly to strongly structured (blocky), with an elevated fine sand/ silt fraction (74-79%); and will be prone to slaking and pulverescent behaviour following aggressive tillage. The subsoil has similar fine sand/ silt characteristics, but is better structured (mod. to strong blocky). Clay content for the cracking clays (Vertosols) is moderately high to high (39-49%) throughout, with more structured surface soil but similar subsoil materials.

Salinity, sodicity and dispersion characteristics relate to landscape position (see root zone salinity comments). Profiles in the A2 TEP group are non-saline, non-sodic and have moderate surface dispersion (R1 0.64) and low subsoil dispersion (R1 0.52-0.57). Profiles in the A2 backplain group, have significant subsoil salinity (Cl >800-1000 ppm) and strong to extreme sodicity (ESP 19-38%) from 0.3-0.5 m. Laboratory measured dispersion is moderate to high in the surface soil (R1 0.63-0.65) and high to extreme in the subsoil (0.80-0.98).

Limitations to horticultural development

Identified constraints range from minor to severe but vary from between individual UMAs. This summary provided only general information about constraints. A more complete analysis is provided in **Appendices 11** and **12**. Constraints include heat stress (Cs), frost (Cf), temperature (minimum) (Ct) (avocados only), water erosion (E), flooding (F), infiltration/recharge (Ir), soil water storage (M), nutrient balance (Nr), surface soil condition (Ps), salinity (Sa), discharge potential (Ss), soil wetness (W) and topographic complexity (Xt).

Land suitability outcomes

Most UMAs on soils in the A2 TEP group are suitable (Class 3) for irrigated citrus and table grapes with negligible to moderate limitations, but unsuitable for avocados because of severe constraints. UMAs on soils in the A2 BKP group are unsuitable (Class 4) for all selected crops because of severe constraints. Land suitability criteria and suitability assessment are presented in **Appendices 10 and 11**.

Soil Unit A3	River red gum channels benches and swales	
Geological landscape:	Flinders River terrace alluvium – regionally provenanced micaceous alluvium deposited by overbank flow from the Flinders River (Qa).	
Landform:	Low channel benches and incised terrace swales; local relief 2-3m below the elevated terrace plains; slopes mostly $\leq 3.0\%$, up to 20% on incised sideslopes.	
Soil concept:	Very deep (>1.5 m), hardsetting, clay loamy surfaced, brown structured gradational earth with weak to moderate blocky structure (10-20 mm) in the upper subsoil (CL-LC, fine sandy); over buried micaceous alluvial sand and/or gravel and/or and clay deposits from or below 0.5 m.	
Aust. Soil Classification:	Brown Dermosol.	
Runoff, perm., & drainage:	Very slow runoff; moderately permeable; moderately well-drained.	
Surface features:	Hardsetting; non-cracking; non-gilgaied; non-gravelly; no outcrop; no termitaria.	
Dominant vegetation:	River red gum.	
Investigation area:	Total area mapped: 33.3 ha No. of Field sites: 1 Analysed site – NA	
STAL X VYC		

Elongated swale (channelled and incised) with river red gum (Site 11)

Modal Soil Profile Description

Brown Dermosol within an incised terrace swale at Site 11; buried alluvial sand from 0.5m

The **surface soil** (A1) is a brown (10YR 4/3), sandy clay loam (fine sand), with massive to weak subangular blocky to platy (5-10 mm) structure; non-gravelly; few very fine (<1 mm diameter) roots; field pH 7.0-7.5. Lower depth 0.04 m. Clear change.

The **subsoil** (B2) is a brown (10YR 4/4), clay loam sandy to light clay (fine sand), with weak to moderate subangular blocky (10-20 mm) structure; non-gravelly; common very fine (<1 mm diameter) roots; field pH 8.0-8.5. Lower depth 0.45 m. Clear to gradual change. **Buried horizons:**

2D1 - brown (10YR 5/3), sand (medium to coarse sand), with massive structure and sandy fabric; non-gravelly; few very fine (<1 mm diameter) roots; field pH 8.0-8.5. Lower depth 0.65 m. Clear change. **2D2** - brown (10YR 4/3), clay loam sandy (fine sand), with massive structure and earthy fabric; non-gravelly; common very fine (<1 mm diameter) roots; field pH 7.5-8.0. Lower depth 0.75 m. Clear change. **2D3** - brown (10YR 5/3), sand (medium to coarse sand), with massive structure and sandy fabric; non-gravelly; few very fine (<1 mm diameter) roots; field pH 7.5-8.5. Lower depth 1.3 m. Gradual change.

2D4 - loamy sand (medium to coarse sand), with massive structure and earthy fabric; non-gravelly; common very fine (<1 mm diameter) roots; field pH 8.0-8.5. Profiles are deeper than 1.5 m.

PAWC to 1.0 m:	PAWC to 1.5 m:	K factor:
71 mm [#]	110 mm [#]	0.040 (high) #
[#] PAWC and K factor d	ata are based on data from	n Soil A1 – Site 2

Soil Unit A3

River red gum channels benches and swales

Root zone salinity

Median salinity levels are very low (Cl <50 mg/kg) throughout, and effective rooting depth (ERD) is >1.5 m. Salinity curves lack a recognizable equilibrium "salt bulge", and salinity characteristics confirm the landscape is subject to regular leaching and deep drainage from inundation events and more generally towards the stream channel (6m deep) of the Flinders River.

Soil analytical summary

Salinity analyses confirm Soil A3 and Soil A1 have similar leaching profiles and are developed from the same alluvium. Soil analytical data and interpretations as described below from Soil A1 (Site 2) apply equally to Soil A3.

The soil has a beneficial organic fraction with moderate organic carbon, and high total nitrogen levels. Inorganic nutrients are above sufficiency levels with very high phosphorous and potassium, high calcium, and moderate micronutrients levels (copper and zinc). The only exception is sulfate which is low. Soil pH values are neutral at the surface (7.3), alkaline in the upper profile (8.5) and strongly alkaline (8.7) below. CEC values are moderate (range 17-19 cmol/kg) in both surface and subsoil horizons, but vary significantly in buried layers. CEC/clay ratios are moderate to high throughout (range 0.6-0.9), and suggest the clay fraction is of mixed mineralogy with moderate to high activity. Profiles are non-saline (EC_e <2 dS/m, Cl<50mg/kg), non-sodic (ESP <1%), moderately well-drained and moderately permeable.

Clay content is moderate (range 21-28%) throughout the profile, while buried horizons are highly variable (range 15-37%). The surface soil is massive to weakly structured, with an elevated fine sand/ silt fraction (64%); and will be prone to slaking and pulverescent behaviour following aggressive tillage. The subsoil has similar fine sand/ silt characteristics, but is weakly to moderately structured (blocky). Buried layers to 1.5 m are predominantly massive and sandy. Profiles are rigid throughout and lack sodicity and salinity constraints. Laboratory measured dispersion is moderate in the surface soil (R1 0.74), high in the subsoil (0.82) and highly variable in buried layers (0.6-0.91). Values reflect inherent instability within the fine sand/silt fraction (rather than a dispersive clay fraction).

Limitations to horticultural development

Identified constraints range from heat stress (Cs), frost (Cf), temperature (minimum) (Ct) (avocados only), water erosion (E), flooding (F), infiltration/recharge (Ir), soil water storage to 1.0 m (M) (citrus and table grapes only), nutrient balance (Nr), surface soil condition (Ps), discharge potential (Ss), soil wetness (W) and topographic complexity (Xt).

Land suitability outcomes

Soil Unit A3 is unsuitable (Class 4) for irrigated citrus, table grapes and avocados because of severe constraints. Land suitability criteria and suitability assessment are presented in **Appendices 10 and 11**.

Soil Unit A4	Coolibah oxbows	
Geological landscape:	Flinders River terrace alluvium – regionally provenanced micaceous alluvium deposited by overbank flow from the Flinders River (Oa).	
Landform:	Low-lying, incised oxbows; local relief 2-3m below the elevated terrace plains; slopes mostly $\leq 3.0\%$ up to 20% on incised sideslopes	
Soil concept: Aust. Soil Classification	Very deep (>1.5 m), moderately to strongly self-mulching, black cracking clay with a moderately thick to thick (0.02-0.05 m), coarse granular (2-5 mm) surface (MC-MHC), over a coarse blocky (20-100 mm) upper subsoil (HC) and strong lenticular (5-100 mm) lower subsoil (HC); over buried micaceous alluvial sand and/or gravel and/or and clay deposits below 1.5 m. Self-mulching Aquic Vertosol.	
Runoff, perm. & drainage:	No runoff; very slowly permeable; poorly drained.	
Surface features:	Moderately to strongly self-mulching; cracking; non-gilgaied; non-gravelly; no outcrop; no termitaria.	
Dominant vegetation:	Coolibah or coolibah – river red gum	
Investigation area:	Total area mapped: 58.0 ha No. of Field sites: 2 Analysed site: 16	

Coolibah – river red gum woodland in an oxbow feature at Site 30

Modal Soil Profile Description

Coolibah open woodland, surface cracking and typical black Aquic Vertosol profile at Site 16

The **surface soil** (A1) is a black (10YR 3/2) or grey (10YR 4/2), commonly mottled (20-50% <5 mm distinct orange mottles), medium clay to medium heavy clay, with strong coarse granular (2-5 mm) structure; non-gravelly; few very fine (<1 mm diameter) roots; field pH 6.5-7.5. Lower depth 0.02-0.05 m. Abrupt to clear change. The **upper subsoil:**

B21 - black (2.5Y, 10YR 3/1, 3/2), commonly mottled (20-50% <5 mm distinct orange mottles), heavy clay, with moderate to strong angular blocky to lenticular (5-100 mm) structure; non-gravelly; few very fine (<1 mm diameter) roots; field pH 7.0-8.0. Lower depth 0.2-0.4 m. Gradual change.

B22k - black (2.5Y 3/1), heavy clay, with strong lenticular (5-100 mm) structure; <2% <2 mm calcareous nodules; few very fine (<1 mm diameter) roots; field pH 8.5-9.0. Lower depth 0.75-1.2 m. Diffuse change.

The **lower subsoil** (B23y) is a black (10YR 3/2), commonly mottled (30-70% < 5-15 mm distinct brown and orange mottles), heavy clay, with moderate to strong angular blocky to lenticular (10-20 mm) structure; 2-10% < 2 mm gypsum crystals; roots absent; field pH 8.0-9.0. Profiles are typically deeper than 1.5 m.

y.o. i formes are typically	aceper man 1.5 m.	
PAWC to 1.0 m:	PAWC to 1.5 m:	K factor:
117 mm (ERD 0.8 m)	117 mm (ERD 0.8 m)	0.046 (high)

Soil Unit A4 Coolibah oxbows

Root zone salinitv

Subsoil salinity levels are moderate (Cl 370-470 mg/kg) below 0.8m, and have a recognizable equilibrium "salt bulge" (i.e. the "salt bulge" remains constant) below this depth. The start of the "salt bulge" marks the long-term wetting front and effective rooting depth (0.8 m) for this soil, and corresponds to the depth at which ESP values >15% occur. Salinity characteristics are a compromise between impeded landscape drainage, regular flushing and salinity accession from adjacent backplains.

Soil analytical summary

The soil has a modest organic fraction with low organic carbon and moderate total nitrogen levels. Macronutrient levels are very high (calcium, phosphorous, potassium and sulfate), while micronutrients (copper and zinc) levels are moderate. Soil pH values indicate soil profiles are neutral (6.8-7.1) in the surface soil to 0.2 m, and slightly to strongly alkaline in both the upper (0.2-0.6 m) (range 7.8-8.7) and lower subsoil (0.9-1.5 m) (range 7.9-8.7). CEC levels (33-37 cmol/kg) are high throughout. Moderate CEC/clay ratios (0.6) and the presence of cracking and lenticular structure suggest the clay fraction is of mixed mineralogy (with a high proportion of smectites), is highly reactive and has significant shrink-swell characteristics. Clay content is very high and relatively uniform (60-62%) throughout the profile. Structure within the plough zone to 0.3 will be coarse, blocky and difficult to breakdown (high strength) even though the immediate surface soil is self-mulching (coarse granular 2-5 mm). Surface and upper subsoil material will be prone to significant compaction if subject to heavy traffic or aggressive tillage when moist or wet. The surface soil and upper subsoil to 0.4 m are non-saline (Cl <50 ppm) and non-sodic (ESP 1-2%), with low to moderate dispersion (R1 0.49-0.65). The lower subsoil below 0.4 m has increasing salinity (moderate Cl 21-451 ppm) and sodicity (moderate to very high ESP 10-24%), high dispersion (R1 0.80-0.91) and coarse macro lenticular structure, that together limit effective rooting depth (ERD 0.8 m). Profiles are characterised by Calcium (Ca) dominant cation chemistry throughout (high Ca/Mg ratios).

Limitations to horticultural development

Identified constraints range from minor to extreme and include heat stress (Cs), frost (Cf), temperature (minimum) (Ct) (avocados only), water erosion (E), flooding (F), infiltration/recharge (Ir), nutrient balance (Nr), surface soil condition (Ps), discharge potential (Ss), soil wetness (W) and topographic complexity (Xt).

Land suitability outcomes

Soil Unit A4 is unsuitable (Class 5) for irrigated for irrigated citrus, table grapes and avocados because of severe constraints. Land suitability criteria and suitability assessment are presented in **Appendices 10 and 11**.

Flood height marks to 2.5m and recent flood sediment at Site 30

Soil Unit B1	Mitchell grass backplains		
Geological landscape:	Flinders River backplain alluvium – locally sourced, non-micaceous clayey		
	alluvium overlying older regionally provenanced micaceous deposits (Qa)		
Landform:	Locally inundated, level clay backplains; local relief 2-3 m below the elevated terrace plains; slopes $\leq 0.5\%$.		
Soil concept:	Very deep (>1.5 m), weakly to strongly self-mulching, grey or brown cracking clay with a thin to moderately thick (0.02-0.03 m), fine granular (<2 mm) surface (LC-MC, often silty/fine sandy), over a strong blocky (5-20 mm) upper subsoil (MC) and strong lenticular (5-50 mm) lower subsoil (MC-MHC); over buried micaceous sandy clay deposits (CLS-SLMC) from or below 0.9->1.5 m.		
Aust. Soil Classification:	Epipedal/Self-mulching Grey or Brown Vertosol.		
Runoff, perm., & drainage:	Very slow runoff; very slowly permeable; moderately well-drained.		
Surface features:	Weakly to strongly self-mulching; surface flake and fine sandy wash; cracking; non-gilgaied; non-gravelly; no outcrop; no termitaria.		
Dominant vegetation:	Mitchell grass open downs.		
Investigation area:	Total area mapped: 55.1 haNo. of Field sites: 2Analysed site: 6		

Level backplains with Mitchell Grass at Site 6

Modal Soil Profile Description

Severe cracking and thin to moderately thick selfmulch at Site 6

The **surface** soil (A1) is a grey (10YR 4/2) or brown (10YR 3/3), light clay to medium clay (often silty/fine sandy), with moderate to strong granular (<2 mm) to subangular blocky (2-5 mm) structure; non-gravelly; few very fine (<1 mm diameter) roots; field pH 6.5-8.5. Lower depth 0.02-0.03 m. Clear change.

The **upper subsoil** (B21k) is a grey (10YR 4/2) or brown (10YR 3/3), medium clay, with moderate to strong angular blocky (5-20 mm) structure; <2% <2 mm calcareous nodules; few very fine (<1 mm diameter) roots; field pH 8.0-9.0. Lower depth 0.3-0.4 m, common slight effervescence. Gradual change.

The **lower subsoil** (B22ky/B23y) is a grey (10YR 4/2) or brown (10YR 3/3), medium clay to medium heavy clay, with moderate to strong lenticular (5-50 mm) structure; <2% <2 mm calcareous nodules and <2-10% <2 mm gypsum crystals; roots absent or few very fine (<1 mm diameter) roots; field pH 8.5- 9.0. Lower depth 0.9->1.5 m, common slight effervescence. Clear change.

Buried horizons (2D) are brown (7.5YR, 10YR 4/4), mottled (<2-10% 5-15 mm faint orange mottles), clay loam to light medium clay (often sandy and micaceous) with massive or weak to moderate angular blocky/polyhedral (10-20 mm) structure; 2-10% <2-6 mm gypsum crystals; roots absent; field pH 8.5-9.0. Profiles are deeper than 1.5 m.

PAWC to 1.0 m:	PAWC to 1.5 m:	K factor:
59 mm (ERD 0.4 m)	59 mm (ERD 0.4 m)	0.050 (high)

Soil Unit B1

Mitchell grass backplains

Root zone salinity

Subsoil salinity levels are high to very high ($Cl \ge 800-1800 \text{ mg/kg}$) below 0.5-0.7m, and exhibit a recognizable equilibrium "salt bulge" (i.e. the "salt bulge" remains relatively constant with depth). The "salt bulge" marks the long-term wetting front and effective rooting depth of the soil, and is indicative of indicative of impeded landscape drainage and active salinity accession within the backplains (due to discharge from the adjacent rolling downs).

Soil analytical summary

The soil has a modest organic fraction with low organic carbon and moderate total nitrogen levels. Macronutrient levels are high to very high (calcium, phosphorous, potassium and sulfate), while micronutrients (copper and zinc) levels are moderate. Soil pH values indicate soil profiles are alkaline (7.9-8.2) in the surface soil to 0.1 m, strongly alkaline in the upper subsoil (0.1-0.6 m) (range 8.3-9.0) and variable at depth (0.9-1.5 m) (range 7.7-9.1). CEC levels (20-27 cmol/kg) are moderate to high throughout. Moderate CEC/clay ratios (0.5-0.6) and the presence of cracking and strong lenticular structure suggest the clay fraction is of mixed mineralogy (with a high proportion of smectites), is highly reactive and has significant shrink-swell characteristics.

Clay content is moderately high to high (43-50%) in the upper profile, decreasing to moderate levels (33-37%) in buried horizons from or below 0.9 m. The plough zone to 0.3 m is moderately to strongly structured and likely to be friable with tillage, but may be subject to crusting behaviour because of elevated silt levels. Surface and upper subsoil material will be prone to significant compaction if subject to heavy traffic or aggressive tillage when moist or wet. The surface soil and upper subsoil to 0.4 m are non-saline (Cl <50 ppm) and non-sodic to moderately sodic (ESP 2-8%), with low to moderate dispersion (R1 0.43-0.65). The lower subsoil below 0.4 m has moderate to very high salinity (Cl 480 ppm increasing rapidly to >1500 ppm), very high sodicity (ESP 27-30%), moderate dispersion (R1 0.66-0.74) and coarse macro lenticular structure, that together limit effective rooting depth (ERD 0.4 m). Profiles are characterised by Calcium (Ca) dominant cation chemistry throughout (high Ca/Mg ratios).

Limitations to horticultural development

Identified constraints range from minor to severe (for citrus and table grapes) or extreme (for avocado) and include heat stress (Cs), frost (Cf), temperature (minimum) (Ct) (avocados only), flooding (F), infiltration/recharge (Ir), soil water storage (M), nutrient balance (Nr), surface soil condition (Ps), salinity (Sa), discharge potential (Ss), soil wetness (W) and soil complexity (Xs).

Land suitability outcomes

Soil Unit B1 is unsuitable (Class 4 or 5) for irrigated for irrigated citrus, table grapes and avocados because of severe or extreme constraints. Land suitability criteria and suitability assessment are presented in **Appendices 10 and 11**.

Self-mulch layer (0.03 m) and strong flake at Site

Soil Unit B2	Boree backplains		
Geological landscape:	Flinders River backplain alluvium – locally sourced, non-micaceous clayey alluvium overlying older regionally provenanced micaceous deposits (Qa)		
Landform:	Locally inundated, level clay backplains; local relief 2-3 m below the elevated terrace plains; slopes $< 0.5\%$.		
Soil concept:	Very deep (>1.5 m), hardsetting, firm pedal or weakly self-mulching, black or brown cracking clay with an inconsistent, thin (0.02 m), fine granular (<2 mm) to blocky (2-20 mm) surface (LC –LMC fine sandy), over a strong blocky (5-20 mm) upper subsoil (LMC fine sandy) and moderate to strong blocky/lenticular (5-50 mm) lower subsoil (MC-MHC fine sandy); over buried micaceous sandy clay deposits (SCL-SLC medium/coarse sand fraction) from or below 0.7->1.5 m.		
Aust. Soil Classification:	Epipedal Black or Brown Vertosol.		
Runoff, perm., & drainage:	Very slow to slow runoff; very slowly permeable; moderately well-drained.		
Surface features:	Hardsetting, firm pedal or weakly self-mulching; occasional surface flake; cracking; non-gilgaied; no outcrop; no termitaria.		
Dominant vegetation:	Sparse boree scrub with associated coolibah and bauhinia.		
Investigation area:	Total area mapped:No. of FieldAnalysed site: 3898.5 hasites: 4		
	REFERENCE -		

Sparse boree scrub on level backplains at Site 38

Modal Soil Profile Description

Surface cracking, epipedal condition (hardsetting to weakly self-mulching) and typical profile features at Site 38

The **surface soil** (A1) is a brown (7.5YR, 10YR 3/3, 3/4, 4/3), light clay to light medium clay (with fine sand), with weak to strong granular (<2 mm) to subangular blocky (2-20 mm) structure; non-gravelly; few very fine (<1 mm) roots; field pH 7.0-8.5, slight effervescence. Lower depth 0.02-0.04 m. Abrupt to clear change.

The upper subsoil:

m

0.40

0.90

1 50

B21 - black (10YR 3/2) or brown (7.5YR, 10YR 3/4, 4/3), light medium clay (with fine sand), with strong angular blocky (5-20 mm) structure; occasional <2% <2 mm calcareous soft segregations; few very fine (<1 mm) roots; field pH 8.0-9.5, common moderate effervescence. Lower depth 0.3-0.4 m. Clear to gradual change.

B22ky - black (10YR 3/2) or brown (10YR 3/4), light medium clay to medium clay (with fine sand), with moderate to strong angular blocky to lenticular (5-20 mm) structure; <2% <2 mm calcareous nodules and <2-10% <2 mm gypsum crystals; roots absent; field pH 8.5-9.5, common moderate effervescence. Lower depth 0.65-0.9 m. Gradual to diffuse change.

The lower subsoil (B23y/B24y) where present is a brown (10YR 3/3, 4/4) or grey (10YR 4/2), medium clay to medium heavy clay (with fine sand), with moderate to strong angular blocky or lenticular (5-50 mm) structure; 2- 20% 2-6 mm gypsum crystals; roots absent; field pH 8.5-9.0, common slight effervescence. Lower depth >1.5 m.

Buried horizons (2D) where present before 1.5 m are brown (10YR 4/4, 4/6), sandy clay loam to sandy light clay (with medium/coarse sand), with weak to moderate angular blocky (10-20 mm) structure; common <2% <2 mm calcareous soft segregations and <2% <2 mm gypsum crystals; roots absent; field pH 8.0- 8.5. Profiles are typically deeper than 1.5 m.

PAWC to 1.0 m:	PAWC to 1.5 m:	K factor:
15 mm (ERD 0.1 m)	15 mm (ERD 0.1 m)	0.070 (very high)

Soil Unit B2

Boree backplains

Root zone salinity

Soil salinity levels are high to extreme ($Cl \ge 900-4000 \text{ mg/kg}$) below about 0.1 m, and define the long-term wetting front and effective rooting depth of this soil. Salinity levels below this depth exhibit a significant shallow "salt bulge", and are indicative of episodic evaporative "wicking" and surface salinity expression. Salinity characteristics indicate severely impeded landscape drainage and active salinity accession are occurring within the backplains (due to discharge from the adjacent rolling downs).

Soil analytical summary

The soil has a modest organic fraction with low organic carbon and moderate total nitrogen levels. Macronutrients are variable with high to very high levels of phosphorous, potassium and calcium, low levels of sulfate and moderate micronutrient levels (copper and zinc). Soil pH Values indicate soil profiles are neutral to alkaline (7.2-8.5) in the surface soil to 0.1 m, strongly alkaline in the upper subsoil (0.1-0.6 m) (range 8.5-9.2) and alkaline to strongly alkaline at depth (0.9-1.5 m) (range 8.1-9.1). CEC levels are moderate (17-23 cmol/kg) in the upper profile to 0.6 m and increase to high levels at depth (26-31 cmol/kg). Moderate CEC/clay ratios (0.5-0.6), surface cracking and lenticular structure at depth suggest the clay fraction is of mixed mineralogy (with a high proportion of smectites), with moderate to high activity and significant shrink-swell characteristics.

Clay content is moderate (28-36%) in the surface and upper subsoil to 0.3 m, and gradually increases to high or very high levels (45-61%) at depth. The plough zone to 0.3 m is moderately to strongly structured and likely to be friable with tillage, but may be subject to crusting behaviour because of elevated silt levels. Surface and upper subsoil material will be prone to significant compaction if subject to heavy traffic or aggressive tillage when moist or wet. Immediate surface horizons to about 0.1 m have low levels of salinity and sodicity (Cl <250 ppm, ESP <6%) and only moderate dispersion values ((R1 0.73). Subsoil materials below 0.1 m are extremely saline (Cl \geq 900-4000 mg/kg), extremely sodic (ESP 36-76%), and have high to very high dispersion (R1 0.82-0.99). Profiles are characterised by Sodium (Na) dominant cation chemistry below 0.1 m.

Limitations to horticultural development

Identified constraints range from minor to extreme and include heat stress (Cs), frost (Cf), temperature (minimum) (Ct) (avocados only), water erosion (E), flooding (F), infiltration/recharge (Ir), soil water storage (M), nutrient balance (Nr), surface soil condition (Ps), salinity (Sa), discharge potential (Ss), soil wetness (W) and soil complexity (Xs).

Land suitability outcomes

Soil Unit B2 is unsuitable (Class 5) for irrigated for irrigated citrus, table grapes and avocados because of extreme constraints. Land suitability criteria and suitability assessment are presented in **Appendices 10 and 11**.

Boree scrub and epipedal surface with significant cracking at Site14

Drill samples to 24m at Site 39

Soil Unit B2g	Gilgaied backplains	
Geological landscape:	Flinders River backplain alluvium – locally sourced, non-micaceous clayey alluvium overlying older regionally provenanced micaceous deposits (Qa)	
Landform:	Locally inundated, level clay backplains; local relief 2-3 m below the elevated terrace plains; slopes $\leq 0.5\%$.	
Soil concept:	Very deep (>1.5 m), gilgaied (lattice or shallow melonhole VI 0.3 m, HI 15 m), moderately to strongly self-mulching, grey or black cracking clay with a moderately thick (0.03 m), fine granular (<2 mm) surface (MC), over a strong blocky to lenticular (10-20 mm) upper subsoil (MHC) and strong lenticular (5-100 mm) lower subsoil (MHC); over buried micaceous sandy clay deposits (MC fine sand fraction) from or below 1.3->1.5 m.	
Aust. Soil Classification:	Self- mulching Grey or Black Vertosol.	
Runoff, perm., & drainage:	Very slow runoff; very slowly permeable; imperfectly drained.	
Surface features:	Moderately to strongly self-mulching; weak surface flake; cracking; lattice or shallow melonhole gilgai (VI 0.3 m, HI 15 m); non-gravelly; no outcrop; no termitaria.	
Dominant vegetation:	Boree scrub with associated coolibah and bauhinia.	
Investigation area:	Total area mapped: 21.4 ha No. of field sites: Analysed site: NA 1	

Gilgaied B2g backplain unit with boree scrub and lattice/melonhole gilgai to 0.3m VI at Site 5

Modal Soil Profile Description

Typical profile features of the gilgaied self-mulching grey Vertosol at Site 5

~	The surface soil (A1) is a grey (10YR 4/2), medium clay, with strong
	granular (<2 mm) structure; non-gravelly; field pH 7.0-7.5, slight
0.03	effervescence. Lower depth 0.03 m. Clear change.
	The upper subsoil:
	B21 - grey (10YR 4/2), medium heavy clay, with strong angular
	blocky to lenticular (10-20 mm) structure; <2% <2 mm calcareous
0.40	nodules; field pH 8.0-9.0, slight effervescence. Lower depth 0.4 m.
	Gradual change.
	B22 - black (10YR 3/2), medium heavy clay, with strong lenticular (5-
	100 mm) structure; <2% <2 mm calcareous nodules and <2% <2 mm
0.75	gypsum crystals; field pH 8.5-9.0, slight to moderate effervescence.
	Lower depth 0.75 m. Gradual change.
	The lower subsoil (B23y) where present is a black (10YR 3/2),
	medium heavy clay, with strong lenticular (5-100 mm) structure; <2%
	<2 mm calcareous nodules and 2-10% <2 mm gypsum crystals; field
	pH 8.5, slight to moderate effervescence. Lower depth 1.3 m. Diffuse
	change.
1.30	Buried horizons (2Dk) where present are brown (7.5YR, 10YR 4/4),
	mottled (2-10% <5 mm distinct orange mottles), medium clay, with
1 50	moderate angular blocky to lenticular (10-20 mm) structure; 2-10%
	<2 mm calcareous nodules; field pH 8.5, slight to moderate
	effervescence. Profiles are typically deeper than 1.5 m.
	PAWC to 1.0 m: PAWC to 1.5 m: K factor:
	59 mm (ERD 0.4 m) $^{\#}$ 59 mm (ERD 0.4 m) $^{\#}$ 0.050 (high) $^{\#}$
	[#] PAWC and K factor data are based on data from Soil B1 – Site 6

Soil Unit B2g

Gilgaied backplains

Root zone salinity

Soil salinity levels are high to extreme ($Cl \ge 1400-2200 \text{ mg/kg}$) below about 0.4 m, and define the longterm wetting front and effective rooting depth of this soil. Salinity levels below this depth exhibit a significant shallow "salt bulge", and are indicative of episodic evaporative "wicking" and surface salinity expression. Salinity characteristics indicate severely impeded landscape drainage and active salinity accession are occurring within the backplains (due to discharge from the adjacent rolling downs).

Soil analytical summary (based on analytical data from Land Unit B1)

Soil analytical data for soil B2g is limited to pH and salinity data from Site 5. Analytical data from soil B1 Site 6 (which lies immediately adjacent to Site 5 and has equivalent soil profile characteristics) is presented and interpreted here. Clay content and clay activity are likely to be greater for the weakly gilgaied B2g soil (Site 5) when compared with the B2 soil (Site 6).

The soil is likely to have similar fertility characteristics to Site 6, with a modest organic fraction, low organic carbon and moderate total nitrogen levels. Macronutrient levels will be high to very high (calcium, phosphorous, potassium and sulfate), while micronutrients (copper and zinc) levels will be moderate. pH analyses from Site 5 indicate soil profiles are slightly alkaline (7.7) in the surface soil to about 0.1 m, alkaline to strongly alkaline in the upper subsoil (0.1-0.6 m) (range 8.3-8.9) and alkaline at depth (0.9-1.5 m) (range 8.0-8.3). CEC levels are likely to be moderate to high throughout (20-27 cmol/kg). Moderate CEC/clay ratios (0.5-0.6) and the presence of gilgai, cracking and strong lenticular structure suggest the clay fraction is of mixed mineralogy (with a high proportion of smectites), is highly reactive and has significant shrink-swell characteristics.

Field texture correlation (between Sites 5 and 6) suggest clay content is similar at Sites 5 and 6, and is moderately high to high (43-50%) throughout; including in buried horizons. The plough zone to 0.3 m is strongly structured and likely to be friable with tillage. Surface and upper subsoil material will be prone to significant compaction if subject to heavy traffic or aggressive tillage when moist or wet. The surface horizons and upper subsoil to 0.4 m have low levels of salinity and sodicity (Cl <280 ppm, ESP <8%) and low to moderate dispersion values (R1 0.43-0.65). Subsoil materials below 0.4 m have very high salinity levels (Cl \geq 1400-2200 mg/kg) and are extremely sodic (ESP >25%).

Limitations to horticultural development

Identified constraints range from minor to extreme and include heat stress (Cs), frost (Cf), temperature (minimum) (Ct) (avocados only), flooding (F), infiltration/recharge (Ir), soil water storage (M), nutrient balance (Nr), surface soil condition (Ps), salinity (Sa), discharge potential (Ss), microrelief (Tm) and soil wetness (W).

Land suitability outcomes

Soil Unit B2g is unsuitable (Class 5) for irrigated for irrigated citrus, table grapes and avocados because of extreme constraints. Land suitability criteria and suitability assessment are presented in **Appendices 10 and 11**.

Soil Unit B3	Scalded backplains		
Geological landscape:	Flinders River backplain alluvium – locally sourced, non-micaceous clayey alluvium overlying older regionally provenanced micaceous deposits (Oa)		
Landform:	Locally inundated, scalded backplains; local relief 2-3 m below the elevated terrace plains: slopes $\leq 0.5\%$		
Soil concept:	Very deep (>1.5 m), severely scalded, hardsetting and often crusted, black (or occasionally brown) sodic non-cracking clay (or sodic texture contrast soil where residual A horizons remain intact) with moderate to strong blocky structure (5-20 mm) throughout the subsoil (LMC - MHC); buried horizons (where present) are >1.5 m.		
Aust. Soil Classification:	Black (or occasionally Brown) Dermosol/Sodosol.		
Runoff, perm., & drainage:	Very slow to slow runoff; very slowly permeable; imperfectly drained.		
Surface features:	Hardsetting; crusted (often with a fine sandy veneer) where topsoil has been removed; non-cracking; non-gilgaied; non-gravelly; no outcrop; no termitaria		
Dominant vegetation:	Either severely scalded and un-vegetated; or very isolated boree, coolibah and bauhinia.		
Investigation area:	Total area mapped:No. of FieldAnalysed site: 20106.8 hasites: 5		

Scalded B3 backplain at Site 20 Modal Soil Profile Description

Surface crusting at Site 20, and topsoil erosion terracettes at Site 13

The **surface soil** (A1/A2) is highly variable and includes residual sandy or loamy topsoil (where intact) and exposed, crusted subsoil materials; typically it comprises a black (10YR 3/2), brown (10YR 3/3, 4/3, 5/3) or grey (10YR 4/2), fine sandy loam to fine sandy light clay, with massive (where topsoil) to strong platy or blocky (5-20 mm) structure (where subsoil material); non-gravelly; roots absent or few to common very fine (<1 mm diameter) roots; field pH 6.0-9.0. Lower depth 0.08-0.10 m, occ. thicker (0.2-0.3 m) where residual A horizons remain intact. Abrupt to clear change. The **upper subsoil:**

B21 - black (10YR 3/2) or occasionally brown (10YR 3/3), light clay to light medium clay, with moderate to strong angular blocky (5-20 mm) structure; occasional 2-10% <2 mm calcareous nodules; roots absent or few very fine (<1 mm diameter) roots; field pH 6.5-9.0, occasional high effervescence. Lower depth 0.3-0.75 m. Clear to gradual change.

B22 - black (10YR 3/2) or brown (10YR 3/3, 4/3), light medium clay to medium heavy clay, with moderate to strong angular blocky (5-20 mm) structure; common <2-10% <2 mm calcareous soft segregations and frequent <2-20% <2 mm gypsum crystals; roots absent; field pH 8.5-9.5, moderate effervescence. Lower depth 0.75-1.3 m. Gradual to diffuse change.

The **lower subsoil** (B23) is a brown (7.5YR, 10YR 3/3, 3/4, 4/3), frequently mottled (2-10% <5-15 mm faint to distinct dark, brown or red mottles), light medium clay to medium heavy clay, with weak coarse lenticular (>50 mm) parting to moderate or strong angular blocky (5-20 mm) structure; common 2-10% <2 mm calcareous nodules or soft segregations and 2-20% <2-6 mm gypsum crystals; roots absent; field pH 8.5-9.5, slight effervescence. Profiles are typically deeper than 1.5 m. **PAWC to 1.0 m: PAWC to 1.5 m: K factor:** 1.6-16 mm 0.051 (high)

(ERD 0.01-0.1 m)

(ERD 0.01-0.1 m)

Soil Unit B3

Scalded backplains

Root zone salinity

Soil salinity levels are high to extreme ($Cl \ge 900->2900 \text{ mg/kg}$) below 0.01-0.1m (depending on depth of intact A horizon material), and define the long-term wetting front and effective rooting depth of this soil. Salinity levels below this depth exhibit a significant shallow "salt bulge", and are indicative of episodic evaporative "wicking" and surface salinity expression. Salinity characteristics indicate severely impeded landscape drainage and active salinity accession are occurring within the backplains (due to discharge from the adjacent rolling downs).

Soil analytical summary

Organic carbon and total nitrogen levels are very low to low, and confirm the soil has a limited organic fraction. Macronutrient levels are moderate to high (calcium, phosphorous, potassium and sulfate), while micronutrient levels are moderate (copper and zinc). Soil pH values indicate soil profiles are acidic to alkaline (6.1-8.3) in the surface soil to 0.1 m, neutral to strongly alkaline in the upper subsoil (0.1-0.6 m) (range 6.5-8.9) and strongly alkaline at depth (0.9-1.5 m) (range 8.4-9.3). CEC levels (18-27 cmol/kg) are moderate to high throughout. CEC/clay ratios are moderate (range 0.4-0.6), and suggest the clay fraction is of mixed mineralogy with moderate to high activity.

Clay content is moderate (range 33-43%) in the surface soil and upper subsoil (to 0.6 m), and increases to high or very high levels (50-57%) at depth. Immediate surface horizons to 0.01-0.1 m have low levels of salinity and sodicity (Cl <250 ppm, ESP <15%), while subsoil materials below this depth are extremely saline (Cl \geq 900->2900 mg/kg), extremely sodic (ESP 42-111%), and moderately to extremely dispersive (R1 0.52-0.99). Profiles are characterised by Sodium (Na) dominant cation chemistry below 0.1 m. This landscape is very fragile and disturbance should be avoided. Scalded surfaces are typically crusted, very hardsetting, extremely impermeable and highly susceptible to sheet and wind erosion. Surface layers have an elevated fine sand/ silt fraction (60-64%); and will be prone to slaking and pulverescent behaviour following disturbance.

Limitations to horticultural development

Identified constraints range from minor to extreme and include wind erosion (A) (some UMAs), heat stress (Cs), frost (Cf), temperature (minimum) (Ct) (avocados only), flooding (F), infiltration/recharge (Ir), soil water storage (M), nutrient balance (Nr), surface soil condition (Ps), salinity (Sa), discharge potential (Ss), soil wetness (W) and soil complexity (Xs).

Land suitability outcomes

Soil Unit B3 is unsuitable (Class 5) for irrigated for irrigated citrus, table grapes and avocados because of extreme constraints. Land suitability criteria and suitability assessment are presented in **Appendices 10 and 11.**

Subsoil dispersion at Site 13

Soil profile from a severe scald at Site 20

Soil Unit C1	Rolling downs		
Geological landscape:	Fine-grained Cretaceous sedimentary rocks (labile mudstone, minor siltstone) (Kur).		
Landform:	Gently undulating, elevated plains and low rises; local relief 5-10 m above the Flinders River alluvium; slopes 0.5-2.0%.		
Soil concept:	Very deep (>1.5 m), weakly gilgaied (linear VI <0.15 m, HI 6 m), strongly self- mulching, red or brown cracking clay (MC-HC subsoil), with a thick (>0.06 m), fine granular (<2 mm) surface (MC), over a strong blocky to lenticular (2-20 mm) upper subsoil (MC-MHC), and strong lenticular (5-100 mm) lower subsoil (HC); over in-situ Cretaceous mudstone from 1.6 m		
Aust. Soil Classification:	Self-mulching Red or Brown Vertosol.		
Runoff, perm., & drainage:	Slow runoff; very slowly permeable; moderately well-drained.		
Surface features	Strongly self-mulching; weak surface flake; cracking; linear gilgai (VI 0.15 m HI 6 m); <2% 6- 20 mm quartz gravels; no outcrop; no termitaria.		
Dominant vegetation:	Mitchell grass open downs.		
Investigation are	a: Total area mapped: 20.6 ha No. of Field sites: 1 Analysed site: 26		
* 4			

Elevated Mitchell grassThick fine self-mulch and typical profile features over in-situ mudstone (from
1.6m) at Site 26

Modal Soil Profile Description

The **surface soil** (A1) is a brown (7.5YR 3/4), medium clay, with strong granular (<2 mm) structure; non-gravelly; few very fine (<1 mm diameter) roots; field pH 8.5-9.0. Lower depth 0.07 m. Clear change. The **upper subsoil:**

B21 - brown (7.5YR 3/4), medium clay, with strong angular blocky to lenticular (5-10 mm) structure; non-gravelly; few very fine (<1 mm diameter) roots; field pH 8.5-9.0. Lower depth 0.2 m. Gradual change. **B22** - red (5YR 3/3), medium heavy clay, with strong lenticular (2-20 mm) structure; non-gravelly; few very fine (<1 mm diameter) roots; field pH 8.5-9.0. Lower depth 0.5 m. Gradual change.

The **lower subsoil** (B23y) is a red (5YR 3/3), heavy clay, with strong lenticular (5-100 mm) structure; <2% <2 mm calcareous soft segregations and 2-10% 2-6 mm gypsum crystals; few very fine (<1 mm diameter) roots; field pH 8.5-9.0. Lower depth 1.3 m. Gradual change.

The **transition to substrate** (B3y) is a red (5YR 5/6), mottled (2-10% 5- 15 mm distinct yellow substrate mottles), medium clay (with fine sand), with moderate lenticular (10-100 mm) structure; 10-20% 6- 20 mm mudstone fragments, <2% <2 mm calcareous soft segregations and 20-50% 2-6 mm gypsum crystals; roots absent; field pH 8.5-9.0. Lower depth 1.6 m. Gradual change.

The **underlying substrate** (C) comprises brown to yellow (10YR 5/6, 6/6), mottled (20-50% 5-15 mm distinct red substrate mottles), massive, clayey weathered fines (<30%) within a matrix of in-situ mudstone (70-100%).

PAWC to 1.0 m:	PAWC to 1.5 m:	K factor:
104 mm (ERD	104 mm (ERD 0.8 m)	0.037 (moderate)
0.8 m)		

Soil Unit C1

Root zone salinity

Subsoil salinity levels are moderate ($Cl \ge 350-800 \text{ mg/kg}$) from 0.7-1.0 m, and high ($Cl \ge 800-1060 \text{ mg/kg}$) below 1.0 m. They develop a recognizable equilibrium "salt bulge" (i.e. the "salt bulge" remains relatively constant with depth) at about 1.2-1.3 m at the transition to weathered substrate. The "salt bulge" marks the long-term wetting front and effective rooting depth of the soil.

Rolling downs

Soil analytical summary

The soil has a modest organic fraction with low organic carbon and moderate total nitrogen levels. Macronutrient levels are variable with high to very high levels of phosphorous, calcium and potassium, low levels of sulfate, and low to moderate levels of micronutrients (copper and zinc). Soil pH values indicate soil profiles are slightly alkaline to alkaline (range 7.7-8.1) throughout. CEC levels (38-49 cmol/kg) are high to very high throughout. High to very high CEC/clay ratios (0.8-3.2) and the presence of gilgai, cracking and strong lenticular structure suggest the clay fraction is predominantly

montmorillonitic/smectitic, is highly reactive and has significant shrink-swell characteristics. Clay content is very high (55-63%) in the surface and upper subsoil to 0.5 m, but decreases significantly (12-34%) below this depth due to an increasing silt fraction (44-66%) from the weathering of the underlying mudstone. The plough zone to 0.3 m is strongly structured and likely to be friable with tillage. Surface and upper subsoil material will be prone to significant compaction if subjected to heavy traffic or aggressive tillage when moist or wet. The surface soil and upper subsoil to 0.5 m is non-saline (Cl <50 ppm) and non-sodic (ESP <2%), with very low dispersion (R1 0.15-0.38). The subsoil below 0.5 m has moderate to very high salinity (Cl 600 ppm increasing gradually to >950 ppm), moderate to very high solicity (ESP 10% increasing to 32%) and coarse macro lenticular structure, that together limit ERD to about 0.8 m. Profiles are characterised by Calcium (Ca) dominant cation chemistry (high Ca/Mg ratios), and dispersion remains very low to low throughout (R1 0.21-0.56).

Limitations to horticultural development

Identified constraints range from minor to severe and include heat stress (Cs), frost (Cf), temperature (minimum) (Ct) (avocados only), water erosion (E), infiltration/recharge (Ir), nutrient balance (Nr) (citrus only), surface soil condition (Ps), salinity (Sa) (avocados only), microrelief (Tm) and soil wetness (W).

Land suitability outcomes

Soil Unit C1 is unsuitable (Class 4) for irrigated for irrigated citrus, table grapes and avocados because of severe constraints. Land suitability criteria and suitability assessment are presented in **Appendices 10 and 11**.

Soil Unit C2	Boree footslopes		
Geological landscape:	Fine-grained Cretaceous sedimentary rocks (labile mudstone, minor siltstone)		
	(Kur).		
Landform:	Footslopes of the gently undulating, elevated plains and low rises (Soil C1);		
	local relief 3-8 m above the Flinders River alluvium; slopes 2.0-5.0%.		
Soil concept:	Very deep (>1.5 m), gravelly (2-20% rounded quartz), hardsetting, firm pedal or moderately to strongly self-mulching, brown cracking clay (subsoil - MC-MHC), with an inconsistent, thin to moderately thick (\leq 0.04 m), fine granular (<2 mm) to fine blocky (2-5 mm) surface (FSLC), over a strong blocky (5-20 mm) upper subsoil (MC), and strong lenticular (2-200 mm) lower subsoil (MC-MHC).		
Aust. Soil Classification	Epipedal or Self-mulching Brown Vertosol.		
Runoff, perm., & drainage:	Moderately rapid runoff; very slowly permeable; moderately well-drained.		
Surface features:	Hardsetting, firm pedal or moderately to strongly self-mulching; cracking; non- gilgaied; 2- 20% 20-60 mm quartz gravels; no outcrop; no termitaria.		
Dominant vegetation:	Boree scrub.		
Investigation area:	Total area mapped: No. of Field sites: 1 Analysed site: 27		

Boree scrub on footslopes of the rolling downs at Site 27 Modal Soil Profile Description

Variable surface condition (hardsetting, epipedal or thin self-mulch) and typical profile features at Site 27

The surface soil (A1) is a brown (7.5YR 4/3), light clay (with fine sand), with moderate to strong granular (<2 mm) to subangular blocky (2-5 mm) structure; <2% 20-60 mm quartz gravels; few very fine (<1 mm diameter) roots; field pH 8.5-9.0. Lower depth ≤ 0.04 m. Clear change. The upper subsoil (B21) is a brown (10YR 3/3, 4/3), medium clay (with fine sand), with strong angular blocky (5-20 mm) structure; non-gravelly; few very fine (<1 mm diameter) roots; field pH 8.5-9.0. Lower depth 0.45 m. Diffuse change. The lower subsoil (B22ky) is a brown (10YR 4/6), mottled (4-20% 5-15 mm faint brown and grey substrate mottles), medium clay (with medium sand), weak to moderate angular blocky to lenticular (10-50 mm) structure; 2-10% <2 mm calcareous nodules and 10-20% <2 mm gypsum crystals; roots absent; field pH 8.5-9.0. Lower depth 1.2 m. Diffuse change. The transition to substrate (B3k) is a brown (7.5YR 4/6), mottled (50% 5-15 mm distinct yellow and prominent grey substrate mottles), medium heavy clay (with fine sand), with strong lenticular (2-200 mm) structure; 20-50% 6- 20 mm mudstone fragments, 2-10% <2 mm calcareous nodules and 2-10% <2 mm manganiferous nodules; roots absent; field pH 8.5-9.0. Profiles are typically deeper than 1.5 m. PAWC to 1.0 m: PAWC to 1.5 m: K factor:

Soil Unit C2

Root zone salinity

Subsoil salinity levels are high to very high ($Cl \ge 900-1630 \text{ mg/kg}$) below 0.2m, and exhibit a recognizable equilibrium "salt bulge" (i.e. the "salt bulge" remains relatively constant with depth). The "salt bulge" marks the long-term wetting front and effective rooting depth of the soil, and is indicative of episodic landscape drainage and/or shallow groundwater discharge and salinity accession from the adjacent elevated rolling downs.

Boree footslopes

Soil analytical summary

The soil has a modest organic fraction with low organic carbon and total nitrogen levels. Macronutrients are variable with high to very high levels of phosphorous, calcium and potassium, very low levels of sulfate and low to moderate levels of micronutrients (copper and zinc). Soil pH values indicate soil profiles are alkaline to strongly alkaline (range 8.3-9.2) throughout, with moderate to high CEC levels (16-31 cmol/kg). Moderate CEC/clay ratios (0.50-0.6) and the presence of cracking and strong lenticular structure suggest the clay fraction is reactive, has significant shrink-swell characteristics and is of mixed mineralogy with a high proportion of smectites.

Clay content is moderate to high and relatively uniform (29-48%) and increases to very high (62%) below 1.3 m due to the influence of weathering mudstone. The plough zone to 0.3 m is moderately to strongly structured and likely to be friable with tillage. Surface and upper subsoil material will be prone to significant compaction if subjected to heavy traffic or aggressive tillage when moist or wet. The surface soil and upper subsoil to 0.2 m has low to moderate salinity (Cl <400 ppm), low to moderate sodicity (ESP 1-13%) and moderate dispersion (R1 0.62-0.72). The subsoil below 0.2 m has high to very salinity (Cl 800-1650 ppm), high to very high sodicity (ESP 23-34%) and high to very high dispersion (R1 0.80-0.99). Profiles are characterised by Calcium (Ca) dominant cation chemistry throughout.

Limitations to horticultural development

Identified constraints range from minor to severe (for citrus and table grapes) or extreme (for avocado) and include heat stress (Cs), frost (Cf), temperature (minimum) (Ct) (avocados only), water erosion (E), flooding (F), infiltration/recharge (Ir), soil water storage (M), nutrient balance (Nr), surface soil condition (Ps), rockiness (R), salinity (Sa), discharge potential (Ss), soil wetness (W) and soil complexity (Xs).

Land suitability outcomes

Soil Unit C2 is unsuitable (Class 4 or 5) for irrigated for irrigated citrus, table grapes and avocados because of sever or extreme constraints. Land suitability criteria and suitability assessment are presented in **Appendices 10 and 11**.

5. Land Suitability Assessment

For each soil unit, the information on soil quality and land attributes, presented in **Section 4** and **Appendices 5**, **6**, **7** and **9**, has been assessed against the land suitability decision rules for each of the 18 limitations selected for this project (**Appendix 10, Table 2**). This provides an assessment of the land suitability class value for each limitation and an overall suitability class value for the most limiting attribute). This process was undertaken for each combination of soil unit and crop type.

The outcome of the assessment for each soil type and land use combination is presented in **Appendix 11** and summarised in **Table 11** below. The land suitability assessment outcomes for each land use using the documented decision rules and data reported in this study are discussed in more detail in **Sections 5.1, 5.2** and **5.3**.

Figures 7, 8 and 9 show the distribution of land in regard to each suitability class for irrigated table grapes, citrus and avocado respectively.

A summary of land areas suitable for each land use is provided in Table 12 in Section 5.4.

Soil	Suitability class and limiting factors (and limitation class) for each selected land use [#]			
unit	Table Grapes	Citrus	Avocado	
A1	3	3	3	
	Cs(3), Cf(2), F(2), Ir(2), M1(2), Ps(2), W(2)	Cs(3), Cf(2), F(2), Ir(2), M1(2), Nr1(2), Nr2(2), Ps(2), W(2)	Cs(3), W(3), Cf(2), Ct(2), F(2), Ir(2), Ps(2)	
A1e	5	5	5	
	Xt(5), E(4), F(4)	Xt(5), E(4), F(4)	Xt(5), E(4), F(4), W(4)	
	Cs(3), Ss(3), W(3), Cf(2), Ir(2), M1(2), Ps(2)	Cs(3), Ss(3), W(3), Cf(2), Ir(2), M1(2), Nr1(2), Nr2(2),Ps(2)	Cs(3), Ss(3), Cf(2), Ct(2), Ir(2), Ps(2)	
A2*	3-4	3-4	4	
	F(3-4), M1(1-4), Ss(3-4), Xt(1-4)	F(3-4), M1(1-4), Ss(3-4), Xt(1-4)	F(3-4), M2(1-4), Sa(1-4), Ss(3-4), W(4), Xt(1-4)	
	Cs(3), Sa(1-3), W(3), Cf(2), E(2), Ir(2), Nr2(1-2), Ps(2)	Cs(3), Nr2(2-3),Sa(1-3), W(3), Cf(2), E(2), Ir(2), Nr1(2), Ps(2)	Cs(3), Cf(2), Ct(2), E(2), Nr2(1-2), Ir(2), Ps(2)	
	4	4	4	
Δ3	F(4), Xt(4)	F(4), Xt(4)	F(4), Xt(4)	
AJ	Cs(3), E(3), Nr1(3), Nr2(3), Ss(3), Cf(2), Ir(2),	Cs(3), E(3), Nr1(3), Nr2(3), Ss(3), Cf(2), Ir(2), M1(2),	Cs(3), E(3), Nr1(3), Nr2(3), Ss(3), W(3), Cf(2), Ct(2),	
	M1(2), Ps(2), W(2)	Ps(2), W(2)	Ir(2), Ps(2)	
	5	5	5	
A 4	W(5), F(4), Ss(4), Xt(4)	W(5), F(4), Ss(4), Xt(4)	W(5), F(4), Ss(4), Xt(4)	
	Cs(3), E(3), Ir(3), Nr1(3), Nr2(3), Ps(3), Cf(2)	Cs(3), E(3), Ir(3), Nr1(3), Nr2(3), Ps(3), Cf(2)	Cs(3), E(3), Ir(3), Nr1(3), Nr2(3), Ps(3), Cf(2), Ct(2)	
B1	4	4	5	
	F(4), Sa(4), Ss(4), W(4)	F(4), Sa(4), Ss(4), W(4)	Sa(5), F(4), Ss(4), W(4),	
	Cs(3), Ir(3), MI(3), NrI(3), Ps(3), Xs(3), Cf(2)	Cs(3), Ir(3), M1(3), Nr1(3), Ps(3), Xs(3), Cf(2), Nr2(2)	Cs(3), Ir(3), M2(3), Nr1(3), Ps(3), Xs(3), Cf(2), Ct(2)	
B2*	5	5 	5 5 (5) E(2,4) M(4) D (4) C (2,4) M(4)	
	Sa(5), F(3-4), M1(4), Ps(4), Ss(3-4), W(4)	Sa(5), F(3-4), M1(4), Ps(4), Ss(3-4), W(4)	Sa(5), F(3-4), M2(4), Ps(4), Ss(3-4), W(4)	
	Cs(3), Ir(3), Nr1(3), Nr2(3), Xs(1-3), Cf(2), E(2)	Cs(3), Ir(3), Nr1(3), Nr2(3), Xs(1-3), Cr(2), E(2)	Cs(3), Ir(3), Nr1(3), Nr2(3), Xs(1-3), Cf(2), Ct(2), E(2)	
D 2~*	$\mathbf{S}_{-}(\mathbf{S}) = \mathbf{W}_{-}(\mathbf{S}) + \mathbf{E}_{-}(\mathbf{S}, \mathbf{A}) + \mathbf{E}_{-}(\mathbf{S}, \mathbf{A})$	$\mathbf{S}_{-}(5) = \mathbf{W}(5) = \mathbf{F}(2, 4) = \mathbf{S}_{-}(2, 4)$	$\mathbf{S} = \left(\mathbf{S} \right) \mathbf{W}(\mathbf{S}) \mathbf{F}(2, 4) \mathbf{G}_{5}(2, 4)$	
в2д-	Sa(5), W(5), F(5-4), Ss(5-4)	Sa(5), W(5), F(5-4), Ss(5-4) Ca(2), Lar(2), M1(2), Na1(2), Da(2), Tau(2), Cf(2), Na2(2)	Sa(5), W(5), F(3-4), Ss(3-4) Ca(2), Lar(2), M2(2), Nat(2), Da(2), Tau(2), Cf(2), C	
	$C_{5}(3), \Pi(3), \Pi(3), \Pi(3), \Pi(3), Cl(2)$	$C_{S(3), \Pi(3), M\Pi(3), M\Pi(3), PS(3), \Pi\Pi(3), CI(2), MI2(2)}$	$C_{S(3)}, II_{S(3)}, III_{S(3)}, III_{S(3)}, III_{S(3)}, CI_{S(2)}, CI_{S(2$	
B3*	$S_{a(5)} W(5) F(3-4) M1(4) Ps(4) Ss(3-4)$	$S_{a(5)} W(5) F(3-4) M1(4) Ps(4) Ss(3-4)$	$S_{a(5)} W(5) F(3-4) M2(4) Ps(4) Ss(3-4)$	
	A(1-3), Cs(3), Ir(3), Nr2(3), Xs(1-3), Cf(2)	A(1-3), Cs(3), Ir(3), Nr2(3), Xs(1-3), Cf(2), Nr1(2)	A(1-3), Cs(3), Ir(3), Nr2(3), Xs(1-3), Cf(2), Ct(2)	

Table 11: Land suitability classes and constraining limitations for the 15 Mile project area

Soil	Suitability class and limiting factors (and limitation class) for each selected land use [#]				
unit	Table Grapes	Citrus	Avocado		
	4	4	4		
C1	W(4),	W(4)	W(4)		
	Cs(3), Ir(3), Ps(3), Cf(2), E(2), Tm(2)	Cs(3), Ir(3), Ps(3), Cf(2), E(2), Nr1(2), Nr2(2), Tm(2)	Cs(3), Ir(3), Ps(3), Cf(2), Ct(2), Sa(2), E(2), Tm(2)		
C2	4	4	5		
	M1(4), Sa(4), Ss(4), W(4)	M1(4), Sa(4), Ss(4), W(4)	Sa(5), M2(4), Ss(4), W(4)		
	Cs(3), F(3), Ir(3), Nr1(3), Nr2(3), Ps(3), Xs(3),	Cs(3), F(3), Ir(3), Nr1(3), Nr2(3), Ps(3), Xs(3), Cf(2),	Cs(3), F(3), Ir(3), Nr1(3), Nr2(3), Ps(3), Xs(3), Cf(2),		
	Cf(2), E(2), R(2)	E(2), R(2)	Ct(2), E(2), R(2)		

Limitations placed in order of severity, with severe and extreme limitations listed separately from minor and moderate limitations. Limitation codes are described in Table 6.

* Variations in either landscape position and/or subsoil salinity and/or surface texture resulted in individual mapped polygons being allocated different limitation class scores. See **Appendix 12** for details.

Recommended print size: A4

Recommended print size: A4

5.1 Land suitability for table grapes

Production of table grapes is not constrained by unsuitable climatic conditions (severe heat stress, frequent frost or insufficient or excessive chill factor windows) in the local Hughenden area, although heat stress is a moderate limitation.

Of the 11 soil units mapped, only Soil Unit A1 and elevated occurrences of Soil Unit A2 have soil and land characteristics suitable for table grape agronomy and production.

These soils occupy 41.7% (370.4 ha) of the project area (888.6 ha⁵).

These soils are deep, rarely flooded, non-saline, rock free and moderately well drained, with negligible to moderate subsoil constraints. Variation in the suitability of Soil Unit A2 as a growing medium for table grapes relates to differences in location and landscape position. Where Soil Unit A2 occurs centrally within the elevated terrace plains (dominated by Soil Unit A1), it is free of severe constraints. Lower elevation occurrences such as at the rear of the terrace plains however, have severe flooding, salinity and similar sodicity constraints (and commensurate suitability outcomes) to the adjacent saline backplains (Soil Units B1, B2 and B3).

Constraining soil and land limitations for table grape production on Soil Units A1 and A2 (elevated) include flooding, water erosion (elevated Soil Unit A2 only), infiltration, PAWC (Soil Unit A1 only), soil surface condition, discharge potential (elevated Soil Unit A2 only) and wetness (drainage).

Table grape production on all other soils (low-lying areas of Soil Unit A2 and Soil Units A3, A4, B1, B2, B2g, B3, C1 and C2) is constrained by a number of severe or extreme limitations (Class 4/5). These include regular flooding, salinity and sodicity constraints (and associated limited effective rooting depth/soil water availability), soil or topographic complexity and worsening soil wetness.

5.2 Land suitability for citrus

Production of citrus crops is not constrained by unsuitable climatic conditions (severe heat stress, frequent frost or insufficient or excessive chill factor windows) in the local Hughenden area, although heat stress is a moderate limitation.

Of the 11 soil units mapped, only Soil Unit A1 and elevated occurrences of Soil Unit A2 have soil and land characteristics suitable for citrus agronomy and production.

These soils occupy 41.7% (370.4 ha) of the project area (888.6 ha⁵).

These soils are deep, rarely flooded, non-saline, rock-free and moderately well drained, with negligible to moderate subsoil constraints. Variation in the suitability of Soil Unit A2 as a growing medium for citrus production relates to differences in location and landscape position. Where Soil Unit A2 occurs centrally within the elevated terrace plains (dominated by Soil Unit A1), it is free of severe constraints. Lower elevation occurrences such as at the rear of the terrace plains however, have severe flooding, salinity and similar sodicity constraints (and commensurate suitability outcomes) to the adjacent saline backplains (Soil Units B1, B2 and B3).

⁵ This is the extent of the two portions of the lot comprising the project area and the easement in between the two portions of the lot.

Constraining soil and land limitations for citrus production on Soil Units A1 and A2 (elevated) include flooding, water erosion (elevated Soil Unit A2 only), infiltration, PAWC (Soil Unit A1 only), nutrient balance (pH trend), soil surface condition, discharge potential (elevated Soil Unit A2 only) and wetness (drainage).

Citrus production on all other soil units (low-lying areas of Soil Unit A2 and Soil Units A3, A4, B1, B2, B2g, B3, C1 and C2) is constrained by a number of severe or extreme limitations (Class 4/5). These include regular flooding, salinity and sodicity constraints (and associated limited effective rooting depth/soil water availability), soil or topographic complexity and worsening soil wetness.

5.3 Land suitability for avocados

Production of avocados is not constrained by unsuitable climatic conditions (severe heat stress, frequent frost or insufficient or excessive chill factor windows) in the local Hughenden area, although heat stress is a moderate limitation and would be expected to affect fruit set and harvest of the crop (*pers. comm.* Marie Piccone, Managing Director Manbulloo Mangoes). Heat stress can be managed by using above tree lines and misting sprinklers, but such infrastructure would be costly to install and run, use valuable water supply and potentially contribute to increased disease risk within the crop.

Of the 11 soils mapped, only Soil Unit A1 has edaphic characteristics suitable for avocado agronomy.

These soils occupy 35.0% (311.0 ha) of the project area (888.6 ha).

These soils are deep, non-saline, rarely flooded, rock-free and moderately well drained, with negligible to moderate subsoil constraints.

Constraining soil and land limitations for avocado production on Soil Unit A1 include flooding, infiltration, soil surface condition and wetness (drainage).

Avocado production on all other soils (Soil Units A2 (all areas), A3, A4, B1, B2, B2g, B3, C1 and C2) is constrained by a number of severe or extreme limitations (Class 4/5). These include regular flooding, salinity and sodicity constraints (and associated limited effective rooting depth/soil water availability), soil or topographic complexity and worsening soil wetness.

5.4 Summary of land suitability outcomes

Land suitability outcomes for the 15 Mile project area are summarised in **Table 12** and shown in **Figures 7, 8** and **9**.

Table 12: Summary of the extent (ha) of suitable (Classes 1, 2 and 3) and unsuitable land (Classes 4 and 5) within the 15 Mile project area*

Land Suitability Class	Table grapes (ha)	Citrus (ha)	Avocado (ha)
Class 1	0	0	0
Class 2	0	0	0
Class 3	370.4	370.4	311.0
Class 4	220.5	220.5	194.7
Class 5	297.3	297.3	382.4

* Area figures include the land in the easement between the lots.

This study found that the land area that is suitable for the selected irrigated horticultural crops is similar to that indicated in the IAS (GHD 2018) of 344 ha.

6. References

Baker, DE & Eldershaw, VJ 1993, *Interpreting soil analyses for agricultural land use in Queensland*. Project Report QO93014, Department of Primary Industries, Queensland Government, Brisbane.

Bartley, R, Thomas, MF, Clifford, D, Phillip, S, Brough, D, Harms, D, Willis, R, Gregory L, Glover, M, Moodie, K, Sugars, M, Eyre, L, Smith, DJ, Hicks, W & Petheram, C 2013, *Land suitability: technical methods*, report to the Australian Government for the Flinders and Gilbert Agricultural Resource Assessment (FGARA) project, CSIRO, Canberra.

BOM 2018, Flood Warning System for the Flinders River. <u>http://www.bom.gov.au/qld/flood/brochures/flinders/flinders.shtml#OtherLinks</u> last accessed 5 march 2019.

BOM 2019a, Monthly rainfall Hughenden

Airport.<u>http://www.bom.gov.au/jsp/ncc/cdio/weatherData/av?p_nccObsCode=139&p_displa</u> y_type=dataFile&p_startYear=&p_c=&p_stn_num=30022 Last accessed 22 February 2019.

BOM 2019b, Climate statistics for Australian locations, Monthly climate statistics HUGHENDEN AIRPORT.

http://www.bom.gov.au/climate/averages/tables/cw_030022.shtml Last accessed 22 February 2019.

Bowman, GM & Hutka, J 2002, 'Particle size analysis'. In McKenzie NJ, Coughlan KJ and Cresswell HP (ed.). *Soil physical measurement and interpretation for land evaluation*. Australian Soil and Land Survey Handbook Series, CSIRO Publishing, Melbourne.

Bruce, RC & Rayment, GE 1982, Analytical methods and interpretations used by the Agricultural Chemistry Branch for soil and land use surveys, Queensland Department of Primary Industries, Bulletin QB2004.

Burgess, JW 2003a, Land Resource Assessment of the Windeyers Hill Area, Isaac – Connors and Mackenzie River Catchments, Central Queensland. Volume 1. Department of Natural Resources and Mines, Queensland Government, Brisbane.

Burgess, JW 2003b, Land Resource Assessment of the Windeyers Hill Area, Isaac – Connors and Mackenzie River Catchments, Central Queensland. Volume 2. Department of Natural Resources and Mines, Queensland Government, Brisbane.

CSIRO 1964, 1:1,000,000 Lands of the Leichhardt-Gilbert Area (Land Research Series No. 11), Land Research and Regional Survey CSIRO, Canberra.

CSIRO 2012, *Proposed project methods*, report to the Australian Government from CSIRO Flinders and Gilbert Agricultural Resource Assessment, North Queensland Irrigated Agriculture Strategy, CSIRO Water for a Healthy Country and Sustainable Agriculture flagships, Australia.

Day, PR 1965, 'Particle Fractionation and Particle-Size Analysis' in Black, CA, Evans, DD, Ensminger, LE, White, JL and Clark, FE (Eds), *Methods of Soil Analysis Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling.* Volume 1. American Society of Agronomy, Wisconsin USA.

DES 2016, About the data. <u>https://silo.longpaddock.qld.gov.au/about-the-data</u> last accessed 5 March 2019.

DNRM & DSITI 2015, *Guidelines for Agricultural Land Evaluation in Queensland*. Second Edition. Queensland Government DNRM and DSITI, Brisbane.

DNRM & DSITIA 2013, *Regional Land Suitability Frameworks for Queensland*, Queensland Department of Natural Resources and Mines and Department of Science, Information Technology and Innovation, Brisbane, Queensland.

DNRME 2018, *Guideline for co-ordinated projects involving clearing for agriculture (land suitability requirement)*, Version 1.00, dated 2 November 2018, Land Policy – Vegetation Management, Department of Natural Resources, Mines and Energy.

DNRME unpublished, Decision Rules for the Inland Burdekin Regional Suitability Framework (developed for the Charters Towers Agricultural Precinct (CTAP) project). Pdf file of an Excel matrix provided by Neil Enderlin, DNRME Mareeba.

FSC 2018, Request for Tender (Short Form) – 15 Mile Irrigation Project Land Suitability Study – Contract number 103.2018.33, Flinders Shire Council, 8 October 2018.

Geoscience Australia undated, *Australian Stratigraphic Units Database*, <u>http://www.ga.gov.</u> <u>au/data-pubs/datastandards/stratigraphic-units</u>, accessed 29 November 2018.

GHD 2018, *15 Mile Irrigated Agricultural Development Project, Initial Advice Statement.* Consultant's report prepared by GHD for Flinders Shire Council, August 2018.

Hazelton, PA & Murphy, BW 2016, *Interpreting soil test results: what do all the numbers mean?* Third Edition. CSIRO publishing, Melbourne.

Hnatiuk, RJ, Thackway, R & Walker, J 2009, 'Vegetation'. In National Committee on Soil and Terrain, *Australian Soil and Land Survey Field Handbook*. Third Edition. Australian Soil and Land Survey Handbook Series, CSIRO Publishing, Melbourne.

Isbell, R & National Committee on Soil and Terrain 2016, *The Australian Soil Classification System*, Australian Soil and Land Survey Handbooks Series, Second Edition, CSIRO.

McKenzie, NJ, Coughlan, KJ, & Cresswell, HP (ed.) 2002, *Soil Physical Measurement and Interpretation for Land Evaluation*. Australian Soil and Land Survey Handbook Series, CSIRO Publishing, Melbourne.

McKenzie, NJ, Grundy, MJ, Webster, R & Ringrose-Voase, AJ 2008, *Guidelines for Surveying Soil and Land Resources*. Second Edition. Australian Soil and Land Survey Handbook Series, CSIRO Publishing, Melbourne.

Munsell Color 2010, *Munsell Soil-Color Charts: with genuine Munsell color chips*. Munsell Color, Grand Rapids, MI.

NCST (National Committee on Soil and Terrain) 2009, *Australian Soil and Land Survey Field Handbook*. Third Edition. Australian Soil and Land Survey Handbook Series, CSIRO Publishing, Melbourne.

Northcote, KH, Beckmann, GG, Bettenay, E, Churchward, HM, Van Dijk, DC, Dimmock, GM, Hubble, GD, Isbell, RF, McArthur, WM, Murtha, GG, Nicolls, KD, Paton, TR, Thompson, CH, Webb, AA & Wright, MJ 1960-1968, *Atlas of Australian Soils, Sheets 1 to 10 With explanatory data*, CSIRO. and Melbourne University Press, Melbourne.

NRA 2018, *15 Mile Irrigation Project Land Suitability Study – Preliminary Report*, R01 (Final), prepared by NRA Environmental Consultants for Flinders Shire Council, 12 December 2018.

NRIC 1991, *The Digital Atlas of Australian Soils – scanned tracings*, National Resource Information Centre, unpublished.

Petheram, C, Watson, I & Stone, P (eds) 2013, *Agricultural resource assessment for the Flinders catchment*, report to the Australian Government from CSIRO Flinders and Gilbert Agricultural Resource Assessment, North Queensland Irrigated Agriculture Strategy, CSIRO Water for a Healthy Country and Sustainable Agriculture flagships, Australia.

Peverill, KI, Sparrow, LA & Reuter, DJ (Eds) 1999, *Soil Analysis an Interpretation Manual*. Australian Soil and Plant Analysis Council Incorporated, CSIRO Publishing, Collingwood.

Queensland Government 2018, *Detailed surface geology – Queensland*, Available at <u>http://qldspatial.information.qld.gov.au/catalogue/custom/search.page?q=%22Detailed%20s</u> <u>urface%20geology%20-%20Queensland%22</u>, accessed 29 November 2018.

Rayment, GE & Lyons, D 2011, *Soil Chemical Methods – Australasia*. Australian Soil and Land Survey Handbook Series, CSIRO Publishing, Melbourne.

Richards, LA 1965, 'Physical Condition of Water in Soil', in Black, CA, Evans, DD, Ensminger, LE, White, JL and Clark, FE (Eds), *Methods of Soil Analysis Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling.* Volume 1. American Society of Agronomy, Wisconsin USA.

Rosewell, CJ & Loch, RJ 2002, 'Estimation of the RUSLE soil erodibility factor'. In McKenzie, NJ, Coughlan, KJ and Cresswell, HP (ed.). *Soil physical measurement and interpretation for land evaluation*. Australian Soil and Land Survey Handbook Series, CSIRO Publishing, Melbourne.

Schoknecht, N, Wilson, PR & Heiner, I 2008, 'Survey specification and planning'. In McKenzie, NJ, Grundy, MJ, Webster, R & Ringrose-Voase, AJ. *Guidelines for Surveying Soil and Land Resources*. Second Edition. Australian Soil and Land Survey Handbook Series, CSIRO Publishing, Melbourne.

Thomas, M, Gregory, L, Harms, B, Hill, JV, Morrison, D, Philip, S, Searle, R, Smolinski, H, Van Gool, D, Watson, I, Wilson, PL & Wilson, PR 2018, *Land suitability of the Fitzroy, Darwin and Mitchell catchments*, report from CSIRO Northern Australia Water Resource Assessment, National Water Infrastructure Development Fund: Water Resource Assessments, CSIRO, Australia.

Turner, EJ & Hughes, KK 1983, *Upper Flinders River Irrigation Proposal*, Queensland Department of Primary Industries, Project Report Q083016.

Wischmeier & Smith 1978, *Predicting rainfall erosion losses a guide to conservation planning*, Agricultural Handbook no. 537, United States Department of Agriculture, Maryland.

Appendix 1: Project Scope

Part 5 – Scope

Flinders Shire Council wishes to promote the Shire as a centre for private sector investment in irrigated agricultural development by demonstrating that the Shire possesses the principal elements of suitable land, climate and water supplies. Such developments are seen as crucial to improve the employment prospects for current and future residents and hopefully reverse the current rate of population decline.

Council has acquired the former Reserve known as "15 Mile"; being Lot168 on SP262319 of 918 hectares in area with the intention of reconfiguring the freehold property into viable agricultural development blocks, obtain suitable water licences and promote such blocks to private investors.

It is considered that intensively grown, efficiently irrigated, low volume, high value, horticultural crops will result in a better, sustainable return than broad acre, low-return, high volume crops. These types of enterprises would also meet Council's goals of providing employment prospects for residents as well as encouraging migration of skilled workers to the Shire.

The successful tenderer will be required to provide a detailed report that demonstrates that the land is suitable for the proposed crop (Performance outcome on the Land suitability of the site to be included in an IAR for the Co-ordinated project Under the State Development Assessment Provisions: State Code 16 (SDAP State Code 16) applicants must demonstrate that the land is suitable for the proposed crop (Performance Outcome 29 – SDAP State Code 16), using the following Guidelines:

The land suitability assessment will be undertaken by a person who has skills and experience in soil and land resource science. This includes;

- 1. Understanding landscapes for the purpose of mapping and describing of soil types, toil attributes and limitations;
- 2. Describing soils in accordance with the Australian Soil and Land Survey Field Handbook (NCST 2009) and map them at a property scale in accordance with the Guidelines for Surveying soils and Land Resources (McKenzie et al. 2008); and
- 3. Undertaking agricultural land suitability assessments considering key soil attributes and land limitations in accordance with the Guidelines for Agricutlural Land Evaluation in Queensland (DSITI & DNRM 2015)

All soil and landform site data, and the crop suitability evaluation, will need to be collected and compiled strictly in accordance with the Australian Soil and Land Survey Field Handbook (NCST 2009), Guidelines for surveying Soil and Land Resources (McKenzie et al 2008) and the Queensland Guideline for Agricultural Land Evaluation (DSITI & DNRM, 2015).

Soil and land resource mapping into unique map areas and resultant land suitability assessments for clearing for agriculture must be conducted at a property level scale. In general, property scale assessments will range from 1:5 000 to 1:25 000 scale. At times (e.g. if more than 10 000 ha was proposed to be cleared), then 1:50 000 may be considered appropriate, if the soils and landscapes can be proven not to be complex. At scales of 1:50 000 or coarser, insufficient information is collected and presented to allow an adequate assessment of the land suitability, compliance with the POs and assessment of off-site impacts. The mapping scale chosen must suit the circumstance – the cropping proposed and its area, and more importantly the complexity of the soil and landform. Chapter 14, and Table 14.1 (see McKenzie et al. 2008) provides further information about scale. It is recommended that applicants using survey or mapping scales coarser than 1:25 000 discuss the supporting information required with a DNRME Land Resources Officer. Further information about survey intensity and cartographic scale is included in Appendix 3—Land Suitability Report.

The initial development of the block will be for table grapes, avocadoes and citrus crops, it is unlikely that all of the available, suitable land will be developed for permanent tree or vine crops. It is considered more likely, given the critical importance of reliable water supplies for these high-value orchards, that some of this land may support seasonal horticultural crops or niche crops such as specialty grains. These short-duration crops will have far lower annual water requirements and may be planted only when water is available; most likely from on-farm storage.

Minimum Information Required for Each Site

Information required for each site

The following provides an example of the type and standard information and data that should be collected for each detailed site, deep boring, analysed site and check site, and presented on a coherent basis in or as an appendix to the report supporting the application:

Table A1 Minimum data for land resource survey site observations (modified from DES & DNRME 2018)

Attributes	Detailed soil profile description, deep borings and analysed sites	Check sites	Reference in Australian Soil and Land Survey Field Handbook (YB)	Example
Location				
Datum/projection, coordinates, method, accuracy		•	YB p7-11, BB Ch16 p246-251	605 900 mE 7 380 000 mN, Zone 55S, UTM WGS84 or - 23.687366°, 148.038652°, GDA94
General				
Unique, meaningful site identification code				D/08 for site 8 in project XYZ
Described by			YB p13	
Date (time optional)			YB p13	
Site type			YB p13	
Observation class				
Observation method	A	A	BB* Ch16 p252, YB p147-148	Soil pit, auger, pit
Reason for lower investigation depth	▲			Auger refusal due to bedrock
Geology: unit, map sheet, year	▲	☆	BB Ch4	
Australian Soil Classification	A	☆ (Sub order)	ASC, BB Ch19, YB p225-227	Haplic Mesotrophic Red Dermosol
Photos: profile, landscape, fieldsheet	A	\	BB Ch16 p256- 257	
Landform				
Landform: element, pattern, RMS	A	A	YB p15-55	Levee on Floodplain, Level Plain
Slope: method, % slope, slope class, MT	▲	\U0147	YB p18-26	
Site/land surface				
Land use				

Part 5 – Scope

Disturbance	▲		YB p128	Cultivated; rainfed
Microrelief	▲	▲	YB p 129-133	Including element sampled
Erosion	A		YB p133-138	
Surface coarse fragments	A	▲	YB p139-143	
Rock outcrop	A		YB p143-144	
Surface condition	A		YB p189-191	Hardsetting
Runoff	▲		YB p144-145	
Vegetation associations	▲	☆	YB p 73-125	
Permeability	A		YB p200-202	
Drainage	▲		YB p202-204	
Depth to free water	▲			
Soil profile				
Horizon notation		\	YB p148-159	A1, A2
Horizon depths	▲	\	YB p156	
Horizon boundaries	▲	\	YB p199-200	Clear, Diffuse
Soil matrix colour	▲	\	YB p159	10YR32
Mottles	▲	‡	YB p159-161	<2%, 1-15mm, prominent, orange
Field texture		\	YB p161-169	Sandy clay loam
Coarse fragments	▲		YB p170-171	2_10%, 20-60mm, subangular, quartz
Structure	A	☆	YB p171-181	moderate, <2mm, subangular blocky
Cutans (slickensides)	ф.			
Segregations	A	☆	YB p195-198	10-20% calcareous concretions, 2-6mm
Depth to R horizon, strongly cemented pan	A	☆	YB p156-159	
Pans	▲			
Permeability and drainage (horizon)	\U0347			
Sample depths, number	▲ (sampled sites)		BB Ch17 p265	
Substrate			YB p205-224	
Type of observation	A			
Confidence	A			
Depth	A	☆		
Lithological type		☆		
Grain size, texture, structure, mineral composition, strength, alteration, distance	‡			

Field tests				
pH: method, value (surface 0.1m and for each horizon or every 0.3m)	•	☆	YB p198, GB* p46	
Electrical conductivity (surface 0.1m and for each horizon or every 0.3 m)	•			
Dispersion/slaking class (SCL or heavier)	‡	¢		
Effervescence of fine earth (CaCO ₃) or segregations (Mn)	☆			

Note:

- YB refers to the Australian Soil and Land Survey Field Handbook (NCST, 2009)
- BB refers to the "Blue Book", Guidelines for Surveying Soil and Land Resources (MacKenzie et al 2008); and
- ASC refers to the Australian Soils Classification (CSIRO, 2016)
- GB refers to the Soil Chemical Methods– Australasia (Rayment and Lyons, 2011)

At least two clearly labelled photographs are required showing:

- the nature of the general environs and soil surface at the site
- the attributes of the exposed soil profile, including a scalar reference, such as a tape, surveying staff or calibrated sample tray.

An example of suitable photographs is include in Figure A1.1, and a sample field sheet is included as Figure A1.2.

The soil profile shall be described (dug or exposed) to a minimum depth of 1.2m, or 1.5m if irrigation is proposed, or to a shallower depth of refusal by hardpan or bedrock.

Exposure will be by either or a combination of (in order of reliability) – excavation/pit, relatively undisturbed core, jarret hand auger as used in soil survey. Post hole diggers are not reliable due to contamination of the soil profile horizons, and are not considered to be a jarret hand auger. Any deviations from the above should be discussed with DNRME.

Detailed Sites

Figure A1.1 An example for a detailed site of the basic format and the required level of detail for site and soil descriptions as well as the use of photographs to support those descriptions:

ASC Clas	sification:	Brown Dermosol
Profile M	orphology	
Horizon	Depth (m)	Description
A1	0.0 to 0.005	Dark greyish brown (10YR4/2) moist; fine sandy clay loam; very few <2% rounded siltstone small pebbles 2-6 mm ferruginised; massive structure; few 2-10% medium 2-6 mm ferruginous nodules; clear to
2A1b	0.05 to 0.3	Very dark grey (10YR3/1) moist; fine sandy clay loam; very few <2% rounded siltstone small pebbles 2-6 mm ferruginised; massive structure; very few <2% medium 2-6 mm ferruginous nodules; clear to
2A2eb	0.3 to 0.4	Brown (10YR4/3) moist; pale brown (10YR63) dry; fine sandy clay loam; very few <2% sub-rounded siltstone small pebbles 2-6 mm ferruginised; massive structure; very few <2% medium 2-6 mm ferruginous nodules; clear to
2B21b	0.4 to 0.75	Brown (10YR5/3) moist; very few <2% fine <5 mm faint orange (7.5YR6/6) mottles; light clay; very few <2% sub-rounded siltstone small pebbles 2-6 mm ferruginised; platy moderate 5-10 mm structure; very few <2% medium 2-6 mm ferruginous nodules; clear to
2B22b	0.75 to 1.5	Light yellowish brown (2.5Y6/4) moist; very few <2% fine <5 mm distinct orange (5YR7/6) mottles, very few <2% fine <5 mm prominent red (2.5YR5/6) mottles; light clay; very few <2% sub-rounded siltstone small pebbles 2-6 mm ferruginised; platy moderate 5-10 mm structure; very few <2% medium 2-6 mm ferruginous nodules; very few <2% medium 2-6mm manganiferous laminae

Analysed sites

Guidance for soil sampling provided by McKenzie & Ryan (2008) suggests that for the purposes of a general soil survey, the maximum sampling interval should be 100 mm in the upper 300 mm of the soil profile. Likewise below that depth the maximum sampling interval should be 300 mm. These generic recommendations should be considered when sampling analysed sites for a land suitability determination.

Other matters applicants need to consider in deciding on a suitable sampling regime include:

- what limitations and soil attributes are the analyses looking to verify, and what analytical tests are involved.
- how many samples are to be taken and analysed, and the likely costs of those analyses.
- whether sampling is to be of individual soil horizons (e.g. A1 horizon, A2 horizon, B2 horizon, etc.) or based on standardised profile depth intervals (e.g. 0–0.1 m, 0.2–0.3 mm, 0.5–0.6 m, 0.8–0.9 m, 1.1–1.2mm; and 1.4-1.5 for deep rooted crops and irrigated assessments).
- are the soils uniform, gradational or texture contrast soils, and are the horizon boundaries gradual or diffuse.
- what are the risks of too great a sample interval diluting material from a narrow non-compliant layer of soil, or of too small a sample interval missing a non-compliant layer of soil.
- Irrespective of whether sampling is horizon or depth interval based, all samples should be taken within single soil horizons (i.e. depth interval samples should not cross major soil horizon boundaries).

All samples are to be analysed at a NATA accredited or ASPAC accredited laboratory. See Appendix 4 for further information.

Collect and provide the same site and soil profile information for each analysed site as set out in the detailed site section above.

Check sites

Where the defining attributes of the characteristic soil in a map unit can be readily identified by obvious superficial features (e.g. surface soil colour, surface soil texture, surface condition, presence of gilgai, etc.), check sites can provide a quick and reliable means of identifying the areal extent of the unique mapping area (i.e. map unit.).

On the other hand, where the soil attributes confirming whether the check site is within a homogeneous soil unit require the exposure of part or all of the soil profile, the check site will effectively become another detailed site. In this latter case, provided the total number of detailed sites is increased accordingly, there may be no need to have observation sites that are designated as check sites.

Those attributes that confirm that a check site belongs to a particular soil type or unique map area need to be recorded for each check site, along with the unique identification (e.g. C16 for check site 16). The GPS coordinates of the check site and the applicable spatial datum (e.g. 605 900 mE 7 380 000 mN, Zone 55S, UTM WGS84) must also be recorded and submitted. However, simply submitting a site identification and some location coordinates for a check site, without any evidence of the confirmatory site or soil attributes observed, does not provide sufficient information for a determination of land suitability and is liable to be discounted or disregarded in that assessment. Hence the nature

Part 5 – Scope

of the confirmatory evidence obtained at check sites needs also to be stated (e.g. self-mulching, surface cracking, black clay surface soil).

Figure A1.2 Example of Field Sheet

Site #			Slope			Permeability			Erosion			
Desc. By			Floment			Drainage			Surface Co	arse		
Date			Bement			Draillage			Fragments	5		
Datum			Pattern			Microrelief			Rock Outc	rop		
Zone												
Easting/Lat			Northing,	/Long								
Notes:												
Horizon Name	Depth	Texture	Moisture Status	Colour	Mottles	Coarse Frags	Segregations	Structure	Test Depth	рН	EC	Sample Depth

Landscape drawings are commonly completed on the reverse of the field sheet.

Preparing Information

Desktop assessment

In most instances a desktop assessment of all available sources of relevant information should be considered prior to undertaking further work such as a reconnaissance survey or an intensive field survey. The aims of the desktop assessment should be to:

- identify unique map areas or map units and provide an indication on the soil type/s present in the area.
- identify the survey area and the number and location of observation sites for further field investigation based on the likely number of soil types represented, the nature of those soils and their likely distribution across the area of interest. This may be larger than the land the subject of the application to include areas of potential off site impact.
- pinpoint any obvious or critical data gaps.

Suitable sources of information for the desktop assessment might include:

- geology mapping and reports.
- topographic mapping.
- remote sensing data (e.g. land use mapping, digital elevation models, etc.).
- aerial photographs and satellite imagery.
- existing soils and land resource reports, maps and associated information.

There is a substantial body of published soil and land resource reports and mapping that have been produced by various federal and state government agencies that are likely to be relevant to land suitability assessments. This material comes in a range of scales and is generally freely available or available at minimal cost.

In many coastal areas, as well as some inland areas of Queensland, detailed mapping at a scale of 1:25 000 to 1:100 000 is available and may include soil attribute data. In the majority of inland areas only broadscale 'land system' or 'land resource area' mapping is available at scales of 1:250 000 or 1:500 000. Soil, land system and land resource mapping at all the above scales are often complemented by detailed reports.

The scales applicable to published maps will normally need to be refined by a field survey covering the area of interest to an applicant. However, there are certain areas which have been subject to very intensive soil surveys by government agencies and those surveys could potentially yield information and data suitable for forming the sole or principal basis of an application.

Existing soils data, whether taken directly from government agency data bases or publications, or other privately collected data, may not fully satisfy the requirements for demonstrating the suitability of the land for the specific crops. This is frequently due to the data being originally collected for a purpose other than property scale land suitability assessments.

Some common examples of where existing data would not be suitable to use in assessing property scale assessment include:

- mottle colours not being reported using the required colour chip notation.
- EC1:5 values, but not chloride values.
- analytical methods applied in older studies being the currently preferred or acceptable method.

Part 5 – Scope

Electronic copies of existing government soil reports and maps, and GIS spatial data for the associated mapping, can be accessed through the following websites:

- the Department of Environment and Science and Natural Resources Mines and Energy library (PDF versions of reports and maps), https://www.qld.gov.au/environment/library
- the Queensland Government (GIS spatial data), https://data.qld.gov.au/dataset/land-resourceareas-series

Applicants are encouraged to discuss all results of the desktop survey with DNRME before commencing further detailed assessments.

Reconnaissance survey

In some cases a desktop assessment of available soil mapping and data might be sufficient to demonstrate compliance with the requirements for a land suitability assessment, depending on the scale of the published data, and complexity of the soil and landscape. Where more detail is required, a reconnaissance survey, can be a cost effective step that complements the desktop assessment.

A competent soil scientist, armed with some basic equipment (e.g. a hand auger, corer or similar, GPS), and the knowledge gained from the desktop assessment, should be able to quickly survey a parcel of land and, if necessary, review or refine the survey area for a subsequent, more detailed field survey.

Information gained in the reconnaissance survey can provide significant benefits in planning any subsequent, detailed field survey, including:

- providing guidance on the validity of the concepts developed (in the desktop assessment) on the likely distribution and nature of the survey area.
- focusing resources to the areas of the landscape that contain the most complex soils and landforms.
- allowing more accurate costing and budgeting for the field survey.

If done correctly, the information and data gained in the reconnaissance survey should potentially reduce the amount of information and data that needs to be collected in the subsequent, more detailed field survey.

Detailed field survey

The critical aspect of a field survey is the identification and characterisation of sufficient 'observation sites' to be examined, documented and evaluated.

There are four types of observation sites that can be used to map the unique map areas and determine land suitability, including:

- detailed soil profile description;
- deep borings;
- analysed sites;
- check sites.

Table A2.1 Classes of observatio

Observation Type	Description	When is it required?
Detailed soil profile description	Detailed morphological and site descriptions to characterise the main soil and landforms, and the specific soil attributes required in land suitability assessments. Soils are described to minimum of 1.2 m or 1.5 m (if irrigation or deep rooted crops are proposed), or an impermeable layer such as bedrock.	Used to identify the different soil types and characterise the dominant soil in a unique mapping area, essential for characterising the soil attributes and limitations used in land suitability assessment.
Deep borings	Deep borings examine the material below the normal depth and are important when subsolum and substrate properties influence land use. Deep borings allows consideration of factors such as deep impermeable layers, salt accumulation, groundwater depth and salinity. Full soil profile morphology including pH and electrical conductivity, measured from the surface and at 0.3 m increments. Lower soil depth for these borings should be discussed with DNRME to ensure adequate assessment of deep drainage.	Essential if irrigation is proposed, particularly to assess the off-site impacts associated with deep drainage, water logging and salinity.
Analysed sites	Profiles where samples are taken for laboratory analysis. Sampling is usually conducted to characterise each 'typical soil' in the area being investigated, or to target selected soil attributes such as fertility, sodicity or salinity. Physical and chemical analyses are expensive and must be well targeted and clearly specified. Minimum required includes pH, EC, Cl, particle size distribution, air dry moisture content, dispersion ratio, cations, trace elements and fertility suite.	These are used to evaluate sites and unique map areas within the area to be cleared, to characterise off site impacts and to confirm field textures, soil permeability and field tests, which are required to assess limitations such as wetness, soil water availability and erosion. Each 'typical' soil requires at least one analysed site. More may be required for larger applications, particularly if irrigation is proposed (up to 3 analysed sites per unique map area if polygons exceed 10 ha).
Check sites	Check sites are brief observations to confirm mapping boundaries, soil type distributions or other characteristics being mapped in the survey area. They must be in sufficient detail to allocate the site to a specific soil type and unique map area or mapping unit.	Used to accurately delineate the location of the boundaries of unique map areas or to ascertain the degree of variability within a map unit.

Note: soil site density and mapping scale should be produced at the property scale and determined by the area to be cleared, crop type and complexity of the soils and landscape. Mapping scale needs to be discussed during prelodgement, for proposed scales coarser than 1:25 000.

Land Suitability Report

Your land suitability report should be completed in accordance with the Guidelines for Agricultural Land Evaluation in Queensland (available at <u>Guidelines for Agricultural Land Evaluation in Queensland</u>) and should include the following:

- 1. Signed statement by Technical Expert
 - a. Qualifications and experience in soil and land resource science;
 - b. Statement of land suitability for the proposed crops.
- 2. Site location/description and proposed activity
 - a. Lot number and registered plan number;
 - b. Current site plan with scale bar, showing north, lot on plan boundaries and location of soil sampling sites (including GPS coordinates and the applicable spatial datum coordinates of detailed sites, deep borings, analysed sites, and check sites);
 - c. Proposed crop(s) to be grown;
 - d. Management practices for growing/harvesting crops to ensure limitations are considered when determining land suitability i.e. irrigation method.
- 3. Assessment and Findings
 - a. Address information requirements specific to level/option.
 - b. Identify the assessment methodology in accordance with the required standards (Guidelines for Agricultural Land Evaluation in Qld; Australian Soil and Land Survey Field Handbook) (include: location of all sites; soil profile descriptions (see Appendix 1)); soil map at property scale with a description of each soil type and limitations for each of the unique mapping areas—this may include collated information (present in excel spreadsheet) from published land resource/land suitability studies used in the assessment (including a discussion of each limitation used in that particular land suitability assessment).
 - c. Include a description of the proposed crop requirements in terms of climate and seasonal variability, and link this to the climatic and seasonal conditions at the site location.
 - d. Include a description of the landscape element, landscape pattern, slope, drainage, permeability, surface rockiness (abundance, size, and lithology), rock outcrop (abundance and lithology) and microrelief of each site sampled.
 - e. Include a description of each soil horizon at each site, including the minimum standards specified in Table A1.1 of this guideline (e.g soil texture, colour, structure, coarse fragments, segregations, field pH, upper/lower depths of horizons etc).
 - f. provide data on the pH and Electrical Conductivity at each site at 0.3 m increments to maximum depth of 1.5 m.
 - g. provide photographic evidence of the general environs and soil surface at each site, and the attributes of each exposed soil profile to the required depth.
 - h. Clearly identify any links or correlation between the sites sampled to the soil unique map areas and how the soil attributes relate to the limitations and overall land suitability.
 - i. For irrigated cropping, include a daily water balance model to make an assessment of deep drainage, water logging and off-site impacts on salinity.
 - j. Findings.
 - k. Include all digital copies of spatial data (e.g. ArcGIS shapefiles) used for assessment including unique map areas, final suitability, and LiDAR if available.
 - I. include digital copy of excel spreadsheet listing unique mapping areas and limitations used for suitability calculations.

Part 5 – Scope

4. Conclusions and recommendations

- a. Statement that the subject is/is not suitable for the identified crop(s) or crop group.
- b. Identification of any limitations and constraints on the use of the site where applicable.
- c. Land suitability mapping.
- 5. Attachments
 - a. Laboratory results from an accredited laboratory (e.g. NATA, ASPAC).

Laboratories for soil analysis

Under normal circumstances the laboratories performing the analysis of soil samples required to determine whether land suitability will need to:

- comply with the Australian Standard (AS) AS ISO/IEC 17025-2005: General requirements for the competence of testing and calibration laboratories; and
 - have the technical expertise for the specific analytical methods.

Accreditation provided by the National Association of Testing Authorities (NATA) can provide evidence of compliance to this standard.

Preferably, analytical laboratories should also participate in Australasian Soil and Plant Analysis Council (ASPAC) proficiency trials, and maintain certification for the relevant methods. The ASPAC website (www.aspac-australasia.com.au) lists participating laboratories.

In the cases of both NATA and ASPAC, the respective accreditation or certification is for specific analytical tests or methodologies (e.g. method 15C1 in Rayment & Lyons, 2011), and is not a generic accreditation for all analyses undertaken at a laboratory. Therefore before submitting soil samples for analysis, it is important to check that the laboratory is accredited and/or holds certification for all of the required tests.

While the use of sample handling and preservation focused quality assurance measures, such as chain-ofcustody documentation, analysis of field and trip blanks, spiked and duplicate samples, is not to be discouraged, if site selection and sample collection are not of a suitable quality, post sampling quality assurance measures are of no value and will not overcome sampling or procedural deficiencies.

Where analytical testing of soil samples is undertaken outside of an accredited facility, the agency assessing a verification application might require evidence that:

- the equipment used has been calibrated or recalibrated by the equipment supplier, or another entity with suitable expertise, and that the calibration is current;
- the calibration of the equipment is routinely checked when the equipment is operating;
- a recognised analytical methodology has been followed;
- a documented set of suitable quality assurance procedures is in place to cover all aspects of the testing, from sample receipt to the provision of the results;
- the persons undertaking the tests have the competencies necessary to prepare the samples, operate the testing equipment, record the results, and identify quality assurance non-conformities and any anomalous results.

1.

Irrespective of the accreditation or certification held by a

laboratory, copies of all analysis certificates provided by the analytical laboratories or other providers must be submitted for assessment by the government.

Appendix 2: Soil Survey Field Sheets

Photos - Leape/veg 1-7 - Soil 8-15

F	1	TT		1		T	121	-	1	Tax Un	nit		T		Ma	p Unit	_	VI	61		1	L	Air Ph	notos					IKU	1	14100	/	Subs	strate	100	2/1	l L	- <i>p</i>	/
TSO	M Type	L Meas	Obs Reas	Perm	Drainag M Samp	ineal for	Depth R Horiz		Туре		Code			Туре		c	ode				Film No	_		Run	No	Frame	No	ot	Distance	Conf	Depth ග ල්	-ts	Por Sp F	Str	el Sal	th Ge	In T T	S Mass Str	MDS MC1
C	M	141	2 .	23	4-1	XIG	199	11			-						1			_		_	_		-	-		C	4		\$89				U	C			
K Datum	Zo	one	East	ng/Latit	Location 5?	-6	AGD9	Longitur	de	N Cont	Ord	Sub Ord	G	G/ M2	SG/ SO2	F1	F2 F3	3 F4	F5	Part	eri Ver CauRDE	burn	p. ned.	GSG	- Disturb	Surface Conditio	1 Type	Agent	Microre doug	vi vi	H H Size	Sha	ape Lith	Str	Alt	Outcro	op dh	Profil	e Diagra AT S.2.1
	Eros	sion	17.	54	02 99	10	Ver	4	9	4 Jul)E	FIL	A	47	FO	110		10	VS	-		-	1	1	1-11	Venetati	ion Com	munit	v Details	_	19	1		4	<u> </u>	Ø	41	1	322
be	ate	1.		Ref Na						Name			cha	1		rata	E	N.CI	Heigh	ht C	over		Sp	ecies 1		Prop	. 1-9	jundi	abluie	2	Prop	10	Sile Si	pecies 3		PI	rep	-	
3	P	7/	1		Vera	ob	in 1	1000	da	d of	600	liba	Web	La	tions	/T -	TT	V	11	4	E	EU	co	00	2LF	1	1C	DA	201	91	LA	0	ORI	PII	ENI	Ā		6.1	D1.
	1		2		and	000	e Rive	cre	dg	umil =	= 10	53	11-	2		M	TG	V	2	8	2	-Ye	50	+14	VL	1	GI	RE	57	R	IA		~ ~ ~	- 01		-		* 2	Dan
-	-		3	-				1	-				1		-	1-1	214	LIV.	14	2	- IV	AR	C P	SIA	C A/ P	=1	12	9R	Lan	Fet	70	A	CAS	2/16	-10	2		5.00	25/16
mber		н	orizon		De	pth (r	n)	Bo	und ad	Field	Textur	e a	Perm	Drain	Boo	k Co	biour		ti	2 5	Mottles	1	5 0	Coarse	Fragme	ints	4	Struc	cture	Se	gregations	ske	Strgth	Cut	tans Pe 12	Pa	ns	Roots	Samp
N	4	11	1		mal	de	LAS	De	She	FCA	=)	1	2	1	14	10e	01	2	W I	Abi	Cor Siz	3	Abi Siz	Snape	Lin		Gra	N Sa	CD E	AD	For Size	Cra	SW SW	Kin	Data	C TYP	Cor	Siz	(m)
1	1	1			443	14	940			130	1	1	0	4	19	Y	14	54	D	4			8			1.1.	N	2	20	P			05						0-
12	B	2	/		Od 3	50	530	SG		FSL	C		3	4	10	Y	22	22	M	d			ø			1	M	4	ARI	Ø			D4	5		_			-0
2					1	1								1		15			611					-			M	3,	ABD	1									10.
3	B	20	2	-	\$ 34	9	680	G	G	SCL	. /	F-M	13	4	14	Y!	83	32	M	9	5		Ø			-	W	5:	SB	ø			03/4	4				_	0.5
+	2	11			1380	81	30	C		5	1	M-U	- 4	11	100	VA	2 3	3 1/	m	0	8		Ø	-		-	V	1		A			021	2					0-8
4	a	101			9 7		T					1	T	7	17	1		T		1										P		10	Par	il.					1.1
5	2	Þå	2		130	51	69	C		SL		M	4	4	10	Y1	R 4	43	M	P			Ø				N/	E		Ø			D21			-			1.4
6	2	D3			161	\$ 1	70	1		S		M-K	4	4	10	y,	24	43	m	Ø			б				V/	G		ø			DIC	7	-	- 1			-
-		-	-							1.01	-					1				-							1							++					9
7																																					-		
,	ield	Tests	Meth	7 -	\$2		J.L.	ø		20			ø		40	Ĩ		1	ø	- 6	ø			d.	99	1			1.2	NO		1	.54	6					
	pH	I-RP	1	6	.5		13	1	7	·ø	1		1	7	. 8				1	8.	2				7'8				7	8	IN THE PARTY		8-2						
	pH	1-1:5	4										-		-				1	-					1	-										X			
-	EC-	king	1		d				-	1			-		5						2				14				1 h	2								-10	
-	Dispe	ersion	1	et	12#				es !	10-1#	-		1	d	1 de	#			1	7/1	#			0	the-	,#			01	2#			0/27	Ħ	H	- 11			i.
E	fterv fi	fin. earth		PI	N				TI	N			1	T1	N				1	4-	W			1	1 1	1			PF	M		1	N	1	T	april	r rei	noco	ang
-	TE	e		#	after	n	eme	ild	mig				-	-				-		-		-			St	op/	in dist.	mot	1	X V		-			-	-			E.

Site 1 photographs

Soil profile photograph

Photos - Lscape/veg 16-19
 - soil 20-24

四

SITE DESCRIPTION

Slop	e range 20.5%.	Indistmict TEPI	SRP - 5m above		/			
Geology	Slope	SRP	Element incide FR.	SteLandform Pattern	Land Use	Described By Date (ddmm)	(v) Project	Site 8
The second se	Percent Class	Type g Height	Width Length	Pattern Pattern Modal RMS	LU1 LUN		77 110,000	S Typ
A	19-2 F	TEP	A	LP LP		BUR5 1912	18 FSC15M	\$2
edy Kunoff	Drainage Drainage Drainage Drainage Drainage	Tax Unit Type Code	Map Unit Type Code	Air Film No	Run No Frame No	L Distance To Depth 0	Substrate alloved auger-	Mass Str MOS
1412 2	224- 999					C Q Ø=4	UC	
Zone Easting	Location AGeD9	4 CH? Aus	tralian Soil Classification GG/ SG/ F1 F2 F3 F4	FS because bunella	GSG Surface Condition	Microrelief Sur	ace Coarse Fragments Outcrop Shape Lith Str Alt 5 Lith	Profile Diagram
55195	57347699	2203DEAE	YYCDAEMO	X -	- 14		N N N N N N N N N N N N N N N N N N N	1.2.01
Erosion	Vege	tation Community	AH EO	12	Vegetation (Community Details		-19201.1.1
Ma GD Beg	Ref No	Name	Form to Cov CI	Height Cover	Species 1 Prop	Species 2 Prop	Species 3 Prop	382
SP 1	Verygen 100	allord bloodance	d. gheat TTTV	13 CPR	PLENA	CORDALLA acc	LYSGILNU	11:4D2:-1 :
2	gum L ban + shrahs	d Mesmit	12 M 55V	3 VAC	FARNE.	ACASALIC OC	CERESP (DUT chall: 27)	582
	Depth (m)	Bound Field Texture	Book Colour	Mottles	Coarse Fragments	Structure Segregations	Strath Cutane Pane	Poote Samples
Horizon	Upper Lower	U Pield Texture	Hue V C	toist bun ontr ontr bun	8 Shape Lith Str	Pe s Type De s t t t	Sundaria Contains Laure Anna Anna Anna Anna Anna Anna Anna Ann	motions Samples
A 1	ØØØØØ6	G FSCL	34 10 YR 33	MPDD	<i>v</i> j	W3SB Ø	D3 -	0-0-0
B21	006 \$45	C FSLMCH	-241ØYR32	MBB		44BID	045	10.1-0
						M3AB2		10-2-8
201	\$45\$60	C S M-K	4419 YR 33	MØØ		V/E d	DZ	0.5-0
382	\$6\$1\$\$	C LMC	2410 YR 43	MØØ		MAABIO	05	08-0
			1 1 1 1 1 1 1 1 1			M3AB2		
4 22	100120	G 5 M-K	441\$ YR 33	MØØ		WG P	02	1-1-1-
5B2	1200 170	LC	3410 YR43	mø ø		MSPR10	04/5	1.4-1
		1				M 3. AB2		
eld Tests 💈 🖗	5.02	0.20	A . 55	6.85	1.15	1.45		
pH-RP 1	7.6	7.5	7.8	8.2	8.2	78.5		
pH-1:5 4								
EC-1:5 1	A 6	the participant						
Slaking 1	· Ø	1	2	2	2	2		
Dispersion	6/2#	dot	012#	1 #	1/2 ,#	11 #	+ after remoulding	
erv fin. earth	Plat	Place	Pla	1/0-1	1/0-1	110-1	0	and the second s

NOTES: • Buned sand leyers @ 0.45-0.6m + 1.0-1.2m; Structured clayof subside is Similar + belas there horgons; sand layors peoply relict/buned A1? • Level TEP/in distinct 3RP (scroll plan) of Flinders from A2P. • Sand Paction - fine to median + micalous; - coarser in Sand longer Mica Kakes

Site 2 photographs

Soil profile photograph

but adjacent to prior STC + potestille relief LEV dep SITE DESCRIPTION

F1

Photos - Lscape/Veg 32-34
 - soil 35-38

Ge	eology		DEval	Percen	Stope t c	iass 1	Ind	L	EV	? +. 00 P	Land	iform E	ilement Wid	######################################	Length		Patte A /	Land Im	form Pa	dal F	RMS	L	Land Us	Mgt1 6		Descril	R T		Date	ddmm	уу) 1 <i>2</i>		FS	Project	SM		Site	P obs	S Type
TSO TSO	T L Meas	Obs Reas	& Runoff	C Perm	M Samp Aggredn	Dep R Ho	oriz 9	Typ		Tax Uni	t Code		Тур	Ma	p Unit C	ode			Film	No	Air Ph	Run f	40	Frame N	vo vo		stance	Cont	Depth	Grs	Str Por	Sub L ds	estrate	Allaja str U	al Smi	d dep en T	Mass Str	- buned	L 20W
W Datum	zone 55	Ea 19	usting/La	Loca 5 atitude	tion 4 7	North	ning/Los	ngitude 38	24	t Cont	Drd E	Austra Sub Ord	GG/ Or2	SG/ SO2	F1 F1	F2 F3	F4 F5	a	Hidea He on	PF Stri	ees vinad-	GSG aff	T Disturb	iurface ondition	N Type	Cmpt	doy _d	ef vi	E Ahue	Su	rface Co Shape	Lith	Fragme	Str Alt		rop .ith	Prof	le Diagram	-0.
(MType		05 <u>8</u> 1 2 3	Vegetation Community AH? W? Height Vegetation Community Details Ref No Name ##															Top		22	- 1.0																		
1 Number	+ 11 F	lorizon		Φ	Dep Upper	th (m) Low	ver Ø5	Bonuc Shape	5	Field Te:	rexture	1 Qual	mad 34	Boo	K Co	lour v z 3	C O Moist	- Type	Mottle Size	Contr 5	Abun	Coarse F	Lith	s Str	E Grade	Structu	B	Segr	Egations	Str	C Cracks	cons Cons 13	X Fabric	Cutans	Type Cmnt d	ans tuoo	Roots azys / /	Samples (m)	5.05
2	32	1		ø	95	\$4	15	G	C	LS	ŀ	1	34	14	y/	\$ 3	3032		ø		ø			W	IM.	4 A	8	ø			D	4	R?				11	0.04	000
3 4	2 D 1	2		9	45 Ø5	19	10	G	CLS	51	h	+++++++++++++++++++++++++++++++++++++++	54	1.9	yr yr	< 4 < 4	31		ø		ø				M	4 1	18	ø			24 D	2	K.		-		17	0.5	00:1
5		-							M	ledui	m	son	d fi	ectu	in -	- 1	11511	ble	gran	5														3					
7	d Tests	eth		A	2			d	2	<			a.	55			261	1 DE E		7	Mar	1 -	15					5											
F F E	0H-RP 0H-1:5 1C-1:5	¥ 1 4 1	(S)	6.	8			4	2 - 2				7 -	7.8			4	8	-2		-	-	8.0				8.	5		-									
S Dis Effer	laking persion / fin. earth	1	4	8/2	D # N			¢	/:	1 = N			¢	10-	1#		4	\$7	2-1	#		\$1	20- N	1#		4	5/0	2-1	#	T-L	17	# 0	afti	rn	2000	ude	7		
NOTI	ES:		FI	R I	X			2		1.0		3	1	Sta	lded	BA	KP	C	ay B	kP		•	Site To Su	Lon Lon	aded	e u p a	bed ith line	site	d of 1	bro + 2 ran	ad ; e	TE	P a oale me	at -	1 10	F. Te.	R 1 an	ich Pren	LEI

Site 3 photographs

Soil profile photograph

		5 M f	natrix	to has	mic.	e flete	Pasa Qasa	inad met	t (hia	m uppo	r Ca	tekni	wt)							Phot	tos -		lsape, Boil	/ veg 42	39	- 4	1			
Geo Qa.	logy	Sla	Percent Cl	ass two	5%	Scalded KP 3	BKP Landform E Height	d <i>raim</i> Element Width	ge an	ngth	Plina Patte FL	Landfo	E DE	tern fal RI	MS P	UN TOM	and Use	Way 100	6 roli De	ni g doc scribed By	ans / s	Date (d	, dmmyy 2 1	2	P FS C	Project	54		Site	Obs S Type	
D TSO	Neas Reas	Runoff	(V) Drainage M Samp Aggredn	Depth R Horiz	Туре	Tax Unit	ode	Туре	Map L	Init Code			Film	No	Air Ph	Run Ne		Frame No	C ot	Distance	Conf	Depth	Gr S Str	Su tod Sb L	bstrate Str	Nota Lith N1	Gen T	Text .	Mass Str	MDS MC1 MC2	
Datum 20 W	5 1 c	Easting/Lat	Location tude	Northing/L	ongitude	93 DE	Austr Sub Ord	alian Soil Add orz	Classific So2	F1 F2 F FE	F3 F4 F5 10 X		PP	F		GSG aff	Disturb Da Da Da Da	ndition CG YX	N Type Agent	Microre	VI	T Spun	Surfac	hape Li	th Str	Alt	Outcrop Lith	14	Profile	Diagram	6.30
Eto:	sion Bod M	Ref No 1 2 3	No	veg regetation ped as	etation C	Name Scale . 25 /	Loo tlyb	7. cla me	y diffe	E L L	2 CAR 2 CAR	eight	Cover	L =	DE	ecies 1	Ve	getation Prop	Commu	nity Details Species	2	P	гор		Species 3		Prop		1	<u> </u>	-0,75
Number 1	Horizo	n		th (m) Lower	Dact Shape	Field Tex Field Textur FSCL	xture	C Perm	Book Hue	Colour YR	c 3 Moist	Type	Mottles azis	s loo	Abun Size	Coarse Fr	Lith	Str	Str Grade A Size	Type PL	Vat Nat	egations Elog	Str Cracks	Strgth SMS D3	Fabric Kind	tans punge	Pans Count Count	Str	Roots PZIS	Samples (m)	64
2 A	2j	1	\$\$\$4	ØØ8	C/A	CLFS	5	13	210	YR	53P 42r 53D	1 9	ø		ø				V W 3	SB	Ø			DY					170	0404.	-0.05
3 B	21	4	\$\$\$	\$30	G	LMC	+	13	21 φ 21 φ	YR: YR:	32 M	. 9	8		Ø				M5 M3 N4	AB : AB :	0			DS	6				-	0.2-	0.3
4 5 B	231	<	\$75	130		МС		13	14	YR.	33 V 34 VN	Ma	22	FR	ø				W 5 144	LEABO	12K	NI		06	17				+	0.8-1	0.9
6 7	1		hard	by Ver	y der	topped v	ig		appe	ens	top	end.	laste	in						1											
Field pH- pH- EC-	Tests 4	ф. 1	\$2 6.5		¢.	10		Ø. 6.	25		9	5.5.	55			Ø. 9 4-3	85			1.1	5	5									
Stal Dispe	king ersion in. earth	1	13#		ø	13#		P.	12#		4	\$1	12 20-	, #		9.3 9/	2	1#		\$/	2	,#		# ay	lkr.	rem	ould	ny			

NOTES: " Separty scalded + non vegetated.

Dependiend BKP influenced both by local Iscope dramige flooding + Flinders River ever floor - Very hord + in permache + subject
 Depending + scalding behaviour ; definitely subject to come crossion ; adocie from Ed Marto - only get floot growth where subject

Site 4 photographs

Soil profile photograph

11.	Geology	Percent Class	Ind	Type g	Height Width	Length	Pattern	Modal RMS	Lúnd Use	Described By D	ate (ddmmyy)	Project	Site
¥		9-2	Death	Tax Unit		Map Unit	FLO	A	ir Photos	BURJ	Substrate	Not ducibed	FØS
O TSO	Advin M The seas	CE Drainag M Sami	R Horiz	Туре Со	fe Type	Code		Film No	Run No Fra	ime No to Distance to Des	sth on the str	Lith Gen T T	Mass Str Q
X Datum	Zone Easting/1	Location atitude 20476	Northing/Longit	nude j scale pa nude j zo old	Australian Soil	Classification SG/ SO2 F1 F2 F GBERM	F4 F5	PPF	GSG g Surfa	ace Microrelief Hition 441 VI HI A M B 0-3 / 5	Surface Coarse Fragment	Alt ung Lith	Profile Diag
XType	Erosion	No Med-	Vegetat	tion Community Name Boree Sc	crub on allu	L Strata	W? - Height MID	Cover Constr Cover ACI	TEPHR	tation Community Details	Prop Species 3	Prop	B22.
L	3	Mappel	00 4.3	3/10-3-	is ; both is	CERNER							Boy
Number	Horizon	Depth ((m) B	Field Tex	ture Drain Drain	Book Colour Hue	Moist Type	Mottles Size Coll Abun	Coarse Fragments	Structure Segregat	Strgth Cur Strgth Cur Strgth Cur Strgth Cur Strgth Cur Strgth Cur Strgth Cur	Abund Abund Dashed Dashed Dashed Dashed Connt Connt Str	Roots Sam
1	A1	9999	8930	MC	- 4	TO YR	42 m 6	8	5	51 G.R. Ø	5	+	0.
2	B21	Ø Ø 3 9	\$4\$G	AHC	1/2 4	IN YR .	42M 8	0 0	3	S4AB11KA	11 5	+	0.1
3	BZZ	\$ 4 \$ A	\$750	FMHC	1/24	? HØYR.	32 M 1	8 g	S I I I I I I I I I I I I I I I I I I I	SGLE11KA 531E21VX	SK.	2D -	0.1
4	B23 Ky	9751	13ø I	MHC	1/2.3	MAYR:	32M 9	6	3	56 LEI 1 KA	11 5	-	0.8
	ZDK	130	160	MC	1/2 3	10 YR	44 M :	2100	5	MYLE 2KN AB	(1) S	-	1-4
5	hicaeou	o relict alloin	con										
5 6 7	eloy :				+								
5 6 7	Field Tests	.03	9	p. 1.6	ø.	25	d.	55	0.65	1.15	1.43		

NOTES:

· Mod thick, med to strongly SM (51-2GR) + weak flake

Site 5 photographs

Soil profile photograph

		\frown		\frown i	hotos - Iscape/veg 5: - sal sulface bo	7-59 -62
cally provenanced		1 -1- 1 - 1	SITE DESCRIPTION		- profile 63-	- 67
Geology Berent Class	7. Similar Lscapt Landform	Ho FOS - after groups Element Width Length	Landform Pattern	Land Use Described By Dat	e (ddmmyy) Project	Site state
Qa A p-2 F	BKP	FL	0 LP	BURJ 11	1218 FSC15M	FØ6 S
ost W L 1 / / 2 ost W L 1 / 2	Tax Unit Type Code	Map Unit (Flour Type Code	ohg Westwards Air Photos Film No Run	No Frame No 5 Distance 5 Depth	Substrate Micalono Co vo to	y seda below o - gm Mass Saw I CON Str W
Location - based an United States - Northing/Loc M 55 1958317697	vlawlyng 15 rape baselie ongitude to solo ord 777 3 VEAD	ralian Soil Classification $\begin{array}{c c} GG' & SG' \\ GT^2 & SG27 \end{array}$ F1 F2 F3 F4 F5 $\begin{array}{c c} GG' & SG' \\ GT & SG27 \end{array}$ F1 F2 G $\begin{array}{c c} GG' & GG' \\ GT & GT \end{array}$	PPF GSG aff	a Surface Condition education M fr were word vi Hi 1 G X F Z	Surface Coarse Fragments Outcrop	Profile Diagram:
Erosion Vege State State Stat	Name Name or local allivies	EI? - predoministry responses - predoministry	LOackby SM . ight Cover Species 1	Vegetation Community Details Prop Species 2	Prop Species 3 Prop	2 Dy - 20
3 Mapped as 1	Bound Field Texture	L G 35 1.	Ø AST SQU	Framente Structure Segregation	ns Strath Cutane Pane	Poots Samples
Horizon Upper Lower	to a Field Texture	Hine A C Drain Hine A C More	Abun Abun Size Size Size	s Lith Str Bess Type Dury to Lith	Size Size Six Sive Sive Sive Sive Sive Sive Sive Six Sive Six Six Six Size Size Size Size Size Size Size Size	And
1A1 \$\$\$\$\$\$\$\$	CA FSLC +	24810 YR 42M	ØØ	M25B1P	D25 -	11 \$-0.02
2B21K 002040	GMC	24810 YR 42M	ØØ	M5AB11KN	1 D65 -	110-1-0-2
3 B22Ky \$4\$ \$9\$	C MC	1/23 31 10 YR 42M	ØØ	SAABZ MSLEIIKN	1 2/145 -	0.2-0.3
42Dy \$9\$16\$	FSLMC	1/23 10 YR 44 M 7.5 YR 44 M	M22F00	M4 AB 2YX Po 1YX	11 T 8/45 -	\$ 1.1-1.2
5						
6						
Field Tasta E al a R		105		CC IN/		
PHERD 1 S = 2 pH-RP 1 S = 2 pH-1:5 4 5	8.0	9. ø	9.9	9.\$ 9-\$	9.45 9.4	
EC-1:5 1 Slaking 1 2 Dispersion 1 0 2 1 Efferv fin, earth N 1	\$/20-1	p/2#	3/2# 1	/1# 1/1# S N	1/14 # after	-removiding

 This warkly son (& firm pedid in particles) surface with well decologed flate & sondy wash - not micae and.
 Open mitchell grows down on level FLO. NOTES:

· Fine sondy worsh accors surface & formation of significant flake; firm pedal to weakly SM (apipedal)

Site 6 photographs

Soil profile photograph

Summery	Record dep	= 0 -	-6m	145%. da	y tigned beds.					~ · I	Drillers core	near site	FØ2	
	deer dep	= 6-	18m -	745%. day	10						Sampled for	pH, EC, CL	to 14m	el.om mterels
	01			t gravellecks		SI	TE DESC	RIPTION			Photos - Cor	re-sanyles 6	8-71	(0-0101-0-2 6-2-1-3 etc
	Slope ron	40 0-0.	5% 7 Г	Landform	Element	Land	form Pattern		Land Use		- /3	cape 1	2-73	bulk Seryls)
Geology	A B.2	Class IN 2	T	Type g Height	Width Length	Pattern	Modal	RMS P	LU1 HgM	BURS	Date (ddmmyy) Proje	nct 15M	Site store
ost CM4 2	Runoff Perm M Samp	Depth R Horiz	Type	Tax Unit Code	Map Unit Type Code		Film No	Air Photos Run	No Frame N	Distance	Depth Site	Un Con Str	und deug S Lith Sent 2 Gr V	Mass of Low
E	Location			Austr	alian Soil Classification	deda	PPF	GSG	e Surface	Microre	ilief 8 9 Surfa	ce Coarse Fragments	Outcrop	Profile Diagram
A CC 10	asting / Latitude	Northing/	Longitude	12 DE AR	0r2 S02 F1 F2 F	3 F4 F5		aff		Agen Cmpl	VI HI Abun	hape Lith Str	Alt Sq Lith	120000 200 6.0m
Erosion	5139	Veg	getation C	ommunity					Vegetation	Community Details	5		191	MHC-HC
Type State Deg GD	Ref No.			Name	Corata Corata	Height	Cover	Species 1	Prop	Specie	Prop	Species 3	Prop	0
5 5 P ' 1 2 3	Ven gun	1 0 per la 10-3.10	zadla Arria	A bloodwood + Mesquite	e sheat M		Se	e site	Fq2 fo	descripte	on (-some st	te area).		Hudstone
Horizo	n [Depth (m)	Bound	Field Texture	E E Book Colour		Mottles	Coarse	Fragments	Structure	Segregations	Strgth Cutans	Pans	Roots Samples
MUN .	Upper	r Lower	Dact	Field Texture	E O Hue V	n Mois Type	Abun Size Contr	ungy Shape	Lith Str	Type Type	Abun Nat Form Size Size Cracl	SWS Cont Fabrio Kind Abum	Comt Comt Str	Size
1	14.	1-0		10 VR13M	34			FSLC	(mil	acous SIT,			in the	0-4.0
2	1.0	2.0		10 VR43M	234			FSLM	e (mic	ecour SED				
	2 Jud	3.0		1 d VRIZH	3 4			SLC						
3	104	1 - 7	11/2	14 Judall	-								1	
4	3.7	4.9		1\$ YR43M	34			FSLC		Y			1	V
5	(4.0	5-0	f.	- rounded n	ver gravel 4k	e						1		4.0-6.0
5	3/2													1
6	05.0	6 10-0		- rounded r	ver groude 46	1		MHC	(they look of	@ IIm	tondo)			1. and De D
7	10-9	\$ 14.0	2	10 YR 46 -	10 VR 5/6 1	brougha	ut 13	MHC-H	IC (Chedd	del.om	porteniale).			10.0-140
1	140	0 18.0	-	GV Sands.	46	J		14/16-	1 33			1		14-0-18-0
Field Tests	18.0	>+	-	MU Lice		11-11		170	1 1 1 1 1	Life 1	/		the	
pH-RP 1 pH-1:5 4	· NO'S	laking or	disp	insign testing				AN A	- Ber	£69		# See	Sile Fy	82
EC-1:5 1	· Samuel	ut for	po	A modernis -	- bulked open a	ucolont	- 50	c somele	distan al	202		for s	quocolat	Soul
Slaking 1	1				1-On interta	ab Caca	book)		, , , , , , , , , , , , , , , , , , , ,				descupt	ton to I. sin
Dispersion 1 Effery fin, earth	a Sampl	od for	ptt	ECCL loen	4 1.0m to 14	LIOM 6	where o	Ind GV.	beds sta	ats.				
NOTES											-			
NOTES:	· Core la	ag - 3	sample	led each 1.	Om intorval	× la	id out	as core	chip pile	2-		# and sh	allooper	mucel bed
		-	KU	mudstones a	18m = booes	rant						@ 5-6	m : ca	one gracel
		-	3-4	m Coarse	gravel about	the mu	ed stone	14-1	8m = .	Confined .	aquister	× no ,	lines = e	e depth of incisid

-

Site 7 photographs Soil profile photograph

nany	Recent de	p = 0 = G	0-5, 	m 6-	- 17				1	~														Drill	lers	Ge	re	6	-7-	EP	d	Flin	ndu	s Ru	in e	n color
	and i mp	= cl = m	ay -	e 17-	-19									SIT	F DF	SCE	RIPTI	ON					•	Son	plan	1-1-	r /	bit,	EC,	ce be	70	19	M	e	1.0	m inters
	Slope	range 1	0-0-5	5/	/ /									011							_	_	*	The	0105	-	- 1.	sea	pe		7	8-	80		b	UK sanj
Geology	Per A	Class	a TMT Ind	T	Type EP	007	Height	m Elen	Width		Length		Pattern	P	rm Pat Moc	tern tal R	P		Land	Use	Mgt2	B	UR	ву		Date	(ddm)	myy)	8	F	SC	Project	5M		Site	S Type
M Type	Obs Reas	Aggredn	Depth R Horiz	Туре	Ta	x Unit Coo	de		Туре	Map	Unit Co	de			Film	No	Air P	Ru	in No	Fra	me No	Oor	Dista	nce	Conf	Depth 3rd	Gr S	Str	Por	Substr	str	ut Ut	gra h	sen T	Sond Mass Str	MDS MDS
	Le	ocation	1/		1		Au	stralia	n Soil (Classifi	cation					_	Т	GSG	TT	Surfa		1	Mic	rorelie	f /d	7.4	5 s	urface	Coar	se Fra	gment	s MI	Outc	rop	Prof	ile Diagram
Zone	Easting / Latitude	3076	Northing/Lo	angitude	X1 Cont	ord	Sub Ord		3G/ Dr2	SG/ SO2	F1 F	2 F3	F4 F5	1	PP	F	-	aff	L Disturb	Condi	tion	Agent	Cmpt	v		н	Abun	Shi	ape	Lith	Str	Alt	Abun	Lith	h	
rosion	1	1/10	Vege	tation Co	ommun	ity	114		-		-	1 1		-		-			Lafe I	Veget	ation (Commu	inity De	tails	-	-	91	-	-	-		- /	21	-		
eg eg	o Ref No				Name						trata	a	D Hei	ght	Cover		S	pecies 1	11	F	qor		Sp	ecies 2		1	Prop	0		Spe	cies 3		1	Prop		
P 1		Vary op	en co	daha	L	ghai	tgu	n	bood	land	TT	7	0			60	RA	DAL	LI	9		Co	RY	01	上と	1A		E	00	C	a	06A	}			
1.1	3	= /0:	3.10		(map	na a	14	5.5	140	1	1 1	_	Per	mlt	ran	v	0			-			-	0			-	-		0		<u> </u>			C
н	orizon	Upper	(m) Lower	Shape Shape	Fi	eld Texture		Perm	Drain	Book	ue	v	Nois	Type -	Size	Contr Col	Abun	Shap	e Fragm	h	Str	Grade Size	Type	Cmpd	Vat Nat	E	Str Str	Cracks	Strgt	Fabric	puty	Cans Depuided	Type	te og	Size Abun	(m)
Soil	-	1.0	1.0		CL	FS		(MOCH)	34	10	YR	33	2	3	34														Kent							a design
	1	2.4	3.0		CL	5	. 1	3	4	100	YR	4	30	1.4	24			. 1											-							
VA	-5m	5.0	40		50	Lara	all	d.	5	10	YR	4	3	4	14				-	-		-					-	-				-	-			
Grav	rel	5.9	6.6		Can	Se riv	ier a	mosc	L	14	1	7		4	46							RL			1						-				1	
1		6.0	10.0		Ca	WE VI	verg	Rue	L	+			,	4	+6							_								-	1					
-		10.0	11.0		K	31	1			7.5	SYR	5	5	4	14			-				-									-		-			
elan	1m	10	17.0		Car	The H	very	grave	x	T				4	26		i in			1	-								100		+ =	-				in the second
T	19m	10-00	y.c		da	t m	del	one		10	NR	5	4	-	+																		T			
base	ement	77								1	1					1										-										
		11						-										1	-		_	-					-				1	-				
	15		-			-		-					1		1	-		-	-	1		1				11		-					_	-	-	
pH-RP	1 091	date	-	dil	and	-	tout	L		-	-		-		-		-	-		-		-					-	1	+ /	7	1	1				d T
pH-1:5	4	Lary	ngor	asp	grad	alle of	est	g																				Ħ		im	701	the	ap	eps,	S TUD	ero re
EC-1:5	1																															F	va	er	g	
Slaking	1																											-								
Dispersion	1																																-1-			
erv im. cafth		1			byd	Ther.	5	-	1	-		,		,	-					15	-				1			-	1	422	-	-		-	-	
TES:	corel	9 -	54	mples	ap	01	.00	n 11.	Her	val	s y	la	da	et	40	Lon	ea	up.	sany	lo																
		-	ku	i M	ude	stal	0	19	m	34	ba	seme	nt																							

Site 8 photographs

Soil profile photograph

							0											Briller	s G	ne t	n Th	EP 1	lar -	Swam	p"/p	ver St	TC
							0											Sample	d for	plt	,EC,	Cl	to 18	me	1.0m	mtorus	als
										CIT		PDIDT	ION				6	Phole	25 -	cer	e sa	nyles	84	- 88	-	(0-1:	0
	Slap	e range	0-0-5	Ton Ti	EP. Sie	lestope	sto,	brier.	570 = 3	3-5%	EDES	SKIPI	ION				_	100/1	-	- La	cape		81-	83	_	2.0-	3
Geology		Slope			Landfo	orm Eleme	ent			Landfo	rm Pattern			Land Use		De	scribed By		Date (de	(vvmmb			Project		Sit	e	8
Geology	Te Percer	nt Class	Ind	Туре	S Heig	iht V	Width	Length	Pa	ttern se	Modal	RMS		.01	Mgt1 Mgt2	0	Contraction of the		oure fu		-					sqo	S Ty
Pa	AQ.	2 1		TEP		1.1			A	LPI		LP				B	UKJ	1 12	21	21	8	FSI	C 75.	M	179	9	<u> </u>
M Type M Type L Meas	Ops Reas	M Samp Aggredn	epth Horiz	ype Tax	k Unit Code		N Type	Co	ie	_	Film No	Air	Run	No	Frame No	or	Distance	Conf	Depth	Gr S Str	Su F Por	bstrate ই	tr Lith	Gen T	L Clour	WC1 Se day	MC2 M
CIM4	2121214		18.0				0.11.01			-	_					C			· P	0.4			00				-
e _	Loca	ation	1	1.16	Indi	Sub GO	Soll Clas	sification			PPF		GSG	4 SI	urface		Microre	her //	5.00	Surfac	e Coarse	Fragmer	nts ma	Outcrop	Pr	ofile Diagram	<u>a</u>
Zone	Easting / Latitude	Nor	rthing / Longitude	Conf	Ord (Ord Or	2 50	2 F1 F	2 F3 F4	-5			aff	Dist	numon	Ager	Prop	VI	Abur	Size	ape L	ith Si	tr Alt	Lith			
MIS.511	9517	9760	9904	\$/3	DEA	B -							-	114		6			ø				1 je	3			
Erosion	T. T		Vegetation	1 Communi	ity					E.	11			H Ve	getation	Commun	hity Details		1	ĩ				T.			
State Deg GD	2 Ref No			Name	1.1			Strat	U V	Height (Cover		Species 1		Prop	210.1	Speciet	2	Pr	ор		Species 3		Prop			
SP1	1 1-	Very apor	r vooad	land J	host gu	m ble	adioa	al T7	17V		C	OR.	DAL	LA		CPI + D	2 PL	EN	A	L	YS	GI	LVU	1			
	3	19 baul	ahi m	h lles	rated 1	TEP_		L	4		M	CITI	THE	10		LII	nor	AT GL	1								
		Depth (m)	Bou	nd F	Field Texture			Book Col	our	T	Mottles	T	Coarse	Fragments	s	Str	ucture	Segre	gations		Strgth	C	utans	Pans	Roc	ts Sample	as
Ho Ho	orizon		ower U	adet Fi	ield Texture	Perm	Drain	Hue	V c	pe be	alt	- und	Shape	Lith	Str	ade	Type	un ti	u az	racks	NS SU	bric nd	stinct	al ut	a e	ung (m)	
Soil	1	01	1.00	0	EG	02	21 11	tun	30	2 F R	ज 0	A A	ν.			Ŭ ŭ	0	A Z	10 10	5 0	5 0	u Z	3 6 6	00	5 0	4 0-3	-
1 1000	Contraction in the	1100 2	.0	FSI	IC IC	3	4 13	dup	23			27011	1								107100					0-3	.0
		ord :	3.05	F.S	10	3	4/1	BUR	43																	-	-
2 Aluro	useds	3.0 4	1.00	SC	L	-3	4 10	os lio	53			CVC1	1	1200				1.01-		13 -77						3.0	-
1/1		400 5	0	CL	5	3	4/1	3 YR	53																		
S V		5.9 6	10	FS	CL	3	410	DUR	54			2			1												
A Grave	el bed 1	6.97	·d	Gr	avel.	4	6 -	-/						1-1-1												6.0	-
Clay		7.00 19	· ø	Ln	1C .	2	3 19	\$ YR	54	11	14.5	12	-												-1	7.0	-
5 day	16	7.0 12	.0	MH	+C	1.	3 19	DYR	56	+100	YR5	12		1												9.0	-
play	1	2 \$ 18	2.00-	M	CIANA	1	3 18	DYR	54		111				-											12.0	2-
6	1 - Carl	11	1			1		1					-		-		-			_	-					Rul	4
Muds.	tone 1	8.0 24	· # +	da	the med	Stone	2	·54.	31																	Sim	t
7 boser	mont		-				-		-	-			-		-	-				-	-		-			fort	25
	161							-	1 1 1				1	-				1					1			ane	her
Field Tests	Met	- 11	1			-	1 1	-		-	-	-	_		_	_		_				-				6	_
pH-RP	1 -	· No	Stahing	1 ar	dis per	ston	test	my.	1.1				++					+-P		弁	= 5	mile	a se	al K	TEP		
pH-1:0			0	-			0														Ls	Cape	. Yo	STR	FØ	2	
Slaking	1																										
Dispession	1 -																			-					1		
Dispersion		in the second																		-							
Efferv fin. earth																											

- day dominate - gracel aspired to 6.0-7 on; day from 7 - 18m; mudstere from 18m.

Site 9 photographs

Soil profile photograph

de	sum	5	ope range	- 0-0	0.5	7	ypical	TE	r d	ejest	-/	SI	TE D	ESCR	RIPTIC	DN S	1/2 1	go .	: 									
	Geology	-	Percent	Class		Type	Landform	Element	-1	Length	Pa	Land	form Pa	attern	MS	L	Land Use	EQ	De	scribed By		Date (dd	lmmyy)		Project		Site	2
G	a	A	Ø.2	EW F	T	EP					A	LP	ö	1	P			5W	B	URJ	1	21	218		FSC 15	M	FI	× °
O TSO	J M Type	Obs Reas	Co Perm P Drainage M Samp	Depth R Horiz	Туре	Tax Un	it Code	Туре	Мар	Unit Code			Fitr	n No	Air Ph	Run N	la	Frame No	Not	Distance	Cont	Depth	Gr S Str	So F F	strate buried	Lin Gen T	Mass Str	MDS WC1
C Datum	zone 55	Easting/	Location Latitude	Northing/ 7698	Longitude	Cont Cont	ord Sutt	GG/ Or2	Classifi SQ/ SO2	F1 F2	F3 F4	F5/	ane P	honz Prcen eyda	staine	GSG L _{att}	Disturb Co Disturb	urface ndition	V Type Agent	Microre Gubt	VI	H Abun	Surface (Coarse	Fragments th Str Alt	Outcrop unqy Uth	Pro	ile Diagra
F	Erosion	1		Ve	getation C	ommunity		AH?			NOT	12					Ve	getation	Commu	nity Details		1921		_	1	1	11	822
CoType	d State	8 2 Ref 1 2 3	No Veny gen	open co V OCC K	adlen Liber R	Name I f k id genv t e	loodioo † siyn	ed al	ot	T W + Stata	0 MOD V S	Height	Cover	CO PR	RF OP	LE AL	NA	Prop	Col	Species RDA	LL	A	P OC		Species 3 CAMA	Prop	- North	201
Number	,	lorizon	Du	epth (m)	Bound Shape	Field	Texture	Perm Drain	Book	Colour	v c	Moist Type	Mottle Size	Coll Coll	Abun Size	Coarse F	Lith	s Str	Stre Size	Type	Segre unqy tev	gations Eog	Str Cracks ewe to	Strgth Strgth	Fabric Kind Abund Distinct	Lype Cont Cont	Root azes	Sampl
1	A1		Ø PA	\$ \$ \$ \$	5A	CLF	5 FM	34	10	YR	331	D	ø		ø				W3	SB 1	Ø		Z	03	R	T	11	0-0
2	B2	1	pg:	5 \$49	8 G	SLM	CFA	134	19	YR.	31		ø		Ø				MS	ABI	ø		2	D4/	55	-	11	0-1
3	B2:	2	\$49	\$ \$75	CA	CLS	M	34	19	YR.	33		ø		ø				MSS	AB	ø		1	D4/	55	-	12	0.5
4	2D		\$75	5159	8	LSI	п-у м-у	544	19	YR	43		ø		ø				Y		ø		Z	02	G	7	11	0.8 1-1 1.4-
6		1,1																										
7				T																								
F	Field Tests pH-RP pH-1:5 EC-1:5	1 Meth	6.8		6	1\$		9.7	25			¢.	55			4.	85			1.1	5		1.	4:0	5			
E	Slaking Dispersion Yery fin. earl	1 1	0/3#		\$1	13#		P/	22	#		ø,	2/20-	-1#	Ł	ø	2#	ŧ		p/	2#		¢	5/1	2#	# af	ter no	nould.

- Exactly some soil/Lsape/xveg as Sites F\$1, F\$2 VF\$3. <= dominant sal unit on Botensue TEP.

Site 10 photographs

Soil profile photograph

10.3 12a.

Photos - Lscape/vey 98 - 103
- soil 104 - 107

_				Sk	pli	rang	e	0.5	-5	1.	it	nn,	swa	de.	<u>,</u>	5-,	20	1.	n	sid	lest	ope	ba	SITE	E DI	ESC	RIF	PTIC	N	_			_	_		_	_									_	_		
	Geol	logy		val	Perce	Stop	e Class	1	g	5	RH	1	E E	Heigi	brm E	Eleme	Width	1	Len	gth		P	La	Indfor	m Pa	odal	RMS			Lui	nd Us	e 15	B	De	scribe	By		Da	te (dd	nmyy)			Proje	ct			Site	5
4	Da	1		Ä	1.9	8	T	R	5	2	W		5									A	LF	20			UF	5			-	2	×	P	UX	J		12	10	21	8	t	FS	c1	51	2	3	FI	1 0
) TSO	M Type	L Meas	Obs Reas	Runoff	The Drainage	M Samp	Aggrean	Depth R Horiz	2	Тур	0	Tax L	Co	ie			Туре	Ma	ap Ur	Code	e				Film	m No	4	Air Pho	R	un No		Frame	No	D or	Dista	nce	Cont	Dept	h 5	Gr S	Por	Sup H ds	Strate	str	uth UC	Sand Gen T	Text (1)	Mass Str	MDS MC1
Datum	Zor	ne	Ea	iting / La	Loc	ation	bec	Northing	/ Long	ad	iaca	Cont	nac	iel	ustr S7 Jub Ord	alian GG Or;	Soil 9	SG/ SO2	F	tion 1 F2	F3	F4	F5 4	20	ense	PF	am.	st.	GSG aff	4.4-14	ounsen	Surface	Type	Agent	Cmpt Prop	oreli	af n	н	Abun	Surfa	ce Co	arse I	Fragm	ents Str	Alt Unde	Lith		Profil	e Diagra
M	15	5	191	61	2	1	76	98	84	4	/	3	DE	A	B	Y	12	CI	A	E	M	0	X	-		1.1		-		1		1	2	2					ø						Ą	1	_	1.	201
8	Eros	sion		Ref N				Ve	egeta	tion C	omm	ne	KA			MF	1:		ata	E	0	N.CI	U.	1/10	OVEL	1.		Spe	ies 1	ł	- 1	Pro	ion Co	ommu	nity De	ails			Pro			5	Species	3		Prop		0.17	202
NTV	5	<u> </u>	1 2 3			Tall + 1	Me	squi	fa	ares UI	t dir	1 sto	Rus	për	Re	dg	Con	r	T M L	T	*65	8 M S	123		10	E	RO	CP	A	4A LL	7 L I											-						T'S	223
1	T			_	T	De	pth (m)	E	lound		Fiel	d Tex	ture		E	5	Во	iok	Colo	ur		T		Mottle	es	Т	(Coars	e Fra	gmen	ts	T	St	ructure		Segr	egatio	ons	T.	Str	gth		Cutans	T	Pans		Roots	Samp
Mumb	1	H	prizon	-	1	Upper		Lower	1	Shape	E	Field	Texture	-	Qual	Per Per	Dra	10	Hue	10	v	CR	A Moist	Abun	Size	Contr	Col	See	Sha	pe	Lith	St	Grade	C Size	Type	Cmpd	Abun	Form	Size	Str Crack	sws +	Cons	5 Fabric Kind	Abund	Type	Cent	St	- Size	(m)
1	M	1			9	99	10	599	4		1		-			3	T	14	1	IR	4			7			7						V	12	20/	FL	9				9	5 1	2		1			11	0.01
2	B	21			¢	\$4	49	\$4 5	50	G	CF	LI	55	+	+	3	4	19	1 y	IR	4	41	7	9	5		2	8				1	WA	14	SB	5	ø				D	41	R	1.				12	0.1.
3	2	DI			9	45	5¢	65		q	5		,	1-1	K	4	4	10	5 4	IR	5	31	M	\$	5		4	5		-	1		V	1			ø					4	G	1	-			11	0.5
4	2	D2	1		ø	65	1	\$75	50	-	C	Lf	5			3	4	19	5)	IR	4	31	7	A	5		19	8			1		V	(n-		ø					1	E	1		-		12	1
5	2	D3		1	19	175	1/	39	00	Ĵ	S		4	1-k		4	4	19	dy	IK	5	3	M	Ø	5		19	1			1		V	1		-	9						G	11	-	-		1)	8.8
6	2	DY	!		1	3.0	5	150	5	N	L	5	ŀ	1-h	4	4	4	10)	IR	4	31	1	Ø			9	2			T	_	V		l		ø						E		-	-		12	1.4-
7				1				ÍI					1					1	Ĺ	1.		_		1							T													17					
1	Field 1	Tests	feth	0.	10	1		-		e	>~1	1		-		6		25	1	1			0	5	55		-	-	d		5		_		1.	1 <	-	-			1.	1,8	-	-				-	-
	pH-F	RP	1		7	5	T				-		-	1		1	8	.5	-					8.	ø				T	7.	8					7.0	2	-		ť	8	.5	-	11	-				
-	pH-1	1:5	4																						1				-																				
-	Slaki	rsion	1	4	5/2	\$ 0-	#1			Ø	1/2	5	#			4	P/	10	E	1			9	5/	1	#	-		9	5/1	1	#			ø	1:	2	Ŧ		\$	0/-	00	2	#	#	after	r re	mo	elden

-

Site 11 photographs

Soil profile photograph

Very cell st hock solon (seens end	ty considered	Bubsie trent?	el -	Linco physe Forcell	ically last bloc	ty stru	dare	Padu	SITE	DESCR		ON P	in l	ctream	* IFIN	Photo	20 -7	Lsape séd	lug	108, 114 -	112,11 - 117 0,111	3 slu	king test
Geology	Slope Percent Cla	ass ty De	B	Type g	Height	ment Width	Length	Patter	Landform	Pattern Modal RI	ms P	Lan	i Use	Mgr2	Ru Described By BURJ	aer	Date (ddm	1myy)	FSC	Project	-	Site F10	S Type
ost C Obs steel 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Aggredn	Depth R Horiz	Туре	Tax Unit Cod	e	Туре	Unit Code			Film No	Air Ph	Run No	Fram	te No	Distance	Conf	Depth d	Str Par	Substrate	tr Lith	Gen T IN	Sond Mass Str	laugre from
Zone Easting/La	Location titude	Northing/Lo	angitude 251	ord 8 3 VE	Australia Sub Ord	n Soil Classif	F1 F2 A E	F3 F4 F5	+	PPF		GSG aff Orna 1	Surfac Conditi	Type ou of	Microre	vi	E Abun Abun	Shape	Lith Si	tr Alt unge	Lith	Profile	BRI 0,
Erosion Ref Ni 90 41 2 2 3	with	Vege Spen 1 Mesgi brad	ite	Name	Codito. Verstany	ah /	n W 1 Strata	10 He 1000 V I	-12M Ight Cov	FII PR	C C O P	ecies 1 DOL ALL	Vegeta Pr A I D	$\frac{1}{2}$	Specier Specier SG	s 12 12	Prop /U Dat	X A C	Species 3	RNE	Prop	-B.	23 /-:
Horizon	Dept Upper	$p = \frac{1}{p} $	Dect Shape	Field Texture	nue Qual Perm	uning Hood	Colou lue YR	r v c tsiow 42 M	Type Abun	Col	Abun Size	Coarse Fragi	nents ith S	E Grade	Structure	Segr unqe Way	egations	Strg SMS D	Kind D	Abund Distinct Type	Pans Count Count St	Roots azis 11	Samples (m) 2-0-03
B21	\$\$	\$ 2 \$ \$ 5 \$	G	MC	2	410	YR	41 M	Ø		Ø			55	SAB	20		D	4		-	11	0.1-0.
823	\$50	130	G	Met	2	4 10	YR	324	ø		Ø			MSS	AB AB	Ø		D	4		-	12	9-5-0- 6-8-0- 1-1-1-
; B24 ; #	130	19p	G	LMC (15) 2 16 3-	41¢ 5m.	Y <i>R</i>	31 M	P		Ø			m/54 m/52	AB	9		D	*			11	1.4-1.5
Field Tests	Ø2		q.	10	9	1.25		9	3.5	5		\$.8	5		1.1	5		1.4	15		1.7	5	
pH-RP 1 - pH-1:5 4 - EC-1:5 1 - Slaking 1 - Dispersion 1 - Efferv fin. earth - -	p/1#		7	-5 /20-14 N	+	7.5 0/20 N	-1#		\$.9 \$/4	2-14	ŧ	\$/2	2 0-1 N	#	». p/	2 20-1 N	#	P/	20-1 N	,#	1 1	# aft	in would my

Lower devotion than TEP by 1-2n; shightly chamelled; chamels much admit; located adjant to FR STC bat acting as a BKP were because of proximity to large swell of Prior stream to west.

Page 21	1	Jacobia	FID	1
Continuation	9	ally obe	1 In	

Photos - coring 412-420 - profile belows 1. Son. 421-427 Deplace @ F12 continued.

SITE DESCRIPTION

Geology Geology Bercent A A A Percent A A A Slo Percent A A A Slo Percent A A A Slo Percent A A A Slo Percent A A A Slo Percent A	pe Class b 2 Class b	m Element Width Length Map Unit	Landform Patt Pattern & Mod	Iai RMS	Described By Date (ddn BUR5 1912	nmyy) Project	Site F12
Ost C Tanga di Altano Antonia M Samp di Altano Alta	5 Depth Tax Unit	Map Unit	1				
	a code code	Type Code	Film	Air Photos No Run No Fram	e No 6 Distance 7 Depth 8	Substrate	Mass (7)
Location	Northing / Longitude	ustralian Soil Classification b GG/ SG/ F1 F2 F3 d Or2 SO2 F1 F2 F3	3 F4 F5 PP	F GSG surface aff GSG	e Microrelief e deut Lucon b Lucon b	Surface Coarse Fragments Outcrop	Profile Diag
551962093	76992583VEA	EGSCOAEC	10-12m	Vegeta	tion Community Details		221
Ber DP OP Q Ref No 2 1 2 2 2 3 3 3 3 3	ion woodland of coolibat	And T Strate	8 Height Cover 2 √ 1 2 k 5 S	Species 1 Pr EUC COOLA PRO PALLI O	DP OCC Species 2 Prop LYS GILVU CC ISRE Sp. OCC	VACEARNE	1302 1333
Horizon Upper	Depth (m) Bound Field Texture	Book Colour	C Mottles	S Coarse Fragments	Type E Segregations	Strgth Cutans Pans Strgth up of the structure of the stru	s Roots San
120/ 199	\$ 24\$ CA FSCL	341\$ YR 3	33M Ø	P	V Ø	D3E -	\$ 2.
2322 24	\$27¢C LS H-K	44 COP YR 4	3M Ø	12 R 92 V	SV 9	D1/2C/E +	92.
3303 27	\$ 33\$ \$ \$ n-k	4410 YR 6	54MØ	Ø	VP	DØG +	\$ 3.
4404 334	\$35\$ 5 m4	43 10 YR 1	14 M Q	42 UQZV RGVV	s V p	DØG -	\$ 3.
5		# Pale river	sand	W. 1	rivergravels.		
6 7		→ not pedo	genic bleach	ng-			

NOTES: " pH, EC, of sengled long 0-1 to 1.5m; and every 0.3m to 3.5m.

Site 12 photographs Soil profile photograph

NOTES: Severe wid sheet energin + realitant scalding access site - 25% with what AI horrowing, eachere of opportubal has through active Deterband sheet arosim post addion low; 75 secondy scalad. " Effectively some unit + soil for bege as BKP scalding behind the TEP; suggest site 13 + site 4 are alder matrial & longely relief & " Definitelin not molled - seens unusual IC seesite A)

Site 13 photographs

Soil profile photograph

			Slop	Slope	E 0-	0.5	1. 5	Landform	ed A Element	2P -	- 5/0	Pla	Landform	Pattern	tion)	han	MICA.	eau	sed	5		9		٦г			ר ר	-	Т
Ø	Geology	y Line	Perce	ent Cla	ass <u>ty</u> 2	F	Type B	Height	Widt	Le	ngth	Patter	Class u	Modal	RMS	1	.01	Mgr1 Mgr2	B	UR 5		Date (ddn	nmyy) 2 7 1	8	FSC	ect ISP	2	FIL	4
O TSO	M Type	Obs Reas	Perm Drainage	M Samp Aggredn	Depth R Horiz	Тур	Tax Unit	Code	Туре	Map U	Code			Film No	Air Pl	Run I	Να	Frame No	Oot	Distance	Cant	Depth 0	Str 0	Sup:	strate Str	Not a	Gen T	Mass Str	MDS
W Datum	zone 55	Eastin 196	Loc g/Latitude	ation	Northing / L	ongitude 26	on 33V	Aust Sub Ord	GG/ 0/2	SG/2 SO2	A E	F3 F4 F5		PPF		GSG aff	Disturb 20	urface ndition HF	N Type Agent	Microrel Gub Gub	vi i	Abun	Surface Shap	e Lith	ragments Str	Alt Under	Lith	Profil The	le Diagr
O N Type	Erosion state Car Car Car Car Car Car Car Car Car Car		Ref No	Low + s, Mes	veg stunt hulby	etation (Eren	Name Name Boree Naphila, B	scruber	ien 4	G-B?	Form	M CON CI	sight Cov	ver A	CARE	ecies 1 TEP SP?	Ver PHR	Prop	Ly. PRI	Species Species SGI PA	LV	Prop U I .		S	pecies 3		Ргор	X DE	
umber		Horizon		Dept	th (m)	Bound	Field Te	exture	Perm Drain	Book	Colour	v c v	ype W	ottles	lo nud	Coarse I Shape	Fragments	s Str	Str ga	ucture Type	Segre unq	gations	racks	Strgth	Cutans pung	stinct s	Pans	Roots	Sam (m
1	AI	11,	9	594	pp4	C	FSLI	40	24	10	R	33 M	P	0 0	Ø				W4	PL I SRO	B	UL 0) 6		D 3/4	XI	-	-	11	0-0
2	BZ	1 K	1	504	ФЗф	9/4	LMC		24	14	IR	32M	P		Ø				53	AB	1K	51		05		-	-	11	0.1
3	B2	2 Ky	Ø	3.0	pgø	Þ	MC	+	24	100	R	32M	Ø		9				54	AB.L	IK	51	-	15		-	-	Ø	0.5
4	BQ	3 x	4	690	160		MHC	Links	24	10	YR	42M	B		Ø			10	55	LEI	24	×2		75		-	-	ø	1.1
5		LŦ?		İ.			T.L.I				1					T		- []	0~	100									1 4
6	1	111		IT,					E	11																			
7	- la			T					T	1 1																			
1	ield Tes	sts Weth	\$.9	02		0.			0.	25			0.5	5		6.	85			1-1	5		1	. 45					
F	Distance of the second		1	5			0.0		4	12			9-	2		4	1.2			-9:	2		+	9:5					

Hard setting, dark/brown crecking day on "relict" illicion; characterized by gidge scrub & scilding; smiller to BKP scilled Isage.
Ussume "relict" older Iscape that has been infilled ensured by boord recent againtion (microw allower) of the Hinders River.
Very fine sond fruction & non microwar - of both yourger of a & FR

Site 14 photographs

Soil profile photograph

Ģ	Geo	ology		A Eval	Per	Slo sent	Class	s ImR	Ind	SIL	KP EP	Loc	Height	m Elen	width		Length	ant	F	Patter	Landfo	orm Pa	odal	RMS LP		L	Land Us	e HpM		escribe	d By	4	Date (d	Idmmyy	v) 18	F	Pr	oject	27		Site	C Obs
TS0	Z M Type	L Meas	Obs Reas	Runoff	Co Perm	M Samp	Aggredn	Depth R Horiz	a Q	Туре	Tax	Unit	ide		Туре	Ma	ıp Unit	Code				Film	n No	Air	r Photo	Run N	lo	Frame N	° O	Dista	ince	Conf	Depth	Gr S	Por	Substr	str	United to the second se	mile G	alou	Mass Str	MDS MDS
W Datum	zo	one 5	E 19	asting/	Le Latitud	cation	7	Northing	g/Long	itude 86	C) cont	Ord	Au Sut Orc	stralia EU	n Soil 3G/ 0r2	Class SG/ SO2	F1	n F2 F	F3 F4	X	la Uni	eer. Picent	SUB PF WALM	nd .	G	SG	H Disturb	Surface ondition	N Type Agent	Cmpt Prop	v		E Abun	Surfa	ace Coa	uth	gments Str	Alt	Outer ungy	op .ith	Profi	le Diagra
	Eros	sion	Í	1	.			v	/egeta	tion C	ommunif	ty		A	H				0	V			r				V	getatio	n Comm	unity De	tails		/					-/	1.		-	TE
NTYPE	State	Deg	00 N 1 2 3	Ref	No	Opin L	Leb P	woo hah lesi	Ala 4 y	but	Mame	6/10	eth,	unda	5	ing	T M - Stra	T S T Fom	77V	Hei	ight 1	Cover	C e	R	PL	E FL	NALI	Prop	EU	Sp CCC	2 0 1	01	A	тор	LY.	S G	IL	~(J	op	*******	
Number		н	orizo	n		Upper	epth	(m) Lower	E	Bound adeus	Fie	eld Textur	e l	Qual	Drain	Bo	ok C	olour	v c	Moist	Type	Mottle Size	Contr Contr	Abun	Size	shape	Lith	t s Str	Grade Size	tructure Type	Cmpd	Segre Nat Nat	gations ELON	Str	Stress	Cons up	Cuta punge	Distinct Distinct	Type Cmnt Ba	Cont Str	Roots unqy	Sampl (m)
1	A	1			1	\$pp	\$	øø	80	19	QL	FS	5 1	3	4	14	4	ę .	33	M	0	Z		P					WIA	55	1	Ø	1		03	4 R			T		11	0.0.
2	B	21			4	1 cp	8	\$3	ø	*	LM	C	F	13	34	19	y.	R	32	M	2	5		ø		1		1	MA	AP	3 10	0			D	45			Ŧ		21	0-
2	B	23	2		9	33	3	\$81	ø 1	2	SC	L	M-	K3	4	14	y	R	33	M	Ø	5		Ø				1 A	15	AB	32	Ø			De	45			-		21	+ 20
4	2	D 1			1	\$ 8	8	16	в		LS		M-	K 4	4	19	s y	2 4	+3	M	19	8		ø		Ĩ.	1		V			ø			Do	13E	-				12	
5		Let		11																-																						
5					1								-	-																												En
6 7																	1																									V
Fi	eld	Tests	- Meth		~		1	-				H				2		1	1			-		-		d	icr								1 1	-			T			
	pH- EC-	-1:5	4		P	5				7	19.5			9	7	25				-9	7	.8				9	8.2			1.	15	8			8	ø						
-	Slai	iking ersion	1		Ne	sle	abo.	ring e	en	dig	beau		no	ta	my	led	1-10	n le	ab	-					-			-		-	4											

Site 15 photographs

Soil profile photograph

			\cap				\frown	Photos	- Lscape/Ve	29 162 -1	64
	244			SIT	E DESCRIPT	TION			- seel	158-161	1
	Sidealoger = 28	0% Compare w	th more relict s	W.L.@ STTE	Dettern	Landling	-		- crooming	165 -16	6
Geology	Biope Class	Water fille	Ce eacher and - Co Height Width Le	home Pattern	Modal RMS	LUT	Described E	By Date (ddmn	nyy) Projec	t Sit	e s ed
Qa	A 10-2 F	OXB		ALP	LP	Wa	BUR	14/2	18 FSC/S	5M F.	16 0 0
	8 8 5 Denti	Tax Unit	Map U	nit	Air	Photos			Substrate N	of described	
OSL W Cos	Aggred Aggred	z Type C	ode Type	Code	Film No	Run No Frame	e No	Depth on	the str	Lith Gen T S Str	403 403 a
CM4 1	022 991	2		1-1-2-4			C			ID	222
1 1	Location		Australian Soil Classifica	tion	DDF	GSG Surface	e	relief Su	rface Coarse Fragments	Outcrop Pr	ofile Diagram
Zone Eas	sting / Latitude Northing	/Longitude S On	Sub GG/ SG/ 1 Ord Or2 SO2	F1 F2 F3 F4 F5	PPF	aff aff Condition	Type Agent Agent Prop	Abun HI IA	Shape Lith Str Al	t unge	11/11
15519	4901769	85193V	EAEET	AEOOX +		+ 1GM	Z	Ø		Ø	0.
Erosion	V I	egetation Community		8-10m	- ii	Vegeta	tion Community Detai	Is	1		1
Type State Deg GD No	Ref No	Name	, , ,	Height	Cover	Species 1 Pro	op Speci	es 2 Prop	Species 3	Prop	1.1.4 1.
	Open forb	land wath 13	deted	TOI	EUC	COOLA 2	1 ail a	16.0		111111	Za -5 /.
3	- COLLBAN	/			HIN	MERSP:	(leadespi	Carl TOTIO LAGE	r - all some.	speaces)	62 X _
	Depth (m)	Bound Field Te	exture E E Book	Colour	Mottles	Coarse Fragments	Structure	Segregations	Strgth Cutans	Pans Roo	sts Samples
Horizon	Upper Lower	to at Field Texts	ne Dra Hue	A A A A A A A A A A A A A A A A A A A	Size Size Contr Col	Shape Lith St	y Burge Type	Cmpd Abun Nat Form Size	Cracks SWS SWS Cons Cons Fabric Kind Abund Dasnet	Type Cant Str Str	(m)
AI	\$ \$ \$ \$ \$ \$ \$ \$ \$	2A MHC	2210	YR 32M 9	BB		52 GR	Ø.	02	+ 1	10-0.0:
0.1				2 21 21			6 40				0-02-0
2 021	99294	QG HC	2 25	1 31 M B	9 9		M5 AB	P	PS KID	+ 1	(0.1-0.
B22K	0110 12	DHC	2 2.5	1314 0	2 03		SGIE	IKSI	TUKID	- 1	10.5-0.
3	744 100	116					SJLE		Thay		0.8-0
B234	12015	& HC	24/0	VR 3244:	2 BB Ø		4/S 4LE	12YXI	TYKID	- 0	1-1-1.
1			the first	3	00	IQYR WH	S4AB				1-4-1.
5			bin		76	10 -11					
			LSCA	ut hostion	127	19 3/9					
6											1
7											
Field Tests	Ø. \$2	Ø. 10	9.25	0.5	5	9.85	1.1	5	1.45		J. C. P.
pH-RP 1	8.2	7.9	7.9	8	8	9.0	9	ø	9.0		
pH-1:5 4											
Slaking 1				T	2	2		3			
Dispersion 1	0/0#	0/0#	Ø11#	2/	3#	1/3#	1/	3#	0/2#	# alter n	emould
Efferv fin. earth	N	N	N		5	5/M	7	M	NN	a syna ne	gund

NOTES:

Very strong by cracked with large hex agonal blocks
Self multhing with a tim 20.02 (to mod thick 0.03m) coarse SM (S2GR).
Variable but mosthe moderators to struble Sn

Site 16 photographs

Soil profile photograph

Thotas - Lscape pray 167 - 171
- Soil produle 172 - 175
- Soil Surface 176 - 178

SITE DESCRIPTION

-	_	-	1	lopi	Sion	ne	0-1	4		_	Landfe	orm F	lement		-	-	Г	-	Land	form	Pattern	-	Г	1	and Us	0	ТГ			ιг	-	_	-	-	Г				٦Г		T	7
G	Geology	_	Eval	Perc	ent	Class	TW	Brid		Type	Heig	ht	Widt	th	Leng	th		Patte	m	Class	Modal	RMS		u	л	Mgt1 Mgt2		Descri	bed By		Da	te (dd	mmyy	1		P	roject	-		Site	-	Obs
<u>w</u>	2		A	Ø	S	-	12		T	EP							1	41	P	1		LP						30	RJ		14	/.	211	X	1/	-SC	151	4		FI	7	_
TSO	M Type L Meas	Obs Reas	Runoff	Perm	M Samp	Aggrean	Depth R Horiz		Туре	Tax Un	Code		Тур	e	lap Un	t Code				F	Film No	Air	Photo	Run Ne	0	Frame N	0 10	2 0	Xistance	Cont	Dept	h	Gr S Str	Por	Subst DUC H ds	Str	Ulio2	h i	ind 7 Sen T	Mass Str	D'Son	MC1 W
e	M4	1	2	34	4	10	199	2			1.1.		-	-		1				1		-		_			10	2		1	2.0	Ø				-	10	CL		_		-
-1		1		Ló	cation	1	. ,			1.1	1	Austra	lian So	il Clas	sificati	on		1	la	our	PPF	al	G	SG	e s	Surface	1		Microrel	ief		1	Surfa	ce Co	arse Fr	agment	s	Outc	rop	Pro	ile Diag	gra
Datun	Zone		Easting / L	Latitude	10		Northing /	Longi	tude	Cont	Ord C	Drd	012	so	2 F1	F2	F3 1	F4 F5	un d	2	SYNDA	rea		aff	Distu	ondition	Type	Cmpt	Prop	VI	HI	Abun	Size	ihape	Lith	Str	Alt	Abun	Lith	-7	1	Ĩ.
M	55	110	15	98	91-	16	98	<u></u>	151	63	HA	13	BD	6	DA	E.	20	XIC	1 +		1.1	_	-		1		2					Ø	1	_	_			ø	4	1	110	
e	e		Ref				Ve	getat	tion Co	Name)E?				ata	E	0		Night	Cove	. 1		Specie	. 1	Ve	Prop	n Comn	nunity	Species	2		Pro			Sne	ncian 3		1	Prop	11		2
Z Typ	Sta De	8	1		Var	int		1.4.100	- 11	- 1 0	the	des	and	1	T T	TEOL	モー	3 /	11	COTC	100	00	PI	F	AIA	Tiop	0	00	DA	11	A			20 AR	EX	TI	P I	4		. 5 .		1
-			2		atta	al	gum	1DO	OC	c kee	Liona	A.	inth	22	м	S	55	5	4		A	CA	51	72	ic		E	RE	S	p.	2	5		112		21 (1	7.	1	14		1
_			3		03	shi	Maker	une	lersu	bry dt	Sal	leg le	raff	re	L			_	1.		1.1							- (Mith	chell	u.).	_	_						* 6	1.1.1	
ber		Horizo	on		De	epth (m) (в	lound	Field	Texture	1	erm		Book	Colou	Ir	1=	1	Mot	ttles		Co	oarse Fr	ragment	ts		Struct	ure	Seg	regatio	ons	ks	Str	gth _	Cut	tans p p	P	ans	Root	Sam	nple
Nun	0			-	Upper	-	Lower	Osci	Shap	Field To	exture	Qual	A /		Hue		V	C Now	Type	Abur	Con	Abu	Size	Shape	Lith	Str	Gra	T)	ipe ES	Abu	Form	Size	Str Crae	SWS (Con Fabr	Kind	Abu	Type	Con	Siz	(1	(m)
1	41			C	pp	59	\$\$7	7 0	2	SL	M	-	44	. /	PY	R	3-	LM	Ø			P		-	11 Al-		V	4 P	2	Ø				D	JE				i	11	0.	
2	B2	1		(to -	70	\$30	80	2	510	· M	+	34	1	61	R	33	3M	Ø			Ø					5	4 A	BI	Ø					1	8		-		11	0.	1.
-				1	1	11	1			51-	×		21						1						1	M	15	35	B2												0.	2
3	B2	21	<	9	13.9	6 9	280	G	7	501	- M	+	34	1	\$ 1	IR	4.	3 M	0	-	-	P	-	-	-	W	ma	4A	B	21	KS	1			R			-		110	0.	- 5
4	20	1		0	580	51	130	50	2	SL	M-1	<	44	1	ds	R	42	3	Ø			ø			1.		V			11	ks	1			E			-		11	0.	.8
-	20	2		4	20	2	16-			2	h-k			1	d L	2	4 3	2	6			6		-						a					0	-	_			-	1-	1.
5	ay D	d	-		514	2	00			2	TI-TA		74		94		1		P			P					V			1												4
6									1.00				-		1.											1																
-				-			11				1				1					-																-			+++			
1											1		-		-			1											10							100						
Fie	eld Test	ts	Ø	, 0	5	-		(0'	19	-	-	ø.	2	5			9	5.	55	5	-	_	ø.	85	-		1	- 1	5	_	-		1 -	45							_
	pH-RP	-	1	6.	8			H	1	-9		1	7	1-3	2			H	Ø	19	-			-9	19	-			9.	P				9	.9	-			++			
	EC-1:5		1					1	1									1					=-1			11-			- F	T									tt			
	Slaking		1	4	Φ.					11,				1		1 -				1		et			2		+			2		6		1	2	4		,	-			
D	ispersion	n	1	$\phi/$	27	F			p	3#		1	p/	<0	-1 =	1		-	\$	140	1-1	m		\$	20-	1 "		6	2/2	0-1	1 4	4	1	0/	1,'	4	#	af	ter	rem	ould	in
Effe	erv fin. ea	urth	/	1	N		11		11	N		1		1			1	1	14	M				1	H	1.2			1	4	1		-	{	1-1	1			-	14.		0
NOT	TES:		5	ane	ao	5	sites	5	1.	2,3	410	5	m	ica	erou	ø	50	md	Q	in	tent	n	ian	the	at				Blop	1			1	1	een	a p	nica	FI	7 2	phi		
					-				1															-														- section and	_			

Site 17 photographs

Soil profile photograph

Landscape photograph

9	Geology	Péval	Perce	Slope ant Ci	ass TM		Type og	Height	Element	Sued	.ength	Pat A L	Landi tern P	form Pat	dal RI	ms P	L	Land Use	Mgt1 Mgt2	D	escribed By		Date	(ddmn	nyy) 18	F	Proje	ect 15 A	1	Site	obs
() TSO	M M Type	Obs Reas 1	L Perm	M Samp Aggredn	Depth R Horiz	Ту	Tax Unit	iode	Туре	Мар	Unit Code	4		Film	No	Air Ph	Run N	40	Frame No	Dor	Distance	Conf	Depth	Gr S	Str Por	Substra	str	Noto Lith ND	Gen T	Mass Str	MDS MC1
V Datum	zone 55	Easting	Loc Latitude	ation	Northing/	.ongitude	on 3 D1		GG/ Or2	SG/ SO2	F1 F2	F3 F4 F	5	PP	PF	-	GSG aff	Disturb Disturb	urface Indition	V Type Agent	Microre Guide	VI	н	Size S	Irface Coa Shape	rse Frag Lith	gments Str	Alt Unqy	Lith	Profi	B2
Type	Erosion Deg	Re Re	I No	0	Veg	getation	Community	+ 17			Strata Form	10-10-	12m Height	Cover		Sp	ecies 1	Ve	getation Prop	Commu	nity Details Species	2		Prop	PRO	10	押之1]	E	Prop	141	B32
X		3		bau	honra, h thu	Lerka uk ur	dar Slorey	= Bor of M	ee s lesqui	crab G	M S	6 M			PR	OP	AL	LE.		147	A HA	M	14		ACI	97	EPH	tR		111	BJ3 B54
- Number	AI	Horizon	¢		Lower	Bound Shape	Field Te Field Textu	re Inno	bern Drain	Book Hi	Colou VR	v 00 2 2	Type	Mottle Size	Contr s	Abun	Coarse F	Lith	s Str W/	D Size IS	Type SB	Segr undy undy	E E	Size s	Cracks	Fabric Fabric	Cutans pundy	Distinct	Pans Louit Here	Roots azis 1	Samp (m
2	BQ	1	¢	\$4	Ø35	G	FSLO	+	34	10	YR	31+	1	ø		ø				M1543	ABI	ø			Du	4		-	-	21	0.0
3	B2:	2K	9	35	\$9\$	D	LMC		24	1:0	YR.	324	1	ø		Ø				54	AB AB 2	11	(5)	2	D.4	4/5	11	-		21	0.
4	82	3 k	Ø	90	130	D	LMC		24	19	YR	331	12	20	B	\$			M	53	PR	24	SSN.	,	D4	1/5		i		11	1.1
5 6	<i>D</i> 2	4 K	/	39	169		FSLC		34	19	98	432	1 2	1 1-	0	4				53	PR AB2 PD	alk	C Sá	2	D4	/5				Ø	1 - 4
7					11																										
F	pH-RP pH-1:5 EC-1:5	5 Weth	6.0	5		0	10		0.0	25		1	0.5	\$			0.09	85 7. ø			1.1.	4			1. 4 9.	50					-
	Slaking Dispersion	1	\$	1#		ø	120-1#	¢	\$	20-	, #		\$	20-	1#		\$	20-	1#		9/0	2 0-1	#		ø/-	201	-1 #	P	# ay	Her 1	rema

Site 18 photographs

Soil profile photograph

				Slop	e ro	nge	- <	0.3	S/ E	teo	ates	17	EF	2-1	lace	130	dle	auc	r a	s	ITE P	DE	SCR	EP	9Ner	slig	ht	only)						-	SU	ya	el		190		7.1	
G	Geol	logy	Cital	P	slop rcent	Class	T TW		TYP	P	د م	andfo Heigh	rm E	Wid	th	Lei	igth		Pati A L	Lan tern	dform Class Class	Modi	ern al R	MS		Lan	d Use	Mgt1 Mgt2		Describe	ed By		Da	te (ddm	imyy)	8	F	Pro	ject 1.57	eg.		Site	0 obs
O TSO	M Type	L Meas	ieas atom	R Perm	M Samp	Aggredn	Depth R Horiz		Туре	Tax	Unit Co	de		Тур	e	lap U	nit Code	0				Film N	No	Air P	hotos R	un No	,	Frame No	° ()	Dist	tance	Cont	Dept 1-3	n 100	Str	Por Sp F	ubstra	te alla	icae UC	Ser	17 test	Mass Str	MDS -/
M Datum	z.	5 J	Eastin 9 L	3 1/Latitu	acation	76	Northing /	Longitu	se 44	W cont	Ord DE	A so	ustra Id	GG/ Or2	so so	sifica 2 F D /	tion 1 F2 + E	F3	F4 F	5.	is vi	PPF	strai	121 ned	aff	L Disturb	su Con	inface indition	N Type	Min Cumpt	dold	af A	н	Abun Size	Sha	o Coars	e Fraç	str	At U		h	Profi	BQ1
	Eros	sion	ľ		-/	l.	Ve	getatio	n Com	nunity	/						1	. 5	h	17.		T					Veg	getation	n Comn	unity D	etails					-	_			7			1322
NType	State	Ge Deg	2 F	ef No	Are Val	y q	stick pen u + or	rali	red f Uand	ame for	Me	squark	int	i,9	has	+ 1	Eom Form	D#74	V Cov C	Height	Cov	ier ,	LYA	SPL	GI GI A	L.V 51	J A	Prop	CO E	REIM	DA St	LL ??	- A ?)	Prop	E	euc Ys	Speci G	es 3 00 12	LA V J	Pro	.p	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	823 20
					D	epth	(m)	Bo	und	Fie	ld Tex	ture		ES		Book	Colo	ur		Т	Mo	ottles	0		Coars	e Frag	ments			Structur	e	Segr	egatic	ns		Strgth		Cutar	15	Par	ns	Roots	Sampl
Numbe		Ho	rizon		Upper		Lower	Dsct	Shape	Field	d Texture		Qual	Dra		Hue		v	C Moiet	Type	Abun	Size	Col	Abun	Sha	pe 1	Lith	Str	Grade	Туре	Cmpd	Abun	Form	Size	Cracks	SWS	Fabric	Kind	Detinct Type	Cmnt	Cont	Size Abun	(m)
1	A	1	1.		\$PP	0	ØØ7	9	AC	1L	FS			34	1	Þ	YR	2	14	1	ø	-		ø	-	-	-		WE	3.SI	3 1	4	5	-		D2/3	R		-	+1		11	0.0
2	B	21			Øø.	7	Ø 3¢	G	5	L	c (F-A	1)	34	13	1	1R	3	1 1	1	Ø			Ø					SUS	AI	212	9	5			D4/5	S			F		12	0.1
3	B	22			\$ 34	3	\$65	G	1	SL.	MC	- (M	2	24	1	P	R	3	21	7	ø			Ø				-	21L	AL	3 /	P	5			04/5	5			+		12	0:5
4	B	23	K		\$6	5	130	G	C	L	5	(m)		34	1	6	YR	3	31	1	ø			ø					MA	44	30	14	(5	1		D4	5		-	-		17	0.1
5	2	DK			13,	8	169	3	1	5	(M-1	R)	44	1	74	X	4	3 F	1	Ø			Ø					V			1	8		2	>2/3	E		-	F		11	1-4
6			-									2		1		1																											
7																																											
F	ield	Tests	Meth	ø.	82	1	305	0	0-1	ø				ø	2	5			6	p.	55	5			Ø	. 8	5		13	1.	1:	5			1	. 4	5						
	pH- pH-	-RP -1:5	1	7	.8				7.	2				-	7.	2					7.5	2				8 .	5				8 .	5				8-3	5						
	Slak	king	1		1				in .	1					1	1				1	1	1				nt.	2					2					2						

· Typical TEP locape + Vey - but with more bachinea + 5/1gitty lower lying Locape position - represents proverly defined former Typical TEP locape + Vey - but with more bachinea + 5/1gitty lower lying Locape position - represents provely defined former Swale areo before scrolle ste.

Site 19 photographs

Soil profile photograph

	Geology	IT Per	Slope rcent Cl	lass Ind		BkP Sc	Landfor Height	m Elemen	t t	Length		Lar Pattern	ndform	Pattern Modal	rms	ly p	Land Use	Mgt Star	De	scribed By		Date (dd	lmmyy)	Sch	<u>eding</u> y Pr	V Cru roject	et.	Site	Ohs
9	a	AØ	12	F	3	CD	,it		Ma	un Unit	1	LC		14	P	l	-		B	URJ	1	5/2	21	8	FSC	: 15,	M	Fo	20.
O TSO	ed Steen Reas W J M 4	Runoff	M Samp Aggredn	Depth R Horiz	Тур	•	Code	Ту	pe	Co	de		T	Film No		Run M	io I	Frame No	O or	Distance	Conf	Depth	Gr S Str	Por Sp F	strate Str	Lith	f disc Gen T	Mass Str	MDS
V Datum	Zone Ei 5519	Le esting / Latitude	e	Northing/L	ongitude	Cont	Ord Sut Ord Ord	stralian S GG/ Or2	SGI SO2	F1 F	2 F3 F4	F5	-	PPF		GSG aff	H Disturb oo s		L Type L	S Microre Brob	vi	H Stald	Surface Sha	Coarse I	fragments	Alt	Outcrop Lith	Prot	ile Diagr
	Erosion			Veg	etation C	Community			1		1.1.	6-8	3m				Ve	getation	Commun	ity Details	1 515	theolog	a di			1 /2	-		t i
Type	State Deg GD	Ref No	Vaar	an lan 15	nall	Name	Me	cauit	5	L Strata	HC	Height	Cov	PR	Si Po A	PAI	17	Prop	00	Species	2 301	A	P D	ce "	ipecies 3	PLL	Prop	-	
-	2		10cc	coatilo	h & B	oree j	Serp	ly	O'LE	MC	51	1	3	ER	E	Sp ?	2	2	20					CA	LEI	-		12	125
			Dept	th (m)	Bound	Field	Texture	E	Bo	ok Col	our	T	Mo	ttles	Te	Coarse F	ragments	5	Str	ucture	Segre	gations	11	Strgth	Cuta	ans	Pans	Root	s Samp
Numbe	Horizor		Upper	Lower	Disct Shape	Field To	exture	Peri		Hue	v c	Moist Type	Abun	Size Contr Col	Abun	Shape	Lith	Str	Grade Size	Type S	Abun	Form	Str Gracks	SWS Cons	Fabric Kind Abund	Distinct	Cmnt Cont	Str Size	(m
1	ALL.	4	pag	001	A	FSC	C	1/2 3	3 19	b YA	53	M	PA		PX	-	-		53	AB	Ø		-	D4			+	Ø	0-0
2	BZIK	4	108	\$4\$	G	1C Imr	Ĭ	23	314	s yr	32	M	Ø		Ø				54	AB /	2K	51		05			-	P	10.1
3	BZZY	KG	\$4.0	190	Ð	MHC		13	3/19	YK	33	n	ø		ø				54	AB I	34	X /	-	DS	1		-	4	50.3
4	B23 y	K /	100	160		MHC		13	7.	SYR	43	MM	12	IFB	ø				WS.	LE	37	×2	T	65			+	e	1-1
E	/																	M	154	AB	JK	51	1						18=4
0	-									24	1.1.0																		
6	and the						1400			1.7																			
7	- to be the	*			-				-	11					10-50					-									
F	ield Tests	\$.9	\$10	8.02	ø.	10		Ø	25			Ø	55	5		ø.	85			1.1	5		1	• 45	-				
	pH-RP 1	8	.8	8.8	2	3.8		4	7.0	+	W.	19	7.5	1		9	5			9	5			9.5	-	44			1-
	EC-1:5 1											-								1									
	Slaking 1 Dispersion 1	3/	3#	1/3	# 1	121	4	1	10	#		th	1/20	2/1#	e	11	12#			21	2#			JI	#	ŧ	- 14.	- Rm	ault
			11	111	1	111		1	1 7.			4	1	1		1	6.4			1	C			71	2	-12	410	·crea	avas

Site 20 photographs

Soil profile photograph

	Geol	ogy			Slope	Class E	g	Bł	SP	Lane 8 He	dform l	Element	th	Length	,	S	La WP attern	ndform	Modal	rn RN	AS		Land U	Jse 5	845	Describe	d By		Date (dd	immyy)		ſ	Pro	oject	Ť		Site	4
Q	a	-		A	8-2	Ĕ	-	PL	A							F	10			L	P	-		X		BUI	75	1	51	21	8	F	SC	15	M	1	-2	/ 0
N TSO	M Type	A L Meas	Obs Reas	N Perm	M Samp	Dept R Hor 99	h iz 9	Туре	Tax	Code	1	Тур	N	ap Unit	Code			1	Film No	D	Air Ph	Ru	No	Frame	No	Dista	ince	Cont	Depth	Gr co Str	Por	Substr	Str	Lith MI	Gen T	Text	Mass Str	MDS
V Datum	Zon	* 5	Eastin 193	ng/Latitu	de	Northin 760	g/Longitu	ide	V cont	ord VEI	Austr Sub Ord	GG/ Or2	SG SO	F1	F2 F	3 F4	F5		PPF	11		GSG aff	Disturb	Surface Condition	n 1/100	Cmpt Cmpt	v d	аf н н 22	unque 0	Surfac	e Coars	se Fra	gments Str	Alt UP	Outcrop Lith	3	Profile	Diagr
	Eros	ion	T	Pat No		7,	egetati	on Con	munity	/		EI	7	5	5 0	3-10	m	ĺ.		_			- HE IS	Vegetati	ion Comr	nunity De	tails		Jeen I	. Í				1 100	1	īΓ	35	
N Typ	Stat	Geo	N 1 2 3	Ret No	Open	n valoe rstore	dløy	Ma	k l squi	adib te	ah	idth	K	T M L	DATES	100	Height	Cov	E	PR	C (A	LA	- Prot	p	Sp	edes 2		Pre	Q		Spec	aes 3		Prop		1	
umber		н	orizon		Dep	oth (m)	Bo T	eund edg	Field	Id Texture	9	Perm	-	ook C	olour		oist	M	ottles	1.	un et	Coarse	Fragme	nts Str	ade	Structure	pdu	Segreg	ations	acks.	Strgth	pric 1	Cutar	ns put	Pans	F	Roots	Sam
2	A	1			\$ \$ 9	5 \$ \$	30	A I	YC	•1.1	0	23	14	s y.	RU	42	410	13	1 D	0	Ø				· M :	2 SB	0	Ø	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	5 0	DE	35	AF K	8 4	- 5 8	100	11	6 -
2	B	21	1		ØØ3	\$5	6 G	1	10		+	23	190	Y	RE	321	44	12	1 F	B	ø		1		5	AB/	KE	Ø			DE	165		-	+		11	0.,
3	B	22	KY		650	10	øD	1	14	C		23	14	14	R 3	33	MA	13	20	B	ø			/	MB	SLE		1K	51		D57	65	KI	0 -	+	1	ø	0.0
4	B.	23	Ky		1 \$\$	15	ø D	ł	5	MC		23	7.	5 y	RI	43	MM	13	20	0	ø			1	7/5	3 2+		ik	SI	1	5/6	5	KI	D-	+		ø	0-
5	B	24	K		150	16	ø	4	5L	MCI	F-M	34	. 7	5	YR	44	4	2	20	D	ø				M.	SLE 3LE		2 Y 3 K	51	-	D4	5			-		ø	1-4
6		1										- 1		-				1		1			-	1														
-				F		11/21																											_					
E	T bla	ests.	1 f	×	40				4	-	D	Ø.	2	-	_		0	5	-		-		er.									6	-	4				
	pH-F	RP	1	6	.8		0	6	5	1.		4	7.0	2	1	11	4.	8.9	5			9	6.2		-	1 2	5.0	2		-	8	5	1					-
	EC-1	1:5	1		-					144) - 14									-							tt									+	++		
c	Slaki	ing sion	1	φ/	P. #	6		ø/.	2#	Ł		1	12	#			2	11	#			2	11	#		2	1-	2#			7.	224	#	#	afte	inne	non	ede

Site 21 photographs

Soil profile photograph

	Geo	ology	71	<u>peri</u>	O	Slope	-/	1. 0	7	- 50	may	1100	Landf	orm E	Elemer	nt	1		7	Г	L	andfo	orm Pat	tern (2P	?	La	nd Use	1	1 [Descr	ibed By		Da	e (ddn		7		Pro	piect	_	١Г	Site		Γ
Ø	a	l		AEval	Perce	-5	Class	LW R		pe	s T	Loc	Heig	ht	W	Adth		Length		A	Pattern	Class	Mo	tal R	P	1	LU1		Mgt1 Mgt2		BU	RJ		15	12		8	F	SCI	151	М		Fo	22	Obs
() TSO	M Type	A L Meas	Obs Reas	& Runoff	CI Drainage	M Samp Aggredn	9	Depth R Horiz	,	Туре	Тах	: Unit c	ode		T	ype	Map	Unit	Code				Film	No	Air I	Photos	un No		Frame N	o V		Distance	Conf	Dept	100	str.	Por Sp F S	ubstra	te Oo	Kense	s Ge	INT IXAL	Mass Str	and sow	MC1 D
S Datum	z	one	Ea	ting/La	Loc titude	ation	1	Northing/	Longitu	ie 00	Ncont	K/	2	Austr Sub Drd	GG/ Or2	Soil C	so/ so2	F1	n F2 F	F3 F4	F5	1010	er su PF unler	bseil. Stram	is ned.	GSG aff	1 Disturb	Su Cor	ndition	Type	Cmpt	doud	vi	н	Abun	Surface Sha	Coars	e Frag	ments Str	Alt	Outcre	op ith	Pro	file Dia Arr Arr	agra
	Ero	sion	17	~	11		11	Ve	getatic	n Con	muni	ty		0	ĂH	1		17	1	-	V	?	-	-	_	_		Veg	getation	n Comn	nunity	Details		-	1ya	_	_	_	- 1	2	-	4	5	Be	2
NType	State	Deg	8 2 1 2 3	Ref N		Very	of and	en u gion	1900	ller o.s	Name de rive	tra	indg	odi um	000 v (x	nd u	inde	T Strata	The com	D MODY	Heig	ht (Cover	Co	R	PL	En	JA	Prop	C	OR	Species D	2 - 2.L	. A	Ptop	E	UC	Specie C,	en 3 411	AL	Pr	op	3 7 2	2p	1. 2.
Number	A	н }]	orizon		ø	Dep Upper	pth (n	n) Lower	Bot	Shape Shape	FI	eld Te	xture re M-k	Qual	Co Perm	Drain	Book H	tue Y	R	33	K Moist	Type	Mottle	Contr Col	Abun	Coars Sha	pe Frag	gments Lith	Str	Grade	Struct		Se unde	gregatio	ens ezis	Cracks	Strgth sms D3	Fabric	Cutar pungy	Definici	Pa tumo	Cont Str	Root	s Sa	(m)
-	A	11.2			d	66	0	520	50	4	51		nk	+	11	5	1 d	V	0	32	2	T	7		0					Nuc	13	BI	0				D 2	11			-		1	10	0/
2	B	32			1	120	d	150	501	A	CL	5	п-1	K	3.	5	10	Y	RI	1333	PM	0	t		0				W	ML	A A	B	0				D3	4			-		11	0	
4	2	D		1	¢	50	1	φ6	D		KS		T		4	5	10	Y	X	43	M	19	8		9			1	(V			ø				D¢	5			-		111	0	.9
5	2	Ð		1	1	ØØ	1	56			ks				4	5	100	Y	R.	53	DM	17	6		6					V			Ø				Dø				-		9	81.	0
6		Ü		4	-						Ī		1				10	1	K	12	-	white	ite	rive	gr.	sand	1		-		nt	1							-						
7											-											0	- 10	r aci	orea	aea	199	er	- P	anc -	1	7								E					
F	ield pH pH	I Tests I-RP I-1:5	the Meth	¢.	6.	25			(6	105				9	. 7.	\$				ø	. 5	55			ø	87	52			-	7.	55			1	47	55							
	EC Sla Disp	s-1:5 aking version	1	0	12	1#			ø	1-	2	#			ø/.	20	1-1	#			ø	11	17	#		9	1	277	#		9	5/	2-1			1	2	2		#	a	Her	ren	noa	1d

· Indules are deminated by micaeous send of mica flates Thomport - obvious in dicator of IFlaiders Aver alloun.

Site 22 photographs

Soil profile photograph

0	Geology	,	- Eval	Stop Percent	e Class	Tind S	PPIS	type 3	Land	iform E	Width	= 1	elit	3cha	Pattern 9 L	antiform Class P	Pattern LIMA Modal	RMS LP	ins .	Land U	Ise LIGW		escribed E	y	Date (do	dmmyy) 2 1	5	Pro FSC	iject	M	Site	3
() TSO	M Type	Obs Reas	Z Runoff	A Drainage M Samp	De RH	epth Ioriz	Туре	Tax Un	it Code		Туре	Map	o Unit Co	ode			Film No	Air P	Run	No	Frame N	10 IO	Distance	Cont	Depth	Gr S Str	Sur Su F	strate Coo	Lith	Gen T	Mass Str	Sow
U Datum	zone 55	19	Easting/Lat 128	Location itude	Nort 760	thing / Lor	ngitude 8144	D S Cont	ord E/	Austra Sub Ord	GG/ Or2	SG/ SO2	F1 F	52 F3 F EMC	4 F5	lower.	subier PPF NSTrai	k med ?	GSG aff	T Disturb	Surface Condition	N Type Agent	Micro Lob Lob	vi	E Abun	Surface Sha	Poarse	Fragments h Str	Alt U	Dutcrop	Prof	B2
NType	Erosion De De De De	GD	Ref No	Ven	t opt	veget m ie	ention C	Name onl of V n b i	F Indi	YE? Ver prsto	redg	icum,	T M L Strata	775	13	2 ht 14 Cove 3	El	ouero s UC (Cady pecies 1 2 A M	IAL	Prop	C.C	Speci R P	EN	A Pro	op		Species 3		Prop	-	823
- Number	AI	Horizo	m		pth (m) Lo	ower	Dect Dect	Field Field To	Texture	Qual	uran 34	воо , 1.Ф	tue YR	lour V d	A Moist	Type Abun	Contra Size	Col Abun	Coarse	Lith	nts Str	C W Grade	Type SB	Segn Abun Nat	E ezg	Str Cracks	Strgth sws D3	Cutar Kind Abund	Datinct St	Pans Tures	A Pazis /	Sar 2
2	B2	1	-	017	q.	30	G	FSL	C		34	19	YR	32	m	P		Ø				M4	AB	Ø			04		-	-	12	0.
3	B2	2		\$30	5 \$-	75	A	CLF	5	+	34	14	YR	33	3M	Ø		Ø	107			W3	AB	ø			D3/4	4	-	-	12	0
4	20	1		\$75	515	5¢		KS			44	19	YR	64	D	Ø		Ø				V		ø			Dø	G			11	0.
5 6								H Mic Sond Throug	but	noi pla	o file	inde	edia	9	1	pale	fre fre p	lead	river river	r bei nan San	ped and	nd	c pro	ceases							(ho
7 F	eld Tes	ts 1	d.	d2			ø.	FINE	ГЫ	(5)	and	bde 25	100	10-87	1	. 54			d.	. 85			1.	15								
	pH-RP		7	8.5		Ŀ	F	8.5	-	-	7 5	5-2	-		F	8.9	-	-	7	7.5	-		7	.4				-				

. Relative lower plain/flat veithin eloated TEP diodoped on micaeous Qa of the Flinders hiver. . Represents lacer conjument wethin weaken TEP. . very gentle las ridges + slight depression - very monimal but conteree of reliet scroll activity when laid down.

Site 23 photographs

Soil profile photograph

0	Geolog	gy	DEval	Perc	Slope ent c		Ind		Type TRP	genti E	andforn Height	m Elem	Width	1 3	K P		Patter	Landfo	Mo	Itern dal RI	ms P		Land Us	Mgr1 B	B	escribed B	y	Da 16	te (ddmr	nyy) / 8		Pro FSC	oject	14	F	site DK	Obs
O TSO	W Mype	Cob Rea	Runoff	C Perm	M Samp Aggredn	Der RH	oriz	Тури	Tax	c Unit Co	de	-	Туре	Map	Unit	de			Film	i No	Air Pl	Run	Να	Frame No	7 or	Distance	Cont	Depti	55	Str Por	Subs	trate Opc	ense U	Hive 1.05	rhed.	1000	L SO
E		Ē.		Lo	cation	11	1		2	Sorta	Sut	strailar	Soil (Classifi SG/	cation	Bon	deols	ne D	EPF	PF, 2	2	GSG	a s	urface		Micror	elief		Su	inface Co	oarse Fi	agments	L	Outcrop		Profile [Diagra
Datu	Zone	- /	Easting / I	autude	0-	North	ang/Lon	D D	Cont	DF	Ord	3	12	502	AE	2 F3	F4 F5	4	ensi 969n	strain	red-	aff	1 LI		Ager Ager	Prop	VI	н	Abur	Shape	Lith	Str	Alt	Lith		17_	t -
4	Erosio	on /	7.00	000	0	10 19	Veget	ation C	ommun	ity	114	-17	71	20	TIC	L	-A	17	1	-	_		1 <u>2</u> 1/1 , Ve	getation	Commu	nity Detai	s	i.	199	/		1	<u>></u>		1		-1-1
Type	State	8 8	2 Ref I	No					Name						Strata	UD	PH COV CI	the	Cover	Very	OCC	pecies ?	plona,	Gerop	talla	+ospecie	tim,	100	Ptop	e.em	g st	ecies 3)		Prop	-		-
Z			1		Very	open	- 100	ode ico	de	bas	him	at.	Mes	evite	TT	77.	51	06		LY	50	FIL	VU	1	PR	OP	AL	LI		14	50	211	VI	,		-	-
			3		Quin	ene	vien	15.	and an	6 such	aprino	er,	gru	AC.	L	br		0		1.13	2	7 5	h.t.		me	AV	ne .	10		-/		T	10		I.	1,000	
aber		Horiz	on	1	Dep	th (m)		Bound	F	ield Tex	ture	betm.	Drain	Book	Col	our	1.2		Mottle	IS	= 1	Coarse	Fragment	s	S	ructure	Se	gregatio	ns	st st	argth	Cuta	ns	Pans	R	oots	Sampl
NUN	1	, 1 1		-	Upper	Lov	Not	Shay	FI	eld Texture	M		4	H	ue	23-	C W	Type	Size	Con	Abu	Shape	Lith	Str	V Grac	Type	Abu	+ Nat Form	Size	Crac Crac	Con	Kind	Osti	Con	St	Abu	(m)
1	17 1			1	app	90	cor	-	SL	-	M.	+4	4	19	YR	100		7			4					30	24			P	191			T		1	2-1
2	BQ	1		9	120	de	55	4 3	SC	LI	M	3	4	19	Yn	33	3 M	9	3		Ø			W	MY	AB	ø			D	4/5	R		+	1	21	0-6
H	B	22		-	165	-10	A E		CL	SV	4	2	11	10	VD	11	211	T	5		d			W	1413	48	6			D	11-	0		-		21	0.5
3	Do	1 0		-	100	-9	-			Ξ.		-	T	17	yre	T	511	r			×.				r p	10					71-1						1.1-
4	20)/		1	\$ 5	16	ø	CA	15	1	m-K	4	4	19	YR	4	4 M	9	\$		ø			1	V		Ø	_		D	21			+	1	2	1.4
-	30	2	K		60	2.	ord	d	SC	1	M-K.	+3	1	10	VR	4	1 m		1		0						1	Ke	1	D	DAR	-	-	-		1	.7-
5	21	3	K		2.00	2.	400	G	KS		K	4	4	14	YR	4:	3M	0	2		9				V		1	KS	1	D	ø	7		-		1 0	2.0 -
6	30	4	1	2	-40	2.	75	CL	SC	LF	-M-	-4	4	10	YR	44	4 M	9	Ø		9				V		Ø	-		An	3/4E			T		Ø	2-3-
-	SL	56		0	3.00	3-,	50	1	VS	- 1	K	14	4	19	YR	4	4M	0	6		20				V		6			D	000	-		-		00	R.9-
(75				3.50	4	50	14	1			T	1	14	1			F	-		4						1									1	3-2
F	ield Te	ests	Weth Meth	. 9	2		-	ø.	10			9	•	25	-		ø	. 5	5			d.	85			1.1	5	_		1.	45						-
-	pH-RF	5	4	6	5		-	6	28			-	7	0				7.	P			1	. 8			9	P			1	1.0						
	EC-1:	5	1																1																11		
	Slakin	9	1	-	1 #	-		d	11	the			5/	2	#			61.	2	#		N	2	#		11	2	#		11	,2	,#	-	#	after	rem	oula
	rspersi	wn	19	0/-	11			41	di			14	1	A.	k.		1	10	21	-		17.	11			11	C			41	6	1		11	11 -		10

Site 24 photographs Soil profile photograph

Landscape photograph

							1										$\widehat{}$			Phoi	tos	1	20	65 -	- 26	77	Isa	ape/v	equile
	Slope n	me	- mos	140	-11: 14	44%	ind	list m O	des/	Swa	SITE D	ESCR	IPT	mach	The	uni	r					-	2	72-	2-	73	Su	nface	
Geology	Te Percei	Slope nt Cla	155 15 192		Type 8	Height	width	Length		La	andform Pa	odal R	MS	u	and Use	Mgt1 Mgt2	D	escribed B	у	Da	te (ddm	imyy)			Project			Site	Obs S Type
qa	A ø	5	F	F	LA				A	LF	2	L	P	1			E	URS	Ē [16	12	18	3	FSC	C13	5M		F2	5
ost Obs Reas	C Runoff C Perm	M Samp Aggredn	Depth R Horiz	Туре	Tax Unit	e	Туре	Map Unit Cod	íe		File	m No	Air P	Photos Run N		Frame No	Jor	Distance	Cont	Dept	h Sig	150	Sut Sp F	strate	Not	decri ith Ger	ted test	Mass Str	MDS MC1 MC2
CM14 -	10/04/4		999			Australia	Call Clas	alfination	2.2.2	-					-			Maraa	-11-4	-			Cassas	Ereamo	IN	Dutan	=	Drafit	Disease
Zone	Loci Easting / Latitude		Northing / Lo	ongitude	brO Cout	Sub G Ord O	G/ S0 12 S0	F1 F2	F3 F4	F5	Ρ	PF		aff	Disturb	urface indition	Doe Street	Prop	VI	н	Abun	Shar	pe Lit	h S	itr Alt		in		**************************************
M 5519	1213	27	700	92	43 DE	AEB	DC	DAE	EMO	×	-			-	1H	F	Z				ø			1		ø		-1	-=1+
Erosion	1 1		Vege	tation C	ommunity		E	0 ? 54	e andys	5	1 -	10-	121	ronce	Ve	getation	Commi	inity Detail	s			1				1		-1-	
Type State Deg GD	2 Ref No				Name			Strata	Cov C	Heigh	ht cover		S	ipecie 1		Prop	oc	Specie	52		Prop			Species 3		Pre	op	-17	/-
Z	1	Godi	bah u	appell	and/OF	with oc	5	T	7M	10	2	EU	CO	000	LA		Ly	5 G	IL	VU		PI	RO	PA	LL	I	-	-	
	3	Dan	vincia s	sign	species 171	squite		L	SV	-9	-	FR	0 /	PAL	64	1												11/1	1112
		Dept	h (m)	Bound	Field Tex	ure		Book Cold	our	T	Motti	es	Γ	Coarse F	ragment	s	s	ructure	Se	gregatio	ons	TT	Strgth	c	utans	Pa	ns	Roots	Samples
Horizo	on	Upper	Lower	sot hape	Field Texture	Perm	Drait	Hue	v c	Aoist	bun ize	ontr	unq	Shape	Lith	Str	irade ize	Type	pdu	orm	ize	racks	WS suo	abric	bund.	ype mnt	ant	Size	(m)
AII	d	66	010	G	CLES	3	41	d VR	33	M	et o	00	d	0		1	MU	SB	1 Ø	ZU	o o		DZ	u X	410	FO	0 0	12	0-0-1
1 414	1	71						110			1		1				M3	SB.	2									1	0-1-0
, A12	9	10	p27	G	CLFS	+3	41	9 YR	32	M	9		ø			-	M3	SB	ø			1	03			+		12	0.2-0.
2		_/					1	11			161		1																
3 321	9	27	Ø65	D	FSLM	CR	41	9 YR	32	M	9		9				32	AB	P			1	D5	-		+		21	0-3-0-
nala		1-	145				1	1 10	12.				6			-		00		100			NC	-					0.5-0.
4 8221	Y P	65	195	D	LMC	2	41	PYR	31	M	14		4			14	15	PR	1	KS	1	<	DS	-		-	-	21	0-8-0.
12221		15	160		IMC	0	11 1	d up	31	M	6		10	-		PI	54	MB.	NX	XC	2		DUL	-				11	1-1-1-12
5 000 1	Y	YP	104		LIIC	et.	7	y	51	1	1		1				54	TD	2	VX	1		PTO					11	1.11-1.
6			#	Som	d fractus	n is m	icae	ous th	inory	have	r.														-				T
		-						11																					
7														100															
Field Tests	to the	2		d.	100	1	1.2	-	11-1	0	1-55			d.	85			1.1	(-			1	· 41	F					25
pH-RP	1 6	2		7	7.00	1	7.5	-	1	1	8.2			10	7.0		-	9.	d		-		9	6					
pH-1:5	4						1							1	1			/	1				1						17-1
EC-1:5	1																												
Slaking	1	1 .		1	114		11 -	24			,2	H			2	4		1	2	4			, 0	2	#				X
Dispersion	1 0/	17		Ø	12	9	12	T		1	12,			1/	2			1/0	2 1	F		à	42	THE	aj	Her	rem	ouldn	rg .
Efferv fin. earth	11	N	_	11	N			N		. 1	N				51M				H		1		M					_	

« Lover devation Codibit ALP/175 doolged on reant micreaus Flinder liver schall frain religion. . Some as ste 12 masty. NOTES:

200
Site 25 photographs

Soil profile photograph

G	eology	Slope Percent Class	Inci	Type g	andform Elem	ent Midth	Length	RIS/LR Pattern	Modal	RMS	L.	Land Use	Mgt1 a	Described	Ву	Date (de	immyy)		Proj	ect		Site	Obs
O TSO	edit w Reas Reas	C Perm Drainage M Samp Aggredn	Depth R Horiz	Tax Unit Type Co	de	Ma	Lap Unit Code		Film No	Air P	Photos Run N	No	Frame No	Distar	ceut 93	Depth 1 • 66	Gr S Str	Sub sub	strate Str		Gen T	Mass Str	MDS MC1
V Datum	Zone Easting/	Location atitude 56177	Northing / Longitu	ide two ord	Australian Sub G Ord O	Soil Class $\frac{37}{2}$ Soz IB_2	sification $\frac{1}{2}$ F1 F2 F3 $\frac{1}{2}$ ERS	K	larect M	1.6m	GSG aff	Disturb Disturb	MX	Micr Agent Prop	vi 015	H Abun	Surfac signal Sh	e Coarse F ape Lith 5 Ø2	Str 2 VS	Alt Ou	Lith		e Diagran
N Type State B	rosion	io Mistoheo X Lea	Vegetati	Name Name azel (no	- dry. Seed here	ed gt	- W - Strata Form	Mitch Height	ull Gran cover	a dou s	species 1	Ve	Prop.	ommunity Det bSCalk SSpg	ails Auge Al	eke -	q	s	ipecies 3		Prop	N/ E	シン学
1 Number	Horizon	Depth (n Upper	m) Bo Lower Bo S \$ 7 C	Field Texture Field Texture MC	ture unad	uieu 47	Hue V •5YR 34	Moist Type	Mottles	Cal	Coarse F	Fragment	s Str	Structure	Seg April April April	regations	Str Cracks	Strgth sms sup D1	Cutan: Puny S Print	Detinct "	Pans Cont turn Str	Roots Page Unge	Sample (m)
2	B21	9.979	120 G	MC	+2	47	·5 YR 34	4 5	8	ø				53 AB	10			D4,5	59	-		1 1	0.1
з 4	322	\$2\$9	\$5ø G	MHC	2	4 5.	\$ YR 3	3 9	8	ø			1 1	54LE	10			05	SKI	0 -		11	0.0
4 E	323 y	9501	3 Ø G	HC	2	4 5,	ØYR 33	5 9	Þ	0	weath	and 1	10 5	56 LE	1210	1×2 (51	9	T4/5	5 K2	0 -		11	0-5
5 2	93 Y	1301	610 G	FSMO	: +2	45	· \$ YR 56	Zó	220	43	1 AP	mu	VWI	16LE 14LE	14:	xx2 KS1	?	T4-	5 K21	> -		ø	1-4-
6		1601	65		2	310	ØYR 56	MZL	42D	RS	AP	MU	NW .	mate	ø			74.	10	-		8	
Fiel	Id Tests	4.002				1.25					d	CE			15			- 4.5					
riei i	pH-RP 1 pH-1:5 4	8.8	0	8.8	4	8.8		48	8		4.	8			5.8			8.8	-				

Efferencesine not dove - run ait of and

Red-brown strongly SM vertosed on vallaged creteceous MU - upland rocking bournes landacge; not related to + cover dodged finior gilger

Site 26 photographs

Soil profile photograph

k	Ge	eology		Eval	Slo Percent 3.5	pe Class	M MT Incl		Type	8	Landforn Height	m Elen	ment Width		Length		RI Patte	Landform		odal R	ms PP		Land Us	Mgt1 a	ī Į	escribed	By	1	Date (d	dmmyy	18	F	Proj	ect 15r	7	si F	te 27	Obs
U TSO	X M Type	The Las	Obs Reas	& Runoff Z Perm	M Samp	Aggredn	Depth R Horiz	Тур	т ,	ax Unit	ode		Туре	Ma	o Unit Co	ode			Filr	n No	Air Ph	Run I	No	Frame N	0 TO C	Distan	ce j		Depth	Gr S Str	Por	Substr	str VW	Lith MU	Gen T	Text S S	ss s Ir QV	MC1
V Datum	IZ E	zone	East	ing/Latit	Location ^{Jde}	7	Northing / Lo	engitude 42	6	Ord 3 M	Au Sub Ord	stralia	n Soil GG/ Or2	Classi SG/ SO2	Fication Som F1 F	etime 2 F3 DR	F4 F5	soft	P	PF		GSG aff	Disturb	Surface ondition	Z Type Agent	Micro Gunpt Brop	vi Vi	H	2 Abun K	Surfactorial Surfa	ce Coa Shape	G Bith	str VS	O unqy	Lith	P		
N W Type	A State	rosion 12 12	6 <u>2</u> 1 2 3	Ref No	Fring	mg ,	Vege Borce 2 doc	Scri ons	ommu Nam	nity ? a m s	ides	lepe	to	?	M M Form	0 H CI	5 0 0 5	r-E eight	Cover	AC	Spe A 7	cies 1	v PHR	Prop	n Comm	thin toh	ails par to R ere here	ts; e nod sp vid	this fi	n pe	ble O.C dal	+ SA Spec to	HS	o dea n Chin a	Prop Prop	A Trees		XXX
La	T	н	orizon		D	epth (m	n)	Bound		Field Te	xture	E	ain	Boo	k Col	lour		Τ,	Mottl	es 1.1		Coarse I	Fragmen	ts	s	tructure		Segreg	ations	ks l	Strg	th	Cutan	s to	Pans	Ro	ots S	Jamp
Muml	1	11				the of	Lower) Dsct Shape	F	ield Textu		Qual Pe		7.4	Hue	V	C Noision	Type	Size	Contr Col	/ Abun	Shape	Lith	Str	Grade	Type	Cmpc	Nat	Form Size	Str Crac	SWS	Cons Fabri	Kind Abun	Dstin Type	Cmnt Cont	Str Str	Abur	(m
1					99	99	44	Ŭ.			- ()	a.	4	13		4						~	19-		51	GR	2				00					ľ.	0	10
2	£	321			941	49	\$45	D	FS	M	- (F)	2	4	19	y K	13	3M 3,M		P -		Ø				53	AB	29	Ø			DY	45				. /	10	1.1
3	Ľ	322	Ky	1	94	5 1	20	D	SI	nc	(en)	2	4	19	5 YR	4	6 M	Ze	22	FB	Ø				WS	AB)]	2K 3Y	N1X1		T	4		-	-		\$ 0	1-3
4	B	33 K			12	ø	160		MI	IC	(F)	1	3	7	.5yr	24	6	Z	42	DY	42	SP	nu	VW	5-	LE	10	2 M	NI		TO	4		-	-		ø I	• /
5															1			Z.	32	PG					57	SLE	20	XK	MI								/	* 4
												_							_		as	ecit	edini	12 49	catter	este												
6																					y	ellow	- 10	YRO	64													
7																					ď	19	d	PY	11													
F	Field	d Tests	Meth	ø.	\$2			q .	19			ę	7.	25			9	1. 3	55			9.	85			1.	15			1	1 - 4	15						
1	p				0.5				9.9	-			1	1.9				19	1				9.9			9	- 4				0	0						

· Sides (que to rolling downs unit with gitger Scrub. · Characterized by rounded river graves (Indominantly 972) - answe intropeded in Orchaceons mudistare substrate

Site 27 photographs

Soil profile photograph

Semi-detilled check site to very maying unit

Pholos - Lscape/ver 299-300 - Soil 301-302

Geology Da	Percent Class	BKP Type g Height	Width Length	Pattern Se Modal RMS	LU1 155W	Described By Date (ddr BUR5 1716	mmyy) Project	Site F 28
odst w M LL 1C	M Samp M Samp Aggredin Aggredin	Tax Unit	Map Unit Type Code	Air Ph Film No	Run No Frame No	Lo Distance to Depth	Substrate Not describe	Mass Str LOW
East	Location	/Longitude	trailan Soil Classification GG/ SG/ F1 F2 F3 F Or2 SO2 F1	4 F5 PPF	GSG aff	Microrelief 	Surface Coarse Fragments Outcrop	Profile Diagra
Erosion	8677744 Vi	B 4 8 8 D DE AE egetation Community Name	6-8 100	77). 5 Height Cover Sp	Vegetation Co ecies 1 Prop	ommunity Details Species 2 Prop	p Species 3 Prop	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Scaldel L Variable C	Borce Schub Unit angly cover	T Very T T G S	6 ACAT 3 PROF	EPHR	PROPALLI ERE 36?? (Mitdelliu?).	LYSGILVU	
Horizon	Depth (m) Upper Lower	Bound Field Texture Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	Hue V Colour Hue V C	Motifier Type Abun Contr Contr Abun Size	Coarse Fragments	Structure Segregations Type Day 19 10 10 10 10 10 10 10 10 10 10 10 10 10	Strgth Cutans Pans Strgth Cutans Pans Lapout Course Strgth Cutans Pang Strgth Cutans Pang Pang Cutans Pang Pan	Roots Samp
2 A12?	\$\$1.9-1	& LMC	13 CP YR 32	mø ø	2	4 AB Ø	D4/5 -	ø
3	\$.10 + V							
5								
7								
Field Tests Image: Additional and the second s	7.5	\$ · 1\$ 8 · 5 -	No slaking o	r dis persión test	ng / not somple	ı		
Dispersion 1 Efferv fin. earth	FIL							

Site 28 photographs

Soil profile photograph

It semi-detailed checksite to verily mapping unit

Photos - Lecque /ver 303-304 - sol 305-308

Micaean sedements /= younger FR allour	SITE DESCRIPTION	- Sol 305-300
Geology Sidepe Landform Elen Percent Class E Pa A A	ment Landform Pattern Land Use Width Length Pattern growth Modal RMS LU1	Described By Date (ddmmyy) Project Site 80 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
opsiling opsil	Map Unit Air Photos Type Code Film No Run No Frame No	Substrate Net Clearited Distance Te Depth 0 10 10 10 0 Distance Distance Distance Distance Distance Distance Distance
Location Australian Location Australian Zone Easting/Latitude Northing/Longitude Easting/Latitude Easting/Latitude Northing/Longitude Easting/Latitude Northing/Longitude Easting/Latitude Easting/Latitude Northing/Longitude Easting/Latitude	an Soil Classification $\begin{array}{cccccccccccccccccccccccccccccccccccc$	Microrelief Surface Coarse Fragments Outcrop Profile Diagram
Erosion Vegetation Community <u>est 56 8 8 8 Ref No</u> Name 1 Very april Logedland of Codiba 2 01 Very april Logedland of Codiba 2 3 00 Derburger Logedland of Codiba	Vegetation Comments Vegetation Comments Vegetatio	munity DetailsSpecies 2PropSpecies 3Prop $Y \leq G \mid L \vee U$ $PRO PA L L I$ $R \in Sp ??$ $R \in Sp ??$ $R \in Sp ??$ $C \in Sp ??$ $C \in Sp ??$ $C \in Sp ??$
Horizon Depth (m) Bound Field Texture Upper Lower B d f S Field Texture 1 Al PAD & A 6 C SLC (F-M) 2/3	Book Colour Mottles Coarse Fragments Hue v c unqv ezz Hue v c unqv Winqv gz shape Lith Strengy gz gz gz Hue v c gz Hue v gz gz Hu gz gz gz	Structure Segregations Strgth Cutans Pans Roots Samples exact Type pumper 1 1 1 1 1 exact S I D D 0 1 1
2 B21 \$\$\$6\$\$35\$ G SLMC(H) 2 3 B22 \$\$35\$7\$ SLC -3	241\$YR 33H\$\$P\$\$SI 341\$YR 43H\$\$P\$\$P\$\$SI HISS	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
4 V 0.70 + Micaeccers	sand flake throughast	
6		
7 Field Tests \$\$ 0 - 02 0 - 10 0	1-25 01.55	
pH-RP 1 6 8 8 9 pH-1:5 4 -	8-# 8-8 	dispersion testing I not sompled

. Younger, locair llovation compount of TEP londo que - declando micacono Flindos Riceir allovarian . Some Iscape, profile + mapping unit ao Sites D+25.

Site 29 photographs

Soil profile photograph

Semi detailed check site to vary mapping conit

Photos - Is exc/veg 316 - 318 - soil creating + surface 209-315 multon - flod marks en 5m 24-222

SITE DESCRIPTION

Geology	Percent	Class		ype g +	leight Widt	th Length	Pattern	Modal	RMS LP	LÜT	Mgt1 Mgt2	Described B	y T	Date (ddmn	(עעו	Project	st SM	-	Site	2
obs obs obs ed. N W U U U U U U U U U U U U U	Runoff Derm M Samo	Depth B Horiz	Red. Type	dien Drouss Code	~ recent	sed Map Unit e Con	de l'	Film No	Air Ph	Run No	Frame No	5 Distance	Cont	Depth of	Jod Jog	ibstrate No	descrit Lith Gen	ted .	Aass of Str	MDS II
M5519	1? Locatio Easting / Latitude	Northing/	Longitude	ord Dra	Australian So Sub Ord Or2 AEET	SG/ F1 F	2 F3 F4 F5 R S X -	PPF		GSG aff gintsio	Surface Condition	Micron Agent Cmpt Prop	vi i	Abun Size	rface Coarse Shape L	t Fragments			Profile I	C
Erosion edx V V 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 Ref No 1 0 2 3	ken voor	getation Con llenk/ Red Gis	nmunity Name Horest of	f- coelib	T M 1 Strata	TS 1	ht Cover	12m spe UC C	cies 1 D O L F	Vegetation Prop.	Community Detail	s sz AMAL	Prop		Species 3	Proj	p		
ਸ਼ੁੱਛ Horizo	on Um	Depth (m)	Bound	Field Textu	Le Perm	Book Col	our	Mottles	5.0	Coarse Fragme	ents Str	Structure	Segreg	ations	Strgth	Cutans	Pan 8 2	s R	oots	100
₹ 1 A I	Ø9	\$ \$ \$\$	C /	4C	+22	21 pyr	2421	41D	AP CO			S2GR	5 9 2	For Siz	5 % 8 D2	A K	Tys Cm	5 <u>5</u> 0	2	
2 B21	100	5 029	8 1	1c	1/2 2	2 PYR	3200	M41 D	010		M,	56AB	1		25		-	1	1	
3	195	ing +			A			Mastle o	dair	= 57p	yry6									
4						2.5	nd in	undation	; pa	by th	reg u	ntrown					Eli			
5 6	Self. Thick	nid ching loose of g Stronge		strongly Still	sry : ujer :	2-5mm C haxigene	R + S	me bloc	ky.	i be	t per	entially)	kaody	brane	1-1	net 7 e	2-3/	north	\$.	
7		- Or	1		9												The second			
Field Tests 49 pH-RP 1 pH-1:5 4 EC-1:5 1 Slaking 1 Dispersion 1	Ø. do		4.7	1.5			N	o slaking	g or	dispirs	ion to	esting/r	rot s	mpled						

· Red brown recently approved sedement = 4H 8.5-9.5 (of with surpre plt ony day material & site) -> sourced fame ralling down

Site 30 photographs

Soil photograph

Geology	Eval	Slope Percent C	lass M Ind	T	EP ma Type 15 L	Lan Joh Sù B	dform E	Element (LS Width		ength	T	Lar Pattern FP	ndform P	attern	RMS GP		Land U:	Mgt1 as	B	escribed	ву	18	pate (ddm	imyy)	8	F	Projec	at 574][Site	obs -
ed ALW J 4 J	(U) Runoff	M Samp Aggredn	Depth R Horiz	Тур	Tax	Unit Code		Type	Мар	Unit Code	,	mai	g <i>ins</i> . Fi	im No	Air	Photos	No	Frame No	0 ot	Distan	ice joo	De	pth d	n 150	Por Sp.F. S	ubstrat	e Mor	Lith	Orthe S	Mass	MDS MC1
zone E	asting / Latin	Location tude	Northing / L	ongitude	(L) cont	ord DE	Austra Sub Ord AE	GG/ Or2	Classifie SG/ SO2 CD	F1 F2	F3 F4	F5 X	+	PPF		GSG aff	Disturb 1	Surface ondition	N Type Agent	Micro Gubt	VI	н	Abun Size to	Surface Shi	ape	e Fragr	Str A	t Out	Lith	Profi	e Diagram
Erosion	1	ī	Veg	etation C	Communit	у					8m		1	ĩ			V	egetation	Comm	unity Det	ails		1	1			18.20	131	1		
2 05 05 05 05 05 05 05 05 05 05 05 05 05	Ref No	Sch	ibby to	podlm v ±	Name	bau	hmin	e¥	-	N - Strata	CA CON C	Height	Cover	L	ISRE	GII Sb	VU	Prop	PR	OP OP	A L		Prop			Specie	6.3		Prop	1-1-	12
3			100000		1047	- 1				L						M	thell	Vi) :	11	E E	<u>n</u>	11	1	-	1	1					
Horizo	n	Dep	th (m)	Bound	Fie	d Textur	e	Perm	Book	Colo	ur lyla	ts e	Mott	les	5	Coarse	Fragmer	ts Ctr	e e	tructure	8	Segrega	tions	scks	Strgth	and .	Cutans	*	Pans	Roots	Samples
41		\$ p\$	\$1\$	G	SC	Lr	1-K	34	10	YR	32	M	ADI ADI	3	A A	SN CHILD			10 H	SB	102	8 2 1	2 28 10	E.	D 3	Fai		ML -	5 8 8	12	
321		ØIØ	\$6¢	D	CLS	5 n-	ĸ	34	10	YR	32	M	Ø		ø				M3	AB.	9	8			D 4			-		1 /	
822 K		\$6p	130	D	LM	CF-	M	24	19	YR	33	M	ø		Ø				M 5 54	PR	12	k:	S /		DS			-		11	
823 k		13,0	150		SL	C F.	. M.	34	100	YR	43	MIK	120	F	YP			Y	M 5 15 4	PR	2	K-	51 V1		D5			-		11	
		1										G																			
																-							1								
																														1	
pH-RP 1	ø.	\$2		9	10			9	25.5		7	d:	55			9.	852			1 -	152.2		T	1	- 4	52					

Site 31 photographs

Soil profile photograph

Photos - Lscape/vag - sail - suface 339 - 340 341 - 344 345 - 347

SITE DESCRIPTION

	Slat	roral	0-0.	S%	/										51		ESC		110	14										1	1				2 10		. /	
Geology		Slope		٦ [1	La	ndform	Elem	ent	1	land.	1 [Der	Land	form P	Pattern	pue			Land Us	se I = l a	7 [Desci	ibed B	y	c)ate (de	dmmy	1)	Γ		Project	t	1Γ	Site		voe
a	DEval	d.2	Jass 5	ou .	TE	P	9 ⁷	Height		Width		Length		AL	P	Clas	Nocial	1 P	5		UT	Mat		BU	RJ	-	18	1	21	8		FS	c.l	Sr		F3	2	L S
TTT					IF	TaxU	Init		T		Мар	Unit		1		-		Ai	r Pho	tos		1			114	_		1		-	Sub	strate	11	11		1.0		-
ed.Krew W	Runoff	Drainage M Samp Aggredn	Depth R Horiz		Туре		Code			Туре		Co	ode			Fi	ilm No			Run M	lo	Frame N	lo	to	Distance	Conf	De	pth	5 B	Por	SpF	M	No	ith c	Sen T	Mass Str	MDS MC1	MCD
m4 1	22	4	999	1								-			_								K	C	1			_			_	-	N	D				
1 1		Location	"					Aust	tralian	Soil C	Classifi	ication	1.1				DDE			GSG		Surface	1.		Micron	elief			Surfa	ce Coa	arse F	ragme	nts	Outc	rop	Prof	ile Diagra	m
Zone E	Easting / Latit	ude	Northing /	Longitud	ie	Conf	Ord	Sub Ord	G	G/ 1/2	SG/ SO2	F1 F	2 F3	F4 F5						att	Distur	ondition	Type	Agent	Prop	VI	н	Abun	Size	Shape	Lith	S	tr Alt	Abun	Lith			
55 10	31	90-	1600	6.	31	31	NE	AB	B	DI	DK	AL	M	OX	-	_			-	-	1F	H	Z				1	Ø	1	1				ø	T			
Erosion		1-0-11	1 ke	getatio	on Com	munity		11.1.1.2	1.02	10		T	10.11	- 12.	-	_	-		-		v	egetatio	n Com	munity	Detail	s		7		-	-	-			-			
a a .	Ref No	1				Name						ata a		D H	eight	Cover	1		Spec	ies 1		Prop	1		Specie	s 2		Pr	op		s	pecies 3		1	Prop			
N D D R		V.	1. Same	in	11	- 1	-1	- /			-	S U	エー	3	11		10	NO	P	15	NA		0	OR	D	n	1 4	2		En	1	1 A	ia		1			
2		Ve	y open	0000	all I	rau	Om	1 Del	n	5		M	55	Ś	E		P	RO	P	AL	11		14		1	TL.	-1	1	4	-0	-	C M	-1-1					
3		Ŧ	mesque	te	6. V			0			_	L			1-				1					1														_
T		Dep	oth (m)	Bou	und	Field	d Textu	ure	E	-	Book	Co	lour	_	Γ	Mot	tles	1	c	Coarse F	ragmen	nts	1	Struc	ture	S	egrega	tions	T	Str	gth	C	utans	F	ans	Roots	Samp	les
Horizo	n	Upper	Lower	IJ	ape	Field	Texture	In	Per	Drail	H	lue	v	C foist	be	uno ez	out	To Uno	87	Shape	Lith	Str	rade	e l r	ype	nd und	1	E ez	The second	SIN	suo	nd	bund	tpe unit	aut	Size	Not (m)	1
11	TT	ddd	die	10	0	011	ES	0	3	11	10	110	2	74	F	A O	0	O R	5				In In	2 <	B	ID	2 0	E Ø	5	D	3	u X	A IO	FO	00	10		T
AT 1		944	1414	20			~			T	14	YK	0.	~ /				1			100	1	1	5	0	19								100	a bistor	1-	and a	ł.
1201		d 100	1230	G	1	KIL	115	2	2	U	100	VO	2	2 6		0		Ø		-			51	11 A	2	10				D	5	-				12	T	T
Dall	-	4 in	454	14	- h	241	CE	7	-	T	9	Yn	17	- 1	1	1		V				1	C	ZA	Q.	, 1	-			-					het	1 -		
322		ob 30	0-10	1D	ł	-611	TE	- (14	12	11	10	110	3	21	1	D		Ø		-		1	1	a A	B	10				54	-1	-		-		12		T
Pam	desta 1	y-p	4 14	1		JLU	E	1	2	4	14	JK	-	1	1			T		1		M	F	7	-	P			The second	17	1			tests	des la	1 T		t
B23	11	18-71	8 1 mm	6	F	-511	· F	(1)	2	11	14	VA	11	31		6		10			1	h	1/5/	IA	R	3	KC	31		ht	4	-	-		1	13		T
		717	144	1	- Í	020	V	20	P	41	9	1	4	0.1	1			Y				1	P	TH	0.	Ĭ				1	1			T				h
				-		1	1				1	FT.		-																				1	N			T
		C. C. Star											100								1.1																	
			1	11	-		-					T										1										-	(1 mm	T	1	4		T
1000		a the let	the lot have			dially						d du	in the second									1.20										1-			tot			E
	TT			11		TT						1.1					11																		11		-	T
These												-															1	1		1					ite to			
Field Tests	1	2 2	1	2		d	_	-	-	1. 1	25	1	-		8	55	-11			d	CE	-1	Lat			-	1	-					-			-	-	-
pH.RP 1	19.	92	1 1 -	4	10	*	- 16		4	-	X	-	-	7	-	25	-		-	9.	001	-		-		-	-		-	-	-		-		-	-	-	-
pH-1:5	6	10			1	.4			-	1	4				-	10				1	1.0				-	+				-	-				++			
FC-1:5		-				+-+			1						-							-		-	Na	di	11 .	-	~ 1	21	-	-	tect	nt I	1	100	11	
Slaking				H	10				1						N.	-		4			1	100		H	10	514	nmg	U	a	spe	20	an '	2511	g/	not	son	man	
Dispersion	1			-	-	TH			-	11	1				1.		1										0							- 1		-		
Effect fin earth	-	-							-	T							-							- 4											2	4		
cherrin, carm	-		A last				-	-	-		1	-	20		1			-			1 - I - I		-			_	-	-		1		1			1		2 - 2	

all and in

- Nerth

Site 32 photographs

Soil profile photograph

ae ao siteo	12 + 2	5	con ge -	fmms"mta 0-0-51	medial	2" 1	easel i	odi	bah	uni SITE	DESC	RIPT	Ion	nical	looud	FR	qa.			-	Soil	ace	34	48 - E 154 -	351 356	
Geology	Slope Percent Cla	ind har		Type g He	iform Elem	ent Midth	Length		Pattern	andfor	m Pattern Modal	RMS		Land Us	Mgr2	D	escribed	Ву	Date (d	Idmmyy	0	P	roject		Site	Obs S Type
a seew Theas wind	Aggredn	Depth R Horiz	Туре	Tax Unit Code		Туре	Map Unit	de	461		Film No	<u>L</u> P Air P	hotos	No	Frame No	or or	Distar	ice i	Depth	Gr Str	Su Jod	F-S C bstrate え Str	Not	dear it	Hass Str	MDS MC1 MC2
Zone Easting/Lat 55 1934	Location tude	Northing/Lo	ngitude 53	ord DE	Australian Sub Ord O 7 E B	Soil Cla ³⁷ S 2 S D D	ssification G/ D2 F1 F K A E	2 F3 F	F4 F5	+	PPF		GSG att	H Disturb	Surface ondition	N Type Agent	Cmpt Grob	vi	E E	Surfa ezis	shape Li	Fragments	Alt	Outcrop Lith	Profil	e Diagram
Erosion	D perv Geolit	Vege clumpe path 4	d la Occ	Name Dan Name Dan Name Dan Name Half	t bai	hina b	Actinis to T M L	175	Height	aht Co 2	ver L E	YS (RE. (Mit	r I L Sp ?	VU (2)	Prop	E L AC	spo Spo CC AS	ails cies 2 Oc	DLA LIC		EUC PRO	Species 3 CAP PAL	a,0 1AL	Prop	la.	
Horizon	Deptil Upper	h (m) Lower	Bound Shape	Field Texture	Qual Perm	uiru 4 /	Book Co Hue	v v 33	c Moist	Type Abun	Size Contr Contr	Col Abun	Coarse Shape	Lith	ts Str M	C Grade	Type SB	Cmpd	Segregations Har Law Barry Bar	Str Cracks	Strgth sws D	Fabric Kind Abund	ans putso	Pans Curvet	Roots PZIS Ungy 1 1	Samples Not-9 (m)
821	920	95p	D	LAC	2	4 1	\$ YR	31	M	0		Ø				54	AB	4	Ø		D5				11	
DZZ	959	199		MC	+2	4 /	Ø YF	31		*		P				53	AB	2	2KN2		03					
eld Tests 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	02		0	10	9	-07.	5		2	15 vis 1	8		4	68			1	Vo	Slahmy	or	dispe	rston	test	mg/n	ot se	mpled
Dispersion 1	-		1-	FT I		-	-15			E				+					0		1				TE	

Sliphty lower alexation than adjacent more elevated TEP surface.

V

Site 33 photographs

Soil profile photograph

			Slop	erm	re	- 0	-0.	5%										SI	TEC	DESC	RIP	TION	1										34	yai	ee					
0	Geolo	ogy .	Eval	Sto Percent	Clas	N LI	Dui	TY	A of	Land	iform	Elemer	nt Idth	u	ingth		Patte	Land	form P	Andal	RMS		L	Land Us	tie tigw		Describ	ed By		0	ate (d	dmmyy	1		P	roject	54		Site	Obs
C TSO	M Type	ne Obs Reas	L Runoff L Perm	A Drainage M Samp	Aggredn	Depth R Horiz		Туре	Tax Uni	Code		T	rpe	Map L	Jnit Code	• 7 K			F	im No	Air	Photo	s Run N	0	Frame ł	¥0	Di	stance	Conf	Dep	pth	GrS	Por	Sup 3 dS	Strate	Not	t de		Mass Str	MDS MC1
V Datum	zoni	• 5 10	Easting/Lati	Location tude	7	Northing	Longitu	de 4Ø	Cu cont	Or H	Sub Ord	GG/ Or2		G/ 02	ation F1 F2 BE	F3	F4 F5			PPF		G:	SG #	L Disturb	Surface ondition	N Type	Agent Cmpt W	doud	vi	н	Abun	Surfa ^{92/S}	shape	Lith	Fragments h Str	Alt	Outc	rop Lith	Profi	e Diagra
N Type	State	ion Ba	Ref No	Spy	om. Sl	Se S lones	tur y 3	the also	Name Bor Ist a	ee. Gai	sent	ub.	CD.	?	T M I Strata	12040	E Cov CI	leight	Span	A	CARE	Species Species T	P?	HR helli	Prop	P	nunity [Details Species	2	1	PI	op		ŝ	Species 3			Prop	1113	15
A Number	A	Horiz	วท์		Depth	(m) Lower	Bo	Shape Ind	Field Field Te	Texture	Qual	Perm	- Internet	Book	Colo	v V 4	C 3 Moist	Type	Mott Size	Contr	Col Abun	Co	arse Fr	Lith	ts Str	< Grade	Structu ez Typ	e Se Curbq	Seg unqy	te Log	ezis	Str Cranche	Str	th support	Kind Kind Abund	Distinct	Type Cmnt d	Pans tuoo Su	Roots under 2	Samp (m)
2	A,	12		\$1	9	927		A F	SL			3 (+ 1	ø	yR	3.	3 M	7	ø		9					M	35	B	ø				D	4	R				1/	0.1
3	B	21	-	02	7 1	\$ 75	G	1	SLO	-		2	4 1	9	YR	3	3 M	7	Ø		9			-1	7	MS	4 A 3 A	B1 B2	Ø	/ 4	51		D.	5	5		-		11	0.3
4	B	23	1	13	ø	179		,	FSLA	C		2	4 7	-5	YR	4	31	7 4	Б		B				r	1/5	3 A	B	12	y y y y	×1 (]		D.	5	5		-		ø	1-1
6		1																																						
Fi	eld T pH-R pH-1	ests	\$	\$2 58			q	. 1	0 5			\$.	25	+ \$	1		9	1 4	55			/	6 6	55			1	. 1	55	-			1.4	45						
t	EC-1 Slakin Disper	:5 ng sion	ø	12	#		A	5/ -	2#			0.	\$	314	Ł		9	1-	55 10 M	2#			1.1	86 N N	#		1	1/-	2 2	#			1/	Lon	2#		#	after	RI	LOUR.

· Dominated by micalious seds but bores vegetation + scoerely sedded just in from front LEV/TEP postion. of site 20.

Site 34 photographs

Soil profile photograph

_			_	Sk	page	ra	na	e	0-	0.5	- %	-							-	_	511		230	NP											-	1							_
Q	Geol	logy		A Eval	Per	slo ent	Clas	s IN F	Indi	Z	Type 3.K	P	Land	orm El	widt)	h	Leng	jth	1	Patter FA	Landfo	Ma	odal	rms LP		LU	and Us	e ttpM Mat2		Describ B U	RJ		D 19	ate (ddn	nmyy)	8	FS	Projec	t 5M		Site F3	15	500
0 ISO	M Type	FL Meas	Obs Reas	Runoff	C reim	M Samp	Aggredn	Dept R Hor	h riz	Тур	, 	ax Unit	Code		Туре	м	ap Uni	it Code				Film	m No	Air	Photo	s Run No		Frame N	lo	Di	stance	Canf	Der	oth of	Str	Por Sp F	ibstrate ₹	Bun str	ved uth a	alluva Sen T	A def Mass Str	A SOW	D inw
V Datum	Zor	ne 15	E1	asting/L	Lo atitude	cation	7	Northin	ng/Lon	gitude 84	3	N Sour	He I	Austral Sub Ord	GG/ Or2	SG/	F1	F2	F3 F	4 F5	+	P	PF		GS a	3G #	Usturb 0 0 0	iurface ondition	N Type	Cimpt	dojd	VI	н	Abun	Surface Shi	e Coarse	e Fragmi	Str A		Lith	Prof	Bor Room	ran E
Ē	Eros	sion	ľ	1	7	_	-	1	Veget	ation (ommu	nity				ΨY		1 1	1.7		1		ï				Ve	getatio	n Com	nunity [Details			1	1				1			Derg	2 2
N Type	State	Deg	1 2	Ref N	•	0	ben	jn)	itch	el j	Nan	e 1 d	llice	a je	lai	n	W + Strata	7 Form	TH CONC	He	ight (Cover	V	'eng	Species	gaz	red	Prop	47		Species	2	14	Prop		1	Species 3	3		Prop		B23	100
-		_	3	1			anth	(m)		Bound	-	Field 1	Cexture	Т	1		L	Colou	~ V	1		Mottle	Mas		519	DU I	AK	-	100	C /	ork	150	na	ions	17	Strath		Cutane	+	Pane	Root	I Sam	
lumber		н	orizor	1		Upper	epin	Lowe	17	Shape		Field Tex	dure	Dual	Drain		Hue	COIOU	v c	Moist	ype	es la	and the second	unq	ez 1	Shape	Lith	Str	Srade	Typ		unq	tat at	1 27	cracks	Sugar suo	abno	atinct	ype		Size	(r	n)
1	A	1			C	bog	5	$\phi\phi$	3	C	M	C		6	24	10	\$ y	iR	33	3M	P	3		Ø				11	5	G	R	ø	~ 4			DI	u x	1410	-		11	0-	4
-	R	01	V	- 1	-	4	-	12	1	G	M	-		F	2 11	1		10	20	3 44	0	5		d			_		5	2 A	R.	/	10 1	11		DG			1-		11	0.0	127
2	P	~1	n		1	ny-	2	90	9			-		1	04		14		5-	1	7			4	12					L	EV	2	nn			~ 5					11	0.:	2
3	B	22	K	Y	Z	34	8 1	96	ø	D	M	HC			24	14	7 Y	R	33	m	9	8		ø		1	-		51	+ 4	E	1	Kr	11		DS	-		-		11	0.	5
4	B	23	Y		R	569	ø	1\$	ø	C	M	40		-	24	10	\$ y	R	33	M	4	8		ø					MS	51	EI E2	2	y ×	1		D, 5/	6		-		ø	0	8
5	2	DI	Y	2P	1	Pa	ø.	15	ø	V	SIC	15	<i>M</i> -	K .	34	7.	sy	R	44	M	10	2 F	0	ø				'n	M	4 A)	31	2	Y)	11		D4			-		ø	1.1	14
6			-	1-1				-				1	5	1 march	4	50	to	hA	11	min	2.50	1		m	ica		/	K.L		-			-							The			
7									-				3	Teer	bell	au	- 51	tes	13	54	65	Va	sy's	n.	too	here	2.																1
F	ield	Tests	Meth	ø	1	12	-	-		4.	10	5		1 1	2.	25	-	-	-	¢	. 5	5		-	9	6.	85			/	. 1.	5	-	-	1	.4:	5						
-	pH- EC-	1:5	4		6.	5					5.9			1	8	. 8					8.	B				ø	-8				4.	P				9.	2						
	Slak Dispe	rsion n. earth	1	4	þ/ «	1	t ?	#	- 1	ø	10	-1	#		1/	20	-1	#		-	1/	2.	#			1/	22	#		1	1	22	#		1	13	2#	7	# a	Her	ren	row	de

Site 35 photographs

Soil profile photograph

Site 36 photographs

Soil profile photograph

Photos - Lscape/veg 387 - 388
 Soil 390 - 389 - 392

SITE DESCRIPTION

		Slope		٦Г		La	andform	Eleme	nt	_	-	Г	1	andf	orm Pa	ttern	_	1 [1	and Us	e	Г	-	-	Г		-	_						F			
eology	Eval.	Percent C			Туре	Too	Height	1	lidth	Len	igth		Pattern		M	dal	RMS		L	11	Mgt1 Mgt2	ſ	Describ	ed By		Date	ddmr	myy)			Proj	ect			Site	obs	S Type
2	AS	\$.2	F	7	PLI	A			1			1	7L	P			LP					12	301	RJ		19	12	1	8	F	SC	15	M		F3	7	
odki w 74	V Runoff L Perm	A Drainage M Samp Aggredn	Depth R Horiz	ту	/pe	Tax Unit Cod	e	т	уре	Map Ui	nit Code			I	File	n No	Air	Phot	tos Run N	2	Frame No	Dor	Die	tance	Conf	Depth	Gr S	Str	Por Sp F	ubstra	str	ot a Lith ND	Ger	ribe	Mass Str	MDS MC1	MC2
		Location	111				Aust	tralian S	Soil Clas	ssifica	tion			1	aso	med	71.5	1	GSG		Pueda an		M	crorelie	ef.		Su	urface	Coars	e Frag	gments	1	Outcro	p	Profi	e Diagrai	m
Zone E	asting / Lati	tude	Northing / L	ongitude		br0	Sub Ord	GG Or2	so	G/ F	1 F2	F3 F	4 F5	/	P	PF			aff	Disturb	ondition	Type	Cmpt	Prop	n	н	Abun Size	Sha	pe	Lith	Str	Alt unge	Lit	h	14		1.1
55 19	41	\$57	699	Ø-	75	3 DE	AE	CI	10	K/	ŧΕ	MC) X	-	-			-	-	11	1F	Z					Ø					9	X			1	-
osion	Turne	1	Veg	etation	Comm	unity	AB					_ 10		1		Î.				V	egetation	Comm	nunity D	etails		1		1					Ē		-5-	E	
Ceg GO No	Ref No	P.	1 .	C	Nar	ne	19 1	-	-	Stra	Form	OF T	Hei	pht 0	Cover	1		Speci	ies 1	. / . /	Prop			pecies 2		_	Prop	-		Spec	ies 3.	_	Pro	P	4	25	t
2		Dau	esquite	scri e	ub.	lour v	helk	6			n T	60	5	7		2	15	G	14	20		PR	01	PA	LL	I			1							17.	1
3			1		1			1		l		_		1										-		1	_			-		_					_
Horizor	n	Unper	th (m)	Boun	Di	Field Texture	ure	Perm	Drain	Book	Colou	vle	Nat	8	Mottie	85 2	5	.	Shane	agmen	ts Str	ada	Structur	e 8	Segr	egation E		acks	Strgth	qu	Cutan	5 Juci	Par	15	Roots	Not	7s
41		dob	649	0	0	IFS	100	-3	1. 1	d	VD	30	X	TYP	Siz	8	Ab	Siz	Oliaba	Clui	P	1/C ::	35	R	Ab	For	Str Str	Cra	N Con	E	AP K	Type Dat	E.	Str. Cor	L SG	(m)	-
		9.99	1940	14	1		1	P	7	4	17	1	M	1		1	Y					p			4				1-1	T					12		
21		008	\$35	D	Fs	SLM	C	2	40	6	YR	31	m	5	8		6					54	+A.	31	Ø				DA	5		-	+		12		
8224		110	1111				-	2	1	1		00		-	6		10					SE	SAJ	32					DA		_				10		2
ad .r	-	933	1pp		M	C (F	1	R	1	9	YR	93	7	1			Y	13	-			93	S A.	3	IK	S	4		291	P			-		12	-	
TT												-		-1	-														-			-					-
		6																					1										11			-	
												P											1														
171	1					T	-			1	-	11				1							-														-
								150				and a	1						r de g																		
	1.1					11																															
					1	-																	-														
d Tests	ø.	02	. Y	ゅ.	1	ø	-	9	. 2	5	1	S.	ø		55				9.	85				1			-		1	1	-						
0H-RP 1		7.5			1.5	>		-	7.5	5				8	5				8	5			-						-				-	_	-		-
C-1:5 1	-			-	-	17			_												11-			No	slas	(a)	00	de	ber	im	too	tmi	1	ot	Same	Pad	
aking 1	1	-			-	1 -			-					-	-1				-	-	1			-	nua	mg.	01	-		and a	Tes	J	1		1		
persion 1	-	-		-	-				-					+	-				1	-																	
/ fin. earth		-	1 1 1			1.4	_	1				1														1	11										

NOTES: Micaelous they fait . Some as site 18 oxactly

Site 37 photographs

Soil profile photograph

Slow	eronac	0-10	0.0K	ng d S.	elm 44	1 flu	oc la	yer h	y	1	SITE D	DESC	RIPTI	ON									_	suy	lace	3	14 198 -	40	23	
eology	Slope Percent Cl	ass 1w	B	Type g	Landfo Heigh	rm Eleme	idth	Length	F	La Pattern	ndform P	Pattern Modal	rms LP	L	Land Use	Mgt1 Mgt2	D Z	escribed	Ву	10	Date (dd	lmmyy) 2 /	8	F	Proj	ect 15A	1	s F	iite -38	Obs S Type
A SP Obs Hound	Aggredn	Depth R Horiz	Тури	Tax Un	it Code	т	/pe	ap Unit Co	de		Fi	ilm No	Air P	Run M	40	Frame No	Dor	Distar	ice juic	D	epth	GrS	Por	Substra	str	ND	Gen T	Lest in the sector	tass str	MC1 MC2
Zone Easting/La	Location htude	Northing/L	ongitude 39	Cont Cont	ord SL OF	ustralian S d GG B G	Sol Class Sol Sol	F1 F F1 F	2 F3 F4	F5	+-1	PPF	-	GSG aff	1 Disturb	urface ndition HF	Agent	Cmpt Prop	VI	н	Abun	Surfac St St St	e Coar	se Frag Lith	gments Str	Alt U	Lith	F	Profile D	liagram
rosion 2 Ref No 2 2 2 Ref No 1 2 3	Yery t	veg gem/spice bau	etation C erse chémia	Name Boree t Ma	seru	Box b. te sh	ledne	ET ateats I W L	9 te ci	Heigh	t Cover	A	si CA1	EP	ve HR	getation Prop	Communication of the second se	s G	ails	dat h	Pro Pro	abs/m	nody	Spec	n Sm	1 -	Prop	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		19 9 m m m m m m m m m m m m m m m m m m
Horizon	Dept	th (m)	Bound shape	Field Field To	Texture	Dual	B	ook Col	our v c	Moist	Mott	ties	Abun	Coarse F	Fragment:	s Str	Srade Size S	tructure Type	Cmpd	Segrega	utions	Str Cracks	Strgt	abric H	Cutan:	Detinct S	Pans	RC	pots s	Samples (m)
41	ØØØ	ØØ3	C	FSL	C	2/3,1	+ 10	5 YR	43	M	ø		ø			M	153	SB	19	8			D			-	-	1	1 0	2-02
321	\$ \$ 3	\$35	C	FSL	MC	24	+ 14	5 YR	43	M	ø		ø				54	AB	19	8			D	-	-	-	-	1	16	2-1-
320Ky	\$35	\$65	G	Lnc	(F)-	+ 2	+ 19	5 yR	32	M	ø		9	L			53	AB	11	K	51	1	VT 2	4	-	-	-		00	5.5-
323	\$65	140	D	MC	(F)	2	410	\$ Y1	233	M	Ø		Ø			m	54	- AB	N I	34	× 2		T4	4		-	-		91	D•€-
824 y	1	15\$		МНС	E)	21	+ 14	pyn syn	44	MM	ø		Ø			M	/5 4	AB	0	2 Y	×2		74	4					ø	1.1-
		IŢ						H															4							
Id Tests 5 0 . pH-RP 1 pH-1:5 4 EC-1:5 1	8-5		¢. 7,	19.0		9	· 25			9	55	3		\$. }	9:0			1.	13	ø		/	.4.29	5.9						

· Variable surface condition - hardsetting/firmpedial to this (0-02m), weak to mod SM (SIGR). · Compane with harvier gelgied Bore scrub & site 5; dominant unit is hardset to weakly SM unit - sites 14, 34, 38

Site 38 photographs

Soil profile photograph

1 mon mud chao . Insito

Site 39 photographs

Appendix 3: Soil Map Boundary Observation Notes

Appendix 3 Soil map boundary observation notes

Observation site (M) reference number	Mapping observation comment
M1	Small patch of elevated open downs marks boundary between Cretaceous landscape and backplain alluvium (BKP) same as site 26 – C1 unit
	Confirms Mitchell Gross cracking clay on BKD alluvium marks boundary
1012	Commission Create accurate and CVD allowing some as site $f = D1$ unit
<u>M</u> 2	Morks houndary hotware one downs and Darse some on BKD allywing
IV15	same as site $38 = B2$ unit
M4	Marks boundary between BKP alluvium Boree scrub unit and incised
	oxbow to the east, same as site $38 = B2$ unit
M5	Severely scalded, unvegetated, BKP alluvium unit, same as site 4 = B3 unit
M6	Confirms sparse Boree scrub and hardsetting to firm brown cracking clay,
	same as site $38 = B2$ unit
M7	Narrow band of "black soil" with Mitchell Grass on BKP alluvium,
	confirms boundary with adjacent Boree scrub, same as site $6 = B1$ unit
M8	Marks boundary between gilgaied self-mulching clay and Boree scrub and
	BKP with Mitchell Grass, same as site 5 = B2g unit, also confirms scalded
	BKP alluvium to north
M9	Confirms BKP Boree scrub unit, same as site $38 = B2$ unit
M10	Confirms BKP Boree scrub unit, same as site $38 = B2$ unit
M11	Narrow band of "black soil" with Mitchell Grass on BKP alluvium,
	confirms boundary with adjacent Boree scrub, same as site $6 = B1$ unit
M12	Confirms BKP Mitchell Grass open downs unit, same as site $6 = B1$ unit
M13	Confirms BKP Mitchell Grass open downs unit, same as site $6 = B1$ unit
M14	Confirms BKP Boree scrub unit, same as site 38 = B2 unit, marks change
	from scalded BKP B3 unit moving north
M15	Marks boundary change from clay BKP alluvium to elevated terrace plain
	(TEP), same as site 3 = A1 unit
M16	Confirms incised River Red Gum swale unit, same as site $11 = A3$ unit
M17	Marks boundary between incised swale and elevated TEP, same as site $10 =$
N (10	
M18	Confirms typical elevated TEP with Ghost Gum/Bloodwood, same as site $10 = A1$ unit
M19	Confirms boundary change to small patch of less elevated TEP surface,
	lower lying and Coolibah, old swale remnant from old scroll plain, same as
	site $12 = A2$ unit
M20	Confirms boundary change to small patch of less elevated TEP surface,
	lower lying and Coolibah, old swale remnant from old scroll plain, same as
	site $12 = A2$ unit
M21	Confirms and marks boundary of eastern/southern extent, narrow swamp
	located on southern side of scalded remnant, weakly gilgaied and heavy
	cracking clay/self-mulching and Boree scrub and Coolibah, same as site 5 =
	B2g unit
M22	Marks boundary between scalded B3 unit and B2 Boree scrub unit on BKP
	alluvium within the eastern TEP, same as site $14 = B2$ unit
M23	Confirms boundary between elevated and less elevated TEP and confirms
	Coolibah and epipedal vertosol at eastern end of A2 unit
MI24	Confirms boundary between elevated and less elevated TEP and confirms
	Marka abanga from loss algorated to fully algorated TED, some on site 15
11/20	1 where 1 and 1 and 1 are 1 and 1 and 1 are 1 are 1 and 1 are 1 are 1 and 1 are 1 are 1 are 1 and 1 are 1
M26	Confirms elevated levee/terrace adjacent to river channel, some as site 1 -
11120	A1 unit
M27	Low lying channel bank immediately adjacent to Flinders River, same as
	site $11 =$ River Red Gum, flooded and channelized = A3 unit

Observation site (M) reference number	Mapping observation comment
M28	Confirms and marks boundary of western/northern extent, narrow swamp
	located on southern side of scalded remnant, weakly gilgaied and heavy
	cracking clay/self-mulching and Boree scrub and Coolibah, same as site 5 =
	B2g unit
M29	Marks boundary between less elevated and fully elevated TEP, same as site
	10 = A1 unit
M30	Small patch of A1 unit within larger A2 unit, too small to map, same as site
M21	10 = A1 unit Made have between eleveted TED = A1 without indicated Diver Ded
M31	Marks boundary between elevated $IEP = AI$ unit and incised Kiver Ked Gum swale of site $11 - A3$ unit
M32	Marks boundary between elevated $TEP = A1$ unit and incised River Red
11132	Gum swale of site $11 = A3$ unit
M33	Confirms incised River Red Gum swale unit, same as site $11 = A3$ unit
M34	Incised swale of site 11, at northern end adjacent to Flinders River, same as
	site 11
M35	Typical TEP and Ghost Gum/Bloodwood, same as sites 1 and 2 = A1 unit
M36	Confirms elevated front TEP with Ghost Gum and Bloodwood, same as site
	2 = A1 unit
M37	Lower area within terrace and weak channelling and Coolibah, same as site
	$\frac{12 = A2 \text{ unit}}{12 = A2 \text{ unit}}$
M38 M20	Boundary check site to confirm harrow heck of A2 unit, same as site 12
M39	commiss less elevated, Coolidan and A2 unit and marks division between
M40	Confirms less elevated Coolibab and A2 unit and marks division between
14140	areas of elevated TEP/A1 unit to east and west
M41	At boundary between A2 unit and A4 unit, change to oxbow Coolibah and
	self-mulching vertosol, same as site $16 = A4$ unit
M42	At boundary of elevated TEP and transition to BKP, also close to drop off to
	nearby oxbow (A4 unit), same as site $3 = A1$ unit
M43	Small patch of A2 unit at transition between elevated TEP and B2 unit BKP
	alluvium, incidence of localised seepage, minor channelling, same as site 12
	= A2 unit
M44	Confirms sparse Boree scrub on BKP, B2 unit, same as site 14 and 38 and
M45	Confirms sparse Porce sorth on PKD P2 unit some as site 14 and 28 and
WI45	marks boundary to TEP and adjacent incised oxbow but not close to TEP
	boundary
M46	Marks boundary change from B2 unit to scalded BKP B3 unit
M47	Confirms Boree scrub/unit B2 on BKP, marks boundary with incised oxbow
M48	Same as sites 14 and 38, confirms Boree BKP unit = B2 unit
M49	Same as sites 14 and 38, confirms Boree BKP unit = B2 unit
M50	Marks distinct change from sparse Boree scrub B2 unit to open Mitchell
	Grass, same as site $6 = B1$ unit
M51	Marks boundary changes to patch of heavy, really gilgaied self-mulching
	vertosol and Boree scrub and Coolibah swamp, same as site $5 = B2g$ unit
M52	Marks boundary changes to patch of heavy, really gilgated self-mulching
M52	Vertosol and Boree scrub and Coolibab at transition to PKD and adjacent to insight
CLIVI	α oxbow same as site 12 exactly – Δ^2 unit
M54	Severely scalded and occasional Boree scrub/Rauhinia same as site 20– R3
	unit
M55	Scrubby Coolibah and distinct drainage feature, same as site $21 = A2$ unit
M56	Severely scalded, same as site $20 = B3$ unit
M57	Ghost Gum, Bloodwood \pm Bauhinia, at boundary between elevated TEP and
	transition to BKP, exactly the same as site $19 = A1$ unit

Observation site (M) reference number	Mapping observation comment
M58	Confirms typical elevated TEP/A1 unit, same as site 19
M59	Marks boundary between A1 unit/TEP and A2 unit to east
M60	Marks boundary change from A4 unit to A2 unit at northern end of oxbow,
	self-mulching vertosol and Coolibah and swamp feature at M60, distinct
	change just north to A2 unit
M61	Confirms A2 unit and marks the finish of the oxbow and start of A2 unit
M62	Marks boundary between small patch of Boree scrub and minor scalding
	(change from A2 unit to B2 unit), weakly channelled A2 unit to the north
	and B2 unit to the south, also marks boundary to elevated TEP just to the
	east
M63	Marks boundary between A2 unit and A1 unit near front of TEP
M64	Marks boundary change from less elevated Coolibah, non-cracking clay to
	elevated TEP to west, same as site $12 = A2$ unit
M65	Confirms elevated TEP and Ghost Gum/Bloodwood noted in map boundary
	observation at M64, same as site $19 = A1$ unit
M66	Marks boundary change from elevated TEP with A1 unit to less elevated
	Coolibah non-cracking clay = A2 unit, same as site 19 at M66 and M67 =
	A1 unit
M67	Marks boundary change from elevated TEP with A1 unit to less elevated
	Coolibah non-cracking clay = A2 unit, same as site 19 at M66 and M67 =
	A1 unit
M68	Confirms less elevated Coolibah and non-cracking clay, same as site 12 =
	A2 unit
M69	Severely scalded and very sparse Boree scrub, effectively same as site 13
	and $20 = B3$ unit
M70	Marks boundary change from scalded B3 unit to A2 unit, with Coolibah and
	Bauhinia = A2 unit
M71	Confirms BKP Boree scrub unit, same as site 36 = B2 unit
M72	Confirms "black soil" with Mitchell Grass on BKP alluvium, confirms B1
	unit, same as site 35
M73	Confirms "black soil" with Mitchell Grass on BKP alluvium, confirms B1
	unit, same as site 35
M74	Confirms BKP Boree scrub unit, same as site 36 = B2 unit
M75	Confirms "black soil" with Mitchell Grass on BKP alluvium, confirms B1
	unit, same as site 35
M/6	Confirms BKP Boree B2 unit, borderline brown dermosol/vertosol with
	occasional Boree and shrubs
M//	Confirms eastern arm of incised oxbow, actively flooded, self-mulching
1/70	cracking clay and Coolibah, same as sites 30 and $16 = A4$ unit
M/8	Marks boundary between elevated TEP and incised oxbow, same as site 24
1/70	
M/9	Marks boundary between elevated TEP and incised oxbow, same as site 24
MOO	= AI unit
M80	Narrow drainage area within elevated TEP, shrubby Coolidan confirms unit
M01	A2, same as site 29
IMI81	Small patch of sheet eroded ATe unit between narrow terrace swale and incided exhaust some as site $21 - A_{12}$ whit
	Confirms indicad active exhaust fleed marks and set SM alow and
11102	Continuity and solve oxbow, nood marks apparent SM cray and Coolibable same as site $30 = 44$ unit
M92	Confirms self mulabing alary on sidealand to alarets d ralling derived
10100	Community sent-influencing cray on sidestope to elevated forming downs landscape and Borzo scrub, some as site $27 - C2$ unit, slope measured at
	and scape and boree series, same as site $27 = C2$ unit, stope measured at 10%
	10/0 Confirms extent of graded TED marging, avtansingly shoot graded but
10104	minimal rill or gully erosion same as site 31 – A lo unit
	A = A = A

Observation site (M) reference number	Mapping observation comment
M85	Confirms extent of eroded TEP margins, extensively sheet eroded but
	minimal rill or gully erosion, same as site $31 = A1e$ unit
M86	Marks boundary between elevated intact TEP/A1 unit and eroded margins
	characterised by site 31, same as site 23/24
M87	Marks boundary between elevated TEP/A1 unit and less elevated Coolibah
	country of A2 unit, same as site 23/24
M88	Confirms Coolibah and non-cracking clay on less elevated TE, same as site
	25 = A2 unit
M89	Confirms Coolibah and non-cracking clay on less elevated TE, same as site
	25 = A2 unit
M90	Confirms Coolibah and non-cracking clay on less elevated TE, same as site
	25 = A2 unit
M91	Narrow front levee associated with elevated TEP and A1 unit, same as site 1
M92	Marks boundary between end of narrow levee/A1 unit and start of less
	elevated A2 unit with Coolibah
M93	Small patch of intact elevated TEP/A1 unit within larger polygon mapped as
	A1e unit (eroded margins), same as site 24
M94	Boree scrub on rolling downs footslope, same as site $27 = C2$ unit
M95	Boree scrub on rolling downs footslope, very gravelly epipedal cracking to
	non-cracking clay/dermosol, not self-mulching clay, effectively same as site
	27 = C2 unit
M96	Confirms extension of A2 unit westwards outside the study area boundary,
	same as site 12/25

Appendix 4: Soil Analytical Methods and Testing Program

Appendix 4 Soil analytical methods and testing program

The following suites of soil analyses were performed on samples from the 15 Mile Project depending on the site type and sample depth. For detailed profiles (with the exception of water drillers bore sites 8 and 9), a full profile salinity screen (analytical suite 1 **Table 1**) was performed. Full profile physical and chemical analysis (analytical suite 2 **Table 2**) was performed on all soil unit representative profiles (also referred to as analysed sites) and surface soils from these profiles were analysed for inherent fertility (analytical suite 3 **Table 3**).

All samples were air dried at 40°C, and ground and sieved to <2 mm prior to analysis and were analysed according to procedures described by Rayment and Lyons (2011), McKenzie *et al.* (2002), Richards (1965) and Day (1965).

Table 4 provides a summary of the number of samples analysed for each analytical suite.

Laboratory analysis and units	Use and interpretation of data	Method ¹
pH (1:5 soil/water)	Measure of the acidity or alkalinity of soil material	4A1
Electrical conductivity (EC 1:5 soil/water)	Screening test to assess potential salinity hazard	3A1
Soluble chloride (Cl mg/kg)	Measure of the level of soluble Cl in the soil solution; provides a direct estimate of the soluble NaCl salt concentration and aids in the interpretation of EC1:5 soil/water results (particularly in soils containing gypsum)	5A2

Table 1: Salinity screening (Suite 1)

1 Method codes are from Rayment and Lyons (2011) unless otherwise stated.

Table 2: Profile physical and chemical analysis (Suite 2)

Laboratory analysis and units	Use and interpretation of data	Method ¹		
Cation chemistry				
Cation exchange	CEC is a measure of a soils capacity to retain cations based on the	15I3 /		
capacity (CEC/ECEC	surface area and charge density of soil constituents (particularly	15J1		
cmol/kg)	clay and organic matter fractions). CEC influences physical and			
	chemical properties particularly in clay rich materials			
Exchangeable calcium	Measure of the amount of Ca on the cation exchange complex	15C1 /		
(cmol/kg)		15A1		
Exchangeable	Measure of the amount of Mg on the cation exchange complex	15C1 /		
magnesium (cmol/kg)		15A1		
Exchangeable sodium	Measure of the amount of Na on the cation exchange complex	15C1 /		
(cmol/kg)		15A1		
Exchangeable	Measure of the amount of K on the cation exchange complex	15C1 /		
potassium (cmol/kg)		15A1		
Exchangeable acidity	Measure of the amount of Al and H on the cation exchange	15G1		
(Al and H) (cmol/kg)	complex			
Sodicity and dispersion				
Exchangeable sodium	Measure of soil sodicity, which affects the physical behaviour	15N1		
% (ESP)	(permeability/density/strength) and clay dispersion. ESP measures			
	the relative abundance of Na on the cation exchange complex			
Dispersion ratio (R1)	Measure of soil dispersion potential based on the ratio of silt and	NA		
	clay dispersed during testing to total silt and clay content			
	expressed as a percentage			
Laboratory analysis and units	Use and interpretation of data	Method ¹		
----------------------------------	--	---------------------		
Particle size analysis ((PSA)			
% coarse sand $(0.2 -$	Visible sand range, open pore spaces, friable, permeable	Day		
2 mm)		(1965)		
% fine sand (0.02 –	Non-visible sand; causes packing and increased density,	Day		
0.2 mm)	"bulldusty", intractable, hardsetting conditions. A high proportion	(1965)		
	causes poor soil cohesion and high erodibility.			
% silt (0.002 -	Causes maximum packing and density, dilatancy, surface sealing,	Day		
0.02 mm)	"bulldusty", intractable, hardsetting conditions., highly erosive	(1965)		
	fraction. A high proportion causes poor soil cohesion and high			
	erodibility.			
% clay (<0.002 mm)	Colloidal fraction, determines CEC, moisture holding capacity,	Day		
	shrink-swell characteristics, soil structure and cracking behaviour	(1965)		
Moisture retention (us	ed to calculate PAWC)			
Air dry moisture	Used to convert test data from an air dry basis to standardised oven	2A1		
content (ADMC %)	dry basis			
15 bar (pressure	Estimate of moisture retention at approximate wilting point;	Dichards		
plate/gravimetric)	calculated gravimetrically as moisture retained after 15 bar	(1065)		
	pressure plate losses	(1903)		

1 Method codes are from Rayment and Lyons (2011) unless otherwise stated.

Table 3: Surface (A1) soil fertility analysis (Suite 3)

Laboratory analysis and units	Use and interpretation of data	Method ¹
Total organic carbon (%C)	Provides an estimate of the total carbon store (%C) in the soil;	8B1
	used to estimate organic matter (OM %) content	
Total (Kjeldahl) nitrogen	Provides an estimate of the total store of nitrogen (%N) in the	7A2
(%N)	soil that can potentially be mineralised	
Bicarbonate extractable	Provides a reliable and consistent estimate of plant available	9B2
phosphorus (mg/kg P)	phosphorus (P) in the soil across a range of pH conditions	
Extractable sulfate sulfur	Provides a reliable and consistent estimate of plant available	10B3
(mg/kg)	sulfate sulfur (S) in the soil	
Extractable trace elements -	Provides a reliable and consistent estimate of plant available	12A1
Cu, Fe, Mn, Zn (ppm)	copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) in the soil	

1 Method codes are from Rayment and Lyons (2011) unless otherwise stated.

Observation type	Soil Unit and site numbers	Analytical suites	Nominal sample depths *	Number of profiles	Final number of samples analysed
	A1 (2 and deep core 24) A2 (25 and	Suite 1	Standard cores to 1.5 m A1 or 0-0.1, 0.1- 0.2, 0.2-0.3, 0.5- 0.6, 0.8-0.9, 1.1- 1.2, 1.4-1.5 m	8	69
Analysed sites (Soil Unit representative profiles) including 2 deep cores	deep core 12) A4(16) B1(6) B2 (38) B3 (20) C1 (26)		Deep cores to ≥ 3.5 m 1.7-1.8, 2.0-2.1, 2.3-2.4, 2.6-2.7, 2.9-3.0, 3.1-3.3 m	2	12
	C2 (27)	Suite 2	A1 or 0-0.1, 0.1- 0.2, 0.2-0.3, 0.5- 0.6, 0.8-0.9, 1.1- 1.2, 1.4-1.5 m	10	69
		Suite 3	A1 or 0-0.1 m	10	10
Remaining detailed sites	A1 (1, 3, 10, 15, 17, 17, 19, 22, 23) A1e (31) A2 (18, 21) A3 (11) B1 (35) B2(14, 36) B2g (5) B3 (4, 13, 34)	Suite 1	A1 or 0-0.1, 0.1- 0.2, 0.2-0.3, 0.5- 0.6, 0.8-0.9, 1.1- 1.2, 1.4-1.5 m	19	108
Deep cores (water drillers chip samples) [#]	A1 (7) B2 (39)	Suite 1	2, 4, 6, 8, 10, 12, 14 m	2	14

Table 4: Analytical regime

* Actual sampling depths collated will vary to reflect soil horizonation (see complete record of analysed samples in certificates of analysis in **Appendix 8**).

[#] Deep water drillers cores 8 and 9 (in Soil Unit A1) were not analysed.

Appendix 5: Salinity Screening Data from Detailed Site Profiles

Appendix 5 Salinity screening data from detailed site profiles

Soil Unit	Site No	Horizon	Depth (m)	pH _{1:5}	EC _{1:5} (dS/m)	Cl (mg/kg)	Soil Unit	Site No	Horizon	Depth (m)	рН _{1:5}	EC _{1:5} (dS/m)	Cl (mg/kg)	Soil Unit	Site No	Horizon	Depth (m)	рН _{1:5}	EC _{1:5} (dS/m)	Cl (mg/kg)
	_	A1	0-0.05	7.2	0.126	48			A1	0-0.08	7.3	0.096	25			A1	0-0.1	7.1	0.058	<5
	_	B21	0.3	7.5	0.043	<5			B21	0.3	7.9	0.039	8.4			A1	0.2	6.9	0.032	<5
Δ1	1.	B22	0.6	7.9	0.031	<5	Δ1	15	B22	0.6	8.3	0.055	7.4			B21	0.3	7.2	0.027	<5
	1	2D1	0.9	8.1	0.030	<5	~ .	15	2D1	0.9	8.4	0.041	5.8			B21	0.6	7.5	0.027	<5
		2D1	1.2	8.2	0.025	<5			2D1	1.2	8.3	0.040	7.2			B22	0.9	7.8	0.035	<5
		2D2	1.5	8.2	0.034	8.2			2D1	1.5	8.3	0.047	11			2D1	1.2	8.6	0.083	<5
	-	A1	0-0.06	7.0	0.166	71			A1	0-0.07	6.4	0.067	5.7	A1	24	2D1	1.5	8.9	0.075	<5
	-	B21	0.2	7.5	0.047	6.1			B21	0.3	7.7	0.071	33			2D2k	1.8	8.0	2.83	1416
	-	B21	0.3	7.7	0.034	6.2	Δ1	17	B22k	0.6	8.7	0.110	18			2D3k	2.1	9.0	0.065	12
A1	2	2D1	0.6	7.7	0.026	9.6	~ .	17	2D1	0.9	8.8	0.126	27			2D3k	2.4	8.9	0.078	12
	-	3B2	0.9	8.1	0.032	8.1			2D1	1.2	8.8	0.128	21			3D4	2.7	8.8	0.130	21
	-	4D2	1.2	8.3	0.044	18			2D2	1.5	8.9	0.092	8.5			3D5	3.0	8.9	0.110	20
		5B2	1.5	8.1	0.032	8.4			A1	0-0.07	7.0	0.199	13			4D6	3.3	8.4	0.022	9
	-	A1	0-0.05	7.3	0.089	40			B21	0.3	7.6	0.049	6.3			A1	0-0.1	6.7	0.071	10
	-	B21	0.3	7.4	0.029	7.5	Δ1	19	B22	0.6	8.0	0.053	5.5			B21	0.3	7.2	0.026	5.7
Δ1	3.	B22	0.6	7.9	0.048	11	~ .	1)	B23k	0.9	8.6	0.108	9.0	A1e	31	B21	0.6	7.7	0.050	8.1
	5.	B22	0.9	8.4	0.053	11			B23k	1.2	8.6	0.209	21	7110	51	B22k	0.9	8.0	0.075	15
	-	2D1	1.2	7.9	0.504	11			2Dk	1.5	8.6	0.343	61			B22k	1.2	8.1	0.095	23
		2D1	1.5	8.1	1.285	38			A11	0-0.06	6.7	0.046	<5			B23k	1.5	8.3	0.100	20
	-	FSLMC	2.0	8.2	0.458	31			A12	0.2	7.2	0.022	<5			A1	0-0.03	7.3	0.241	151
	-	FSLC	4.0	8.2	0.178	14	A1	22	B2	0.3	7.4	0.025	<5			B21	0.2	7.5	0.037	<5
	-	gravel	6.0	8.0	0.039	8			2D1	0.6	8.2	0.026	<5			B22	0.3	7.5	0.033	<5
A1	7	MHC	8.0	7.7	2.19	4.2			2D1	0.9	8.1	0.037	<5			B23	0.6	7.9	0.041	<5
	-	MHC	10.0	9.3	0.547	37			A1	0-0.1	8.2	0.110	<5			B23	0.9	8.2	0.065	<5
	-	MHC	12.0	9.3	0.513	4.7	Δ1	23	B21	0.3	8.2	0.066	<5			B23	1.2	8.2	0.133	33
		MHC	14.0	9.1	0.291	3.4		23	B22	0.6	8.3	0.073	<5	A2	12	B24	1.5	8.2	0.200	87
	-	A1	0-0.05	7.3	0.088	21			2D1	0.9	8.8	0.038	<5			B24	1.8	8.2	0.178	50
	-	B21	0.3	7.3	0.030	9.2										2D1	2.1	8.3	0.108	32
Δ1	10 -	B22	0.6	7.3	0.034	12										2D1	2.4	8.2	0.068	20
	10	2D1	0.9	7.8	0.023	11										3D2	2.7	8.2	0.037	14
		2D1	1.2	7.9	0.021	8.6										3D3	3.0	7.8	0.031	14
		2D1	1.5	8.2	0.030	11										3D3	3.3	8.1	0.271	29

Soil Unit	Site No	Horizon	Depth (m)	рН _{1:5}	EC _{1:5} (dS/m)	Cl (mg/kg)	Soil Unit	Site No	Horizon	Depth (m)	рН _{1:5}	EC _{1:5} (dS/m)	Cl (mg/kg)	Soil Unit	Site No	Horizon	Depth (m)	рН _{1:5}	EC _{1:5} (dS/m)	Cl (mg/kg)
	_	A1	0-0.04	6.7	0.201	35			A1	0-0.02	7.9	0.288	56			FSLC	2.0	8.6	0.647	151
	_	B21	0.3	8.1	0.116	6.0			B21k	0.2	8.3	0.070	<5			LMC	4.0	8.0	2.84	194
Δ2	18 -	B22k	0.6	8.4	0.181	14			B21k	0.3	8.9	0.111	<5			LMC	6.0	8.2	3.72	142
~-	10	B22k	0.9	8.5	0.209	38	B1	6	B22ky	0.6	9.0	0.578	484	B2	39	LMC	8.0	8.5	4.51	777
	_	B23k	1.2	8.5	0.193	42			B22ky	0.9	8.0	3.66	1837			MHC	10.0	8.4	5.54	899
		B24k	1.5	8.7	0.191	43			2Dy	1.2	7.8	4.35	1551			MHC	12.0	7.9	4.99	556
	-	A1	0-0.03	6.7	0.117	23			2Dy	1.5	7.7	4.15	1576			HC	14.0	8.7	1.717	537
	_	B21	0.3	8.0	0.124	19			A1	0-0.03	8.2	0.160	56			A1	0-0.03	7.7	0.148	31
Δ2	21 -	B22ky	0.6	8.1	1.610	960			B21k	0.3	8.6	0.325	252			B21	0.3	8.9	0.393	277
7.2		B22ky	0.9	8.0	1.409	895	B1	35	B22ky	0.6	8.4	1.07	1205	B2a	5	B22	0.6	8.3	2.075	2195
	-	B23ky	1.2	8.8	1.164	979			B23y	0.9	8.7	1.296	1349	9	5	B23ky	0.9	8.0	2.61	1675
		B23ky	1.5	8.9	1.239	966			2D1y	1.2	8.2	2.86	858			B23ky	1.2	8.1	1.719	1656
	-	A11	0-0.1	7.0	0.139	15			2D1y	1.5	9.1	0.746	755			2Dk	1.5	8.2	1.965	1399
	_	A12	0.2	7.7	0.253	261			A1	0-0.04	7.2	0.196	93			A1	0-0.04	6.8	0.041	<5
	-	B21	0.4	8.2	0.802	873			B21k	0.3	8.8	2.77	2491			B21	0.2	6.5	0.164	146
A2	25	B21	0.6	8.5	1.261	1020	B2	14	B22ky	0.6	9.0	2.43	2048	B3	4	B21	0.3	6.7	0.309	355
	-	B22ky	0.9	8.9	1.336	965		· · .	B22ky	0.9	8.6	3.76	1725			B22	0.6	8.2	0.294	303
	-	B23ky	1.2	9.0	1.595	953			B23y	1.2	8.9	3.07	1664			B23k	0.9	8.8	0.413	351
		B23ky	1.5	8.5	2.82	895			B23y	1.5	9.1	2.53	1799			B23k	1.2	8.9	0.471	391
	-	A1	0-0.04	7.3	0.105	42			A1	0-0.02	7.2	0.084	37			A1	0-0.08	7.2	0.057	34
	-	B21	0.3	8.5	0.107	9			B21	0.3	8.5	0.255	241			B21	0.3	8.3	1.852	2352
A3	11 -	2D1	0.6	8.7	0.067	14	B2	36	B22ky	0.6	8.5	0.921	1055	B3	13	B22y	0.6	8.2	2.56	2211
		2D3	0.9	8.7	0.064	8			2D1	0.9	8.4	0.890	1053			B22y	0.9	9.1	2.55	2664
	-	2D3	1.2	8.7	0.064	11			2D2	1.2	8.4	0.800	967			B22y	1.2	8.8	2.92	2436
		2D4	1.5	8.7	0.083	8			2D2	1.5	8.1	0.726	895			B23y	1.5	8.4	4.63	2281
	-	A1	0-0.02	6.8	0.234	35			A1	0-0.03	8.5	0.183	<5			A12	0.01-	8.3	0.731	914
	-	B21	0.2	7.1	0.060	7.2			B21	0.2	9.2	1.271	1485			D011	0.08	0.0	2.00	2057
		B21	0.3	7.8	0.073	9.9			B21	0.3	8.9	2.89	2783			B21k	0.2	8.8	2.33	2857
A4	16	B22k	0.6	8.7	0.176	21	B2	38	B22ky	0.6	8.5	5.84	3880	B3	20	B21k	0.3	8.9	5.89	2595
	-	B22k	0.9	8.7	0.589	372			B23y	0.9	8.5	6.11	4182			B22yk	0.6	8.8	7.6	2505
	-	B22k	1.2	8.6	0.770	471			B24y	1.2	8.6	6.24	3892			B22yk	0.9	8.7	6.84	1643
		B23y	1.5	7.9	2.29	451			B24y	1.5	8.9	4.38	3994			B23yk	1.2	8.6	6.27	1362
																B23yk	1.5	9.3	2.85	1203

Soil Unit	Site No	Horizon	Depth (m)	рН _{1:5}	EC _{1:5} (dS/m)	Cl (mg/kg)
		A11	0-0.1	6.1	0.161	29
		A12	0.2	6.6	0.055	14
		B21	0.3	7.2	0.079	15
B3	34	B21	0.6	8.8	0.833	999
		B22	0.9	8.7	1.647	1757
		B22	1.2	8.8	1.401	1534
		B23y	1.5	8.8	0.095	13
		A1	0-0.07	8.1	0.130	<5
		B21	0.2	7.7	1.536	<5
		B22	0.3	7.7	2.40	14
C1	26	B23y	0.6	7.8	2.99	187
		B23y	0.9	7.8	3.85	597
		B23y	1.2	7.9	4.38	964
		B3y	1.5	8.0	4.32	1064
		A1	0-0.04	8.8	0.100	6.5
		B21	0.2	9.2	0.395	371
		B21	0.3	9.0	0.912	908
C2	27	B22ky	0.6	8.4	2.60	1035
		B22ky	0.9	8.3	3.38	1068
		B22ky	1.2	9.2	0.945	798
		B3k	1.5	8.9	1.516	1627

Appendix 6: Mean Soil Unit Salinity Data

Appendix 6 Mean soil unit salinity data

Calculation of EC_{Cl}, and EC_e values

Assessment of soil salinity characteristics within the 15 Mile project area uses Soluble Chloride $(Cl_{1:5} mg/kg)$ measurements rather than $EC_{1:5}$ (dS/m) data because of the presence of crystalline gypsum throughout many of the soil profiles. Naturally occurring crystalline gypsum causes artificially elevated $EC_{1:5}$ readings following standard 1:5 laboratory dilutions, and such data is often difficult to interpret. Soluble $Cl_{1:5}$ measurements are not affected in this way and provide a more consistent and reliable assessment of soil salinity. To ensure the salinity dataset across the entire project area is both consistent and comparable, Soluble $Cl_{1:5}$ data has been converted firstly to EC_{Cl} and then to EC_e using the following equations and conversion factors:

- 1. % $Cl_{1:5} = Cl_{1:5} (mg/kg) \times 10^{-4}$
- 2. $EC_{Cl} (dS/m) = 6.64 \text{ x } \% Cl_{1:5}$ (per weight of soil)
- 3. $EC_e (dS/m) = EC_{Cl} (dS/m) x$ multiplier factor

The multiplier factor used in the conversion of EC_{cl} to EC_e in Equation 3 is necessary to account for differences in the moisture holding properties of soils, and uses soil texture and estimated clay % in its approximation. Multiplier factors used in the calculations are presented in the table below (Hazelton & Murphy 2016).

Soil texture	Multiplier factor
Sand, loamy sand, clayey sand	23
Sandy loam, fine sandy loam, light sandy clay loam	14
Loam, fine sandy loam, silty loam, sandy clay loam	9.5
Clay loam, silty clay loam, fine sandy clay loam, sandy clay, silty clay, light clay	8.6
Light medium clay	8.6
Medium clay	7.5
Medium heavy clay, heavy clay	5.8

The mean pH, EC 1:5, soluble Cl, calculated ECe and calculated weighed profile mean (WPM) EC_e for all soil units is presented in **Table 1**.

Soil Unit	Depth (m)	Mean pH _{1:5}	pH _{1:5} range	Mean EC _{1:5}	EC _{1:5} range	Mean Cl (mg/kg)	CI range (mg/kg)	Calc. EC _{CI} (dS/m)	Calc. ECe (dS/m)
A1	0.1	7.17	6.4-8.2	0.10	0.05-0.20	24	5-71	0.02	0.15
	0.2	7.16	6.9-7.5	0.04	0.03-0.05	6	5-6	0.00	0.04
	0.3	7.59	7.2-8.2	0.04	0.03-0.07	9	5-33	0.01	0.05
	0.6	7.97	7.3-8.7	0.05	0.03-0.11	8	5-18	0.01	0.06
	0.9	8.28	7.8-8.8	0.05	0.02-0.13	9	5-27	0.01	0.09
	1.2	8.32	7.9-8.8	0.13	0.02-0.50	12	5-21	0.01	0.14
	1.5	8.40	8.1-8.9	0.24	0.03-1.29	19	5-61	0.01	0.24
							ECe (WPM)	to 1.2 m:	0.09
A1e	0.1	6.72	-	0.07	-	10.4	-	0.01	0.07
	0.3	7.23	-	0.03	-	5.7	-	0.00	0.03
	0.6	7.73	-	0.05	-	8.1	-	0.01	0.05
	0.9	8.02	-	0.08	-	14.8	-	0.01	0.08
	1.2	8.07	-	0.10	-	23.1	-	0.02	0.13
	1.5	8.34	-	0.10	-	19.8	-	0.01	0.11
							ECe (WPM)	to 1.2 m:	0.07
A2*	0.1	7.01	6.7-7.3	0.22	0.20-0.24	93	35-151	0.06	0.53
	0.2	7.49	-	0.04	-	5	-	< 0.01	0.02
	0.3	7.80	7.5-8.1	0.07	0.03-0.12	5	5-6	< 0.01	0.03
	0.6	8.16	7.9-8.4	0.11	0.04-0.18	9	5-14	0.01	0.05
	0.9	8.35	8.2-8.5	0.14	0.07-0.21	22	5-38	0.01	0.12
	1.2	8.37	8.2-8.5	0.16	0.13-0.19	37	33-42	0.02	0.21
	1.5	8.47	8.2-8.7	0.20	0.19-0.20	65	43-87	0.04	0.37
A 0.*	0.1	E	<u>Ce (WPM) t</u>	<u>o 1.2 m fo</u>	or elevated te	rrace plains	s (TEP sites 12	2 and 18):	0.13
A2 [*]	0.1	6.83	6.7-7.0	0.13	0.12-0.14	19	15-23	0.01	0.10
	0.2	7.71	-	0.25	-	261	-	0.17	1.49
	0.3	8.08	8.0-8.2	0.46	0.12-0.80	446	19-8/3	0.30	2.54
	0.6	8.29	8.1-8.5	1.44	1.26-1.61	990	960-1020	0.66	5.30
	0.9	8.46	8.0-8.9	1.37	1.34-1.41	930	895-965	0.62	4.99
	1.2	8.86	8.8-9.0	1.38	1.16-1.60	966	953-979	0.64	5.16
l	1.5	8.71	8.5-8.9	2.03	1.24-2.82	931	895-966	0.62	4.96
4.0	0.04	= 20	ECe (WPM)	to 1.2 m	for low-lying	backplains	(BKP sites 2)	and 25):	3.99
A3	0.04	7.29	-	0.11	-	42	-	0.03	0.27
	0.3	8.52	-	0.11	-	9	-	0.01	0.05
	0.6	8.69	-	0.07	-	14	-	0.01	0.09
	0.9	8./1	-	0.06	-	8	-	0.01	0.13
	1.2	8.73	-	0.06	-	0	-	0.01	0.10
	1.5	8.65	-	0.08	-	8		0.01	0.13
Δ4	0.02	6.02		0.22		25	ECe (WPM)	0.02	0.12
A4	0.02	0.85	-	0.25	-	<u> </u>	-	0.02	0.18
	0.2	7.14	-	0.00	-	/ 10	-	0.00	0.05
	0.5	/.80	-	0.07	-	10	-	0.01	0.04
	0.0	0./1	-	0.18	-	21	-	0.01	0.08
	0.9	0./4	-	0.59	-	312	-	0.25	1.45
	1.2	0.30	-	0.77	-	4/1	-	0.31	1.01
	1.3	7.91	-	2.29	-	431	- FCo (WDM)	0.30	1./4
							ECe (WPM)	to 1.2 m:	0.70

Table 1: Mean pH, EC _{1:5}, soluble CI, calculated ECe and calculated WPM ECe for all soil units

Soil Unit	Depth (m)	Mean pH _{1:5}	pH₁:₅ range	Mean EC _{1:5}	EC _{1:5} range	Mean Cl (mg/kg)	CI range (mg/kg)	Calc. EC _{CI} (dS/m)	Calc. ECe (dS/m)
B1	0.03	8.24	7.9-8.6	0.26	0.16-0.33	121	56-252	0.08	0.62
	0.2	8.31	-	0.07	-	5	-	0.00	0.03
	0.3	8.77	8.6-8.9	0.22	0.11-0.33	128	5-252	0.09	0.64
	0.6	8.69	8.4-9.0	0.82	0.58-1.07	845	484-1205	0.56	4.21
	0.9	8.36	8.0-8.7	2.48	1.30-3.66	1593	1349-1837	1.06	7.93
	1.2	7.98	7.8-8.2	3.61	2.86-4.35	1205	858-1551	0.80	6.88
	1.5	8.38	7.7-9.1	2.45	0.75-4.15	1166	755-1576	0.77	6.66
							ECe (WPM)	to 1.2 m:	4.34
B2	0.03	7.62	7.2-8.5	0.15	0.08-0.20	45	5-93	0.03	0.26
	0.2	9.20	-	1.27	-	1485	-	0.99	8.48
	0.3	8.73	8.5-8.9	1.97	0.26-2.89	1838	241-2783	1.22	9.89
	0.6	8.65	8.5-9.0	3.06	0.92-5.84	2328	1055-3880	1.55	12.79
	0.9	8.52	8.4-8.6	3.59	0.89-6.11	2320	1053-4182	1.54	11.81
	1.2	8.59	8.4-8.9	3.37	0.80-6.24	2174	967-3892	1.44	11.26
	1.5	8.69	8.1-9.1	2.55	0.73-4.38	2229	895-3994	1.48	11.50
Dow	0.02			0.4.5		21	ECe (WPM)	to 1.2 m:	10.40
B2g	0.03	7.74	-	0.15	-	31	-	0.02	0.15
	0.3	8.88	-	0.39	-	277	-	0.18	1.38
	0.6	8.31	-	2.08	-	2195	-	1.46	10.93
	0.9	8.02	-	2.61	-	16/5	-	1.11	8.34
	1.2	8.11	-	1.72	-	1656	-	1.10	8.25
	1.5	8.22	_	1.97	-	1399	-	0.93	6.97
P2	0.1	7.15	(195	0.12	0.04.0.26	20	ECe (WPM)	to 1.2 m:	0.59
БЗ	0.1	/.15	6.1-8.5	0.13	0.04-0.26	80	5-254	0.58	0.58
	0.2	0.33	6.3-0.0	0.11	0.00-0.10	80	14-140	0.05	0.48
	0.5	1.18	0.7-8.9	2.03	0.08-5.89	1529	202 2505	1.00	/.60
	0.0	8.52	8.2-8.8	2.82	0.29-7.60	1505	303-2505	1.00	8.08
	0.9	0.01	8.7-9.1	2.80	0.41-0.84	1/21	201 2426	0.05	0.19
	1.2	0.70	8403	2.11	0.47-0.27	1451	13 2281	0.95	5.81
	1.5	0.02	0.4-9.5	2.33	0.10-4.03	1105	FCo (WPM)	to 1.2 m.	6.88
C1	0.07	8.00		0.13		5		0.00	0.00
01	0.07	7.73		1.54		5		0.00	0.02
	0.2	7.73		2.40		1/		0.00	0.02
	0.5	7.72		2.40		187		0.12	0.72
	0.0	7.82		3.85		597		0.12	2 30
	1.2	7.82	_	4 38	_	964	_	0.10	3 71
	1.2	7.97	_	4 32	_	1064	_	0.01	5 30
	1.5	1.21		1.52		1001	ECe (WPM)	to 1.2 m·	1.39
C2	0.04	8.8	_	0.100	-	6.5	-	0.00	0.04
-	0.2	9.2	_	0.395	_	371	_	0.25	1.85
	0.3	9.0	_	0.912	_	908	_	0.60	4.52
	0.6	8.4	_	2.60	_	1035	_	0.69	5.16
	0.9	8.3	-	3.38	_	1068	_	0.71	5.32
	1.2	9.2	-	0.945	-	798	-	0.53	3.97
	1.5	8.9	-	1.516	-	1627	-	1.08	8.10
							ECe (WPM)	to 1.2 m:	4.19

* For Soil Unit A2, there is a material difference between subsoil EC between soils formed on elevated terrace plains (TEP) and on low-lying backplains (BKP) and they have been split on this limitation for suitability assessment.

Appendix 7: Analytical Data and Soil Profile Descriptions for Representative (Analysed) Sites

Appendix 7 Analytical data and soil profile descriptions for representative (analysed) sites

Land Unit A1

Representative Site 2

Australian Soil Classification: Eutrophic Black Dermosol

DEAEAHCDAEMOX

Soil Profile	Description	
Depth m	Horizon	Description
Surface	-	Hardsetting; non-cracking; non-gravelly
0-0.06	A1	Brown (10YR 3/3); sandy clay loam (fine sand); massive to weak subangular blocky (5-10 mm) structure non gravelly field pH 7.0
	1	For miny structure, non-graveny, new pri 7.0
0.06-0.45	B2	Black (10YR 3/2); light medium clay (with fine sand); moderate angular blocky (5-20 mm) structure; non-gravelly; field pH 7.5
0.45-0.60	2D1	Brown (10YR 3/3); sand (medium to coarse sand); massive structure and earthy fabric; non-
0.45-0.00	201	gravelly; field pH 7.8
0.60-1.00	3B2	Brown (10YR 4/3); light medium clay; moderate angular blocky (5-20 mm) structure; non-
0.00-1.00	302	gravelly; field pH 8.2
1.00-1.20	4D2	Brown (10YR 3/3); sand (medium to coarse sand); massive structure and sandy fabric; non-
1.00-1.20	402	gravelly; field pH 8.2
1 20-1 70	5B2	Brown (10YR 4/3); light clay; moderate angular blocky to prismatic (5- 50 mm) structure;
1.20-1.70	562	non-gravelly; field pH 8.5

Analytical Data

Depth	00	Total	Available P	Sulfate S	E	ktr. Micronu	itrients mg/	kg
m	%	N %	Bicarb mg/kg	mg/kg	Cu	Zn	Mn	Fe
0-0.06	2.35	0.142	73	7	0.68	3.6	41.9	14.9

Depth	Coarse	Fine	Silt	Clay	CEC/clay
m	Sand %	Sand %	%	%	ratio
0-0.06	15	42	22	21	0.9
0.10-0.20	14	40	19	27	0.6
0.20-0.30	20	37	17	28	0.6
0.50-0.60	46	32	6	15	0.6
0.80-0.90	19	45	12	25	0.6
1.10-1.20	29	50	7	15	0.9
1.40-1.50	7	35	24	37	0.7

Depth	pH _{1:5}	EC _{1:5} H ₂ O	CI _{1:5}	ADMC	Exch	angeable	Cations cm	ol/kg	CEC	ESP	Ca/Mg	15 Bar	R1 Disp.
m	H₂O	dS/m	mg/kg	%	Ca	Mg	K	Na	cmol/kg	%	Ratio	%	Ratio
0-0.06	7.0	0.166	71	1.6	12.6	4.7	2.10	0.12	19#	1	2.7	13	0.74
0.10-0.20	7.5	0.047	6.1	1.5	12.4	4.0	1.47	0.04	17	<1	3.1	12	0.82
0.20-0.30	7.7	0.034	6.2	1.6	13.5	4.0	1.18	0.05	17	<1	3.4	12	0.82
0.50-0.60	7.7	0.026	9.6	0.9	7.3	2.2	0.60	0.01	9	<1	3.3	6	0.91
0.80-0.90	8.1	0.032	8.1	1.4	13.1	4.0	0.64	0.05	15	<1	3.3	11	0.74
1.10-1.20	8.1	0.032	8.4	1.2	11.0	3.1	0.30	0.05	13	<1	3.5	7	0.76
1.40-1.50	8.3	0.044	18	2.8	19.7	6.3	0.53	0.16	25	1	3.1	16	0.60

Land Unit A1 Representative Site 24

Australian Soil Classification: Eutrophic Brown Dermosol

DEABAHCDBELMX

Soil Profile Description

Depth m	Horizon	Description
Surface	-	Hardsetting; non-cracking; non-gravelly
0.0.20	A 1	Black (10YR 3/2); sandy loam (medium sand); massive to weak subangular blocky (5-10 mm
0-0.20	AI	structure; non-gravelly; few very fine roots; field pH 6.5
0.20.0.65	D21	Brown (10YR 3/3); sandy clay loam to clay loam sandy (medium sand); weak to moderate
0.20-0.03	D21	angular blocky (10- 20 mm) structure; non-gravelly; common very fine roots; field pH 6.8-7.5
0.65 1.05	PDD	Brown (10YR 4/3); clay loam sandy (medium sand); weak to moderate angular blocky (5
0.05-1.05	D22	10 mm) structure; non-gravelly; common very fine roots; field pH 7.8
1.05-1.60	2D1	Buried alluvial layer; brown (10YR 4/4); loamy sand (medium to coarse); non-gravelly Buried
1.60-4.50	2D2-4D6	river sand deposits; brown or greyish (10YR 4/3, 4/4, 6/4); loose sand (medium to coarse)
		with thin sandy clay loam interbeds; gravel beds and clay lenses not encountered; field
		pH 8.5-9.0

Analytical Data

Dep	th	00	Total	Available P	Sulfate S	Extr. Micronutrients mg/kg			
m	1	%	N %	Bicarb mg/kg	mg/kg	Cu	Zn	Mn	Fe
0-0.1	0	1.06	0.055	39	2	0.33	0.9	14.9	11.2

Depth m	Coarse Sand %	Fine Sand %	Silt %	Clay %	CEC/clay ratio
0-0.10	39	47	6	9	0.7
0.10-0.20	39	45	6	12	0.5
0.20-0.30	38	41	7	16	0.6
0.50-0.60	33	45	7	18	0.5
0.80-0.90	35	44	7	16	0.6
1.10-1.20	53	31	4	13	0.5
1.40-1.50	59	25	3	10	0.5

Depth	pH _{1:5}	EC _{1:5} H ₂ O	CI _{1:5}	ADMC	Exch	angeable (Cations cm	nol/kg	CEC	ESP	Ca/Mg	15 Bar	R1 Disp.
m	H ₂ O	dS/m	mg/kg	%	Ca	Mg	K	Na	cmol/kg	%	Ratio	%	Ratio
0-0.10	7.1	0.058	<5	0.6	3.2	1.05	1.14	0.01	6	<1	3.1	4	0.81
0.10-0.20	6.9	0.032	<5	0.5	4.2	1.3	0.65	0.06	6#	1	3.4	5	0.89
0.20-0.30	7.2	0.027	<5	0.8	6.3	1.8	0.755	0.08	9 [#]	1	3.5	6	0.86
0.50-0.60	7.5	0.027	<5	1.0	7.4	2.1	0.49	0.04	9	<1	3.5	7	0.86
0.80-0.90	7.8	0.035	<5	0.8	7.4	1.89	0.36	0.02	9	<1	3.9	7	0.87
1.10-1.20	8.6	0.083	<5	0.6	6.0	1.37	0.55	0.02	7	<1	4.4	5	0.91
1.40-1.50	8.9	0.075	<5	0.6	5.1	1.11	0.24	0.04	5	1	4.6	4	0.99

Land Unit A2 Representative Site 12

Australian Soil Classification: Epipedal Black Vertosol

VEAEGSCDEQRX

Soil Profile Description

Depth m	Horizon	Description
Surface	-	Hardsetting to firm pedal; cracking; non-gravelly
0.0.03	A 1	Grey (10YR 4/2); light medium clay; weak to moderate subangular blocky to platy (2-10 mm
0-0.03	AI	structure; non-gravelly; few very fine roots; field pH 7.5
0.03.0.20	D21	Grey (10YR 4/1); medium clay; strong angular blocky (5- 50 mm) structure; non- gravelly
0.05-0.20	D21	few very fine roots; field pH 7.5
0.20.0.50	D JJ	Black (10YR 3/1); medium heavy clay; moderate to strong lenticular (5-50 mm) structure
0.20-0.30	D 22	non-gravelly; few fine roots; field pH 7.5
0.50, 1.20	D 22	Black (10YR 3/2); medium clay; moderate to strong angular blocky (5-20 mm) structure; non
0.50-1.50	B23	gravelly; common very fine roots; field pH 8.0-8.8
1 30 1 00	B24	Black (10YR 3/1); light medium clay; moderate to strong lenticular (2-20 mm) structure; non
1.50-1.90	D24	gravelly; few very fine roots; field pH 8.8
1.90-2.40	2D1	Brown (10YR 3/3); sandy clay loam (fine sand); massive; non-gravelly
2.40-3.50	3D2-4D4	Buried river sand deposits; brown or grey (10YR 4/3, 6/4, 7/4); loose sand (medium to
		coarse); with gravel beds; clay lenses not encountered; field pH 7.8-8.2

Analytical Data

Depth	00	Total	Available P	Sulfate S	Extr. Micronutrients mg/kg			
m	%	N %	Bicarb mg/kg	mg/kg	Cu	Zn	Mn	Fe
0-0.03	2.01	0.161	118	11	1.50	1.9	91.6	14.4

Depth m	Coarse Sand %	Fine Sand %	Silt	Clay %	CEC/clay ratio
0-0.03	2	19	41	39	0.8
0.10-0.20	1	13	37	49	0.6
0.20-0.30	2	13	37	48	0.6
0.50-0.60	2	24	30	44	0.7
0.80-0.90	2	21	34	43	0.7
1.10-1.20	2	21	37	43	0.7
1.40-1.50	3	12	39	45	0.7

							All the search shits the search shits						
Depth	pH _{1:5}	EC _{1:5} H ₂ O	CI _{1:5}	ADMC	Exch	angeable	Cations cm	ol/kg	CEC	ESP	Ca/Mg	15 Bar	R1 Disp.
m	H₂O	dS/m	mg/kg	%	Ca	Mg	K	Na	cmol/kg	%	Ratio	%	Ratio
0-0.03	7.3	0.241	151	3.1	18.3	8.4	2.91	0.25	30#	1	2.2	21	0.64
0.10-0.20	7.5	0.037	<5	3.8	23.4	7.0	1.24	0.06	31	<1	3.3	23	0.57
0.20-0.30	7.5	0.033	<5	3.6	23.6	6.7	1.08	0.06	31	<1	3.5	22	0.54
0.50-0.60	7.9	0.041	<5	3.6	20.9	7.3	0.79	0.11	29	<1	2.9	20	0.52
0.80-0.90	8.2	0.065	<5	3.4	23.4	8.2	0.70	0.05	29	<1	2.9	20	0.53
1.10-1.20	8.2	0.133	33	2.4	23.9	8.9	0.57	0.29	30	1	2.7	20	0.53
1.40-1.50	8.2	0.200	87	2.5	23.3	9.1	0.57	0.53	31	2	2.6	22	0.55

Land Unit A2 Representative Site 25

Australian Soil Classification: Calcic Black Dermosol

DEAEBDEOBEMOX

Soil Profile Description

Depth m	Horizon	Description
Surface	-	Hardsetting to firm pedal; non-cracking; non-gravelly
0.0.10	A 1 1	Brown (10YR 3/3); clay loam sandy (fine sand); moderate subangular blocky (5-20 mm)
0-0.10	AII	structure; non-gravelly; common very fine roots; field pH 6.2
0 10 0 27	A 12	Black (10YR 3/2); heavy clay loam sandy (fine sand); moderate subangular blocky (5-
0.10-0.27	AIZ	10 mm) structure; non-gravelly; common very fine roots; field pH 7.0-7.5
0.27.0.65	B21	Black (10YR 3/2); light medium clay (with fine sand); strong angular blocky (5-10 mm)
0.27-0.05	D21	structure; non-gravelly; few fine roots; field pH 8.2
		Black (10YR 3/1); light medium clay; moderate to strong angular blocky to prismatic (10-
0.65-1.05	B22ky	50 mm) structure; <2% <2 mm calcareous soft segregations and 2-10% <2 mm gypsum
		crystals; few fine roots; field pH 9.0
		Black (10YR 3/1); light medium clay; strong angular blocky (10-20 mm) structure; 10-20% 2-
1.05->1.50	B23ky	6 mm calcareous soft segregations and 2-10% <2 mm gypsum crystals; few very fine roots;
		field pH 8.8

Analytical Data

ſ	Depth	00	Total	Available P	Sulfate S	Extr. Micronutrients mg/kg			
	m	%	N %	Bicarb mg/kg	mg/kg	Cu	Zn	Mn	Fe
	0-0.10	1.98	0.127	102	11	1.03	2.0	40.1	22.4

Depth	Coarse Sand %	Fine Sand %	Silt	Clay %	CEC/clay ratio
0-0.10	2	53	26	21	1.0
0.10-0.20	2	53	21	26	0.8
0.30-0.40	2	45	18	37	0.0
0.50-0.60	4	35	19	43	0.6
0.80-0.90	6	27	20	48	0.5
1.10-1.20	4	33	17	47	0.5
1.40-1.50	4	32	19	47	0.6

					100 A 100				11 Star 19	A CONTRACT OF A CONTRACT. CONTRACT OF A CONT	and the second	A REAL PROPERTY AND A REAL	A CONTRACTOR OF A CONT
Depth	pH _{1:5}	EC _{1:5} H ₂ O	CI _{1:5}	ADMC	Exch	angeable (Cations cm	nol/kg	CEC	ESP	Ca/Mg	15 Bar	R1 Disp.
m	H ₂ O	dS/m	mg/kg	%	Ca	Mg	K	Na	cmol/kg	%	Ratio	%	Ratio
0-0.10	7.0	0.139	15	1.8	13.7	5.6	1.38	0.25	21#	1	2.4	14	0.65
0.10-0.20	7.7	0.253	261	2.4	15.1	6.1	0.82	1.08	21	5	2.5	14	0.63
0.30-0.40	8.2	0.802	873	2.6	12.5	7.0	0.60	4.4	23	19	1.8	18	0.80
0.50-0.60	8.5	1.261	1020	3.4	13.5	9.1	0.67	5.8	25	23	1.5	20	0.89
0.80-0.90	8.9	1.336	965	3.5	12.2	9.9	0.91	7.4	25	30	1.2	22	0.96
1.10-1.20	9.0	1.595	953	3.3	12.1	10.8	0.87	8.9	25	36	1.1	22	0.94
1.40-1.50	8.5	2.82	895	3.4	12.1	11.6	0.88	9.9	26	38	1.0	23	0.98

Land Unit A4 Representative Site 16

Australian Soil Classification: Self-mulching Black Vertosol

VEAEEIGMESSX

Soil Profile Description Depth m Horizon Description Surface Moderately to strongly self-mulching; cracking; non-gravelly -Black (10YR 3/2); medium heavy clay; strong granular (2-5 mm) structure; non- gravelly; few 0-0.02 A1 very fine roots; field pH 8.2 Black (2.5Y 3/1); heavy clay; moderate to strong angular blocky to lenticular (5-50 mm) 0.02-0.40 B21 structure; non-gravelly; few very fine roots; field pH 7.0 Black (2.5Y 3/1); heavy clay; strong lenticular (5-100 mm) structure; <2% <2 mm calcareous 0.40-1.20 B22k soft segregations; few fine roots; field pH 8.8-9.0 Black (10YR 3/2), mottled (30-70% <5-15 mm distinct brown 10YR4/4 and orange 7.5YR5/6 mottles); heavy clay; moderate to strong angular blocky to lenticular (10-20 mm) structure; 2-1.20->1.50 B23y 10% <2 mm gypsum crystals; roots absent; field pH 9.0

Analytical Data

	Depth	00	Total	Available P	Sulfate S	Extr. Micronutrients mg/kg			
ľ	m	%	N %	Bicarb mg/kg	mg/kg	Cu Zn Mn		Fe	
	0-0.02	1.33	0.084	205	73	4.21	2.0	100.1	117.8

Depth	Coarse	Fine	Silt	Clay	CEC/clay
m	Sand %	Sand %	%	%	ratio
0-0.02	1	11	28	60	0.6
0.10-0.20	1	11	27	62	0.6
0.20-0.30	1	11	27	62	0.6
0.50-0.60	1	10	29	62	0.6
0.80-0.90	1	10	29	62	0.6
1.10-1.20	1	10	29	61	0.6
1.40-1.50	1	10	29	61	0.6

-1	19,00		States -
X			
	X	NY	-
			- A

					AND THE REAL PROPERTY OF	dealer with the	A PARTY AND A PARTY OF A		Construction of the second sec		and the second state of th		
Depth	pH _{1:5}	EC _{1:5} H ₂ O	CI _{1:5}	ADMC	Exch	angeable	Cations cm	ol/kg	CEC	ESP	Ca/Mg	15 Bar	R1 Disp.
m	H ₂ O	dS/m	mg/kg	%	Ca	Mg	K	Na	cmol/kg	%	Ratio	%	Ratio
0-0.02	6.8	0.234	35	4.6	23.0	7.9	1.90	0.52	33#	2	2.9	25	0.49
0.10-0.20	7.1	0.060	7.2	5.1	24.6	9.0	1.65	0.50	36#	1	2.7	25	0.50
0.20-0.30	7.8	0.073	9.9	5.0	26.2	8.9	1.86	0.74	36	2	2.9	25	0.65
0.50-0.60	8.7	0.176	21	4.7	25.4	9.1	1.46	3.5	35	10	2.8	26	0.80
0.80-0.90	8.7	0.589	372	4.8	22.9	7.4	1.16	6.0	35	17	3.1	28	0.89
1.10-1.20	8.6	0.770	471	4.4	19.6	11.6	0.90	8.5	36	24	1.7	27	0.91
1.40-1.50	7.9	2.29	451	4.3	19.7	12.8	1.42	8.7	37	24	1.5	26	0.81

Land Unit B1 Representative Site 6

Australian Soil Classification: Epipedal Grey Vertosol

VEADGSGBEQRX

Soil Profile Description

Depth m	Horizon	Description
Surface	-	Weakly to moderately self-mulching; cracking; non-gravelly
0.0.02	A 1	Grey (10YR 4/2); light clay (with fine sand); moderate to strong granular (<2 mm) to
0-0.02	AI	subangular blocky (2-5 mm) structure; non-gravelly; few very fine roots; field pH 8.2
0.02.0.40	D211	Grey (10YR 4/2); medium clay; moderate to strong angular blocky (10-50 mm) structure;
0.02-0.40	D21K	<2% <2 mm calcareous nodules; few very fine roots; field pH 8.0-9.0
0.40.0.00	Poplar	Grey (10YR 4/2); medium clay; moderate lenticular (5-50 mm) structure; <2% <2 mm
0.40-0.90	Б 22Ку	calcareous nodules and <2% <2 mm gypsum crystals; few very fine roots; field pH 9.0
0.00 > 1.50	201	Brown (10YR 4/4); light medium clay (with fine sand); moderate angular blocky to
0.90->1.50	2Dy	polyhedral (10-20 mm) structure; 3-10% <2-6 mm gypsum crystals; roots absent; field pH 9.0

Depth	00	Total	Available P	Sulfate S	Extr. Micronutrients mg/kg			kg
m	%	N %	Bicarb mg/kg	mg/kg	Cu Zn Mn F		Fe	
0-0.02	1.25	0.072	92	31	1.95	0.9	63.4	18.6

Depth	Coarse	Fine	Silt	Clay	CEC/clay
m	Sand %	Sand %	%	%	ratio
0-0.02	3	35	21	43	0.6
0.10-0.20	2	32	18	49	0.5
0.20-0.30	2	34	19	47	0.6
0.50-0.60	2	31	20	48	0.5
0.80-0.90	2	26	24	50	0.5
1.10-1.20	1	39	24	37	0.6
1.40-1.50	1	47	21	33	0.6

Depth	pH _{1:5}	EC _{1:5} H ₂ O	CI _{1:5}	ADMC	Exch	angeable (Cations cm	ol/kg	CEC	ESP	Ca/Mg	15 Bar	R1 Disp.
m	H₂O	dS/m	mg/kg	%	Ca	Mg	K	Na	cmol/kg	%	Ratio	%	Ratio
0-0.02	7.9	0.288	56	2.5	18.1	6.9	1.96	0.59	25	2	2.6	16	0.43
0.10-0.20	8.3	0.070	<5	3.4	19.3	7.5	0.81	0.71	26	3	2.6	17	0.46
0.20-0.30	8.9	0.111	<5	3.3	17.9	7.2	0.61	2.2	26	8	2.5	18	0.65
0.50-0.60	9.0	0.578	484	3.3	13.4	8.6	0.71	7.1	26	27	1.6	19	0.66
0.80-0.90	8.0	3.66	1837	3.6	13.0	9.7	0.71	8.8	27	33	1.3	19	0.66
1.10-1.20	7.8	4.35	1551	3.8	14.0	7.7	0.45	6.3	21	30	1.8	16	0.69
1.40-1.50	7.7	4.15	1576	3.2	12.6	7.5	0.37	5.9	20	30	1.7	15	0.74

Land Unit B2 Representative Site 38

Australian Soil Classification: Epipedal Brown Vertosol

VEABGSGHEQRX

Soil Profile Description

Depth m	Horizon	Description
Surface	-	Hardsetting to firm pedal (occ. weak self-mulching); cracking; non-gravelly
0-0.03	A1	Brown (10YR 4/3); light clay (with fine sand); moderate to strong granular (<2 mm) to subangular blocky (5-10 mm) structure; non-gravelly; few very fine roots; field pH 8.5
0.03-0.35	B21	Brown (10YR 4/3); light medium clay (with fine sand); strong angular blocky (5- 20 mm) structure; non-gravelly; few very fine roots; field pH 9.0
0.35-0.65	B22ky	Black (10YR 3/2); light medium clay (with fine sand); strong angular blocky (2-10 mm) structure; <2% <2 mm calcareous soft segregations and 2-10% <2 mm gypsum crystals; roots absent; field pH 9.0
0.65-1.00	B23y	Brown (10YR 3/3); medium clay (with fine sand); moderate to strong angular blocky (10-20 mm) structure; 10-20% 2-6 mm gypsum crystals; roots absent; field pH 9.0
1.00->1.50	B24y	Brown (10YR 4/4); medium heavy clay (with fine sand); moderate to strong angular blocky to polyhedral (10-20 mm) structure; 2-10% 2-6 mm gypsum crystals; roots absent; field pH 9.0

Depth	00	Total	Available P	Sulfate S	Extr. Micronutrients mg/kg			
m	%	N %	Bicarb mg/kg	mg/kg	Cu Zn Mn		Fe	
0-0.03	0.94	0.072	38	5	1.36	0.6	16.8	11.5

Depth	Coarse	Fine	Silt	Clay	CEC/clay
m	Sand %	Sand %	%	%	ratio
0-0.03	7	48	18	28	0.6
0.10-0.20	5	46	15	36	0.5
0.20-0.30	5	47	14	36	0.5
0.50-0.60	5	37	15	45	0.5
0.80-0.90	4	26	18	53	0.5
1.10-1.20	3	22	19	58	0.5
1.40-1.50	2	21	18	61	0.5

										A THE REAL PROPERTY OF	and the second se		
Depth	pH _{1:5}	EC _{1:5} H ₂ O	CI _{1:5}	ADMC	Exchangeable Cations cmol/kg			CEC	ESP	Ca/Mg	15 Bar	R1 Disp.	
m	H₂O	dS/m	mg/kg	%	Ca	Mg	K	Na	cmol/kg	%	Ratio	%	Ratio
0-0.03	8.5	0.183	<5	1.7	13.1	3.8	1.13	0.997	17	6	3.5	14	0.73
0.10-0.20	9.2	1.271	1485	2.5	12.1	3.4	0.47	6.8	19	36	3.6	15	0.82
0.20-0.30	8.9	2.89	2783	2.6	9.5	3.1	0.78	11.9	19	63	3.0	15	0.98
0.50-0.60	8.5	5.84	3880	3.5	10.9	4.8	1.08	15.5	23	67	2.3	19	0.96
0.80-0.90	8.5	6.11	4182	4.4	8.5	6.1	0.61	19.4	26	75	1.4	23	0.99
1.10-1.20	8.6	6.24	3892	4.8	10.2	6.9	0.69	21.2	28	76	1.5	25	0.99
1.40-1.50	8.9	4.38	3994	4.3	6.6	7.3	1.01	22.4	31	72	0.9	26	0.99

Land Unit B3 **Representative Site 20**

Australian Soil Classification: Calcic Black Dermosol

DEAEBDEOAEMOX

Soil Profile Description

Depth m	Horizon	Description
Surface	-	Hardsetting with surface crust and sandy veneer; non-cracking; non-gravelly
0.0.01	A 1 1	Brown (10YR 5/3); sandy clay loam (fine sand); strong platy (5-10 mm) structure; non-
0-0.01	AII	gravelly; roots absent; field pH 8.8
0.01.0.08	A 12	Grey (10YR 4/3); light clay (with fine sand); strong angular blocky (5-10 mm) structure; non-
0.01-0.08	AIZ	gravelly; roots absent; field pH 8.8
0.08.0.40	D211	Black (10YR 3/2); light medium clay; strong angular blocky (5-20 mm) structure; 2-10%
0.08-0.40	D21K	<2 mm calcareous nodules; roots absent; field pH 8.8-9.0
0.40.1.00	Poplar	Brown (10YR 3/3); medium heavy clay; strong angular blocky (5-20 mm) structure; 2-10%
0.40-1.00	Б 22Ку	<2 mm calcareous nodules and 10-20% <2 mm gypsum crystals; roots absent; field pH 9.5
		Brown (7.5YR 4/3), mottled (2-10% <5 mm faint brown mottles); medium heavy clay; weak
1.00->1.50	B23ky	to moderate angular blocky to lenticular (10-50 mm) structure; 2-10% <2 mm calcareous
		nodules and 10-20% 2-6 mm gypsum crystals; roots absent; field pH 9.5

Depth	00	Total	Available P	Sulfate S	Extr. Micronutrients mg/kg			kg
m	%	N %	Bicarb mg/kg	mg/kg	Cu	Fe		
0.01-0.08	0.44	0.050	29	11	1.10	1.0	18.2	22.0

Depth	Coarse	Fine	Silt	Clay	CEC/clay
m	Sand %	Sand %	%	%	ratio
0.01-0.08	5	44	20	33	0.6
0.10-0.20	3	40	20	39	0.5
0.20-0.30	4	39	18	41	0.5
0.50-0.60	4	35	19	43	0.4
0.80-0.90	4	29	15	53	0.4
1.10-1.20	4	24	23	50	0.5
1.40-1.50	4	23	17	57	0.5

Depth	pH _{1:5}	EC _{1:5} H ₂ O	CI _{1:5}	ADMC	Exchangeable Cations cmol/kg			CEC	ESP	Ca/Mg	15 Bar	R1 Disp.	
m	H₂O	dS/m	mg/kg	%	Ca	Mg	K	Na	cmol/kg	%	Ratio	%	Ratio
0.01-0.08	8.3	0.731	914	2.3	11.3	4.5	0.77	4.5	19	24	2.5	14	0.72
0.10-0.20	8.8	2.33	2857	2.3	10.5	5.5	0.45	8.3	20	42	1.9	15	0.66
0.20-0.30	8.9	5.89	2595	2.2	10.7	4.5	0.85	14.9	20	75	2.4	16	0.52
0.50-0.60	8.8	7.6	2505	3.5	9.0	3.4	0.56	20.0	18	111	2.7	21	0.99
0.80-0.90	8.7	6.84	1643	3.7	9.7	4.2	0.62	19.7	21	94	2.3	22	0.99
1.10-1.20	8.6	6.27	1362	4.6	10.7	4.2	0.63	22.3	25	89	2.6	24	0.99
1.40-1.50	9.3	2.85	1203	3.6	4.6	4.4	0.68	24.6	27	91	1.0	25	0.99

Land Unit C1 Representative Site 26

Australian Soil Classification: Self-mulching Red Vertosol

VEAAEIBZERSX

Soil Profile Description Depth m Horizon Description Strongly self-mulching; cracking; <2% 2-10 mm quartz gravels Surface -Brown (7.5YR 3/4); medium clay; strong granular (<2 mm) structure; non-gravelly; few very 0-0.07 A1 fine roots; field pH 8.8 Brown (7.5YR 3/4); medium clay; strong angular blocky to lenticular (5-10 mm) structure; 0.07-0.20 B21 non- gravelly; few very fine roots; field pH 8.8 Red (5YR 3/3); medium heavy clay; strong lenticular (2-20 mm) structure; non-gravelly; few 0.20-0.50 B22 very fine roots; field pH 8.8 Red (5YR 3/3); heavy clay; strong lenticular (5-100 mm) structure; <2% <2 mm calcareous 0.50-1.30 B23y soft segregations and 2-10% 2-6 mm gypsum crystals; few very fine roots; field pH 8.8 Red (5YR 5/6), mottled (2-10% 5-15 mm distinct yellow substrate mottles); medium clay (with fine sand); moderate lenticular (10-100 mm) structure; 10-20% 2-6 mm mudstone 1.30->1.50 B3y gravels, <2% <2 mm calcareous soft segregations and 20-50% 2-6 mm gypsum crystals; roots absent; field pH 8.8

Depth	00	Total	Available P	Sulfate S	Extr. Micronutrients mg/kg			
m	%	N %	Bicarb mg/kg	mg/kg	Cu	Zn	Mn	Fe
0-0.07	1.05	0.060	19	8	1.81	0.4	11.4	6.3

Depth m	Coarse Sand %	Fine Sand %	Silt %	Clay %	CEC/clay ratio
0-0.07	7	20	18	55	0.9
0.10-0.20	7	19	14	61	0.8
0.20-0.30	6	18	14	63	0.8
0.50-0.60	6	17	44	34	1.4
0.80-0.90	5	17	57	23	2.0
1.10-1.20	4	16	57	25	1.8
1.40-1.50	6	17	66	12	3.2

Depth	pH _{1:5}	EC _{1:5} H ₂ O	CI _{1:5}	ADMC	Exchangeable Cations cmol/kg			CEC	ESP	Ca/Mg	15 Bar	R1 Disp.	
m	H ₂ O	dS/m	mg/kg	%	Ca	Mg	K	Na	cmol/kg	%	Ratio	%	Ratio
0-0.07	8.1	0.130	<5	4.4	45.5	2.6	1.08	0.054	48	<1	17.7	28	0.38
0.10-0.20	7.7	1.536	<5	5.1	49.6	1.6	0.48	0.245	49	1	31.0	25	0.18
0.20-0.30	7.7	2.40	14	6.7	53.1	2.1	0.37	0.842	49	2	25.8	25	0.15
0.50-0.60	7.8	2.99	187	7.0	47.0	4.0	0.43	4.55	47	10	11.8	27	0.21
0.80-0.90	7.8	3.85	597	7.1	41.7	4.9	0.66	10.1	47	21	8.5	28	0.34
1.10-1.20	7.9	4.38	964	7.0	37.9	4.9	1.13	12.7	46	28	7.7	29	0.49
1.40-1.50	8.0	4.32	1064	7.2	35.2	4.2	0.65	12.1	38	32	8.4	27	0.56

Land Unit C2 Representative Site 27

Australian Soil Classification: Self-mulching Brown Vertosol

VEABEIGOFQRX

Soil Profile Description

Depth m	Horizon	Description
Surface		Epipedal and/or moderately to strongly self-mulching (variable); cracking; 2-20% 20-60 mm
Suitace	-	quartz gravels
0.0.04	A 1	Brown (7.5YR 4/3); light clay (with fine sand); moderate to strong granular (<2 mm) to
0-0.04	AI	subangular blocky (2-5 mm) structure; non-gravelly; few very fine roots; field pH 7.5
0.04.0.45	D01	Brown (10YR 3/3-4/3); medium clay (with fine sand); strong angular blocky (5-20 mm)
0.04-0.45	D21	structure; non-gravelly; few very fine roots; field pH 7.5
		Brown (10YR 4/6); medium clay (with fine sand); weak to moderate angular blocky to
0.45-1.20	B22ky	lenticular (10-50 mm) structure; 2-10% <2 mm calcareous nodules and 10-20% <2 mm
		gypsum crystals; roots absent; field pH 7.5
		Brown (7.5YR 4/6); medium heavy clay (with fine sand); strong lenticular (2-200 mm)
1.20->1.50	B3k	structure; 2-10% <2 mm calcareous nodules and 2-10% manganiferous nodules; roots absent;
		field pH 8.8

Depth	00	Total	Available P	Sulfate S	Extr. Micronutrients mg/kg			
m	%	N %	Bicarb mg/kg	mg/kg	Cu Zn Mn			
0-0.04	0.92	0.044	21	3	0.96	0.2	7.0	4.5

Depth	Coarse	Fine	Silt	Clay	CEC/clay
m	Sand %	Sand %	%	%	ratio
0-0.04	36	29	7	29	0.6
0.10-0.20	31	21	12	37	0.6
0.20-0.30	32	19	11	39	0.5
0.50-0.60	27	18	12	43	0.6
0.80-0.90	28	14	11	48	0.5
1.10-1.20	50	12	8	31	0.5
1.40-1.50	18	9	11	62	0.5

Depth	pH _{1:5}	EC _{1:5} H ₂ O	Cl _{1:5}	ADMC	Exch	angeable	Cations cm	nol/kg	CEC	ESP	Ca/Mg	15 Bar	R1 Disp.
m	H ₂ O	dS/m	mg/kg	%	Ca	Mg	K	Na	cmol/kg	%	Ratio	%	Ratio
0-0.04	8.8	0.100	6.5	1.6	19.2	1.3	0.63	0.177	16	1	14.3	9	0.62
0.10-0.20	9.2	0.395	371	1.7	21.9	2.2	0.44	3.2	24	13	9.8	15	0.72
0.20-0.30	9.0	0.912	908	1.5	18.9	2.4	0.48	4.8	21	23	8.1	16	0.80
0.50-0.60	8.4	2.60	1035	2.4	20.3	3.0	0.36	7.4	25	30	6.8	17	0.86
0.80-0.90	8.3	3.38	1068	2.9	19.6	3.3	0.34	7.9	25	32	5.9	18	0.87
1.10-1.20	9.2	0.945	798	1.4	12.0	2.4	0.28	5.4	17	32	4.9	12	0.99
1.40-1.50	8.9	1.516	1627	2.7	20.4	4.5	0.44	10.5	31	34	4.5	22	0.93

Appendix 8: Laboratory Certificates of Analysis

72 Cothill Rd Silkstone 4304

Phone: 0409 494 288 Fax: email: ian@agriculturalchemistry.com.au

Reference 19/04

Page: 1 of 15

Date Received:2/01/2019Date Completed:9/2/2019

FINAL REPORT

Project:

Flinders Shire Council 15 Mile Agricultural Development Project

All results in this report relate only to the items tested. Results are expressed on an "as received basis".

Client Name: Soil Mapping & Monitoring

Contact: Jon Burgess

Sample Type: soil

Number of samples: 252

Client: Soil Mapping & Monitoring

EC Lab No Soil Type Site No Horizon Depth pН Cl mS/cm m mg/kg 9 A1 1 0-0.05m 7.2 A1 0.126 48 10 B21 0.1m 11 B21 0.2m 12 B21 0.3m 7.5 0.043 <5 13 B22 0.6m 7.9 0.031 <5 14 0.9m 0.030 <5 2D1 8.1 15 2D1 1.2m 8.2 0.025 <5 16 2D2 1.5m 8.2 0.034 8.2 0-0.05m 17 3 A1 7.3 0.089 40 18 B21 0.1m 19 0.2m B21 20 7.4 B21 0.3m 0.029 7.5 21 B22 0.6m 7.9 0.048 11 22 B22 0.9m 8.4 0.053 11 23 2D1 1.2m 7.9 0.504 11 24 2D1 1.5m 1.285 38 8.1 25 10 0-0.05m 21 A1 7.3 0.088 26 B21 0.1m 27 B21 0.2m 28 B21 0.3m 7.3 0.030 9.2 29 B22 0.6m 7.3 0.034 12 30 2D1 0.9m 7.8 0.023 11 31 2D1 1.2m 7.9 0.021 8.6 32 2D1 1.5m 8.2 0.030 11 33 15 0-0.08m A1 7.3 0.096 25 34 B21 0.1m 35 B21 0.2m 36 B21 0.3m 7.9 0.039 8.4 37 0.055 7.4 B22 0.6m 8.3 38 2D1 0.9m 8.4 0.041 5.8 39 2D1 1.2m 8.3 0.040 7.2 40 2D1 1.5m 8.3 0.047 11 41 0-0.07m 17 A1 6.4 0.067 5.7 42 B21 0.1m 43 0.2m B21 44 B21 0.3m 7.7 0.071 33 45 B22k 0.6m 8.7 0.110 18 46 2D1 0.9m 0.126 27 8.8 47 2D1 1.2m 8.8 0.128 21 48 2D2 1.5m 0.092 8.5 8.9 49 19 0-0.07m A1 0.199 13 7.0 50 0.1m B21 51 B21 0.2m 52 B21 0.3m 7.6 0.049 6.3 53 B22 0.6m 8.0 0.053 5.5 54 B23k 0.9m 8.6 0.108 9.0 55 B23k 1.2m 8.6 0.209 21 56 2Dk 1.5m 0.343 61 8.6

Not Analysed

NSR No Sample Received

Date Received: 2/1/2019 Date Completed: 9/2/2019

Date Received: 2/1/2019 Date Completed: 9/2/2019

Lab No	Soil Type	Site No	Horizon	Depth	pН	EC	Cl
				m		mS/cm	mg/kg
57		22	A11	0-0.06m	6.7	0.046	<5
58			A12	0.1m			
59			A12	0.2m	7.2	0.022	<5
60			B2	0.3m	7.4	0.025	<5
61			2D1	0.6m	8.2	0.026	<5
62			2D1	0.9m	8.1	0.037	<5
63			2D2	1.2m	NSR		
64			2D2	1.5m	NSR		
65		23	A1	0.1m	8.2	0.110	<5
66			B21	0.2m			
67			B21	0.3m	8.2	0.066	<5
68			B22	0.6m	8.3	0.073	<5
69			2D1	0.9m	8.8	0.038	<5
70			2D1	1.2m	NSR		
71			2D1	1.5m	NSR		
72	A1e	31	A1	0.1m	6.7	0.071	10
73			B21	0.2m			
74			B21	0.3m	7.2	0.026	5.7
75			B21	0.6m	7.7	0.050	8.1
76			B22k	0.9m	8.0	0.075	15
77			B22k	1.2m	8.1	0.095	23
78			B23k	1.5m	8.3	0.100	20
79	A2	18	A1	0-0.04m	6.7	0.201	35
80			B21	0.1m			
81			B21	0.2m			
82			B21	0.3m	8.1	0.116	6.0
83			B22k	0.6m	8.4	0.181	14
84			B22k	0.9m	8.5	0.209	38
85			B23k	1.2m	8.5	0.193	42
86			B24k	1.5m	8.7	0.191	43
87		21	Al	0-0.03m	6.7	0.117	23
88			B21	0.1m			
89			B21	0.2m	0.0	0.124	10
90			B21	0.3m	8.0	0.124	19
91			B22ky	0.6m	8.1	1.610	960 967
92			B22ky	0.9m	8.0	1.409	895
93			B23ky	1.2m	8.8	1.164	979
94	4.2	11	B23ky	1.5m	8.9	1.239	966
95	A3	11	Al	0-0.04m	1.3	0.105	42
96			B21	0.1m			
9/			B21	0.2m	0 =	0.107	0
98			B21	0.5m	8.5 0 7	0.10/	9
99			2D1	0.0m	ð./	0.00/	14
100			2D3	0.9m	8./ 0.7	0.064	8 11
101			2D3	1.2m	8./ 0.7	0.064	11
102	D2a	F	<u>2D4</u>	1.5m	ð./ 77	0.083	ð 21
103	D∠g	5	AI	0-0.03m	1.1	0.148	51
104			B21	0.111			
105			B21	0.2m	00	0.202	777
100			B21 D22	0.5m	8.9 8 2	0.393	211
107			B22	0.0m	ð.3	2.075	2193 1675
108			B23Ky	0.9m	8.U 0 1	2.01 1.710	10/3
109			B23Ky	1.2m	0.1	1./19	1000
110			2DK	1.5m	8.2	1.965	1399

Soil Analysis Report Batch Number: 19/04

Date Received: 2/1/2019 Date Completed: 9/2/2019

Lab No	Soil Type	Site No	Horizon	Depth	pН	EC	Cl
				m		mS/cm	mg/kg
111	B1	35	A1	0-0.03m	8.2	0.160	56
112			B21k	0.1m			
113			B21k	0.2m			
114			B21k	0.3m	8.6	0.325	252
115			B22ky	0.6m	8.4	1.07	1205
116			B23y	0.9m	8.7	1.296	1349
117			2D1y	1.2m	8.2	2.86	858
118			2D1y	1.5m	9.1	0.746	755
119	B2	14	A1	0-0.04m	7.2	0.196	93
120			B21k	0.1m			
121			B21k	0.2m			
122			B21k	0.3m	8.8	2.77	2491
123			B22ky	0.6m	9.0	2.43	2048
124			B22ky	0.9m	8.6	3.76	1725
125			B23y	1.2m	8.9	3.07	1664
126			B23y	1.5m	9.1	2.53	1799
127		36	A1	0-0.02m	7.2	0.084	37
128			B21	0.1m			
129			B21	0.2m			
130			B21	0.3m	8.5	0.255	241
131			B22ky	0.6m	8.5	0.921	1055
132			2D1	0.9m	8.4	0.890	1053
133			2D2	1.2m	8.4	0.800	967
134			2D2	1.5m	8.1	0.726	895
135	B3	13	Al	0-0.08m	7.2	0.057	34
136			B21	0.1m			
137			B21	0.2m			
138			B21	0.3m	8.3	1.852	2352
139			B22y	0.6m	8.2	2.56	2211
140			B22y	0.9m	9.1	2.55	2664
141			B22y	1.2m	8.8	2.92	2436
142			B23y	1.5m	8.4	4.63	2281
143		4	AI	0-0.04m	6.8	0.041	<5
144			A2j	0.04-0.08m	~ ~	0.164	146
145			B21	0.1-0.2m	6.5	0.164	146
146			B21	0.2-0.3m	6.7	0.309	355
14/			B22	0.5-0.6m	8.2	0.294	303
148			B23k	0.8-0.9m	8.8	0.413	351 201
149			B23K	1.1-1.2m	8.9 NGD	0.4/1	391
150		24	A 1 1	0.1	NSK $\leftarrow 1$	0.161	20
151		34	AII	0.1m	0.1	0.101	29 14
152			AI2 D21	0.2m	0.0	0.035	14 15
155			<u>В</u> 21	0.5m	1.2	0.079	15
154			B21	0.0m	8.8 9 7	0.833	999 1757
155			B22	0.9m	ð./	1.04/	1/5/
150			B22	1.2m	ð.ð	1.401	1534
157			в23у	1.5m	8.8	0.095	13

Date Received: 2/1/2019 Date Completed: 9/2/2019

Lab No	Soil Type	Site No	Horizon	Depth	pН	EC	Cl
				m		mS/cm	mg/kg
158	A1	24	2D2k	1.8m	8.0	2.83	1416
159			2D3k	2.1m	9.0	0.065	12
160			2D3k	2.4m	8.9	0.078	12
161			3D4	2.7m	8.8	0.130	21
162			3D5	3.0m	8.9	0.110	20
163			4D6	3.3m	8.4	0.022	9
164	A2	12	B24	1.8m	8.2	0.178	50
165			2D1	2.1m	8.3	0.108	32
166			2D1	2.4m	8.2	0.068	20
167			3D2	2.7m	8.2	0.037	14
168			3D3	3.0m	7.8	0.031	14
169			3D3	3.3m	8.1	0.271	29
170	A1	7	FSLMC	2.0m	8.2	0.458	31
171			FSLC	4.0m	8.2	0.178	14
172			gravel	6.0m	8.0	0.039	8
173			MHC	8.0m	7.7	2.19	4.2
174			MHC	10.0m	9.3	0.547	37
175			MHC	12.0m	9.3	0.513	4.7
176			MHC	14.0m	9.1	0.291	3.4
177	B2	39	FSLC	2.0m	8.6	0.647	151
178			LMC	4.0m	8.0	2.84	194
179			LMC	6.0m	8.2	3.72	142
180]		LMC	8.0m	8.5	4.51	777
181]		MHC	10.0m	8.4	5.54	899
182]		MHC	12.0m	7.9	4.99	556
183			HC	14.0m	8.7	1.717	537

Date Received: 2/1/2019 Date Completed: 9/2/2019

Lab No	Soil Type	Site No	Horizon	Depth	pН	EC	Cl
				m		mS/cm	mg/kg
184	A1 (east)	2	A1	0-0.06m	7.0	0.166	71
185			B21	0.06-0.1m			
186			B21	0.1-0.2m	7.5	0.047	6.1
187			B21	0.2-0.3m	7.7	0.034	6.2
188			2D1	0.5-0.6m	7.7	0.026	9.6
189			3B2	0.8-0.9m	8.1	0.032	8.1
190			4D2	1.1-1.2m	8.3	0.044	18
191			5B2	1.4-1.5m	8.1	0.032	8.4
192	A1 (west)	24	A1	0-0.1m	7.1	0.058	<5
193			A1	0.1-0.2m	6.9	0.032	<5
194			B21	0.2-0.3m	7.2	0.027	<5
195			B21	0.5-0.6m	7.5	0.027	<5
196			B22	0.8-0.9m	7.8	0.035	<5
197			2D1	1.1-1.2m	8.6	0.083	<5
198			2D1	1.4-1.5m	8.9	0.075	<5
199	A2 (east)	12	A1	0-0.03m	7.3	0.241	151
200			B21	0.03-0.1m			
201			B21	0.1-0.2m	7.5	0.037	<5
202			B22	0.2-0.3m	7.5	0.033	<5
203			B23	0.5-0.6m	7.9	0.041	<5
204			B23	0.8-0.9m	8.2	0.065	<5
205			B23	1.1-1.2m	8.2	0.133	33
206			B24	1.4-1.5m	8.2	0.200	87
207	A2 (west)	25	A11	0-0.1m	7.0	0.139	15
208			A12	0.1-0.2m	7.7	0.253	261
209			A12	0.2-0.27m			
210			B21	0.3-0.4m	8.2	0.802	873
211			B21	0.5-0.6m	8.5	1.261	1020
212			B22ky	0.8-0.9m	8.9	1.336	965
213			B23ky	1.1-1.2m	9.0	1.595	953
214			B23ky	1.4-1.5m	8.5	2.82	895
215	A4	16	A1	0-0.02m	6.8	0.234	35
216			B21	0.02-0.1m			
217			B21	0.1-0.2m	7.1	0.060	7.2
218			B21	0.2-0.3m	7.8	0.073	9.9
219			B22k	0.5-0.6m	8.7	0.176	21
220			B22k	0.8-0.9m	8.7	0.589	372
221			B22k	1.1-1.2m	8.6	0.770	471
222			B23y	1.4-1.5m	7.9	2.29	451
223	B1	6	A1	0-0.02m	7.9	0.288	56
224			B21k	0.02-0.1m			
225			B21k	0.1-0.2m	8.3	0.070	<5
226			B21k	0.2-0.3m	8.9	0.111	<5
227			B22ky	0.5-0.6m	9.0	0.578	484
228			B22ky	0.8-0.9m	8.0	3.66	1837
229			2Dy	1.1-1.2m	7.8	4.35	1551
230			2Dy	1.4-1.5m	7.7	4.15	1576

Date Received: 2/1/2019 Date Completed: 9/2/2019

Lab No	Soil Type	Site No	Horizon	Depth	pН	EC	Cl
				m		mS/cm	mg/kg
231	B2	38	A1	0-0.03m	8.5	0.183	<5
232			B21	0.03-0.1m			
233			B21	0.1-0.2m	9.2	1.271	1485
234			B21	0.2-0.3m	8.9	2.89	2783
235			B22ky	0.5-0.6m	8.5	5.84	3880
236			B23y	0.8-0.9m	8.5	6.11	4182
237			B24y	1.1-1.2m	8.6	6.24	3892
238			B24y	1.4-1.5m	8.9	4.38	3994
239	B3	4	A1	0-0.04m	6.8	0.041	<5
240			A2j	0.04-0.08m			
241			B21	0.1-0.2m	6.5	0.164	146
242			B21	0.2-0.3m	6.7	0.309	355
243			B22	0.5-0.6m	8.2	0.294	303
244			B23k	0.8-0.9m	8.8	0.413	351
245			B23k	1.1-1.2m	8.9	0.471	391
246	C1	26	A1	0-0.07m	8.1	0.130	<5
247			B21	0.1-0.2m	7.7	1.536	<5
248			B22	0.2-0.3m	7.7	2.40	14
249			B23y	0.5-0.6m	7.8	2.99	187
250			B23y	0.8-0.9m	7.8	3.85	597
251			B23y	1.1-1.2m	7.9	4.38	964
252			B3y	1.4-1.5m	8.0	4.32	1064
253	C2	27	A1	0-0.04m	8.8	0.100	6.5
254			B21	0.04-0.1m			
255			B21	0.1-0.2m	9.2	0.395	371
256			B21	0.2-0.3m	9.0	0.912	908
257			B22ky	0.5-0.6m	8.4	2.60	1035
258			B22ky	0.8-0.9m	8.3	3.38	1068
259			B22ky	1.1-1.2m	9.2	0.945	798
260			B3k	1.4-1.5m	8.9	1.516	1627

Soil Analysis Report Batch Number: 19/04

Date Received: 2/1/2019 Date Completed: 9/2/2019

Client: Soil Mapping & Monitoring

Lab No	Soil Type	Site No	Horizon	Depth	pН	EC	Cl	Pbic	OC	SO4-S	Ca	Mg	Κ	Na	CEC	ECEC	ESP
				m		mS/cm	mg/kg	mg/kg	%	mg/kg	meq/100g	meq/100g	meq/100g	meq/100g	meq/100g	meq/100g	%
184	A1 (east)	2	A1	0-0.06m	7.0	0.166	71	73	2.35	7	12.6	4.7	2.10	0.12		19	1
185			B21	0.06-0.1m													
186			B21	0.1-0.2m	7.5	0.047	6.1				12.4	4.0	1.47	0.04	17		<1
187			B21	0.2-0.3m	7.7	0.034	6.2				13.5	4.0	1.18	0.05	17		<1
188			2D1	0.5-0.6m	7.7	0.026	9.6				7.3	2.2	0.60	0.01	9		<1
189			3B2	0.8-0.9m	8.1	0.032	8.1				13.1	4.0	0.64	0.05	15		<1
190			4D2	1.1-1.2m	8.1	0.032	8.4				11.0	3.1	0.30	0.05	13		<1
191			5B2	1.4-1.5m	8.3	0.044	18				19.7	6.3	0.53	0.16	25		1
192	A1 (west)	24	A1	0-0.1m	7.1	0.058	<5	39	1.06	2	3.2	1.05	1.14	0.01	6		<1
193			A1	0.1-0.2m	6.9	0.032	<5				4.2	1.3	0.65	0.06		6	1
194			B21	0.2-0.3m	7.2	0.027	<5				6.3	1.8	0.755	0.08		9	1
195			B21	0.5-0.6m	7.5	0.027	<5				7.4	2.1	0.49	0.04	9		<1
196			B22	0.8-0.9m	7.8	0.035	<5				7.4	1.89	0.36	0.02	9		<1
197			2D1	1.1-1.2m	8.6	0.083	<5				6.0	1.37	0.55	0.02	7		<1
198			2D1	1.4-1.5m	8.9	0.075	<5				5.1	1.11	0.24	0.04	5		1

Lab No	Soil Type	Site No	Horizon	Depth	Cu	Zn	Mn	Fe	Total-N	PSA-CS	PSA-FS	PSA-Silt	PSA-Clay	R1	15 Bar	ADMC
				m	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	%		%	%
184	A1 (east)	2	A1	0-0.06m	0.681	3.61	41.88	14.88	0.142	15	42	22	21	0.74	13	1.6
185			B21	0.06-0.1m												
186			B21	0.1-0.2m						14	40	19	27	0.82	12	1.5
187			B21	0.2-0.3m						20	37	17	28	0.82	12	1.6
188]		2D1	0.5-0.6m						46	32	6	15	0.91	6	0.9
189]		3B2	0.8-0.9m						19	45	12	25	0.74	11	1.4
190]		4D2	1.1-1.2m						29	50	7	15	0.76	7	1.2
191			5B2	1.4-1.5m						7	35	24	37	0.60	16	2.8
192	A1 (west)	24	A1	0-0.1m	0.327	0.862	14.94	11.23	0.055	39	47	6	9	0.81	4	0.6
193]		A1	0.1-0.2m						39	45	6	12	0.89	5	0.5
194]		B21	0.2-0.3m						38	41	7	16	0.86	6	0.8
195			B21	0.5-0.6m						33	45	7	18	0.86	7	1.0
196			B22	0.8-0.9m						35	44	7	16	0.87	7	0.8
197			2D1	1.1-1.2m						53	31	4	13	0.91	5	0.6
198			2D1	1.4-1.5m						59	25	3	10	0.99	4	0.6

All results for particle size analysis and R1 are reported on oven dry basis (no pretreatment applied to test samples)

Soil Analysis Report Batch Number: 19/04

Date Received: 2/1/2019 Date Completed: 9/2/2019

Client: Soil Mapping & Monitoring

Lab No	Soil Type	Site No	Horizon	Depth	pН	EC	Cl	Pbic	OC	SO4-S	Ca	Mg	Κ	Na	CEC	ECEC	ESP
				m		mS/cm	mg/kg	mg/kg	%	mg/kg	meq/100g	meq/100g	meq/100g	meq/100g	meq/100g	meq/100g	%
199	A2 (east)	12	A1	0-0.03m	7.3	0.241	151	118	2.01	11	18.3	8.4	2.91	0.25		30	1
200			B21	0.03-0.1m													
201			B21	0.1-0.2m	7.5	0.037	<5				23.4	7.0	1.24	0.06	31		<1
202			B22	0.2-0.3m	7.5	0.033	<5				23.6	6.7	1.08	0.06	31		<1
203			B23	0.5-0.6m	7.9	0.041	<5				20.9	7.3	0.79	0.11	29		<1
204			B23	0.8-0.9m	8.2	0.065	<5				23.4	8.2	0.70	0.05	29		<1
205			B23	1.1-1.2m	8.2	0.133	33				23.9	8.9	0.57	0.29	30		1
206			B24	1.4-1.5m	8.2	0.200	87				23.3	9.1	0.57	0.53	31		2
207	A2 (west)	25	A11	0-0.1m	7.0	0.139	15	102	1.98	11	13.7	5.6	1.38	0.25		21	1
208			A12	0.1-0.2m	7.7	0.253	261				15.1	6.1	0.82	1.08	21		5
209			A12	0.2-0.27m													
210			B21	0.3-0.4m	8.2	0.802	873				12.5	7.0	0.60	4.4	23		19
211			B21	0.5-0.6m	8.5	1.261	1020				13.5	9.1	0.67	5.8	25		23
212			B22ky	0.8-0.9m	8.9	1.336	965				12.2	9.9	0.91	7.4	25		30
213			B23ky	1.1-1.2m	9.0	1.595	953				12.1	10.8	0.87	8.9	25		36
214			B23ky	1.4-1.5m	8.5	2.82	895				12.1	11.6	0.88	9.9	26		38

Lab No	Soil Type	Site No	Horizon	Depth	Cu	Zn	Mn	Fe	Total-N	PSA-CS	PSA-FS	PSA-Silt	PSA-Clay	R1	15 Bar	ADMC
				m	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	%		%	%
199	A2 (east)	12	A1	0-0.03m	1.499	1.885	91.57	14.38	0.161	2	19	41	39	0.64	21	3.1
200			B21	0.03-0.1m												
201			B21	0.1-0.2m						1	13	37	49	0.57	23	3.8
202			B22	0.2-0.3m						2	13	37	48	0.54	22	3.6
203			B23	0.5-0.6m						2	24	30	44	0.52	20	3.6
204			B23	0.8-0.9m						2	21	34	43	0.53	20	3.4
205			B23	1.1-1.2m						2	21	37	43	0.53	20	2.4
206			B24	1.4-1.5m						3	12	39	45	0.55	22	2.5
207	A2 (west)	25	A11	0-0.1m	1.025	1.986	40.12	22.42	0.127	2	53	26	21	0.65	14	1.8
208			A12	0.1-0.2m						2	53	21	26	0.63	14	2.4
209			A12	0.2-0.27m												
210			B21	0.3-0.4m						2	45	18	37	0.80	18	2.6
211			B21	0.5-0.6m						4	35	19	43	0.89	20	3.4
212			B22ky	0.8-0.9m						6	27	20	48	0.96	22	3.5
213			B23ky	1.1-1.2m						4	33	17	47	0.94	22	3.3
214			B23ky	1.4-1.5m						4	32	19	47	0.98*	23	3.4
	Not Analyse	ed		All results fo	r narticle si	ze analysis	and R1 are	reported or	n oven dry h	asis (no pre	etreatment a	nnlied to tes	st samples)		* Partially	Flocculated

Not Analysed

All results for particle size analysis and R1 are reported on oven dry basis (no pretreatment applied to test samples)

Soil Analysis Report Batch Number: 19/04

Date Received: 2/1/2019 Date Completed: 9/2/2019

Client: Soil Mapping & Monitoring

Lab No	Soil Type	Site No	Horizon	Depth	pН	EC	Cl	Pbic	OC	SO4-S	Ca	Mg	K	Na	CEC	ECEC	ESP
				m		mS/cm	mg/kg	mg/kg	%	mg/kg	meq/100g	meq/100g	meq/100g	meq/100g	meq/100g	meq/100g	%
215	A4	16	A1	0-0.02m	6.8	0.234	35	205	1.33	73	23.0	7.9	1.90	0.52		33	2
216			B21	0.02-0.1m													
217			B21	0.1-0.2m	7.1	0.060	7.2				24.6	9.0	1.65	0.50		36	1
218			B21	0.2-0.3m	7.8	0.073	9.9				26.2	8.9	1.86	0.74	36		2
219			B22k	0.5-0.6m	8.7	0.176	21				25.4	9.1	1.46	3.5	35		10
220			B22k	0.8-0.9m	8.7	0.589	372				22.9	7.4	1.16	6.0	35		17
221			B22k	1.1-1.2m	8.6	0.770	471				19.6	11.6	0.90	8.5	36		24
222			B23y	1.4-1.5m	7.9	2.29	451				19.7	12.8	1.42	8.7	37		24
223	B1	6	A1	0-0.02m	7.9	0.288	56	92	1.25	31	18.1	6.9	1.96	0.59	25		2
224			B21k	0.02-0.1m													
225			B21k	0.1-0.2m	8.3	0.070	<5				19.3	7.5	0.81	0.71	26		3
226			B21k	0.2-0.3m	8.9	0.111	<5				17.9	7.2	0.61	2.2	26		8
227			B22ky	0.5-0.6m	9.0	0.578	484				13.4	8.6	0.71	7.1	26		27
228			B22ky	0.8-0.9m	8.0	3.66	1837				13.0	9.7	0.71	8.8	27		33
229			2Dy	1.1-1.2m	7.8	4.35	1551				14.0	7.7	0.45	6.3	21		30
230			2Dy	1.4-1.5m	7.7	4.15	1576				12.6	7.5	0.37	5.9	20		30

Lab No	Soil Type	Site No	Horizon	Depth	Cu	Zn	Mn	Fe	Total-N	PSA-CS	PSA-FS	PSA-Silt	PSA-Clay	R1	15 Bar	ADMC
				m	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	%		%	%
215	A4	16	A1	0-0.02m	4.212	2.034	100.06	117.81	0.084	1	11	28	60	0.49	25	4.6
216			B21	0.02-0.1m												
217			B21	0.1-0.2m						1	11	27	62	0.50	25	5.1
218			B21	0.2-0.3m						1	11	27	62	0.65	25	5.0
219			B22k	0.5-0.6m						1	10	29	62	0.80	26	4.7
220			B22k	0.8-0.9m						1	10	29	62	0.89	28	4.8
221			B22k	1.1-1.2m						1	10	29	61	0.91	27	4.4
222			B23y	1.4-1.5m						1	10	29	61	0.81	26	4.3
223	B1	6	A1	0-0.02m	1.952	0.892	63.36	18.59	0.072	3	35	21	43	0.43	16	2.5
224			B21k	0.02-0.1m												
225			B21k	0.1-0.2m						2	32	18	49	0.46	17	3.4
226			B21k	0.2-0.3m						2	34	19	47	0.65	18	3.3
227			B22ky	0.5-0.6m						2	31	20	48	0.66	19	3.3
228			B22ky	0.8-0.9m						2	26	24	50	0.66*	19	3.6
229			2Dy	1.1-1.2m						1	39	24	37	0.69*	16	3.8
230			2Dy	1.4-1.5m						1	47	21	33	0.74*	15	3.2
	Not Analys	ad		All results fo	r particle si	zo opolycie	and D1 are	reported or	oven dry b	nosis (no pr	atreatment a	nuliad to tak	t complex)		* Dortially	Flocculated

Not Analysed

All results for particle size analysis and R1 are reported on oven dry basis (no pretreatment applied to test samples)

Soil Analysis Report Batch Number: 19/04

Date Received: 2/1/2019 Date Completed: 9/2/2019

Client: Soil Mapping & Monitoring

Lab No	Soil Type	Site No	Horizon	Depth	pН	EC	Cl	Pbic	OC	SO4-S	Ca	Mg	Κ	Na	CEC	ECEC	ESP
				m		mS/cm	mg/kg	mg/kg	%	mg/kg	meq/100g	meq/100g	meq/100g	meq/100g	meq/100g	meq/100g	%
231	B2	38	A1	0-0.03m	8.5	0.183	<5	38	0.94	5	13.1	3.8	1.13	0.997	17		6
232			B21	0.03-0.1m													
233			B21	0.1-0.2m	9.2	1.271	1485				12.1	3.4	0.47	6.8	19		36
234			B21	0.2-0.3m	8.9	2.89	2783				9.5	3.1	0.78	11.9	19		63
235			B22ky	0.5-0.6m	8.5	5.84	3880				10.9	4.8	1.08	15.5	23		67
236			B23y	0.8-0.9m	8.5	6.11	4182				8.5	6.1	0.61	19.4	26		75
237			B24y	1.1-1.2m	8.6	6.24	3892				10.2	6.9	0.69	21.2	28		76
238			B24y	1.4-1.5m	8.9	4.38	3994				6.6	7.3	1.01	22.4	31		72
239	B3	20	A12	0.01-0.08m	8.3	0.731	914	29	0.44	11	11.3	4.5	0.77	4.5	19		24
240			B21k	0.2m	8.8	2.33	2857				10.5	5.5	0.45	8.3	20		42
241			B21k	0.3m	8.9	5.89	2595				10.7	4.5	0.85	14.9	20		75
242			B22yk	0.6m	8.8	7.6	2505				9.0	3.4	0.56	20.0	18		111
243			B22yk	0.9m	8.7	6.84	1643				9.7	4.2	0.62	19.7	21		94
244			B23yk	1.2m	8.6	6.27	1362				10.7	4.2	0.63	22.3	25		89
245			B23yk	1.5m	9.3	2.85	1203				4.6	4.4	0.68	24.6	27		91

Lab No	Soil Type	Site No	Horizon	Depth	Cu	Zn	Mn	Fe	Total-N	PSA-CS	PSA-FS	PSA-Silt	PSA-Clay	R1	15 Bar	ADMC
				m	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	%		%	%
231	B2	38	A1	0-0.03m	1.364	0.623	16.83	11.46	0.072	7	48	18	28	0.73	14	1.7
232			B21	0.03-0.1m												
233			B21	0.1-0.2m						5	46	15	36	0.82	15	2.5
234			B21	0.2-0.3m						5	47	14	36	0.98	15	2.6
235			B22ky	0.5-0.6m						5	37	15	45	0.96*	19	3.5
236			B23y	0.8-0.9m						4	26	18	53	0.99*	23	4.4
237			B24y	1.1-1.2m						3	22	19	58	0.99*	25	4.8
238			B24y	1.4-1.5m						2	21	18	61	0.99	26	4.3
239	B3	20	A12	0.01-0.08m	1.097	1.017	18.16	22.01	0.050	5	44	20	33	0.72	14	2.3
240			B21k	0.2m						3	40	20	39	0.66	15	2.3
241			B21k	0.3m						4	39	18	41	0.52	16	2.2
242			B22yk	0.6m						4	35	19	43	0.99*	21	3.5
243			B22yk	0.9m						4	29	15	53	0.99*	22	3.7
244			B23yk	1.2m						4	24	23	50	0.99*	24	4.6
245]		B23yk	1.5m						4	23	17	57	0.99	25	3.6
	Not Analysed All results for particle size analysis and R1 are reported on oven dry basis (no pretreatment applied to test samples)									* Partially	Flocculated					

Not Analysed

All results for particle size analysis and R1 are reported on oven dry basis (no pretreatment applied to test samples)

Soil Analysis Report Batch Number: 19/04

Date Received: 2/1/2019 Date Completed: 9/2/2019

Client: Soil Mapping & Monitoring

Lab No	Soil Type	Site No	Horizon	Depth	pН	EC	Cl	Pbic	OC	SO4-S	Ca	Mg	K	Na	CEC	ECEC	ESP
				m		mS/cm	mg/kg	mg/kg	%	mg/kg	meq/100g	meq/100g	meq/100g	meq/100g	meq/100g	meq/100g	%
246	C1	26	A1	0-0.07m	8.1	0.130	<5	19	1.05	8	45.5	2.6	1.08	0.054	48		<1
247			B21	0.1-0.2m	7.7	1.536	<5				49.6	1.6	0.48	0.245	49		1
248			B22	0.2-0.3m	7.7	2.40	14				53.1	2.1	0.37	0.842	49		2
249			B23y	0.5-0.6m	7.8	2.99	187				47.0	4.0	0.43	4.55	47		10
250			B23y	0.8-0.9m	7.8	3.85	597				41.7	4.9	0.66	10.1	47		21
251			B23y	1.1-1.2m	7.9	4.38	964				37.9	4.9	1.13	12.7	46		28
252			B3y	1.4-1.5m	8.0	4.32	1064				35.2	4.2	0.65	12.1	38		32
253	C2	27	A1	0-0.04m	8.8	0.100	6.5	21	0.92	3	19.2	1.3	0.63	0.177	16		1
254			B21	0.04-0.1m													
255			B21	0.1-0.2m	9.2	0.395	371				21.9	2.2	0.44	3.2	24		13
256			B21	0.2-0.3m	9.0	0.912	908				18.9	2.4	0.48	4.8	21		23
257			B22ky	0.5-0.6m	8.4	2.60	1035				20.3	3.0	0.36	7.4	25		30
258			B22ky	0.8-0.9m	8.3	3.38	1068				19.6	3.3	0.34	7.9	25		32
259			B22ky	1.1-1.2m	9.2	0.945	798				12.0	2.4	0.28	5.4	17		32
260			B3k	1.4-1.5m	8.9	1.516	1627				20.4	4.5	0.44	10.5	31		34

Lab No	Soil Type	Site No	Horizon	Depth	Cu	Zn	Mn	Fe	Total-N	PSA-CS	PSA-FS	PSA-Silt	PSA-Clay	R1	15 Bar	ADMC
				m	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	%		%	%
246	C1	26	A1	0-0.07m	1.811	0.376	11.4	6.27	0.060	7	20	18	55	0.38	28	4.4
247			B21	0.1-0.2m						7	19	14	61	0.18*	25	5.1
248			B22	0.2-0.3m						6	18	14	63	0.15*	25	6.7
249			B23y	0.5-0.6m						6	17	44	34*	0.21*	27	7.0
250			B23y	0.8-0.9m						5	17	57	23*	0.34*	28	7.1
251			B23y	1.1-1.2m						4	16	57	25*	0.49*	29	7.0
252			B3y	1.4-1.5m						6	17	66	12*	0.56*	27	7.2
253	C2	27	A1	0-0.04m	0.959	0.237	6.95	4.51	0.044	36	29	7	29	0.62	9	1.6
254			B21	0.04-0.1m												
255			B21	0.1-0.2m						31	21	12	37	0.72	15	1.7
256			B21	0.2-0.3m						32	19	11	39	0.80	16	1.5
257			B22ky	0.5-0.6m						27	18	12	43	0.86*	17	2.4
258			B22ky	0.8-0.9m						28	14	11	48	0.87*	18	2.9
259			B22ky	1.1-1.2m						50	12	8	31	0.99	12	1.4
260			B3k	1.4-1.5m						18	9	11	62	0.93	22	2.7
	Not Analyzed All results for particle size analysis and P 1 are reported on oven dry basis (no pretreatment applied to test samples)							* Dortiolly	Flocculated							

Not Analysed

All results for particle size analysis and R1 are reported on oven dry basis (no pretreatment applied to test samples)

METHOD I

methods abed to mind	iybe builipies			
Analyte	ALHS*	Uncertainty %	LOQ	Unit
рН	4A1	1.1	0.1	pH
EC	3A1	5.4	0.01	dS/m
Cl	5A2	10.0	5.0	mg/kg
NO3-N	7C2	6.7	0.5	mg/kg
NH4-N	7C2	7.8	0.6	mg/kg
Bicarb.P	9B2	16.8	1.0	mg/kg
TN	7A2	12.9	0.01	%
OC	8B1	9.7	0.02	%
Ca (Neut)	15A1	10.3	0.10	meq/100g
Mg (Neut)	15A1	6.6	0.10	meq/100g
Na (Neut)	15A1	7.3	0.03	meq/100g
K (Neut)	15A1	3.9	0.02	meq/100g
ECEC	15J1	5.0	1	meq/100g
ESP	15N1	5.0	3	%
Ext. K	18B1	3.5	7	mg/kg
Sand	no ref	22.1	1.0	%
Silt	no ref	16.6	1.0	%
Clay	no ref	12.7	1.0	%

Methods used to Analyse Samples

* Australian Laboratory Handbook of Soil and Water Chemical Methods (1992)

Agricultural Chemistry Pty Ltd

METHOD I

Methods used to Analyse Samples

Analyte	ALHS*	Uncertainty %	LOQ	Unit
Ca (Alc)	15C1	7.2	0.18	meq/100g
Mg (Alc)	15C1	4.7	0.31	meq/100g
Na (Alc)	15C1	9.6	0.09	meq/100g
K (Alc)	15C1	4.8	0.02	meq/100g
CEC	15I3	5.7	1.0	meq/100g
DTPA-Cu	12A1	17.1	0.26	mg/kg
DTPA-Zn	12A1	16.4	0.10	mg/kg
DTPA-Mn	12A1	9.0	0.32	mg/kg
DTPA-Fe	12A1	13.0	0.23	mg/kg
ADMC	2A1	11.9	0.4	%
R1	NA	20.2	NA	
SO4-S	10B3	11.5	0.6	mg/kg
Al	15G1	NA	NA	meq/100g
H+	15G1	NA	NA	meq/100g
15 Bar		NA	NA	
1/3 Bar		NA	NA	

* Australian Laboratory Handbook of Soil and Water Chemical Methods (1992)
DESCRIPTIONS

Soil

Reference: 19/04

Page 13 of 15

Name
pH
Electrical conductivity
Chloride
Nitrate-nitrogen
Ammonium-nitrogen
Bicarb.ext.phosphorus
Total Kjeldahl Nitrogen
Organic Carbon
Exchangeable calcium
Exchangeable magnesium
Exchangeable sodium
Exchangeable potassium
Effective cation ex.capacity
Exchangeable Na%
Extractable potassium
Particle size, sand
Particle size, silt
Particle size, clay

Method Description

1:5 water extr, pH meter 1:5 water extr, EC meter 1:5 water extr, (AA) colorimetric 1:5 water extr, (AA) colorimetric 1M KCl extr, (AA) colorimetric 0.5M NaHCO3 @ pH 8.5, (AA) colorimetric Sulphuric acid digest, (AA) colorimetric Walkley & Black, (H2SO4/K2Cr2O7), titr. 1M NH4Cl @ pH 7.0 shake, AAS Sum of exchangeable cations (Exchangeable Na/sum of exch.cations)% 0.05M HCl shake, AAS Hydrometer, gravimetric Hydrometer, gravimetric Hydrometer, gravimetric

For Manager Analytical Services:

DESCRIPTIONS

Soil

Reference: 19/04

Page 14 of 15

Name **Method Description** Exchangeable calcium 1M NH4Cl (alcoholic) @ pH 8.5 leach, AAS 1M NH4Cl (alcoholic) @ pH 8.5 leach, AAS Exchangeable magnesium 1M NH4Cl (alcoholic) @ pH 8.5 leach, AAS Exchangeable sodium 1M NH4Cl (alcoholic) @ pH 8.5 leach, AAS Exchangeable potassium Cation Exchange Capacity KNO3 + Ca(NO3)2 extr, (AA) colorimetric DTPA ext. copper DTPA extraction, AAS DTPA ext. zinc DTPA extraction, AAS DTPA ext. manganese DTPA extraction, AAS DTPA ext. iron DTPA extraction, AAS Air Dried Moisture Content Gravimetric oven dry @ 105C Ratio [Aqueous dispersible (Silt + Clay):Total (Silt + Clay)] **Dispersion Ratio** Ca(H2PO4)2 @ pH 4.0 extractable sulfate-sulfur, ICPOES Sulfate sulfur Exch. Hydrogen and Aluminium by 1M KCl Exchangeable Aluminium Exch. Hydrogen and Aluminium by 1M KCl **Exchangeable Acidity** 15 Bar Analysis Pressure Plate/Gravimetric oven dry @ 105C 15 Bar Analysis Pressure Plate/Gravimetric oven dry @ 105C

For Manager Analytical Services:

QUALITY CONTROL DATA

Soil

Reference: 19/04 Page: 15 of 15

* Australian Laboratory Handbook of Soil and Water Chemical Methods (1992)

			Actual Value	Acceptance Criteria
Test Method	Units			[Range]
рН	pН	MB	7.9, 7.9, 7.9, 7.9, 7.9	7.5 - 8.1
EC	dS/m	MB	.369, .369, .370, .358	.320380
Cl	mg/kg	MB	250, 252, 249, 249, 251	230 - 260
NO3-N	mg/kg	MB		15 - 23
NH4-N	mg/kg	MB		
Colwell P	mg/kg	1703-3	50, 51	35.5 - 55.3
BSES P	mg/kg	MB		73 - 87
Total N	%	1806-4	.172, .172, .178	.134256
Total P	%	1806-4		0.02 - 0.04
Organic Carbon	%	1706-1	2.25, 2.32	1.86 - 2.72
Ca (Exch. cations)pH7	meq/100g	KAL	18.1, 17.3, 18.3	17.2 - 20.9
Mg (Exch. cations)pH7	meq/100g	KAL	11.4, 11.2, 11.3	9.6 - 11.5
Na (Exch. cations)pH7	meq/100g	KAL	1.121, 1.168, 1.19	1.01 - 1.33
K (Exch. cations)pH7	meq/100g	KAL	.484, .494, .49	.455721
Exch. Acidity	meq/100g			NA
ECEC	meq/100g			NA
CEC	meq/100g	S12	58, 59, 60, 58	56 - 70
ESP	%			NA
Coarse sand	%	RD	31, 32, 32, 33, 33, 33	29 -33
Fine Sand	%	RD	31, 32, 31, 30, 32, 31	27 - 32
Silt	%	RD	11, 11, 8, 9,	8 - 15
Clay	%	RD	28, 28, 29, 29, 29, 29	21 - 30
R1		RD	.50, .50, .47, .44, .49, .53	.3857

			Actual Value	Acceptance Criteria
Test Method	Units	Test Soil		[Range]
DTPA-Cu	mg/kg	KAL	2.1, 2.08	1.55 - 2.10
DTPA-Zn	mg/kg	KAL	.196, .197	.1543
DTPA-Mn	mg/kg	KAL	89.9, 91.6	44.5 - 95.2
DTPA-Fe	mg/kg	KAL	33.3, 35.5	28.1 - 46.3
Suflate-sulfur	mg/kg	PM	65	58 - 73
ADMC	%			NA
15 Bar	%	G	29, 29, 30, 29, 31, 31	23 - 32
0.33 Bar	%	G		32 - 51
Ca (Exch. cations)pH8.5	meq/100g	S12	33.8, 34.9, 34.2, 33.5	27.7 - 37.4
Mg (Exch. cations)pH8.5	meq/100g	S12	23.7, 24.3, 24.5, 24.6	22.88 - 26.5
Na (Exch. cations)pH8.5	meq/100g	S12	1.94, 1.81	1.80 - 2.28
K (Exch. cations)pH8.5	meq/100g	S12	1.73, 1.72, 1.81	1.64 - 2.09

Appendix 9: Calculated Attribute Data Methods and Results

Appendix 9 Calculated attribute data methods and results

Laboratory and field data have been used to estimate soil attributes used in the assessment of land suitability including:

- effective rooting depth (ERD)
- plant available water capacity (PAWC to 1.0 m and 1.5 m)
- soil erodibility (K factor).

The methods used are described below.

Assessment of Effective Rooting Depth

Effective rooting depth (ERD) is defined as the depth to which approximately 90% of plant roots will extract water. It is normally limited by the presence of underlying rock or other hard materials, or by chemical or physical constraints within the soil that restrict root growth. ERD for soil units within the 15 Mile project area was determined using analytical data from relevant representative analytical profiles (A2, A6, A12, A16, A20, A24, A25, A26, A27, A38) and the following commonly accepted criteria (Burgess 2003b):

- 1. Cl_{1:5} > 800 ppm;
- 2. ESP > 15%;
- 3. Lab pH < 5.5; and/or
- 4. Depth to C or R horizons (or other impenetrable hard pans or gravel layers).

Calculated PAWC

PAWC values were calculated for the ERD using SALFcalc software based on inputs from analytical data collected for soil unit representative profiles (analysed sites).

K factor assessment and method

Method

Soil erodibility and observed modal slope (%) is used to characterise the potential erosion hazard of a soil unit (or mapping unit) and this is used to determine the water erosion limitation class for land evaluation purposes (see **Section 3** of the main report). Surface soil erodibility has been estimated using calculated K factor values from the Revised Universal Soil Loss Equation (RUSLE) method of Rosewell and Loch (2002).

Rosewell and Loch (2002) suggest K factor values estimated from the soil erodibility nomograph of Wischmeier and Smith (1978), using dispersed particle size data (Bowman & Hutka 2002), are appropriate where soils are unstructured, non-vertic and have a combined silt (Si) and very fine sand (vfs) fraction less than 68%. Loch and Rosewell (1992); however, had shown previously that such an approach significantly underestimates K factor values in aggregated clay soils. In such cases, Rosewell and Loch (2002) recommend the use of non-dispersed particle size data (Method 516.01 - Rosewell 2002) in conjunction with a modified approach (Method 528.01 - Rosewell & Loch 2002) to more accurately predict values.

In situations where only dispersed particle size data is available, Loch and Rosewell (1992) report considerable improvement in the prediction of K factor values when the wet density of eroded sediment is taken into account. In such cases, these authors recommend adjustment of traditionally derived K factor values through the incorporation of wet density estimates, to better reflect expected erosive behaviour. The suggested approach calculates a modified K factor value (K_m) for aggregated clay soils, based on an assumption that eroded aggregates from the initial soil erodibility study of Wischmeier *et al.* (1971) had wet densities (d_i) close to 2.0 mg/m³ (*pers. comm.* R Loch 2018).

Modified K factor values are calculated using the equation (Loch & Rosewell 1992):

$$\mathbf{K}_{\mathrm{m}} = \mathbf{K}_{\mathrm{nomograph}} \left(\mathbf{d}_{\mathrm{i}} - 1 \right) / \left(\mathbf{d}_{\mathrm{s}} - 1 \right)$$

where K_m is the modified K factor value, d_i is the wet density and d_s is the wet sediment density of the soil material. When the density of water is subtracted from both sediment density terms, the equation simplifies to:

$$K_m = K_{nomograph} / (d_s - 1)$$

For aggregated clay soils, wet sediment density (d_s) is calculated as:

$$d_s = 1.462 + 0.048 (1.03259^X)$$

where X is the sand percentage >0.02 mm from dispersed particle size data.

Aggregated clay soils are widespread in the Hughenden region, and the adoption of the modified K factor approach of Loch and Rosewell (1992) has ensured calculated estimates of inherent erodibility are realistic and meaningful. The method is particularly useful for soil survey situations where budgetary constraints and spatial extent limit the applicability of; complex paddock-scale field measurements or non-routine non-dispersed particle size analyses.

For the purposes of land evaluation, the K factor only characterises the inherent erodibility of the in-situ soil resource as a means of determining generic erosion hazard. Other factors such as contributing catchment area, rainfall erosivity, slope length, or soil surface management (cultivation and groundcover provision) will affect the rate of erosion. Assessment of potential erosion rates is beyond the scope of the land suitability assessment.

K factor data inputs, assumptions and decision rules

Initial nomograph based K factor calculations (prior to modification) require measures or estimates of the following:

- organic matter (OM %) in the surface soil (0-0.10 m) (Rayment & Lyons 2011)
- dispersed particle size data (PSA) in the surface soil (0-0.10 m) (Bowman & Hutka 2002)
- field estimates of surface soil structure (A1 horizon) (NCST 2009)
- field estimates of profile permeability (least permeable soil horizon) (NCST 2009)
- field estimates of profile gravel content based on modal land unit data (NCST 2009).

Profile morphology and laboratory data used in the estimation of K factor values, are presented in **Appendix 7**. All calculations and assumptions (listed below) are in accordance with the method and rationale of Rosewell and Loch (2002).

- The dispersed PSA fine sand fraction (0.02-0.2 mm) (Bowman & Hutka 2002) was partitioned into arbitrary very fine sand (vfs 0.02-0.1 mm) and fine sand (fs 0.1-0.2 mm) sub-fractions. K factor calculations assume 70% of the laboratory measured fine sand fraction (0.02-0.2 mm) is attributable to the very fine sand range (0.02 0.1 mm) (Rosewell & Loch 2002).
- Estimates of organic matter (OM %) were derived from laboratory measured organic carbon (OC %) data using a standard conversion ratio of 1.72 (*ie* organic C % multiplied by 1.72) (Rayment & Lyons 2011).
- A surface structure (SS) value has been assigned to all land units based on field assessments of surface structural characteristics.

- Estimation of profile permeability (PP) required conversion of the standard 4 class modal field permeability values defined by NCST (2009), to a 6 class profile permeability (PP) framework defined by Rosewell and Loch (2002). Conversion from the 4 class system to the 6 class system considered field permeability characteristics (particularly texture and sand fraction) and dispersed PSA data from the least permeable soil horizon in its determination. Final input values were adjusted or moderated using the decision rules listed in Table 1. Clay soils are largely unaffected by the conversion. However for Kandosols and Dermosols with a field permeability value of 3 (NCST 2009), final profile permeability class has been split between PP Class 3 and PP Class 4, depending on texture range and dominant sand fraction within the upper 1.0 m of the profile. In most cases, profiles dominated by coarse sand have been assigned to PP Class 4. Soils with a coarse sand fraction are considered more permeable, and have been separated on this basis.
- Adjustment of final PP class for gravelly soils follows the recommendations of Rosewell and Loch (2002). Gravel has been assessed on a whole of profile basis (excluding C horizons), and considers the maximum gravel content recorded at each analysed site and adjusted based on modal soil unit estimates.

Field p	permeability c (NCST 2009)	lass	I	RUSLE profile p (Rosewell & L	ermeability och 2002)	
Class	Rating	mm/day	Field perm Class 3 rule	Class	Rating	mm/day
-	-	-	-	PP Class 1	rapid	>3120
Class 4	high	>500	-	PP Class 2	moderate to rapid	1440-3120
Class 2	moderate	50 500	coarse sand > fine sand	PP Class 3	moderate	480-1440
Class 5	moderate	30-300	coarse sand < fine sand	PP Class 4	slow to moderate	120-480
Class 2	slow	5-50	-	PP Class 5	slow	1-5
Class 1	very slow	<5	-	PP Class 6	very slow	<1

Table 1:Decision rules to convert modal field permeability values (NCST
2009) to the 6 class profile permeability (PP) categories defined by
Rosewell and Loch (2002)

K factor interpretation

The land suitability limitation classes for water erosion are adapted from the five class system described by Rosewell and Loch (2002). **Table 2** shows the relationship between the two class systems and different terminology used.

Table 2:Soil erodibility classes adopted for the 15 Mile project compared to
those of Rosewell and Loch (2002)

Soil erodibility class (Rosewell & Loch 2002)	K factor	Soil erodibility class used for land evaluation
Very low	< 0.01	Voru stable soils
Low	0.01-0.02	very stable solls
Moderate	0.02-0.04	Stable soils
High	0.04-0.06	Unstable soils
Very high	>0.06	Very unstable soils

A summary of laboratory derived soil attribute data is provided in **Table 4** and this data has been used in evaluating soil suitability for irrigated tree cropping (see **Sections 3** and **5** of the main report).

Soil Unit ¹	Depth to 800 ppm	Depth to ESP 15%	ERD depth value	Primary ERD constraint	PAWC 1.0 m	PAWC 1.5 m	EC _e WPM ¹	Salinity rating	K factor [@]	Erodibility rating
A1	-	-	>1.5 m	-	63-71 mm	100-110 mm	0.09 dS/m	Non-saline	0.040-0.043	High
Ale	-	- #	>1.5 m	-	63 mm [#]	100 mm [#]	0.07 dS/m	Non-saline	0.043 #	High
$\Delta 2 \text{ TEP}$	\15m	>1.5 m	\15m	_	104 mm	133 mm	0.13 dS/m*	Non-saline	0.057 (DE)-	High
A2 IEI	>1.5 m	>1.5 III	>1.5 III	-	104 11111	155 1111	0.15 us/III	Non-same	0.071 (VE)	Very high
13 BKD	03 m	03 m	03 m	Salinity and sodicity	37 mm	37 mm	3 00 dS/m*	Slightly saling	0.057 (DE)-	High
A2 DKI	0.5 III	0.5 III	0.5 III	Samily and Soulerly	57 11111	57 11111	5.99 us/m	Slightly same	0.071 (VE)	Very high
A3	-	_ ^	>1.5 m	-	71 mm ^	110 mm ^	0.12 dS/m	Non-saline	0.040 ^	High
A4	-	0.8 m	0.8 m	Sodicity	117 mm	117 mm	0.70 dS/m	Non-saline	0.046	High
B1	0.4-0.7 m	0.4 m	0.4 m	Salinity and sodicity	59 mm	59 mm	4.34 dS/m	Moderately saline	0.050	High
B2	0.1 m	0.1 m	0.1 m	Salinity and sodicity	15 mm	15 mm	10.40 dS/m	Highly saline	0.070	Very high
B2g	0.4 m	$0.4 \mathrm{m}^+$	0.4 m	Salinity and sodicity	59 mm ⁺	59 mm ⁺	6.55 dS/m	Moderately saline	0.050 $^{+}$	High
B3	0.1 m	0.1 m	0.1 m	Salinity and sodicity	16 mm	16 mm	6.88 dS/m	Moderately saline	0.051	High
C1	1.1 m	0.8 m	0.8 m	Sodicity	104 mm	104 mm	1.39 dS/m	Non-saline	0.037	Moderate
C2	0.2 m	0.2 m	0.2 m	Salinity and sodicity	30 mm	30 mm	4.19 dS/m	Moderately saline	0.031	Moderate

Table 3: Summary of laboratory derived soil attribute data

* For Soil Unit A2, there is a material difference in subsoil EC between soils formed on elevated terrace plains (TEP) and on low-lying backplains (BKP) and they have been split on this limitation for suitability assessment.

[#] ESP, PAWC and K factor estimated from data from Estimated from data from closest Soil Unit A1 representative site (24)

^ ESP, PAWC and K factor estimated from data from Soil Unit A1 representative site 2

+ ESP, PAWC and K factor estimated from data from Soil Unit B1 representative site $6\,$

[@] DE= Dermosol and VE= Vertosol. Rating uses Rosewell and Loch (2002) and were converted to soil stability classes .

Appendix 10: Land Suitability Framework Review and Adopted Decision Rules

				Ci	trus			Ava	acado			G	rape		
Attribute	Attribute definition	CODE	GPARF	FGARA	NAWRA (Mitchell)	СТАР	GPARF	FGARA	NAWRA (Mitchell)	СТАР	GPARF	FGARA	NAWRA (Mitchell)	СТАР	Comment about source selection
	Low heat stress (<5 40°C days)	Cs1	1	1	ND	ND	1	1	ND	ND	1	1	ND	ND	GPARF, FGARA rules available for all selected cro
Extreme heat	Moderate heat stress (5-20 40°C days)	Cs2	3	3	ND	ND	3	3	ND	ND	3	3	ND	ND	types and applied for consistency across land
	Severe neat stress (>20 40°C days)	CS3 Ch4	4 ND	4 ND	1	ND	4 ND	4 ND	1	ND	4 ND	4 ND	ND	ND	uses
Extreme heat	Moderate heat stress (5-50 35°C days) - Wet-season	Ch5	ND	ND	3	ND	ND	ND	3	ND	ND	ND	ND	ND	-
	Severe heat stress (>50 35°C days) - Wet-season	Ch6	ND	ND	4	3	ND	ND	4	3	ND	ND	ND	ND	
	Frost free	Cf1	1	1	1	ND	1	1	1	ND	1	1	ND	ND	No CTAP rules. GPARF, FGARA, NAWRA (Mitch
Frost	Occasional frost (<2 days)	Cf2	2	2	2	ND	2	2	2	ND	2	2	ND	ND	rules consistent and can be adopted
_	Mean min. monthly temperature <15°C for 4 months or more	Ct1	1	1	1	ND	2	2	2	ND	1	1	ND	ND	4
Temperature	Mean min. monthly temperature <15°C for 3 months or less	Ct2	2	2	2	ND	1	1	1	ND	2	2	ND	ND	
	No restriction: annual rainfall >= 500mm OR surface texture not sandy	A1	1	1	ND	ND	1	1	ND	ND	1	1	ND	ND	No CTAP rules. GPARF, FGARA rules consistent
Wind Erosion	Annual rainfall <500mm AND surface texture class 1 (sandy)	A2	2	2	ND	ND	2	2	ND	ND	2	2	ND	ND	and can be adopted with minor wording
	Annual rainfall <500mm AND surface texture class 1 (sandy) AND Soil Grp 8 (Sodosols)	A3	3	3	ND	ND	3	3	ND	ND	3	3	ND	ND	modifications
	PAWC >150mm*	M7	1	1	ND	ND	ND	ND	ND	ND	1	1	ND	ND	CTAP rules have inconsistent size classes acros
	PAWC 100 - 150mm	M8 M0	1	1	ND	ND	ND	ND	ND	ND	1	1	ND	ND	PAWC (1.0 m) and PAWC (1.5 m) with rules for
PWAC to 1.0 m	PAWC 75 - 100mm	M10	2	2	ND	ND	ND	ND	ND	ND	2	2	ND	ND	calculation and interprivetation more complex
	PAWC 40- 60 mm	M11	3	3	ND	ND	ND	ND	ND	ND	3	3	ND	ND	
	PAWC <40mm	M12	4	4	ND	ND	ND	ND	ND	ND	4	4	ND	ND	Simple rules, with uniform class intervals avail
	PAWC >150mm*	M1	ND	ND	ND	ND	1	1	ND	ND	ND	ND	ND	ND	for all selected crop types in GPARF, FGARA ru
	PAWC 100 - 150mm PAWC 75 - 100mm	M2 M3	ND ND	ND ND	ND ND	ND ND	1	1	ND ND	ND ND	ND ND	ND ND	ND	ND	and applied for consistency across land uses.
PWAC to 1.5 m	PAWC 60 - 75mm	M4	ND	ND	ND	ND	2	2	ND	ND	ND	ND	ND	ND	1
	PAWC 40- 60 mm	M5	ND	ND	ND	ND	3	3	ND	ND	ND	ND	ND	ND]
	PAWC <40mm	M6	ND	ND	ND	ND	4	4	ND	ND	ND	ND	ND	ND	4
	PAWC 125 - 150mm	M4-1	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	4
	PAWC 100 - 120mm	M4-2 M4-3	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	1
PWAC to 1.0 m	PAWC 50 - 75mm	M4-4	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	1
	PAWC 30 - 50mm	M4-5	ND	ND	ND	2	ND	ND	ND	2	ND	ND	ND	ND	
	PAWC 20 - 30mm	M4-6	ND	ND	ND	3	ND	ND	ND	3	ND	ND	ND	ND	_
	PAWC <20mm PAWC <150mm	M4-7 M5-1	ND	ND	ND	4	ND	ND	ND	4	ND	ND	ND	ND	-
	PAWC 125 - 150mm	M5-1 M5-2	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	-
BWAC to 1.5 m	PAWC 100 - 125mm	M5-3	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	
FWAC ID 1.5 III	PAWC 75 - 100mm	M5-4	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	
	PAWC 50 - 75mm	M5-5	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	4
	PAWC 30 - 50mm PAWC >150mm	M5-6 M1	ND	ND	ND 1	2 ND	ND	ND	ND 1	2 ND	ND	ND	ND	ND	-
	PAWC 125 - 150mm	M2	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	ND	-
	PAWC 100 - 125mm	M3	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	ND	
PWAC to 1.5 m	PAWC 75 - 100mm	M4	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	ND	
	PAWC 50 - 75mm	M5	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	ND	4
	PAWC s0 - somm	M7	ND	ND	4	ND	ND	ND	4	ND	ND	ND	ND	ND	-
	pH 5.5-7.0	Nr1	1	1	1	ND	1	1	1	ND	1	1	ND	ND	CTAP rules more detailed to account for pH tre
Soil nH	pH 7.0-8.5	Nr2	1	1	2	ND	1	1	1	ND	1	1	ND	ND	and adopted
oon pri	pH <5.5	Nr3	2	2	2	ND	2	2	2	ND	2	2	ND	ND	4
	pH>8.5	Nr4	3	3	3 ND	ND 1	3	3	3	ND 1	3	3	ND	ND	-
	pH 7.0-8.5	Nr1-2	ND	ND	ND	2	ND	ND	ND	1	ND	ND	ND	ND	-
pH (0.0-0.6m) (Nr1)	pH <5.5	Nr1-3	ND	ND	ND	2	ND	ND	ND	2	ND	ND	ND	ND	
	pH>8.5	Nr1-4	ND	ND	ND	3	ND	ND	ND	3	ND	ND	ND	ND	
	pH 5.5-7.0	Nr2-1	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	4
pH (0.6-1.2m) (Nr2)	рн 7.0-8.5 pH <5.5	Nr2-2 Nr2-3	ND	ND	ND	2	ND	ND	ND	2	ND	ND	ND	ND	-
	pH>8.5	Nr2-4	ND	ND	ND	3	ND	ND	ND	3	ND	ND	ND	ND	-
	No restriction: surface condition loose	Ps1	1	1	ND	ND	1	1	ND	ND	1	1	ND	ND	Inconsistency across differenrt rule sets. After
	Surface condition firm/hardsetting, light texture: sands and loams	Ps2	2	2	ND	ND	2	2	ND	ND	2	2	ND	ND	clarification of classes with DNRME, CTAP rules
	Cracking clay soils - fine structure	PS3 Ps4	2	2	ND	ND	3	3	ND	ND	2	2	ND	ND	(with wording clarified) adoopted.
Physical restrictions	Cracking clay soils - coarse structure	Ps5	3	3	ND	ND	3	3	ND	ND	3	3	ND	ND	-
	ESP>6 or surface condition firm/hardsetting and silty surface texture	Ps6	3	3	ND	ND	3	3	ND	ND	3	3	ND	ND	
	Depth of A horizon <=0.2m AND Generic soil group - "Sand or Loam over intractable clay	Ps7	3	3	ND	ND	4	4	ND	ND	3	3	ND	ND	
	No restriction: surface condition class 2	Ps1	ND	ND	ND	1	ND	ND	ND	1	ND	1	ND	ND	-
	Firm/hardsetting - light texture sandy to sandy loam (S to SL)	Ps2	ND	ND	ND	1	ND	ND	ND	2	ND	ND	ND	ND	1
	Firm/hardsetting - heavy texture: Clay loamy (SCL to CL)	Ps3	ND	ND	ND	2	ND	ND	ND	2	ND	ND	ND	ND	
Physical restrictions	Cracking clay soils - fine structure: surface condition 1; soil structure 3	Ps4	ND	ND	ND	3	ND	ND	ND	3	ND	ND	ND	ND	4
	Cracking clay soils - coarse structure: surface condition 1; soil structure 4	Ps5	ND	ND	ND	3	ND	ND	ND	3	ND	ND	ND	ND	-
	Strongly sodic, intractable clay B horizon <0.3 m	Ps7	ND	ND	ND	4	ND	ND	ND	4	ND	ND	ND	ND	1
	Surface condition loose or soft (sandy or loamy surface texture)	Ps1	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	ND	1
	Surface condition firm/hard setting or crusting and sandy or loamy surface texture	Ps2	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	ND]
	Surface texture silty	Ps3	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	ND	4
Physical restrictions	Clayey surface texture and single grain surface structure	Ps4	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	ND	4
	Clayey surface texture and cloddy (massive) surface structure	Ps6	ND	ND	2	ND	ND	ND	2	ND	ND	ND	ND	ND	1
	Clayey surface texture and coarse surface structure	Ps7	ND	ND	2	ND	ND	ND	2	ND	ND	ND	ND	ND	1
	Sandy or loamy surface texture	Pa1	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	ND]
	Clayey or silty surface texture and non-cracking surface condition	Pa2	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	ND	4
Physical restrictions	clayey surface texture and self mulching surface condition	Pa3	ND	ND	3	ND	ND	ND	3	ND	ND	ND	ND	ND	4
	Soils with sodic subsoils and A borizon thickness < 20 cm	Pa4 Pa5		ND	3			ND	3		ND			ND	4
	Cons with sould subsolis and A nonzon thickness < 20 cm	raj	IND.	IND	4	IND	IND.	IND		IND	IND	IND.	IND	IND	

				Cit	trus			Ava	cado			Gra			
Attribute	Attribute definition	CODE	GPARF	FGARA	NAWRA (Mitchell)	СТАР	GPARF	FGARA	NAWRA (Mitchell)	СТАР	GPARF	FGARA	NAWRA (Mitchell)	СТАР	Comment about so
	Very deep (>1.5m)	Pd1	1	1	1	1	1	1	1	1	1	1	ND	ND	CTAP rules dopted for Avoc
	Deep (1.0 - 1.5m)	Pd2	1	1	1	1	2	2	2	2	1	1	ND	ND	the most recent view. Citru
Attribute Soil depth Low erodibility (K factor <0.02)	Moderate (0.5 - 1.0m)	Pd3	2	2	2	2	4	4	4	4	3	3	ND	ND	consistent across GPARF, F
	Shallow (0.25 - 0.5m)	Pd4	4	4	4	4	4	4	5	5	4	4	ND	ND	(Mitchell) and adopted.
	Very shallow (<0.25m)	Pd5	5	5	5	5	5	5	5	5	5	5	ND	ND	
	slope <0.5%	E1	ND	ND	1	1	ND	ND	1	1	ND	ND	ND	ND	Inconsistency across different
	slope 0.5-1.0%	E2	ND	ND	1	1	ND	ND	1	1	ND	ND	ND	ND	rules are the most recent S
	slope 1-2%	E3	ND	ND	2	1	ND	ND	2	1	ND	ND	ND	ND	have been adopted.
	slope 2-3%	E4	ND	ND	2	2	ND	ND	2	2	ND	ND	ND	ND	
Low gradibility (K factor <0.02)	slope 3-5%	E5	ND	ND	3	2	ND	ND	3	2	ND	ND	ND	ND	
Low erouibility (refactor <0.02)	slope 5-8%	E6	ND	ND	3	3	ND	ND	3	3	ND	ND	ND	ND	
	slope 8-12%	E7	ND	ND	4	3	ND	ND	4	3	ND	ND	ND	ND	
	slope 12-15%	E8	ND	ND	4	4	ND	ND	4	4	ND	ND	ND	ND	
	slope 15-20%	E9	ND	ND	5	4	ND	ND	5	4	ND	ND	ND	ND	
	slope >20%	E10	ND	ND	5	5	ND	ND	5	5	ND	ND	ND	ND	
	slope <0.5%	E11	1	1	1	1	1	1	1	1	1	1	ND	ND	
	slope 0.5-1.0%	E12	1	1	2	1	1	1	2	1	1	1	ND	ND	
Stable Soils (K factor 0.02 - 0.04)	slope 1-2%	E13	1	1	2	2	1	1	2	2	1	1	ND	ND	
	slope 2-3%	E14	1	1	3	2	1	1	3	2	1	1	ND	ND	
	slope 3-5%	E15	2	2	3	3	2	2	3	3	2	2	ND	ND	
	slope 5-8%	E16	2	2	4	3	2	2	4	3	2	2	ND	ND	
	slope 8-12%	E17	3	3	4	4	3	3	4	4	3	3	ND	ND	
	slope 12-15%	E18	3	3	5	4	3	3	5	4	3	3	ND	ND	
	slope 15-20%	E19	4	4	5	5	4	4	5	5	4	4	ND	ND	
	slope >20%	E20	5	5	5	5	5	5	5	5	5	5	ND	ND	
	slope <0.5%	E21	1	1	2	1	1	1	2	1	1	1	ND	ND	1
	slope 0.5-1.0%	E22	1	1	2	2	1	1	2	2	1	1	ND	ND	
	slope 1-2%	E23	1	1	3	2	1	1	3	2	1	1	ND	ND	1
	slope 2-3%	E24	2	2	3	3	2	2	3	3	2	2	ND	ND	
	slope 3-5%	E25	2	2	4	3	2	2	4	3	2	2	ND	ND	
Unstable Solis (K factor 0.04 - 0.06)	slope 5-8%	E26	3	3	4	4	3	3	4	4	3	3	ND	ND	
	slope 8-12%	E27	3	3	5	4	3	3	5	4	3	3	ND	ND	
	slope 12-15%	E28	4	4	5	5	4	4	5	5	4	4	ND	ND	
	slope 15-20%	E29	5	5	5	5	5	5	5	5	5	5	ND	ND	
	slope >20%	E30	5	5	5	5	5	5	5	5	5	5	ND	ND	
	slope <0.5%	E31	1	1	2	2	1	1	2	2	1	1	ND	ND	
	slope 0.5-1.0%	E32	2	2	3	2	2	2	3	2	2	2	ND	ND	
	slope 1-2%	E33	2	2	3	3	2	2	3	3	2	2	ND	ND	
	slope 2-3%	E34	2	2	4	3	2	2	4	3	2	2	ND	ND]
Version and the Della (K (esting 0.00)	slope 3-5%	E35	2	2	4	4	2	2	4	4	2	2	ND	ND	
very unstable Solis (K factor >0.06)	slope 5-8%	E36	3	3	5	4	3	3	5	4	3	3	ND	ND]
	slope 8-12%	E37	4	4	5	5	4	4	5	5	4	4	ND	ND	
	slope 12-15%	E38	4	4	5	5	4	4	5	5	4	4	ND	ND	7
	slope 15-20%	E39	5	5	5	5	5	5	5	5	5	5	ND	ND]
	slope >20%	E40	5	5	5	5	5	5	5	5	5	5	ND	ND	1

source selection

vocardo as thi seems to be itrus and grapes rules F, FGARA, NAWRA

ferenrt rule sets. CTAP nt State based rules nad

				Ci	trus			Δν	acado			G	rape		
Attribute	Attribute definition	CODE	GPARF	FGARA	NAWRA (Mitchell)	СТАР	GPARF	FGARA	NAWRA (Mitchell)	СТАР	GPARF	FGARA	NAWRA (Mitchell)	СТАР	Comment abou
	Rapidly drained - Drainage class 6	W1	1	1	1	ND	1	1	1	ND	1	1	ND	ND	CTAP rules appear incon
	Well drained - Drainage class 5, permeability class 4	W2	1	1	1	ND	1	1	1	ND	1	1	ND	ND	drained - Drainage class
	Well drained - Drainage class 5, permeability class 3	W3	1	1	1	ND	1	1	1	ND	1	1	ND	ND	and there seems uneces
	Well drained - Drainage class 5, permeability class 2	W4	1	1	2	ND	2	2	2	ND	1	1	ND	ND	poorly drained classes (v
	Well drained - Drainage class 5, permeability class 1	W5	3	3	3	ND	4	4	3	ND	3	3	ND	ND	crops selected ie the dif
	Moderately well drained - Drainage class 4, permeability class 4	W6	1	1	1	ND	3	3	2	ND	3	3	ND	ND	in rejecting marginal soi
	Moderately well drained - Drainage class 4, permeability class 3	W7	2	2	2	ND	3	3	3	ND	3	3	ND	ND	rules to be adopted with
Soil wetness	Moderately well drained - Drainage class 4, permeability class 2	WO	4	3	3	ND	4	4	4	ND	3	3	ND	ND	grapes.
	Imperfectly drained - Drainage class 4, permeability class 4	W10	4	4	4	ND	4	4	4	ND	4	4	ND	ND	-
	Imperfectly drained - Drainage class 3, permeability class 3	W11	4	4	4	ND	4	4	4	ND	4	4	ND	ND	1
	Imperfectly drained - Drainage class 3, permeability class 2	W12	4	4	4	ND	5	5	5	ND	4	4	ND	ND	1
	Imperfectly drained - Drainage class 3, permeability class 1	W13	5	5	5	ND	5	5	5	ND	5	5	ND	ND	1
	Poorly drained - Drainage class 2, permeability class 3 or 4	W14	5	5	5	ND	5	5	5	ND	5	5	ND	ND	1
	Poorly drained - Drainage class 2, permeability class 1 or 2	W15	5	5	5	ND	5	5	5	ND	5	5	ND	ND	
	Very poorly drained - Drainage class 1	W16	5	5	5	ND	5	5	5	ND	5	5	ND	ND	
	Rapidly drained - Drainage class 6	W1	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	
	Well drain - Drainage class 5, permeability class 4	W2	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	
	Well drain - Drainage class 5, permeability class 3	W3	ND	ND	ND	2	ND	ND	ND	2	ND	ND	ND	ND	4
	Well drain, very slow permability	W4	ND	ND	ND	3	ND	ND	ND	3	ND	ND	ND	ND	4
	Moderately well drain - Drainage class 4, permeability class 4	W5	ND	ND	ND	1	ND	ND	ND	2	ND	ND	ND	ND	4
	Moderately well drain - Drainage class 4, permeability class 3	W6	ND	ND	ND	2	ND	ND	ND	3	ND	ND	ND	ND	-
	Moderately well drain - Drainage class 4, permeability class 2	W7	ND	ND	ND	3	ND	ND	ND	4	ND	ND	ND	ND	4
Soil wetness	Moderately well drain - Drainage class 4, permeability class 1	W8	ND	ND	ND	4	ND	ND	ND	4	ND	ND	ND	ND	-
	Imperfectly drain - Drainage class 3, permeability class 4	W10	ND	ND	ND	3	ND	ND	ND	4	ND	ND	ND	ND	-
	Imperfectly drain - Drainage class 3, permeability class 3	W10	ND	ND	ND	4	ND	ND	ND	4	ND	ND	ND	ND	-
	Imperfectly drain - Drainage class 3, permeability class 1	W12	ND	ND	ND	5	ND	ND	ND	5	ND	ND	ND	ND	-
	Poorly drain - Drainage class 2, permeability class 3 or 4	W13	ND	ND	ND	5	ND	ND	ND	5	ND	ND	ND	ND	4
	Poorly drain - Drainage class 2, permeability class 2	W14	ND	ND	ND	5	ND	ND	ND	5	ND	ND	ND	ND	1
	Poor drain, very slow permeability	W15	ND	ND	ND	5	ND	ND	ND	5	ND	ND	ND	ND	1
	Very poorly drained - Drainage class 1	W16	ND	ND	ND	5	ND	ND	ND	5	ND	ND	ND	ND	1
Rockiness	None	R0	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	CTAP rules more compre
	2-20mm	R1	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	sets (which have only tw
	20-60mm	R2	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	adopted.
Rockiness <2%	60-200mm	R3	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	_
	200-600mm	R4	ND	ND	ND	2	ND	ND	ND	2	ND	ND	ND	ND	4
	>600mm	R5	ND	ND	ND	2	ND	ND	ND	2	ND	ND	ND	ND	-
	2-20mm	R6	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	-
	20-60mm	R7	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	-
Rockiness 2-10%	60-200mm	R8	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	4
	200-600mm	R9 P10	ND	ND	ND	2	ND	ND	ND	2	ND	ND	ND	ND	-
	>00011111 2-20mm	R10	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	4
	2-201111 20-60mm	R12	ND	ND	ND	2	ND	ND	ND	2	ND	ND	ND	ND	-
Rockiness 10-20%	60-200mm	R13	ND	ND	ND	2	ND	ND	ND	2	ND	ND	ND	ND	1
	200-600mm	R14	ND	ND	ND	3	ND	ND	ND	3	ND	ND	ND	ND	1
	>600mm	R15	ND	ND	ND	4	ND	ND	ND	4	ND	ND	ND	ND	1
	2-20mm	R16	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	1
	20-60mm	R17	ND	ND	ND	2	ND	ND	ND	2	ND	ND	ND	ND	1
Rockiness 20-50%	60-200mm	R18	ND	ND	ND	3	ND	ND	ND	3	ND	ND	ND	ND	
	200-600mm	R19	ND	ND	ND	4	ND	ND	ND	4	ND	ND	ND	ND	
	>600mm	R20	ND	ND	ND	4	ND	ND	ND	4	ND	ND	ND	ND	
	2-20mm	R21	ND	ND	ND	2	ND	ND	ND	2	ND	ND	ND	ND	4
	20-60mm	R22	ND	ND	ND	3	ND	ND	ND	3	ND	ND	ND	ND	4
Rockiness >50%	60-200mm	R23	ND	ND	ND	4	ND	ND	ND	4	ND	ND	ND	ND	4
	200-600mm	R24	ND	ND	ND	5	ND	ND	ND	5	ND	ND	ND	ND	4
	>600mm	R25	ND	ND	ND	5	ND	ND	ND	5	ND	ND	ND	ND	4
	2-20mm	R26	ND	ND	ND	3	ND	ND	ND	3	ND	ND	ND	ND	4
	20-60mm	R27	ND	ND	ND	4	ND	ND	ND	4	ND	ND	ND	ND	4
Rockiness >90%	60-200mm	R28	ND	ND	ND	5	ND	ND	ND	5	ND	ND	ND	ND	4
	200-600mm	R29	ND	ND	ND	5	ND	ND	ND	5	ND	ND	ND	ND	4
	Not rocky or significantly rocky	K30				D ND		ND							4
Rockiness	NOT FOCKY OF SIGNIFICANTLY FOCKY	R1 82	1	1	1		1	1	1		1	1		UNI ND	4
	ROCKY	R2	4	4	4	ND	4	4	4	ND	4	4	ND	ND	

source selection

mplete (no class for Well s 5, permeability class 2) ssary differentation in (whihc are class 5 for the ifferentiation does not assii ils). NAWRA (Mitchell) h Citrus rules applied to

ehensive that other rule vo classes) and cthus

3

				Ci	trus		1	Ava	icado		1	Gr	ape		
Attribute	Attribute definition	CODE	GPARF	FGARA	NAWRA	CTAP	GPARF	FGARA	NAWRA	CTAP	GPARF	FGARA	NAWRA	СТАР	Comment about source selection
	Gilgai with vertical interval <0.1m	Tm1	ND	ND	(Mitchell)	1	ND	ND	(Mitchell)	1	ND	ND	(Mitchell)	ND	CTAP rules more comprehensive that other rule
	Gilgai with vertical interval 0.1-0.3m	Tm2	ND	ND	ND	2	ND	ND	ND	2	ND	ND	ND	ND	sets (which have only two classes) and cthus
Gilgai (microrelief)	Gilgai with vertical interval 0.3-0.5m	Tm3	ND	ND	ND	3	ND	ND	ND	3	ND	ND	ND	ND	adonted
	Gilgai with vertical interval >0.5m	Tm4	ND	ND	ND	4	ND	ND	ND	4	ND	ND	ND	ND	dopted.
	No gilgai mar vertcal interval < 0.3m	Tm1	1	1	1	ND.	1	1	1	ND	1	1	ND	ND	
Gilgai (microrelief)	Vertical interval >0.3m	Tm2				ND				ND			ND	ND	
	Flood free	F1	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	CTAB only rules available and adopted
	Flood fraguency exceeds 1:50: <1:10 years (10-50 years)	F2	ND	ND	ND	2	ND	ND	ND	2	ND	ND	ND	ND	crar only rules available and adopted.
Flooding	Elood frequency exceeds 1:10; <1:5 years (5-10 years)	E3	ND	ND	ND	3	ND	ND	ND	3	ND	ND	ND	ND	
	Flood frequency exceeds 1:5; <1:1 years (1-5 years)	F4	ND	ND	ND	4	ND	ND	ND	4	ND	ND	ND	ND	
	EROSIVE flooding annually or almost annually (<1 year)	F5	ND	ND	ND	5	ND	ND	ND	5	ND	ND	ND	ND	
	Encouve moduling annually of annually (<1 year) Encoded annually (<1 year)	Sa1	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	CTAP rules adopted for citrus and avocado. As
	Ecse 1-2 dS/m	Sa2	ND	ND	ND	1	ND	ND	ND	2	ND	ND	ND	ND	grape and citrus (orange, lemon and grapefuit)
	Ecse 2-3 dS/m	Sa3	ND	ND	ND	2	ND	ND	ND	3	ND	ND	ND	ND	have similar salinity threshold and 10% yield
	Ecse 3-4 dS/m	Sa4	ND	ND	ND	3	ND	ND	ND	4	ND	ND	ND	ND	reduction values, citrus rules to be adopted for
	Ecse 4-5 dS/m	Sa5	ND	ND	ND	4	ND	ND	ND	5	ND	ND	ND	ND	granes
	Ecse 5-6 dS/m	Sa6	ND	ND	ND	5	ND	ND	ND	5	ND	ND	ND	ND	Brabes
	Ecse 6-7 dS/m	Sa7	ND	ND	ND	5	ND	ND	ND	5	ND	ND	ND	ND	
Salinity	Ecse 7-8 dS/m	Sa8	ND	ND	ND	5	ND	ND	ND	5	ND	ND	ND	ND	
	Ecse 8-9 dS/m	Sa9	ND	ND	ND	5	ND	ND	ND	5	ND	ND	ND	ND	
	Ecse 9-10 dS/m	Sa10	ND	ND	ND	5	ND	ND	ND	5	ND	ND	ND	ND	1
	Ecse 10-11 dS/m	Sa11	ND	ND	ND	5	ND	ND	ND	5	ND	ND	ND	ND	
	Ecse 11-12 dS/m	Sa12	ND	ND	ND	5	ND	ND	ND	5	ND	ND	ND	ND	
	Ecse 12-13 dS/m	Sa13	ND	ND	ND	5	ND	ND	ND	5	ND	ND	ND	ND	
	Ecse >13 dS/m	Sa14	ND	ND	ND	5	ND	ND	ND	5	ND	ND	ND	ND	
	No evidence of salinity	Sa1	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	ND	
Surface salinity	Existing salinty	Sa2	ND	ND	5	ND	ND	ND	5	ND	ND	ND	ND	ND	
	No potential outflow	Ss1	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	CTAP only rules available and adopted (with minor
Secondary salinity	Some potential outflow	Ss2	ND	ND	ND	3	ND	ND	ND	3	ND	ND	ND	ND	wording modification)
	Mod-high potential outflow	Ss3	ND	ND	ND	4	ND	ND	ND	4	ND	ND	ND	ND	
	Minimal soil complexity	Xs1	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	CTAP rules adopted
Soil complexity	Moderate soil complexity	Xs2	ND	ND	ND	3	ND	ND	ND	3	ND	ND	ND	ND	· · · · · · · · · · · · · · · · · · ·
	Severe soil complexity	Xs3	ND	ND	ND	4	ND	ND	ND	4	ND	ND	ND	ND	
	Not topgraphically complex	Xt1	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	CTAP rules adopted
Topographic complexity	Long/narrow shape	Xt2	ND	ND	ND	4	ND	ND	ND	4	ND	ND	ND	ND	
	Hills/gullies/watercourse	Xt3	ND	ND	ND	5	ND	ND	ND	5	ND	ND	ND	ND	1
	Rapidly permeable soils - Permeability class 5-7 (WA only)	lr1	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	ND	NAWRA)Mitchell) rules adpoted, but limitation
	Highly permeable soils - Permeability class 4	lr2	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	ND	descriptor changed to reflect intent and
Irrigation efficiency	Moderately permeable soils - Permeability class 3	lr3	ND	ND	2	ND	ND	ND	2	ND	ND	ND	ND	ND	numbering changed to reflect exclsuion of Ir1
	Slowly permeable soils - Permeability class 2	lr4	ND	ND	2	ND	ND	ND	2	ND	ND	ND	ND	ND	
	Very slowly permeable soils - Permeability class 1	lr5	ND	ND	3	ND	ND	ND	3	ND	ND	ND	ND	ND	
Conference in filteration	Silty surface texture or surface ESP >=6	Pi1	ND	ND	2	ND	ND	ND	3	ND	ND	ND	ND	ND	Duplication with Ps and not considered necessary
Surface Inflitration	All other soils	Pi2	ND	ND	1	ND	ND	ND	1	ND	ND	ND	ND	ND	1 '

* FGARA does not include this description value, it does however have suitability subclass values for this field. The description value was taken from the GPARF in this instance.

Limitation	Source	Definition	CODE	Grapes	Citrus	Avocado
		No restriction: annual rainfall >= 500mm OR surface texture not sandy	A1	1	1	1
Wind erosion (A)	GPARF. FGARA	Annual rainfall <500mm AND surface texture sand or sandy loam	A2	2	2	2
		Annual rainfall <500mm AND surface texture sand or sandy loam AND Soil classified as Sodosol	CODE Grapes Citrus Av andy A1 1 1 1 m A2 2 2 2 I classified as A3 3 3 3 Cf1 1 1 1 1 Cf2 2 2 2 2 Cf3 3 3 3 3 Cf3 3 3 3 3 Cf3 3 3 3 3 Cf1 1 1 1 1 Cf2 2 3 3 3 Cf1 1 1 1 1 Cf2 2 2 2 2 Cf1 1 1 1 1 Cf2 2 2 2 2 Ef1 1 1 1 1 Ef2 1 1 1 1 Ef5 2 2 </td <td>3</td>	3		
		Frost free	Cf1	1	1	1
Frost (Cf)	GPARF, FGARA, NAWRA (Mitchell)	Occasional frost (<2 days)	Cf2	2	2	2
		Regular light frosts (>=2 days)	Cf3	3	3	3
		Low heat stress (<5 40°C days)	Cs1	1	1	1
Climate stress (heat) (Cs)	GPARF, FGARA	Moderate heat stress (5-20 40 °C days)	Cs2	3	3	3
		Severe heat stress (>20 40 °C days)	Cs3	4	4	4
Tomporature (minimums) (Ct)	CRARE EGARA NAWRA (Mitchall)	Mean min. monthly temperature <15 °C for 4 months or more	Ct1	1	1	2
remperature (minimums) (Ct)	GFARF, FGARA, NAWRA (Millicheil)	Mean min. monthly temperature <15°C for 3 months or less	Ct2	2	2	1
		slope <0.5%	E1	1	1	1
		slope 0.5-1.0%	E2	1	1	1
		slope 1-2%	E3	1	1	1
		slope 2-3%	E4	2	2	2
Water erosion (E)	СТАР	slope 3-5%	E5	2	2	2
Very stable soils (K factor <0.02)	CTAF	slope 5-8%	E6	3	3	3
		slope 8-12%	E7	3	3	3
		slope 12-15%	E8	4	4	4
		slope 15-20%	E9	4	4	4
		slope >20%	E10	5	5	5
		slope <0.5%	E11	1	1	1
		slope 0.5-1.0%	E12	1	1	1
		slope 1-2%	E13	2	2	2
		slope 2-3%	E14	2	2	2
Water erosion (E)	СТАР	slope 3-5%	E15	3	3	3
Stable soils (K factor 0.02-0.04)	UTAI	slope 5-8%	E16	3	3	3
		slope 8-12%	E17	4	4	4
		slope 12-15%	E18	4	4	4
		slope 15-20%	E19	5	5	5
		slope >20%	E20	5	5	5

Limitation	Source	Definition	CODE	Grapes	Citrus	Avocado
		slope <0.5%	E21	1	1	1
		slope 0.5-1.0%	E22	2	2	2
		slope 1-2%	E23	2	2	2
		slope 2-3%	E24	3	3	3
Water erosion (E)	CTAR	slope 3-5%	E25	3	3	3
Unstable Soils (K factor 0.04 - 0.06)	CTAF	slope 5-8%	E26	4	4	4
		slope 8-12%	E27	4	4	4
		slope 12-15%	E28	5	5	5
		slope 15-20%	E29	5	5	5
		slope >20%	E30	5	5	5
		slope <0.5%	E31	2	2	2
		slope 0.5-1.0%	E32	2	2	2
		slope 1-2%	E33	3	3	3
		slope 2-3%	E34	3	3	3
Water erosion (E)	СТАР	slope 3-5%	E35	4	4	4
Very unstable Soils (K factor >0.06)		slope 5-8%	E36	4	4	4
		slope 8-12%	E37	5	5	5
		slope 12-15%	E38	5	5	5
		slope 15-20%	E39	5	5	5
		slope >20%	E40	5	5	5
		Flood free or flood frequency less than once in 50 years	F1	1	1	1
		Flood frequency once every10-50 years	F2	2	2	2
Flooding (F)	СТАР	Flood frequency once every 5-10 years	F3	3	3	3
		Flood frequency once every 1-5 years	F4	4	4	4
		EROSIVE flooding annually or almost annually	F5	5	5	5
		Highly permeable soils - Permeability class 4	lr1	1	1	1
Infiltration - soil profile recharge (Ir)		Moderately permeable soils - Permeability class 3	lr2	2	2	2
initiation - son prome recharge (ir)	NAWKA (Mitchell)	Slowly permeable soils - Permeability class 2	lr3	2	2	2
		Very slowly permeable soils - Permeability class 1	lr4	3	3	3
		PAWC >150mm*	M1	ND	ND	1
		PAWC 100 - 150mm	M2	ND	ND	1
PW(AC to 1.5 m M)	CRAPE ECARA	PAWC 75 - 100mm	M3	ND	ND	1
PWAC to 1.5 III (W)	GFARF, FGARA	PAWC 60 - 75mm	M4	ND	ND	2
		PAWC 40- 60 mm	M5	ND	ND	3
		PAWC <40mm	M6	ND	ND	4

Limitation	Source	Definition	CODE	Grapes	Citrus	Avocado
		PAWC >150mm*	M7	1	1	ND
		PAWC 100 - 150mm	M8	1	1	ND
	CRAPE ECARA	PAWC 75 - 100mm	M9	2	2	ND
	GFARF, FOARA	PAWC 60 - 75mm	M10	2	2	ND
		PAWC 40- 60 mm	M11	3	3	ND
		PAWC <40mm	M12	4	4	ND
		pH 5.5-7.0	Nr1-1	1	1	1
Nutrient balance (Nr1)	CTAR	pH 7.0-8.5	Nr1-2	1	2	1
Upper profile pH (0.0-0.6m)	CTAF	pH <5.5	Nr1-3	2	2	2
		pH>8.5	Nr1-4	3	3	3
		pH 5.5-7.0	Nr2-1	1	1	1
Nutrient balance (Nr2)	CTAR	pH 7.0-8.5	Nr2-2	1	2	1
Lower profile pH (0.6-1.2m)	CTAF	pH <5.5	Nr2-3	2	2	2
		pH>8.5	Nr2-4	3	3	3
		No restriction: Surface (Class) Condition 2 – Loose and or Soft	Ps1	1	1	1
	СТАР	Firm/hardsetting - light texture sandy to sandy loam (S to SL)	Ps2	1	1	2
		Firm/hardsetting - heavy texture: Clay loamy (SCL to CL)	Ps3	2	2	2
Physical restrictions (Soil surface condition and soil		Surface (Class) Condition 1 – Cracking and /or Self mulching and Soil Structure Class 3 – Moderate/Strong and fine (peds <=10 mm)	Ps4	3	3	3
texture/structure) (Ps)		Surface (Class) Condition 1 – Cracking and /or Self mulching and Soil Structure Class 4 – Moderate/Strong and coarse (peds >10 mm)	Ps5	3	3	3
		Hardsetting - silty surface (ZL-ZCL) >0.1 m	Ps6	3	3	3
		Surface ESP >6% and strongly sodic (>15%), intractable clay B horizon <0.3 m (within plough zone)	Ps7	4	4	4
		Very deep (>1.5m)	Pd1	1	1	1
		Deep (1.0 - 1.5m)	Pd2	1	1	2
Soil depth to physical root barrier (Pd)	GPARF, FGARA, NAWRA (Mitchell), CTAP	Moderate (0.5 - 1.0m)	Pd3	2	2	4
(1 3)	0174	Shallow (0.25 - 0.5m)	Pd4	4	4	5
		Very shallow (<0.25m)	Pd5	5	5	5
Rockiness (R) Abundance 0%	СТАР	Size	R0	1	1	1
		2-20mm	R1	1	1	1
		20-60mm	R2	1	1	1
Rockiness (R) Abundance <2%	СТАР	60-200mm	R3	1	1	1
		200-600mm	R4	2	2	2
		>600mm	R5	2	2	2
		2-20mm	R6	1	1	1
		20-60mm	R7	1	1	1
Rockiness (R) Abundance 2-10%	СТАР	60-200mm	R8	1	1	1
		200-600mm	R9	2	2	2
		>600mm	R10	3	3	3

Limitation	Source	Definition	CODE	Grapes	Citrus	Avocado
		2-20mm	R11	1	1	1
/=.		20-60mm	R12	2	2	2
Rockiness (R)	СТАР	60-200mm	R13	2	2	2
Abundance 10-20 %		200-600mm	R14	3	3	3
		>600mm	R15	4	4	4
		2-20mm	R16	1	1	1
		20-60mm	R17	2	2	2
ROCKINESS (R)	СТАР	60-200mm	R18	3	3	3
		200-600mm	R19	4	4	4
		>600mm	R20	4	4	4
		2-20mm	R21	2	2	2
Deskiness (D)		20-60mm	R22	3	3	3
Abundance >50%	СТАР	60-200mm	R23	4	4	4
		200-600mm	R24	5	5	5
		>600mm	R25	5	5	5
		2-20mm	R26	3	3	3
Deckinger (D)	СТАР	20-60mm	R27	4	4	4
ROCKINESS (R) Abundance >90%		60-200mm	R28	5	5	5
		200-600mm	R29	5	5	5
		>600mm	R30	5	5	5
		Ecse<1dS/m	Sa1	1	1	1
		Ecse 1-2 dS/m	Sa2	1	1	2
		Ecse 2-3 dS/m	Sa3	2	2	3
		Ecse 3-4 dS/m	Sa4	3	3	4
		Ecse 4-5 dS/m	Sa5	4	4	5
		Ecse 5-6 dS/m	Sa6	5	5	5
Salinity (Sa)	СТАР	Ecse 6-7 dS/m	Sa7	5	5	5
Sainity (Sa)	CTAP	Ecse 7-8 dS/m	Sa8	5	5	5
		Ecse 8-9 dS/m	Sa9	5	5	5
		Ecse 9-10 dS/m	Sa10	5	5	5
		Ecse 10-11 dS/m	Sa11	5	5	5
		Ecse 11-12 dS/m	Sa12	5	5	5
		Ecse 12-13 dS/m	Sa13	5	5	5
		Ecse >13 dS/m	Sa14	5	5	5
		No potential outflow	Ss1	1	1	1
Discharge potential (Ss)	СТАР	Minor potential outflow	Ss2	3	3	3
		Mod-high potential outflow	Ss3	4	4	4
		Gilgai with vertical interval <0.1m	Tm1	1	1	1
Microroliof (Tm)	CTAR	Gilgai with vertical interval 0.1-0.3m	Tm2	2	2	2
Microrelier (1111)	CTAP	Gilgai with vertical interval 0.3-0.5m	Tm3	3	3	3
		Gilgai with vertical interval >0.5m	Tm4	4	4	4

Limitation	Source	Definition	CODE	Grapes	Citrus	Avocado
		Rapidly drained - Drainage class 6	W1	1	1	1
		Well drained - Drainage class 5, permeability class 4	W2	1	1	1
		Well drained - Drainage class 5, permeability class 3	W3	1	1	1
		Well drained - Drainage class 5, permeability class 2	W4	2	2	2
		Well drained - Drainage class 5, permeability class 1	W5	3	3	3
		Moderately well drained - Drainage class 4, permeability class 4	W6	1	1	2
		Moderately well drained - Drainage class 4, permeability class 3	W7	2	2	3
Wotness (W)		Moderately well drained - Drainage class 4, permeability class 2	W8	3	3	4
Wetness (W)	NAWKA (Mitchell)	Moderately well drained - Drainage class 4, permeability class 1	W9	4	4	4
		Imperfectly drained - Drainage class 3, permeability class 4	W10	3	3	4
		Imperfectly drained - Drainage class 3, permeability class 3	W11	4	4	4
		Imperfectly drained - Drainage class 3, permeability class 2	W12	4	4	5
		Imperfectly drained - Drainage class 3, permeability class 1	W13	5	5	5
		Poorly drained - Drainage class 2, permeability class 3 or 4	W14	5	5	5
		Poorly drained - Drainage class 2, permeability class 1 or 2	W15	5	5	5
		Very poorly drained - Drainage class 1	W16	5	5	5
		Minimal soil complexity	Xs1	1	1	1
Soil complexity (Xs)	СТАР	Moderate soil complexity	Xs2	3	3	3
		Severe soil complexity	Xs3	4	4	4
		Not topgraphically complex	Xt1	1	1	1
Topographic complexity (Xt)	СТАР	Long/narrow shape	Xt2	4	4	4
		Hills/gullies/watercourse	Xt3	5	5	5

Appendix 11: Land Suitability Assessment Results for Each Soil Unit

Appendix 11 Land suitability assessment results for each Soil Unit

The following tables list the inherent climate, soil and landscape attributes relevant to each soil unit. Limitation subclass values (which are used to determine final suitability class) for each crop – soil unit scenario were assessed using the decision rules defined within **Appendix 10**. Final land suitability classes for each crop by unique mapping area (UMA) are presented in **Appendix 12**.

Irrigate	ed horticultural suitability assessment - Soil Unit A	A1			
Limita	lion	Attribute value	Table grapes	Citrus	Avocado
Α	Wind erosion	Annual rainfall <500 mm and surface texture not sandy	1	1	1
Cf	Frost	Occasional frost (<2 days/year)	2	2	2
Cs	Climate stress (heat)	Moderate heat stress (5- 20 days >40°C days)	3	3	3
Ct	Temperature (minimum)	Mean min. monthly temperature <15°C for 4 months or more	1	1	2
Е	Water erosion	K factor: 0.040-0.043 and slope $\le 0.5\%$	1	1	1
F	Flooding	Flood frequency once every 10-50 years	2	2	2
Ir	Infiltration/ soil profile recharge	Moderately permeable (3)	2	2	2
M1	PAWC to 1.0 m	PAWC: 63-71 mm	2	2	-
M2	PAWC to 1.5 m	PAWC: 100-110 mm	-	-	1
Nr1	Nutrient balance/ pH (upper profile <0.6 m)	Mean pH 7.2-8.0	1	2	1
Nr2	Nutrient balance/ pH (lower profile 0.6-1.2 m)	Mean pH 8.3	1	2	1
Pd	Soil depth to physical root barriers	>1.5 m	1	1	1
Ps	Soil surface condition	Firm/hardsetting - heavy texture (non-cracking)	2	2	2
R	Rockiness	None	1	1	1
Sa	Salinity	ECe (WPM): 0.09 dS/m	1	1	1
Ss	Discharge potential	No potential outflow	1	1	1
Tm	Microrelief	Non-gilgaied	1	1	1
W	Wetness	Moderately well-drained (4), moderately permeable (3)	2	2	3
Xs	Soil complexity	Minimal soil complexity	1	1	1
Xt	Topographic complexity	Not topographically complex	1	1	1
Overa	ll assessment rating		3	3	3

Irrigat	Irrigated horticultural suitability assessment - Soil Unit A1e							
Limita	tion	Attribute value	Table grapes	Citrus	Avocado			
Α	Wind erosion	Annual rainfall <500 mm and surface texture not sandy	1	1	1			
Cf	Frost	Occasional frost (<2 days/year)	2	2	2			
Cs	Climate stress (heat)	Moderate heat stress (5- 20 days >40°C days)	3	3	3			
Ct	Temperature (minimum)	Mean min. monthly temperature <15°C for 4 months or more	1	1	2			
E	Water erosion	K factor: 0.043 * and slope: up to 10%	4	4	4			
F	Flooding	Flood frequency once every 1-5 years	4	4	4			
Ir	Infiltration/ soil profile recharge	Slowly permeable (2)	2	2	2			
M1	PAWC to 1.0 m	PAWC: 63 mm *	2	2	-			
M2	PAWC to 1.5 m	PAWC: 100 mm *	-	-	1			
Nr1	Nutrient balance/ pH (upper profile <0.6 m)	рН 6.7-7.7	1	2	1			
Nr2	Nutrient balance/ pH (lower profile 0.6-1.2 m)	рН 8.0-8.3	1	2	1			
Pd	Soil depth to physical root barriers	>1.5 m	1	1	1			
Ps	Soil surface condition	Firm/hardsetting - heavy texture (non-cracking)	2	2	2			
R	Rockiness	None	1	1	1			
Sa	Salinity	ECe (WPM): 0.07 dS/m	1	1	1			
Ss	Discharge potential	Minor potential outflow	3	3	3			
Tm	Microrelief	Non-gilgaied	1	1	1			
W	Wetness	Moderately well-drained (4), slowly permeable (2)	3	3	4			
Xs	Soil complexity	Minimal soil complexity	1	1	1			
Xt	Topographic complexity	Topography dissected	5	5	5			
Overa	ll assessment rating		5	5	5			

* Estimated from data from closest Soil Unit A1 representative site (24).

Irrigat	Irrigated horticultural suitability assessment - Soil Unit A2							
Limita	tion	Attribute value	Table grapes	Citrus	Avocado			
Α	Wind erosion	Annual rainfall <500 mm and surface texture not sandy	1	1	1			
Cf	Frost	Occasional frost (<2 days/year)	2	2	2			
Cs	Climate stress (heat)	Moderate heat stress (5- 20 days >40°C days)	3	3	3			
Ct	Temperature (minimum)	Mean min. monthly temperature <15°C for 4 months or more	1	1	2			
F	Water erosion	K factor: 0.057 for UMAs dominated by Dermosols -0.071 and slope: $\leq 1.0\%$ (UMAs 1, 5, 10, 21, 23)	2	2	2			
L		K factor: 0.071 for UMAs dominated by Vertosols slope: \leq 1.0% (UMAs 9, 18, 37, 38, 43)	2	2	2			
Б	Flooding	Flood frequency once every 5-10 years for TEP UMAs *	3	3	3			
Г	riooding	Flood frequency once every 1-5 years for BKP UMAs *	4	4	4			
Ir	Infiltration/ soil profile recharge	Slowly permeable (2)	2	2	2			
M1	PAWC to 1.0 m	PAWC: 104 mm for TEP UMAs *	1	1	-			
IVII		PAWC: 37 mm for BKP UMAs *	4	4	-			
M2	PAWC to 1.5 m	PAWC: 133 mm for TEP UMAs *	-	-	1			
		PAWC: 37 mm for BKP UMAs *	-	-	4			
N1	Nutrient balance/ pH (upper profile <0.6 m)	pH 7.0-8.2 for TEP UMAs *	1	2	1			
INFI		pH 6.8-8.3 for BKP UMAs *	1	2	1			
N-2		pH 8.2-8.4 for TEP UMAs *	1	2	1			
INFZ	Nutrient balance/ pH (lower profile 0.6-1.2 m)	pH 8.5-8.9 for BKP UMAs *	2	3	2			
Pd	Soil depth to physical root barriers	>1.5 m	1	1	1			
Ps	Soil surface condition	Firm/hardsetting - heavy texture (non-cracking)	2	2	2			
R	Rockiness	None	1	1	1			
Sa	Solinity	ECe (WPM): 0.13 dS/m for TEP UMAs *	1	1	1			
Ba	Samily	ECe (WPM): 3.99 dS/m for BKP UMAs *	3	3	4			
Se	Discharge notential	Minor potential outflow for TEP UMAs *	3	3	3			
03	Discharge potential	Mod-high potential outflow for BKP UMAs *	4	4	4			
Tm	Microrelief	Non-gilgaied	1	1	1			
W	Wetness	Moderately well-drained (4), slowly permeable (2)	3	3	4			
Xs	Soil complexity	Minimal soil complexity	1	1	1			
Xt	Tonographic complexity	Not topographically complex (UMAs 1, 9, 10, 21, 37, 38, 43)	1	1	1			
лι	ropographic complexity	Small isolated or long/ narrow shape (UMAs 3, 5, 18, 23, 25)	4	4	4			
Overa	ll assessment rating		3-4*	3-4*	4			

* Soil Unit A2 split into elevated terrace plains (TEP) and low-lying backplains (BKP) UMAs for assessment and the soil unit overall rating reflects differences in suitability between UMAs.

Irrigated horticultural suitability assessment - Soil Unit A3							
Limita	tion	Attribute value	Table grapes	Citrus	Avocado		
Α	Wind erosion	Annual rainfall <500 mm and surface texture not sandy	1	1	1		
Cf	Frost	Occasional frost (<2 days/year)	2	2	2		
Cs	Climate stress (heat)	Moderate heat stress (5- 20 days >40°C days)	3	3	3		
Ct	Temperature (minimum)	Mean min. monthly temperature <15°C for 4 months or more	1	1	2		
E	Water erosion	K factor: 0.040 * and slope: up to 3.0%	3	3	3		
F	Flooding	Flood frequency once every 1-5 years	4	4	4		
Ir	Infiltration/ soil profile recharge	Moderately permeable (3)	2	2	2		
M1	PAWC to 1.0 m	PAWC: 71 mm *	2	2	-		
M2	PAWC to 1.5 m	PAWC: 110 mm *	-	-	1		
Nr1	Nutrient balance/ pH (upper profile <0.6 m)	рН 7.3-8.7	3	3	3		
Nr2	Nutrient balance/ pH (lower profile 0.6-1.2 m)	pH 8.7	3	3	3		
Pd	Soil depth to physical root barriers	>1.5 m	1	1	1		
Ps	Soil surface condition	Firm/hardsetting - heavy texture (non-cracking)	2	2	2		
R	Rockiness	None	1	1	1		
Sa	Salinity	ECe (WPM): 0.12 dS/m	1	1	1		
Ss	Discharge potential	Minor potential outflow	3	3	3		
Tm	Microrelief	Non-gilgaied	1	1	1		
W	Wetness	Moderately well-drained (4), moderately permeable (3)	2	2	3		
Xs	Soil complexity	Minimal soil complexity	1	1	1		
Xt	Topographic complexity	Long/ narrow shape	4	4	4		
Overa	ll assessment rating		4	4	4		

* Estimated from data from closest Soil Unit A1 representative profile (2).

Irrigat	Irrigated horticultural suitability assessment - Soil Unit A4							
Limita	tion	Attribute value	Table grapes	Citrus	Avocado			
Α	Wind erosion	Annual rainfall <500 mm and surface texture not sandy	1	1	1			
Cf	Frost	Occasional frost (<2 days/year)	2	2	2			
Cs	Climate stress (heat)	Moderate heat stress (5- 20 days >40°C days)	3	3	3			
Ct	Temperature (minimum)	Mean min. monthly temperature <15°C for 4 months or more	1	1	2			
Е	Water erosion	K factor: 0.046 and slope up to 3.0%	3	3	3			
F	Flooding	Flood frequency once every 1-5 years	4	4	4			
Ir	Infiltration/ soil profile recharge	Very slowly permeable (1)	3	3	3			
M1	PAWC to 1.0 m	PAWC: 117 mm	1	1	-			
M2	PAWC to 1.5 m	PAWC: 117 mm	-	-	1			
Nr1	Nutrient balance/ pH (upper profile <0.6 m)	рН 6.8-8.7	3	3	3			
Nr2	Nutrient balance/ pH (lower profile 0.6-1.2 m)	pH 8.6-8.7	3	3	3			
Pd	Soil depth to physical root barriers	>1.5 m	1	1	1			
Ps	Soil surface condition	Cracking clay with moderate/strong and fine structure (peds $\leq 10 \text{ mm}$)	3	3	3			
R	Rockiness	None	1	1	1			
Sa	Salinity	ECe (WPM): 0.70 dS/m	1	1	1			
Ss	Discharge potential	Mod-high potential outflow	4	4	4			
Tm	Microrelief	Non-gilgaied	1	1	1			
W	Wetness	Poorly drained (2), very slowly permeable (1)	5	5	5			
Xs	Soil complexity	Minimal soil complexity	1	1	1			
Xt	Topographic complexity	Long/ narrow watercourse	4	4	4			
Overa	verall assessment rating 5 5 5							

Irrigat	Irrigated horticultural suitability assessment - Soil Unit B1							
Limita	tion	Attribute value	Table grapes	Citrus	Avocado			
Α	Wind erosion	Annual rainfall <500 mm and surface texture not sandy	1	1	1			
Cf	Frost	Occasional frost (<2 days/year)	2	2	2			
Cs	Climate stress (heat)	Moderate heat stress (5- 20 days >40°C days)	3	3	3			
Ct	Temperature (minimum)	Mean min. monthly temperature <15°C for 4 months or more	1	1	2			
Е	Water erosion	K factor: 0.05 and slope $\leq 0.5\%$	1	1	1			
F	Flooding	Flood frequency once every 1-5 years	4	4	4			
Ir	Infiltration/ soil profile recharge	Very slowly permeable (1)	3	3	3			
M1	PAWC to 1.0 m	PAWC: 59 mm	3	3	-			
M2	PAWC to 1.5 m	PAWC: 59 mm	-	-	3			
Nr1	Nutrient balance/ pH (upper profile <0.6 m)	рН 8.2-8.7	3	3	3			
Nr2	Nutrient balance/ pH (lower profile 0.6-1.2 m)	рН 8-8.4	1	2	1			
Pd	Soil depth to physical root barriers	>1.5 m	1	1	1			
Ps	Soil surface condition	Cracking clay with moderate/strong and fine structure (peds $\leq 10 \text{ mm}$)	3	3	3			
R	Rockiness	None	1	1	1			
Sa	Salinity	ECe (WPM): 4.34 dS/m	4	4	5			
Ss	Discharge potential	Mod-high potential outflow	4	4	4			
Tm	Microrelief	Non-gilgaied	1	1	1			
W	Wetness	Moderately well-drained (4), very slowly permeable (1)	4	4	4			
Xs	Soil complexity	Moderate soil complexity	3	3	3			
Xt	Topographic complexity	Not topographically complex	1	1	1			
Overa	ll assessment rating		4	4	5			

Irrigate	Irrigated horticultural suitability assessment - Soil Unit B2							
Limita	tion	Attribute value	Table grapes	Citrus	Avocado			
Α	Wind erosion	Annual rainfall <500 mm and surface texture not sandy	1	1	1			
Cf	Frost	Occasional frost (<2 days/year)	2	2	2			
Cs	Climate stress (heat)	Moderate heat stress (5- 20 days >40°C days)	3	3	3			
Ct	Temperature (minimum)	Mean min. monthly temperature <15°C for 4 months or more	1	1	2			
Е	Water erosion	K factor: 0.070 and slope $\leq 0.5\%$	2	2	2			
Б	Flooding	Flood frequency once every 5-10 years for TEP UMAs *	3	3	3			
Г	Flooding	Flood frequency once every 1-5 years for BKP UMAs *	4	4	4			
Ir	Infiltration/ soil profile recharge	Very slowly permeable (1)	3	3	3			
M1	PAWC to 1.0 m	PAWC: 15 mm	4	4	-			
M2	PAWC to 1.5 m	PAWC: 15 mm	-	-	4			
Nr1	Nutrient balance/ pH (upper profile <0.6 m)	рН 7.2-9.2	3	3	3			
Nr2	Nutrient balance/ pH (lower profile 0.6-1.2 m)	рН 8.5-8.7	3	3	3			
Pd	Soil depth to physical root barriers	>1.5 m	1	1	1			
Ps	Soil surface condition	Sodic (ESP >6%) surface and strongly sodic (ESP >15%) clay subsoil	4	4	4			
R	Rockiness	None	1	1	1			
Sa	Salinity	ECe (WPM): 10.4 dS/m	5	5	5			
Sa	Discharge notantial	Minor potential outflow for TEP UMAs *	3	3	3			
38	Discharge potential	Mod-high potential outflow for BKP UMAs *	4	4	4			
Tm	Microrelief	Non-gilgaied	1	1	1			
W	Wetness	Moderately well-drained (4), very slowly permeable (1)	4	4	4			
Va	Soil complexity	Minimal soil complexity for TEP UMAs *	1	1	1			
Аб	Son complexity	Moderate soil complexity for BKP UMAs *	3	3	3			
Xt	Topographic complexity	Not topographically complex	1	1	1			
Overa	ll assessment rating		5	5	5			

* Soil Unit B2 split into elevated terrace plains (TEP) UMAs and low-lying backplains (BKP) UMAs for suitability assessment.

Irrigat	Irrigated horticultural suitability assessment - Soil Unit B2g						
Limita	tion	Attribute value	Table grapes	Citrus	Avocado		
Α	Wind erosion	Annual rainfall <500 mm and surface texture not sandy	1	1	1		
Cf	Frost	Occasional frost (<2 days/year)	2	2	2		
Cs	Climate stress (heat)	Moderate heat stress (5- 20 days >40°C days)	3	3	3		
Ct	Temperature (minimum)	Mean min. monthly temperature <15°C for 4 months or more	1	1	2		
Е	Water erosion	K factor: 0.050 +and slope $\leq 0.5\%$	1	1	1		
Б	Flooding	Flood frequency once every 5-10 years for TEP UMAs *	3	3	3		
Г	Floodnig	Flood frequency once every 1-5 years for BKP UMAs *	4	4	4		
Ir	Infiltration/ soil profile recharge	Very slowly permeable (1)	3	3	3		
M1	PAWC to 1.0 m	PAWC: 59 mm +	3	3	-		
M2	PAWC to 1.5 m	PAWC: 59 mm +	-	-	3		
Nr1	Nutrient balance/ pH (upper profile <0.6 m)	рН 7.7-8.9	3	3	3		
Nr2	Nutrient balance/ pH (lower profile 0.6-1.2 m)	рН 8.0-8.1	1	2	1		
Pd	Soil depth to physical root barriers	>1.5 m	1	1	1		
Ps	Soil surface condition	Cracking clay with moderate/strong and fine structure (peds $\leq 10 \text{ mm}$)	3	3	3		
R	Rockiness	None	1	1	1		
Sa	Salinity	ECe (WPM): 6.55 dS/m	5	5	5		
Sa	Discharge notantial	Minor potential outflow for TEP UMAs *	3	3	3		
38	Discharge potential	Mod-high potential outflow for BKP UMAs *	4	4	4		
Tm	Microrelief	Gilgaied (VI 0.3-0.5 m)	3	3	3		
W	Wetness	Imperfectly drained (3), very slowly permeable (1)	5	5	5		
Xs	Soil complexity	Minimal soil complexity	1	1	1		
Xt	Topographic complexity	Not topographically complex	1	1	1		
Overa	ll assessment rating		5	5	5		

* Soil Unit B2g split into elevated terrace plains (TEP) UMAs and low-lying backplains (BKP) UMAs for suitability assessment.

+ Estimated from data from representative profile for soil unit B1 (6) with similar texture and ERD restrictions.

Irrigat	ed horticultural suitability assessment - Soil Unit	B3			
Limita	tion	Attribute value	Table grapes	Citrus	Avocado
	Wind oracion	Annual rainfall <500mm AND surface texture sand or sandy loam AND Soil classified as Sodosol for TEP UMAs	3	3	3
A	while erosion	Annual rainfall <500 mm and surface texture not sandy for BKP UMAs	1	1	1
Cf	Frost	Occasional frost (<2 days/year)	2	2	2
Cs	Climate stress (heat)	Moderate heat stress (5- 20 days >40°C days)	3	3	3
Ct	Temperature (minimum)	Mean min. monthly temperature <15°C for 4 months or more	1	1	2
Е	Water erosion	K factor: 0.051 and slope $\leq 0.5\%$	1	1	1
Б	Flooding	Flood frequency once every 5-10 years for TEP UMAs *	3	3	3
Г	Floodnig	Flood frequency once every 1-5 years for BKP UMAs *	4	4	4
Ir	Infiltration/ soil profile recharge	Very slowly permeable (1)	3	3	3
M1	PAWC to 1.0 m	PAWC: 1.6-16 mm	4	4	-
M2	PAWC to 1.5 m	PAWC: 1.6-16 mm	-	-	4
Nr1	Nutrient balance/ pH (upper profile <0.6 m)	рН 6.5-8.5	1	2	1
Nr2	Nutrient balance/ pH (lower profile 0.6-1.2 m)	рН 8.8	3	3	3
Pd	Soil depth to physical root barriers	>1.5 m	1	1	1
Ps	Soil surface condition	Sodic (ESP >6%) surface and strongly sodic (ESP >15%) clay subsoil	4	4	4
R	Rockiness	None	1	1	1
Sa	Salinity	ECe (WPM): 6.88 dS/m	5	5	5
Sa	Discharge notantial	Minor potential outflow for TEP UMAs *	3	3	3
38	Discharge potential	Mod-high potential outflow for BKP UMAs *	4	4	4
Tm	Microrelief	Non-gilgaied	1	1	1
W	Wetness	Imperfectly drained (3), very slowly permeable (1)	5	5	5
Va	Soil complexity	Minimal soil complexity for TEP UMAs *	1	1	1
Лб	Son complexity	Moderate soil complexity for BKP UMAs *	3	3	3
Xt	Topographic complexity	Not topographically complex	1	1	1
Overa	ll assessment rating		5	5	5

* Soil Unit B3 split into elevated terrace plains (TEP) UMAs and low-lying backplains (BKP) UMAs for suitability assessment.

Irrigate	Irrigated horticultural suitability assessment - Soil Unit C1													
Limita	tion	Attribute value	Table grapes	Citrus	Avocado									
Α	Wind erosion	Annual rainfall <500 mm and surface texture not sandy	1	1	1									
Cf	Frost	Occasional frost (<2 days/year)	2	2	2									
Cs	Climate stress (heat)	Moderate heat stress (5- 20 days >40°C days)	3	3	3									
Ct	Temperature (minimum)	Mean min. monthly temperature <15°C for 4 months or more	1	1	2									
Е	Water erosion	K factor: 0.037 and slope up to 2.0%	2	2	2									
F	Flooding	Flood free or flood frequency less than once in 50 years	1	1	1									
Ir	Infiltration/ soil profile recharge	Very slowly permeable (1)	3	3	3									
M1	PAWC to 1.0 m	PAWC: 104 mm	1	1	-									
M2	PAWC to 1.5 m	PAWC: 104 mm	-	-	1									
Nr1	Nutrient balance/ pH (upper profile <0.6 m)	рН 7.8-8.1	1	2	1									
Nr2	Nutrient balance/ pH (lower profile 0.6-1.2 m)	рН 7.8-7.9	1	2	1									
Pd	Soil depth to physical root barriers	>1.5 m	1	1	1									
Ps	Soil surface condition	Cracking clay with moderate/strong and fine structure (peds $\leq 10 \text{ mm}$)	3	3	3									
R	Rockiness	<2% 6-20 mm gravels	1	1	1									
Sa	Salinity	ECe (WPM): 1.39 dS/m	1	1	2									
Ss	Discharge potential	No potential outflow	1	1	1									
Tm	Microrelief	Gilgaied (VI 0.15 m)	2	2	2									
W	Wetness	Moderately well-drained (4), very slowly permeable (1)	4	4	4									
Xs	Soil complexity	Minimal soil complexity	1	1	1									
Xt	Topographic complexity	Not topographically complex	1	1	1									
Overa	ll assessment rating		4	4	4									

Irrigate	Irrigated horticultural suitability assessment - Soil Unit C2													
Limita	tion	Attribute value	Table grapes	Citrus	Avocado									
Α	Wind erosion	Annual rainfall <500 mm and surface texture not sandy	1	1	1									
Cf	Frost	Occasional frost (<2 days/year)	2	2	2									
Cs	Climate stress (heat)	Moderate heat stress (5- 20 days >40°C days)	3	3	3									
Ct	Temperature (minimum)	Mean min. monthly temperature <15°C for 4 months or more	1	1	2									
Е	Water erosion	K factor: 0.031 and slope up to 2.0%	2	2	2									
F	Flooding	Flood frequency once every 5-10 years	3	3	3									
Ir	Infiltration/ soil profile recharge	Very slowly permeable (1)	3	3	3									
M1	PAWC to 1.0 m	PAWC: 30 mm	4	4	-									
M2	PAWC to 1.5 m	PAWC: 30 mm	-	-	4									
Nr1	Nutrient balance/ pH (upper profile <0.6 m)	рН 8.4-9.2	3	3	3									
Nr2	Nutrient balance/ pH (lower profile 0.6-1.2 m)	рН 8.3-9.2	3	3	3									
Pd	Soil depth to physical root barriers	>1.5 m	1	1	1									
Ps	Soil surface condition	Cracking clay with moderate/strong and fine structure (peds $\leq 10 \text{ mm}$)	3	3	3									
R	Rockiness	Up to 20% 20-60 mm gravels	2	2	2									
Sa	Salinity	ECe (WPM): 4.19 dS/m	4	4	5									
Ss	Discharge potential	Mod-high potential outflow	4	4	4									
Tm	Microrelief	Non-gilgaied	1	1	1									
W	Wetness	Moderately well-drained (4), very slowly permeable (1)	4	4	4									
Xs	Soil complexity	Moderate soil complexity	3	3	3									
Xt	Topographic complexity	Not topographically complex	1	1	1									
Overa	ll assessment rating		4	4	5									

Appendix 12: Land Suitability Assessment Results for Each UMA (Mapping Polygon)

Land Suitability Assessment Results for each UMA Crop type **Table Grapes**

			Wind erosion	Frost	Climate stress (heat)	Temperature (minimum)	Water erosion	Flooding	Infiltration/ soil profile recharge	PAWC to 1.0 n	n PAWC to 1.5 m	Nutrient balance/ pH (upper profile <0.6 m)	Nutrient balance/ pH (lower profile 0.6-1.2 m)	Soil depth to physical root barriers	Soil surface condition	Rockiness	Salinity	Discharge potential	Microrelief	Wetness	Soil complexity	Topographic complexity	XX Overall assessment rating
Poly No.	Soil Unit	Lands pos	Α	Cf	Cs	Ct	E	F	lr	M1	M2	Nr1	Nr2	Pd	Ps	R	Sa	Ss	Tm	w	Xs	Xt	
11	A1		1	2	3	1	1	2	2	2	-	1	1	1	2	1	1	1	1	2	1	1	3
20	A1		1	2	3	1	1	2	2	2	-	1	1	1	2	1	1	1	1	2	1	1	3
22	A1		1	2	3	1	1	2	2	2	-	1	1	1	2	1	1	1	1	2	1	1	3
39	A1		1	2	3	1	1	2	2	2	-	1	1	1	2	1	1	1	1	2	1	1	3
46	A1		1	2	3	1	1	2	2	2	-	1	1	1	2	1	1	1	1	2	1	1	3
4	A1e		1	2	3	1	4	4	2	2	-	1	1	1	2	1	1	3	1	3	1	5	5
47	A1e		1	2	3	1	4	4	2	2	-	1	1	1	2	1	1	3	1	3	1	5	5
3	A2	TEP	1	2	3	1	2	3	2	1	-	1	1	1	2	1	1	3	1	3	1	4	4
9	A2	TEP	1	2	3	1	2	3	2	1	-	1	1	1	2	1	1	3	1	3	1	1	3
21	A2	TEP	1	2	3	1	2	3	2	1	-	1	1	1	2	1	1	3	1	3	1	1	3
37	A2	TEP	1	2	3	1	2	3	2	1	-	1	1	1	2	1	1	3	1	3	1	1	3
38	A2	TEP	1	2	3	1	2	3	2	1	-	1	1	1	2	1	1	3	1	3	1	1	3
43	A2	TEP	1	2	3	1	2	3	2	1	-	1	1	1	2	1	1	3	1	3	1	1	3
1	A2	BKP	1	2	3	1	2	4	2	4	-	1	2	1	2	1	3	4	1	3	1	1	4
5	A2	BKP	1	2	3	1	2	4	2	4	-	1	2	1	2	1	3	4	1	3	1	4	4
10	A2	BKP	1	2	3	1	2	4	2	4	-	1	2	1	2	1	3	4	1	3	1	1	4
18	A2	BKP	1	2	3	1	2	4	2	4	-	1	2	1	2	1	3	4	1	3	1	4	4
23	A2	BKP	1	2	3	1	2	4	2	4	-	1	2	1	2	1	3	4	1	3	1	4	4
25	AZ	ВКР	1	2	3	1	2	4	2	4	-	1	2	1	2	1	3	4	1	3	1	4	4
36	A3		1	2	3	1	3	4	2	2	-	3	3	1	2	1	1	3	1	2	1	4	4
45	A3		1	2	3	1	3	4	2	2	-	3	3	1	2	1	1	3	1	2	1	4	4
2	A4		1	2	3	1	3	4	3	1	-	3	3	1	3	1	1	4	1	5	1	4	5
24	A4	_	1	2	3	1	3	4	3	1	-	3	3	1	3	1	1	4	1	5	1	4	5
33	A4	-	1	2	3	1	3	4	3	1	-	3	3	1	3	1	1	4	1	5	1	4	5
12	D1 P1	-	1	2	3	1	1	4	3	3	-	3	1	1	3	1	4	4	1	4	3	1	4
10	B1		1	2	3	1	1	4	3	3	-	3	1	1	3	1	4	4	1	4	3	1	7
16	B1		1	2	3	1	1	4	3	3	-	3	1	1	3	1	4	4	1	4	3	1	7
28	B1		1	2	3	1	1	4	3	3		3	1	1	3	1	4	4	1	4	3	1	-
32	B1		1	2	3	1	1	4	3	3		3	1	1	3	1	4	4	1	4	3	1	4
19	B2	TEP	1	2	3	1	2	3	3	4		3	3	1	4	1	5	3	1	4	1	1	5
40	B2	TEP	1	2	3	1	2	3	3	4	· ·	- 3	3	1	4	1	5	3	1	4	1	1	5
15	B2	BKP	1	2	3	1	2	4	3	4	· ·	3	3	1	4	1	5	- 4	1	4	3	1	5
26	B2	BKP	1	2	3	1	2	4	3	4	-	3	3	1	4	1	5	4	1	4	3	1	5
31	B2	BKP	1	2	3	1	2	4	3	4	-	3	3	1	4	1	5	4	1	4	3	1	5
35	B2	BKP	1	2	3	1	2	4	3	4	-	3	3	1	4	1	5	4	1	4	3	1	5
42	B2g	TEP	1	2	3	1	1	3	3	3	-	3	1	1	3	1	5	3	3	5	1	1	5
27	B2g	BKP	1	2	3	1	1	4	3	3	-	3	1	1	3	1	5	4	3	5	1	1	5
29	B2g	BKP	1	2	3	1	1	4	3	3	-	3	1	1	3	1	5	4	3	5	1	1	5
41	B3	TEP	3	2	3	1	1	3	3	4	-	1	3	1	4	1	5	3	1	5	1	1	5
6	B3	BKP	1	2	3	1	1	4	3	4	-	1	3	1	4	1	5	4	1	5	3	1	5
17	B3	BKP	1	2	3	1	1	4	3	4	-	1	3	1	4	1	5	4	1	5	3	1	5
30	B3	BKP	1	2	3	1	1	4	3	4		1	3	1	4	1	5	4	1	5	3	1	5
44	B3	BKP	1	2	3	1	1	4	3	4	-	1	3	1	4	1	5	4	1	5	3	1	5
8	C1		1	2	3	1	2	1	3	1	-	1	1	1	3	1	1	1	2	4	1	1	4
34	C1		1	2	3	1	2	1	3	1		1	1	1	3	1	1	1	2	4	1	1	4
7	C2		1	2	3	1	2	3	3	4	-	3	3	1	3	2	4	4	1	4	3	1	4

1

Land Suitability Assessment Results for each UMA Crop type **Citrus**

			Wind erosion	Frost	Climate stress (heat)	Temperature (minimum)	Water erosion	Flooding	Infiltration/ soil profile recharge	PAWC to 1.0 n	n PAWC to 1.5 m	Nutrient balance/ pH (upper profile <0.6 m)	Nutrient balance/ pH (lower profile 0.6-1.2 m)	Soil depth to physical root barriers	Soil surface condition	Rockiness	Salinity	Discharge potential	Microrelief	Wetness	Soil complexity	Topographic complexity	XX Overall assessment rating
Poly No.	Soil Unit	Lands pos	А	Cf	Cs	Ct	E	F	lr	M1	M2	Nr1	Nr2	Pd	Ps	R	Sa	Ss	Tm	w	Xs	Xt	
11	A1		1	2	3	1	1	2	2	2	-	2	2	1	2	1	1	1	1	2	1	1	3
20	A1		1	2	3	1	1	2	2	2	-	2	2	1	2	1	1	1	1	2	1	1	3
22	A1		1	2	3	1	1	2	2	2	-	2	2	1	2	1	1	1	1	2	1	1	3
39	A1		1	2	3	1	1	2	2	2	-	2	2	1	2	1	1	1	1	2	1	1	3
46	A1		1	2	3	1	1	2	2	2	-	2	2	1	2	1	1	1	1	2	1	1	3
4	A10		1	2	3	1	4	4	2	2	-	2	2	1	2	1	1	3	1	3	1	5	5
47	A1e 	TEP	1	2	3	1	2	4	2			2	2	1	2	1	1	3	1	3	1	4	4
9	A2	TEP	1	2	3	1	2	3	2	1		2	2	1	2	1	1	3	1	3	1	1	3
21	A2	TEP	1	2	3	1	2	3	2	1	-	2	2	1	2	1	1	3	1	3	1	1	3
37	A2	TEP	1	2	3	1	2	3	2	1	-	2	2	1	2	1	1	3	1	3	1	1	3
38	A2	TEP	1	2	3	1	2	3	2	1	-	2	2	1	2	1	1	3	1	3	1	1	3
43	A2	TEP	1	2	3	1	2	3	2	1	-	2	2	1	2	1	1	3	1	3	1	1	3
1	A2	BKP	1	2	3	1	2	4	2	4	-	2	3	1	2	1	3	4	1	3	1	1	4
5	A2	BKP	1	2	3	1	2	4	2	4	-	2	3	1	2	1	3	4	1	3	1	4	4
10	A2	BKP	1	2	3	1	2	4	2	4	-	2	3	1	2	1	3	4	1	3	1	1	4
18	A2	BKP	1	2	3	1	2	4	2	4	-	2	3	1	2	1	3	4	1	3	1	4	4
23	A2	BKP	1	2	3	1	2	4	2	4	-	2	3	1	2	1	3	4	1	3	1	4	4
25	AZ	ВКР	1	2	3	1	2	4	2	4	-	2	3	1	2	1	3	4	1	3	1	4	4
30	A3		1	2	3	1	3	4	2	2	-	3	3	1	2	1	1	3	1	2	1	4	4
43	A3		1	2	3	1	3	4	2	1		3	3	1	3	1	1	4	1	5	1	4	5
24	A4 A4		1	2	3	1	3	4	3	1		3	3	1	3	1	1	4	1	5	1	4	5
33	A4		1	2	3	1	3	4	3	1	-	3	3	1	3	1	1	4	1	5	1	4	5
12	B1		1	2	3	1	1	4	3	3		3	2	1	3	1	4	4	1	4	3	1	4
13	B1		1	2	3	1	1	4	3	3	-	3	2	1	3	1	4	4	1	4	3	1	4
14	B1		1	2	3	1	1	4	3	3	-	3	2	1	3	1	4	4	1	4	3	1	4
16	B1		1	2	3	1	1	4	3	3	-	3	2	1	3	1	4	4	1	4	3	1	4
28	B1		1	2	3	1	1	4	3	3	-	3	2	1	3	1	4	4	1	4	3	1	4
32	B1		1	2	3	1	1	4	3	3	-	3	2	1	3	1	4	4	1	4	3	1	4
19	B2	TEP	1	2	3	1	2	3	3	4	-	3	3	1	4	1	5	3	1	4	1	1	5
40	B2	TEP	1	2	3	1	2	3	3	4	-	3	3	1	4	1	5	3	1	4	1	1	5
15	B2	BKP	1	2	3	1	2	4	3	4	-	3	3	1	4	1	5	4	1	4	3	1	5
20	B2 B2	DKP	1	2	3	1	2	4	3	4		3	3	1	4	1	5	4	1	4	3	1	5
35	B2 B2	BKP	1	2	3	1	2	4	3	4		3	3	1	4	1	5	4	1	4	3	1	5
42	B2g	TFP	1	2	3	1	1	3	3	3	-	3	2	1	3	1	5	3	3	5	1	1	, °,
27	B2g	BKP	1	2	3	1	1	4	3	3		3	2	1	3	1	5	4	3	5	1	1	5
29	B2g	BKP	1	2	3	1	1	4	3	3	-	3	2	1	3	1	5	4	3	5	1	1	5
41	B3	TEP	3	2	3	1	1	3	3	4	-	2	3	1	4	1	5	3	1	5	1	1	5
6	B3	BKP	1	2	3	1	1	4	3	4	-	2	3	1	4	1	5	4	1	5	3	1	5
17	B3	BKP	1	2	3	1	1	4	3	4	-	2	3	1	4	1	5	4	1	5	3	1	5
30	B3	BKP	1	2	3	1	1	4	3	4	-	2	3	1	4	1	5	4	1	5	3	1	5
44	B3	BKP	1	2	3	1	1	4	3	4	-	2	3	1	4	1	5	4	1	5	3	1	5
8	C1		1	2	3	1	2	1	3	1	-	2	2	1	3	1	1	1	2	4	1	1	4
34	C1		1	2	3	1	2	1	3	1	-	2	2	1	3	1	1	1	2	4	1	1	4
7	C2		1	2	3	1	2	3	3	4	-	3	3	1	3	2	4	4	1	4	3	1	4

Land Suitability Assessment Results for each UMA

Crop type	Avocado
-----------	---------

			Wind erosion	Frost	Climate stress (heat)	Temperature (minimum)	Water erosion	Flooding	Infiltration/ soil profile recharge	PAWC to 1.0 m	PAWC to 1.5 m	Nutrient balance/ pH (upper profile <0.6 m)	Nutrient balance/ pH (lower profile 0.6-1.2 m)	Soil depth to physical root barriers	Soil surface condition	Rockiness	Salinity	Discharge potential	Microrelief	Wetness	Soil complexity	Topographic complexity	XX Overall assessment rating
Poly No.	Soil Unit	Lands pos	Α	Cf	Cs	Ct	E	F	lr	M1	M2	Nr1	Nr2	Pd	Ps	R	Sa	Ss	Tm	w	Xs	Xt	
11	A1		1	2	3	2	1	2	2	-	1	1	1	1	2	1	1	1	1	3	1	1	3
20	A1		1	2	3	2	1	2	2	-	1	1	1	1	2	1	1	1	1	3	1	1	3
22	A1		1	2	3	2	1	2	2	-	1	1	1	1	2	1	1	1	1	3	1	1	3
39	A1		1	2	3	2	1	2	2	-	1	1	1	1	2	1	1	1	1	3	1	1	3
46	A1		1	2	3	2	1	2	2	-	1	1	1	1	2	1	1	1	1	3	1	1	3
4	Ale		1	2	3	2	4	4	2	-	1	1	1	1	2	1	1	3	1	4	1	5	5
4/	Ale	TED	1	2	3	2	4	4	2	-	1	1	1	1	2	1	1	3	1	4	1	5	<u> </u>
3	AZ	TEP	1	2	3	2	2	3	2	-	1	1	1	1	2	1	1	3	1	4	1	4	4
9	AZ	TEP	1	2	3	2	2	3	2	-	1	1	1	1	2	1	1	3	1	4	1	1	4
21	AZ	TEP	1	2	3	2	2	3	2	-	1	1	1	1	2	1	1	3	1	4	1	1	4
37	AZ A2	TEP	1	2	3	2	2	3	2	-	1	1	1	1	2	1	1	3	1	4	1	1	4
30	A2	TED	1	2	3	2	2	3	2	-	1	1	1	1	2	1	1	3	1	4	1	1	-
43	A2		1	2	3	2	2	3	2		1	1	2	1	2	1	1	3	1	4	1	1	-
	A2	DKP	1	2	3	2	2	4	2	-	4	1	2	1	2	1	4	4	1	4	1	4	4
10	A2	BKP	1	2	3	2	2	4	2	-	4	1	2	1	2	1	4	4	1	4	1	1	4
10	A2 A2	PKD	1	2	3	2	2	4	2	-	4	1	2	1	2	1	4	4	1	4	1	4	4
23	A2	BKP	1	2	3	2	2	4	2		4	1	2	1	2	1	4	4	1	4	1	4	4
25	Δ2	BKP	1	2	3	2	2	4	2		4	1	2	1	2	1	4	4	1	4	1	4	4
36	A3	Dia	1	2	3	2	3	4	2		1	3	3	1	2	1	1	3	1	3	1	4	4
45	Δ3		1	2	3	2	3	4	2		1	3	3	1	2	1	1	3	1	3	1	4	4
2	A4		1	2	3	2	3	4	3	-	1	3	3	1	3	1	1	4	1	5	1	4	5
24	A4		1	2	3	2	3	4	3	-	1	3	3	1	3	1	1	4	1	5	1	4	5
33	A4		1	2	3	2	3	4	3	-	1	3	3	1	3	1	1	4	1	5	1	4	5
12	B1		1	2	3	2	1	4	3	-	3	3	1	1	3	1	5	4	1	4	3	1	5
13	B1		1	2	3	2	1	4	3	-	3	3	1	1	3	1	5	4	1	4	3	1	5
14	B1		1	2	3	2	1	4	3	-	3	3	1	1	3	1	5	4	1	4	3	1	5
16	B1		1	2	3	2	1	4	3	-	3	3	1	1	3	1	5	4	1	4	3	1	5
28	B1		1	2	3	2	1	4	3	-	3	3	1	1	3	1	5	4	1	4	3	1	5
32	B1		1	2	3	2	1	4	3	-	3	3	1	1	3	1	5	4	1	4	3	1	5
19	B2	TEP	1	2	3	2	2	3	3	-	4	3	3	1	4	1	5	3	1	4	1	1	5
40	B2	TEP	1	2	3	2	2	3	3	-	4	3	3	1	4	1	5	3	1	4	1	1	5
15	B2	BKP	1	2	3	2	2	4	3	-	4	3	3	1	4	1	5	4	1	4	3	1	5
26	B2	BKP	1	2	3	2	2	4	3	-	4	3	3	1	4	1	5	4	1	4	3	1	5
31	B2	BKP	1	2	3	2	2	4	3	-	4	3	3	1	4	1	5	4	1	4	3	1	5
35	B2	BKP	1	2	3	2	2	4	3	-	4	3	3	1	4	1	5	4	1	4	3	1	5
42	B2g	TEP	1	2	3	2	1	3	3	-	3	3	1	1	3	1	5	3	3	5	1	1	5
27	B2g	BKP	1	2	3	2	1	4	3	-	3	3	1	1	3	1	5	4	3	5	1	1	5
29	B2g	BKP	1	2	3	2	1	4	3	-	3	3	1	1	3	1	5	4	3	5	1	1	5
41	B3	TEP	3	2	3	2	1	3	3	-	4	1	3	1	4	1	5	3	1	5	1	1	5
6	B3	BKP	1	2	3	2	1	4	3	-	4	1	3	1	4	1	5	4	1	5	3	1	5
17	B3	BKP	1	2	3	2	1	4	3	-	4	1	3	1	4	1	5	4	1	5	3	1	5
30	B3	BKP	1	2	3	2	1	4	3	-	4	1	3	1	4	1	5	4	1	5	3	1	5
44	B3	BKP	1	2	3	2	1	4	3	-	4	1	3	1	4	1	5	4	1	5	3	1	5
8	C1		1	2	3	2	2	1	3	-	1	1	1	1	3	1	2	1	2	4	1	1	4
34	C1		1	2	3	2	2	1	3	-	1	1	1	1	3	1	2	1	2	4	1	1	4
7	C2	1	1	2	3	2	2	3	3	-	4	3	3	1	3	2	5	4	1	4	3	1	5

Environmental Approval & Compliance Solutions

Cairns Office: Level 1, 320 Sheridan Street, PO Box 5678 Cairns QLD 4870 P: 61 7 4034 5300 F: 61 7 4034 5301

Townsville Office: Suite 2A, Level 1, 41 Denham Street, PO Box 539 Townsville QLD 4810 P: 61 7 4796 9444 F: 61 7 4796 9410

www.natres.com.au • nra@natres.com.au