Golder Associates Pty Ltd A.B.N. 64 006 107 857

25 McIlwraith Street South Townsville, Qld 4810, Australia (PO Box 5298, Townsville MC, 4810) Telephone (07) 4724 0311 Fax (07) 4724 0511 http://www.golder.com

REPORT ON

TOWNSVILLE OCEAN TERMINAL PROJECT PRELIMINARY GEOTECHNICAL AND ACID SULPHATE SOILS INVESTIGATION TOWNSVILLE, QUEENSLAND

Submitted to :

City Pacific Limited Santa Cruz House Santa Cruz Boulevard ISLAND QUAYS QLD 4226

DISTRIBUTION:

2 Copies	-	City Pacific Limited (1 bound & 1 CD)
1 Copy	-	Golder Associates Pty Ltd

TABLE OF CONTENTS

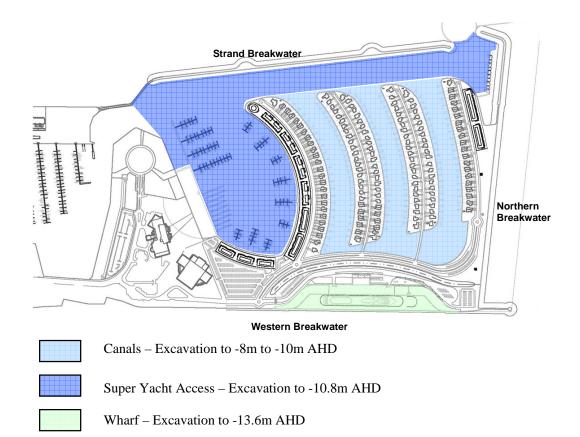
SECTION

PAGE

1.0	INTRODUCTION										
2.0											
3.0	REGIONAL GEOLOGY										
4.0	3.1 Tides										
4.0	THE INVESTIGATION										
	4.1 Investigation Methods										
	4.1.1 Vibracore Holes										
	4.1.2 Geotechnical Boreholes4										
	4.1.3 Bulk Ooze Sampling4										
5.0	4.2 Investigation Locations and Field Testing										
5.0	GROUND CONDITIONS ENCOUNTERED										
	5.1 Ooze										
	5.2 Below the Ooze										
	5.3 Groundwater										
6.0	LABORATORY TESTING										
	6.1 Acid Sulphate Testing										
	6.2 Geotechnical Testing										
7.0	DISCUSSION OF RESULTS										
	7.1 Acid Sulphate Soils7										
	7.1.1 Stratigraphy7										
	7.1.2 Field Tests7										
	7.1.3 Laboratory Chromium Suite Tests7										
8.0	PROPOSED CONSTRUCTION METHODOLOGY										
9.0	EARTHWORKS										
	9.1 The Ooze9										
	9.2 Materials Below The Ooze9										
	9.3 Reuse of Materials – Fill Placement10										
	9.4 Dispersion and Erosion10										
10.0	STABILITY OF REVETMENTS AND BATTER SLOPES 11										
11.0	SEEPAGE AND DEWATERING/DEPRESSURISATION										
12.0	DEVELOPMENT FOUNDATIONS11										
	12.1 Foundations – One And Two Storey Structures11										
	12.2 Foundations – Three Storey Structures and Higher12										
	12.3 Wharf Structure12										
13.0	PAVEMENTS ON FILL (AND TRAFFICKABILITY)										
14.0	SETTLEMENTS13										
	14.1 The Developed Site - Generally13										
	14.2 Areas Filled With Compressible Ooze14										
15.0	IMPORTANT INFORMATION 15										

LIST OF TABLES

LIST OF FIGURES


Figure 1 :	Investigation Locations BH-1 to BH-50
Figure 2 :	Investigation Locations TOT-1 to TOT-7
Figure 3 :	PASS Cross Section Location Plan
Figure 4:	Inferred PASS Cross Section A - A
Figure 5	Inferred PASS Cross Section B - B
Figure 6:	Inferred PASS Cross Section C - C

LIST OF APPENDICES

Appendix A	Borehole Records BH1-BH50
Appendix B	Borehole Records TOT-1 to TOT-7
Appendix C	ASS/PASS Field Screening and Laboratory Test Records
Appendix D	Geotechnical Laboratory Records
Appendix E	Ooze Blending/ Lime Stabilisation Trials
Appendix F	Stability Analysis
Appendix G	Seepage Model Assessment
Appendix H	Important Information about your Geo-Environmental Report
Appendix I	McConnell Consulting – Preliminary Geotechnical Investigation –
	Townsville Ocean Terminal Report (T03-05-07).

1.0 INTRODUCTION

Golder Associates Pty Ltd has been retained as the geotechnical consultant for the Townsville Ocean Terminal Project by City Pacific Limited. The project consists of a dedicated Cruise Terminal and wharf cut into the existing Port Western Breakwater and an integrated residential and tourism development on reclaimed fingers of land. The following sketch shows the proposed development layout.

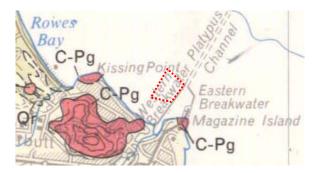
For construction of the project a significant volume of fill is required. Volumes in the order of 2.5 million m³ are required for general filling requirements and approximately 220,000 m³ of imported rock for revetments, core fill etc.

The shading on the above plan indicates the proposed excavation levels for the project.

This report has been prepared to provide geotechnical advice to the project for preliminary design purposes and to provide information for use within the Environmental Impact Statement (EIS).

This report has been divided into sections. The first section is the Geotechnical and Acid Sulphate Soils Report with all appendices and technical notes. The second section has been added to provide a direct response to the sections within project's EIS Terms of Reference.

Golder Associates


2.0 THE SITE

The site is an area of approximately 70Ha adjacent to Townsville Breakwater. It is bounded to the East and North by existing rock revetment walls (Western and Northern Breakwaters) and to the south by Breakwater Island reclamation. The site is inundated by the sea except for small areas in the north-eastern and south-eastern corners which are partially exposed during very low tides. The site's location is shown in the figure below.

3.0 REGIONAL GEOLOGY

Review of the Queensland Department of Mines (1:250,000 scale) geological map of the Townsville Region indicates that the site is underlain by Quaternary-age alluvium and colluvium sediments, in turn underlain by Late-Palaeozoic age Granite.

3.1 Tides

The Maritime Safety Queensland's "Tide Tables and Boating Safety Guide 2006" notes the following tidal data for Townsville Port:

- Lowest Astronomical Tide (LAT) is 0.00 m LAT = -1.856 m AHD
- Highest Astronomical Tide (HAT) is 4.01 m LAT = +2.154 m AHD

4.0 THE INVESTIGATION

4.1 Investigation Methods

The investigation of the site has been undertaken in several phases, using a range of investigation techniques:

- A grid of 50 vibracore holes (BH-1 to BH-50)
- Six over-water geotechnical boreholes (TOT-1 to TOT-6) and one on-land borehole (TOT-7). TOT-1, TOT-2 and TOT-7 were subsequently converted to groundwater monitoring bores and prefixed with MW ie MWTOT-1, MWTOT-2 and MWTOT-7.
- Two bulk "ooze" (very soft surficial sediment) samples were taken using an excavator on a barge. This was undertaken for an option that is no longer to be considered and therefore is not discussed in any detail within this report's text.

4.1.1 Vibracore Holes

To investigate the properties of the sediments immediately on the sea floor (the ooze), 50 bores were undertaken using vibracoring techniques, from the James Cook University Research Vessel "The Kirby". The Kirby is shown anchored at the mouth of Ross River in the photograph below. The vibracoring equipment can be seen in the raised position protruding from the stern of the vessel.

The James Kirby and Vibracore equipment

These 50 bores (BH-1 to BH-50) sampled the full column of ooze. Refusal was met on the top of the stiff sandy clay below it. Continuous samples were recovered within 62mm diameter PVC tubes; these were sealed and stored below 4^{0} C.

4.1.2 Geotechnical Boreholes

Conventional over-water geotechnical drilling techniques were used to investigate locations TOT-1 to TOT-6. TOT-1 and TOT-2 were then converted to groundwater monitoring wells upon completion of drilling, testing and sampling. A single onland borehole, TOT-7, was drilled and also converted to a monitoring well upon completion.

A Gemco 210B mounted on a modular barge system was used for the over-water drilling (see adjacent photograph).

4.1.3 Bulk Ooze Sampling

A third stage of sampling was undertaken at the request of City Pacific. An excavator mounted on a barge was used to take large volume samples of ooze material for blending and lime stabilisation trials. The adjacent photograph shows the sampling configuration used. Refer to Appendix E for details.

Barge mounted Gemco 210B

4.2 Investigation Locations and Field Testing

The vibracore locations (BH-1 to BH-50) were chosen to provide a grid of sample locations across the site. The samples recovered from these locations were used to provide information on the geotechnical properties of the ooze and also to undertake Acid Sulphate Soils assessment.

The borehole locations for BH-1 to BH-50 are shown on the attached Figure 1. Borehole Reports are presented in Appendix A. Figure 2 shows boreholes TOT-1 to TOT-7. Borehole Reports are presented in Appendix B. These should all be read in conjunction with the accompanying explanatory notes.

Sea bed levels at BH-1 to BH-50 were recorded via a long shot laser level that was positioned on the existing rock revetment walls. The location of the laser was moved to different locations around the perimeter of the site during the investigation. A levelling staff and laser receiver were used off the side of the James Kirby to directly measure sea bed levels. The laser level locations were marked and later surveyed by Brazier & Motti to provide RLs for the laser locations. RLs were then calculated for each of the investigation locations. Field tests (pH_F and pH_{FOX}) were conducted on all the soil samples recovered from BH-1 to BH-50 to depths of about 3m below sea bed level and on samples recovered from MWTOT-1 to MWTOT-6 to depths of about 7m below sea bed level. The pH_F tests were conducted on a portion of each recovered sample by mixing small individual subsamples of soil and deionised water (ratio of 1:5 respectively) and measuring the pH using a calibrated pH meter. The pH_{FOX} tests were conducted on recovered samples following the addition of 30% laboratory-grade hydrogen peroxide. A description of the strength of reaction with peroxide and the pH_{FOX} measured using a calibrated pH meter were recorded for each sample. The field test results (pH_F, pH_{FOX}, reaction strength) and interpreted PASS potential (high, moderate or low) are tabulated in Appendix C and shown on the cross sections in Figures 3 to 6.

Soil samples collected for the acid sulphate soil investigation were immediately sealed, labelled and stored on ice in the James Kirby on board cold room. The samples were then transported to Golder Associates' Townsville office. At the office, samples were stored in a regulated cold storage room until samples for laboratory analyses were selected.

Within the geotechnical investigation boreholes broad spectrum sampling for Acid Sulphate Soils was undertaken for materials below the surface ooze. Geotechnical field testing and sampling were undertaken at regular intervals down each borehole.

The three groundwater monitoring wells MWTOT-1, MWTOT-2 and MWTOT-7 were initially developed after installation, and groundwater samples were collected following purging of three borehole volumes. Collected water samples were stored in a chilled Esky until submitted to C&R Consulting for scheduling of analysis and interpretation of results.

All soil and groundwater sampling in the boreholes and monitoring bores, subsequent field testing on samples recovered from the boreholes, and storage and transportation of samples was carried out using methods which conform to the QASSIT Guidelines requirements (Reference 1).

5.0 GROUND CONDITIONS ENCOUNTERED

The ground conditions encountered at each investigation location are recorded in the borehole record sheets presented in Appendix A (BH-1 to BH-50) and Appendix B (TOT-1 to TOT-7). Cross sections of the conditions encountered are presented in Figures 3 to 6.

5.1 Ooze

From the 50 vibracore holes it was found that sea bed ooze sediments materials range from 1.3m to 3.1m thick across the site. Figure 4 presents a contoured plan showing this.

Examination of the cores recovered from these locations indicates a mixture of organic extremely soft to soft silty clay to clayey silt with very loose and loose sand to silty sand to clayey sand.

Clay and silt content represents approximately 70% of the ooze.

The ooze materials are highly compressible and would lead to high ground settlements if the ooze is not removed before site reclamation.

5.2 Below the Ooze

In general, stiff to hard clay and sandy clay was encountered below the ooze. Medium dense to very dense sands were encountered bedded within these clayey strata at the following depths in the bores.

TOT-1	TOT-2	TOT-3	TOT-4	TOT-5	TOT-6	
RL -8.0 to -10.5m	RL -10.8 to -13m	RL -10.9 to -12.8m	RL -11.1 to -13.4m	RL -7.2 to -9.75m	RL -7.6 to -11.65m	
Medium dense to dense sand	Medium dense to dense then dense sand/ clayey sand	Dense sand	Dense sand	Medium dense sand/ clayey sand	Dense to very dense sand	

No soft compressible material was encountered below the surficial ooze deposits.

5.3 Groundwater

The site is below sea level and is inundated by the sea.

6.0 LABORATORY TESTING

6.1 Acid Sulphate Testing

Following a review of the field pH_F and pH_{FOX} tests and the soil profiles, a set of 43 soil samples were selected for laboratory chromium suite analysis. These tests were conducted by SGS Environmental Services Pty Ltd (SGS). Laboratory test certificates are presented in full and the Chromium Suite results are summarised in Table C-1, all in Appendix C.

6.2 Geotechnical Testing

Soil samples were selected from TOT-1 to TOT-6 and were submitted to a NATA registered laboratory for testing to determine plasticity, particle size distribution and dispersion characteristics. Laboratory test reports are presented in Appendix D.

7.0 DISCUSSION OF RESULTS

7.1 Acid Sulphate Soils

7.1.1 Stratigraphy

As discussed in Section 5.0 the site stratigraphy found comprises two distinct layers:

- <u>Ooze.</u> The surface layer of ooze material is comprised of recent marine sediments generally consisting of a mixture of organic extremely soft to soft silty clay to clayey silt with very loose and loose sand to silty sand to clayey sand. Shell fragments commonly occur within this layer. The ooze is easily identified by its dark hue and very soft and very loose consistency.
- <u>Below the Ooze</u>. Materials underlying the ooze are older stiff to hard clays and sandy clays and medium dense to very dense clayey sands and sands. These materials are much lighter in colour than the ooze.

Soil profiles across the site are shown on the inferred cross sections in Figures 4 to 6.

7.1.2 Field Tests

The field screening tests generally indicated the following:

- The field pH measurements on all soil samples were above 7 and therefore no indications of actual acid sulphate soils (AASS) were detected.
- A low PASS potential was indicated in all soil samples from the surface ooze layer. It should be noted however, that field tests in saturated soils from estuarine areas generally provide a poor indication of the presence of potential acid sulphate soils (PASS) due to the buffering capacity of saltwater within soil pore spaces.
- A low PASS potential was indicated in all soil samples collected from below the ooze layer.

Interpreted field test results are shown on the inferred cross sections in Figures 4 to 6.

7.1.3 Laboratory Chromium Suite Tests

Excavation for the wharf, canals, super yacht access, etc. will result in disturbances of greater than 1000 tonnes and thus an Action Criterion of 0.03%S will apply for this project. Table C-1 provides a summary of whether the samples tested are AASS or PASS based on this Action Criterion. Liming rates required to neutralise the Net Acidity (derived from the Chromium Suite tests) are also presented in Table C-1. As indicated in the table, a Fineness

Factor of 3 was adopted for the calculation of net acidity to account for shell materials in the soil profile. The Chromium Suite tests indicated the following:

- Existing acidity in all samples analysed were below the laboratory limit of reporting, indicating AASS conditions are not currently present within the depth of investigation at this site.
- Surficial ooze materials generally have concentrations of Chromium Reducible Sulfur exceeding the Action Criterion of 0.03%S. It is noted that laboratory tests indicate that these soils also have sufficient acid neutralising capacity to produce a calculated net acidity below the Action Criterion. This suggests that these soils would be "self neutralising" (i.e. additional neutralising treatment might not be required). However, experience with disturbance of large quantities of similar "self neutralising" soil has shown that some acidity is still produced in excavated stockpiles. Therefore it is recommended that management measures be adopted to deal with "incidental" acid generation (and associated impacts) where ooze materials are excavated, drained or dewatered for periods of greater than 24 hours.
- Testing of the deeper deposits of stiff to hard clays and dense sands underlying the ooze layer confirmed that these materials are not PASS. No specific management of these materials is required.

8.0 PROPOSED CONSTRUCTION METHODOLOGY

Advice provided, confirmed in a separate Construction Methodology Report (prepared by Hyder), is that the project will be constructed using the following generalised approach:

- A low permeability bund will be constructed around the site and the site dewatered by pumping out from inside. Construction is to undertaken "in the dry" using conventional earthworks techniques, plant and machinery.
- The ooze material will generally not be left in place under the reclaimed development fingers. The canals and waterways for the project will be over-excavated and the ooze material from the full footprint of the site will be buried in these over-excavated zones. The only exceptions to this will be for: an initial access road where the ooze will be left in place; and adjacent to the northern breakwater in an area to be parkland, which will have some volumes of ooze deposited as fill.
- The fill to be used for reclamation of the land fingers will be won from the deeper deposits of stiff to hard clays and dense sands that are excavated to form the canals (ie below the ooze). Any additional fill that is required for the project will be imported.
- For the wharf, piles will be installed "over water" from barge-mounted equipment after the berth has been excavated by cutter suction dredging (after the TOT berth has been flooded and the existing section of the Port Western Breakwater is relocated).

- Internal bridges etc will be constructed "in the dry".
- Bridges for the Strand Breakwater will be constructed from floating platforms and barges.

9.0 EARTHWORKS

9.1 The Ooze

The ooze has very high moisture content and very low shear strength and therefore will be difficult to handle. Traffickability across this material will be very poor, possibly impossible.

Stockpiles of ooze will need to be confined within an excavation or bunds, as the angle of repose of this material is likely to be extremely flat if the material is fluidised after excavation.

The ooze will have a high potential to erode if exposed to rainfall and it is moderately dispersive.

9.2 Materials Below The Ooze

It is understood that the majority of the fill for the project will be won from strip mining the stiff to hard clays and dense sands from below the footprint of the canals and waterways. It is understood that these excavations will be in the order of 8-10m deep.

Excavations for canals and waterways into the stiff to hard clays and dense sands are expected to be achievable using high capacity hydraulic earthmoving plant such as heavy excavators.

Materials that are excavated from site are expected to be geotechnically suitable for re-use as fill provided any organic or oversize (>75 mm) materials are removed and the materials are appropriately moisture conditioned (ie moistened or dried as needed) on placement. Compacted clayey fills may be somewhat expansive after construction, and this will need to be assessed afterwards and taken into account in design.

Excavations should be battered or benched to a stable angle, or otherwise positively supported to prevent instability.

Canal excavations will require dewatering, both for construction "convenience" and traffickability, and for maintaining batter slope stability. In excavations in clayey soils, grading excavations to collect water and pumping from sumps, should be allowed for. Depressurisation will be needed in sandy layers prior to excavating to close above them, to prevent "blowing" of ground associated with trapped excess water pressure.

It should be noted that even after dewatering has been undertaken there is the potential for perched water to remain within some pockets in the natural ground.

Golder Associates

9.3 Reuse of Materials – Fill Placement

Fill layer thickness on placement will depend upon the type of compaction equipment used by the contractor but should not be generally greater than 200 mm loose thickness. The following compaction standards are recommended for the project.

	Compaction	Moisture Content
Clay or Sandy Clay Fill:		
General filling	98% Standard	+3% to - 1% OMC
Upper 1m under building envelopes and roadways	98% Standard	+3% to - 1% OMC
Sand or Clayey Sand Fill:		
General filling	75% density index	+3% to - 1% OMC
Upper 1m under building envelopes and roadways	75% density index	+3% to - 1% OMC

Table 1: Compaction Standards

Note: OMC – Optimum Moisture Content.

It is recommended that the contractor selected for these earthworks should have demonstrated experience of a clear understanding of the requirements of placement of plastic clay fill. Close moisture content control will be required for compaction.

For construction of the canal fingers it is understood that localised short-term batter angles of 1:0.5 (v:h) are planned behind retaining wall backfill. At these locations it is recommended that the fill is over-placed at 1:1 (v:h) or flatter and then cut back to the required profile immediately prior to retaining wall construction and placement of backfill.

9.4 Dispersion and Erosion

Dispersibility and erosion potential for the development will be predominantly associated with any temporarily exposed materials during construction.

Past experience with similar sites indicates that the stiff sandy clays (etc) encountered below the ooze at the site in general have a low to moderate potential for dispersion. However, erosion and dispersion can still occur through rain-drop impact, rainfall run-off and run-off associated with water/groundwater redirected through the site. To reduce this potential, it is suggested that erosion and sediments generated from slope-wash could be managed and controlled with the following methods:

- compaction of exposed soils at an appropriate density and moisture content;
- silt fences at down-slope boundaries of construction works;

- perimeter diversion drains around earthworks;
- paving or re-vegetating exposed soils as soon as possible following their completion.

10.0 STABILITY OF REVETMENTS AND BATTER SLOPES

The stability of revetments and batter slopes of the project have been analysed. In brief summary, the findings are that the profiles proposed, as known to us at this stage of reporting, will have factors of safety against instability that are "adequate" according to normal practice.

This analysis is presented in some detail in Appendix F.

Note that additional detail-focused analyses will be needed at the detailed design stage of the project, and that additional testing will be warranted at that time to provide more refined and location-specific inputs for the analyses to be made.

11.0 SEEPAGE AND DEWATERING/DEPRESSURISATION

A detailed analysis has been made of potential for seepage and dewatering/depressurisation requirements for the project. These analyses are presented in some detail in Appendix G.

Note that the analyses confirm the need for some form of positive depressurisation of sand layers bedded within the stiff to hard clays (etc) within the proposed excavation depth for canals and waterways (and ooze disposal) on the site. The initial indication is that this could take the form of either "active" pumped-out wells or Passive" open wells on a grid across the site. Note that the spacing of this grid and the details of wells are likely to vary from those details postulated in Appendix G, after design-level analyses are made fro optimisation of this important aspect.

Note also that the analyses related to seepage through revetments indicated the need for heavy construction-period pumping to maintain the site in a dewatered site during the course of construction.

12.0 DEVELOPMENT FOUNDATIONS

The following all assumes that construction has been in accordance with the Construction Methodology Report, and with any guidelines presented in the foregoing (in particular in regard to earthworks and compaction).

12.1 Foundations – One And Two Storey Structures

Foundations for relatively lightweight domestic-style one and two storey structures (ie houses) could comprise stiffened rafts or driven piles of "light" structural capacity.

In accordance with Australian Standard AS2870-1993 "Residential slabs and footings – construction", the reclaimed land would be initially classified as "Class P" due to the presence of fill. However site-specific testing plus consideration of satisfactory earthworks materials and compaction records should permit reclassification to (say) Class H.

For houses up to two storeys high, it is suggested that, until shown to be otherwise, preliminary-planning of stiffened raft design be based on movements equivalent to a "Class H" site. This equivalent movement would be expected to include components of settlement of the materials within the fill and under the reclamation as well as shrink / swell (ie "expansive") type seasonal movements within the foundation materials.

Lot specific investigation will be required. However, based on the investigation work undertaken to date, an allowable bearing pressure of 50 kPa is suggested under raft slabs.

Structures supported on raft-slab footings should be located no closer than 10 m from the top of any proposed revetment wall, unless specific design and analysis has been undertaken to allow such placement for each occasion.

Alternatively structures could be supported on piles, founding in the stiff to very stiff clays/medium dense sands underlying the fill. The slab design of suspended slabs cast at ground level would then need to consider the potential for shrink-swell movements occurring.

12.2 Foundations – Three Storey Structures and Higher

For structures of three stories and higher, or lower-height movement-sensitive buildings, piled foundations will be required. Suitable pile types will include driven precast concrete or driven cast insitu piles. Such piles would be expected to be driven to found in, or socket into, the stiff to hard clays or the dense to very dense clayey sands and/or weathered granite encountered below the site, depending on capacities required.

Design of driven piles should be in accordance with Australian Standard AS2159-1995 "*Piling – Design and installation*".

It is recommended that piles are installed on a "design and construct" (D&C) basis and the pile capacities are made the responsibility of the contractor.

12.3 Wharf Structure

Foundations for the wharf structure will need to be piled. Driven concrete or hollow steel tube piles could be used for the project, although other driven or cast insitu pile types may also be suitable.

Driven piles would reach a "set" (ie penetration resistance) adequate to carry the design loads with penetration into the hard clays or sandy clays or the dense to very dense sands below

approximately RL-10m to RL-14m. Preboring or chopping & coring is likely to be required to achieve penetration into these materials especially where toe levels of piles are required to be below the depth of the proposed adjacent berth pocket (approx RL -13.6m AHD).

Design of piles should be in accordance with Australian Standard AS2159-1995 "*Piling – Design and installation*".

Assessment of foundation capacity should consider 'group action' where piles are closely spaced, with group capacity being possibly less than the sum of individual pile capacity.

It is recommended that piles are installed on a "design and construct" (D&C) basis and the pile capacities are made the responsibility of the contractor.

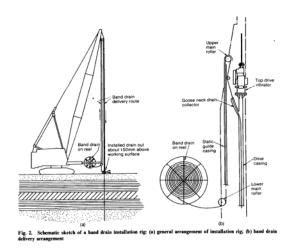
13.0 PAVEMENTS ON FILL (AND TRAFFICKABILITY)

Previous experience with pavements for the adjacent Breakwater Island development show that the fill materials for the project might have low CBRs, possibly less than 5. Once constructed, location-specific subgrade testing will be needed to permit rational design.

To help reduce traffickability problems associated with wet weather during construction, exposed subgrades should be graded such that they readily shed water and prevent ponding. Consideration should also be given to placing a granular traffickability layer over areas that require all-weather access.

14.0 SETTLEMENTS

14.1 The Developed Site - Generally


Settlements in properly filled areas will largely be dependent on the distribution of materials placed within the fill and the compaction achieved during construction. Assuming a reasonably uniform 98% standard compaction is achieved within a stiff to hard clay and/or sandy clay and/or clayey sand and/or sand fill material, the following swell/settlement movements are expected on the site generally:

• Total settlements/heaves for the site have been assessed to be in the order of +/-40mm assuming an additional 10kPa site load (structure and/or filling). Differential settlements should be around 50% of total settlements. Swelling (ie heave) is most likely within the placed fill material within the first year or so after site development, with settlement more likely in later years.

14.2 Areas Filled With Compressible Ooze

Very high settlements are anticipated where ooze material has been used as filling or left in place below fill, eg as proposed in the park land areas at the northern end of the site. Calculated settlements are presented below for these areas:

• 40-80mm per 1m of fill load per 1m thickness of ooze

Differential settlements would probably be around 50% of total settlements.

Allowance should be made for methodical topping up the level of such areas from time-totime after development, unless settlements are to be induced prior to the end of construction by preloading.

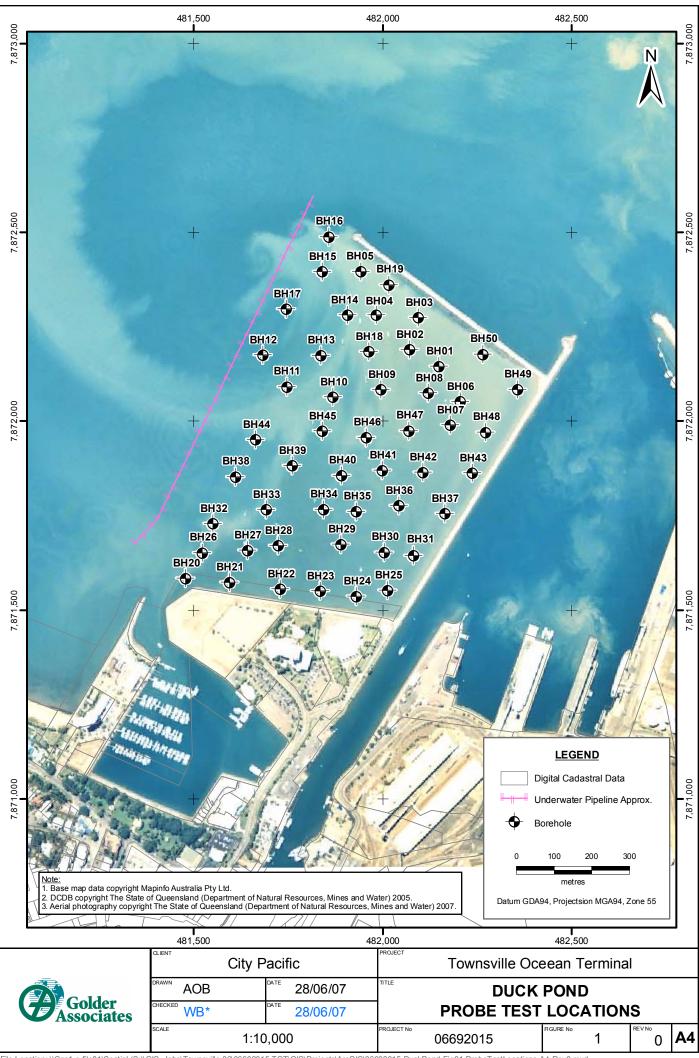
Batter slopes on the outside of any placed preload will need to be a maximum of 1:3 (h:v) to help reduce the potential for instability. Some half height berms may be required, dependent on planned preload height.

Consolidation could be accelerated markedly by installation of wick drains, which would act to allow rapid vertical drainage of pore water out of the ooze. Wick drains are available from a number of contractors in Queensland and have become relatively economical in recent years.

Note that, if wick drains are used, provision must be made for the pore water from each vertical wick to escape horizontally from the top of the wick. This could be achieved on this site by using more-or-less "clean" rock fill for the lowest 300-500mm thickness of preload material, also by coupling the tops of the wicks together by "stapled on" horizontal strips of wick material.

Wick drain spacing will influence the time required for consolidation to occur. This matter can theoretically be calculated, but such calculations are not reliable. Our experience-based assessment (which must be tested by analysis at the time of detailed design) is that a wick spacing of 1.2-1.5m would reduce the consolidation time of a deep ooze fill to about 1-2 years, with a 3m high preload surcharge.

Preload monitoring will be needed to provide information on degree of settlement achieved, to assess when any preload can be removed.

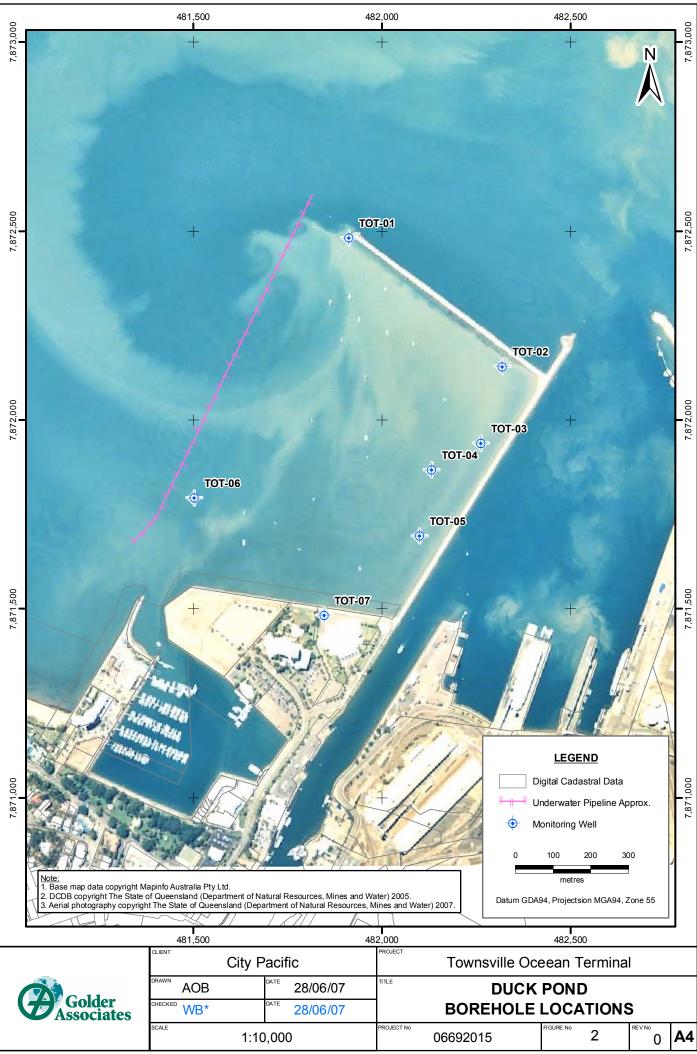

15.0 IMPORTANT INFORMATION

Your attention is drawn to the document - "Important Information about your Geotechnical Engineering Report", which is included in Appendix H of this report. This document has been prepared by the ASFE (*Professional Firms Practicing in the Geosciences*), of which Golder Associates is a member. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be, and to present you with recommendations on how to minimise the risks associated with the groundworks for this project. The document is not intended to reduce the level of responsibility accepted by Golder Associates, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing.We would be pleased to answer any questions about this important information from the reader of this report.

GOLDER ASSOCIATES PTY LTD

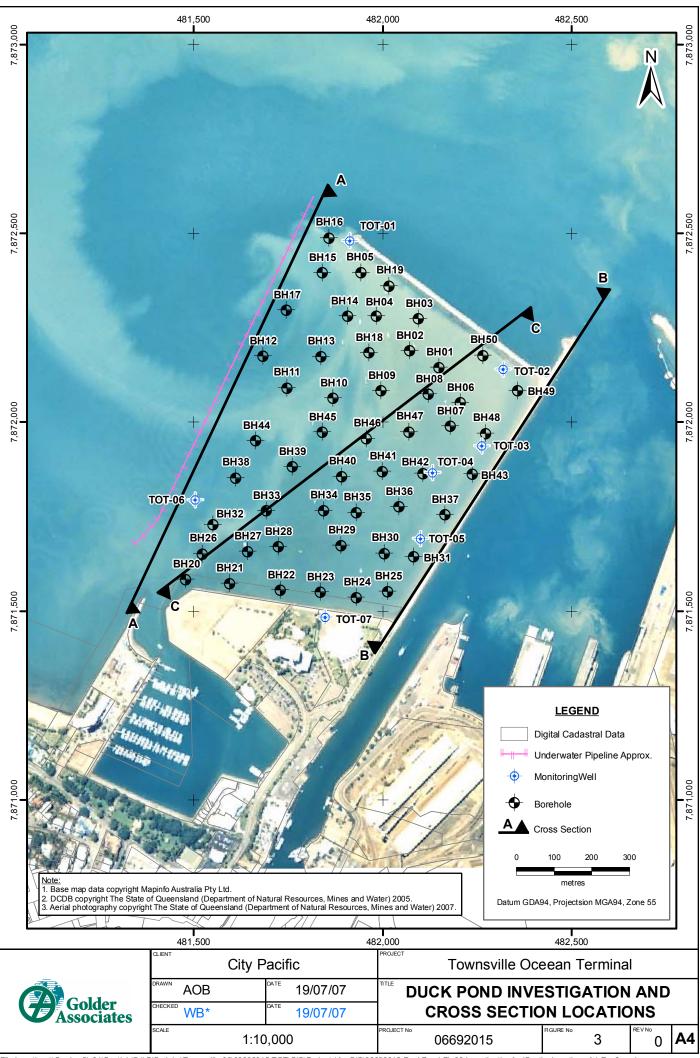
w.l.

Wyn Binmore Manager Townsville



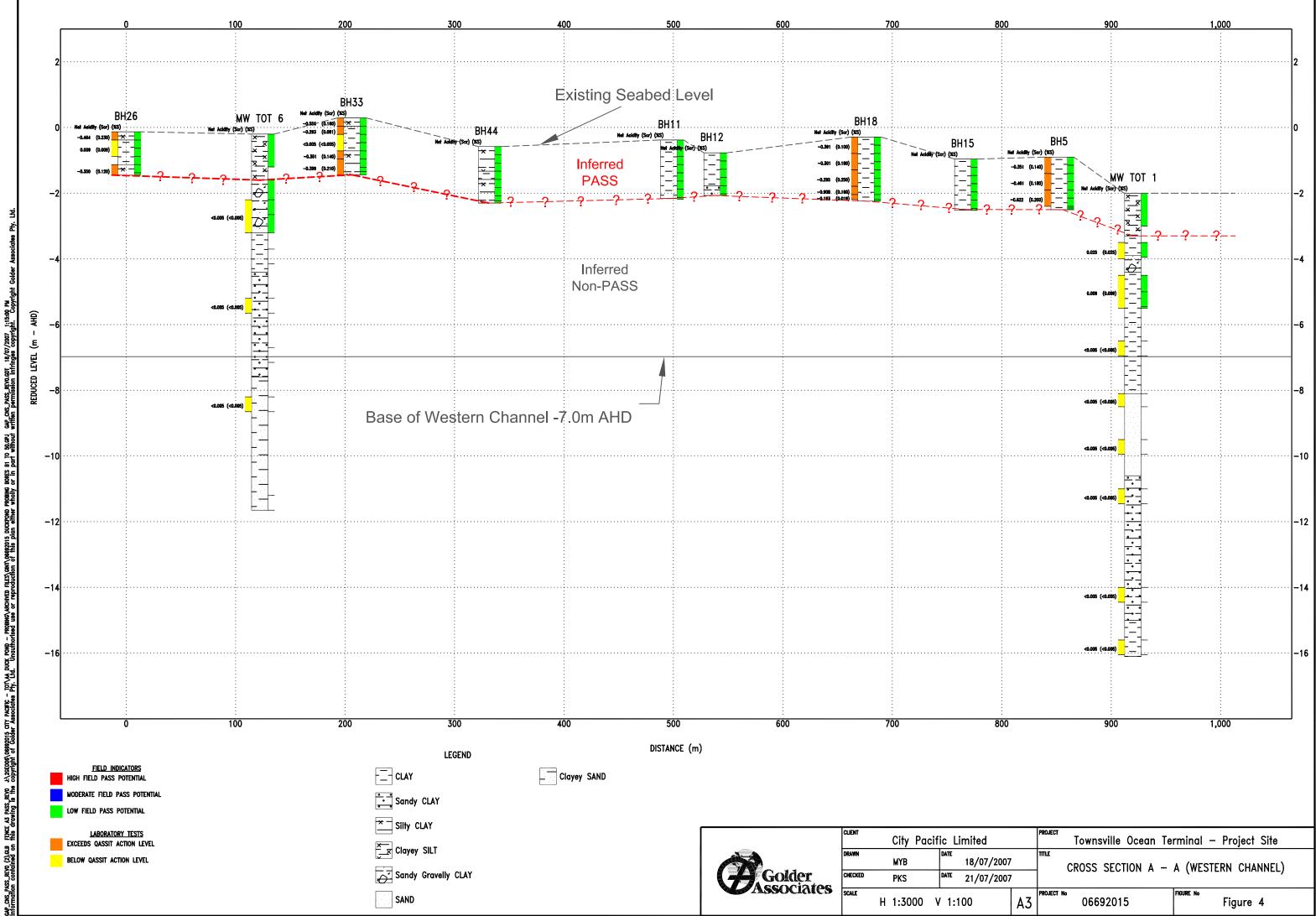
on this drawing is the copyright of Golder Associates Pty. Ltd. Unauthorised use or reproduction of this plan either wholly or in part without written permission infringes copyright.

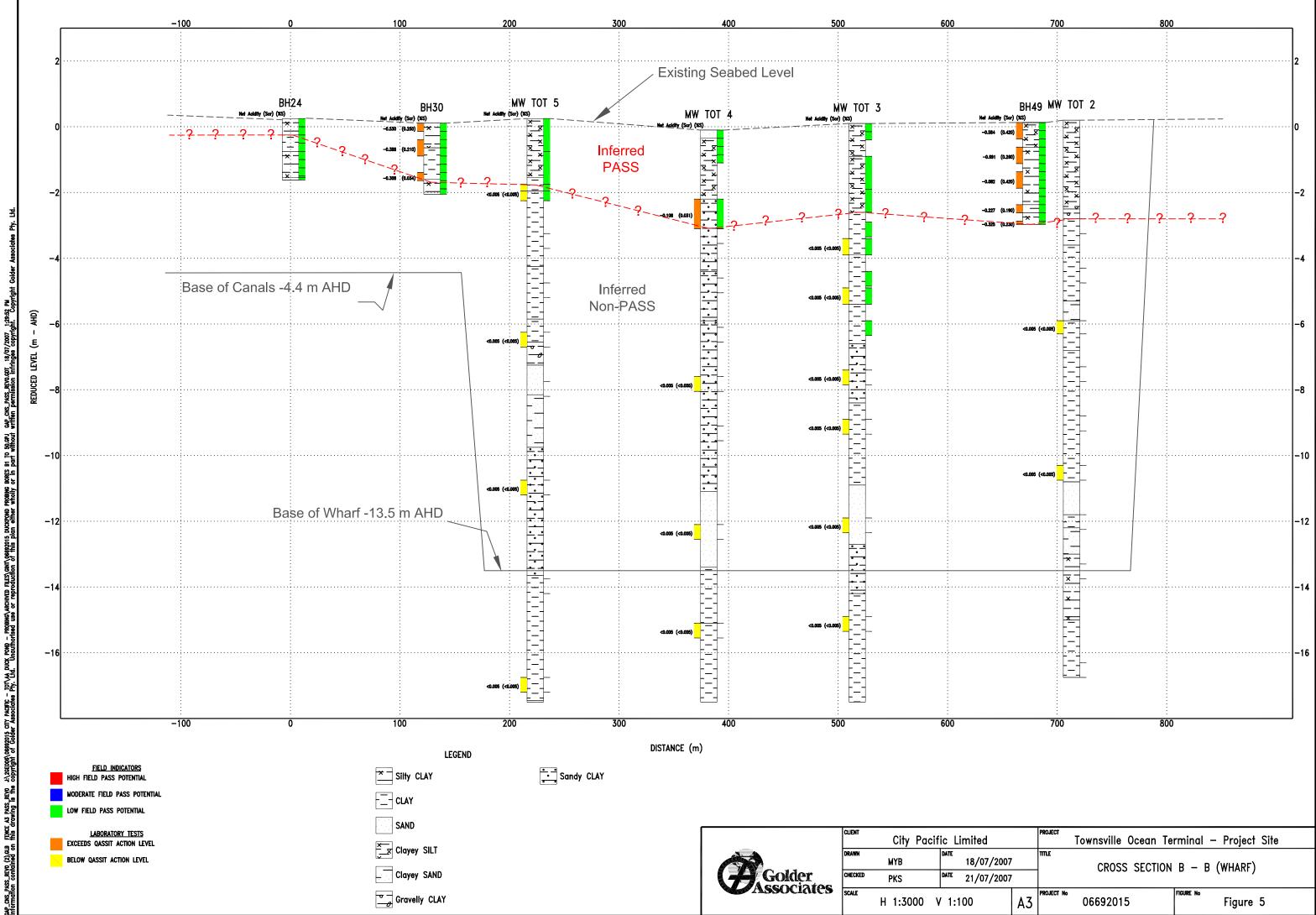
© Golder Associates Pty. Ltd.


eg

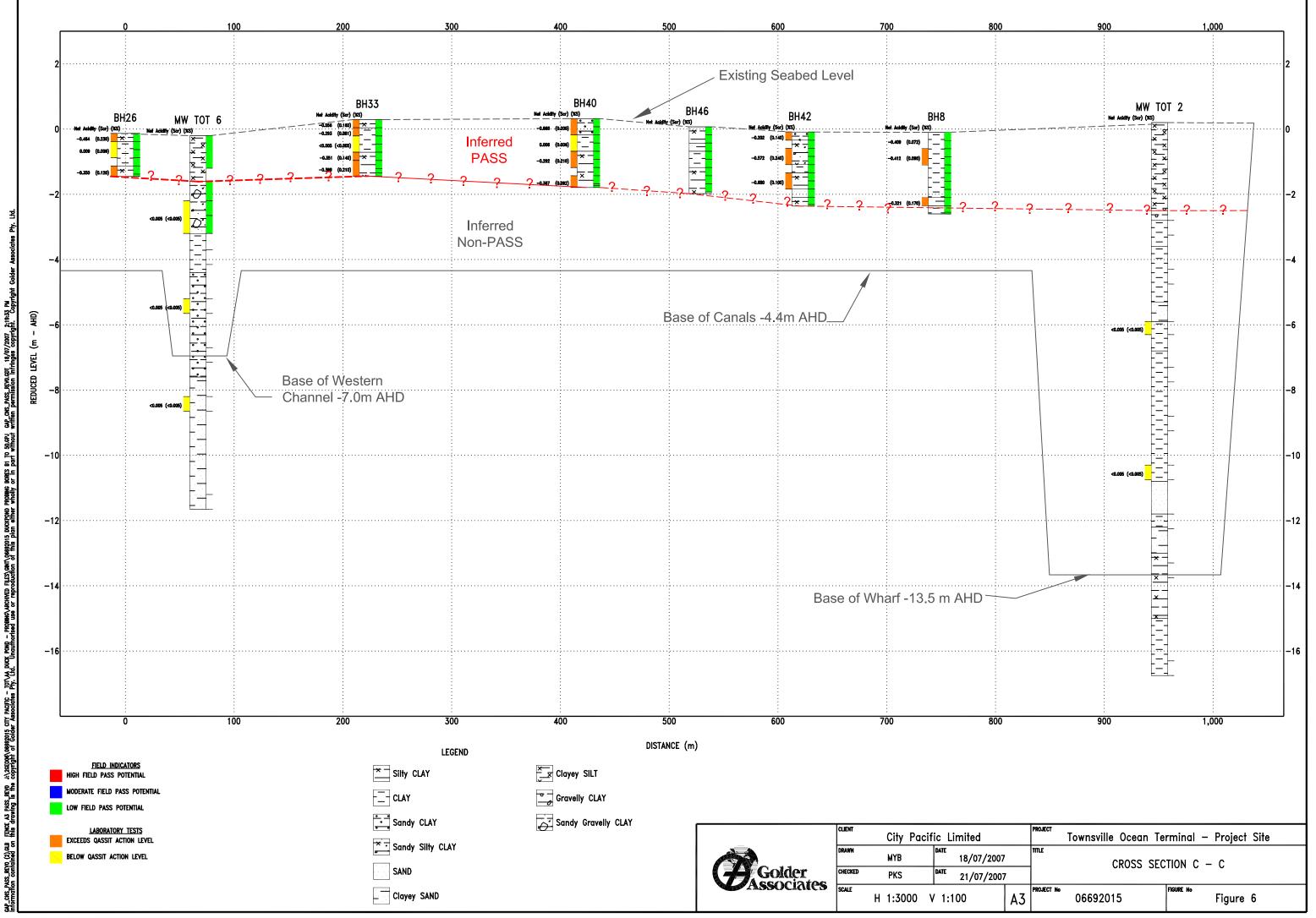
File Location: \\Cns1-s-file01\Spatial (S:)\GIS_Jobs\Townsville.06\06692015-TOT\GIS\Projects\ArcGIS\06692015-DuckPond-Fig01-ProbeTestLocations-A4-Rev0.mxd Note: The * beside the typed initials denotes the original drawing issue was signed or initialled by that respective person.

Information contained on this drawing is the copyright of Golder Associates Pty. Ltd. Unauthorised use or reproduction of this plan either wholly or in part without written permission infringes copyright. © Golder Associates Pty. Ltd.


File Location: \\Cns1-s-file01\Spatial (S:)\GIS_Jobs\Townsville.06\06692015-TOT\GIS\Projects\ArcGIS\06692015-DuckPond-Fig02-BoreholeLocations-A4-Rev0.mxd Note: The * beside the typed initials denotes the original drawing issue was signed or initialled by that respective person.


drawing is the copyright of Golder Associates Pty. Ltd. Unauthorised use or reproduction of this plan either wholly or in part without written permission infiniges copyright. © Golder Associates Pty. Ltd.

this


File Location: \\Cns1-s-file01\Spatial (S:)\GIS_Jobs\Townsville.06\06692015-TOT\GIS\Projects\ArcGIS\06692015-DuckPond-Fig03-InvestigationAndSectionLocations-A4-Rev0.mxd Note: The * beside the typed initials denotes the original drawing issue was signed or initialled by that respective person.

		A3	PROJECT № 06692015	FIGURE No Figure 4
--	--	----	--------------------	-----------------------

A3	PROJECT No 06692015	Figure № Figure 5

IITIALS DENOTES THE ORIGINAL DRAWING ISSUE WAS SIGNED OR INITIALLED BY THAT RESPECTIVE PERSON

APPENDIX A

Borehole Records BH1 – BH50

(Golder							REPORT OF BOREHOLE: BH1 SHEET: 1 OF 1							
P L(CLIENT: City Pacific Limited PROJECT: Townsville Ocean Terminal LOCATION: Project Site JOB NO: 06692015					nal		SHEET: 1 OF 1 COORDS: 482149 m E 7872144 m N 55 MGA94 SURFACE RL: -0.26 m DATUM: AHD INCLINATION: -90° LOGGED: AOB DATE: 27 LOGED: AOB DATE: 27							
				00092					HOLE DIA: 62 mm HOLE DEPTH: 1.93 m			ECKED: WSB DATE: 30/6/07			
	7	Dril	ling		Sampling				Field Material Descr	iptio					
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS			
			0.0-	-0.26	DS 0.00-0.25m				CLAY Grey						
INF C+: 60:01			-	-	DS 0.25-0.50m										
1007/10/11			0.5-	-	DS 0.50-0.75m							-			
			-		DS 0.50-0.75m										
100001			-		DS 0.75-1.00m										
וובטוסווו ויטטפט וז טטטאר טאט דאטפוואס פטרבס פרן ט סטטרט סארטבן ואוונטטר ו וויוונטטר ו גיפאאס אווו			1.0-	-	DS 1.00-1.25m					×		-			
				<u>1.25</u> -1.51	DS 1.25-1.50m			, 	- With some medium grained sand and trace of shell fragments	_					
			15-	1.50											
-			-	-1.76	DS 1.50-1.75m				- Grey/brown						
			-	-	DS 1.75-1.83m DS 1.83-1.93m										
			2.0-	<u>1.93</u> -2.19			<u> </u>		END OF BOREHOLE @ 1.93 m Depths shown from current Bed Level						
			-	-											
				-											
201 2: 605			2.5—	-								-			
			-	-											
			-												
			-3.0	Tr geote	chnical purposes on	ly, w	vithout	atte	in conjunction with accompanying notes and abbreviation: mpt to assess possible contamination. Any references to essarily indicate the presence or absence of soil or ground	pote	ntial o	contamination are for			

CLIENT: City Pacific Limited PROJECT: Townsville Ocean Terminal LOCATION: Project Site JOB NO: 06692015				nal		REPORT OF BOREHOLE: I SHEET: 1 OF 1 COORDS: 482070 m E 7872193 m N 55 MGA94 SHEET: 1 OF 1 DRILL RIG: James Kirby - V SURFACE RL: -0.41 m DATUM: AHD INCLINATION: -90° DRILLER: James Cook Univ HOLE DIA: 62 mm HOLE DEPTH: 1.93 m CHECKED: WSB						
	Drilling			Sampling				Field Material Descr	iptio	n		
ME I HOU PENETRATION RESISTANCE	WATER DEPTH	(illettes)	<i>EPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
	0.0 0.5 1.0		<u>0.75</u> 1.16	DS 0.00-0.25m DS 0.25-0.50m DS 0.50-0.75m DS 0.75-1.00m DS 1.00-1.25m DS 1.25-1.50m DS 1.25-1.50m				CLAY Grey	M			
	2.0			DS 1.75-1.83m DS 1.83-1.93m			-	END OF BOREHOLE @ 1.93 m Depths shown from current Bed Level				
	2.5	-										
		-										

CLIENT: City Pacific Limited PROJECT: Townsville Ocean Terminal					acific Limited		REPORT OF BOREHOLE: BH3 SHEET: 1 OF 1 COORDS: 482094 m E 7872273 m N 55 MGA94 SURFACE RL: -0.38 m DATUM: AHD SHEET: 1 OF 1 DRILL RIG: James Kirby - Vibracore DRILLER: James Cook University						
	CCA.			Projec		iai			INCLINATION: -90°			GGED: AOB DATE: 27/9/06	
J) DB N			06692					HOLE DIA: 62 mm HOLE DEPTH: 1.90 m			ECKED: WSB DATE: 30/6/07	
	Z	Dril	ling		Sampling				Field Material Desc	riptic			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0.0	-0.38	DS 0.00-0.25m			i	CLAY Grey, trace medium grained sand				
			-		DS 0.25-0.50m			-					
			-				[ł					
			0.5—		DS 0.50-0.75m								
			-		DS 0.75-1.00m			-					
			- 1.0—		DS 1.00-1.25m					3			
			-		201.001.2011			-					
			-	1.25 -1.63 1.35	DS 1.25-1.35m			ŀ	Clayey SAND Fine to medium grained sand, grey				
			-	-1.73	DS 1.35-1.50m			-	CLAY Grey, with some medium grained sand				
			1.5—		DS 1.50-1.80m			-					
			-					-					
				<u>1.90</u> -2.28	DS 1.80-1.90m								
			2.0—	-2.20					END OF BOREHOLE @ 1.90 m Depths shown from current Bed Level				
			-										
			-										
			-										
			2.5—										
			-										
			-										
			- 3:0										
			0.0	Th geote	chnical purposes on	lv w	ithout	atte	in conjunction with accompanying notes and abbreviation mpt to assess possible contamination. Any references to essarily indicate the presence or absence of soil or grour	note	ntial o	contamination are for	

(Ĝ		A	Fol SSO	der	tes				REPORT	0		BOREHOLE: BH4
	CLIE PRC LOC JOB	JE0 ATI	CT: ION:		•		al			Coords: 481942 m e 7872396 m n 55 MGA94 Surface RL: -0.53 m datum: Ahd Inclination: -90° Hole DIA: 62 mm Hole Depth: 1.70 m		DR DR LO	ILL RIG: James Kirby - Vibracore ILLER: James Cook University GGED: AOB DATE: 27/9/06 ECKED: WSB DATE: 30/6/07
F			Drilli	ng		Sampling				Field Material Desc	riptic	on	
	METHOD PENETRATION	RESISTANCE		DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
07/2007 11:01:09 AM				0.0— - - -		DS 0.00-0.25m DS 0.25-0.50m			- - - - - - - -	CLAY Grey			
0 50.GPJ GAP5_1.GDI 11/				0.5 <i>—</i> - -	<u>0.50</u> -1.03	DS 0.50-0.75m DS 0.75-1.00m				With some medium grained sand			-
CKPOND PROBING BORES B1 1				- 1.0 <i></i> -		DS 1.00-1.25m			- - - - -		~		-
ARCHIVED FILES/GINT/06692015 DL				- 1.5—		DS 1.25-1.50m DS 1.50-1.60m DS 1.60-1.70m			- - - - - - - - - - -				
3 FULL PAGE J:\2GE006\06692015 CITY PACIFIC - TOT\AA DUCK POND - PROBING\					<u>1.70</u> -2.23				-	END OF BOREHOLE @ 1.70 m Depths shown from current Bed Level			
GAP_CNS_PASS_REV0 (2).GLB				- - 3: 0 —		chnical purposes on	lv, w	vithout	atte	in conjunction with accompanying notes and abbreviation mpt to assess possible contamination. Any references to essarily indicate the presence or absence of soil or grour	pote	ential o	contamination are for

	Ĵ		Go	lder ocia	tes				REPORT	0		BOREHOLE: BH5	
	CLIE PRO LOC, JOB	JEC ATIC	:T: DN:	•		nal			COORDS: 481934 m E 7872384 m N 55 MGA94 SURFACE RL: -0.9 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 1.60 m	ļ	DRI DRI LO(ILL RIG: James Kirby - Vibracore ILLER: James Cook University GGED: AOB DATE: 27/9/06 ECKED: WSB DATE: 30/6/07	
F			Drilling		Sampling				Field Material Des	rintic			-
	PENETRATION		DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	C√	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0.0-	-0.90 -0.90 	DS 0.00-0.25m DS 0.25-0.50m DS 0.50-0.75m DS 0.75-1.00m DS 1.00-1.25m DS 1.25-1.50m				CLAY Grey - With some medium grained sand				-
			2.0-	1.60 -2.50	his report of borehole	ly, w	vithout	atte	END OF BOREHOLE @ 1.60 m Depths shown from current Bed Level	o pote	ential c	contamination are for	

City P Towns	acific Limited sville Ocean Termin	al			COORDS: 482239 m E 7872038 m N 55 MGA94 SURFACE RL: -0.08 m DATUM: AHD	O	SHI DR DR	BOREHOLE: BH6 EET: 1 OF 1 ILL RIG: James Kirby - Vibracore ILLER: James Cook University GGED: AOB DATE: 27/9/06
06692	015				HOLE DIA: 62 mm HOLE DEPTH: 2.20 m		СН	ECKED: WSB DATE: 30/6/07
1	Sampling	_		1	Field Material Desc	riptic		
(metres) DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
	DS 0.25-0.50m DS 0.50-0.75m DS 0.75-1.00m DS 1.00-1.25m				CLAY Grey	M		
5 <u>1.50</u> - 1.58 - 1.58 - 1.83	DS 1.25-1.50m DS 1.50-1.75m DS 1.75-2.00m			· · · · · · · · · · · · · · · · · · ·	Sandy CLAY		_	
2.00 -2.08 - 2.20 2.20	DS 2.00-2.10m DS 2.10-2.20m				- Grey	Σ		
-2.28 - 5					END OF BOREHOLE @ 2.20 m Depths shown from current Bed Level			
	City P Towns Projec 06692 - - - - - - - - - - - - - - - - - - -	Project Site 06692015 Sampling Image: Sampling DEPTH DEPTH RL SAMPLE OR FIELD TEST -0.08 DS 0.00-0.25m -0.08 DS 0.25-0.50m -0.08 DS 0.25-0.50m -0.08 DS 0.75-1.00m -0.08 DS 1.00-1.25m -1.33 DS 1.25-1.50m -1.33 DS 1.25-1.50m -1.58 DS 1.50-1.75m -1.58 DS 1.75-2.00m -2.08 DS 2.00-2.10m -2.08 DS 2.00-2.10m -2.28 -2.28	City Pacific Limited Townsville Ocean Terminal Project Site 06692015 Sampling SAMPLE OR FIELD TEST OPENTH DEPTH SAMPLE OR FIELD TEST -0.08 DS 0.00-0.25m - DS 0.25-0.50m - DS 0.50-0.75m - DS 0.75-1.00m - DS 1.00-1.25m - - - DS 1.25-1.50m - - - DS 1.50-1.75m - - - DS 1.75-2.00m - DS 2.10-2.20m - - - DS 2.10-2.20m	City Pacific Limited Townsville Ocean Terminal Project Site 06692015 Discolor Sampling Image: Comparison of the system of the	City Pacific Limited Townsville Ocean Terminal Project Site 06692015 1 Image: City Pacific Limited Project Site 06692015 Image: City Pacific Limited Project Site 05 Image: City Pacific Limited Project Site Project Si	Source Control Control <thcontrol< th=""> <thcontrol< th=""> <thco< td=""><td>Source Count of the second second</td><td>SUPER SH City Pacific Limited COORDS: 482239 m E 7872038 m N 55 MGA94 DR Townsvile Ocean Terminal SURFACE RL: -0.08 m DATUM: AHD DR Project Site HOLE DIA: 62 nm HOLE DEPTH: 2.20 m CO Sampling Field Material Description CO Image: Site of the state of the state</td></thco<></thcontrol<></thcontrol<>	Source Count of the second	SUPER SH City Pacific Limited COORDS: 482239 m E 7872038 m N 55 MGA94 DR Townsvile Ocean Terminal SURFACE RL: -0.08 m DATUM: AHD DR Project Site HOLE DIA: 62 nm HOLE DEPTH: 2.20 m CO Sampling Field Material Description CO Image: Site of the state

	Ć			Gol sso	der cia	tes				REPORT	OI		BOREHOLE: BH7
		OJE CAT	T: ECT: TION	I:	City Pa	acific Limited ville Ocean Termin t Site	al			Coords: 482159 m E 7871987 m N 55 MGA94 Surface RL: -0.07 m Datum: Ahd Inclination: -90° Hole DIA: 62 mm Hole Depth: 2.10 m		DR DR LO	EET: 1 OF 1 ILL RIG: James Kirby - Vibracore ILLER: James Cook University GGED: AOB DATE: 27/9/06 ECKED: WSB DATE: 30/6/07
F			Dril			Sampling				Field Material Descri	intio		
	METHOD	PENETRATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
S_REV0 (2) GLB FULL PAGE J:20E006/06682015 CTY PACIFIC- TOTAA DUCK POND - PROBINGARCHIVED FILES/GINT06682015 DUCKPOND PROBING BORES B1 T0 50, GPJ GAP5_1, GDT 11107/2007 11:01:47 AM					-0.07 -0.25 -0.32 -0.32 -0.82 -0.82 -0.82	DS 0.00-0.25m DS 0.25-0.50m DS 0.50-0.75m DS 0.75-1.00m DS 1.00-1.25m DS 1.25-1.50m DS 1.50-1.75m DS 1.75-2.00m DS 2.00-2.10m				CLAY Grey Trace fine to medium grained sand With some medium grained sand and shell fragments END OF BOREHOLE @ 2.10 m Depths shown from current Bed Level			
GAP_CNS_F				-3.0	 Tr geote	chnical purposes onl	v, w	vithout	atte	in conjunction with accompanying notes and abbreviations mpt to assess possible contamination. Any references to essarily indicate the presence or absence of soil or ground	pote	ntial d	contamination are for

CLIENT: PROJECT: LOCATION		-	acific Limited ville Ocean Termir	nal			COORDS: 482117 m E 7872084 m N 55 MGA94 SURFACE RL: -0.1 m DATUM: AHD INCLINATION: -90°	~1	SHI DR DR	BOREHOLE: BH8 EET: 1 OF 1 ILL RIG: James Kirby - Vibracore ILLER: James Cook University GGED: AOB DATE: 27/9/06
JOB NO:		06692					HOLE DIA: 62 mm HOLE DEPTH: 2.50 m			ECKED: WSB DATE: 30/6/07
Dri	lling		Sampling				Field Material Descr	ptio	n	
METHOD PENETRATION RESISTANCE WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
	0.5	-0.10 0.25 -0.35	DS 0.00-0.25m DS 0.25-0.50m DS 0.50-0.75m DS 0.75-1.00m DS 1.00-1.25m DS 1.25-1.50m DS 1.50-1.75m				CLAY Grey			
	- - 2.0-	2.00 -2.10 -2.35	DS 1.75-2.00m DS 2.00-2.25m DS 2.25-2.50m			· · · · · · ·	Clayey SAND - Medium grained sand, grey, with some shell fragments CLAY Grey, with some medium grained sand			
	- <u>2.5</u>	<u>2.50</u> -2.60					END OF BOREHOLE @ 2.50 m Depths shown from current Bed Level			
	.									
	-3.0	 Tr geote	L	⊥ ⊥ e mus nly, wi and c	st be r ithout do not	ead atte	I in conjunction with accompanying notes and abbreviations mpt to assess possible contamination. Any references to essarily indicate the presence or absence of soil or ground	L _ s. It pote lwat	has b ntial c er cor	been prepared for contamination are for ntamination. GAP gINT FN. F01 RL

(Ĵ		Gol	lder ocia	tes				REPORT	O		BOREHOLE: BH9
	CLIEN PROJ LOCA JOB N		: N:	-		nal			COORDS: 481987 m E 7872068 m N 55 MGA94 SURFACE RL: -0.44 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 1.88 m		DRI DRI LO(ILL RIG: James Kirby - Vibracore ILLER: James Cook University GGED: AOB DATE: 27/9/06 ECKED: WSB DATE: 30/6/07
t		Dri	illing		Sampling				Field Material Descr	iptio	n	
	METHOD PENETRATION DESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
MA 26:10:11 /002/10/11 10:1_64Ab 149.06 01 13 6			0.0	-0.44	DS 0.25-0.50m DS 0.50-0.75m DS 0.75-1.00m			- - - - - - - - - - - - - - - - - - -	CLAY Grey, with some fine to medium grained sand and shell fragments			-
ט - דאטאטאטראיטאר דיגבאיטוען אויעסטעט וא דאטאויער איטאיע דיאט				<u>1.75</u> -2.19	DS 1.00-1.25m DS 1.25-1.50m DS 1.50-1.75m DS 1.75-1.80m DS 1.80-1.88m				Sandy CLAY Grey, medium grained sand, with some shell fragments			
UNG_FASS_REVU (z):GED FULL FAGE J:ZGEOUGUOGSZUIS CITT FAUFIU - TUTUM DUUN FUN 1			2.0	1.88 -2.32					END OF BOREHOLE @ 1.88 m Depths shown from current Bed Level			
				Tł geote	chnical purposes or	ly, wit	thout	atte	in conjunction with accompanying notes and abbreviations mpt to assess possible contamination. Any references to essarily indicate the presence or absence of soil or ground	pote	ntial c	contamination are for

CLIENT PROJEC LOCATI JOB NO	: CT: ION:		-	acific Limited ville Ocean Termi t Site	nal			REPORT C COORDS: 481859 m E 7872059 m N 55 MGA94 SURFACE RL: -0.27 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 1.87 m	DF	SHI DRI DRI LO(DREHOLE: BH10 EET: 1 OF 1 ILL RIG: James Kirby - Vibracore ILLER: James Cook University GGED: AOB DATE: 27/9/06 ECKED: WSB DATE: 30/6/07
	Drilli	ing		Sampling				Field Material Descr	<u> </u>		
METHOD PENETRATION RESISTANCE		DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
		0.0	-0.27	DS 0.00-0.25m DS 0.25-0.50m DS 0.50-0.75m DS 0.75-1.00m DS 1.00-1.25m DS 1.25-1.50m DS 1.50-1.80m				CLAY Grey, with some medium grained sand and shell fragments			
		2.0— - - 2.5— - - - - - - - - - - - - - - - - - - -	<u>1.87</u> -2.14	DS 1.80-1.87m				END OF BOREHOLE @ 1.87 m Depths shown from current Bed Level			

LIEN ROJE DCAT	T: ECT: FION O:	l:	•	acific Limited sville Ocean Termi t Site 015	inal		SI IN	OORDS: 481735 m E 7872088 m N 55 MGA94 URFACE RL: -0.38 m DATUM: AHD ICLINATION: -90° OLE DIA: 62 mm HOLE DEPTH: 1.78 m		DRI DRI LOC CHE	EET: 1 OF 1 LL RIG: James K LLER: James Co GGED: AOB ECKED: WSB	
	Dril	ling		Sampling				Field Material Descri		· · ·		
PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC	LOG LISC Symbol		SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	ADDI	URE AND FIONAL VATIONS
		0.0	-0.38 <u>1.00</u> -1.38	DS 0.00-0.25m DS 0.25-0.50m DS 0.50-0.75m DS 0.75-1.00m DS 1.00-1.25m DS 1.25-1.50m DS 1.50-1.75m				CLAY Grey, with some fine grained sand	M			
		-	1.78	DS 1.75-1.80m								
		-	-2.16	05 1.75-1.6011			E	END OF BOREHOLE @ 1.78 m Depths shown from current Bed Level				
		-										
		2.0—										
		-										
		-										
		-										
		-										
		2.5										
		_										
		_										
		-										
		-										

CLIENT: PROJEC LOCATIU JOB NO	: CT: ON:	-	acific Limited ville Ocean Termin t Site	al	REPORT OF BOREHOLE: BH12 COORDS: 481680 m E 7872174 m N 55 MGA94 SURFACE RL: -0.77 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 1.30 m SHEET: 1 OF 1 DRILL RIG: James Kirby - Vibracore DRILLER: James Cook University LOGGED: AOB DATE: 27/9/06 CHECKED: WSB DATE: 30/6/07 CHECKED: WSB DATE: 30/6							
	Drilling		Sampling	_		Field Material Descr	-					
METHOD PENETRATION RESISTANCE	WATER DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS			
	0.0	-0.77	DS 0.00-0.25m DS 0.25-0.50m DS 0.50-0.75m DS 0.75-1.00m			CLAY Grey, trace fine to medium grained sand	M					
	1.0	<u>1.00</u> -1.77 <u>1.30</u> -2.07	DS 1.00-1.25m DS 1.25-1.30m		0 0 0 0 0 0 0 0	Sandy CLAY Grey/brown, medium grained sand END OF BOREHOLE @ 1.30 m	Σ					
	1.5- - - 2.0- - - 2.5- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -				Depths shown from current Bed Level				- - - - - - - - - - - - - - - -		

PRO LOC		CT: ON:	Town	Pacific Limited Isville Ocean Termi ct Site	nal		REPORT OF BOREHOLE: BH13COORDS: 481809 m E 7872169 m N 55 MGA94SHEET: 1 OF 1SURFACE RL: -0.42 m DATUM: AHDDRILL RIG: James Kirby - VibracoINCLINATION: -90°DRILLER: James Cook UniversityHOLE DIA: 62 mm HOLE DEPTH: 1.73 mCHECKED: WSB						
		Drillin	g	Sampling			Field Material Desc	riptio	ņ				
METHOD	RESISTANCE		DEPT	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC	LOG	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS			
		0	.0 -0.42 	DS 0.25-0.50m DS 0.50-0.75m DS 0.75-1.00m			CLAY Grey, with trace fine to medium grained sand With some medium grained sand and shell fragments	M					
		2		<u>DS 1.70-1.73m</u>			END OF BOREHOLE @ 1.73 m Depths shown from current Bed Level						

CLIENT: City Pacific Limited PROJECT: Townsville Ocean Terminal LOCATION: Project Site JOB NO: 06692015								Coords: 481864 m e 7872275 m n 55 MGA94 Surface RL: -0.45 m datum: Ahd Inclination: -90° Hole DIA: 62 mm Hole Depth: 1.89 m		DR DR LO(EET: 1 OF 1 ILL RIG: James Kirby - Vibracore ILLER: James Cook University GGED: AOB DATE: 27/9/ ECKED: WSB DATE: 30/6/
1_		lling		Sampling	Т			Field Material Desc	riptic		
PENETRATION	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
		0.0	-0.45	DS 0.00-0.25m				CLAY Grey			
		-									
		-		DS 0.25-0.50m							
		-				[
		-									
		0.5—		DS 0.50-0.75m		[
		-				[
		-				[.†				
		-		DS 0.75-1.00m							
		-									
		1.0 —		DS 1.00-1.25m							
		-									
		-									
		-		DS 1.25-1.50m		[
		_				[
		1.5	1.50								
		1.5	-1.95	DS 1.50-1.75m				- With some medium grained sand and shell fragments			
		_									
		-		DS 1.75-1.89m							
		-	1.89			[
		-	-2.34					END OF BOREHOLE @ 1.89 m Depths shown from current Bed Level			
		2.0—									
		-									
		-									
		-									
		-									
		2.5—									
		-									
		-									
		-									
		_									
		-3.0									

PROJI LOCA	CLIENT: City Pacific Limited PROJECT: Townsville Ocean Terminal OCATION: Project Site OB NO: 06692015							Coords: 481808 m e 7872364 m n 55 MGA94 Surface RL: -0.96 m datum: Ahd Inclination: -90° Hole dia: 62 mm Hole Depth: 1.56 m		DRI DRI LOC	EET: 1 OF 1 ILL RIG: James Kirby - Vibracore ILLER: James Cook University GGED: AOB DATE: 27/9/06 ECKED: WSB DATE: 30/6/07
1	Dril	ling		Sampling	_		1	Field Material Descr	iptio		
PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
		0.0	-0.96 0.50 -1.46	DS 0.00-0.25m DS 0.25-0.50m DS 0.50-0.75m DS 0.75-1.00m				CLAY Grey - With some medium grained sand and shell fragments	~		
		1.0 - - 1.5	<u>1.25</u> -2.21 <u>1.56</u> -2.52	DS 1.00-1.25m DS 1.25-1.50m DS 1.50-1.56m				- Brown/grey, with some medium grained sand and	≥	-	
		- - 2.0 -						Depths shown from current Bed Level			
		- 2.5— - -									

CLIENT:City PacifiePROJECT:TownsvilleLOCATION:Project SitJOB NO:06692015

City Pacific Limited Townsville Ocean Terminal Project Site COORDS: 481842 m E 7872495 m N 55 MGA94 SURFACE RL: -2 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 0.15 m SHEET: 1 OF 1 DRILL RIG: James Kirby - Vibracore DRILLER: James Cook University LOGGED: AOB DATE: 27/9/06 CHECKED: WSB DATE: 30/6/07

Drilling Sampling Field Material Description PENETRATION RESISTANCE CONSISTENCY DENSITY RECOVERED **JSC Symbol** STRUCTURE AND SAMPLE OR FIELD TEST GRAPHIC LOG MOISTURE METHOD ADDITIONAL OBSERVATIONS SOIL / ROCK MATERIAL DESCRIPTION WATER DEPTH (metres) DEPTH RL 0.0 -2.00 DS 0.00-0.15m CLAY Grey 0.15 -2.15 END OF BOREHOLE @ 0.15 m Depths shown from current Bed Level CNS_PASS_REV0 (2).GLB_FULL_PAGE_J: 2GE006106692015 CITY PACIFIC - TOTAA DUCK POND - PROBINGIARCHIVED FILES/GINT06692015 DUCKPOND PROBING BORES B1 TO 50.GPJ_GAP5_1.GDT_11/07/2007_11:00:00 AM 0.5 1.0 1.5 2.0 25 3.6 This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater contamination. GAP GAP gINT FN. F01a RL2

CLIEN PROJE	T: ECT: FION:	:	-	acific Limited ville Ocean Termir t Site	nal			COORDS: 481723 m E 7872292 m N 55 MGA94 SURFACE RL: -0.96 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 1.45 m		Shi Dri Dri Loo	DREHOLE: BH17 EET: 1 OF 1 ILL RIG: James Kirby - Vibracore ILLER: James Cook University GGED: AOB DATE: 27/9/06 ECKED: WSB DATE: 30/6/07
	Drill	ing	1	Sampling				Field Material Desc	riptic		
PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
		0.0	-0.96	DS 0.00-0.25m DS 0.25-0.50m DS 0.50-0.75m DS 0.75-1.00m DS 1.00-1.25m				CLAY Grey - With some fine to medium grained sand and shell fragments	*		
		- 1.5—	1.45 -2.41	DS 1.25-1.35m DS 1.35-1.45m			-	END OF BOREHOLE @ 1.45 m Depths shown from current Bed Level	Σ	-	
		- - 2.0 -	-								
		- - 2.5— -	•								
		- - -3.0-									

CLIENT: City Pacific Limited PROJECT: Townsville Ocean Terminal LOCATION: Project Site JOB NO: 06692015					nal		SHEET:1 OF1COORDS:481926 m E7872175 m N55 MGA94DRILL RIG:James Kirby - VibSURFACE RL:-0.29 mDATUM:AHDDRILLER:James Cook UniveINCLINATION:-90°LOGGED:AOBDATE:HOLE DIA:62 mmHOLE DEPTH:1.95 mCHECKED:WSBDATE:							
	Dri	ling		Sampling				Field Material Desc	riptio					
PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS			
		0.0	-0.29 0.25 -0.54	DS 0.00-0.25m DS 0.25-0.50m DS 0.50-0.75m				CLAY Grey - With some fine to medium grained sand and shell fragments						
		- - 1.0 -		DS 0.75-1.00m DS 1.00-1.25m DS 1.25-1.50m			-		M					
		- 1.5 -	<u>1.75</u> -2.04	DS 1.50-1.75m DS 1.75-1.90m			-	- Brown/grey						
		_							Σ					
		2.0	<u>1.95</u> -2.24	DS 1.90-1.95m		<u>+</u>		END OF BOREHOLE @ 1.95 m Depths shown from current Bed Level						
		- 2.5— -												
		-												

CLIEN PROJ LOCA JOB N	ECT: TION	I:	•	acific Limited wille Ocean Termii t Site	nal			REPORT C COORDS: 482010 m E 7872367 m N 55 MGA94 SURFACE RL: -0.28 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 1.95 m	DF	SHI DRI DRI LO(DREHOLE: BH19 EET: 1 OF 1 ILL RIG: James Kirby - Vibracore ILLER: James Cook University GGED: AOB DATE: ECKED: WSB DATE: 30/6/07
		ling		Sampling			1	Field Material Desc	riptic		
METHOD PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
		0.0	-0.28 <u>1.25</u> -1.53	DS 0.00-0.25m DS 0.25-0.50m DS 0.50-0.75m DS 0.75-1.00m DS 1.00-1.25m DS 1.25-1.50m DS 1.50-1.75m				CLAY Grey			
		- - 2.0 - - 2.5 - - - - - - - - - - - - - - - - 	<u>1.95</u> -2.23	DS 1.75-1.90m				END OF BOREHOLE @ 1.95 m Depths shown from current Bed Level			

Golder
Associates

CLIENT: PROJECT: LOCATION: JOB NO:

City Pacific Limited Townsville Ocean Terminal Project Site 06692015

COORDS: 481460 m E 7871586 m N 55 MGA94 SURFACE RL: 0.05 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 1.30 m

		Dri	lling		Sampling				Field Material Descr	ptio	n		-
METHOD	PENETRATION RESISTANCE	-	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION		CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
:00:11 AM		Ground level below water level	0.0	0.05 0.50 0.50 -0.45 0.60	DS 0.00-0.25m DS 0.25-0.50m DS 0.50-0.75m		* 		SILTY CLAY Very soft, dark grey, trace fine grained sand and shell fragments CLAY		NS		
	L	Groun	- - - 1.0	0.60 -0.55 -0.55 -1.10 -1.05	DS 0.75-1.10m HV 0.90 m VP=46kPa, VR=2kPa DS 1.10-1.25m			- - - - - -	Very stiff to hard, dark grey some green, trace fine grained sand - Grey green, hard, trace fine gravel		VSt-H		
KES B1 TO 50.GPJ			- - 1.5—	1.30 -1.25	DS 1.25-1.30m			*	Firm, grey some brown, trace fine grained sand END OF BOREHOLE @ 1.30 m Depths shown from current Bed Level		ш		
JCKPOND PROBING BOF			- - - 2.0—	-									
FILES/GIN1/06692015 DU			- - - 2.5—	-									
ND - PROBING/ARCHIVEL			- - - 3.0—	-									
IFIC - TOTAA DUCK POI			- - - 3.5—	-									
			- - - 4.0-	-									
.GLB FULL PAGE J: 202			- - - 4.5—	-									
CNS_PASS_KEVU (2):			- - - -5:0										
GAL			-	Tł geote	chnical purposes o	nly, w	/ithout	atte	in conjunction with accompanying notes and abbreviations mpt to assess possible contamination. Any references to essarily indicate the presence or absence of soil or ground	pote	ntial o	contamination are for	18

CLIENT: City Pacific PROJECT: Townsville LOCATION: Project Sit JOB NO: 06692015

City Pacific Limited Townsville Ocean Terminal Project Site COORDS: 481568 m E 7871567 m N 55 MGA94 SURFACE RL: -0.16 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 1.38 m SHEET: 1 OF 1 DRILL RIG: James Kirby - Vibracore DRILLER: James Cook University LOGGED: TJC DATE: 7/11/06 CHECKED: WSB DATE: 30/6/07

Drilling Sampling Field Material Description PENETRATION RESISTANCE CONSISTENCY DENSITY RECOVERED Symbol STRUCTURE AND GRAPHIC LOG MOISTURE SAMPLE OR METHOD SOIL / ROCK MATERIAL DESCRIPTION ADDITIONAL DEPTH (metres) WATER FIELD TEST OBSERVATIONS JSC DEPTH RL 0.0 -0.16 DS 0.00-0.30m SILTY CLAY leve S Very soft, dark grey, some shell fragments, trace fine 0.15 -0.31 Ground level below water grained sand ц-S _ _ _ _ _ _ _ - Soft to Firm 0.30 DS 0 30-0 50m CLAY -0.46 CNS_PASS_REV0 (2),GLB_FULL PAGE_J:2GE006/06682015 CITY PACIFIC - TOTAA DUCK POND - PROBING/ARCHIVED FILES/GINT06882015 DUCKPOND PROBING BORES B1 TO 50,GPJ_GAP5_1,GDT_11/07/2007_11:00:14 AM Firm to stiff, grey green, trace fine gravel 0.5 F-St DS 0.50-0.80m VC HV 0.65 m L VP=49kPa, 0.80 VR=7kPa SILTY CLAY -0.96 DS 0.80-1.00m Very soft, grey brown, trace fine grained sand and shell fragments 10 DS 1.00-1.25m ŝ DS 1.25-1.35m 1.38 DS 1.35-1.38m END OF BOREHOLE @ 1.38 m Depths shown from current Bed Level 15 2.0 2.5 3.0 35 4.0 4.5 5.0 This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for GAP GAP gINT FN. F01a information only and do not necessarily indicate the presence or absence of soil or groundwater contamination. RL2

Golder
Associates

CLIENT: PROJECT: LOCATION: JOB NO:

City Pacific Limited Townsville Ocean Terminal Project Site 06692015 COORDS: 481698 m E 7871542 m N 55 MGA94 SURFACE RL: 0.12 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 1.80 m SHEET: 1 OF 1 DRILL RIG: James Kirby - Vibracore DRILLER: James Cook University LOGGED: TJC DATE: 7/11/06 CHECKED: WSB DATE: 30/6/07

Drilling Sampling Field Material Description PENETRATION RESISTANCE CONSISTENCY DENSITY RECOVERED Symbol STRUCTURE AND GRAPHIC LOG MOISTURE SAMPLE OR METHOD SOIL / ROCK MATERIAL DESCRIPTION ADDITIONAL DEPTH (metres) WATER FIELD TEST OBSERVATIONS JSC DEPTH RL 0.0 0.12 DS 0.00-0.25m CLAY leve Hard, grey green, trace fine to medium gravel and shell fragments Ground level below water DS 0 25-0 50m CNS_PASS_REV0 (2),GLB_FULL PAGE_J:2GE006/06682015 CITY PACIFIC- TOTAA DUCK POND - PROBING/ARCHIVED FILES/GINT06882015 DUCKPOND PROBING BORES B1 TO 50,GPJ_GAP5_1,GDT_11/07/2007_11:00:17 AM т 0.5 DS 0.50-0.75m - Some light brown -0.38 HV 0.70 m VP=23kPa, VR=2kPa VC 0.90 L DS 0.75-0.90m -0.78 SILTY CLAY 10 Very soft to soft, grey brown, some shell fragments DS 0.90-1.25m VS-S DS 1.25-1.50m 1.5 DS 1.50-1.75m HV 1.60 m 1.70 VP=1kPa SILTY CLAYEY SAND Ū. -1.58 DS 1.75-1.80m Loose to medium dense fine grained sand, grey, trace 1.68 shell fragments END OF BOREHOLE @ 1.80 m 2.0 Depths shown from current Bed Level 2.5 3.0 35 4.0 4.5 5.0 This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for GAP GAP gINT FN. F01a information only and do not necessarily indicate the presence or absence of soil or groundwater contamination.

CLIENT: PROJECT: LOCATION: JOB NO:

City Pacific Limited Townsville Ocean Terminal Project Site

06692015

COORDS: 481805 m E 7871550 m N 55 MGA94 SURFACE RL: 0.19 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 1.80 m SHEET: 1 OF 1 DRILL RIG: James Kirby - Vibracore DRILLER: James Cook University LOGGED: TJC DATE: 7/11/06 CHECKED: WSB DATE: 30/6/07

Drilling Sampling Field Material Description PENETRATION RESISTANCE CONSISTENCY DENSITY RECOVERED Symbol STRUCTURE AND GRAPHIC LOG MOISTURE SAMPLE OR METHOD SOIL / ROCK MATERIAL DESCRIPTION ADDITIONAL DEPTH (metres) WATER FIELD TEST OBSERVATIONS JSC DEPTH RL 0.0 0.19 DS 0.00-0.25m SILTY CLAY leve Very soft, dark grey ŝ Ground level below water 0.30 CLAYEY GRAVELLY SAND DS 0.25-0.30m <u>d</u> DS 0.30-0.40m -8:40 Loose, grey, medium to coarse grained sand with fine CNS_PASS_REV0 (2),GLB_FULL PAGE_J:2GE006/06682015 CITY PACIFIC - TOTAA DUCK POND - PROBING/ARCHIVED FILES/GINT/06822015 DUCKPOND PROBING BORES B1 TO 50,GPJ_GAP5_1,GDT_11/07/2007_11:00:20 AM to medium gravel, some shell fragments DS 0.40-0.50m -8.21 CLAYEY SAND 0.5 DS 0.50-0.75m -0.31 Loose to medium dense, grey, fine grained sand, some shell fragments CLAY т Hard, grey, some fine grained sand and shell fragments DS 0.75-1.10m - Grey green, some fine gravel VC L HV 0.95 m 10 1.10 SILTY CLAY -0.91 DS 1.10-1.50m Very soft, grey brown some green, trace shell fragments ŝ 1.5 DS 1.50-1.80m HV 1.65 m VP=1kPa 1.80 -1.6 END OF BOREHOLE @ 1.80 m Depths shown from current Bed Level 2.0 2.5 3.0 35 4.0 4.5 5.0 This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for GAP GAP gINT FN. F01a information only and do not necessarily indicate the presence or absence of soil or groundwater contamination. RL2

CLIENT: PROJECT: LOCATION: JOB NO:

City Pacific Limited Townsville Ocean Terminal Project Site 06692015 COORDS: 481928 m E 7871541 m N 55 MGA94 SURFACE RL: 0.25 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 1.87 m

ſ	Drilling Sampling							Field Material Description								
	METHOD PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS				
1.22 ANI		Ground level below water level	0.0	0.25	DS 0.00-0.25m DS 0.25-0.50m		×	- - - - -	SILTY CLAY Very soft, dark grey, trace fine to medium grained sand and shell fragments		NS					
1.10U/11/0/11/00/11	DVC F	Ground		-0.25 - - - 1.00	DS 0.50-0.75m DS 0.75-1.00m HV 0.80 m VP=53kPa, VR=7kPa				CLAY Hard, grey green, some fine gravel and shell fragments		т					
3 B1 10 90.9FJ 94F3				-0.75	DS 1.00-1.25m DS 1.25-1.50m	-			SILTY CLAY Stiff, grey brown some green, trace fine to medium grained sand and shell fragments		St					
רטוט אאטפוואט שטאב			1.5— - - -	<u>1.80</u> <u>1.87</u> -1.62	DS 1.50-1.75m HV 1.70 m VR=1kPa DS 1.75-1.80m DS 1.80-1.87m		^ × × ×	- - - - -	SAND Loose fine grained trace medium to coarse grained		- L					
יטטט כו טצפסטטי ואופויפב			2.0	-					sand, grey, with some shell fragments END OF BOREHOLE @ 1.87 m Depths shown from current Bed Level							
אטאואיידע רויני			2.5 - - -	-												
			3.0	-									_			
DAZUTO ULL FAULTIO -			3.5	-												
ישיישישישים אייר באפב			4.0										_			
ASS_REVU (2).GLD FUL			4.5										_			
GAL CING L		⊥_	- <u>5</u> .0] Tł geote	chnical purposes or	nly, wit	thout	atter	in conjunction with accompanying notes and abbreviation: mpt to assess possible contamination. Any references to essarily indicate the presence or absence of soil or ground	pote	ntial c	contamination are for				

CLIENT. PROJECT: LOCATION: JOB NO:

City Pacific Limited Townsville Ocean Terminal Project Site 06692015

COORDS: 482005 m E 7871543 m N 55 MGA94 SURFACE RL: 0.35 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 2.23 m

SHEET: 1 OF 1 DRILL RIG: James Kirby - Vibracore DRILLER: James Cook University DATE: 7/11/06 LOGGED: TJC DATE: 30/6/07 CHECKED: WSB

Sampling Drilling Field Material Description PENETRATION RESISTANCE CONSISTENCY DENSITY RECOVERED Symbol STRUCTURE AND GRAPHIC LOG SAMPLE OR MOISTURE METHOD SOIL / ROCK MATERIAL DESCRIPTION ADDITIONAL DEPTH (metres) WATER FIELD TEST OBSERVATIONS JSC DEPTH RL 0.0 SILTY CLAY S level 8:35 ~ Very soft, dark grey, trace shell fragments DS 0 10-0 30m 0.25 L-MD Ground level below water SILTY CLAYEY SAND Loose to medium dense, dark grey, fine grained sand, 0.30 trace shell fragments DS 0 30-0 50m 0.05 CNS_PASS_REV0 (2),GLB_FULL PAGE_J:2GE006/06682015 CITY PACIFIC - TOTAA DUCK POND - PROBING/ARCHIVED FILES/GINT/06822015 DUCKPOND PROBING BORES B1 TO 50,GPJ_GAP5_1,GDT_11/07/2007_11:00.25 AM CLAY Very stiff to hard, grey some green, trace fine to coarse grained sand and shell fragments 0.5 DS 0.50-0.75m VSt-H HV 0.70 m 0.80 VP=46kPa, - Trace fine to medium gravel -8.45 8.90 VR=5kPa SILTY CLAY -0.55 DS 0.75-0.90m 10 Very soft, dark grey, trace shell fragments DS 0.90-1.25m 2 VC L DS 1.25-1.50m S 1.5 DS 1.50-1.75m HV 1.60 m VP=1kPa 1.75 -1.40 DS 1.75-1.90m SAND _ Loose fine to coarse grained sand, grey brown, some 1.90 -1.55 shell fragments DS 1.90-2.23m 20 SILTY CLAY ŝ Very soft, grey some brown, trace coarse grained sand HV 2.10 m 2.23 VP=1kPa END OF BOREHOLE @ 2.23 m Depths shown from current Bed Level 2.5 3.0 35 4.0 4.5 5.0 This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for GAP GAP gINT FN. F01a information only and do not necessarily indicate the presence or absence of soil or groundwater contamination.

RL2

CLIENT: PROJECT: LOCATION: JOB NO:

City Pacific Limited Townsville Ocean Terminal Project Site 06692015 COORDS: 481501 m E 7871647 m N 55 MGA94 SURFACE RL: -0.13 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 1.32 m

1			Drill	ing		Sampling				Field Material Descr			
	METHOD	RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
	NVC METHOD		Ground level below water level	Had (sepanding of the second s	RL -0.13 -0.38 -0.38 -0.63 -0.63 -1.00 -1.13	SAMPLE OR FIELD TEST	RECOVERED		USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION SILTY CLAY Very soft, dark grey, trace shell fragments CLAY Stiff, dark grey, trace coarse grained sand and shell fragments - Grey some green SILTY CLAY Very soft, brown some grey END OF BOREHOLE @ 1.32 m Depths shown from current Bed Level	MOISTURE	VS Standard Consistency	ADDITIONAL
AP_CNS_PASS_REVU (2).GLB FULL PAGE				- 4.5 - - - - -5.0			e mu	Ist be r	read	in conjunction with accompanying notes and abbreviations	s. It	has b	
ر د					geote	chnical purposes or information only	nly, w and	vithout do not	attei nec	mpt to assess possible contamination. Any references to essarily indicate the presence or absence of soil or ground	pote dwat	ntial c er cor	contamination are for ntamination. GAP gINT FN. F01a RI 2

CLIENT: PROJECT: LOCATION: JOB NO:

City Pacific Limited Townsville Ocean Terminal Project Site 06692015

COORDS: 481629 m E 7871656 m N 55 MGA94 SURFACE RL: 0.46 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 1.63 m

			lling		Sampling				Field Material Desc	iptio		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
		Ground level below water level	0.0-	0.46	DS 0.00-0.30m		• • •		SILTY SANDY CLAY Very soft, dark grey, fine grained sand, trace shell fragments and organics		NS	
21 AM		/el below	-	0.16	DS 0.30-0.50m	-			CLAY Firm, dark grey, trace fine gravel and shell fragments		ш	
11:00		round lev	0.5-	-0.04	DS 0.50-0.75m	-			- Stiff, grey green			
VVC	L	0	-		DS 0.75-1.00m	-					St	
			- 1.0	-	HV 0.95 m VP=65kPa, VR=14kPa							
0 50.GPJ			-	-0.74	DS 1.00-1.20m DS 1.20-1.50m	- ×		-	SILTY CLAY Very soft, grey brown, some shell fragments			
OKES B1 IC			- 1.5—		HV 1.45 m VP=6kPa	×	X	•			٨S	
			-	- <u>1.63</u> -1.17	DS 1.50-1.55m		<u> </u>		END OF BOREHOLE @ 1.63 m Depths shown from current Bed Level			
CKPOND			- 2.0-	-								
00 610260			-									
S/GIN 1/06			-	-								
			2.5-	-								
INGARCE			-	-								
			- 3.0 <i>—</i>									
			-									
- 101/44			3.5-	-								
			-	-								
92015 CII			-									
			4.0-									
AGE JUZ			-									
LB FULLF			- 4.5—									
EV0 (2).GI			-	-								
PASS_K			-	-								
		L	-5.0-	 Tr	└	must	be r	ead	I	⊥_ s. lt	has b	L
				geote	cnnical purposes only information only a	r, with nd do	nout not	atte nec	mpt to assess possible contamination. Any references to essarily indicate the presence or absence of soil or groun	pote dwat	ntial o er coi	contamination are for ntamination. GAP gINT FN. F01 RL

CLIENT: PROJECT: LOCATION: JOB NO:

City Pacific Limited Townsville Ocean Terminal Project Site 06692015 COORDS: 481742 m E 7871665 m N 55 MGA94 SURFACE RL: 0.54 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 1.75 m SHEET: 1 OF 1 DRILL RIG: James Kirby - Vibracore DRILLER: James Cook University LOGGED: TJC DATE: 7/11/06 CHECKED: WSB DATE: 30/6/07

Drilling Sampling Field Material Description PENETRATION RESISTANCE CONSISTENCY DENSITY RECOVERED Symbol STRUCTURE AND GRAPHIC LOG MOISTURE SAMPLE OR METHOD SOIL / ROCK MATERIAL DESCRIPTION ADDITIONAL DEPTH (metres) WATER FIELD TEST OBSERVATIONS JSC DEPTH RL 0.0 0.54 DS 0.00-0.25m SILTY CLAY leve Very soft, dark grey, trace fine grained sand and shell ŝ fragments Ground level below water 0.25 DS 0 25-0 50m CLAY Firm to stiff, grey green, trace coarse grained sand, fine gravel and shell fragments CNS_PASS_REV0 (2),GLB_FULL PAGE_J:2GE006/06682015 CITY PACIFIC - TOTAA DUCK POND - PROBING/ARCHIVED FILES/GINT06882015 DUCKPOND PROBING BORES B1 TO 50,GPJ_GAP5_1,GDT_11/07/2007_11:00:33 AM 0.5 DS 0.50-0.75m ų. L HV 0.70 m VP=58kPa. Ŵ VR=16kPa 0.90 L -0.36 DS 0.75-0.90m SILTY CLAY 10 Very soft, grey brown, trace shell fragments DS 0.90-1.25m 1.30 -0.76 DS 1.25-1.50m S - Dark grey, trace fine grained sand 1.5 DS 1.50-1.70m × HV 1.60 m VP=2kPa 1.75 DS 1.70-1.75m -1 21 END OF BOREHOLE @ 1.75 m Depths shown from current Bed Level 2.0 2.5 3.0 35 4.0 4.5 5.0 This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for GAP GAP gINT FN. F01a information only and do not necessarily indicate the presence or absence of soil or groundwater contamination. RL2

CLIENT: PROJECT: LOCATION: JOB NO:

City Pacific Limited Townsville Ocean Terminal Project Site 06692015 COORDS: 481862 m E 7871652 m N 55 MGA94 SURFACE RL: 0.02 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 1.95 m

	Drilling Sampling						Field Material Description								
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC	LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS			
			0.0	0.02	DS 0.00-0.25m	× ×	× ×		SILTY CLAY Very soft, dark grey, some fine grained sand and shell fragments		NS				
		Ground level below water level	- - 0.5	-0.23	DS 0.25-0.50m				CLAY Hard, grey some green and brown, some fine to coarse grained sand and shell fragments, trace fine gravel				-		
		Ground	-		DS 0.50-0.75m DS 0.75-1.00m						т				
VVC	L		- 1.0—	1.00 -0.98	HV 0.80 m VP=79kPa, VR=14kPa DS 1.00-1.25m				SILTY CLAY	_			.		
			-		DS 1.25-1.50m		_×		Very soft, grey some brown, some fine grained sand and shell fragments						
			- 1.5—	<u>1.50</u> -1.48	DS 1.50-1.75m		_		- Dark grey		NS		.		
			-	1.95	DS 1.75-1.95m HV 1.80 m VP=3kPa	 	× 								
			2.0-	-1.93	VF-SKFa	X			END OF BOREHOLE @ 1.95 m Depths shown from current Bed Level				-		
			-												
			2.5										-		
			- - 3.0-										.		
			-												
			- 3.5—										.		
			-												
			- 4.0—										.		
			- -												
			4.5										-		
1			- - -5:0												
			0.0	Th geote	chnical purposes onl	y, with	out	atte	in conjunction with accompanying notes and abbreviations npt to assess possible contamination. Any references to essarily indicate the presence or absence of soil or ground	pote	ntial c	contamination are for	1a L2		

CLIENT: City Pacific PROJECT: Townsville LOCATION: Project Site JOB NO: 06692015

City Pacific Limited Townsville Ocean Terminal Project Site COORDS: 481994 m E 7871653 m N 55 MGA94 SURFACE RL: 0.11 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 2.16 m

	Drilling		Sampling				Field Material Description						
METHOD	PENETRATION	RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
41 AM			Ground level below water level	0.0	0.11	DS 0.00-0.25m DS 0.25-0.50m		* × _^ × ^ × ^		SILTY CLAY Very soft, dark grey, some organics, trace fine grained sand and shell fragments		VS	
11/07/2007 11:00:4			Ground lev	0.5— - -	0.75 -0.64	DS 0.50-0.75m DS 0.75-1.00m				CLAY			
VVC		L		- 1.0	1.20	DS 1.00-1.25m				Hard, grey to dark grey, trace coarse grained sand and organics			
NG BUKES B1 10 SUGF				- - 1.5—	-1.09 1.70	DS 1.25-1.50m HV 1.35 m VP=85kPa, VR=21kPa DS 1.50-1.75m				- Grey green some brown, some fine gravel		T	
				- - 2.0	-1.59 <u>1.90</u> -1.79 2.16	DS 1.75-2.00m HV 1.90 m VP=5kPa DS 2.00-2.16m			*	SILTY CLAY Very soft, light brown - Grey to dark grey, trace shell fragments	-	NS	
				- - 2.5	-2.05					END OF BOREHOLE @ 2.16 m Depths shown from current Bed Level			
				- 3.0									
				- 3.5— -									
1. KOEOUOIOUOSKU				- - 4.0									
ן (ב).טום דטור דאטב				- - 4.5—									
			[- - -5:0	_					in conjunction with accompanying notes and abbreviation			

Golder

CLIENT: PROJECT: LOCATION: JOB NO:

City Pacific Limited Townsville Ocean Terminal Project Site 06692015

COORDS: 482076 m E 7871643 m N 55 MGA94 SURFACE RL: 0.25 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 2.34 m

SHEET: 1 OF 1 DRILL RIG: James Kirby - Vibracore DRILLER: James Cook University DATE: 7/11/06 LOGGED: TJC CHECKED: WSB DATE: 30/6/07

Drilling Sampling Field Material Description PENETRATION RESISTANCE CONSISTENCY DENSITY RECOVERED Symbol STRUCTURE AND GRAPHIC LOG MOISTURE SAMPLE OR METHOD SOIL / ROCK MATERIAL DESCRIPTION ADDITIONAL DEPTH (metres) WATER FIELD TEST OBSERVATIONS JSC DEPTH RL 0.0 0.25 DS 0.00-0.25m SILTY SANDY CLAY leve Very soft, dark grey, some fine grained sand and shell water fragments ŝ DS 0 25-0 50m Ground level below CNS_PASS_REV0 (2),GLB_FULL PAGE_J:2GE006/06682015 CITY PACIFIC - TOTAA DUCK POND - PROBING/ARCHIVED FILES/GINT06882015 DUCKPOND PROBING BORES B1 TO 50,GPJ_GAP5_1,GDT_11/07/2007_11:00:44 AM 0.5 DS 0.50-0.75m -0.25 CLAY Stiff, grey green, some coarse grained sand, fine gravel and shell fragments ы DS 0.75-1.00m HV 0.85 m VP=58kPa, 1.00 10 VR=6kPa -0 75 SILTY CLAY DS 1.00-1.25m Very soft, light brown some grey, some shell fragments, VC trace organics L DS 1.25-1.50m 1.50 1.5 DS 1.50-1.75m - Grey S 1.75 -1.50 DS 1.75-2.00m - Some fine to coarse grained sand HV 1.90 m 200 2.0 VP=2kPa -1.75 - Light brown DS 2.00-2.25m DS 2.25-2.30m DS 2.30-2.34m 2.34 END OF BOREHOLE @ 2.34 m Depths shown from current Bed Level 2.5 3.0 35 4.0 4.5 5.0 This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for GAP GAP gINT FN. F01a information only and do not necessarily indicate the presence or absence of soil or groundwater contamination.

RL2

CLIENT: 0 PROJECT: 7 LOCATION: F JOB NO: 0

City Pacific Limited Townsville Ocean Terminal Project Site 06692015 COORDS: 481558 m E 7871758 m N 55 MGA94 SURFACE RL: -0.2 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 1.60 m

ľ		Drilling Sampling						Field Material Description							
	METHOD	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS			
		Ground level below water level	0.0	-0.20 0.40	DS 0.00-0.25m DS 0.25-0.40m		*	*	SILTY CLAY Very soft, dark grey, trace fine grained sand, shell and organics		NS				
VNY 14:00:11 /002		Ground level be	0.5-	-0.60 -0.75	DS 0.40-0.75m				CLAY Stiff, dark grey, some fine to coarse grained sand and shell fragments		St		-		
1.6UI 11/01/	S r		- - 1.0—	-0.95 1.00 -1.20	DS 0.75-1.00m HV 0.90 m VP=60kPa, VR=9kPA		 	- - - - - -	- Grey some green and brown	-			-		
51 IU 20.6PJ GA			-	<u>1.25</u> -1.45	DS 1.00-1.25m		^ ^ 	*	Very soft, brown	-	NS				
			1.5-	1.60 -1.80	HV 1.45 m VP=2kPa DS 1.50-1.55m DS 1.55-1.60m		×,	-	END OF BOREHOLE @ 1.60 m Depths shown from current Bed Level				-		
			2.0-	-									-		
				-											
מואפיאונירחו אברי י			-	-											
			3.0-	-									_		
			3.5-										-		
			-	-											
אימיטשסאיי שסא			4.0	-											
<u>ע (ב) פרם דטרר ד</u>			4.5	-									-		
CNS_PASS_REV															
- CAP				Tł geote	chnical purposes c	only, v	vithout	atte	in conjunction with accompanying notes and abbreviations mpt to assess possible contamination. Any references to essarily indicate the presence or absence of soil or ground	pote	ntial o	contamination are for ntamination GAP gINT FN. F0)1a RL2		

CLIENT: PROJECT: LOCATION: JOB NO: City Pacific Limited Townsville Ocean Terminal Project Site 06692015 COORDS: 481690 m E 7871767 m N 55 MGA94 SURFACE RL: 0.29 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 1.73 m

						Sampling	Field Material Description								
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS			
2007 11:00:49 AM			Ground level below water level	0.0	0.29 0.25 0.04 -0.50 -0.21	DS 0.00-0.25m DS 0.25-0.50m DS 0.50-0.75m			SILTY CLAY Very soft, dark grey, some fine grained sand, trace coarse grained sand and shell fragments CLAY Firm, dark grey, trace shell fragments and organics - Firm to stiff, grey green, trace coarse grained sand	_	F-St F VS		-		
5 BURES BT TU 50.6PJ GAP5_1.GUT 11/0//2	VVC	L			<u>1.00</u> -0.71 <u>1.25</u> -0.96	HV 0.70 m VP=67kPa, VR=16kPa DS 0.75-1.00m DS 1.00-1.25m DS 1.25-1.50m DS 1.50-1.63m HV 1.60 m		- - - - - - - - - - - - - - - - - - -	SILTY CLAY Very soft, grey brown, trace shell fragments - Dark grey, some fine grained sand	_	VS F		- - - -		
				2.0 		VP=5kPa \DS 1.63-1.73m			END OF BOREHOLE @ 1.73 m Depths shown from current Bed Level						
27					geote	chnical purposes only	/, withou	t atte	in conjunction with accompanying notes and abbreviation mpt to assess possible contamination. Any references to essarily indicate the presence or absence of soil or groun	pote	ntial c	contamination are for damination GAP gINT FN. F0	1a L2		

CLIENT:City Pacific LimitedPROJECT:Townsville Ocean TerminalLOCATION:Project SiteJOB NO:06692015				al		8 	Coords: 481806 m e 7871757 m n 55 Mga94 Surface RL: 0.41 m Datum: Ahd Nclination: -90° Hole Dia: 62 mm Hole Depth: 1.83 m	SHEET: 1 OF 1 DRILL RIG: James Kirby - Vibrac DRILLER: James Cook Universit LOGGED: TJC DATE: 7/ CHECKED: WSB DATE: 30					
		Dril	ling		Sampling				Field Material Descr	iptio	n		
MEIHOU	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	LOG LISC Symbol	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	ADDI	URE AND TIONAL VATIONS
		Ground level below water level	0.0	0.41	DS 0.00-0.25m DS 0.25-0.50m	× ×			SILTY CLAY Very soft, dark grey, lenses of medium to coarse grained sand between 0.1m and 0.25m and lenses of fine grained sand and shell fragments between 0.25m and 0.5m		٨S		
		Ground lev	0.5	0.50 -0.09	DS 0.50-0.75m DS 0.75-1.00m HV 0.85 m				CLAY Firm to stiff, grey green, trace fine gravel	-	F-St		
			1.0	1.00 -0.59 1.25 -0.84	VP=51kPa, VR=14kPa DS 1.00-1.25m DS 1.25-1.50m				SILTY CLAY Soft, grey brown some green, trace fine grained sand	-	s		
			- 1.5— -	-	DS 1.50-1.75m	× 	×				NS		
			2.0-	- <u>1.83</u> -1.42	HV 1.70 m VP=5kPa \DS 1.75-1.83m	×			END OF BOREHOLE @ 1.83 m Depths shown from current Bed Level				
			- - 2.5	-									
			-	-									
			3.0 — - -	-									
			- 3.5— -	-									
			- - 4.0	-									
			- - 4.5	-									
			-	-									

core y 11/06)/6/07

REPORT OF BOREHOLE: BH34

Golder
Associates

CLIENT: C PROJECT: To LOCATION: Pr JOB NO: 06

City Pacific Limited Townsville Ocean Terminal Project Site 06692015 COORDS: 481926 m E 7871755 m N 55 MGA94 SURFACE RL: -0.03 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 1.96 m

Drilling Sampling					Sampling		Field Material Description							
	METHOD	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS			
	L VC	Ground level below water level	0.0	0.50 -0.75 -0.78	DS 0.00-0.25m DS 0.25-0.50m DS 0.50-0.75m DS 0.75-1.00m DS 1.00-1.25m HV 1.10 m VP=53kPa,		ISN IN INTERNATIONAL INTERNATION	SILTY CLAY Very soft, grey brown, trace shell fragments CLAYEY SAND Loose to medium dense, dark grey, fine grained sand, trace coarse grained sand CLAY Very stiff, grey to dark grey, some organics	<u>OW</u>	VSt L-MD VS CO				
			- - - - - - - - - - - - - - - - - - -	1.50 -1.53 1.96 1.99	VR=3xPa, VR=3kPa DS 1.25-1.50m DS 1.50-1.75m DS 1.75-1.96m HV 1.80 m VP=1kPa			SILTY CLAY Very soft, dark grey, trace shell fragments END OF BOREHOLE @ 1.96 m	-	N		-		
אר איז איזאטטען אווסייפיזין עבארטערטאאטטאנאטען א			- - - 2.5 - - - - - - -					Depths shown from current Bed Level						
י - האיטר געומע איז			3.0	-								_		
יאייייייייטערבאיני איזער דערר דאטר איזערטייייייייי			4.0	· · ·								_		
GAP_UNG_FAGG_INE			- -5:0	 	chnical purposes onl	y, without	atte	in conjunction with accompanying notes and abbreviations more to assess possible contamination. Any references to	pote	ntial c	contamination are for			
				-	information only a	nd do not	nec	essarily indicate the presence or absence of soil or ground	dwate	er cor	ntamination. GAP gINT FN. F0	1a		

CLIENT: PROJECT: LOCATION: JOB NO:

City Pacific Limited Townsville Ocean Terminal Project Site 06692015 COORDS: 482032 m E 7871766 m N 55 MGA94 SURFACE RL: 0.04 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 2.20 m SHEET: 1 OF 1 DRILL RIG: James Kirby - Vibracore DRILLER: James Cook University LOGGED: TJC DATE: 7/11/06 CHECKED: WSB DATE: 30/6/07

Drilling Sampling Field Material Description PENETRATION RESISTANCE CONSISTENCY DENSITY RECOVERED Symbol STRUCTURE AND GRAPHIC LOG MOISTURE SAMPLE OR METHOD SOIL / ROCK MATERIAL DESCRIPTION ADDITIONAL DEPTH (metres) WATER FIELD TEST OBSERVATIONS JSC DEPTH RL 0.0 0.04 DS 0.00-0.25m SILTY CLAY leve Very soft, dark grey, trace shell fragments ŝ Ground level below water 0.25 SILTY CLAYEY SAND DS 0 25-0 50m L-MD Loose to medium dense, dark grey, fine grained sand, CNS_PASS_REV0 (2),GLB_FULL PAGE_J:2GE006/06682015 CITY PACIFIC - TOTAA DUCK POND - PROBING/ARCHIVED FILES/GINT/06882015 DUCKPOND PROBING BORES B1 TO 50,GPJ_GAP5_1,GDT_11/07/2007_11:00:58 AM some shell fragments 0.5 DS 0.50-0.75m CLAY Very stiff, dark grey some green, trace organics -0.46 0.75 √St -0.71 DS 0.75-1.00m - Grey green, some coarse grained sand HV 0.80 m VP=44kPa, 1.00 VR=2kPa 10 -0.96 SILTY CLAY DS 1.00-1.25m VC Soft to firm, dark grey, some medium to coarse grained sand and shell fragments L ц-s DS 1.25-1.50m 15 DS 1.50-1.60m SAND -1.46 1.**60** _ Loose, grey brown orange, fine to coarse grained sand, -1.56 DS 1.60-2.00m some shell fragments SILTY CLAY ц-s Soft to firm, dark grey, some medium to coarse grained sand and shell fragments HV 1.90 m 2.00 2.0 VP=1kPa -1.96 - Very soft to soft VS-S DS 2.00-2.15m 2.20 DS 2.15-2.20m END OF BOREHOLE @ 2.20 m Depths shown from current Bed Level 2.5 3.0 35 4.0 4.5 5.0 This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for GAP GAP gINT FN. F01a information only and do not necessarily indicate the presence or absence of soil or groundwater contamination.

CLIENT: PROJECT: LOCATION: JOB NO: City Pacific Limited Townsville Ocean Terminal Project Site 06692015 COORDS: 482154 m E 7871754 m N 55 MGA94 SURFACE RL: 0.22 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 2.55 m SHEET: 1 OF 1 DRILL RIG: James Kirby - Vibracore DRILLER: James Cook University LOGGED: TJC DATE: 7/11/06 CHECKED: WSB DATE: 30/6/07

Sampling Drilling Field Material Description PENETRATION RESISTANCE CONSISTENCY DENSITY RECOVERED Symbol STRUCTURE AND GRAPHIC LOG MOISTURE SAMPLE OR METHOD SOIL / ROCK MATERIAL DESCRIPTION ADDITIONAL DEPTH (metres) WATER FIELD TEST OBSERVATIONS JSC DEPTH RL 0.0 DS 0.00-0.25m SILTY CLAY leve Very soft, dark grey, trace shell fragments ŝ Ground level below water 0.25 DS 0 25-0 50m SILTY CLAYEY SAND Loose to medium dense, dark grey, fine grained sand, CNS_PASS_REV0 (2),GLB_FULL PAGE_J:2GE006/06682015 CITY PACIFIC- TOTAA DUCK POND - PROBING/ARCHIVED FILES/GINT/06822015 DUCKPOND PROBING BORES B1 TO 50,GPJ_GAP5_1,GDT_11/07/2007_11:01:01 AM some shell fragments L-MD 0.5 DS 0.50-0.75m 0.75 HV 0.70 m VP=37kPa, -0.53 CLAY Very stiff, grey green VR=5kPa VSt DS 0.75-1.00m 1.00 10 -0 78 DS 1.00-1.25m SILTY CLAY Very soft, dark grey, some medium grained sand ŝ NC 1 DS 1.25-1.40m 1.40 -1.18 DS 1.40-1.75m SAND 15 Loose, grey brown orange, fine to coarse grained sand, some shell fragments _ HV 1.60 m VP=2kPa 1.75 -1.53 SILTY SANDY CLAY DS 1.75-1.90m -Very soft, dark grey, fine to medium grained sand, some 1.90 -1.68 shell fragments DS 1.90-2.25m 2.0 SILTY CLAY Very soft, grey to dark grey, trace fine to medium grained sand and shell fragments ŝ DS 2.25-2.50m HV 2 40 m VP=2kPa 25 2.55 2.33 DS 2.50-2.55m END OF BOREHOLE @ 2.55 m Depths shown from current Bed Level 3.0 35 4.0 4.5 5.0 This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for GAP GAP gINT FN. F01a information only and do not necessarily indicate the presence or absence of soil or groundwater contamination. RL2

Golder
Associates

CLIENT: PROJECT: LOCATION: JOB NO:

City Pacific Limited Townsville Ocean Terminal Project Site 06692015 COORDS: 481613 m E 7871851 m N 55 MGA94 SURFACE RL: -0.18 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 1.66 m

Drilling Sampling Field Material Desc							-						
0	METHOD	RESISTANCE WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC	LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
12001 1.01.04 MM		Ground level below water level	0.0	-0.18 0.50 -0.68 0.60 -0.78 0.70 -0.88	DS 0.00-0.25m DS 0.25-0.50m DS 0.50-0.60m DS 0.60-0.95m				SILTY CLAY Very soft, dark grey, some fine grained sand and shell fragments SILTY CLAYEY SAND Loose to medium dense fine grained sand, dark grey, some shell fragments		SV dm-1		-
	NVC	-		-0.95 - 0.95 1.13	HV 0.80 m VP=28kPa, VR=1kPa DS 0.95-1.25m DS 1.25-1.50m				CLAY Firm, dark grey some green, trace shell and organics j - Grey green, some fine gravel SILTY CLAY Very soft, grey brown, some fine grained sand and shell fragments between 1.2m -1.3m	-	VS F		-
				1.66 -1.84	HV 1.55 m VP=1kPa DS 1.60-1.66m	must t	 		END OF BOREHOLE @ 1.66 m Depths shown from current Bed Level		has b	een prepared for	
,				geote	information only a	nd do	not n	iter	npt to assess possible contamination. Any references to essarily indicate the presence or absence of soil or ground	pote dwate	er cor	ntamination are for GAP gINT FN. F0)1a {L2

CLIENT: C PROJECT: T LOCATION: F JOB NO: C

City Pacific Limited Townsville Ocean Terminal Project Site 06692015 COORDS: 481747 m E 7871883 m N 55 MGA94 SURFACE RL: 0.12 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 1.62 m

Drilling Sampling							Field Material Description							
	METHOD	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS			
		_	0.0	0.12	DS 0.00-0.25m DS 0.25-0.50m	× - × -	·*	SILTY CLAY Very soft, dark grey, trace fine grained sand and shell fragments						
		Ground level below water level	0.5-		DS 0.50-0.75m	× 	×			NS		-		
	N K		-	0.80 -0.68 1.00	DS 0.75-1.00m HV 0.95 m	× × -	.^ _X	- Increasing sand content	-					
			1.0— - -	-0.88 1.15 -1.03 1.30 -1.18	VP=51kPa, VR=7kPa DS 1.00-1.15m DS 1.15-1.50m	× -	- - - - -	CLAY Firm to stiff, grey brown some red, trace coarse grained sand and fine gravel SILTY CLAY Very soft, grey brown		S F-St		-		
			- 1.5— -	<u>1.62</u> -1.50	HV 1.45 m VP=1kPa DS 1.50-1.55m DS 1.55-1.62m	 	× × ×	- Dark grey some shell fragments		N		_		
			- 2.0-					Depths shown from current Bed Level				-		
			-											
			2.5											
			- 3.0— -									-		
												-		
			-											
			4.0									-		
(z).0LU I ULL			- 4.5—									_		
LAG LAGO REVU			- - -5.0											
21 25	-	-	0.0 -	Tr geote	chnical purposes only	withou	it atte	in conjunction with accompanying notes and abbreviations mpt to assess possible contamination. Any references to essarily indicate the presence or absence of soil or ground	pote	ntial d	contamination are for)1a 8L2		

Golder

CLIENT: PROJECT: LOCATION: JOB NO:

City Pacific Limited Townsville Ocean Terminal Project Site 06692015

COORDS: 481865 m E 7871865 m N 55 MGA94 SURFACE RL: 0.32 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 2.11 m

		Dri	lling		Sampling			Field Material Descr	iptio	n		
	METHOD PENETRATION DESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	Sample or Field test	RECOVERED GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
		Ground level below water level	0.0	0.32 0.50 -0.18	DS 0.00-0.25m DS 0.25-0.50m DS 0.50-0.75m HV 0.70 m			SILTY SANDY CLAY Very soft to soft, dark grey, fine to medium grained sand, some shell fragments CLAY Firm to stiff, grey green, trace fine gravel and shell fragments	-	F-St VS		-
ES B1 10 50.GPJ GAP5_1.GD1 11/	L VC		- 1.0 - - - 1.5	<u>1.00</u> -0.68	VP=51kPa, VR=9kPa DS 0.75-1.00m DS 1.00-1.25m DS 1.25-1.50m			SILTY CLAY Very soft, dark grey, trace fine grained sand and shell fragments	-			-
טום אוושטאט ארטאטראטטט נטוט.				<u>1.75</u> -1.43 <u>2.11</u> -1.79	DS 1.50-1.75m HV 1.60 m VP=3kPa DS 1.75-2.00m DS 2.00-2.05m DS 2.05-2.11m			- Some light brown	-	SV		
GARCHIVED FILES/GIN1/00032			- - 2.5 - -					Depths shown from current Bed Level				
- 101/אא טטטא דטווע - דוגטפווי												
			3.5									-
KEVU (2).GLB FULL PAGE J.K			- - 4.5— -									.
GAP_CING_FAGG_			- -5:0	 Tr geote	chnical purposes onl	y, withou	it atte	in conjunction with accompanying notes and abbreviations mpt to assess possible contamination. Any references to essarily indicate the presence or absence of soil or ground	pote	ntial c	contamination are for tramination. GAP gINT FN. FC)1a

CLIENT: City Pacific PROJECT: Townsville LOCATION: Project Sit JOB NO: 06692015

City Pacific Limited Townsville Ocean Terminal Project Site COORDS: 481989 m E 7871856 m N 55 MGA94 SURFACE RL: 0.08 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 2.50 m SHEET: 1 OF 1 DRILL RIG: James Kirby - Vibracore DRILLER: James Cook University LOGGED: TJC DATE: 7/11/06 CHECKED: WSB DATE: 30/6/07

Drilling Sampling Field Material Description PENETRATION RESISTANCE CONSISTENCY DENSITY RECOVERED Symbol STRUCTURE AND GRAPHIC LOG MOISTURE SAMPLE OR METHOD SOIL / ROCK MATERIAL DESCRIPTION ADDITIONAL DEPTH (metres) WATER FIELD TEST OBSERVATIONS JSC DEPTH RL 0.0 0.08 DS 0.00-0.25m SILTY CLAY leve Very soft, dark grey Ground level below water 0.25 ŝ - Trace fine grained sand and shell fragments DS 0 25-0 50m CNS_PASS_REV0 (2),GLB_FULL PAGE_J:2GE006/06682015 CITY PACIFIC- TOTAA DUCK POND - PROBING/ARCHIVED FILES/GINT06882015 DUCKPOND PROBING BORES B1 TO 50,GPJ_GAP5_1,GDT_11/07/2007_11:01:14 AM 0.50 0.5 SILTY CLAYEY SAND Loose to medium dense fine grained sand, dark grey, DS 0.50-0.75m -0.42 L-MD some shell fragments 0.75 -0.67 DS 0.75-1.00m CLAY Firm to stiff, grey to dark grey some green, trace coarse grained sand 10 DS 1.00-1.25m F-St VC VC L DS 1.25-1.50m HV 1.45 m 1.5 VP=51kPa, VR=4kPa 1.70 DS 1.50-1.70m -1.62 SILTY SANDY CLAY DS 1.70-2.00m Soft, grey green some pale brown, fine to medium grained sand 2.00 2.0 DS 2.00-2.25m - Dark grey, fine grained sand only ഗ DS 2.25-2.50m HV 2.35 m VP=2kPa 2.50 2.5 END OF BOREHOLE @ 2.50 m -2 42 Depths shown from current Bed Level 3.0 35 4.0 4.5 5.0 This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for GAP GAP gINT FN. F01a information only and do not necessarily indicate the presence or absence of soil or groundwater contamination. RL2

CLIENT: PROJECT: LOCATION: JOB NO:

City Pacific Limited Townsville Ocean Terminal Project Site 06692015 COORDS: 482090 m E 7871855 m N 55 MGA94 SURFACE RL: -0.09 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 2.27 m SHEET: 1 OF 1 DRILL RIG: James Kirby - Vibracore DRILLER: James Cook University LOGGED: TJC DATE: 7/11/06 CHECKED: WSB DATE: 30/6/07

RL2

Sampling Drilling Field Material Description PENETRATION RESISTANCE CONSISTENCY DENSITY RECOVERED Symbol STRUCTURE AND GRAPHIC LOG MOISTURE SAMPLE OR METHOD SOIL / ROCK MATERIAL DESCRIPTION ADDITIONAL DEPTH (metres) WATER FIELD TEST OBSERVATIONS JSC DEPTH RL 0.0 -0.09 DS 0.00-0.25m SILTY SANDY CLAY leve Very soft, dark grey some brown, fine to coarse grained ŝ sand Ground level below water 0.25 SILTY CLAYEY SAND DS 0 25-0 50m Loose to medium dense fine grained sand, grey, trace CNS_PASS_REV0 (2),GLB_FULL PAGE_J:2GE006/06682015 CITY PACIFIC- TOTAA DUCK POND - PROBING/ARCHIVED FILES/GINT06882015 DUCKPOND PROBING BORES B1 TO 50,GPJ_GAP5_1,GDT_11/07/2007_11:01:17 AM shell fragments 0.5 DS 0.50-0.75m -MD DS 0.75-1.00m 1.00 10 -1.09 DS 1.00-1.25m HV 1.05 m CLAY Firm to stiff, grey green, some medium to coarse grained sand and fine to medium gravel VC F-St L VP=46kPa, VR=2kPa DS 1.25-1.50m 1.25 -1.34 SILTY CLAY Soft, grey to dark grey some green, some fine to coarse grained sand and shell fragments 1.5 S DS 1.50-1.75m 1.75 -1.84 DS 1.75-2.00m SAND Loose fine to coarse grained sand, grey brown, some _ shell fragments 2.00 2.0 -2.09 SILTY CLAY DS 2.00-2.22m Very soft, dark grey, some fine to medium grained sand ŝ HV 2.10 m and shell VP=2kPa DS 2.22-2.27m END OF BOREHOLE @ 2.27 m Depths shown from current Bed Level 2.5 3.0 35 4.0 4.5 5.0 This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for GAP GAP gINT FN. F01a information only and do not necessarily indicate the presence or absence of soil or groundwater contamination.

Golder

CLIENT: City Pacific PROJECT: Townsville LOCATION: Project Sit JOB NO: 06692015

City Pacific Limited Townsville Ocean Terminal Project Site COORDS: 482223 m E 7871855 m N 55 MGA94 SURFACE RL: -0.05 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 2.55 m SHEET: 1 OF 1 DRILL RIG: James Kirby - Vibracore DRILLER: James Cook University LOGGED: TJC DATE: 7/11/06 CHECKED: WSB DATE: 30/6/07

Drilling Sampling Field Material Description PENETRATION RESISTANCE CONSISTENCY DENSITY RECOVERED Symbol STRUCTURE AND GRAPHIC LOG MOISTURE SAMPLE OR METHOD SOIL / ROCK MATERIAL DESCRIPTION ADDITIONAL DEPTH (metres) WATER FIELD TEST OBSERVATIONS JSC DEPTH RL 0.0 -0.05 DS 0.00-0.25m SILTY CLAY level Very soft to soft, dark grey, some shell fragments, trace fine grained sand and organics Ground level below water DS 0.25-0.50m CNS_PASS_REV0 (2),GLB_FULL PAGE_J:2GE006/06682015 CITY PACIFIC - TOTAA DUCK POND - PROBING/ARCHIVED FILES/GINT/06822015 DUCKPOND PROBING BORES B1 TO 50,GPJ_GAP5_1,GDT_11/07/2007_11:01:20 AM VS-S 0.5 DS 0.50-0.75m DS 0.75-1.00m 1.00 10 CLAYEY SILTY SAND Loose to medium dense fine grained sand, green grey, -1 05 DS 1.00-1.25m L-MD some shell fragments 1.25 NC L -1.30 DS 1.25-1.50m SANDY CLAY Stiff, green grey, fine grained sand ũ 1.50 -1.55 1.5 DS 1.50-1.75m SAND Loose, light brown, fine to coarse grained sand _ 1.75 -1.80 DS 1.75-2.00m SILTY CLAY Very soft, dark grey, trace fine grained sand, shell fragments and organics 2.0 DS 2.00-2.25m ŝ DS 2.25-2.50m 2.5 2.55 DS 2.50-2.55m END OF BOREHOLE @ 2.55 m Depths shown from current Bed Level 3.0 35 4.0 4.5 5.0 This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for GAP GAP gINT FN. F01a information only and do not necessarily indicate the presence or absence of soil or groundwater contamination. RL2

CLIENT: City Pacific PROJECT: Townsville LOCATION: Project Site JOB NO: 06692015

City Pacific Limited Townsville Ocean Terminal Project Site COORDS: 481581 m E 7871992 m N 55 MGA94 SURFACE RL: -0.58 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 1.72 m

Ī		Dri	lling		Sampling				Field Material Descr	-			
	METHOD PENETRATION BESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
INK		Ground level below water level	0.0	-0.58	DS 0.00-0.25m DS 0.25-0.50m		* × × × × × × ×	<	SILTY CLAY Very soft to soft, grey to dark grey, some shell fragments		VS-S		
2007 11:01:23		Ground level	0.5	0.50 -1.08 0.75	DS 0.50-0.75m		×	4	Soft to firm, dark grey	_	S-F		-
0.1.6UI 1.1/U/	L XC		- - 1.0-	-1.33 1.00 -1.58	DS 0.75-1.00m DS 1.00-1.25m		 *		CLAY Firm, green grey SILTY CLAY	-	ш		_
0.00.6PJ GAP?			-	-1.00	DS 1.25-1.50m		^	<	Very soft, dark grey, trace shell fragments		0		
יו די			- 1.5— -		DS 1.50-1.65m		 	4 			VS		_
				-2.30	DS 1.65-1.72m				END OF BOREHOLE @ 1.72 m Depths shown from current Bed Level				_
			-										
ACHIVED FILES			2.5										_
			- - 3.0										-
			- - - 3.5-										_
			-										
			4.0	-									_
C).GLB FULL PAGE			- - 4.5										_
ASS REVU (4			-	-									
5-145		±	└ <u>−</u> 5.0 —	Tr geote	chnical purposes or	ılv. v	vithout	atte	in conjunction with accompanying notes and abbreviation npt to assess possible contamination. Any references to essarily indicate the presence or absence of soil or ground	pote	ntial d	contamination are for	la

Golder
Associates

CLIENT: C PROJECT: T LOCATION: F JOB NO: C

City Pacific Limited Townsville Ocean Terminal Project Site 06692015 COORDS: 481807 m E 7871968 m N 55 MGA94 SURFACE RL: -0.09 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 1.94 m SHEET: 1 OF 1 DRILL RIG: James Kirby - Vibracore DRILLER: James Cook University LOGGED: TJC DATE: 7/11/06 CHECKED: WSB DATE: 30/6/07

Drilling Sampling Field Material Description PENETRATION RESISTANCE CONSISTENCY DENSITY RECOVERED Symbol STRUCTURE AND GRAPHIC LOG MOISTURE SAMPLE OR METHOD SOIL / ROCK MATERIAL DESCRIPTION ADDITIONAL DEPTH (metres) WATER FIELD TEST OBSERVATIONS JSC DEPTH RL 0.0 -0.09 DS 0.00-0.30m SILTY CLAY leve Very soft, dark grey, some shell fragments ŝ Ground level below water 0.30 DS 0.30-0.50m SILTY CLAYEY SAND -0.39 CNS_PASS_REV0 (2),GLB_FULL PAGE_J:2GE006/06682015 CITY PACIFIC - TOTAA DUCK POND - PROBING/ARCHIVED FILES/GINT/06822015 DUCKPOND PROBING BORES B1 TO 50,GPJ_GAP5_1,GDT_11/07/2007_11:01:26 AM Loose fine grained sand, dark grey, trace coarse _ grained sand and shell fragments 0.50 0.5 DS 0.50-0.75m -0.59 CLAY Stiff, grey green, trace coarse grained sand, fine gravel and shell fragments DS 0.75-1.00m ŭ VC L 10 DS 1.00-1.25m HV 1 05 m VP=55kPa, VR=7kPa DS 1.25-1.50m 1.25 -1.34 SILTY CLAY Very soft, grey brown, trace shell fragments 1.50 -1.59 15 DS 1.50-1.75m - Dark grey, trace fine grained sand S DS 1.75-1.90m HV 1.80 m 1.94 VP=7kPa -2.03 END OF BOREHOLE @ 1.94 m HV 1.90-1.94m 2.0 Depths shown from current Bed Level 2.5 3.0 35 4.0 4.5 5.0 This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for GAP GAP gINT FN. F01a information only and do not necessarily indicate the presence or absence of soil or groundwater contamination. RL2

CLIENT: PROJECT: LOCATION: JOB NO:

City Pacific Limited Townsville Ocean Terminal Project Site 06692015

COORDS: 481932 m E 7871962 m N 55 MGA94 SURFACE RL: 0.07 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 2.05 m

	Drilling				Sampling			Field Material Description						
	METHOD PENETRATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS		
AW		Ground level below water level	0.0	0.07	DS 0.00-0.25m DS 0.25-0.50m		*	* * *	SILTY CLAY Very soft, dark grey, trace fine grained sand and shell fragments		NS			
1 TO 50.GPJ GAP5_1.GDT 11/07/2007 11:01:28		Ground level	0.5— - -	0.50 -0.43 0.75	DS 0.50-0.75m		× 		SILTY CLAYEY SAND Loose fine grained sand, dark grey, some coarse grained sand and shell fragments		_		-	
	ON L		- - 1.0—	-0.68	DS 0.75-1.00m DS 1.00-1.25m			- - - - - - -	CLAY Stiff to very stiff, grey some green, trace fine gravel and shell fragments		St-VSt		_	
			-	<u>1.25</u> -1.18	HV 1.10 m VP=102kPa, VR=14kPa DS 1.25-1.50m		 		SILTY CLAY Very soft, grey brown, trace shell fragments					
JBING BURES D			1.5— -	1.75	DS 1.50-1.75m		× × ×	×			NS		_	
			- - 2.0—	-1.68 2.05	DS 1.75-2.00m HV 1.90 m VP=6kPa \DS 2.00-2.05m		^	×					_	
GININDOAZUISI			-	1.90	002.00-2.00				END OF BOREHOLE @ 2.05 m Depths shown from current Bed Level					
KCHIVED FILES			2.5— - -	-									_	
איסאואסאין - רא			- - 3.0—										_	
			-											
			3.5— -	-									_	
IN CLUZROGNIGUO			- - 4.0—										_	
בטאני אואספ דר אמפי			-											
EVU (2).6LB FUI			4.5— -										_	
CN0 FA00 R			- - -5:0										_	
This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for												contamination are for	a	

CLIENT: City Pacific PROJECT: Townsville LOCATION: Project Sit JOB NO: 06692015

City Pacific Limited Townsville Ocean Terminal Project Site COORDS: 482048 m E 7871967 m N 55 MGA94 SURFACE RL: -0.32 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 2.14 m SHEET: 1 OF 1 DRILL RIG: James Kirby - Vibracore DRILLER: James Cook University LOGGED: TJC DATE: 7/11/06 CHECKED: WSB DATE: 30/6/07

Drilling Sampling Field Material Description PENETRATION RESISTANCE CONSISTENCY DENSITY RECOVERED Symbol STRUCTURE AND GRAPHIC LOG MOISTURE SAMPLE OR METHOD SOIL / ROCK MATERIAL DESCRIPTION ADDITIONAL DEPTH (metres) WATER FIELD TEST OBSERVATIONS JSC DEPTH RL 0.0 -0.32 DS 0.00-0.30m SILTY CLAY leve Very soft, dark grey, some shell fragments, trace ŝ organics Ground level below water 0.30 DS 0 30-0 45m SAND -0.62 _ CNS_PASS_REV0 (2),GLB_FULL PAGE_J:2GE006/06682015 CITY PACIFIC- TOTAA DUCK POND - PROBING/ARCHIVED FILES/GINT/0682015 DUCKPOND PROBING BORES B1 TO 50,GPJ_GAP5_1,GDT_11/07/2007_11:01:31 AM Loose fine to coarse grained sand, grey brown, some 0.45 shell fragments -0.77 DS 0.45-0.60m 0.5 ŝ SILTY CLAY 0.60 Very soft, dark grey, some shell fragments -0.92 DS 0.60-1.00m CLAYEY SILTY SAND Loose to medium dense fine grained sand, dark grey green, some shell fragments L-MD 10 DS 1.00-1.20m VC VC L -1.52 DS 1.20-1.50m SAND Loose fine to coarse grained sand, grey green brown, _ some shell fragments <u>1.50</u> -1.82 15 DS 1.50-1.75m SILTY CLAY Very soft to soft, dark grey, trace fine grained sand and shell fragments DS 1.75-2.00m VS-S 2.0 DS 2.00-2.05m DS 2.05-2.14m 2.14 -2 46 END OF BOREHOLE @ 2.14 m Depths shown from current Bed Level 2.5 3.0 35 4.0 4.5 5.0 This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for GAP GAP gINT FN. F01a information only and do not necessarily indicate the presence or absence of soil or groundwater contamination.

REPORT OF BOREHOLE: BH48

CLIENT: City Pacifie PROJECT: Townsville LOCATION: Project Sit JOB NO: 06692015

City Pacific Limited Townsville Ocean Terminal Project Site COORDS: 482279 m E 7871982 m N 55 MGA94 SURFACE RL: -0.13 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 2.68 m SHEET: 1 OF 1 DRILL RIG: James Kirby - Vibracore DRILLER: James Cook University LOGGED: TJC DATE: 7/11/06 CHECKED: WSB DATE: 30/6/07

Drilling Sampling Field Material Description PENETRATION RESISTANCE CONSISTENCY DENSITY RECOVERED JSC Symbol STRUCTURE AND GRAPHIC LOG MOISTURE SAMPLE OR METHOD SOIL / ROCK MATERIAL DESCRIPTION ADDITIONAL DEPTH (metres) WATER FIELD TEST OBSERVATIONS DEPTH RL 0.0 -0.13 DS 0.00-0.25m SILTY SANDY CLAY leve Very soft, dark grey, fine to coarse grained sand, some ŝ shell fragments Ground level below water 0.25 DS 0.25-0.50m CLAY Soft to firm, green some light brown, trace fine to medium grained sand and shell fragments 0.40 CNS_PASS_REV0 (2),GLB_FULL PAGE_J:2GE006/06682015 CITY PACIFIC- TOTAA DUCK POND - PROBING/ARCHIVED FILES/GINT06882015 DUCKPOND PROBING BORES B1 TO 50,GPJ_GAP5_1,GDT_11/07/2007_11:01:34 AM -0.53 ŝ 0.5 - Light brown some orange DS 0.50-0.70m 0.70 SILTY SANDY CLAY -0.83 DS 0.70-1.00m Very soft, dark grey, fine grained sand 10 DS 1.00-1.25m DS 1.25-1.50m VC VC L 1.5 DS 1.50-1.75m ŝ DS 1.75-2.00m 2.0 DS 2.00-2.25m DS 2.25-2.50m 2.5 DS 2.50-2.60m DS 2.60-2.68m 2.68 END OF BOREHOLE @ 2.68 m Depths shown from current Bed Level 3.0 35 4.0 4.5 5.0 This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for GAP GAP gINT FN. F01a information only and do not necessarily indicate the presence or absence of soil or groundwater contamination. RL2

	Ì		Gol sso	lder ociat	tes				REPORT C)F		REHOLE: BH49
PI L(LIEN Roje Dcat Db N	CT: ION	l:	•		al			COORDS: 482352 m E 7872068 m N 55 MGA94 SURFACE RL: 0.13 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 3.10 m		DRIL LOG	L RIG: James Kirby - Vibracore LER: James Cook University GED: TJC DATE: 7/11/06 CKED: WSB DATE: 30/6/07
		Dril	ling		Sampling				Field Material Descri			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
		level	0.0	0.13	DS 0.00-0.25m			1	CLAYEY SILT Very soft, dark grey			-
		Ground level below water level	-		DS 0.25-0.50m							-
2010		Ground le	0.5	0.75	DS 0.50-0.75m							-
			-	-0.62	DS 0.75-1.00m			< <	SILTY CLAY Very soft, dark grey, some fine grained sand, trace shell fragments and organics			-
			1.0— - -		DS 1.00-1.25m		^ ×^ 	۹ - 4			NS	-
			- - 1.5—	-	DS 1.25-1.50m		- ^ ×^				>	-
MC	L		-	-	DS 1.50-1.75m		×^ ×	- - -				-
			- - 2.0	2.00	DS 1.75-2.00m		×	4				-
			-	-1.87	DS 2.00-2.25m			4 - -	- Grey some green			-
			- - 2.5—	2.50	DS 2.25-2.50m		×^ ^ 					-
			-	-2.37	DS 2.50-2.75m				CLAYEY SAND Loose fine grained sand, grey some green, trace organics		_	-
			- - 3.0 <i>-</i> -	-2.62	DS 2.75-3.00m DS 3.00-3.10m		* × _^	•	SILTY CLAY Very soft, grey some green, some fine grained sand, trace organics		٨S	
				3.10 -2.97	DS 3.00-3.1011		×		END OF BOREHOLE @ 3.10 m Depths shown from current Bed Level			
			- 3.5—									-
			-									-
102000000			4.0-									-
			-									-
			- 4.5—									-
			-									
				_	L							
1			-	Th geote	chnical purposes on	ly, w	ithout	atte	in conjunction with accompanying notes and abbreviations mpt to assess possible contamination. Any references to personal provide the presence or absence of soil or ground	poter	ntial co	ontamination are for

REPORT OF BOREHOLE: BH50

CLIENT: PROJECT: LOCATION: JOB NO:

City Pacific Limited Townsville Ocean Terminal Project Site 06692015

COORDS: 482260 m E 7872176 m N 55 MGA94 SURFACE RL: -0.21 m DATUM: AHD INCLINATION: -90° HOLE DIA: 62 mm HOLE DEPTH: 2.70 m

SHEET: 1 OF 1 DRILL RIG: James Kirby - Vibracore DRILLER: James Cook University DATE: 7/11/06 LOGGED: TJC CHECKED: WSB DATE: 30/6/07

RL2

Drilling Sampling Field Material Description PENETRATION RESISTANCE CONSISTENCY DENSITY RECOVERED Symbol STRUCTURE AND GRAPHIC LOG MOISTURE SAMPLE OR METHOD SOIL / ROCK MATERIAL DESCRIPTION ADDITIONAL DEPTH (metres) WATER FIELD TEST OBSERVATIONS JSC DEPTH RL 0.0 -0 21 DS 0.00-0.25m SILTY SANDY CLAY level Very soft, dark grey some pale green, fine to coarse water grained sand, some shell and organics S DS 0 25-0 40m Ground level below 0.40 CNS_PASS_REV0 (2),GLB_FULL PAGE_J:2GE006/06682015 CITY PACIFIC - TOTAA DUCK POND - PROBING/ARCHIVED FILES/GINT/0682015 DUCKPOND PROBING BORES B1 TO 50,GPJ_GAP5_1,GDT_11/07/2007_11:01:42 AM SAND DS 0 40-0 50m -0.61 0.50 _ 0.5 Loose fine to coarse grained sand, grey, trace fine DS 0 50-1 00m -0.71 gravel and shell fragments SILTY SANDY CLAY Soft, grey some brown, fine to medium grained sand, trace shell fragments S 1.00 10 -1 21 DS 1.00-1.30m CLAYEY SAND Loose fine grained sand, grey green _ NC -1 51 DS 1.30-1.50m SILTY CLAY L Very soft, dark grey, some fine grained sand and shell fragments 1.5 S DS 1.50-1.75m 1.75 -1.96 DS 1.75-2.10m SAND Loose fine to coarse grained sand, grey brown some orange, some fine gravel and shell fragments _ 2.0 2.10 -2.31 SILTY CLAY DS 2.10-2.25m Very soft, dark grey some brown DS 2.25-2.50m ŝ 2.5 DS 2.50-2.65m 2.70 DS 2.65-2.70m END OF BOREHOLE @ 2.70 m Depths shown from current Bed Level 3.0 35 4.0 4.5 5.0 This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for GAP GAP gINT FN. F01a

information only and do not necessarily indicate the presence or absence of soil or groundwater contamination.

EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT REPORTS

DRILLING/EXCAVATION METHOD

	ING/EXCAVA	TION METHOD					
AS*	Auger Screw	ving	RD	Rotary blade c	or drag bit	HQ	Diamond Core - 63 mm
AD*	Auger Drillin	g	RT	Rotary Tricone	e bit	NMLC	Diamond Core - 52 mm
*V	V-Bit		RAB	Rotary Air Blas		NQ	Diamond Core - 47 mm
*T	TC-Bit, e.g. /	ADT	RC	Reverse Circu	lation	BH	Tractor Mounted Backhoe
HA	Hand Auger		PT	Push Tube		EX	Tracked Hydraulic Excavator
DTC	Diatube Cor	ing	СТ	Cable Tool Rig	9	EE	Existing Excavation
WB	Washbore o	r Bailer	JET	Jetting		HAND	Excavated by Hand Methods
PENET	RATION/EXC	AVATION RES	ISTAN	CE			
L	Low resista	nce. Rapid per	netration	possible with lit	tle effort from	the equipment	used.
М	Medium res	sistance. Exca	vation/p	ossible at an acc	ceptable rate v	vith moderate e	fort from the equipment used.
н		ance to penetra ffort from the ec			r penetration is	s possible at a s	slow rate and requires
R		Practical Refuse mplement or m		further progress	possible with	out the risk of d	amage or unacceptable wear to
				dependent on ma ence of the oper		luding the equi	pment power, weight, condition
WATE		J ,		· · · · · · · · ·			
		er level at date	shown		\triangleleft	Partial water los	55
	> Wat	er inflow				Complete wate	r loss
GROUI OBSEF	NDWATER NO			on of groundwa seepage or cav			was not possible due to drilling
	NDWATER NO UNTERED	preser	nt in less		ta. Inflow mag		owever, groundwater could be served had the borehole/test pit
SAMPL	LING AND TE	STING					
SPT		Standard Pene	tration 1	Test to AS1289.6	6.3.1-1993		
4,7,11 30/80m RW HW HB	าทา	Where practica Penetration occ	l refusa curred u curred u	l occurs, the blow nder the rod wei nder the hamme	ws and penetra ght only	ation for that in	lowing 150mm seating terval are reported
DS BDS		Disturbed samp Bulk disturbed					
G		Gas Sample	•				
W FP		Water Sample	lity toot	over soction not	he		
FP FV				over section note expressed as unc		r strenath (s. =	peak value, s _r = residual value)
PID		Photoionisation	Detect	or reading in ppr			
PM				er section noted			
PP U63				est expressed as le - number indic			er in millimetres
						•	tion assessment projects)
R =		sible evidence			R = A		al odours identified
R =	= 1 Sligh	t evidence of vi	sible co		R = B	Slight non-na	tural odours identified
R =		le contamination			R = C		n-natural odours identified
R =	5	ficant visible co	ntamina	ition	R = D	Strong non-n	atural odours identified
			~				
	Total Core Re	• • •	S	CR = Solid Core	Recovery (%)	RQD	= Rock Quality Designation (%)
$=\frac{Leng}{L}$	gth of core recov ength of core ru	vered in ×100	$= \sum Ler$	ngth of cylindrical c Length of core	core recovered run ×	$= \frac{\sum A}{2}$	Axial lengths of core > 100 mm Length of core run $\times 100$
				U			

	Golder ssociates	USEI) ON BO	_		DESCRIPTION PIT REPORTS
	FILL			CLAY	(CL, CI or CH)	
00°0 000 00°0	GRAVEL (GP or G	W)		<u>*** **</u> <u>* **</u> ORGA	NIC SOILS (OL (or OH or Pt)
	SAND (SP or SW)			Совв	LES or BOULDE	RS
× × × × × × × ×	SILT (ML or MH)					
× × ×						
LASSIFI	CATION AND INI	mbols may be used t	RAPHY			
LASSIFI	CATION AND INI	FERRED STRATIOn nd described in Rep The material propertie	RAPHY orts of Boreho	oles and Test F ed in the field by	Pits using the pro-	eferred method given in thods.
LASSIFI bil and Ro S1726 – 1	CATION AND INI ock is classified ar 993, Appendix A. Particle S	FERRED STRATIOn nd described in Rep The material propertie	RAPHY orts of Boreho	oles and Test F ed in the field by	Pits using the provisual/tactile met	eferred method given in thods.
LASSIFIC bil and Ro 51726 – 1 Major Divis	CATION AND INI ock is classified ar 993, Appendix A. Particle S	FERRED STRATIC nd described in Rep The material propertie	RAPHY orts of Boreho es are assesse	oles and Test F ed in the field by	Pits using the provisual/tactile met	eferred method given in thods. es
LASSIFIC iil and Ro 1726 – 1 Major Divis	CATION AND INI ock is classified ar 993, Appendix A. Particle S sion Sub Division	FERRED STRATIO nd described in Rep The material propertie ize Particle Size	BRAPHY orts of Boreho es are assesse	oles and Test F ed in the field by Pla	Pits using the provisual/tactile met	eferred method given in thods.
LASSIFIC bil and Ro S1726 – 1 Major Divis	CATION AND INI ock is classified ar 993, Appendix A. Particle S sion Sub Division OULDERS	FERRED STRATIO nd described in Rep The material propertie ize Particle Size > 200 mm	BRAPHY orts of Boreho es are assesse	oles and Test F ed in the field by Pla	Pits using the provisual/tactile met	eferred method given in thods. es
LASSIFIC bil and Ro 51726 – 1 Major Divis	CATION AND INI ock is classified ar 993, Appendix A. Particle S sion Sub Division OULDERS COBBLES	FERRED STRATIO nd described in Rep The material propertie ize Particle Size > 200 mm 63 to 200 mm	BRAPHY orts of Boreho es are assesse	oles and Test F ed in the field by Pla	Pits using the provisual/tactile met	eferred method given in thods. es
LASSIFI Dil and Ro S1726 – 1 Major Divis BO C	CATION AND INI ock is classified ar 993, Appendix A. T Particle S sion Sub Division OULDERS COBBLES Coarse	FERRED STRATIO ad described in Rep The material propertie ize Particle Size > 200 mm 63 to 200 mm 20 to 63 mm	BRAPHY orts of Boreho es are assesse	oles and Test F ed in the field by Pla	Pits using the provisual/tactile met	eferred method given in thods. es
LASSIFI bil and Ro S1726 – 1 Major Divis Bo C	CATION AND INI ock is classified ar 993, Appendix A. Particle S sion Sub Division OULDERS COBBLES Coarse Medium	FERRED STRATIO ad described in Rep The material propertie ize Particle Size > 200 mm 63 to 200 mm 20 to 63 mm 6.0 to 20 mm	BRAPHY orts of Boreho es are assesse	oles and Test F ed in the field by Pla	Pits using the provisual/tactile met	eferred method given in thods. es
LASSIFI bil and Ro S1726 – 1 Major Divis Bo C	CATION AND INI ock is classified ar 993, Appendix A. T Particle S sion Sub Division OULDERS COBBLES COBBLES Coarse Medium Fine	FERRED STRATIO ad described in Rep The material propertie ize Particle Size > 200 mm 63 to 200 mm 20 to 63 mm 6.0 to 20 mm 2.0 to 6.0 mm	BRAPHY orts of Boreho es are assesse	oles and Test F ed in the field by Pla Low cL Low plasticity clay	Pits using the provisual/tactile met sticity Propertie	eferred method given in thods. es
LASSIFI Dil and Ro S1726 – 1 Major Divis	CATION AND INI ock is classified ar 993, Appendix A. T Particle S sion Sub Division OULDERS COBBLES Coarse Medium Fine Coarse	FERRED STRATIO ad described in Rep The material propertie ize Particle Size > 200 mm 63 to 200 mm 20 to 63 mm 6.0 to 20 mm 2.0 to 6.0 mm 0.6 to 2.0 mm	APHY Sorts of Boreho are assessed 40 40 (%) 30 40 (%) 20 10 10	oles and Test F ed in the field by Pla	Pits using the provisual/tactile met	eferred method given in thods. es
LASSIFI Dil and Ro S1726 – 1 Major Divis	CATION AND INI ock is classified ar 993, Appendix A. T Particle S sion Sub Division OULDERS COBBLES COBBLES Coarse Medium Fine Coarse Medium	FERRED STRATIO ad described in Rep The material propertie ize Particle Size > 200 mm 63 to 200 mm 20 to 63 mm 6.0 to 20 mm 2.0 to 6.0 mm 0.6 to 2.0 mm 0.2 to 0.6 mm	APHY Sorts of Boreho are assessed 40 40 (%) 30 40 (%) 20 10 10	oles and Test F ed in the field by Pla Low cl Low plasticity clay	Pits using the provisual/tactile met sticity Propertie	eferred method given in thods. 25 CH High plasticity clay OH or MH High liquid limit silt

Symbol	Term	Description
D	Dry	Sands and gravels are free flowing. Clays & Silts may be brittle or friable and powdery.
Μ	Moist	Soils are darker than in the dry condition & may feel cool. Sands and gravels tend to cohere.
W	Wet	Soils exude free water. Sands and gravels tend to cohere.

CONSIST	FENCY AND DE	NSITY	AS17	26 - 1993		
Symbol	Term	Undrained Shear Strength	Symbol	Term	Density Index %	SPT "N" #
VS	Very Soft	0 to 12 kPa	VL	Very Loose	Less than 15	0 to 4
S	Soft	12 to 25 kPa	L	Loose	15 to 35	4 to 10
F	Firm	25 to 50 kPa	MD	Medium Dense	35 to 65	10 to 30
St	Stiff	50 to 100 kPa	D	Dense	65 to 85	30 to 50
VSt	Very Stiff	100 to 200 kPa	VD	Very Dense	Above 85	Above 50
Н	Hard	Above 200 kPa				
the materia	al. elations are not st	, consistency and density ated in AS1726 – 1993, a				

equipment type.

APPENDIX B

Borehole Records TOT-1 to TOT-7

CLIENT: PROJECT: LOCATION: JOB NO:

City Pacific Limited Townsville Ocean Terminal Project Site 06692015

COORDS: 481912 m E 7872481 m N 55 MGA94 SURFACE RL: -2 m AHD INCLINATION: -90° HOLE DIA: 78 mm HOLE DEPTH: 14.10 m

SHEET: 1 OF 1 DRILL RIG: Gemco 210B DRILLER: Baconbird LOGGED: TJC CHECKED: WSB

DATE: 24/10/06 DATE: 1/11/06

Sampling Field Material Description Drilling PENETRATION RESISTANCE CONSISTENCY DENSITY RECOVERED Symbol STRUCTURE AND GRAPHIC LOG MOISTURE SAMPLE OR METHOD SOIL / ROCK MATERIAL DESCRIPTION ADDITIONAL DEPTH (metres) WATER FIELD TEST OBSERVATIONS JSC DEPTH RL 0.0 -2.00 DS 0.00-1.00m CLAYEY SILT level × Very soft, dark grey, trace organics S L water × 1.30 below v -3.30 CLAY SPT 1.50-1.95m VSt-H 1.90 -3.90 2.40 -4.40 Very stiff to hard, pale grey some mottled orange and CNS_PASS_REV0 (2),GLB_FULL PAGE_J:2GE00606082015 CITY PACIFIC - TOTAA DUCK POND - PROBINGARCHIVED FILES/GINT/06692015 DUCKPOND PROBING BORES B1 TO 50, GPJ_GPD_1,GDT_18/07/2007_3:25:16 PM 12,19,19 N = 38 Ground level black, low to medium plasticity **GRAVELLY SANDY CLAY** 2.5 DS 2.50-3.50m Very stiff to hard, pale grey to grey some mottled orange and brown, fine to medium grained sand, fine SPT 3.00-3.45m gravel 9.16.14 N = 30 CLAY Μ Hard, pale grey some mottled orange and black, low to medium plasticity, trace occasional lense of fine т grained gravel SPT 4.50-4.95m occassional very stiff zones 5.0 5.6.9 N = 15 <u>6.10</u> -8.10 SPT 6.10-6.50m SAND 7,15,15 N = 30 Medium to medium dense, pale yellow orange and brown, fine to medium grained sand WB MD-D I -M 7.5 SPT 7.50-7.95m 8,12,15 N = 27 **8.60** SANDY CLAY Hard, pale grey some orange, fine grained sand, trace fine grained gravel SPT 9.00-9.45m 7,13,17 N = 30 10.00 10.0 -12.00 - No gravel т Μ 11.50 -13.50 - Clay content increasing with depth SPT 12.00-12.45m 12,17,18 N = 35 12.5 13.00 -15.00 CLAY Hard, pale grey some mottled orange and white, low to medium plasticity, trace fine grained sand т SPT 13.60-14.05m 14.10 8,13,18 N = 31 -16.10 END OF BOREHOLE @ 14.10 m Depths shown from current Bed Level 15.0 17.5 20.0 This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for GAP

information only and do not necessarily indicate the presence or absence of soil or groundwater contamination.

GAP gINT FN. F01a RL2

CLIENT: PROJECT: LOCATION: 06692015 JOB NO:

City Pacific Limited Townsville Ocean Terminal Project Site

COORDS: 482318 m E 7872140 m N 55 MGA94 SURFACE RL: 0.2 m AHD INCLINATION: -90° HOLE DIA: 78 mm HOLE DEPTH: 16.95 m

SHEET: 1 OF 1 DRILL RIG: Gemco 210B DRILLER: Baconbird LOGGED: TJC DATE: 25/10/06 CHECKED: WSB DATE: 1/11/06

GAP gINT FN. F01a

RL2

Drilling Sampling Field Material Description PENETRATION RESISTANCE RECOVERED CONSISTENC Symbol STRUCTURE AND GRAPHIC LOG SAMPLE OR MOISTURE METHOD SOIL / ROCK MATERIAL DESCRIPTION ADDITIONAL DEPTH (metres) WATER FIELD TEST OBSERVATIONS JSC DEPTH RL 0.0 0.20 CLAYEY SILT level <u>_</u>x Very soft, dark grey, some organics water × × × below v ŝ L x Ground level × 2.5 × 2.70 3.00 GRAVELLY CLAY ŝ Very soft, grey, fine to medium grained gravel -2.80 SPT 3.00-3.45m т 6.15.18 N = 33 CLAY 3.80 Hard, pale grey orange and brown, low to medium plasticity, trace fine grained gravel CLAY VSt Very stiff, pale grey orange some black mottle, medium plasticity, trace fine grained gravel SPT 4.50-4.95m I -M 5.0 6.6.8 N = 14 5.50 -5.30 CLAYEY SAND / SANDY CLAY S . 6.10 Pale grey some orange, fine grained sand, medium SPT 6 10-6 50m plasticity, loose/soft RW/160mm,3,5 N ß CLAY = 8 7.00 Stiff, pale grey orange some black mottle, low to -6.80 medium plasticity, trace coarse grained sand and fine grained gravel 7.5 SPT 7.50-7.95m CLAY 8,14,16 N = 30 Hard, pale grey some orange and white mottle, low plasticity, trace fine grained sand NB М т SPT 9.00-9.45m 13,19,24 N = 43 10.0 SPT 10.50-10.95m 11.00 13.17.20 N = 37 -10.80 SAND MD-D Medium dense to dense, pale grey yellow, fine to L medium grained with trace coarse grained sand 12.00 SPT 12.00-12.45m CLA) т **12.40** -12.20 16,16,18 N = 34 12.5 Hard, pale grey, medium plasticity, trace fine grained sand **13.20** -13.00 CLAYEY SAND Dense, orange and grey, fine to coarse grained sand SPT 13.50-13.95m М-Н SILTY CLAY 6,8,10 N = 18 Very stiff, pale grey some orange, low plasticity, trace VSt fine grained sand 15.0 **15.20** -15.00 CLAY Hard, pale grey trace orange and black mottle, medium plasticity н т SPT 16.50-16.95m 16.95 20,24,32 N = 56 END OF BOREHOLE @ 16.95 m 17 5 Depths shown from current Bed Level 20.0 This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for

information only and do not necessarily indicate the presence or absence of soil or groundwater contamination.

CNS_PASS_REV0 (2),GLB_FULL PAGE_J:2GE00606082015 CITY PACIFIC - TOTAA DUCK POND - PROBINGARCHIVED FILES/GINT/06692015 DUCKPOND PROBING BORES B1 TO 50, GPJ_GPD_1,GDT_18/07/2007_3:25:23 PM GAP

CLIENT: PROJECT: LOCATION: JOB NO:

Duilling

City Pacific Limited Townsville Ocean Terminal Project Site 06692015 COORDS: 482261 m E 7871938 m N 55 MGA94 SURFACE RL: 0.1 m AHD INCLINATION: -90° HOLE DIA: 78 mm HOLE DEPTH: 18.45 m

Field Meterial Description

SHEET: 1 OF 1 DRILL RIG: Gemco 210B DRILLER: Baconbird LOGGED: TJC DATE: 26/10/06 CHECKED: WSB DATE: 1/11/06

		Dril	ling		Sampling				Field Material Descr	iptio	n	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
	L	Ground level below water level	0.0	0.10 <u>1.00</u> -0.90	DS 0.00-0.25m DS 0.25-0.50m DS 1.00-2.00m DS 2.00-2.70m				SANDY CLAYEY SILT Very soft, dark grey, medium grained sand, some shell fragments and trace organics CLAYEY SILT Very soft, dark grey, trace shell fragments	-	NS	
252:		Ground le	2.5—	2.70 -2.60 <u>4.00</u> -3.90	SPT 3.00-3.45m 9,13,20 N = 33 DS 3.50-4.00m				CLAY Hard, pale grey brown trace orange mottle, low plasticity CLAY	-	т	-
B1 10 30.9LV GAL9_1			- 5.0 — -	5.50 -5.40	SPT 4.50-4.95m 5,6,7 N = 13 DS 5.00-5.50m SPT 6.00-6.45m				Very stiff, pale grey orange some black mottle, medium to high plasticity, trace silt and fine grained gravel CLAY Very stiff, pale grey orange, medium plasticity, some fine grained sand with trace medium to coarse grained	-	VSt	
UND דוגטבוואט פטתבט	М		- - 7.5—	6.70 -6.60 8.50	4,5,7 N = 12 SPT 7.50-7.95m 11,13,17 N = 30				sand, fine grained gravel and shell fragments SANDY CLAY Hard, pale grey some orange, fine to medium grained sand, trace fine grained gravel	-		- - - -
	:		- - 10.0—	-8.40	SPT 9.00-9.45m 16,24,22 N = 46				CLAY Hard, pale grey some orange, low plasticity, some fine grained sand		т	- - - -
	L		- - - 12.5—	<u>11.00</u> -10.90 <u>12.80</u> -12.70	SPT 12.00-12.45m 17,23,25 N = 48				SAND Dense, pale yellow grey, fine to coarse grained sand SANDY CLAY	-	٥	- - - -
			- - 15.0—	<u>14.30</u> -14.20	SPT 15.00-15.45m	-			Hard, pale grey some orange, fine to medium grained sand CLAY Hard, pale grey some orange and brown, medium plasticity, trace fine grained gravel			-
DUDINDDAZVID CIII FRAUILIC -	н		- - - 17.5—		17,23,24 N = 47						т	- - - -
ראטבייערים				18.45 -18.35	SPT 18.00-18.45m 11,16,21 N = 37				END OF BOREHOLE @ 18.45 m Depths shown from current Bed Level			-
			- 20.0 — - - -						· · · · · · · · · · · · · · · · · · ·			
1				Th aeote	is report of borehole chnical purposes only	mus v. wit	t be i thout	read attei	in conjunction with accompanying notes and abbreviations npt to assess possible contamination. Any references to	s. It pote	has b ntial c	een prepared for ontamination are for

geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater contamination.

GAP_CNS_PASS_REV0 (2):GLB_FULL PAGE_J:2GE0080682015 CITY PACIFIC - TOTAA DUCK POND - PROBINGIARCHIVED FILES(GINT)06822015 DUCKPOND PROBING BORES B1 TO 50.GPJ_GAP5_1.GDT_18/07/2007_325.29 PM

GAP gINT FN. F01a RL2

CLIENT. PROJECT: LOCATION: 06692015 JOB NO:

City Pacific Limited Townsville Ocean Terminal Project Site

COORDS: 482130 m E 7871867 m N 55 MGA94 SURFACE RL: -0.1 m AHD INCLINATION: -90° HOLE DIA: 78 mm HOLE DEPTH: 18.45 m

SHEET: 1 OF 1 DRILL RIG: Gemco 210B DRILLER: Baconbird LOGGED: TJC CHECKED: WSB

DATE: 27/10/06 DATE: 1/11/06

Sampling Drilling Field Material Description PENETRATION RESISTANCE CONSISTENCY DENSITY RECOVERED Symbol STRUCTURE AND MOISTURE SAMPLE OR GRAPHIC LOG METHOD SOIL / ROCK MATERIAL DESCRIPTION ADDITIONAL DEPTH (metres) WATER FIELD TEST OBSERVATIONS JSC DEPTH RL 0.0 DS 0.00-0.25m SAND 0 0.25 level DS 0.25-0.50m Very loose, dark grey, fine grained with some medium 2 water DS 0.50-0.75m to coarse grained sand, some shell fragments × Т DS 0 75-1 00m CLAYEY SILT VS0 below \ × Very soft, dark grey, trace fine to medium grained sand and shell fragments U:2GE006/0692015 CITY PACIFIC - TOTVA DUCK POND - PROBING/ARCHIVED FILES/GINT/06692015 DUCKPOND PROBING BORES B1 TO 50. GPJ GAP5. 1.GDT 18/07/2007 3:25:34 PM x Ground level 2.10 SILTY SANDY CLAY DS 2.10-3.00m Hard, light grey, interbedded with medium dense grey sandy clay 2.5 SPT 3.00-3.45m 7.10.16 N = 26 4.30 -4 40 SANDY CLAY SPT 4.50-4.95m Hard, grey some mottled light brown 5.0 8.10.15 N = 25 ۰ 5.80 SANDY CLAY -5.90 SPT 6.00-6.45m Hard, pale grey, high sand content with occasional fine grained sand inclusions 4,8,13 N = 21 М т 7.5 SPT 7.50-7.95m 11,12,15 N = 27 SPT 9.00-9.45m MB 9,9,13 N = 22 10.0 ٠ 11.00 SAND -11.10 Dense, pale yellow grey, fine to coarse grained sand SPT 12.00-12.45m L 14,20,25 N = 45 12.5 **13.30** -13.40 CLAY Hard, pale grey orange some mottled black, medium plasticity, some fine to medium grained sand, trace fine grained gravel 15.00 -15.10 15.0 SPT 15.00-15.45m CLAY 17,21,28 N = 49 Hard, pale grey some orange, medium plasticity, trace fine to coarse grained sand н т 17.5 SPT 18.00-18.45m 18.45 16,20,30 N = 50 -18 55 END OF BOREHOLE @ 18.45 m CNS_PASS_REV0 (2).GLB_FULL PAGE Depths shown from current Bed Level 20.0 This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for GAP

information only and do not necessarily indicate the presence or absence of soil or groundwater contamination.

GAP gINT FN. F01a RL2

CLIENT: PROJECT: LOCATION: JOB NO:

City Pacific Limited Townsville Ocean Terminal Project Site 06692015

COORDS: 482099 m E 7871692 m N 55 MGA94 SURFACE RL: 0.25 m AHD INCLINATION: -90° HOLE DIA: 78 mm HOLE DEPTH: 20.45 m

SHEET: 1 OF 1 DRILL RIG: Gemco 210B DRILLER: Baconbird LOGGED: TJC DATE: 30/10/06 CHECKED: WSB DATE: 1/11/06

		Dril	ling		Sampling				Field Material Descri	ptio	n	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC	LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
		evel	0.0-	0.25	DS 0.00-1.00m	×	_		SANDY CLAYEY SILT			
	L	Ground level below water level	-	1.80	DS 1.00-2.00m	x x k			Very soft, dark grey, medium to coarse grained sand, some shell fragments		NS	-
	м	ound level	2.5—	2.20 -1.95	SPT 2.00-2.45m 11,14,18 N = 32 DS 2.20-2.50m		 = _ 		CLAY Hard, green grey, medium plasticity, trace fine grained gravel			-
		Ğ	-	3.80	SPT 3.50-3.95m				CLAY Hard, pale grey some orange and black mottle, medium plasticity		т	-
2			_	4.50	5,6,12 N = 18				- Some medium to coarse grained sand and trace fine grained gravel			-
	L-M		5.0	-4.25	SPT 5.00-5.45m 3,3,4 N = 7				CLAY Stiff, pale brown some orange and light grey, medium to high plasticity, some silt		st	-
			-	<u>6.10</u> -5.85		-			CLAY		VSt	
	м		_	6.80 -6.55	SPT 6.50-6.95m 5,10,16 N = 26	-	_		Very stiff, light grey, low plasticity, trace coarse grained sand and fine grained gravel			-
			7.5—	7.50 -7.25			- 0 		GRAVELLY CLAY Hard, light grey some orange and white, fine to medium grained gravel		т —	-
			_	8.40 -8.15	SPT 8.00-8.45m 5,9,14 N = 23		· · · · 		SAND Medium dense, light orange to orange, fine to medium grained sand		ДМ	-
			-	10.00		-			CLAYEY SAND Medium dense, grey orange, fine to medium grained sand			-
WB	L-M		10.0	-9.75		ہ ["] ہ " ہ			SANDY CLAY Hard, pale grey some orange, high content of fine to medium grained sand			-
			-		SPT 11.00-11.45m 14,19,25 N = 44	۔ م						-
			12.5 —	12.50 -12.25		۱ ° ۱ ° ۱ °			- Medium to coarse grained sand			
2			-	13.90		 	°				L I	-
			- - 15.0—	-13.65	SPT 14.00-14.45m 19,25,30/140mm				CLAY Hard, pale grey to grey some orange mottle, low plasticity, trace coarse grained sand and fine grained gravel			-
	м		-			-						-
110 01020			-		SPT 17.00-17.45m							-
			17.5—	17.70 -17.45	18,27,30/120mm				CLAYEY SAND Very dense, pale grey some orange mottle, fine to			-
2004	L-M		-				— —		coarse grained sand		٨D	-
			- 20.0 —	20.30	SPT 20.00-20.45m	 	— —					
	Н			-20.20	15,26,28 N = 54		-	-	CLAY Hard, pale grey some orange, low to medium plasticity END OF BOREHOLE @ 20.45 m			-
				_					Depths shown from current Bed Level			

This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater contamination. GAP gINT FN. F01a

RL2

CLIENT. PROJECT: LOCATION: 06692015 JOB NO:

City Pacific Limited Townsville Ocean Terminal Project Site

COORDS: 481503 m E 7871794 m N 55 MGA94 SURFACE RL: -0.2 m AHD INCLINATION: -90° HOLE DIA: 78 mm HOLE DEPTH: 11.45 m

SHEET: 1 OF 1 DRILL RIG: Gemco 210B DRILLER: Baconbird LOGGED: TJC

DATE: 31/10/06 CHECKED: WSB DATE: 1/11/06

Sampling Field Material Description Drilling PENETRATION RESISTANCE CONSISTENCY DENSITY RECOVERED Symbol STRUCTURE AND GRAPHIC LOG SAMPLE OR MOISTURE METHOD SOIL / ROCK MATERIAL DESCRIPTION ADDITIONAL WATER DEPTH (metres) FIELD TEST OBSERVATIONS JSC DEPTH RL 0.0 -0.20 DS 0.00-1.00m CLAYEY SILT level X Very soft, dark grey, trace organics and shell fragments VS0 L water × × below v 1.40 -1.60 DS 1.40-2.00m SANDY GRAVELLY CLAY _ CNS_PASS_REV0 (2),GLB_FULL PAGE_J:2GE00606682015 CITY PACIFIC - TOTAA DUCK POND - PROBINGARCHIVED FILES/GINT/06692015 DUCKPOND PROBING BORES B1 TO 50, GPJ_GPD_1,GDT_18/07/2007_3:25:47 PM Very stiff, light grey some orange and brown, medium to Ground level SPT 2.00-2.45m ÷ coarse grained sand with fine to medium grained gravel М 7,10,13 N = 23 DS 2.45-3.00m 2.5 Ś 3.00 CLAY -3.45 Very stiff, pale grey orange some black mottle, medium plasticity - Trace fine grained sand and fine grained gravel L-M SPT 3.50-3.95m 3,6,10 N = 16 4.20 -4.40 SANDY CLAY Hard, pale grey some red and orange mottle, fine 5.0 grained sand with occasional very sandy lenses SPT 5.00-5.45m 12,15,25 N = 40 WB М т SPT 6.50-6.95m 10,13,22 N = 35 7.40 7.5 CLAYEY SAND Dense to very dense, light grey trace orange and yellow, SPT 8.00-8.45m fine grained sand with occasional coarse grained sand 15,22,29 N = 51 lenses D-VD L-M 10.0 SPT 11.00-11.45m 11.45 12,17,23 N = 40 END OF BOREHOLE @ 11.45 m Depths shown from current Bed Level 12.5 15.0 17.5 20.0 This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for GAP GAP gINT FN. F01a information only and do not necessarily indicate the presence or absence of soil or groundwater contamination.

Golder

CLIENT: PROJECT: LOCATION: 06692015 JOB NO:

City Pacific Limited Townsville Ocean Terminal Project Site

COORDS: 481834 m E 7871495 m N 55 MGA94 SURFACE RL: 3 m AHD INCLINATION: -90° HOLE DIA: 100 mm HOLE DEPTH: 15.00 m

SHEE⁻ DRILL DRILL LOGG CHEC

T: 1 OF 1		
RIG: Gemco 2	10B	
ER: Baconbird		
ED: MKC	DATE:	12/6/07
KED: WSB	DATE:	30/6/07

Drilling Sampling Field Material Description PENETRATION RESISTANCE CONSISTENCY DENSITY RECOVERED JSC Symbol SAMPLE OR FIELD TEST GRAPHIC LOG MOISTURE METHOD SOIL / ROCK MATERIAL DESCRIPTION WATER DEPTH (metres) DEPTH RL PIEZOMETER DETAILS 0.0 ASPHALT - Bitumen Gatic Cover 2.90 Fill:- Sandy Clay/Clayey SAND Fine to coarse sand, medium plasticity, brown, moist Concrete Bentonite CNS_PASS_REV0 (2),GLB_FULL_PAGE_J1:2GE006106692015 CITY PACIFIC - TOTAA DUCK POND - PROBINGARCHIVED FILES(GINT)06652015 DUCKPOND PROBING BORES B1 TO 50, GPJ_GAP5_1,GDT_18007/2007_3:25;52 PM 2.00 1.00 Fill:- Clayey SAND Fine to coarse sand, brown, medium dense 2.5 3.00 0.00 Fill:- Sandy CLAY Fine to coarse sand, grey/brown, with some gravel Class 18 Threaded, Acid Washed, Blank Screen <u>5.00</u> -2.00 5.0 CLAY Grey, soft Class 3 <u>6.00</u> -3.00 Clayey SAND Fine to coarse sand, grey brown, medium dense Washed Graded Filter Sand 7.5 10.0 Class 18 Threaded, Acid Washed, 11.00 Machine -8.00 Sandy CLAY Slotted Screen Brown/grey, fine to coarse sand, hard 12.5 14.00 -11.00 SAND Fine to medium sand, brown, dense to very dense 15.00 -12.00 15.0 END OF BOREHOLE @ 15.00 m 17.5 20.0 This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for GAP GAP gINT FN. F01d information only and do not necessarily indicate the presence or absence of soil or groundwater contamination. RL2

EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT REPORTS

DRILLING/EXCAVATION METHOD

	ING/EXCAVA	FION METHOD					
AS*	Auger Screw	ving	RD	Rotary blade c	or drag bit	HQ	Diamond Core - 63 mm
AD*	Auger Drillin	g	RT	Rotary Tricone	e bit	NMLC	Diamond Core - 52 mm
*V	V-Bit		RAB	Rotary Air Blas		NQ	Diamond Core - 47 mm
*T	TC-Bit, e.g. /	ADT	RC	Reverse Circu	lation	BH	Tractor Mounted Backhoe
HA	Hand Auger		PT	Push Tube		EX	Tracked Hydraulic Excavator
DTC	Diatube Cor	ing	СТ	Cable Tool Rig	9	EE	Existing Excavation
WB	Washbore o	r Bailer	JET	Jetting		HAND	Excavated by Hand Methods
PENET	RATION/EXC	AVATION RES	ISTAN	CE			
L	Low resista	nce. Rapid per	netration	possible with lit	tle effort from	the equipment	used.
М	Medium res	sistance. Exca	vation/p	ossible at an acc	ceptable rate v	vith moderate e	fort from the equipment used.
н		ance to penetra ffort from the ec			r penetration is	s possible at a s	slow rate and requires
R		Practical Refuse mplement or m		further progress	possible with	out the risk of d	amage or unacceptable wear to
				dependent on ma ence of the oper		luding the equi	pment power, weight, condition
WATE		J ,		· · · · · · · · ·			
		er level at date	shown		\triangleleft	Partial water los	55
	> Wat	er inflow				Complete wate	r loss
GROUI OBSEF	NDWATER NO			on of groundwa seepage or cav			was not possible due to drilling
	NDWATER NO UNTERED	preser	nt in less		ta. Inflow mag		owever, groundwater could be served had the borehole/test pit
SAMPL	LING AND TE	STING					
SPT		Standard Pene	tration 1	Test to AS1289.6	6.3.1-1993		
4,7,11 30/80m RW HW HB	าทา	Where practica Penetration occ	l refusa curred u curred u	l occurs, the blow nder the rod wei nder the hamme	ws and penetra ght only	ation for that in	lowing 150mm seating terval are reported
DS BDS		Disturbed samp Bulk disturbed					
G		Gas Sample	•				
W FP		Water Sample	lity toot	over soction not	he		
FP FV				over section note expressed as unc		r strenath (s. =	peak value, s _r = residual value)
PID		Photoionisation	Detect	or reading in ppr			
PM				er section noted			
PP U63				est expressed as le - number indic			er in millimetres
						•	tion assessment projects)
R =		sible evidence			R = A		al odours identified
R =	= 1 Sligh	t evidence of vi	sible co		R = B	Slight non-na	tural odours identified
R =		le contamination			R = C		n-natural odours identified
R =	5	ficant visible co	ntamina	ition	R = D	Strong non-n	atural odours identified
			~				
	Total Core Re	• • •	S	CR = Solid Core	Recovery (%)	RQD	= Rock Quality Designation (%)
$=\frac{Leng}{L}$	gth of core recov ength of core ru	vered in ×100	$= \sum Ler$	ngth of cylindrical c Length of core	core recovered run ×	$= \frac{\sum A}{2}$	Axial lengths of core > 100 mm Length of core run $\times 100$
				.			

	Golder ssociates	USEI) ON BO	_		DESCRIPTION PIT REPORTS
	FILL			CLAY	(CL, CI or CH)	
00°0 000 00°0	GRAVEL (GP or G	W)		<u>***</u> 0RGA <u>* **</u> :	NIC SOILS (OL (or OH or Pt)
	SAND (SP or SW)			Совв	LES or BOULDE	RS
× × × × × × × ×	SILT (ML or MH)					
× × ×						
LASSIFI	CATION AND INI	mbols may be used t	RAPHY			
LASSIFI	CATION AND INI	FERRED STRATIOn nd described in Rep The material propertie	RAPHY orts of Boreho	oles and Test F ed in the field by	Pits using the pro-	eferred method given in thods.
LASSIFI bil and Ro S1726 – 1	CATION AND INI ock is classified ar 993, Appendix A. Particle S	FERRED STRATIOn nd described in Rep The material propertie	RAPHY orts of Boreho	oles and Test F ed in the field by	Pits using the provisual/tactile met	eferred method given in thods.
LASSIFIC bil and Ro 51726 – 1 Major Divis	CATION AND INI ock is classified ar 993, Appendix A. Particle S	FERRED STRATIC nd described in Rep The material propertie	RAPHY orts of Boreho es are assesse	oles and Test F ed in the field by	Pits using the provisual/tactile met	eferred method given in thods. es
LASSIFIC iil and Ro 1726 – 1 Major Divis	CATION AND INI ock is classified ar 993, Appendix A. Particle S sion Sub Division	FERRED STRATIO nd described in Rep The material propertie ize Particle Size	BRAPHY orts of Boreho es are assesse	oles and Test F ed in the field by Pla	Pits using the provisual/tactile met	eferred method given in thods.
LASSIFIC bil and Ro S1726 – 1 Major Divis	CATION AND INI ock is classified ar 993, Appendix A. Particle S sion Sub Division OULDERS	FERRED STRATIO nd described in Rep The material propertie ize Particle Size > 200 mm	BRAPHY orts of Boreho es are assesse	oles and Test F ed in the field by Pla	Pits using the provisual/tactile met	eferred method given in thods. es
LASSIFIC bil and Ro 51726 – 1 Major Divis	CATION AND INI ock is classified ar 993, Appendix A. Particle S sion Sub Division OULDERS COBBLES	FERRED STRATIO nd described in Rep The material propertie ize Particle Size > 200 mm 63 to 200 mm	BRAPHY orts of Boreho es are assesse	oles and Test F ed in the field by Pla	Pits using the provisual/tactile met	eferred method given in thods. es
LASSIFI Dil and Ro S1726 – 1 Major Divis BO C	CATION AND INI ock is classified ar 993, Appendix A. T Particle S sion Sub Division OULDERS COBBLES Coarse	FERRED STRATIO ad described in Rep The material propertie ize Particle Size > 200 mm 63 to 200 mm 20 to 63 mm	BRAPHY orts of Boreho es are assesse	oles and Test F ed in the field by Pla	Pits using the provisual/tactile met	eferred method given in thods. es
LASSIFI bil and Ro S1726 – 1 Major Divis Bo C	CATION AND INI ock is classified ar 993, Appendix A. Particle S sion Sub Division OULDERS COBBLES COarse Medium	FERRED STRATIO ad described in Rep The material propertie ize Particle Size > 200 mm 63 to 200 mm 20 to 63 mm 6.0 to 20 mm	BRAPHY orts of Boreho es are assesse	oles and Test F ed in the field by Pla	Pits using the provisual/tactile met	eferred method given in thods. es
LASSIFI bil and Ro S1726 – 1 Major Divis Bo C	CATION AND INI ock is classified ar 993, Appendix A. T Particle S sion Sub Division OULDERS COBBLES COBBLES Coarse Medium Fine	FERRED STRATIO ad described in Rep The material propertie ize Particle Size > 200 mm 63 to 200 mm 20 to 63 mm 6.0 to 20 mm 2.0 to 6.0 mm	BRAPHY orts of Boreho es are assesse	oles and Test F ed in the field by Pla Low cL Low plasticity clay	Pits using the provisual/tactile met sticity Propertie	eferred method given in thods. es
LASSIFI Dil and Ro S1726 – 1 Major Divis	CATION AND INI ock is classified ar 993, Appendix A. T Particle S sion Sub Division OULDERS COBBLES Coarse Medium Fine Coarse	FERRED STRATIO ad described in Rep The material propertie ize Particle Size > 200 mm 63 to 200 mm 20 to 63 mm 6.0 to 20 mm 2.0 to 6.0 mm 0.6 to 2.0 mm	BRAPHY borts of Boreho ss are assessed 40 40 30 40 (%) 30 40 10 10	oles and Test F ed in the field by Pla	Pits using the provisual/tactile met	eferred method given in thods. es
LASSIFI Dil and Ro S1726 – 1 Major Divis	CATION AND INI ock is classified ar 993, Appendix A. T Particle S sion Sub Division OULDERS COBBLES COBBLES Coarse Medium Fine Coarse Medium	FERRED STRATIO ad described in Rep The material propertie ize Particle Size > 200 mm 63 to 200 mm 20 to 63 mm 6.0 to 20 mm 2.0 to 6.0 mm 0.6 to 2.0 mm 0.2 to 0.6 mm	BRAPHY borts of Boreho ss are assessed 40 40 30 40 (%) 30 40 10 10	oles and Test F ed in the field by Pla Low cl Low plasticity clay	Pits using the provisual/tactile met sticity Propertie	eferred method given in thods. 25 CH High plasticity clay OH or MH High liquid limit silt

Symbol	Term	Description
D	Dry	Sands and gravels are free flowing. Clays & Silts may be brittle or friable and powdery.
М	Moist	Soils are darker than in the dry condition & may feel cool. Sands and gravels tend to cohere.
W	Wet	Soils exude free water. Sands and gravels tend to cohere.

CONSIST	FENCY AND DE	NSITY	AS17	26 - 1993		
Symbol	Term	Undrained Shear Strength	Symbol	Term	Density Index %	SPT "N" #
VS	Very Soft	0 to 12 kPa	VL	Very Loose	Less than 15	0 to 4
S	Soft	12 to 25 kPa	L	Loose	15 to 35	4 to 10
F	Firm	25 to 50 kPa	MD	Medium Dense	35 to 65	10 to 30
St	Stiff	50 to 100 kPa	D	Dense	65 to 85	30 to 50
VSt	Very Stiff	100 to 200 kPa	VD	Very Dense	Above 85	Above 50
Н	Hard	Above 200 kPa				
the materia	al. elations are not st	, consistency and density ated in AS1726 – 1993, a				

equipment type.

APPENDIX C

ASS/PASS Field Screening and Laboratory Test Records

BB 0.00 0.010 0 0.010 0 0 0 0 No.Addicio Line Regime	Test Location	Depth Ran (m - BGL	e Material Description	pH _{sc}	TAA (kg H₂SO₄/tonne)	sTAA Converted to %S*	S _{NAS} (if pH less than 4.5)	Existing Acidity %S (sTAA + 0.75 x S _{NAS})	Chromium Reduceable Sulfur (S ₅₄) %S	Acid Neutralising Capacity %CaCO3 (if pH > 6.5 and > 0.03%S)	Net Acidity %S (S _{CR} +Existing Acidity - ANC/FF	Is This ASS	Is This PASS	Liming Rate for Existing Acidity (Neutralises AASS only) (kg/m3)	Liming Rate for Net Acidity (Neutralises both AASS & PASS) (kg/m3)
BB 100 160 160 160 160 177 160.22 No. No. No.Additional Line Regime BB 160 150 160 <td></td> <td></td> <td>CLAY</td> <td>8.6</td> <td>< 0.5</td> <td>< 0.016</td> <td></td> <td></td> <td></td> <td>4.6</td> <td></td> <td>No</td> <td></td> <td>No Additional Lime Required</td> <td>No Additional Lime Required</td>			CLAY	8.6	< 0.5	< 0.016				4.6		No		No Additional Lime Required	No Additional Lime Required
Bis D0 D3 LAV E3 Additional Line Register No. Additinter No. Additional Line Register															No Additional Lime Required
BB 0.30 1.00 CAV 9.1 - 0.05 - 0.000 0.000 4.7 -0.17 No YTS No Addiminal Line Regiment															No Additional Lime Required
BB 20 2.5 CLVPT SMU 87 4.0.5 4.0.00 0.17 4.6 0.211 No. YES No. Additional lange parameter No. Additional lange parameter </td <td></td>															
Bits 0.00 0.00 0.00 0.00 0.00 4.6 0.31 No YES Ro-Addres Lums Regime Ro-Addres Lums Regime <thro-addres lums="" regime<="" th=""> Ro-Addres Lums</thro-addres>															
BH8 0.50 1.00 CLV 8.0 < 6.5 < 0.00 0.000<															
B H LO HS CLV B < C.5 < C.00 C.00 C.00 C.00 D.00															No Additional Lime Required
BHB 1.50 1.75 CLAY 2 < 0.55 < 0.000 0.000															No Additional Lime Required
BB68 CO D.S. S. P. Additional Line Requires No. Additional Line Requi	BH18	1.50 1.75	CLAY	9.2	< 0.5	< 0.016		0.000	0.160	10	-0.908	No	YES		No Additional Lime Required
BB68 0.25 0.75 CLAY 8.3 0.000 No No No MA BB78 10.135 SEXTCAY 8.3 <0.015	BH18	1.75 1.90	CLAY	9.1	< 0.5	< 0.016		0.000	0.019	1.7	-0.163	No	No	No Additional Lime Required	NA
BR68 100 1.22 SLTYCLY 8.8 < 0.05 < 0.070 4.4 -0.30 No YES No Additional Line Required No Additional Line Requ			SILTY CLAY							6.5				No Additional Lime Required	No Additional Lime Required
BB30 0.00 0.25 SLT CLAY 8.8 < 0.07 0.000 0.200 7.3 -0.500 No. YES No. Additional Line Review															
BB30 6.50 1.00 SLT"CLV 8.8 < 0.05 0.000 0.0210 5.6 -0.388 No. VES No. Additional Line Review															No Additional Lime Required
BH30 1.50 1.57 CL/Y 8.8 < < < < < < < < < >>< 0.033 3.2 - 3.28 No. Additional Line Required No. Additional Line Required BH33 0.00 0.25 S.17 CL/Y 8.2 < < 0.00 0.034 3.2 - 0.035 No. Additional Line Required															No Additional Lime Required
BH33 0.00 0.25 BLTYCLAV 9.1 < 6.6 < 0.000 0.010 6.7 -0.556 No YES No Additional Lime Required No Additional Lime Required <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
BH33 0.25 0.26 CLV 8.8 < 0.05 < 0.026 < 0.026 < 0.026 No															
BH33 0.50 1.00 CLV 6.2 < 0.05 < < No															No Additional Lime Required
BH33 1.25 1.73 SLTV SAV CLAY 9.0 < 0.5 < 0.016 0.000 0.200 10 -0.388 No YES No Additional Line Reques No Add										0.0					
BH40 0.00 0.50 SULTY SANY CLAY 9.1 < c.5. < 0.016 0.000 0.200 10 -0.888 No VES No Additional Line Required No Additional										4.6					No Additional Lime Required
BH40 0.50 1.00 LCAV 8.8 < 0.55 < 0.016 No No NA NA BH40 1.75 2.11 SLTY CLV 8.0 < 0.55	BH33		SILTY CLAY	9.0	< 0.5	< 0.016		0.000	0.210	5.7	-0.399	No			No Additional Lime Required
BH40 1.00 1.50 SILTY CLY 9.0 < < 0.5 < < 0.016 0.020 0.217 2.11 0.0.2170 No. Additional Lime Required No. Additional										10				No Additional Lime Required	No Additional Lime Required
BH40 1/75 2.11 SLTY CAY 8.9 < 0.05 < 0.000 0.022 4.3 -0.367 No YES No Additional Lime Requires No Additional Lime Requires BH42 0.00 0.25 SLTY CAYY 8.0 < 0.05															
BH42 0.00 0.25 SLTY CLAYY 9.0 VES No Additional Line Required No Additional Line Required No Additional Line Required BH42 1.25 SLTY CLAYY 9.1 < C.0.5 < 0.016 0.000 0.1/00 7.3 -0.680 No VES No Additional Line Required No Additional Line Required No Additional Line Required BH48 0.0 0.50 SLTY CLAY 8.1 < 0.05 < 0.016 0.000 0.420 8.4 -0.680 No VES No Additional Line Required No Additional Line															No Additional Lime Required
BH42 0.50 1.00 SLTY CLAYEY SAND 9.1 < 0.55 < 0.016 0.000 0.240 7.6 -0.572 No. No. No. No. Maddinonal Line Required No. Additional Line Required <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
BH42 1.25 1.75 CBUTY CLAY 0.15 < 0.05 0.00 7.3 -0.680 No YES No. Additional Line Required No. Additional Line Require															
BH49 0.00 0.50 CLAYEYSLTY 8.8 <0.05 0.620 8.4 -0.634 No YES No Additional Lime Required No		1 25 1 75								7.0			YES		No Additional Lime Required
BH49 0.75 1.26 SUTY CLAY 8.1 < < 0.5 < < 0.016 0.000 0.280 8.9 -0.691 No Modelinical Line Reguined No Additional Line Reguined															No Additional Lime Required
BH49 250 2.75 CLAYEY SAND 9.1 < 0.5 < 0.016 0.000 0.190 3.9 -0.227 No YES No Additional Lime Required No Additional Lime R															No Additional Lime Required
BH49 3.00 3.10 SLTY CLAY 9.1 < 0.5 < 0.016 0.000 0.230 5.2 -0.325 No VES No Additional Line Required No Additined Line Required No Additined Line Re	BH49	1.50 2.00	SILTY CLAY	8.8	< 0.5	< 0.016		0.000	0.420	4.7	-0.082	No	YES	No Additional Lime Required	No Additional Lime Required
Image Image Quart Quart Quart Quart Quart Quart Na Na Na Na MW TOT 1 450 4.50 CLAY 6.0 <0.5															No Additional Lime Required
MW TOT 250 3.50 CLAY 9.1 < < 0.000 0.009 No No NA NA MW TOT 4.50 6.50 C.016 0.000 <										5.2					No Additional Lime Required
MW TOT 1 4.50 4.50 CLAY 6.0 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 <td></td> <td>1.50 2.00</td> <td></td>		1.50 2.00													
MW TOT 1 6.10 6.50 SAND 6.6 < 0.006 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 <td></td>															
MW TOT 1 7.50 7.55 SAND 6.5 < < 0.016 0.000 < < 0.005 < < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.00															
MW TOT 1 10.00 9.45 SANDY CLAY 6.3 < 0.05 < 0.005 < 0.005 < 0.005 No No NA NA MW TOT 1 12.00 12.45 SANDY CLAY 6.7 < 0.05															
MW TOT 13.60 14.05 CLAY 6.7 < < 0.05 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 </td <td></td>															
MW TOT 2 6.10 6.50 CLAY 8.6 < 0.016 0.000 < 0.005 < 0.005 No No NA NA MW TOT 3 10.50 0.2LAY 7.8 < 0.5	MW TOT 1		SANDY CLAY	6.4	< 0.5	< 0.016		0.000	< 0.005		< 0.005	No	No	NA	NA
MW TOT2 10.50 10.95 CLAY 8.7 < < 0.5 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005 < < 0.005															
MW TOT3 3.50 4.00 CLAY 7.8 < 0.05 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005															
MW TOT3 500 5.50 CLAY 9.0 < 0.55 < < 0.006 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 <td></td>															
MW TOT3 7.50 7.55 SANDY CLAY 8.5 < 0.05 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.00															
MW TOT3 9.0 9.45 CLAY 8.8 < 0.5 < 0.006 < 0.005 < 0.005 No No NA NA MW TOT3 12.00 12.45 SAND C.AY 8.9 < 0.5															
MW TOT: 12:00 12:45 SAND 7.7 < 0.05 < 0.005 < 0.005 < 0.005 < 0.005 No No NA NA MW TOT: 15:00 15:45 CLAY 8.9 < 0.5															
MW TOT 4 2.10 3.00 SILTY SANDY CLAY 9.2 < 0.02 0.000 0.031 1.3 -0.108 No YES No Additional Lines Required No N															
MW TOT 4 7.50 7.55 SANDY CLAY 7.6 < 0.05 < 0.005 < 0.005 < 0.005 < 0.005 No No NA NA MW TOT 4 12.00 12.45 SANDY CLAY 7.6 < 0.5						< 0.016									
MW TOT 4 12:00 12:45 SAND 7.8 < 0.5 < 0.016 0.000 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005										1.3					No Additional Lime Required
MW TOT 4 15.00 15.45 CLAY 7.9 < 0.55 < 0.016 0.000 < 0.005 < 0.005 < 0.005 No No NA NA MW TOT 4 18.00 18.45 CLAY 7.2 < 0.5															
MW TOT 4 IB.00 IB.45 CLAY 7.2 < 0.05 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 </td <td></td> <td></td> <td></td> <td>7.8</td> <td></td>				7.8											
MW TOT 5 2.00 2.20 CLAY 9.0 < 0.5 < 0.016 0.000 < 0.005 < 0.005 < 0.005 No No NA NA MW TOT 5 2.20 2.20 CLAY 7.7 < 0.5															
MW TOT 5 2.0 2.50 CLAY 7.7 < 0.5 < 0.016 0.000 < 0.005 < 0.005 < 0.005 No No NA NA MW TOT 5 6.50 6.50 6.50 6.50 6.50 6.000 < 0.005															
MW TOT 5 6.50 6.95 CLAY 8.6 < 0.5 < 0.016 0.000 < 0.005 < 0.005 < 0.005 No No NA NA MW TOT 5 11.00 11.45 SANDY CLAY 7.5 < 0.5															
MW TOT 5 11.00 11.45 SANDY CLAY 7.5 < 0.5 < 0.016 0.000 < 0.005 < 0.005 No No NA NA MW TOT 5 17.00 17.45 CLAY 8.9 < 0.5															
MW TOT 5 17.00 17.45 CLAY 8.9 < 0.5 < 0.016 0.000 < 0.005 < 0.005 No No NA NA MW TOT 5 20.00 20.45 CLAYEY SAND 7.5 < 0.5															
MW TOT 6 2.00 3.00 SANDY GRAVELLY CLAY 9.0 < 0.05 < 0.005 < 0.005 No NA NA MW TOT 6 5.00 5.45 SANDY GRAVELLY CLAY 9.0 < 0.5						< 0.016						No	No		
MW TOT 6 5.00 5.45 SANDY CLAY 7.1 < 0.5 < 0.016 0.000 < 0.005 < 0.005 No No NA NA															
MW TOT 6 8.00 8.45 CLAYEY SAND 8.2 < 0.5 < 0.016 0.000 < 0.005 < 0.005 No No NA NA															
NW 1010 0.00 0.00 CATELONIND 6.2 < U.3 < U.010 U.000 < U.000 < U.000 NO NO NA NA	MW TO 16	0.00 8.45	GLATET SAND	0.2	< 0.5	< 0.016		0.000	< 0.005		< 0.005	INO	INO	NA	NA

Note: * Equivalent oxidisable sulphur calculated as TAA/30.59 Liming rates assume a bulk density of 1.6/m ³ Fineness Factor = 3

TABLE C-1 SUMMARY OF ACID SULFATE TEST RESULTS Cited of the Construction of the Constr

Client :		City Pacific	Limited	Project Number : 06692015							
Project :		Townsville	Ocean Terminal	Tested By			AJ / BB				
Location :		Project Site)	Checked			WSB				
Hole No.	Depth (From	m-BGL) To	Soil Type	рН	pHfoX	reaction	Interpre high	eted PASS F medium	Potential low		
BH1	0	0.25	CLAY	8.7	6.4	Slight	nign	medium	10W		
BH1	0.25	0.25	CLAY	9.0	6.6	Slight			x		
BH1	0.25	0.75	CLAY	8.8	6.3	Slight			x		
BH1	0.75	1	CLAY	8.8	6.9	Slight			x		
BH1	1	1.25	CLAY	8.9	6.4	Slight			x		
BH1	1.25	1.5	CLAY	9.0	8.6	Strong			x		
BH1	1.25	1.75	CLAY	8.9	6.3	Slight			x		
BH1	1.75	1.83	CLAY	8.9	6.4	Slight			x		
BH1	1.83	1.93	CLAY	9.2	6.4	Slight			x		
DITI	1.05	1.95	OLAT	5.2	0.4	Sign			^		
BH2	0	0.25	CLAY	9.1	6.5	Slight			x		
BH2	0.25	0.25	CLAY	9.1	6.4	Slight					
BH2 BH2	0.25	0.5	CLAY	8.9	6.5	Slight			X X		
BH2	0.5	0.75	CLAY	8.7	6.3	Slight			x x		
BH2	0.75	1.25	CLAY	9.0	6.3	Slight		+	x x		
BH2 BH2	1.25	1.25	CLAY	9.0 8.8	6.2	Slight		+			
BH2 BH2	1.25	1.5	CLAY	8.8	6.1	Slight			<u>x</u>		
BH2		1.75	CLAY		6.4	Ŭ			<u>x</u>		
	1.75			8.9		Slight			X		
BH2	1.83	1.93	CLAY	9.6	6.6	Slight			x		
DUD	0	0.25	CLAV	0.0	6.5	Madarata					
BH3	0		CLAY	8.8	6.5	Moderate			<u>x</u>		
BH3	0.25	0.5	CLAY	8.9	6.5	Slight			X		
BH3	0.5	0.75	CLAY	9.1	6.5	Slight			X		
BH3	0.75	1	CLAY	9.0	6.4	Slight			х		
BH3	1	1.25	CLAY	8.9	6.4	Slight			Х		
BH3	1.25	1.35	Clayey SAND	9.1	6.3	Slight			х		
BH3	1.35	1.5	CLAY	8.9	6.2	Slight			Х		
BH3	1.5	1.8	CLAY	9.2	6.4	Slight			Х		
BH3	1.8	1.9	CLAY	9.6	6.5	Slight			X		
			-								
BH4	0	0.25	CLAY	9.1	6.6	Slight			Х		
BH4	0.25	0.5	CLAY	9.2	6.6	Slight			Х		
BH4	0.5	0.75	CLAY	9.0	6.4	Slight			Х		
BH4	0.75	1	CLAY	9.1	6.5	Slight			Х		
BH4	1	1.25	CLAY	9.5	6.6	Slight			Х		
BH4	1.25	1.5	CLAY	8.7	6.4	Slight			Х		
BH4	1.5	1.6	CLAY	8.9	6.5	Slight			х		
BH4	1.6	1.7	CLAY	9.0	6.5	Slight			х		
				1							
BH5	0	0.25	CLAY	8.9	6.6	Slight			х		
BH5	0.25	0.5	CLAY	9.1	6.6	Slight			х		
BH5	0.5	0.75	CLAY	9.2	6.4	Slight			х		
BH5	0.75	1	CLAY	9.1	6.5	Slight			Х		
BH5	1	1.25	CLAY	8.9	6.4	Slight			х		
BH5	1.25	1.5	CLAY	9.0	6.6	Moderate			Х		
BH5	1.55	1.6	CLAY	10.0	6.4	Slight			Х		
			_								
BH6	0	0.25	CLAY	9.3	6.6	Moderate			х		
BH6	0.25	0.5	CLAY	9.4	6.6	Moderate			х		
BH6	0.5	0.75	CLAY	9.0	6.6	Moderate			х		
BH6	0.75	1	CLAY	9.3	6.6	Moderate			х		
BH6	1	1.25	CLAY	9.0	6.5	Slight			х		
BH6	1.25	1.5	CLAY	9.2	6.5	Slight			х		
BH6	1.5	1.75	Sandy CLAY	9.0	6.6	Slight			х		
BH6	1.75	2	CLAY	9.1	6.6	Slight			х		
BH6	2	2.1	CLAY	9.5	6.6	Slight			х		
BH6	2.1	2.2	CLAY	9.0	6.5	Slight			х		
						Ŭ.					
BH7	0	0.25	CLAY	9.0	6.6	Moderate			х		
BH7	0.25	0.5	CLAY	8.9	6.6	Moderate			х		

Client :		City Pacific		Project N			06692015		
Project :			Ocean Terminal	Tested By			AJ / BB		
Location :		Project Site	9	Checked	By:		WSB		
Hole No.	Depth (Soil Type	pН	pHfoX	reaction		eted PASS F	
BH7	From	To 0.75	CLAY		-	Moderate	high	medium	low
BH7 BH7	0.5 0.75		CLAY	8.9	6.6				X
		1		8.9	6.5	Moderate			X
BH7	1	1.25	CLAY	9.0	6.2	Moderate			X
BH7	1.25	1.5	CLAY	9.0	6.6	Moderate			X
BH7	1.5	1.75	CLAY	8.9	6.3	Moderate			X
BH7	1.75	2	CLAY	8.7	6.3	Slight			X
BH7	2	2.1	CLAY	9.7	6.4	Slight			x
BH8	0	0.25	CLAY	9.0	6.5	Clight			×
BH8			CLAY		6.5	Slight			X
BH8	0.25	0.5 0.75	CLAY	8.9 9.1	6.5 6.4	Slight			X
BH8	0.5	0.75	CLAY	9.1	6.4	Slight Slight			x
BH8	0.75	1.25	CLAY	9.0	6.2	Slight			
BH8	1.25	1.25	CLAY	9.0		Slight			<u>x</u>
BH8	1.25		CLAY		6.5				X
		1.75		9.0	6.3	Slight		+	X
BH8 BH8	1.75	2 2.25	CLAY Clayey SAND	9.1	6.3	Slight Slight			X
BH8 BH8	2 2.25	2.25	Clayey SAND CLAY	8.7 8.8	6.4 6.4	Slight			<u>x</u>
									X
BH8	2.45	2.5	CLAY	8.8	6.3	Slight			x
BH9	0	0.25	CLAY	9.2	6.6	Slight			v
BH9			CLAY			Slight			<u>x</u>
	0.25	0.5		9.2	6.5	U			X
BH9 BH9	0.5	0.75	CLAY CLAY	9.2	6.5	Slight			X
	0.75	1	-	9.2	6.4	Slight			X
BH9	1	1.25	CLAY	9.1	6.6	Slight			X
BH9 BH9	1.25	1.5 1.75	CLAY CLAY	9.2	6.4	Slight			X
	1.5			8.8	6.3	Slight			X
BH9 BH9	1.75 1.8	1.8 1.88	Sandy CLAY Sandy CLAY	9.3 9.3	6.4 6.3	Slight Slight			X
БЦЭ	1.0	1.00	Sanuy CLAT	9.5	0.3	Sign			X
BH10	0	0.25	CLAY	9.1	6.4	Slight			x
BH10 BH10	0.25	0.25	CLAY	9.1	6.4	Slight			x
BH10	0.25	0.75	CLAY	9.1	6.5	Slight			× X
BH10	0.75	1	CLAY	9.1	6.6	Slight			x
BH10 BH10	0.75	1.25	CLAY	9.1 8.8	6.4	Slight			x
BH10	1.25	1.25	CLAY	9.4	7.0	Slight			×
BH10	1.25	1.8	CLAY	9.4	6.8	Slight			X
BH10	1.8	1.87	CLAY	9.3	6.3	Slight			x
DITIO	1.0	1.07	ULAT	9.5	0.5	Sign			^
BH11	0	0.25	CLAY	8.9	6.6	Slight			x
BH11	0.25	0.25	CLAY	9.0	6.4	Slight			x
BH11	0.25	0.75	CLAY	9.2	6.4	Slight			x
BH11	0.75	1	CLAY	9.3	6.3	Slight			x
BH11	1	1.25	CLAY	9.1	6.4	Slight			x
BH11	1.25	1.5	CLAY	9.1	6.3	Slight			x
BH11	1.5	1.75	CLAY	9.6	6.8	Slight			x
BH11	1.75	1.8	CLAY	8.6	5.9	Slight			x
				0.0	5.0	g			~
BH12	0	0.25	CLAY	9.2	6.5	Moderate		1	x
BH12	0.25	0.5	CLAY	9.1	6.4	Slight			х
BH12	0.5	0.75	CLAY	8.8	6.3	Moderate			X
BH12	0.75	1	CLAY	9.0	6.3	Slight			X
BH12	1	1.25	Sandy CLAY	9.0	6.5	Slight		1	X
BH12	1.25	1.3	Sandy CLAY	8.4	6.4	Strong		1	x
								1	
BH13	0	0.25	CLAY	9.2	6.5	Slight		1	x
BH13	0.25	0.5	CLAY	9.2	6.4	Slight		1	X
BH13	0.5	0.75	CLAY	9.2	6.5	Slight		1	X
BH13	0.75	1	CLAY	9.2	6.4	Slight			X
BH13	1	1.25	CLAY	9.1	6.4	Slight		1	x

Client :		City Pacific L		Project Number : 06692015							
Project :			cean Terminal	Tested By			AJ / BB				
Location :		Project Site		Checked	By:		WSB				
Hole No.	Depth (From	m-BGL) To	Soil Type	рН	pHfoX	reaction	Interpre high	eted PASS F	Potentia low		
BH13	1.25	1.5	CLAY	9.1	6.4	Slight	nign	moulum	x		
BH13	1.5	1.7	CLAY	9.1	6.6	Slight			X		
BH13	1.7	1.73	CLAY	9.5	6.6	Slight			x		
Billo	1.7	1.70	0E/(I	0.0	0.0	Clight			~		
BH14	0	0.25	CLAY	9.1	6.6	Slight			х		
BH14	0.25	0.5	CLAY	9.3	6.6	Slight			x		
BH14	0.5	0.75	CLAY	9.3	6.6	Moderate			X		
BH14	0.75	1	CLAY	9.2	6.6	Slight			X		
BH14	1	1.25	CLAY	9.3	6.4	Slight			x		
BH14	1.25	1.5	CLAY	9.4	6.4	Slight			X		
BH14	1.5	1.75	CLAY	9.4	6.5	Slight			X		
BH14	1.75	1.89	CLAY	9.6	6.5	Slight			X		
						g					
BH15	0	0.25	CLAY	9.0	6.8	Slight		1	х		
BH15	0.25	0.5	CLAY	9.2	6.5	Slight			X		
BH15	0.5	0.75	CLAY	9.3	6.5	Slight			x		
BH15	0.75	1	CLAY	9.3	6.4	Slight			x		
BH15	1	1.25	CLAY	9.1	6.5	Slight			x		
BH15	1.25	1.5	CLAY	9.1	6.5	Slight			x		
BH15	1.5	1.56	CLAY	8.7	8.4	Moderate			x		
21110			02.11	0.1	0.1	moderate			~		
BH16	0	0.15	CLAY	9.1	6.4	Slight			х		
						Ŭ					
BH17	0	0.25	CLAY	9.3	6.5	Nil			х		
BH17	0.25	0.5	CLAY	9.4	6.4	Nil			х		
BH17	0.5	0.75	CLAY	9.3	6.5	Nil			х		
BH17	0.75	1	CLAY	9.3	6.5	Nil			х		
BH17	1	1.25	CLAY	9.2	6.6	Nil			х		
BH17	1.25	1.35	CLAY	9.7	6.6	Nil			х		
BH17	1.35	1.45	CLAY	8.6	5.9	Nil			х		
BH18	0	0.25	CLAY	9.0	7.4	Strong			х		
BH18	0.25	0.5	CLAY	9.4	6.5	Nil			х		
BH18	0.5	0.75	CLAY	9.3	6.5	Nil			х		
BH18	0.75	1	CLAY	9.2	6.4	Nil			Х		
BH18	1	1.25	CLAY	9.3	6.5	Nil			х		
BH18	1.25	1.5	CLAY	9.3	6.4	Nil			х		
BH18	1.5	1.75	CLAY	9.3	6.6	Nil			х		
BH18	1.75	1.9	CLAY	9.5	6.6	Nil			х		
BH18	1.9	1.95	CLAY	9.1	6.2	Nil			х		
					<u> </u>						
BH19	0	0.25	CLAY	8.6	6.9	Slight			x		
BH19	0.25	0.5	CLAY	8.6	6.9	Slight			x		
BH19	0.5	0.75	CLAY	8.6	6.8	Slight			X		
BH19	0.75	1	CLAY	9.2	6.6	Slight			X		
BH19	1	1.25	CLAY	8.6	6.8	Slight			х		
BH19	1.25	1.5	CLAY	8.6	6.6	Slight			X		
BH19	1.5	1.75	CLAY	8.4	6.4	Slight			X		
BH19	1.75	1.9	CLAY	8.6	6.6	Slight			X		
BH19	1.9	1.95	CLAY	9.6	6.7	Slight			x		
BH20	0	0.25	Silty CLAY	8.9	6.4	Moderate			v		
BH20 BH20	0.25	0.25	Silty CLAY Silty CLAY	8.9	6.5	Slight			X		
BH20 BH20	0.25	0.5	CLAY	9.3	6.1	Slight			X X		
BH20 BH20	0.5	0.75	CLAY	9.3	6.4	Slight			X X		
BH20 BH20	0.75	1.25	Silty CLAY	8.3	8.3	Strong		+	X		
BH20 (refusal)	1.25	1.25	Silty CLAY	9.0	6.3	Slight			X		
	1.20	1.0	Only OLAT	5.0	0.3	Silgrit			Χ		
BH21	0	0.3	Silty CLAY	8.8	6.3	Slight			x		
BH21	0.3	0.5	CLAY	9.1	6.6	Slight		-	x		

Client :		City Pacifi		Project N			06692015		
Project :		Townsville	Ocean Terminal	Tested By	/:		AJ / BB		
Location :		Project Sit	e	Checked	By:		WSB		
	—	501			1				
Hole No.	Depth (From	m-BGL) To	Soil Type	рН	pHfoX	reaction	high	eted PASS F medium	low
BH21	0.5	0.8	CLAY	9.1	6.3	Slight			х
BH21	0.8	1	Silty CLAY	8.8	6.3	Slight			х
BH21	1	1.25	Silty CLAY	8.9	6.2	Slight			х
BH21	1.25	1.35	Silty CLAY	8.6	6.4	Slight			х
BH21 (refusal)	1.35	1.38	Silty CLAY	9.0	6.8	Slight			х
BH22	0	0.25	CLAY	9.0	6.7	slight			x
BH22	0.25	0.5	CLAY	8.8	6.4	slight			x
BH22	0.5	0.75	CLAY	8.5	6.4	slight			x
BH22	0.75	1	CLAY	8.7	6.4	moderate			x
BH22	1	1.25	Silty CLAY	8.6	6.3	moderate			x
BH22	1.25	1.5	Silty CLAY	8.9	6.3	slight			x
BH22	1.5	1.75	Silty CLAY	8.8	6.3	slight			x
BH22	1.75	1.8	Silty clayey SAND	8.3	6.1	slight			x
						Ŭ			
BH23	0	0.25	Silty CLAY	8.7	6.4	slight			х
BH23	0.25	0.3	Clayey gravelly SAND	8.7	6.6	moderate			х
BH23	0.3	0.4	Clayey SAND	9.1	6.4	slight			х
BH23	0.4	0.5	CLAY	8.8	6.5	slight			х
BH23	0.5	0.75	CLAY	8.9	6.6	moderate			х
BH23	0.75	1.1	Silty CLAY	8.9	6.4	slight			х
BH23	1.1	1.5	CLAY	8.4	6.6	slight			х
BH23	1.5	1.8	Silty CLAY	8.7	6.6	slight			x
BH24	0	0.25	Silty CLAY	8.7	6.1	slight			x
BH24	0.25	0.5	Silty CLAY	8.6	5.5	moderate			x
BH24	0.5	0.75	CLAY	9.0	7.2	slight			X
BH24	0.75	1	CLAY	9.0	6.5	slight			x
BH24	1	1.25	Silty CLAY	8.7	6.8	slight			х
BH24	1.25	1.5	Silty CLAY	8.9	6.5	moderate			х
BH24	1.5	1.75	Silty CLAY	8.8	6.4	moderate			х
BH24	1.75	1.8	Silty CLAY	8.7	6.3	slight			х
BH24 (refusal)	1.8	1.87	SAND	9.1	6.4	slight			X
BH25	0.1	0.3	Silty Clayey SAND	8.6	5.6	moderate			x
BH25	0.3	0.5	CLAY	9.4	6.4	slight			x
BH25	0.5	0.75	CLAY	9.2	6.5	slight			x
BH25	0.75	0.9	CLAY	8.9	6.6	slight			x
BH25	0.9	1.25	Silty CLAY	8.8	6.3	moderate			x
BH25	1.25	1.5	Silty CLAY	8.9	6.4	slight			x
BH25	1.5	1.75	Silty CLAY	8.9	6.3	slight		1	x
BH25	1.75	1.9	SAND	8.7	6.2	slight			x
BH25	1.9	2.23	Silty CLAY	8.8	6.4	moderate			X
BH26	0	0.25	Silty CLAY	8.9	6.4	slight			x
BH26	0.25	0.25	CLAY	9.4	6.8	slight			x
BH26	0.25	0.5	CLAY	9.4	7.0	moderate			X
BH26	0.75	1	CLAY	9.1	6.7	slight			X
BH26	1	1.25	Silty CLAY	8.9	6.6	moderate			x
BH26	1.25	1.32	Silty CLAY	9.0	6.5	moderate			x
DUICE	-								
BH27	0	0.3	Silty Sandy CLAY	8.9	6.6	slight			х
BH27	0.3	0.5	CLAY	9.5	6.8	slight			х
BH27	0.5	0.75	CLAY	9.2	7.2	slight		┦───┤	X
BH27	0.75	1	CLAY	9.0	6.8	slight			x
BH27	1	1.2	CLAY	9.0	6.8	slight		┥──┤	X
BH27 BH27	1.2 1.5	1.5 1.55	Silty CLAY Silty CLAY	8.6 8.8	6.8 7.1	Strong Strong		┨	X X
BH27 (refusal)	1.55	1.63	Silty CLAY	0.0 8.8	6.6	slight		┨	
ullar (ielusal)	1.55	1.03		0.0	0.0	Sign			X

Client :		City Pacific	: Limited	Project N	umber :		06692015		
Project :		Townsville	Ocean Terminal	Tested By	<i>ı</i> :		AJ / BB		
Location :		Project Site	e	Checked	By:		WSB		
Hole No.	Depth (From	m-BGL) To	Soil Type	рН	pHfoX	reaction	Interpre high	eted PASS P medium	Potential low
BH28	0	0.25	Silty CLAY	8.7	6.3	moderate			х
BH28	0.25	0.5	ČLAY	9.2	6.8	slight			х
BH28	0.5	0.75	CLAY	9.3	6.6	slight			х
BH28	0.75	1	CLAY	8.6	6.5	slight			х
BH28	1	1.25	Silty CLAY	8.8	6.7	moderate			х
BH28	1.25	1.5	Silty CLAY	8.9	6.6	moderate			х
BH28	1.5	1.7	Silty CLAY	8.9	6.4	moderate			х
BH28 (refusal)	1.7	1.75	Silty CLAY	8.9	6.4	slight			х
BH29	0	0.25	Silty CLAY	8.6	6.4	slight			x
BH29	0.25	0.5	CLAY	9.3	6.7	slight			x
BH29	0.5	0.75	CLAY	9.0	6.8	slight			x
BH29	0.75	1	CLAY	8.8	6.7	slight			х
BH29	1	1.25	Silty CLAY	8.9	6.7	moderate			x
BH29	1.25	1.5	Silty CLAY	8.9	6.6	moderate			x
BH29	1.5	1.75	Silty CLAY	8.8	6.5	moderate			X
BH29	1.75	1.95	Silty CLAY	8.9	6.4	moderate		1	x
			,						
BH30	0	0.25	Silty CLAY	8.9	6.4	moderate			х
BH30	0.25	0.5	Silty CLAY	8.6	6.3	moderate			х
BH30	0.5	0.75	Silty CLAY	8.5	6.2	moderate			х
BH30	0.75	1	ĆLAY	9.3	7.1	slight			х
BH30	1	1.25	CLAY	9.1	7.1	slight			х
BH30	1.25	1.5	CLAY	9.0	7.6	moderate			х
BH30	1.5	1.75	CLAY	8.9	7.2	slight			х
BH30	1.75	2	Silty CLAY	8.9	6.7	moderate			х
BH30	2	2.16	Silty CLAY	9.0	6.6	moderate			х
BH31	0	0.25	Silty Sandy CLAY	8.6	6.3	moderate			х
BH31	0.25	0.5	Silty Sandy CLAY	8.8	6.6	slight			х
BH31	0.5	0.75	CLAY	9.1	7.5	slight			х
BH31	0.75	1	CLAY	9.2	7.2	slight			х
BH31	1	1.25	Silty CLAY	8.5	7.0	Strong			х
BH31	1.25	1.5	Silty CLAY	8.8	6.5	slight			х
BH31	1.5	1.75	Silty CLAY	8.7	6.5	moderate			х
BH31	1.75	2	Silty CLAY	8.7	6.4	slight			х
BH31	2	2.25	Silty CLAY	8.6	6.7	moderate			х
BH31	2.25	2.3	Silty CLAY	8.7	6.6	moderate			х
BH31 (refusal)	2.3	2.34	Silty CLAY	9.1	6.5	slight			x
DUICO	<u>^</u>	0.05	016-01-014		0.5				
BH32	0	0.25	Silty CLAY	8.9	6.5	moderate			X
BH32	0.25	0.4	Silty CLAY	8.7	6.5	moderate			X
BH32	0.4	0.75	CLAY	9.3	7.1	slight			X
BH32	0.75	1	CLAY Silty CLAX	8.9	6.8	slight			<u>x</u>
BH32 BH32	1 1.25	1.25 1.5	Silty CLAY Silty CLAY	8.8	6.5	moderate			<u>x</u>
BH32 BH32	1.25	1.5	Silty CLAY Silty CLAY	8.9 9.0	6.4 6.5	moderate moderate			<u>x</u>
BH32 (refusal)	1.5	1.55	Silty CLAY	9.0 8.9	6.4	slight			X X
Di loz (iciusai)	1.55	1.0		0.9	0.4	Sign			^
BH33	0	0.25	Silty CLAY	8.9	7.3	moderate			x
BH33	0.25	0.5	CLAY	9.3	7.0	slight			x
BH33	0.5	0.75	CLAY	9.2	6.7	slight			x
BH33	0.75	1	CLAY	9.0	7.4	slight		1 1	x
BH33	1	1.25	Silty CLAY	8.8	6.9	moderate			x
BH33	1.25	1.5	Silty CLAY	8.7	6.8	moderate		1 1	x
BH33	1.5	1.63	Silty CLAY	8.9	6.7	moderate		1 1	x
BH33 (refusal)	1.63	1.73	Silty CLAY	9.0	6.4	slight		1	x
, /		-	, -						
BH34	0	0.25	Silty CLAY	8.8	6.6	moderate			х
BH34	0.25	0.5	Silty CLAY	8.6	6.2	moderate			х

Client :		City Pacific		Project N			06692015				
Project :		Townsville	Ocean Terminal	Tested By: AJ / BB							
Location :		Project Sit	e	Checked	By:		WSB				
Hole No.	Depth (,	Soil Type	рН	pHfoX	reaction		eted PASS F			
DU04	From	To			- 7.4	alialat	high	medium	low		
BH34 BH34	0.5 0.75	0.75	CLAY CLAY	9.2 9.2	7.1	slight slight			X		
BH34	0.75	1.25	Silty CLAY	9.2 8.8	7.0 6.7	slight			x		
BH34 BH34	1.25	1.25	Silty CLAY	8.6	6.9	moderate			<u>x</u>		
BH34 BH34	1.5	1.75	Silty CLAY	8.8	6.7	moderate			x		
BH34 (refusal)	1.75	1.83	Silty CLAY	8.7	6.6	slight			x		
Bris4 (relusal)	1.75	1.05		0.7	0.0	Silgin			^		
BH35	0	0.25	Silty CLAY	8.9	7.1	Strong			х		
BH35	0.25	0.5	Silty CLAY	8.7	6.5	moderate			х		
BH35	0.5	0.75	Clayey SAND	8.8	7.1	slight			х		
BH35	0.75	1	CLAY	9.1	7.6	slight			х		
BH35	1	1.25	CLAY	9.3	7.4	slight			Х		
BH35	1.25	1.5	CLAY	9.1	7.6	slight			х		
BH35	1.5	1.75	Silty CLAY	8.7	7.1	slight			х		
BH35	1.75	1.9	Silty CLAY	8.9	7.1	moderate			х		
BH35 (refusal)	1.9	1.96	Silty CLAY	9.0	6.7	moderate			х		
DH 26	0	0.25		0.0	6.5	moderate			~		
BH36 BH36	0.25		Silty CLAY	8.8	6.5 7.7				X		
BH36	0.25	0.5 0.75	Silty Clayey SAND CLAY	8.8 9.3	7.9	slight slight			<u>x</u>		
BH36	0.5	1	CLAY	9.0	7.9	slight			<u>x</u>		
BH36	1	1.25	Silty CLAY	9.0 8.8	7.0	moderate			X		
BH36	1.25	1.5	Silty CLAY	8.8	6.9	slight			x		
BH36	1.25	1.6	SAND	8.8	7.0	slight			X		
BH36	1.6	2	Silty CLAY	9.1	7.2	slight			x		
BH36	2	2.15	Silty CLAY	8.7	7.1	strong			×		
BH36 (refusal)	2.15	2.10	Silty CLAY	9.1	6.4	slight			x		
			, ·			5					
BH37	0	0.25	Silty CLAY	8.6	5.3	moderate			х		
BH37	0.25	0.5	Silty Clayey SAND	8.7	7.0	moderate			х		
BH37	0.5	0.75	Silty Clayey SAND	8.7	7.6	slight			х		
BH37	0.75	1	CLAY	9.2	7.0	slight			х		
BH37	1	1.25	Silty CLAY	8.9	6.9	slight			х		
BH37	1.25	1.4	Silty CLAY	8.9	7.4	slight			Х		
BH37	1.4	1.75	SAND	8.7	6.5	slight			х		
BH37	1.75	1.9	Silty Sandy CLAY	8.8	4.6	slight			х		
BH37	1.9	2.25	Silty CLAY	8.7	7.1	moderate			х		
BH37	2.25	2.5	Silty CLAY	8.9	6.7	strong			х		
BH37 (refusal)	2.5	2.55	Silty CLAY	9.2	6.7	slight			X		
BU30	0	0.25	Silty CLAY	80	60	modorato		┨───┤	~		
BH38 BH38	0.25	0.25	Silty CLAY Silty CLAY	8.9 8.8	6.9 7.0	moderate moderate		┼──┤	<u>x</u>		
BH38 BH38	0.25	0.5	Silty CLAY Silty Clayey SAND	8.8	7.0	moderate			<u>x</u>		
BH38	0.5	0.8	CLAY	9.0	7.7	slight		┼──┤	<u>x</u>		
BH38	0.8	1.25	Silty CLAY	9.0 8.8	6.8	strong		+	X X		
BH38	1.25	1.5	Silty CLAY	8.8	6.8	strong		+	x		
BH38	1.5	1.6	Silty CLAY	8.8	6.8	strong			x		
BH38 (refusal)	1.6	1.66	Silty CLAY	8.9	6.5	slight			x		
				5.0	5.0	g					
BH39	0	0.25	Silty CLAY	9.0	6.5	slight			х		
BH39	0.25	0.5	Silty CLAY	8.9	6.3	slight			х		
BH39	0.5	0.75	Silty CLAY	8.9	6.3	slight			х		
BH39	0.75	1	Silty CLAY	8.9	6.4	moderate			х		
BH39	1	1.15	ĊLAY	8.9	6.6	moderate			х		
BH39	1.15	1.5	Silty CLAY	8.9	6.5	slight			х		
BH39	1.5	1.55	Silty CLAY	9.1	6.4	slight			х		
BH39 (refusal)	1.55	1.62	Silty CLAY	8.7	6.4	slight			х		
						<u> </u>		ļļ			
BH40	0	0.25	Silty Sandy CLAY	9.1	6.6	moderate			х		
BH40	0.25	0.5	Silty Sandy CLAY	9.0	6.5	moderate			X		

Client :		City Pacific	: Limited	Project N	umber :		06692015		
Project :		Townsville	Ocean Terminal	Tested By	<i>ı</i> :		AJ / BB		
Location :		Project Site	9	Checked	By:		WSB		
Hole No.	Depth (m-BGL)	Soil Type	рH	pHfoX	reaction	Interpre	eted PASS F	Potential
	From	То					high	medium	low
BH40	0.5	0.75	CLAY	9.4	6.7	slight			Х
BH40	0.75	1	CLAY	9.2	6.4	slight			х
BH40	1	1.25	Silty CLAY	8.8	6.6	moderate			Х
BH40	1.25	1.5	Silty CLAY	8.9	6.5	moderate		-	Х
BH40	1.5	1.75	Silty CLAY	9.0	6.4	moderate			х
BH40	1.75	2	Silty CLAY	9.0	6.9	moderate			X
BH40	2	2.05	Silty CLAY	8.9	6.6	slight			X
BH40 (refusal)	2.05	2.11	Silty CLAY	9.0	6.6	slight			x
BH41	0	0.25	Silty CLAY	8.9	6.9	moderate			х
BH41	0.25	0.5	Silty CLAY	8.8	7.0	moderate			х
BH41	0.5	0.75	Silty Clayey SAND	8.8	7.3	slight			х
BH41	0.75	1	CLAY	9.3	7.4	slight			х
BH41	1	1.25	CLAY	8.9	7.2	slight			х
BH41	1.25	1.5	CLAY	9.0	6.7	slight			Х
BH41	1.5	1.7	CLAY	8.8	6.7	slight			х
BH41	1.7	2	Silty Sandy CLAY	8.8	6.7	slight			х
BH41	2	2.25	Silty Sandy CLAY	8.4	7.0	moderate			Х
BH41	2.25	2.45	Silty Sandy CLAY	8.8	6.3	moderate			х
BH41 (refusal)	2.45	2.5	Silty Sandy CLAY	8.8	6.7	slight			X
BH42	0	0.25	Silty Sandy CLAY	8.9	7.2	strong			v
BH42 BH42	0.25	0.25	Silty Clayey SAND	8.9 8.9	6.8	moderate			x
BH42 BH42	0.25	0.75	Silty Clayey SAND	8.9	6.7	moderate			x
BH42	0.75	1	Silty Clayey SAND	8.8	6.8	slight			x x
BH42	1	1.25	CLAY	9.2	6.9	slight			x
BH42	1.25	1.5	Silty CLAY	9.0	6.8	slight			x
BH42	1.5	1.75	Silty CLAY	9.0	6.8	slight			x
BH42	1.75	2	SAND	8.9	6.6	slight			x
BH42	2	2.2	Silty CLAY	8.9	6.6	slight			x
BH42 (refusal)	2.2	2.27	Silty CLAY	9.2	6.5	slight			x
BH43	0	0.25	Silty CLAY	9.0	6.7	slight			х
BH43	0.25	0.5	Silty CLAY	8.8	6.8	slight			х
BH43	0.5	0.75	Silty CLAY	8.9	6.8	slight			х
BH43	0.75	1	Silty CLAY	8.9	6.6	moderate			х
BH43	1	1.25	Clayey Silty SAND	9.0	6.9	slight			х
BH43	1.25	1.5	Sandy CLAY	9.2	7.1	slight		-	X
BH43	1.5	1.75	SAND	8.8	6.4	slight		-	X
BH43	1.75	2	Silty CLAY	9.0	6.7	slight			x
BH43 BH43	2 2.25	2.25	Silty CLAY Silty CLAY	9.0 8.8	6.7	slight			<u>x</u>
BH43 BH43 (refusal)	2.25	2.5 2.55	Silty CLAY Silty CLAY	8.8 9.3	6.9 6.7	slight			<u>x</u>
	2.0	2.00		3.5	0.7	Silgin			•
BH44	0	0.25	Silty CLAY	9.0	6.8	moderate			x
BH44	0.25	0.5	Silty CLAY	8.6	6.7	moderate		1	x
BH44	0.5	0.75	Silty CLAY	9.4	7.6	slight		1	x
BH44	0.75	1	CLAY	9.1	7.2	slight			x
BH44	1	1.25	Silty CLAY	8.9	7.0	moderate			х
BH44	1.25	1.5	Silty CLAY	9.0	6.9	slight			х
BH44	1.5	1.65	Silty CLAY	9.0	6.8	slight			х
BH44 (refusal)	1.65	1.72	Silty CLAY	9.0	6.6	slight			х
	0	0.0			6.0	Moderati			
BH45	0	0.3	Silty CLAY	8.9	6.6	Moderate			X
BH45	0.3	0.5	Silty clayey SAND	9.2	6.7	Slight			<u>x</u>
BH45	0.5	0.75	CLAY	9.4	7.4	Slight			X
BH45 BH45	0.75 1	1 1.25	CLAY CLAY	9.5 9.1	6.8	Slight Slight			<u>x</u>
BH45 BH45	1.25	1.25	Silty CLAY	9.1 8.8	6.8 6.9	Moderate			x x
0040	1.20	1.0		0.0	0.9	wouerate			X

Client :		City Pacific	c Limited	Project Number : 06692015							
Project :		Townsville	Ocean Terminal	Tested By	/:		AJ / BB				
Location :		Project Site	е	Checked	By:		WSB				
Hole No.	Depth (From	m-BGL) To	Soil Type	рН	pHfoX	reaction	Interpre high	eted PASS F medium	Potential low		
BH45	1.75	1.9	Silty CLAY	8.9	6.9	Moderate			х		
BH45 (refusal)	1.9	1.94	Silty CLAY	9.1	6.6	slight			х		
BH46	0	0.25	Silty CLAY	8.6	6.9	Moderate			х		
BH46	0.25	0.5	Silty CLAY	8.8	6.6	Moderate			X		
BH46	0.5	0.75	Silty clayey SAND	8.9	7.3	Moderate			х		
BH46	0.75	1	CLAY	9.5	7.1	Slight			х		
BH46	1	1.25	CLAY	9.4	7.0	Moderate			Х		
BH46	1.25	1.5	Silty CLAY	8.6	6.9	Moderate			х		
BH46	1.5	1.75	Silty CLAY	8.8	6.8	Slight			х		
BH46	1.75	2	Silty CLAY	9.0	7.2	Moderate			х		
BH46 (refusal)	2	2.05	Silty CLAY	9.1	6.5	slight			x		
BH47	0	0.3	Silty CLAY	8.8	5.9	moderate			x		
BH47	0.3	0.45	SAND	9.0	6.3	moderate			x		
BH47	0.45	0.6	Silty CLAY	8.9	6.7	moderate			x		
BH47	0.6	1	Clayey Silty SAND	8.7	6.9	moderate			x		
BH47	1	1.2	Clayey Silty SAND	8.8	7.0	slight			x		
BH47	1.2	1.5	SAND	8.9	6.8	slight			х		
BH47	1.5	1.75	Silty CLAY	8.9	7.0	slight			х		
BH47	1.75	2	Silty CLAY	9.0	7.0	moderate			х		
BH47	2	2.05	Silty CLAY	9.0	7.0	slight			х		
BH47 (refusal)	2.05	2.14	Silty CLAY	9.0	6.5	slight			x		
BH48	0	0.25	Silty Sandy CLAY	8.9	6.6	slight			X		
BH48	0.25	0.5	CLAY	8.8	7.9	moderate			X		
BH48	0.5	0.7	CLAY	8.6	7.3	slight			X		
BH48 BH48	0.7	1 1.25	Silty Sandy CLAY	8.9	6.9	moderate			X		
BH48	1 1.25	1.25	Silty Sandy CLAY Silty Sandy CLAY	8.9 8.8	6.9 6.8	slight slight			X X		
BH48 BH48	1.25	1.75	Silty Sandy CLAY	9.1		Ŭ.					
BH48 BH48	1.75	2	Silty Sandy CLAY	9.1	6.9 6.8	slight slight			x x		
BH48 BH48	2	2.25	Silty Sandy CLAY	8.8	6.7	moderate			x		
BH48	2.25	2.25	Silty Sandy CLAY	9.0	6.7	slight			x		
BH48 BH48	2.23	2.5	Silty Sandy CLAY	8.9	6.7	slight			x		
BH48 (refusal)	2.6	2.68	Silty Sandy CLAY	9.3	6.8	slight			x		
Birrio (rordodi)	2.0	2.00	City Carlay CEXT	0.0	0.0	oligitt			~		
BH49	0	0.25	Clayey SILT	8.9	6.8	strong			х		
BH49	0.25	0.5	Clayey SILT	8.9	6.7	moderate			х		
BH49	0.5	0.75	Clayey SILT	8.9	6.7	moderate			х		
BH49	0.75	1	Silty CLAY	8.8	6.8	slight			х		
BH49	1	1.25	Silty CLAY	8.8	6.6	moderate			x		
BH49	1.25	1.5	Silty CLAY	8.8	6.8	moderate			x		
BH49	1.5	1.75	Silty CLAY	8.9	6.8	moderate			х		
BH49	1.75	2	Silty CLAY	8.8	6.8	moderate			x		
BH49	2	2.25	Silty CLAY	9.2	7.0	slight			х		
BH49	2.25	2.5	Silty CLAY	9.0	6.8	slight			х		
BH49	2.5	2.75	Clayey SAND	8.9	6.6	slight			X		
BH49 BH49 (refusal)	2.75	3	Silty CLAY Silty CLAY	9.3	6.8	moderate			x x		
D⊓49 (ieiusai)	3	3.1	Silly CLAY	8.8	6.8	moderate			x		
BH50	0	0.25	Silty Sandy CLAY	8.9	7.3	moderate			x		
BH50	0.25	0.4	Silty Sandy CLAY	8.5	5.3	moderate			х		
BH50	0.4	0.5	Silty Sandy CLAY	8.9	6.8	slight			х		
BH50	0.5	1	Silty Sandy CLAY	9.0	7.0	slight			х		
BH50	1	1.3	Clayey SAND	8.8	7.1	slight			х		
BH50	1.3	1.5	Silty CLAY	8.9	7.0	slight			х		
BH50	1.5	1.75	Silty CLAY	8.9	6.8	slight			х		
BH50	1.75	2.1	SAND	8.8	7.0	slight			х		
BH50	2.1	2.25	Silty CLAY	8.9	6.9	moderate			х		

Client :		City Pacific	c Limited	Project Nu	umber :		06692015			
Project :		Townsville	Ocean Terminal	Tested By	:		AJ / BB			
Location :		Project Site	е	Checked E	Bv:		WSB			
		,								
11-1- N-	Depth (m-BGL)	0.11 Town				Interpre	Interpreted PASS Potentia		
Hole No.	From	To	Soil Type	рН	pHfoX	reaction	high	medium	low	
BH50	2.25	2.5	Silty CLAY	8.8	6.9	moderate			Х	
BH50	2.5	2.65	Silty CLAY	8.8	7.0	moderate			X	
BH50 (refusal)	2.65	2.7	Silty CLAY	9.1	6.8	slight			х	
MWTOT 01	0	1	Clayey SILT	8.6	6.3	slight			X	
MWTOT 01	1.5	2	CLAY	8.5	6.2	slight			X	
MWTOT 01	2	2.5	Gravelly Sandy CLAY	8.1	6.1	slight			X	
MWTOT 01	2.5	3.5	CLAY	8.0	8.6	moderate			x	
MWTOT 03	0	0.25	Sandy Clayey SILT	8.8	6.6	moderate			X	
MWTOT 03	0.25	0.5	Sandy Clayey SILT	8.9	6.3	moderate			x	
MWTOT 03	1	2	Clayey SILT	8.6	6.6	moderate			X	
MWTOT 03	2	2.7	Clayey SILT	8.5	6.9	moderate			x	
MWTOT 03	3.5	4	CLAY	8.5	6.3	slight			x	
MWTOT 03	5	5.5	CLAY	7.9	6.6	slight			X	
MWTOT 03	6.5	6.7	CLAY	7.6	6.2	strong			x	
MWTOT 04	0	0.25	SAND	8.8	6.5	slight			X	
MWTOT 04	0.25	0.5	Clayey SILT	8.9	6.4	moderate			x	
MWTOT 04	0.5	0.75	Clayey SILT	8.9	6.3	slight			X	
MWTOT 04	0.75	1	Clayey SILT	9.0	6.4	slight			x	
MWTOT 04	2.1	3	Silty Sandy CLAY	8.5	6.3	slight			x	
MWTOT 05	0	1	Sandy Clayey SILT	8.6	6.3	slight			X	
MWTOT 05	1	1.8	Sandy Clayey SILT	8.7	6.2	slight			X	
MWTOT 05	2	2.2	CLAY	9.0	6.5	slight			X	
MWTOT 05	2.2	2.5	CLAY	8.1	5.5	slight			X	
								↓ ↓		
MWTOT 06	0	1	Clayey SILT	8.3	6.1	moderate		ļ	X	
MWTOT 06	1.4	2	Sandy Gravelly CLAY	8.1	7.7	strong		ļ	X	
MWTOT 06	2	3	Sandy Gravelly CLAY	8.0	8.5	strong			X	

LABORATORY REPORT COVERSHEET

Date: 22 January 2007

- To: Golder Associates Pty Ltd 25 McIllwraith St TOWNSVILLE QLD 4810
- Attention: Ms Marissa Cameron

Your Reference:06692015-02 Ocean TerminalLaboratory Report No:54547Samples Received:16/01/2007Samples / Quantity:11 Soils

The above samples were received intact and analysed according to your written instructions. Unless otherwise stated, solid samples are reported on a dry weight basis and liquid samples as received.

Page 1 of 5

foddare Shey Goddard

Šhey Goddard Administration Manager CAIRNS

Jon Dicker

Manager CAIRNS

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (3146). This report must not be reproduced except in full.

 SGS Australia Pty Ltd
 Environmental Services
 Unit 2, 58 Comport Street, Portsmith 4870
 QLD
 Australia
 www.au.sgs.com

 ABN 44 000 964 278
 t + 61 (0)7 4035 5111
 f + 61 (0)7 4035 5122
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f

Laboratory Report No: 54547

LABORATORY REPORT

Chromium Suite Our Reference Your Reference Date Sampled	Units	54547-1 BH5 0.0-0.5 27/09/2006	54547-2 BH5 0.5-1.0 27/09/2006	54547-3 BH5 1.0-1.5 27/09/2006
Moisture *	% w/w	44	32	27
рН ксі	pH Units	8.6	8.9	9.0
TAA pH 6.5	kg H2SO4/tonne	<0.5	<0.5	<0.5
Chromium Reducible Sulfur (ScR)	% w/w	0.14	0.18	0.20
Acid Neutralisation Capacity*	% CaCO3	4.6	6.0	7.7

Chromium Suite Our Reference Your Reference Date Sampled	Units	54547-4 BH8 0.0-0.5 27/09/2006	54547-5 BH8 0.5-1.0 27/09/2006	54547-6 BH8 2.0-2.25 27/09/2006
Moisture *	% w/w	43	31	26
рН ксі	pH Units	8.9	9.1	8.7
TAA pH 6.5	kg H2SO4/tonne	<0.5	<0.5	<0.5
Chromium Reducible Sulfur (SCR)	% w/w	0.072	0.090	0.17
Acid Neutralisation Capacity*	% CaCO ₃	4.5	4.7	4.6

Chromium Suite Our Reference Your Reference Date Sampled	Units	54547-7 BH18 0.0-0.5 27/09/2006	54547-8 BH18 0.5-1.0 27/09/2006	54547-9 BH18 1.0-1.5 27/09/2006
Moisture *	% w/w	40	32	27
рН ксі	pH Units	8.9	8.9	9.1
TAA pH 6.5	kg H2SO4/tonne	<0.5	<0.5	<0.5
Chromium Reducible Sulfur (SCR)	% w/w	0.10	0.18	0.25
Acid Neutralisation Capacity*	% CaCO ₃	4.6	4.5	5.1

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (3146). This report must not be reproduced except in full.

Page 2 of 5

Chromium Suite Our Reference

Your Reference Date Sampled

Moisture *

рН ксі

TAA pH 6.5

Chromium Reducible Sulfur (SCR)

CLIENT: Golder Associates Pty Ltd **PROJECT:** 06692015-02 Ocean Terminal

Laboratory Report No: 54547

54547-11

BH18 1.75-1.9

27/09/2006

21

9.1

<0.5

0.019

1.7

Acid Neutralisation Capacity* % CaCO₃

LABORATORY REPORT

54547-10

BH18 1.5-1.75

27/09/2006

21

9.2

<0.5

0.16

10

Units

% w/w

pH Units

kg H₂SO₄/tonne

% w/w

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (3146). This report must not be reproduced except in full.

Page 3 of 5

Laboratory Report No: 54547

LABORATORY REPORT

TEST PARAMETERS	UNITS	LOR	METHOD
Chromium Suite			
Moisture *	% w/w	1	CEP-003
рН ксі	pH Units	0.1	ASSMAC_23A / CEI-401
TAA pH 6.5	kg H2SO4/tonne	0.5	ASSMAC_23F / CEI-401
Chromium Reducible Sulfur (ScR)	% w/w	0.005	ASSMAC_22B / CEI-405
Acid Neutralisation Capacity*	% CaCO3	0.1	CEI-402

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (3146). This report must not be reproduced except in full.

Page 4 of 5

QUALITY CONTROL UNITS Blank Replicate Replicate Sm# Sample||Replicate Moisture * % w/w [NT] 54547-1 44 || [N/T] 8.6 || 8.8 || RPD: 2 рН ксі pH Units 5.8 54547-1 <0.5 || <0.5 TAA pH 6.5 kg H2SO4/ [NT] 54547-1 tonne **Chromium Reducible** 0.14 || 0.13 || RPD: 7 % w/w [NT] 54547-1 Sulfur (SCR) Acid Neutralisation % CaCO3 54547-1 4.6 || 4.2 || RPD: 9 [NT] Capacity* QUALTY CONTROL UNITS Replicate Replicate Blank Sm# Sample||Replicate 54547-11 Moisture * % w/w [NT] 21 || [N/T] рН ксі 54547-11 9.1 || 8.9 || RPD: 2 pH Units [NT] kg H2SO4/ TAA pH 6.5 [NT] 54547-11 <0.5 || <0.5 tonne Chromium Reducible 54547-11 0.019 || 0.019 || RPD: 0 % w/w [NT] Sulfur (SCR) Acid Neutralisation % CaCO3 [NT] 54547-11 1.7 || 1.7 || RPD: 0 Capacity*

LABORATORY REPORT

Laboratory Report No: 54547

NOTES:

LOR - Limit of Reporting.

* This test is not covered by our current NATA accreditation.

* This test is not covered by our current NATA accreditation.

22/01/07 **Analysis Date:** Between 16/01/07 and

SGS Terms and Conditions are available from www.au.sgs.com

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (3146). This report must not be reproduced except in full.

Page 5 of 5

ACCREDITATION

LABORATORY REPORT COVERSHEET

Date: 25 January 2007

- To: Golder Associates Pty Ltd 25 McIllwraith St TOWNSVILLE QLD 4810
- Attention: Ms Marissa Cameron

Your Reference:06692015-02 Ocean TerminalLaboratory Report No:54574Samples Received:18/01/2007Samples / Quantity:32 Soils

The above samples were received intact and analysed according to your written instructions. Unless otherwise stated, solid samples are reported on a dry weight basis and liquid samples as received.

Page 1 of 7

foddare Shey Goddard

Šhey Goddard Administration Manager CAIRNS

Jon Dicker

Manager CAIRNS

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (3146). This report must not be reproduced except in full.

 SGS Australia Pty Ltd
 Environmental Services
 Unit 2, 58 Comport Street, Portsmith 4870 QLD Australia
 www.au.sgs.com

 ABN 44 000 964 278
 t +61 (0)7 4035 5111
 f +61 (0)7 4035 5122
 f +61 (0)7 4035 5122

Laboratory Report No: 54574

LABORATORY REPORT

Chromium Suite Our Reference Your Reference Date Sampled	Units	54574-1 BH26 0.0-0.25 28/09/2006	54574-2 BH26 0.25-0.75 28/09/2006	54574-3 BH26 1.0-1.32 28/09/2006
Moisture *	% w/w	31	22	45
рН ксі	pH Units	8.8	8.3	8.6
TAA pH 6.5	kg H2SO4/tonne	<0.5	<0.5	<0.5
Chromium Reducible Sulfur (ScR)	% w/w	0.23	0.009	0.12
Acid Neutralisation Capacity*	% CaCO ₃	6.5	NA	4.4

Chromium Suite Our Reference Your Reference Date Sampled	Units	54574-4 BH30 0.0-0.25 28/09/2006	54574-5 BH30 0.5-1.0 28/09/2006	54574-6 BH30 1.5-1.75 28/09/2006
Moisture *	% w/w	32	32	20
рН ксі	pH Units	8.8	8.8	8.8
TAA pH 6.5	kg H2SO4/tonne	<0.5	<0.5	<0.5
Chromium Reducible Sulfur (ScR)	% w/w	0.25	0.21	0.034
Acid Neutralisation Capacity*	% CaCO3	7.3	5.6	3.2

Chromium Suite Our Reference Your Reference Date Sampled	Units	54574-7 BH33 0.0-0.25 29/09/2006	54574-8 BH33 0.25-0.5 29/09/2006	54574-9 BH33 0.5-1.0 29/09/2006
Moisture *	% w/w	25	23	20
рН ксі	pH Units	9.1	8.8	8.2
TAA pH 6.5	kg H2SO4/tonne	<0.5	<0.5	<0.5
Chromium Reducible Sulfur (SCR)	% w/w	0.16	0.081	<0.005
Acid Neutralisation Capacity*	% CaCO3	6.7	3.5	NA

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (3146). This report must not be reproduced except in full.

Page 2 of 7

Laboratory Report No: 54574

LABORATORY REPORT

Chromium Suite Our Reference Your Reference Date Sampled	Units	54574-10 BH33 1.0-1.25 29/09/2006	54574-11 BH33 1.25-1.73 29/09/2006	54574-12 BH40 0.0-0.5 29/09/2006
Moisture *	% w/w	33	30	25
рН ксі	pH Units	9.0	9.0	9.1
TAA pH 6.5	kg H2SO4/tonne	<0.5	<0.5	<0.5
Chromium Reducible Sulfur (ScR)	% w/w	0.14	0.21	0.20
Acid Neutralisation Capacity*	% CaCO3	4.6	5.7	10

Chromium Suite Our Reference Your Reference Date Sampled	Units	54574-13 BH40 0.5-1.0 29/09/2006	54574-14 BH40 1.0-1.5 29/09/2006	54574-15 BH40 1.75-2.11 29/09/2006
Moisture *	% w/w	22	32	34
рН ксі	pH Units	8.8	9.0	8.9
TAA pH 6.5	kg H2SO4/tonne	<0.5	<0.5	<0.5
Chromium Reducible Sulfur (SCR)	% w/w	0.006	0.21	0.092
Acid Neutralisation Capacity*	% CaCO ₃	NA	4.7	4.3

Chromium Suite Our Reference Your Reference Date Sampled	Units	54574-16 BH42 0.0-0.25 28/09/2006	54574-17 BH42 0.5-1.0 28/09/2006	54574-18 BH42 1.0-1.25 28/09/2006
Moisture *	% w/w	26	32	19
рН ксі	pH Units	9.0	9.1	9.1
TAA pH 6.5	kg H2SO4/tonne	<0.5	<0.5	<0.5
Chromium Reducible Sulfur (SCR)	% w/w	0.14	0.24	<0.005
Acid Neutralisation Capacity*	% CaCO3	3.2	7.6	NA

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (3146). This report must not be reproduced except in full.

Page 3 of 7

Laboratory Report No: 54574

LABORATORY REPORT

Chromium Suite Our Reference Your Reference Date Sampled	Units	54574-19 BH42 1.25-1.75 28/09/2006	54574-20 BH49 0.0-0.5 28/09/2006	54574-21 BH49 0.75-1.25 28/09/2006
Moisture *	% w/w	34	38	31
рН ксі	pH Units	9.1	8.8	9.1
TAA pH 6.5	kg H2SO4/tonne	<0.5	<0.5	<0.5
Chromium Reducible Sulfur (SCR)	% w/w	0.10	0.42	0.26
Acid Neutralisation Capacity*	% CaCO3	7.3	9.4	8.9

Chromium Suite Our Reference Your Reference Date Sampled	Units	54574-22 BH49 1.5-2.0 28/09/2006	54574-23 BH49 2.5-2.75 28/09/2006	54574-24 BH49 3.0-3.1 28/09/2006
Moisture *	% w/w	39	28	33
рН ксі	pH Units	8.8	9.1	9.1
TAA pH 6.5	kg H2SO4/tonne	<0.5	<0.5	<0.5
Chromium Reducible Sulfur (SCR)	% w/w	0.42	0.19	0.23
Acid Neutralisation Capacity*	% CaCO ₃	4.7	3.9	5.2

Chromium Suite Our Reference Your Reference Date Sampled	Units	54574-25 MW TOT 4 2.1-3.0 27/10/2006	54574-26 MW TOT 5 2.0-2.2 30/10/2006	54574-27 MW TOT 5 2.2-2.5 30/10/2006
Moisture *	% w/w	20	17	18
рН ксі	pH Units	9.2	9.0	7.7
TAA pH 6.5	kg H2SO4/tonne	<0.5	<0.5	<0.5
Chromium Reducible Sulfur (ScR)	% w/w	0.031	<0.005	<0.005
Acid Neutralisation Capacity*	% CaCO ₃	1.3	NA	NA

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (3146). This report must not be reproduced except in full.

Page 4 of 7

Laboratory Report No: 54574

LABORATORY REPORT

Chromium Suite Our Reference Your Reference Date Sampled	Units	54574-28 MW TOT 6 2.0-3.0 31/10/2006	54574-29 MW TOT 1 1.5-2.0 24/10/2006	54574-30 MW TOT 1 2.5-3.5 24/10/2006
Moisture *	% w/w	37	23	30
рН ксі	pH Units	9.0	9.4	9.1
TAA pH 6.5	kg H2SO4/tonne	<0.5	<0.5	<0.5
Chromium Reducible Sulfur (SCR)	% w/w	<0.005	0.025	0.009
Acid Neutralisation Capacity*	% CaCO3	NA	NA	NA

Chromium Suite Our Reference Your Reference Date Sampled	Units	54574-31 MW TOT 3 3.5-4.0 26/10/2006	54574-32 MW TOT 3 5.0-5.5 26/10/2006
Moisture *	% w/w	22	18
рН ксі	pH Units	7.8	9.0
TAA pH 6.5	kg H2SO4/tonne	<0.5	<0.5
Chromium Reducible Sulfur (SCR)	% w/w	<0.005	<0.005
Acid Neutralisation Capacity*	% CaCO3	NA	NA

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (3146). This report must not be reproduced except in full.

Page 5 of 7

CLIENT: Golder Associates Pty Ltd PROJECT: 06692015-02 Ocean Terminal

Laboratory Report No: 54574

LABORATORY REPORT

TEST PARAMETERS	METERS UNITS		METHOD
Chromium Suite			
Moisture *	% w/w	1	CEP-003
рН ксі	pH Units	0.1	ASSMAC_23A / CEI-401
TAA pH 6.5	kg H2SO4/tonne	0.5	ASSMAC_23F / CEI-401
Chromium Reducible Sulfur (ScR)	% w/w	0.005	ASSMAC_22B / CEI-405
Acid Neutralisation Capacity*	% CaCO3	0.1	CEI-402

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (3146). This report must not be reproduced except in full.

Page 6 of 7

CLIENT: Golder Associates Pty Ltd PROJECT: 06692015-02 Ocean Terminal

QUALITY CONTROL UNITS Blank Replicate Replicate Sm# Sample||Replicate Moisture * % w/w [NT] 54574-1 31 || [N/T] рН ксі pH Units 5.7 54574-1 8.8 || 8.9 || RPD: 1 <0.5 || <0.5 TAA pH 6.5 kg H2SO4/ [NT] 54574-1 tonne **Chromium Reducible** 0.23 || 0.23 || RPD: 0 % w/w [NT] 54574-1 Sulfur (SCR) Acid Neutralisation % CaCO3 54574-1 6.5 || 6.5 || RPD: 0 [NT] Capacity* QUALTY CONTROL UNITS Replicate Replicate Blank Sm# Sample||Replicate 54574-21 Moisture * % w/w [NT] 31 || [N/T] 9.1 || 9.1 || RPD: 0 рН ксі pH Units 54574-21 [NT] kg H2SO4/ TAA pH 6.5 [NT] 54574-21 <0.5 || <0.5 tonne Chromium Reducible 0.26 || 0.27 || RPD: 4 % w/w [NT] 54574-21 Sulfur (SCR) Acid Neutralisation % CaCO3 [NT] 54574-21 8.9 || 9.0 || RPD: 1 Capacity*

LABORATORY REPORT

Laboratory Report No: 54574

NOTES:

LOR - Limit of Reporting.

* This test is not covered by our current NATA accreditation.

25/01/07 **Analysis Date:** Between 18/01/07 and

SGS Terms and Conditions are available from www.au.sgs.com

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (3146). This report must not be reproduced except in full.

Page 7 of 7

LABORATORY REPORT COVERSHEET

Date: 9 July 2007

- To: Golder Associates Pty Ltd 25 McIllwraith St TOWNSVILLE QLD 4810
- Attention: Ms Marissa Cameron

Your Reference:06692015-02 Ocean TerminalLaboratory Report No:56259Samples Received:5/07/2007Samples / Quantity:22 Soil

The above samples were received intact and analysed according to your written instructions. Unless otherwise stated, solid samples are reported on a dry weight basis and liquid samples as received.

Page 1 of 6

foddare Shey Goddard

Šhey Goddard Administration Manager CAIRNS

Jon Dicker

Manager CAIRNS

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (3146). This report must not be reproduced except in full.

 SGS Australia Pty Ltd
 Environmental Services
 Unit 2, 58 Comport Street, Portsmith 4870
 QLD
 Australia
 www.au.sgs.com

 ABN 44 000 964 278
 t + 61 (0)7 4035 5111
 f + 61 (0)7 4035 5122
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f

CLIENT: Golder Associates Pty Ltd PROJECT: 06692015-02 Ocean Terminal

Laboratory Report No: 56259

LABORATORY REPORT

Chromium Suite Our Reference Your Reference Date Sampled	Units	56259-1 MWTOT14.5-4.95 24/10/2006	56259-2 MWTOT1 6.1-6.5 24/10/2006	56259-3 MWTOT1 7.5-7.95 24/10/2006
Moisture *	% w/w	18	19	19
рН ксі	pH Units	6.0	6.6	6.5
TAA pH 6.5	kg H2SO4/tonne	<0.5	<0.5	<0.5
Chromium Reducible Sulfur (ScR)	% w/w	<0.005	<0.005	<0.005

Chromium Suite Our Reference Your Reference	Units	56259-4 MWTOT1 9.0-9.45	56259-5 MWTOT1 12.0-12.45	56259-6 MWTOT1 13.6-14.05	
Date Sampled		24/10/2006	24/10/2006	24/10/2006	
Moisture *	% w/w	18	18	13	
рН ксі	pH Units	6.3	6.4	6.7	
TAA pH 6.5	kg H2SO4/tonne	<0.5	<0.5	<0.5	
Chromium Reducible Sulfur (ScR)	% w/w	<0.005	<0.005	<0.005	

Chromium Suite Our Reference Your Reference Date Sampled	Units	56259-7 MWTOT 2 6.1-6.5 25/10/2007	56259-8 MWTOT2 10.5-10.95 25/10/2006	56259-9 MWTOT3 7.5-7.95 26/10/2006
Moisture *	% w/w	19	26	12
рН ксі	pH ксı pH Units		8.7	8.5
TAA pH 6.5	kg H2SO4/tonne	<0.5	<0.5	<0.5
Chromium Reducible Sulfur (ScR)	% w/w	<0.005	<0.005	<0.005

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (3146). This report must not be reproduced except in full.

Page 2 of 6

CLIENT: Golder Associates Pty Ltd **PROJECT:** 06692015-02 Ocean Terminal

Laboratory Report No: 56259

LABORATORY REPORT

Chromium Suite Our Reference Your Reference Date Sampled	Units	56259-10 MWTOT3 9.0-9.45 26/10/2006	56259-11 MWTOT3 12.0-12.45 26/10/2006	56259-12 MWTOT3 15.0-15.45 26/10/2006
Moisture *	% w/w	15	16	11
рН ксі	pH Units	8.8	7.7	8.9
TAA pH 6.5	kg H2SO4/tonne	<0.5	<0.5	<0.5
Chromium Reducible Sulfur (Scr)	% w/w	<0.005	<0.005	<0.005

Chromium Suite Our Reference Your Reference Date Sampled	Units	56259-13 MWTOT4 7.5-7.95 27/10/2006	56259-14 MWTOT4 12.0-12.45 27/10/2007	56259-15 MWTOT4 15.0-15.45 27/10/2008	
Moisture *	% w/w	16	12	13	
рН ксі	pH Units	7.6	7.8	7.9	
TAA pH 6.5	kg H2SO4/tonne	<0.5	<0.5	<0.5	
Chromium Reducible Sulfur (ScR)	% w/w	<0.005	<0.005	<0.005	

Chromium Suite Our Reference Your Reference Date Sampled	Units	56259-16 MWTOT4 18.0-18.45 27/10/2006	56259-17 MWTOT5 6.50-6.95 30/10/2006	56259-18 MWTOT5 11.0-11.45 30/10/2006
Moisture *	% w/w	15	17	14
рН ксі	pH Units	7.2	8.6	7.5
TAA pH 6.5	kg H2SO4/tonne	<0.5	<0.5	<0.5
Chromium Reducible Sulfur (ScR)	% w/w	<0.005	<0.005	<0.005

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (3146). This report must not be reproduced except in full.

Page 3 of 6

CLIENT: Golder Associates Pty Ltd PROJECT: 06692015-02 Ocean Terminal

Laboratory Report No: 56259

LABORATORY REPORT

Chromium Suite Our Reference Your Reference Date Sampled	Units	Units 56259-19 MWTOT5 17.0-17.45 30/10/2006		56259-21 MWTOT6 5.0-5.45 31/10/2007	
Moisture *	% w/w	12	11	12	
рН ксі	pH Units	8.9	7.5	7.1	
TAA pH 6.5	kg H2SO4/tonne	<0.5	<0.5	<0.5	
Chromium Reducible Sulfur (ScR)	% w/w	<0.005	<0.005	<0.005	

Chromium Suite Our Reference Your Reference Date Sampled	Units	56259-22 MWTOT6 8.0-8.45 31/10/2007
Moisture *	% w/w	16
рН ксі	pH Units	8.2
TAA pH 6.5	kg H2SO4/tonne	<0.5
Chromium Reducible Sulfur (ScR)	% w/w	<0.005

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (3146). This report must not be reproduced except in full.

Page 4 of 6

CLIENT: Golder Associates Pty Ltd PROJECT: 06692015-02 Ocean Terminal

Laboratory Report No: 56259

LABORATORY REPORT

TEST PARAMETERS	UNITS	LOR	METHOD
Chromium Suite			
Moisture *	% w/w	1	CEP-003
рН ксі	pH Units	0.1	ASSMAC_23A / CEI-401
TAA pH 6.5	kg H2SO4/tonne	0.5	ASSMAC_23F / CEI-401
Chromium Reducible Sulfur (ScR)	% w/w	0.005	ASSMAC_22B / CEI-405

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (3146). This report must not be reproduced except in full.

Page 5 of 6

CLIENT: Golder Associates Pty Ltd **PROJECT:** 06692015-02 Ocean Terminal

Laboratory Report No: 56259

QUALITY CONTROL	UNITS	Blank	Replicate Sm#	Replicate
				Sample Replicate
Moisture *	% w/w	[NT]	56259-1	18 NT
рН ксі	pH Units	[NT]	56259-1	6.0 6.1 RPD: 2
TAA pH 6.5	kg H2SO4/tonn e	[NT]	56259-1	<0.5 <0.5
Chromium Reducible Sulfur (ScR)	% w/w	[NT]	56259-1	<0.005 <0.005
QUALTY CONTROL	UNITS	Blank	Replicate Sm#	Replicate
				Sample Replicate
Moisture *	% w/w	[NT]	56259-11	16 NT
рН ксі	pH Units	[NT]	56259-11	7.7 7.5 RPD: 3
TAA pH 6.5	kg H2SO4/tonn e	[NT]	56259-11	<0.5 <0.5
Chromium Reducible Sulfur (ScR)	% w/w	[NT]	56259-11	<0.005 <0.005
QUALTY CONTROL	UNITS	Blank	Replicate Sm#	Replicate
				Sample Replicate
Moisture *	% w/w	[NT]	56259-21	12 NT
рН ксі	pH Units	[NT]	56259-21	7.1 7.0 RPD: 1
TAA pH 6.5	kg H2SO4/tonn e	[NT]	56259-21	<0.5 <0.5
Chromium Reducible Sulfur (ScR)	% w/w	[NT]	56259-21	<0.005 <0.005

LABORATORY REPORT

NOTES:

LOR - Limit of Reporting.

* This test is not covered by our current NATA accreditation.

Analysis Date: Between

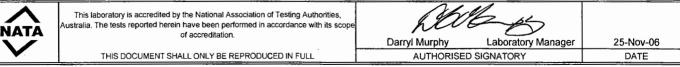
een 5/07/07

and 9/07/07

APPENDIX D

Geotechnical Laboratory Records

Golder Associates Pty Ltd NORTH QUEENSLAND LABORATORY 216 Draper Street, CAIRNS, QLD, 4870 NATA Accreditation No: 3732



CLASSIFICATION TEST RESULTS REPORT

Client			oject Managen	nent Pty Ltd	Job Number		06692015-3			
Client Addre	ess	F	PO Box 1653,	Southport, Qk	4215	Date		23-Nov-06		
Project		г	ownsville Oc	ean Terminal		Report Numbe	r	Summary		
Location		E	Breakwater, T	ownsville		Page		1 of 1		
Sampling M	ethod	A	s Supplied to	Laboratory						
Test Metho	d							``		
AS1289.			2.1.1	3.1.2	3.2.1	3.3.1	3.4.1	3.6.1	3.6.1	AS1726
Lab Ref	BH	Depth-m	mc %	w_ %	W _P %	1 _P %	LS %	%-2.36mm	%075mm	USC Symbol
06/1116	22	0-0.85	28.0	46	16	30	11.0	98	84	CI
06/1117	22	0.85-1.75	58.0	45	19	26	10.5	100	92	CI
06/1118	25	0-1.0	35.5	43	16	27	14.5	100	76	CI
06/1119	26	1.0-1.36	53.6	43	17	26	12.0	100	93	CI
06/1120	26	1.0-2.35	65.0	45	19	26	11.5	100	89	CI
06/1121	29	0-1.0	31.0	50	18	32	16.0	95	78	СН
06/1122	29	1.0-1.95	50.1	38	19	19	9.5	100	89	CI
06/1123	33	0-0.9	29.3	49	16	33	14.0	98	81	CI
06/1124	33	0.9-1.73	58.7	39	20	19	9.0	100	90	CI
06/1125	36	0-1.0	40.4	39	16	23	10.5	100	84	CI
06/1126	36	1.0-2.0	42.3	37	18	19	8.0	97	69	CI
06/1127	37	0-1.4	47.8	38	15	23	9.5	98	82	CI
06/1128	37	1.4-2.5	36.1	47	16	31	13.0	95	37	SC
06/1129	38	0-1.6	52.9	48	16	32	14.5	100	94	CI
06/1130	40	0-0.9	33.8	42	15	27	13.0	100	97	CI
06/1131	40	1.0-2.1	48.4	37	20	17	8.0	100	88	CI
06/1132	42	0-1.2	36.7	36	17	19	9.5	96	65	CI
06/1133	42	1.2-2.2	42.8	36	17	19	8.0	95	61	CI
06/1134	45	0-1.25	40.5	45	16	29	14.0	99	95	CI
06/1135	45	1.25-1.94	51.8	39	19	20	7.5	100	89	CI
06/1136	46	0-1.25	30.9	40	16	24	11.5	100	86	CI
06/1137	46	1.25-2.05	60.7	49	19	30	13.0	100	90	CI
NAT	A	tests reported h	erein have been	performed in acco		norities, Australia. The ms of accreditation.	Darryl Murphy	Laborator	y Manager	25-Nov-06 DATE

		City Pacific Proje	ect Manage	ement Pty	Ltd	ŀ	Job Number	06692015-3		
lient Addr	ess	PO Box 1653, So	outhport, Q	ld 4215		[I	Date	23-Nov-06		
roject		Townsville Ocea	n Terminal	l		l l	Report Number	NQ-06578	Page No 1 o	of 1
ocation		Breakwater, Tow	nsville			:	Sampling Method	As Supplied to Lat	ooratory	
ab Ref No		06/1116					Sample Identification	BH 22 0.0-0.85m		
S1726, App	o A, Sec				, medium plasticity, ç					
PARTIC	LE SI	ZE DISTRIBUT	ION AS128	39 3.6.1		CLASS	IFICATION LIMITS AN	ID MOISTURE CO	NTENT	
Sieve S	ize	% Passing	Spec. Lower	Spec. Upper	Test		Method	Result	Spec. Lower	Spec Uppe
150 mr	m	100			Liquid Limit	%	AS1289 3.1.2	46		
100 mr	m	100			Plastic Limit	%	AS1289 3.2.1	16		
75 mm	n	100			Plasticity Index	%	AS1289 3.3.1	30		
53 mm	n	100			Linear Shrinkage	%	AS1289 3.4.1	11.0		
37.5 m	m	100			Moisture Content	%	AS1289 2.1.1	28.0		
26.5 mi	m	100								
19.0 mi	m	100			Sample History :			Natural State		
13.2 m	m	100			Preparation Metho	d :		Wet sieved		
9.5 mn	n	100			Crumbling / Curling	g of Linear	Shrinkage :	No		
6.7 mr	9.5 mm 100 6.7 mm 100				Linear Shrinkage N		-	250mm		
4.75 m	m	100			NP = non-plastic		NO = not obtainable	ND = not determ	nined	
2.36 m	m	98								
1.18 m	m	97								
0.600m	m	96								
0.00011										
0.425m	m	95								
		95 94								
0.425m	m									
0.425m 0.300m	nm nm	94				n				
0.425m 0.300m 0.150m 0.075m	ım ım ım	94 90			PARTICLE S		TRIBUTION		A.S. Sieves	
0.425m 0.300m 0.150m 0.075m	ım ım ım	94 90		- · · · · · · · ·					A.S. Sieves	
0.425m 0.300m 0.150m 0.075m	ım ım ım	94 90							A.S. Sieves	
0.425m 0.300m 0.150m 0.075m	im im 100 - 90 - 80	94 90	.4						A.S. Sieves	
0.425m 0.300m 0.150m 0.075m	100 - 90 - 80 70 -	94 90		- · · · · · · · · · · · · · · · · · · ·					A.S. Sieves	
0.425m 0.300m 0.150m 0.075m	im im 100 - 90 - 80	94 90						26.5 	A.S. Sieves	
0.425m 0.300m 0.150m 0.075m	100 - 90 - 80 70 -	94 90						26.5	A.S. Sieves	
0.425m 0.300m 0.150m 0.075m	100 - 90 - 80 70 60 50 -	94 90						265 37.5 53.0 75.0 100	A.S. Sieves	
0.425m 0.300m 0.150m 0.075m	100 90 80 70 60 50 40	94 90							A.S. Sieves	
0.425m 0.300m 0.150m 0.075m	100 - 90 - 80 70 60 50 -	94 90							A.S. Sieves	
0.425m 0.300m 0.150m 0.075m	100 90 80 70 60 50 40	94 90							A.S. Sieves	
0.425m 0.300m 0.150m 0.075m	100 90 80 70 60 50 40 30	94 90							A.S. Sieves	
0.425m 0.300m 0.150m 0.075m	100 90 80 70 60 50 40 30 20	94 90 84	0.01		9 <u>5000</u> 0.1			5 5 5 6 5 9 0 0 9 5 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A.S. Sieves	
0.425m 0.300m 0.150m 0.075m	100 90 80 70 60 50 40 30 20 10 0	94 90 84	0.01 SILT FRACTIO	N	9 <u>5000</u> 0.1				1000	
0.425m 0.300m 0.150m 0.075m	100 90 80 70 60 50 40 30 20 10 0	94 90 84		N COARSE	0.1 PART		⁹⁶ 27 9 9 9 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
0.425m 0.300m 0.150m 0.075m	100 90 80 70 60 50 40 30 20 10 0	94 90 84	SILT FRACTIO		0,1 0,1 PARTI SAND FRACT FINE MEDIUM		96 12 92 95 10 97 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 COARSE COBBLES	1000	

lient		City Pacific Proje	ct Manage	ement Pty	Ltd		Job Number	06692015-3		
lient Addr	ress	PO Box 1653, So	outhport, Q	ld 4215			Date	23-Nov-06		
roject		Townsville Ocean	n Terminal				Report Number	NQ-06579	Page No 1	of 1
ocation		Breakwater, Tow	nsville				Sampling Method	As Supplied to La	aboratory	
ab Ref No).	06/1117					Sample Identification	BH 22 0.85-1.75	im	
S1726, App	p A, Se				′, medium pl asticity, g					
PARTIC	LE SI					CLASS	FICATION LIMITS AN	D MOISTURE CO	NTENT	Sno
Sieve S	ize	% Passing	Spec. Lower	Spec. Upper	Test		Method	Result	Spec. Lower	Spe Upp
150 mr	m	100			Liquid Limit	%	AS1289 3.1.2	45		
100 mr	m	100			Plastic Limit	%	AS1289 3.2.1	19	i	
75 mm	n	100			Plasticity Index	%	AS1289 3.3.1	26		
53 mm	n	100			Linear Shrinkage	%	AS1289 3.4.1	10.5		
37.5 m	m	100			Moisture Content	%	AS1289 2.1.1	58.0		
26.5 m	m	100								
19.0 m	m	100			Sample History :			Natural State		
13.2 m	m	100			Preparation Method	d :		Wet sieved		
9.5 mr	m	100			Crumbling / Curling		Shrinkage :	No		
6.7 mr		100			Linear Shrinkage M	-	•	250mm		
4.75 m		100			NP = non-plastic		NO = not obtainable	ND = not deter	mined	
2.36 m		100			1	.*:		22.02		
1.18 m		99								
0.600m		99								
0.425m		99								
0.42011					11					
0 200	m	00								
0.300m		99								
0.300m 0.150m 0.075m	nm	99 98 92								
0.150m	nm	98			PARTICLE SI	IZE DIS				
0.150m 0.075m	חות זות	98			PARTICLE SI 5400			-28.5 -37.5 -75.0 -100 -150	A.S. Sieves	
0.150m 0.075m	חדה חדה 100 -	98			_			- 26.5 - 37.5 - 53.0 - 100 - 150	A.S. Sieves	
0.150m 0.075m	100 - 90 -	98			_			26.5 27.5 28.5 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	A.S. Sieves	
0.150m 0.075m	חדה חדה 100 -	98			0.150			26.5 27.5 37.5 37.5 33.0 53.0 11.5 75.5 53.0 73.5 73.5 73.5 73.5 73.5 73.5 73.5 73.5	A.S. Sieves	
0.150m 0.075m	100 - 90 -	98			_				A.S. Sieves	
0.150m 0.075m	100 - 90 - 80 -	98		· · · · · · · · · · · · · · · · · · ·	0.150			28.5 	A.S. Sieves	
0.150m 0.075m SNISSE	100 - 90 - 80 - 70 - 60	98		· · · · · · · · · · · · · · · · · · ·	0.150			26.5 27.5 28.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29	A.S. Sieves	
0.150m 0.075m SNISSE	100 - 90 - 80 - 70 - 60 50 -	98		· · · · · · · · · · · · · · · · · · ·	0.150			28.5 28.5 28.5 28.5 28.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29	A.S. Sieves	
0.150m 0.075m SNISSE	100 - 90 - 80 - 70 - 60	98		· · · · · · · · · · · · · · · · · · ·	0.150				A.S. Sieves	
0.150m 0.075m SNISSE	100 - 90 - 80 - 70 - 60 50 -	98			0.150				A.S. Sieves	
0.150m 0.075m	100 - 90 - 80 - 70 - 60 50 - 30 -	98			0.150				A.S. Sieves	
0.150m 0.075m SNISSE	100 - 90 - 80 - 70 - 60 50 - 40 -	98			0.150				A.S. Sieves	
0.150m 0.075m SNISSE	100 - 90 - 80 - 70 - 60 50 - 30 -	98			0.150				A.S. Sieves	
0.150m 0.075m SNISSE	100 - 90 - 80 - 70 - 60 50 - 30 - 20 - 10 - 0 -	98 92			0.150					
0.150m 0.075m SNISSE	100 - 90 - 80 - 70 - 60 50 - 30 - 20 - 10 - 0 -	98	0.01					58 58 59 59 59 59 59 59 59 59 50 50 50 50 50 50 50 50 50 50	A.S. Sieves	
0.150m 0.075m SNISSE	100 - 90 - 80 - 70 - 60 50 - 30 - 20 - 10 - 0 -	98 92	SILT FRACTIO		0.1		98 22 02 03 EE 00 12 1 2 0 0 05 EE 00 10 10 (mm) GRAVEL FRACTION			
0.150m 0.075m SNISSE	100 - 90 - 80 - 70 - 60 50 - 30 - 20 - 10 - 0 -	98 92	SILT FRACTIO	COARSE	0.1 PARTI SAND FRACT FINE MEDIUM		98 22 02 05 EE 00 14 9 9 9 10 10 10 (mm) GRAVEL FRACTION FINE MEDIUM	100 COARSE COBBLES	1000 BOULDERS	
0.150m 0.075m SNISSE	100 - 90 - 80 - 70 - 60 50 - 30 - 20 - 10 - 0 -	98 92	SILT FRACTIO		0.1 PARTI SAND FRACT FINE MEDIUM		98 22 02 03 EE 00 12 1 2 0 0 05 EE 00 10 10 (mm) GRAVEL FRACTION	100 COARSE COBBLES	1000 BOULDERS	
0.150m 0.075m SNISSE	100 - 90 - 80 - 70 - 60 50 - 30 - 20 - 10 - 0 -	98 92	SILT FRACTIO	COARSE	0.1 PARTI SAND FRACT FINE MEDIUM		98 22 02 05 EE 00 14 9 9 9 10 10 10 (mm) GRAVEL FRACTION FINE MEDIUM	100 COARSE COBBLES	1000 BOULDERS	
0.150m 0.075m SNISSE	100 - 90 - 80 - 70 - 60 50 - 30 - 20 - 10 - 0 -	98 92	SILT FRACTIO MEDIUM 006 0	COARSE	0.1 0.1 PARTI SAND FRACT 0.06 0.2 0.06 0.2 0 0 0 0 0 0 0 0 0	COARSE 0.6	98 22 02 05 EE 00 14 9 9 9 10 10 10 (mm) GRAVEL FRACTION FINE MEDIUM	100 COARSE COBBLES	1000 BOULDERS	
0.150m 0.075m SNISSE	100 - 90 - 80 - 70 - 60 50 - 30 - 20 - 10 - 0 -	98 92 92 001 2 5 FiNE 0.002 0.0	SILT FRACTIO MEDIUM 006 0	COARSE	0.1 PARTI 0.1	8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1	98 22 02 05 EE 00 14 9 9 9 10 10 10 (mm) GRAVEL FRACTION FINE MEDIUM	100 COARSE COBBLES	1000 BOULDERS	
0.150m 0.075m SNISSE	100 - 90 - 80 - 70 - 60 50 - 30 - 20 - 10 - 0 -	98 92 92 001 2 5 FiNE 0.002 0.0	SILT FRACTIO MEDIUM 006 0	COARSE	0.1 0.1 PARTI SAND FRACT FINE MEDIUM 0.06 0.2 0.2	8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1	98 22 02 05 EE 00 14 9 9 9 10 10 10 (mm) GRAVEL FRACTION FINE MEDIUM	100 COARSE COBBLES	1000 BOULDERS 0 600	

J:\Townsville Jobs\06692015-3\2015-3_579

lient		City Pacific Proje	ct Manage	ement Pty	Ltd	Job Number	06692015-3		
lient Addro	ess	PO Box 1653, So	outhport, Q	ld 4215		Date	23-Nov-06		
roject		Townsville Ocean	n Terminal			Report Number	NQ-06580	Page No 1	of 1
ocation		Breakwater, Town	nsville			Sampling Method	As Supplied to Labora		
ab Ref No.		06/1118				Sample Identification	BH 25 0-1.0m		
aboratory S1726, App	•	men Description		CI CLAY	, medium plasticity, grey	and yellow grey, with some sar	nd.		
			ON AS128	39 3.6.1	CI	LASSIFICATION LIMITS A	ND MOISTURE CONT	ENT	
Sieve Si	ize	% Passing	Spec. Lower	Spec. Upper	Test	Method	Result	Spec. Lower	Spec Uppe
150 mn	n	100			Liquid Limit %	AS1289 3.1.2	43		
100 mn	n	100			Plastic Limit %	AS1289 3.2.1	16		
75 mm	ı	100			Plasticity Index %	AS1289 3.3.1	27		
53 mm	า	100			Linear Shrinkage %	AS1289 3.4.1	14.5		
37.5 mr	n	100			Moisture Content %	AS1289 2.1.1	35.5		
26.5 mr	n	100							
19.0 mr	n	100			Sample History :		Natural State		
13.2 mr	n	100			Preparation Method :		Wet sieved		
9.5 mm		100			Crumbling / Curling of L	Linear Shrinkage :	NO		
6.7 mm	n	100			Linear Shrinkage Mould	-	150mm		
4.75 mr		100			NP = non-plastic	NO = not obtainable	ND = not determine	ed	
2.36 mr	n	100					772	. 14 - 44	
1.18 mr		99							
0.600m		98							
0.425m		97							
0.300m		96							
0.150m		!	1						
0.15000	m	95							
0.150m		95 76							
					PARTICLE SIZE	DISTRIBUTION	·		
0.075m	m				PARTICLE SIZE		726.5 53.0 75.0 1100 1100 75.0	S. Sieves	
0.075m	m 100		-		-		26.5 37.5 75.0 75.0 1100 87	S. Sieves	
0.075mi	m			· · · · · · · · · · · · · · · · · · ·	-			S. Sieves	
0.075mi	m 100 90 80			· · · · · · ·	-		28.5 23.7.5 7.7.5.00 7.7.5.00 7.7.5.00 7.7.5.00 7.7.5.00 7.7.5.0000000000	3. Sieves	
0.075m	m 100 90			· · · · · · · · · · · · · · · · · · ·	-		26.5 7 75.0 7 100 7 100	S. Sieves	
0.075mi	m 100 - 90 - 80 - 70 -			· · · · · · · · · · · · · · · · · · ·	-		26.5 	S. Sieves	
0.075mi	m 90 80 70 60			· · · · · · · · · · · · · · · · · · ·			26.5 27.5 53.0 53.0 53.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75	S. Sieves	
0.075mi	m 90 80 70 60 50 40 30						S S S O O O O O O O O O O O O O O O O O	S. Sieves	
0.075mi	100 90 80 70 60 50 40						S S S O O O O O O O O O O O O O O O O O	S. Sieves	
0.075mi	m 90 80 70 60 50 40 30						24 29:5 29:5 23.7 29:5 2.3 20:5 2.3 20:5 2.3 2.3 2.3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	S. Sloves	
0.075mi	m 90 80 70 60 50 40 30 20	76	0.01				¹⁹ <u>2</u> <u>2</u> <u>2</u> <u>2</u> <u>2</u> <u>2</u> <u>2</u> <u>2</u> <u>1</u>	S. Sleves	
0.075mi	m 90 80 70 60 50 40 30 20 10 0	001	0.01	· · · · · · · · · · · · · · · · · · ·		1 10 10 10 10 10 10 10 10 10 10	100		
0.075mi	m 90 80 70 60 50 40 30 20 10 0	101		N COARSE	0.1 PARTICLE SAND FRACTION				
0.075mi	m 90 80 70 60 50 40 30 20 10 0	001	SILT FRACTIO	· · · · · ·	0.1 PARTICLE SAND FRACTION	1 1 1 1 1 1 1 1 1 1 1 1 1 1	R R R R R P P P I	1000	
0.075mi	m 90 80 70 60 50 40 30 20 10 0	001	SILT FRACTIO	COARSE	0.1 PARTICLE SAND FRACTION FINE MEDIUM C	1 10 SIZE (mm) GRAVEL FRACTION	R R R R R P P P I	1000 DULDERS	
0.075mi	m 90 80 70 60 50 40 30 20 10 0	001	SILT FRACTIO	COARSE	0.1 PARTICLE SAND FRACTION FINE MEDIUM C	1 10 SIZE (mm) GRAVEL FRACTION	R R R R R P P P I	1000 DULDERS	
0.075mi	m 90 80 70 60 50 40 30 20 10 0	101	SILT FRACTIO MEDIUM 06 0	COARSE	Image: Non-State Image: Non-State<	9 1 10 1 10 SIZE (mm) GRAVEL FRACTION 2 6 20	R R R R R P P P I	1000 DULDERS	
0.075mi	m 90 80 70 60 50 40 30 20 10 0	101	SILT FRACTIO MEDIUM 06 0	COARSE	0.1 PARTICLE SAND FRACTION FINE MEDIUM C 0.06 0.2 0.6 Association of Testing Authorith performed in accordance with its	9 1 10 1 10 SIZE (mm) GRAVEL FRACTION 2 6 20	R R R R R P P P I	1000 DULDERS 600	

J:\Townsville Jobs\06692015-3\2015-3_580

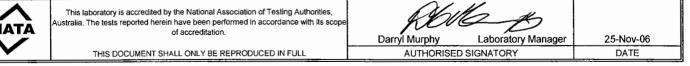
Client	City Pacific Proje	ct Manage	ement Pty	Ltd	Job Number	06692015-3		
lient Address	PO Box 1653, So	outhport, C	ld 4215		Date	23-Nov-06		
Project	Townsville Ocea	n Termina	I		Report Number	NQ-06581	Page No 1	of 1
ocation	Breakwater, Tow	nsville			Sampling Method	As Supplied to Labor	ratory	
ab Ref No.	06/1119				Sample Identification	BH 26 1.0-1.36m		
aboratory Spec	cimen Description	1	CI CLAY	, medium plasticity, grey, wi	th trace of sand.			
AS1726, App A, Se								
		Spec.	Spec.			-1	· · · · · · · · · · · · · · · · · · ·	Spec
Sieve Size	% Passing	Lower	Upper	Test	Method	Result	Spec. Lower	Uppe
150 mm	100			Liquid Limit %	AS1289 3.1.2	43		
100 mm	100			Plastic Limit %	AS1289 3.2.1	17		
75 mm	100			Plasticity Index %	AS1289 3.3.1	26		
53 mm	100		1	Linear Shrinkage %	AS1289 3.4.1	12.0		
37.5 mm	100			Moisture Content %	AS1289 2.1.1	53.6		
26.5 mm	100							
19.0 mm	100			Sample History :		Natural State		
13.2 mm	100			Preparation Method :		Wet sieved		
9.5 mm	100			Crumbling / Curling of Line	-	No		
6.7 mm	100			Linear Shrinkage Mould L	ength :	150mm		
4.75 mm	100			NP = non-plastic	NO = not obtainable	ND = not determin	ed	
2.36 mm	100							
1.18 mm	100							
0.600mm	99							
0.425mm	99							
0.300mm	99							
0.150mm	98							
0.075mm	93							
100 90 80 70 60			· · · · · · · · · · · · · · · · · · ·				.S. Sieves	
50 40 30	+	• • • • • • •						
71N 40	L						·	
E C								
2 30				•••••••••••••••••		· · · · · · · · · · · · · · · · · · ·		
° 20								
10			· · · · -					
0			:	· · · · · · · · · · · · · · · · · · ·				
0.	.001	0.01		0.1 PARTICLE SI	10 ZE (mm)	100	1000	
		SILT FRACTIO	N	SAND FRACTION	GRAVEL FRACTION			
	FINE	MEDIUM	COARSE	FINE MEDIUM COAI	RSE FINE MEDIUM	COARSE COBBLES E	BOULDERS	
	0.002 0.00	06 0	.02	0.06 0.2 0.6	2 6 20	60 200	600	
				<u></u>		(_A	<u>.</u>	
	Australia. The tests re	eported herei	n have been of accredita	al Association of Testing Authorities, performed in accordance with its so tion.	Darryl Murphy	Laboratory Manag	er 25-No	

THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

J:\Townsville Jobs\06692015-3\2015-3_581

DATE

AUTHORISED SIGNATORY



lient Addr		City Pacific Proje	ect Manage	ement Pty	Ltd	Job Number	06692015-3		
	ess	PO Box 1653, So	outhport, C	ld 4215		Date	23-Nov-06		
roject		Townsville Ocea	n Termina			Report Number	NQ-06582	Page No 1	of 1
ocation		Breakwater, Tow	nsville			Sampling Metho	d As Supplied to La	aboratory	
ab Ref No		06/1120				Sample Identific			
aboratory S1726, App	-	imen Description ct 2)) 	CI CLAY	 medium plasticity, grey, 	with trace of sand.			
PARTIC	LE SI	ZE DISTRIBUTI			c	LASSIFICATION LIM	ITS AND MOISTURE CO	ONTENT	
Sieve S	ize	% Passing	Spec. Lower	Spec. Upper	Test	Method	l Result	Spec. Lower	Spec Uppe
150 mr	m	100			Liquid Limit %	AS1289 3.	1.2 45		
100 mr	m	100			Plastic Limit %	AS1289 3.	2.1 19		
75 mr	n	100			Plasticity Index %	AS1289 3.	3.1 26		
53 mm	n	100			Linear Shrinkage %	AS1289 3.	4.1 11.5		
37.5 m	m	100			Moisture Content %	AS1289 2.	1.1 65.0		
26.5 m	m	100							
19.0 m	m	100			Sample History :		Natural State		
13.2 m	m	100			Preparation Method :		Wet sieved		
9.5 mr	n	100			Crumbling / Curling of	inear Shrinkage :	No		
6.7 mr	n.	100			Linear Shrinkage Moul	-	250mm		
4.75 m		100			NP = non-plastic	NO = not obtaina	ble ND = not deter	mined	
2.36 m	m	100							
1.18 m	m	97							
0.600m		96							
0.425m		95							
0.300m		94							
0.150m		92							
0.075m		89							
					PARTICLE SIZE	DISTRIBUTION			
					0.075 0.150 0.300 0.425 0.600	1.18 2.36 6.70 6.70	13.2 19.0 37.5 53.0 100 150	A.S. Sieves	
	100 -								
	100 -		: :		_ 				
	90				++-+-				
	90 80	· · · · · · · · ·	·	- 					
	90 80 70	· · · · · · · · · ·	·						
PASSING	90 80								
PASSING	90 80 70								
PASSING	90 80 70 60 50								
PASSING	90 80 70 60 50 40								
PASSING	90 80 70 60 50								
	90 80 70 60 50 40								
PASSING	90 80 70 60 50 40 30								
PASSING	90 80 70 60 50 40 30 20 10 0								
PASSING	90 80 70 60 50 40 30 20 10 0	2001	0.01		0.1 PARTICLE	1 1 SIZE (mm)		1000	
PASSING	90 80 70 60 50 40 30 20 10 0		SILT FRACTIO		PARTICLE SAND FRACTION	SIZE (mm) GRAVEL F	0 100		
PASSING	90 80 70 60 50 40 30 20 10 0	FINE	SILT FRACTIO	COARSE	PARTICLE SAND FRACTION FINE MEDIUM C	SIZE (mm) GRAVEL F COARSE FINE MED	0 100 RACTION COARSE COBBLES	BOULDERS	
PASSING	90 80 70 60 50 40 30 20 10 0		SILT FRACTIO		PARTICLE SAND FRACTION	SIZE (mm) GRAVEL F	0 100	BOULDERS	
PASSING	90 80 70 60 50 40 30 20 10 0	0.002 0.0	SILT FRACTIO MEDIUM 06 0	02	PARTICLE SAND FRACTION FINE MEDIUM 0 0.06 0.2 0.6	SIZE (mm) GRAVEL F COARSE FINE MED 2 6	0 100 RACTION COARSE COBBLES	BOULDERS	
PASSING	90 80 70 60 50 40 30 20 10 0	FINE 0.002 0.0	SILT FRACTIO MEDIUM 06 0	02 coarse	PARTICLE SAND FRACTION FINE MEDIUM 0 0.06 0.2 0.6 Association of Testing Authoni performed in accordance with it	SIZE (mm) GRAVEL F COARSE FINE MED 2 6 ies,	0 100 RACTION 100 RACTION 100 RACTION 100 COBBLES 20 60 20 COBBLES	BOULDERS 0 600	

J:\Townsville Jobs\06692015-3\2015-3_582

ient Addr		City Pacific Proje	ct Manage	ment Pty	Ltd	1	Job Number	06692015-3		
	ess	PO Box 1653, So	uthport, O	ld 4215			Date	23-Nov-06		
roject		Townsville Ocea	n Terminal	J			Report Number	NQ-06583	Page No 1 o	of 1
ocation		Breakwater, Tow	nsville				Sampling Method	As Supplied to Lab	oratory	
ab Ref No.		06/1121					Sample Identification	BH 29 0-1.0m		
aboratory	-	men Description		CH CLA	Y, high plasticity, gre	y, with son	ne sand.			_
		ZE DISTRIBUTI	ON AS128	9 3.6.1		CLASS	SIFICATION LIMITS A	ND MOISTURE CON	NTENT	
Sieve S	ize	% Passing	Spec. Lower	Spec. Upper	Test		Method	Result	Spec. Lower	Sp Up
150 mr	n	100			Liquid Limit	%	AS1289 3.1.2	50		
100 mr	n	100			Plastic Limit	%	AS1289 3.2.1	18		
75 mm	n	100			Plasticity Index	%	AS1289 3.3.1	32		
53 mm	n	100			Linear Shrinkage	%	AS1289 3.4.1	16.0		
37.5 mi	m	100			Moisture Content	%	AS1289 2.1.1	31.0		
26.5 m	m	100								
19.0 m	m	100			Sample History :			Natural State		
13.2 m	m	100			Preparation Metho	d :		Wet sieved		
9.5 mr	13.2 mm 100 9.5 mm 100		Crumbling / Curling	g of Linear	Shrinkage :	No				
6.7 mr	n	100			Linear Shrinkage M	Nould Leng	gth :	250mm		
4.75 m	m	99			NP = non-plastic		NO = not obtainable	ND = not determ	lined	
2.36 m	m	95			(
1.18 m	m	90								
0.600m	m	86		1 '						
0.425m	m	84		1						
0.300m	m	83	1							
0.150m	m	82		(
0.075m	m	78						· · · · · · · · · · · · · · · · · · ·		
					PARTICLE S		TRIBUTION			
					0.075 0.150 0.300 0.425	0.600	2.36 4.75 6.70 9.50	19.0 26.5 37.5 53.0 75.0 100 150		
	100								A.S. Sieves	
	90 -					1 A A A A A A A A A A A A A A A A A A A		<mark>I-I-I-I-I-I-</mark> I-II	A.S. Sieves	
			galar sa e		· · · · · · · · · · · · · · · · · · ·				A.S. Sieves	
ğ	80		· · · · ·	· · · · ·	++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-				A.S. Sieves	
SING	80 - 70 -		,	· · · · ·	+				A.S. Sieves	
PASSING				· · · · · · · ·	++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-				A.S. Sieves	
	70 -			· · · · · · · · · · · · · · · · · · ·	++++				A.S. Sieves	
	70 - 60 - 50 -			· · · · · · · · · · · · · · · · · · ·					A.S. Sieves	
	70 - 60 - 50 - 40 -								A.S. Sieves	
	70 - 60 - 50 -								A.S. Sieves	
PERCENTAGE PASSING	70 - 60 - 50 - 40 -								A.S. Sieves	
	70 - 60 - 50 - 40 - 30 - 20 - 10 -								A.S. Sieves	
	70 - 60 - 50 - 40 - 30 - 20 - 10 - 0 -	2001	0.01		0.1 PART		10		A.S. Sieves	
	70 - 60 - 50 - 40 - 30 - 20 - 10 - 0 -		0.01	N			10		1000	
	70 - 60 - 50 - 40 - 30 - 20 - 10 - 0 -			N COARSE	PART SAND FRACT		10 GRAVEL FRACTIC	100		

NATA

PARTICLE SIZE DISTRIBUTION & CONSISTENCY LIMITS TEST REPORT

AS1726, App A,	Townsville Ocean Breakwater, Towr 06/1122 ecimen Description Sect 2) SIZE DISTRIBUTIO	n Terminal nsville CI CLA	Y, medium plastic	CLAS st % %	Date Report Number Sampling Method Sample Identification trace of sand. SIFICATION LIMITS AN AS1289 3.1.2 AS1289 3.2.1 AS1289 3.3.1	Result 38 19	1 		
ocation ab Ref No. aboratory Spr AS1726, App A, PARTICLE Sieve Size 150 mm 100 mm 75 mm 37.5 mm 26.5 mm 19.0 mm 13.2 mm	Breakwater, Towr 06/1122 ecimen Description Sect 2) SIZE DISTRIBUTIO % Passing 100	CI CLA ON AS1289 3.6.1 Spec. Spec.	Te: Liquid Limit Plastic Limit Plasticity Index Linear Shrinka	CLAS st % %	Sampling Method Sample Identification trace of sand. SIFICATION LIMITS AN Method AS1289 3.1.2 AS1289 3.2.1	As Supplied to La BH 29 1.0-1.95m ID MOISTURE CO Result 38 19	NTENT		
ab Ref No. aboratory Spe AS1726, App A, PARTICLE Sieve Size 150 mm 100 mm 75 mm 37.5 mm 26.5 mm 19.0 mm 13.2 mm	06/1122 ecimen Description Sect 2) SIZE DISTRIBUTIO 100 100 100 100 100 100 100 10	CI CLA ON AS1289 3.6.1 Spec. Spec.	Te: Liquid Limit Plastic Limit Plasticity Index Linear Shrinka	CLAS st % %	Sample Identification trace of sand. SIFICATION LIMITS AN Method AS1289 3.1.2 AS1289 3.2.1	BH 29 1.0-1.95m	NTENT		
aboratory Spa AS1726, App A, PARTICLE Sieve Size 150 mm 100 mm 75 mm 53 mm 37.5 mm 26.5 mm 19.0 mm 13.2 mm	ecimen Description Sect 2) SIZE DISTRIBUTIO % Passing 100 100 100 100 100 100 100 10	ON AS1289 3.6.1 Spec. Spec.	Te: Liquid Limit Plastic Limit Plasticity Index Linear Shrinka	CLAS st % %	trace of sand. SIFICATION LIMITS AN Method AS1289 3.1.2 AS1289 3.2.1	ID MOISTURE CO Result 38 19	NTENT		
AS1726, App A, PARTICLE Sieve Size 150 mm 100 mm 75 mm 37.5 mm 26.5 mm 19.0 mm 13.2 mm	Sect 2) SIZE DISTRIBUTION 100 100 100 100 100 100 100 10	ON AS1289 3.6.1 Spec. Spec.	Te: Liquid Limit Plastic Limit Plasticity Index Linear Shrinka	CLAS st % %	SIFICATION LIMITS AN Method AS1289 3.1.2 AS1289 3.2.1	Result 38 19	Spec. Lower S		
Sieve Size 150 mm 100 mm 75 mm 37.5 mm 26.5 mm 19.0 mm 13.2 mm	% Passing 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	Spec. Spec.	Liquid Limit Plastic Limit Plasticity Index Linear Shrinka	st % % < %	Method AS1289 3.1.2 AS1289 3.2.1	Result 38 19	Spec. Lower S		
150 mm 100 mm 75 mm 53 mm 37.5 mm 26.5 mm 19.0 mm 13.2 mm	100 100 100 100 100 100 100 100 100		Liquid Limit Plastic Limit Plasticity Index Linear Shrinka	% % < %	AS1289 3.1.2 AS1289 3.2.1	38 19	ISDEC LOWER		
100 mm 75 mm 53 mm 37.5 mm 26.5 mm 19.0 mm 13.2 mm	100 100 100 100 100 100 100		Plastic Limit Plasticity Index Linear Shrinka	% < %	AS1289 3.2.1	19			
75 mm 53 mm 37.5 mm 26.5 mm 19.0 mm 13.2 mm	100 100 100 100 100 100		Plasticity Index Linear Shrinka	« %					
53 mm 37.5 mm 26.5 mm 19.0 mm 13.2 mm	100 100 100 100 100		Linear Shrinka		AS1289 3.3.1				
37.5 mm 26.5 mm 19.0 mm 13.2 mm	100 100 100 100			ige %		19			
26.5 mm 19.0 mm 13.2 mm	100 100 100		Moisture Cont		AS1289 3.4.1	9.5			
19.0 mm 13.2 mm	100 100			ent %	AS1289 2.1.1	50.1			
13.2 mm	100								
	1		Sample Histor	y :		Natural State			
	100		Preparation M			Wet sieved			
			Crumbling / Curling of Linear Shrinkage :			No			
6.7 mm			Linear Shrinkage Mould Length :			No 250mm			
				NP = non-plastic NO = not obtainable ND = not determined					
2.36 mm	100								
1.18 mm	100								
0.600mm	99								
0.425mm	99		1						
0.300mm	99								
0.150mm	97								
0.075mm	89								
						26.5 37.5 53.0 75.0 1100	A.S. Sieves		
100	0								
90	0		· + · · · · ·			فالمستنا والولو والمراجع			
	0 +				· · · · ·	e a construction A construction	الان از این از اسرین به شد به ساخت بد :		
S Z			and a second s	a a se a b Se an	and a second s	1999) 1997 - 1997 - 1997			
SNISSEA 60		7.20 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				ر			
Å 60	0	e de la constante de			لا با الاستان و الاستان الاستان المالية. الا	e e se			
9 50	0			a a constanta a	 	[.]	in a sub-training and the sub-		
₹									
. <u>N</u> 4(0	• • • • • • • • • • • • • • • • • • • •			nne ell'harigheed	يد د ماني آن ماچ در مان م د ان ان د ان د	· · · · · · · · · · · · · · · · · · ·		
2 2 3	0 +				لأساد الأسان المترجي بدراجه		افاتحاذ الالم للاقياني		
۳ 20	o 🖢								
10			·	· · · · · · ·	en en el construction de la constru La construction de la construction d	an a			
(o L				······································				
	0.001	0.01	0.1 P/	ARTICLE SIZ	10 (mm)	100	1000		
	>	SILT FRACTION		RACTION	GRAVEL FRACTION				
		MEDIUM COAR	SE FINE ME			COARSE	BOULDERS		
	0.002 0.00	0.02	0.06 0.2	0.6	2 6 20	60 200	600		

 This laboratory is accredited by the National Association of Testing Authorities,
 Australia. The tests reported herein have been performed in accordance with its scope of accreditation.
 Darryl Murphy
 Laboratory Manager
 25-Nov-06

 THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL
 AUTHORISED SIGNATORY
 DATE

Golder Associates Pty Ltd NORTH QUEENSLAND LABORATORY 216 Draper Street, CAIRNS, QLD, 4870 NATA Accreditation No: 3732

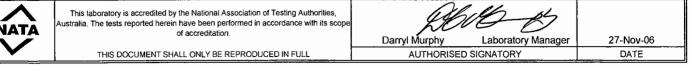
PARTICLE SIZE DISTRIBUTION & CONSISTENCY LIMITS TEST REPORT

lient		City Pacific	: Projec	t Manage	ement Pty	Ltd		Jo	ob Numb	er	06692	2015-3		
lient Addr	ess	PO Box 16	53, Sou	uthport, G	ld 4215			D	ate		23-No	ov-06		
roject		Townsville	Ocean	Termina	!			R	eport Nu	mber	NQ-0	6585	Page No	1 of 1
ocation		Breakwate	r, Town	sville				S	ampling I	Method	As Su	pplied to La	boratory	
ab Ref No.		06/1123						S	ample Ide	entification	n BH 3	3 0-0.9m		
								- 1						
S1726, App	-	men Descr xt 2)	прион			, medium plas	ticity, gi	ey, with sol						
PARTIC	LE SIZ	ZE DISTRI	BUTIC	ON AS128	39 3.6.1			CLASSIF	ICATIO	N LIMITS	AND MOIS	STURE CO	NTENT	
Sieve Si	ize	% Pass	ing	Spec. Lower	Spec. Upper	1	ſest		М	ethod		Result	Spec. Low	er Spe Upp
150 mr	n	100	1			Liquid Limit		%	AS1	289 3.1.2		49	1	
100 mr	n	100				Plastic Limit		%	AS1	289 3.2.1		16		
75 mm	า	100				Plasticity Inc	lex	%	AS1	289 3.3.1		33		
53 mm	n	100				Linear Shrin	kage	%	AS1	289 3.4.1		9.0		
37.5 m	m	100				Moisture Co	ntent	%	AS1	289 2.1.1		29.3		
26.5 m	m	100												
19.0 mi	m	100				Sample Hist	iory :				Natur	al State		
13.2 mi	m	100	1			Preparation	Method	1:			Wets	sieved		
9.5 mn	n	100				Crumbling /			hrinkage	:	No			
6.7 mn	n	100				Linear Shrin	-		•		250m	ım		
4.75 m		100	1			NP = non-pl			O = not o	btainable	ND	= not deterr	mined	
2.36 m	m	98									· · · ·			
1.18 m		96												
0.600m		94												
0.425m		93					•							
0.300m		92	ĺ											
0.150m		91												
0.075m		81												
						PARTIC	LE SI	ZE DIST	RIBUT	ION				
						0.075	0.300	0.600	2.36	6.70 9.50 13.2	. 19.0 26.5 37.5	75.0 100 150	A.S. Sieves	
	100			*								· .		
	90		· - '	· · · ·	· ·· • · · .	· · · / ·		1463 - C	· · · · · · ·			$\frac{1}{2}\left[\frac{1}{2},\frac{1}{2}\right]=\frac{1}{2}\left[\frac{1}{2}\right]$		
	80							· · · · · · · · · · · · · · · · · · ·		- 1 1 - 1 	 .			
DN C			:									1.1.1 1.1.1		
PASSING	70 -				-							2 7 7 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
PA	60													
ш	50 -	_						1993. 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997			: 	· · : - · •		
TA											1	1.442 1.142		
PERCENTAGE	40				• • •							1. (1)		
ERC	30 ·						' -		-			: ::::================================		
P	20							· · · · ,. · · · ·	· · ·					
	10													
	0													
	0.0	001		0.01		0.1	PARTIC	1 CLE SIZE (I	mm)	10		100	100	0
			s	ILT FRACTIC	N	SAN	ND FRACTIO	ON	6	RAVEL FRACT	ION			
												COBBLES	BOULDERS	

This laboratory is accredited by the National Association of Testing Authorities, Australia. The tests reported herein have been performed in accordance with its scope of accreditation. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL Darryl Murphy Laboratory Manager 25-Nov-06 DATE

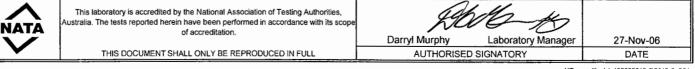
lient		City Pacific Proje	ct Manage	ment Pty	Ltd	Job Number	06692015-3		
lient Addr	ess	PO Box 1653, So				Date	25-Nov-06		
roject		Townsville Ocear	-			Report Number	NQ-06588	Page No 1 c	of 1
ocation		Breakwater, Tow	nsville			Sampling Method	As Supplied to Labora		
ab Ref No.		06/1125				Sample Identification	BH 36 0-1.0m		
-		men Description		CI CLAY	, medium plasticity, grey, w	vith some sand.			
AS1726, App PARTIC		ZE DISTRIBUTI	ON AS128	9 3.6.1	CL	ASSIFICATION LIMITS AN	D MOISTURE CONTE	ENT	
Sieve S	ize	% Passing	Spec. Lower	Spec. Upper	Test	Method	Result	Spec. Lower	Spec. Upper
150 mr	n	100			Liquid Limit %	AS1289 3.1.2	39		
100 mr	n	100			Plastic Limit %	AS1289 3.2.1	16		
75 mm	ו	100			Plasticity Index %	AS1289 3.3.1	23		
53 mm	ו	100			Linear Shrinkage %	AS1289 3.4.1	10.5		
37.5 m	m	100			Moisture Content %	AS1289 2.1.1	40.4		
26.5 m	m	100							
19.0 m	m	100			Sample History :		Natural State		
13.2 m	m	100			Preparation Method :		Wet sieved		
9.5 mr	n	100			Crumbling / Curling of Li	near Shrinkage :	No		
6.7 mr	n	100			Linear Shrinkage Mould	•	150mm		
4.75 m	m	100			NP = non-plastic	NO = not obtainable	ND = not determine	d	
2.36 m	m	100							
1.18 m		100							
0.600m		99							
0.425m		99							
0.300m		99							
0.150m		98							
0.075m		84							
					PARTICLE SIZE I	DISTRIBUTION			
	100				0.075	11.18 1.18	C.P. 26.5 7.5.00 7.5.00 7.5.00 7.5.00 7.5.00 7.5.00 7.5.00 7.5.00 7.5.	5. Sieves	
	90	.	' -		\sim				
U	80				a da a cara a da ara a da ara da a Ar	بلا لا الا الله الله الله الله الله الله	ار ولا بر الا الا الا الا الا الوالو الو الو الد الد الا الـ الـ الـ الـ الا الا الـ الـ الـ		
PASSING	70 -		•						
PAS	60		1						
			- da esta				an a		
AGE	50 ·	· · · · · ·							
INTAGE		· · · · · · · ·							
CENTAGE	50 40	· · · · · · · · · · · · · · · · · · ·							
PERCENTAGE	50 40 30								
PERCENTAGE	50 40								
PERCENTAGE	50 40 30 20 10								
PERCENTAGE	50 - 40 - 30 - 20 - 10 -		0.01			1 1 10 10	100	1000	
PERCENTAGE	50 - 40 - 30 - 20 - 10 -	[0.01 SILT FRACTION	· · · · · · · · · · · · · · · · · · ·	0.1 PARTICLE S SAND FRACTION	SIZE (mm)		1000	
PERCENTAGE	50 - 40 - 30 - 20 - 10 -			N COARSE	SAND FRACTION	GRAVEL FRACTION	100	1000	
PERCENTAGE	50 - 40 - 30 - 20 - 10 -	[SILT FRACTIO		SAND FRACTION	GRAVEL FRACTION	100 COBBLES BO		
PERCENTAGE	50 - 40 - 30 - 20 - 10 -	FINE	SILT FRACTIO	COARSE	PARTICLES SAND FRACTION FINE MEDIUM CO	SIZE (mm) GRAVEL FRACTION ARSE FINE MEDIUM	100 COARSE COBBLES BC	DULDERS	
PERCENTAGE	50 - 40 - 30 - 20 - 10 -	FINE 0.002 0.00	SILT FRACTION MEDIUM 06 0.	coarse	PARTICLE SAND FRACTION FINE MEDIUM CO 0.06 0.2 0.6	SIZE (mm) GRAVEL FRACTION ARSE FINE MEDIUM 2 6 20 5.	100 COARSE COBBLES BC	DULDERS	
	50 - 40 - 30 20 - 10 -	FINE 0.002 0.00	SILT FRACTION MEDIUM 06 0.	coarse	PARTICLE SAND FRACTION FINE MEDIUM CO 0.06 0.2 0.6	SIZE (mm) GRAVEL FRACTION ARSE FINE MEDIUM 2 6 20 5.	100 COARSE COBBLES BC	600	

Client		City Pacific Proje	ect Manage	ement Pty	Ltd	Job Number	06692015-3	
lient Addre	SS	PO Box 1653, S	outhport, G	ld 4215		Date	25-Nov-06	
roject		Townsville Ocea	n Terminal			Report Number	NQ-06589	Page No 1 of 1
ocation		Breakwater, Tov	vnsville			Sampling Method	As Supplied to Labo	pratory
ab Ref No.		06/1126				Sample Identification	BH 36 1.0-2.0m	
aboratory S	Sneci	men Description	n	CL Sand	y CLAY, medium plasticity, gr			
S1726, App /								
PARTICL	E SI	ZE DISTRIBUT	ION AS128	39 3.6 . 1	CLAS	SIFICATION LIMITS AN	ID MOISTURE CON	
Sieve Siz	ze	% Passing	Spec. Lower	Spec. Upper	Test	Method	Result	Spec. Lower Uppe
150 mm		100			Liquid Limit %	AS1289 3.1.2	37	
100 mm		100			Plastic Limit %	AS1289 3.2.1	18	
75 mm		100			Plasticity Index %	AS1289 3.3.1	19	
53 mm		100			Linear Shrinkage %	AS1289 3.4.1	8.0	
37.5 mm	,	100			Moisture Content %	AS1289 2.1.1	42.3	
26.5 mm		100		1				
19.0 mm		100			Sample History :		Natural State	
	-						Wet sieved	
13.2 mm		100			Preparation Method :	on Obrightense		
9.5 mm		100			Crumbling / Curling of Line	•	No	
6.7 mm		100			Linear Shrinkage Mould Le	-	125mm	
4.75 mm	۱	98			NP = non-plastic	NO = not obtainable	ND = not determi	ned
2.36 mm	۱	97						
1.18 mm	۱	93						
0.600mm	n	86						
0.425mm	n	83						
0.300mm	n	81						
0.150mm		79		1				
0.075mn		69						
SSING	90 - 80 - 70 - 60 -			· · · · · · · ·	0.075	1.18 2.36 4.75 6.70 6.70 7 13.2	26.5 73.75 73.75 73.75 73.75 73.75 73.75 73.75 74.75 775.00	A.S. Sieves
	50					· · · · · · · · · · · · · · · · · · ·		
₹	40	· · · ·						
CEI								
ER	30							2 8 4
۵.	20							
	10				· · ·			
	0		0.01		0.1 1	10	100	J
	0.0	101	0.01		0.1 PARTICLE SI		100	1000
		FINE	SILT FRACTIO	N	SAND FRACTION	GRAVEL FRACTION	COBBLES	BOULDERS
			MEDIUM	COARS		I 1	COARSE	
		0.002 0.	006 0	0.02	0.06 0.2 0.6	2 6 20	60 200	600
		This laboratory	is accredited h	w the Nation	al Association of Testing Authorities,		110	
				in have bee	n performed in accordance with its sco	ope 400	0-19	
NAT	A			of accredit	ation.	Darryl Murphy	Laboratory Mana	ger 27-Nov-06
							D SIGNATORY	


THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

DATE

AUTHORISED SIGNATORY



		City Pacific Proje	ect Manage	ement Pty	Ltd	J	lob Number	06692015-3			
lient Addr	ess	PO Box 1653, So	outhport, C	ld 4215		C	Date	25-Nov-06			
Project		Townsville Ocea	n Termina	L		F	Report Number	NQ-06590	Page No 1 o	of 1	
ocation		Breakwater, Tow	nsville			s	Sampling Method	As Supplied to La	boratory		
ab Ref No.		06/1127					Sample Identification	BH 37 0-1.4m			
.aboratory AS1726, App		men Description	1	CI CLAY	, medium plasticity,						
and the second second			ON AS128	39 3.6.1		CLASSI	FICATION LIMITS AN	ND MOISTURE CO	NTENT		
Sieve S		% Passing	Spec. Lower	Spec. Upper	Test	T	Method	Result	Spec. Lower	Spe Upp	
150 mr	n	100			Liquid Limit	%	AS1289 3.1.2	38			
100 mr	n	100			Plastic Limit	%	AS1289 3.2.1	15			
75 mm	n	100			Plasticity Index	%	AS1289 3.3.1	23			
53 mm	n	100			Linear Shrinkage	%	AS1289 3.4.1	9.5			
37.5 mi	m	100			Moisture Content	%	AS1289 2.1.1	47.8			
26.5 m	m	100									
19.0 mi	m	100			Sample History :			Natural State			
13.2 m	m	100			Preparation Metho	od :		Wet sieved			
9.5 mn			Crumbling / Curlin	ig of Linear S	Shrinkage :	No					
6.7 mn	n	100			Linear Shrinkage	umbling / Curling of Linear Shrinkage : No near Shrinkage Mould Length : 250mm					
4.75 m	m	99			NP = non-plastic	١	NO = not obtainable	ND = not deter	nined		
2.36 m	m	98									
1.18 m	m	97	1	}							
0.600m	m	95									
	m	95									
0.425m			E								
0.425m 0.300m		94									
	m										
0.300m	ım Im	94						<u></u>			
0.300m 0.150m	ım Im	94 92			PARTICLE S		RIBUTION		1.004-0		
0.300m 0.150m 0.075m	ım ım ı <u>m</u>	94 92					RIBUTION	26.5 37.5 53.0 1100 1100	A.S. Sieves		
0.300m 0.150m 0.075m	im im im	94 92					_	- 26.5 - 37.5 - 53.0 - 75.0 - 150	A.S. Sieves		
0.300m 0.150m 0.075m	ım ım ı <u>m</u>	94 92					_	- 26.5 - 37.5 - 53.0 - 53.0 - 150	A.S. Sieves		
0.300m 0.150m 0.075m	im im im	94 92	· · · · · · · · · · · · · · · · · · ·				_	- 26.5 - 37.5 - 53.0 - 75.0 - 1100	A.S. Sieves		
0.300m 0.150m 0.075m	im im 100 - 90 - 80 -	94 92					_		A.S. Sieves		
0.300m 0.150m 0.075m	im im 100 - 90 - 80 - 70 -	94 92					_		A.S. Sieves		
0.300m 0.150m 0.075m	im im 100 - 90 - 80 -	94 92					_	26.5 	A.S. Sieves		
0.300m 0.150m 0.075m	im im 100 - 90 - 80 - 70 -	94 92					_	26.5 37.5 37.5 77.0 775.0	A.S. Sieves		
0.300m 0.150m 0.075m	100 - 90 - 80 - 70 - 50 -	94 92					_		A.S. Sieves		
0.300m 0.150m 0.075m	100 - 90 - 80 - 70 - 60 - 50 - 40 -	94 92					_	26.5 27.5 53.0 775.0	A.S. Sieves		
0.300m 0.150m 0.075m	100 - 90 - 80 - 70 - 50 -	94 92					_	26.5 37.5 7-75.0	A.S. Sieves		
0.300m 0.150m 0.075m	100 - 90 - 80 - 70 - 60 - 50 - 40 -	94 92					_	26.5 27.5 27.5 27.5 27.5 28.5 29.7 29.7 29.7 29.7 29.7 29.7 29.7 29.7	A.S. Sieves		
0.300m 0.150m 0.075m	m m 100 - 90 - 80 - 60 - 50 - 30 - 20 -	94 92					_	26.5 37.5 37.5 37.5 53.0 53.0 175.0	A.S. Sieves		
0.300m 0.150m 0.075m	m m 100 - 90 - 80 - 70 - 60 - 50 - 30 - 20 - 10	94 92					_		A.S. Sieves		
0.300m 0.150m 0.075m	m m 100 - 90 - 80 - 70 - 60 - 50 - 30 - 20 - 10 - 0 -	94 92 82			0150						
0.300m 0.150m 0.075m	m m 100 - 90 - 80 - 70 - 60 - 50 - 30 - 20 - 10	94 92 82	0.01					58 51 52 50 00 09 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A.S. Sieves		
0.300m 0.150m 0.075m	m m 100 - 90 - 80 - 70 - 60 - 50 - 30 - 20 - 10 - 0 -	94 92 82	0.01		0.1 PART						
0.300m 0.150m 0.075m	m m 100 - 90 - 80 - 70 - 60 - 50 - 30 - 20 - 10 - 0 -	94 92 82	SILT FRACTIC	COARSE	0.1 PART SAND FRAC FINE MEDIUM		98 92 92 93 02 98 72 99 99 10 10 10 (mm) GRAVEL FRACTION FINE MEDIUM	100 COARSE COBBLES	BOULDERS		
0.300m 0.150m 0.075m	m m 100 - 90 - 80 - 70 - 60 - 50 - 30 - 20 - 10 - 0 -	94 92 82	SILT FRACTIC		0.1 PART		98 92 92 93 82 96 7 99 92 99 92 99 92 99 92 99 92 99 92 99 92 99 92 99 92 99 92 99 92 99 92 92	100 COARSE COBBLES	BOULDERS		

lient Address	City Pacific Proj	-	-	Ltd	Job	Number	06692015-3		
					Date	1	25-Nov-06		
roject	Townsville Ocea	in Termina	I		Repo	ort Number	NQ-06591	Page No 1	of 1
ocation	Breakwater, Tow	vnsville			Sam	pling Method	As Supplied to Lab	oratory	
ab Ref No.	06/1128				Sam	ple Identification	BH 37 1.4-2.5m		
.aboratory Sp AS1726, App A,	ecimen Description	n	SC Clay	ey SAND, medium to co	arse grained	l, grey.			
PARTICLE	SIZE DISTRIBUT	ION AS12	39 3.6.1	C	LASSIFIC	ATION LIMITS AN	ID MOISTURE COM	ITENT	
Sieve Size	% Passing	Spec. Lower	Spec. Upper	Test		Method	Result	Spec. Lower	Spe Upp
150 mm	100			Liquid Limit %	1	AS1289 3.1.2	47		
100 mm	100			Plastic Limit %	6	AS1289 3.2.1	16		
75 mm	100			Plasticity Index %	ò	AS1289 3.3.1	31		
53 mm	100			Linear Shrinkage %	ó	AS1289 3.4.1	13.0		
37.5 mm	100			Moisture Content %	6	AS1289 2.1.1	36.1		
26.5 mm	100	1							
19.0 mm	100			Sample History :			Natural State		
13.2 mm	100			Preparation Method :			Wet sieved		
9.5 mm	100			Crumbling / Curling of	Linear Shrir	nkage :	No		
6.7 mm	100			Linear Shrinkage Mou	ld Length :		125mm		
4.75 mm	99			NP = non-plastic	NO =	not obtainable	ND = not determ	ined	
2.36 mm	95								
1.18 mm	85								
0.600mm	64								
0.425mm	52								
0.300mm	45								
0.150mm	39								
0.075mm	37								
				PARTICLE SIZE		BUTION			
10	.			0.075 0.150 0.300 0.425 0.600	1.18	4.75 6.70 9.50 13.2	26.5 37.5 53.0 75.0 100	A.S. Sieves	
10		· . :			···				
9	0	151							
·n 8	o '					: م ـ ـ ـ ـ ـ ـ ـ ـ			
ž					[
= 7									
70 ASSIN				<i>+</i>					
SVd 6	0			<i>f</i> .	4.51 - 1.5				
		· · · ·		ţ.					
	0	· · · · ·	· · · ·	1					
	0		· · · · ·	+					
	0		· · ·		*				
305 SENTAGE	0		· · · · ·		· · · · · · · · · · · · · · · · · · ·				
DERCENTAGE	0		· · · · · ·						
56 44 36 24 21 21	D		· · · · ·						
56 44 36 24 21 21		0.01	· · · · ·	0.1	1	10	100	1000	
56 44 36 24 21 21	D	0.01	· · · · · ·	0.1 PARTICLI	1 E SIZE (mm) 10	100	1000	
56 41 36 21 11		0.01 SILT FRACTIO	N COARSE	PARTICLI SAND FRACTION		GRAVEL FRACTION	100 COARSE COBBLES	1000 BOULDERS	

lient		City Pa	acific Proje	ct Manage	ment Pty	Ltd		lob Number	06692015-3		
lient Addr	ess	PO Bo	x 1653, So	uthport, Q	ld 4215		ſ	Date	25-Nov-06		
roject		Towns	ville Ocear	n Terminal			F	Report Number	NQ-06592	Page No 1 o	of 1
ocation		Break	water, Towi	nsville			5	Sampling Method	As Supplied to Lat	poratory	
ab Ref No		06/112	:9				5	Sample Identification	BH 38 0-1.6m		
S1726, App	o A, Se	ect 2)	escription			ζ, medium plasticity, ς					
PARTIC	LE S	IZE DIS	STRIBUTI	ON AS128	9 3.6.1		CLASSI	FICATION LIMITS A	ND MOISTURE COI	NTENT	
Sieve S		<u> </u>	assing	Spec. Lower	Spec. Upper	Test		Method	Result	Spec. Lower	Spec Uppe
150 mr		1	100	ļļ		Liquid Limit	%	AS1289 3.1.2	48		
100 mr			100			Plastic Limit	%	AS1289 3.2.1	16		
75 mn			100			Plasticity Index	%	AS1289 3.3.1	32		
53 mn			100			Linear Shrinkage	%	AS1289 3.4.1	14.5		
37.5 m			100			Moisture Content	%	AS1289 2.1.1	52.9		
26.5 m			100	i . i		Sample History			Natural State		
19.0 m			100 100			Sample History : Preparation Metho	d ·		Wet sieved		
13.2 m 9.5 mr			100			Crumbling / Curling		Shrinkage :	No		
9.5 mr 6.7 mr			100			Linear Shrinkage			250mm		
4.75 m			100			NP = non-plastic	•	NO = not obtainable	ND = not detern	nined	
2.36 m			100								
1.18 m			100								
0.600m			99								
0.425m			99								
0.300m			99			1					
0.150m	m		98								
0.075m	m		94								
						PARTICLE S	IZE DIST	RIBUTION			
	100					0.075 0.150 0.300 0.425	0.600	2.36 4.75 6.70 -9.50 -13.2	-26.5 -37.5 -75.0 -150	A.S. Sieves	
	90					+		······································			
	80	ļ						· · · · · · · · · · ·	مرتبع مرتبع مرتبع م	1 - 1 - 1 - 1 	
PASSING	70						n in the second s				
ASS	60										
				1							
PERCENTAGE	50	†						· · · · · · · · · · · · · · · · · · ·		·	
ENB	40				· -		· · · -				
RC	30	.	• • • •								
A A	20	<u> </u> .			•		·	· · · · · · · · · · · · · · · · ·		· · · ·	
	10	1							a a construction de la construcción de la construcción de la construcción de la construcción de la construcción Esta construcción de la construcción		
	0										
		.001		0.01		0.1 PART		10 (mm)	100	1000	
		×		SILT FRACTIO	N	SAND FRACT		GRAVEL FRACTION		POULDERS	
		CLAY	FINE	MEDIUM	COARSE	<u> </u>	COARSE	FINE MEDIUM	COARSE	BOULDERS	
		0	.002 0.0	06 0	.02	0.06 0.2	0.6	2 6 2	0 60 200	600	
						al Association of Testing A		<u>A</u>	all-pe	2	
NAT						n performed in accordance			Laboratory Man	7 ager 27-No	w-06

J:\Townsville Jobs\06692015-3\2015-3_592

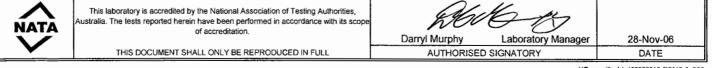
LABFORM23 -11/04

lient		City Pacific Proj	ect Manage	ement Pty	Ltd	Je	ob Number	06692	015-3		
lient Addr	ess	PO Box 1653, S	outhport, C	ld 4215		D	ate	25-No	v-06		
roject		Townsville Ocea				R	eport Number	NQ-06	593	Page No 1	of 1
ocation		Breakwater, Tow	vnsville				ampling Method		pplied to Lab		
ab Ref No		06/1130				1.	ample Identification		0 0-0.9m		
		men Descriptio			, medium plasticity, gr	I	•		•		
AS1726, App	A, Sec	zt 2)			nt=						
PARTIC	LE SI					CLASSIF	FICATION LIMITS A	ND MOIS	TURE CO		
Sieve S	ize	% Passing	Spec.	Spec. Upper	Test		Method		Result	Spec. Lower	Spec Uppe
150 mr	n	100		1		%	AS1289 3.1.2		42		
100 mr	n	100			li de la constante	%	AS1289 3.2.1		15		
75 mm	ו	100			Plasticity Index	%	AS1289 3.3.1	·	27		
53 mm	ו	100			Linear Shrinkage	%	AS1289 3.4.1		13.0		
37.5 mi	m	100			Moisture Content	%	AS1289 2.1.1		33.8		
26.5 mi	m	100		1							
19.0 mi	m	100		1	Sample History :				al State		
13.2 m	m	100		ļ	Preparation Method			Wet s	ieved		
9.5 mn	n	100			Crumbling / Curling			No			
6.7 mr	n	100			Linear Shrinkage Mo			250m			
4.75 m	m	100	1		NP = non-plastic	N	IO = not obtainable	ND	= not determ	ined	
2.36 m	m	100									
1.18 m		100		ļ							
0.600m	m	100									
0.425m	m	99									
0.300m		99									
0.150m		99	1								
0.075m	m	97		1	<u>]</u>						
					PARTICLE SIZ	E DIST	RIBUTION				
					0.075 0.150 0.300 0.425	0.600	2.36 4.75 6.70 9.50	19.0 26.5 37.5 53.0	75.0 100 150	A,S, Sieves	
	100		-	,	++-++++++++++++++++++++++++++++++++	⊢ I	<mark>n konstraka konstana</mark> Arraka konstana	┝╼┈╊╼╴╂╌╸╊	<u> </u>		
	90 -			· • ·· ·				÷ = -, =			
	80					n ta mangan man	n an	 	салын н -1-н		
DN C			an a	:		• •			batas de Karate de a	 Constraints Encode and the Constraints 	
ASSING	70 -										
а.	60 -							<u>;</u> = ; - ;- :-	u Charle III - Lê Connection - Lê		
<u>G</u> E	50 -				· · · · · · · · · · · ·	1979) 1990 - San	n an		ار سالیا بیا بیار دارد.		
ITA				н н	· · · · ·	• • • •		1.4 1.1	naan oo b Dibibbi oo b		
EN .	40 -								r n 1 n n n		
PERCENTAGE	30 -							<u>.</u>	$\frac{1}{1}$		
<u>a</u>	20 -						د د ۱۹۱۰ ز. ایر مرکو مرتب د مرتب و ایر د				
	10					a kanala Angla					
								1917 - E T			
	0.0	in 1	0.01		0.1	- <u></u> 1	10		100	1000	
	0.0					LE SIZE (I	mm)				
		FINE	SILT FRACTIC		SAND FRACTIO		GRAVEL FRACTIC		COBBLES	BOULDERS	
			MEDIUM	COARSE		COARSE	FINE MEDIUM	COARSE			
		0.002 0.	006 0	.02	0.06 0.2 0.4		2 6	20 60	200	600	

aboratory is accredited by the National Association of Testing Authorities, The tests reported herein have been performed in accordance with its scope of accreditation.	100	16-p	
	Darryl Murphy	Laboratory Manager	27-Nov-06
THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL	AUTHORISE	D SIGNATORY	DATE

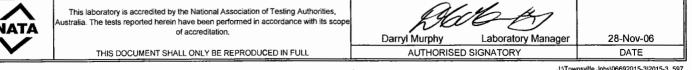
		acific Projec	ct Manage	ment Pty	Ltd	Job Number	06692015-3		
lient Addre	ess PO Bo	ox 1653, So	uthport, Q	ld 4215		Date	25-Nov-06		
roject	Towns	sville Ocean	Terminal			Report Number	NQ-06594	Page No 1 o	f 1
ocation	Break	water, Towr	nsville			Sampling Method	As Supplied to Labo	oratory	
ab Ref No.	06/113	31				Sample Identification	BH 40 1.0-2.1m		
S1726, App		-			′, medium plasticity, grey, wit	7.9.4			
PARTICL	E SIZE DIS	STRIBUTIO			CLAS	SSIFICATION LIMITS AN	D MOISTURE CON	TENT	
Sieve Siz	ze % F	Passing	Spec. Lower	Spec. Upper	Test	Method	Result	Spec. Lower	Spe Upp
150 mm	1	100			Liquid Limit %	AS1289 3.1.2	37		
100 mm	1	100			Plastic Limit %	AS1289 3.2.1	20		
75 mm		100			Plasticity Index %	AS1289 3.3.1	17		
53 mm		100		1	Linear Shrinkage %	AS1289 3.4.1	8.0		
37.5 mm	1	100		1	Moisture Content %	AS1289 2.1.1	48.4		
26.5 mm		100							
19.0 mm		100		1	Sample History :		Natural State		
13.2 mm		100		1	Preparation Method :		Wet sieved		
9.5 mm		100		í	Crumbling / Curling of Line	-	No		
6.7 mm		100			Linear Shrinkage Mould Le		150mm		
4.75 mm		100			NP = non-plastic	NO = not obtainable	ND = not determin	ned	
2.36 mm		100							
1.18 mm		100							
0.600mn		99 99							
0.425mn		99 99							
0.300mn		99 00							
0.150mn 0.075mn		98 88							
	90				PARTICLE SIZE DI	STRIBUTION 91 95 27 9 95 27 96	28.5 	A.S. Sieves	,
			- 1 - C					de siste d	
	an 1				¥				
<u>o</u>	80				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
ASSING	70	· · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	 					
PASSING	70 · 60 -		· · · · · · · · · · · · · · · · · · ·	- · · · ·					
PASSING	70 60 50	· · · · · · · · · · · · · · · · · · ·		· · · · ·					
PASSING	70 · 60 -	· · · · · · · · · · · · · · · · · · ·							
PASSING	70 60 50	· · · · · · · · · · · · · · · · · · ·							
PERCENTAGE PASSING	70 - - 60 - 50 - 40 - 30 -	· · · · · · · · · · · · · · · · · · ·							
PERCENTAGE PASSING	70 - - 60 - 50 - 40 - 30 - 20 -	· · · · · · · · · · · · · · · · · · ·							
PERCENTAGE PASSING	70 - - 60 - - 50 - - 40 - - 30 - - 20 - - 10 - -	· · · · · · · · · · · · · · · · · · ·							
PERCENTAGE PASSING	70 - - 60 - - 50 - - 40 - - 30 - - 20 - - 10 - -	· · · · · · · · · · · · · · · · · · ·							
PERCENTAGE PASSING	70 - - 60 - - 50 - - 40 - - 30 - - 20 - - 10 - -	· · · · · · · · · · · · · · · · · · ·	0.01		0.1 1 PARTICLE SI	ZE (mm)	100	1000	
PERCENTAGE PASSING	70 60 50 40 30 20 10 0.001	· · · · · · · · · · · · · · · · · · ·	SILT FRACTIO	· · · · · · · · · · · · · · · · · · ·	PARTICLE SI	ZE (mm) GRAVEL FRACTION	COBBLES		
PERCENTAGE PASSING	70 60 50 40 30 20 10 0.001 ₹	FINE	SILT FRACTIO	COARSE	PARTICLE SI SAND FRACTION FINE MEDIUM COAF	ZE (mm) GRAVEL FRACTION RSE FINE MEDIUM	COARSE	BOULDERS	
PERCENTAGE PASSING	70 60 50 40 30 20 10 0.001 ₹		SILT FRACTIO	· · · · · · · · · · · · · · · · · · ·	PARTICLE SI	ZE (mm) GRAVEL FRACTION	COBBLES		
PERCENTAGE PASSING	70	FINE 0.002 0.00	BILT FRACTIO	02	PARTICLE SI SAND FRACTION FINE MEDIUM COAF 0.06 0.2 0.6	ZE (mm) GRAVEL FRACTION RSE FINE MEDIUM	COARSE	BOULDERS	
PERCENTAGE PASSING	70	FINE 0.00	SILT FRACTIO MEDIUM 06 0.	COARSE	FINE MEDIUM COAF 0.06 0.2 0.6	ZE (mm) GRAVEL FRACTION RSE FINE MEDIUM 2 6 20	COARSE	BOULDERS	
PERCENTAGE PASSING	70	FINE 0.00	SILT FRACTIO MEDIUM 06 0.	02 coarse	FINE MEDIUM COAF 0.06 0.2 0.6	ZE (mm) GRAVEL FRACTION RSE FINE MEDIUM 2 6 20	COARSE	BOULDERS 600	

THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

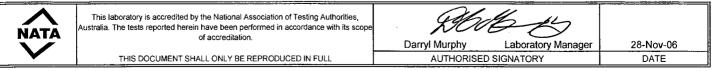

J:\Townsville Jobs\06692015-3\2015-3_594

DATE

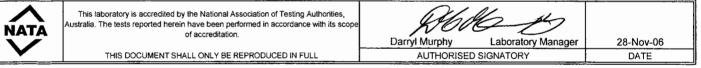
AUTHORISED SIGNATORY



		City Pacific Proje	ct Manag	ement Pty	Ltd		Job Number	06692015-3		
lient Addr	ess	PO Box 1653, So	uthport, C	ald 4215		1	Date	27-Nov-06		
roject		Townsville Ocear	n Termina	I		5	Report Number	NQ-06596	Page No 1	of 1
ocation		Breakwater, Tow	nsville			5	Sampling Method	As Supplied to La	aboratory	
ab Ref No.		06/1132				5	Sample Identification	BH 42 0-1.2m		
S1726, App	A, Sec				y CLAY, medium plas					
PARTICI	LE SIZ			r.		CLASSI	FICATION LIMITS AN	D MOISTURE CO	NTENT	
Sieve Si	ize	% Passing	Spec. Lower	Spec. Upper	Test		Method	Result	Spec. Lower	Spec
150 mn	n	100			Liquid Limit	%	AS1289 3.1.2	36		
100 mn	n	100			Plastic Limit	%	AS1289 3.2.1	17		
75 mm	n	100			Plasticity Index	%	AS1289 3.3.1	19		
53 mm	n	100			Linear Shrinkage	%	AS1289 3.4.1	9.5		
37.5 mr	n	100			Moisture Content	%	AS1289 2.1.1	36.7		
26.5 mr	n	100								
19.0 mr	n	100			Sample History :			Natural State		
13.2 mr	n	100			Preparation Method	d :		Wet sieved		
9.5 mm	n	100			Crumbling / Curling	of Linear	Shrinkage :	No		
6.7 mm	n	100			Linear Shrinkage M		-	150mm		
4.75 mr	n	98			NP = non-plastic	-	NO = not obtainable	ND = not deter	mined	
2.36 mr	n	96								
1.18 mr	n	93								
0.600mi	m	91								
0.425m	m	89								
0.300m	m	88								
	m	85								
0.150m 0.075m		85 65								
0.150m 0.075m	m							6.5 3.0 5.0 00 50	A.S. Sieves	4
0.150m 0.075m					_	ZE DIST	CRIBUTION	26.5 -37.5 -53.0 -75.0 -1100	A.S. Sieves	
0.150m 0.075m	m				_			26.5 37.5 53.0 75.0 1100	A.S. Sieves	
0.150m 0.075m	m 100 90				_			26.5 37.5 7.5 75.0 1100	A.S. Sieves	
0.150mi 0.075mi	m 100 90 80				_			26.5 	A.S. Sieves	
0.150mi 0.075mi	m 100 90				_			26.5 -37.5 -53.0 -75.0 -1100	A.S. Sieves	
0.150m 0.075m	m 100 90 80				_			26.5 	A.S. Sieves	
0.150mi 0.075mi SSINC	m 90 80 70 60				_			26.5 	A.S. Sieves	
0.150mi 0.075mi SNISSV	m 90 70 60 50				_			26.5 37.5 33.0 75.0 75.0 75.0	A.S. Sieves	
0.150mi 0.075mi SNISSV	m 90 80 70 60				_			26.5 	A.S. Sieves	
0.150mi 0.075mi SSINC	m 90 70 60 50				_			26.5 37.5 53.0 75.0 75.0 100	A.S. Sieves	
0.150mi 0.075mi	m 90 80 70 60 50 40 30				_			26.5 37.5 53.0 75.0 1100	A.S. Sieves	
0.150mi 0.075mi SSINC	m 90 80 70 60 50 40 30 20				_			26.5 27.5 37.5 77.50 77.50 7150	A.S. Sieves	
0.150mi 0.075mi SSINC	m 90 80 70 60 50 40 30				_			26.5 27.5 37.5 775.0	A.S. Sieves	
0.150mi 0.075mi SSSINC	m 90 80 70 60 50 40 30 20				_			26.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27	A.S. Sieves	
0.150mi 0.075mi SSINC	m 90 80 70 60 50 40 30 20 10	65	0.01		5200 00510 0000 0000 0000 0000 0000 0000			⁵⁹⁵ ²⁹⁷ ²⁰⁷	A.S. Sieves	
0.150mi 0.075mi SNISSV	m 90 80 70 60 50 40 30 20 10 0	65	0.01		5200 00510 0000 0000 0000 0000 0000 0000			100	1000	
0.150mi 0.075mi SNISSV	m 90 80 70 60 50 40 30 20 10 0	65		N	0.1 PARTI		99 57 90 99 67 1 10 (mm) GRAVEL FRACTION			
0.150mi 0.075mi SNISSV	m 90 80 70 60 50 40 30 20 10 0	65	MEDIUM	_	0.1 PARTIC SAND FRACTIC FINE MEDIUM		99 57 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 COBBLES	BOULDERS	

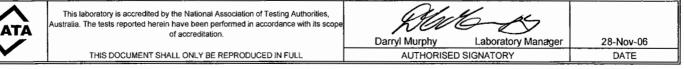


lient		City Pacific Proje	ct Manage	ement Pty	Ltd		Job Number	06692015-3		
lient Addr	ess	PO Box 1653, So	uthport, Q	ld 4215			Date	27-Nov-06		
roject		Townsville Ocear					Report Number	NQ-06597	Page No 1	of 1
ocation		Breakwater, Tow	nsville			- F	Sampling Method	As Supplied to La		
ab Ref No		06/1133					Sample Identification	BH 42 1.2-2.2m		
				CI Sand	CLAY, medium plas					
AS1726, App	•	men Description		Cr Sand	CLAT, medium plas	slicity, grey	•			
		ZE DISTRIBUTI	ON 45128	9361		CI ASS	IFICATION LIMITS AN	ID MOISTURE CO	NTENT	
			Spec.	Spec.						Spe
Sieve S	ize	% Passing	Lower	Upper	Test		Method	Result	Spec. Lower	Upp
150 mr	n	100			Liquid Limit	%	AS1289 3.1.2	36		
100 mr	n	100			Plastic Limit	%	AS1289 3.2.1	17		
75 mm	n	100			Plasticity Index	%	AS1289 3.3.1	19		
53 mm	า	100			Linear Shrinkage	%	AS1289 3.4.1	8.0		
37.5 m	m	100			Moisture Content	%	AS1289 2.1.1	42.8		
26.5 m	m	100								
19.0 m	m	100			Sample History :			Natural State		
13.2 m	m	100		1	Preparation Metho	d :		Wet sieved		
9.5 mr	n	100	1		Crumbling / Curling	g of Linear	Shrinkage :	No		
6.7 mr	n	100			Linear Shrinkage N	Mould Leng	ıth :	125mm		
4.75 m	m	98			NP = non-plastic		NO = not obtainable	ND = not deter	mined	
2.36 m	m	95								
1.18 m	m	89								
0.600m	m	84								
0.425m	m	80								
0.425m 0.300m		1								
0.300m	m	78								
	im Im	1								
0.300m 0.150m	im Im	78 74								
0.300m 0.150m	im Im	78 74			PARTICLE S		TRIBUTION			
0.300m 0.150m 0.075m	ım ım ım	78 74						26.5 37.5 53.0 1100	A.S. Sieves	
0.300m 0.150m 0.075m	im im im	78 74							A,S. Sieves	
0.300m 0.150m 0.075m	ım ım ım	78 74							A.S. Sieves	
0.300m 0.150m 0.075m	im im 100 - 90 -	78 74	· · · · · · · · · · · · · · · · · · ·					- 26.5 	A.S. Sieves	
0.300m 0.150m 0.075m	im im 100 90 80	78 74						- 26.5 - 37.5 - 53.0 - 75.0 - 100 - 1100	A.S. Sieves	
0.300m 0.150m 0.075m	100 90 80 70	78 74						26.5 737.5 737.5 753.0 753.0 753.0 753.0 753.0 753.0 7100	A.S. Sieves	
0.300m 0.150m 0.075m SSING	im im 100 90 80	78 74						28.5 23.7 53.0 53.0 53.0 7 53.0 7 53.0 7 53.0 7 53.0 7 53.0 7 53.0 7 53.0 7 53.0 7 53.0 7 53.0 7 53.0 7 53.0 7 54.5 5 7 54.5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 7 5 7 7 7 5 7 7 7 7 5 7	A,S. Sieves	
0.300m 0.150m 0.075m SSING	100 90 80 70 60	78 74						26.5 737.5 737.5 733.0 735.0 755.0 755.0 755.0 755.0 755.0 755.0 755.0 7	A.S. Sieves	
0.300m 0.150m 0.075m SSING	100 90 80 70 60 50	78 74						28.5 28.5 7 37.5 7 7 7 37.5 7 7 7 37.5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	A,S. Sieves	-
0.300m 0.150m 0.075m SSING	100 90 80 70 60	78 74						28.5 29.5 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	A.S. Sieves	
0.300m 0.150m 0.075m SSING	100 90 80 70 60 50	78 74						26.5 27.5 27.5 28.5 28.5 28.5 28.5 28.5 28.5 28.5 28	A.S. Sieves	
0.300m 0.150m 0.075m	100 90 80 70 60 50 40 30	78 74							A.S. Sieves	
0.300m 0.150m 0.075m SSING	100 90 80 70 60 50 40 30 20	78 74							A.S. Sieves	
0.300m 0.150m 0.075m SSING	100 90 80 70 60 50 40 30	78 74						26.5 27.5 27.5 27.5 2.3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	A.S. Sieves	
0.300m 0.150m 0.075m SSING	100 90 80 70 60 50 40 30 20	78 74			0.075		236 236 236 236 236 236 236 236 236 236			
0.300m 0.150m 0.075m SSING	100 90 80 70 60 50 40 30 20 10 0	78 74	0.01		0.1			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A.S. Sieves	
0.300m 0.150m 0.075m SSING	100 90 80 70 60 50 40 30 20 10 0	78 74 61	0.01 SILT FRACTIC	· · · · · · · · · · · · · · · · · · ·	0.1			100	1000	
0.300m 0.150m 0.075m SSINC	100 90 80 70 60 50 40 30 20 10 0	78 74 61		N COARSE	0.1 PARTI SAND FRACT		98 92 99 95 00 99 87 99 99 99 10 99 10 10 10 (mm) GRAVEL FRACTION			



lient		City Pacific Proje	ct Manage	ement Pty	Ltd	J	ob Number	06692015-3		
lient Addre	ess	PO Box 1653, So	outhport, C	ld 4215		ם	ate	27-Nov-06		
roject		Townsville Ocear				R	eport Number	NQ-06598	Page No 1	of 1
ocation		Breakwater, Tow	nsville				ampling Method	As Supplied to Labo		
ab Ref No.		06/1134					ample Identification	BH 45 0-1.25m		
aboratory	Speak	nen Description			, medium plasticity, g		an of sond		1	
S1726, App	•			CI CLAI	, medium plasticity, g	ney, wurua	ice of salid.			
				39361			FICATION LIMITS AN		TENT	
	1		Spec.	Spec.					T	Spec
Sieve Si	ze	% Passing	Lower	Upper	Test		Method	Result	Spec. Lower	Uppe
150 mm	n	100			Liquid Limit	%	AS1289 3.1.2	45		
100 mm	n	100			Plastic Limit	%	AS1289 3.2.1	16		
75 mm		100			Plasticity Index	%	AS1289 3.3.1	29	1 1	
53 mm		100			Linear Shrinkage	%	AS1289 3.4.1	· 14.0		
37.5 mn	n	100			Moisture Content	%	AS1289 2.1.1	40.5		
26.5 mn	n	100	[
19.0 mn	n	100			Sample History :			Natural State		
13.2 mn	n	100			Preparation Metho	d :		Wet sieved		
9.5 mm	1 I	100	1		Crumbling / Curling	រ of Linear ទ	Shrinkage :	No		
6.7 mm	1	100			Linear Shrinkage M		-	150mm		
4.75 mn	n	100			NP = non-plastic	-	IO = not obtainable	ND = not determi	ned	
2.36 mn	n	99						;·	<u>.</u>	
1.18 mn	n	99			1					
0.600mr	m l	98		1						
0.425mr		98		ļ						
0.300mr		97								
0.150mr		97								
0.075mr		95								
					PARTICLE SI		RIBUTION			
					0.075 0.150 0.300 0.425	0.600	2.36 4.75 6.70 9.50 13.2 13.2	26.5 37.5 53.0 75.0 100 150	A.S. Sieves	
-	¹⁰⁰ [+++	++	···			
	90 -	2	÷				والمترك وكالمتحد المتراج	e e la filipita e e		
	80 +						· · · · · · · · · · · · · · · · · · ·			
PASSING	70 -					4 * 		ana di Barra di Santa Distante		
SS	1		· ·					n na ser		
_	60 -		;		in a second s		$\frac{1}{2}=-\frac{1}{2}\left[-\frac{1}{2}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)-\frac{1}{2}\right]$	n na na manana ang na		
PERCENTAGE	50								· · ·	
4TA	40					••				
μ Ω								· · · · · · · · · · · · · · · · · · ·		
ERI	30									
đ	20					n na ana ana a	الدارية (1999) يوري المراجع المريد مراجع و			
	10							· · · · · · · · · · · · · · · · · · ·		
					· · · · · ·					
	0 L 0.00	01	0.01		0.1	1	10	100	1000	
	0.00				PARTI	CLE SIZE (mm)			
		< ↓	SILT FRACTIC	N COARSE	SAND FRACT		GRAVEL FRACTION	COBBLES	BOULDERS	
		ਹੈ FINE	MEDIUM			COARSE	FINE MEDIUM	COARSE		

lient		City Pacific Proje	ct Manage	ment Pty	Ltd		lob Number	06692	015-3		
lient Addr	ess	PO Box 1653, So	uthport, Q	ld 4215		ſ	Date	27-No	v -06		
roject		Townsville Ocear	n Terminal			F	Report Number	NQ-06	599	Page No 1	of 1
ocation		Breakwater, Tow	nsville			5	Sampling Method	As Su	pplied to La	boratory	
ab Ref No.		06/1135				\$	Sample Identificatio	n BH 4	5 1.25-1.94	m	
aboratory S1726, Apr	-	men Description t 2)		CI CLAY	, medium plastic	ity, grey, with tr	ace of sand.				
PARTIC	LE SIZ		ON AS128	9 3.6.1		CLASSI	FICATION LIMITS	AND MOIS	TURE CO	NTENT	
Sieve Si	ize	% Passing	Spec. Lower	Spec. Upper	Te		Method		Result	Spec. Lower	Spec Uppe
150 mr		100			Liquid Limit	%	AS1289 3.1.2		39		
100 mr	n	100			Plastic Limit	%	AS1289 3.2.1		19		
75 mm	ו ו	100			Plasticity Index	« %	AS1289 3.3.1		20		
53 mm	ו ו	100			Linear Shrinka	ge %	AS1289 3.4.1		7.5		
37.5 mi	m	100			Moisture Conte	ent%	AS1289 2.1.1		51.8		
26.5 m	m	100									
19.0 mi	m	100			Sample Histor	y :		Natura	al State		
13.2 m	m	100			Preparation M	ethod :		Wet s	ieved		
9.5 mn	n	100			Crumbling / Cu	urling of Linear S	Shrinkage :	No			
6.7 mn	n	100			Linear Shrinka	ge Mould Lengt	h:	125m	n		
4.75 mi	m	100			NP = non-plas	tic M	NO = not obtainable	ND	= not detern	nined	
2.36 mi	m	100									
1.18 mi	m	100									
0.600m	m	100									
0.425m	m	100									
0.300m	m	99									
0.150m	m	99									
0.075m	m	89			L						
					PARTICLE	E SIZE DIST	RIBUTION				
	100				0.075	0.425 0.600	2.36 4.75 6.70 9.50	19.0 26.5 37.5 53.0	-75.0 -100 -150	A.S. Sieves	
	¹⁰⁰ T			: •							
	90 .	· · · · · · ·			***				- 1- 1- 1- 1- - 2	1111111111	
	80 -					an a					
DN	70								÷ •		
PASSING	- 1										
	60 -		• •		• • • • •	a tha shi an			11 		
GE	50		• • •		· • • • • • • • • • •		and a second				
NTA	40 -						an an an an an Arrien				
PERCENTAGE	30 -										
PEF	20										
	10										
	0					•					
	0.0	01	0.01		0.1		10		100	1000	
			TEDAOTIO					TION			
		FINE	MEDIUM	COARSE		RACTION	GRAVEL FRAC	COARSE	COBBLES	BOULDERS	
				L	1						
		0.002 0.00	06 0.	02	0.06 0.2	0.6	2 6	20 60	200	600	



lient		City Pacific Pro	ject Manag	ement Pty	Ltd		Τ.	Job Number	06692015-3		
ient Addı	ress	PO Box 1653,	Southport, C	Qld 4215			1	Date	27-Nov-06		
oject		Townsville Oce	an Termina	il.			1	Report Number	NQ-06600	Page No 1	of 1
cation		Breakwater, To	wnsville				г	Sampling Method	As Supplied to La	aboratory	
b Ref No		06/1136						Sample Identification	BH 46 0-1.25m		
hereton	Ennai	mon Docorinti			/ modium	nlacticity	i.	· · · ·			
S1726, Ap	-	men Description	211	CI CLAI	r, meulun	plasticity, j	grey, with th	ace of sand.			
		ZE DISTRIBU		90 3 6 1	1			FICATION LIMITS A			
Sieve S		% Passing	Spec.	Spec.	 -	Test		Method	Result	Spec. Lower	Spe
150 m	m	100	Lower	Upper	Liquid L	imit	%	AS1289 3.1.2	40		Upp
100 m		100			Plastic		%	AS1289 3.2.1	16		
75 mr		100				ty Index	%	AS1289 3.3.1	24		
53 mr		100			11	Shrinkage	%	AS1289 3.4.1	11.5		
37.5 m		100				e Content	%	AS1289 2.1.1	30.9		
26.5 m		100							1	l	
19.0 m		100			Sample	History :			Natural State		
13.2 m		100		1	11	ation Metho	d:		Wet sieved		
9.5 m		100		1				Shrinkage :	No		
6.7 m		100					Mould Leng	-	150mm		
4.75 m		100				on-plastic	-	NO = not obtainable	ND = not deter	mined	
2.36 m		100									
1.18 m		96									
0.600m		92	1								
0.425m		90									
0.300m		89									
0.150m		88									
0.075m		86									
								RIBUTION	-		
	100 -				0.075	0.150 0.300	0.60	2.36 4.75 6.70 9.50 13.2	75.0 75.0 75.0 75.0 75.0 75.0	A S. Sieves	
	90					مهمنهشيت					
	80 -				, and a						
PASSING	70 ·						· · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
SS								a de la companya de l			
	60										
\GE	50 -		· • · · • · · · ·				- • • •				
414	40										
CEI											
PERCENTAGE	30		· · ·			-	÷				
<u>م</u>	20 ·			· · ·		•			n an		
	10										
	0							<u></u>	n an		
	0.0	001	0.01		0.1	PART	1 ICLE SIZE	10 (mm)	100	1000	
			SILT FRACTIO		T	SAND FRACT		GRAVEL FRACTION			
		J FINE	MEDIUM	COARSE	E FINE	MEDIUM	COARSE	FINE MEDIUM	COARSE	BOULDERS	
			0.006	0.02	0.06	0.2	0.6	2 6 2	80 60 20	0 600	

AS1726, App A, Se	Townsville Ocea Breakwater, Tow 06/1137 ecimen Description	n Termina Insville 1	I CI CLAY	7, medium plasticity, grey, CL Test Liquid Limit % Plastic Limit % Plasticity Index % Linear Shrinkage % Moisture Content % Sample History : Preparation Method : Crumbling / Curling of L Linear Shrinkage Mould NP = non-plastic	ASSIFICATION LIMITS AI Method AS1289 3.1.2 AS1289 3.2.1 AS1289 3.3.1 AS1289 3.4.1 AS1289 2.1.1	27-Nov-06 NQ-06601 As Supplied to Labo BH 46 1.25-2.05m ND MOISTURE CON Result 49 19 30 13.0 60.7 Natural State Wet sieved No 150mm ND = not determi	TENT Spec. Lower
Decation ab Ref No. aboratory Spect S1726, App A, Set PARTICLE S Sieve Size 150 mm 100 mm 75 mm 53 mm 37.5 mm 26.5 mm 19.0 mm 13.2 mm 9.5 mm 6.7 mm 4.75 mm 2.36 mm 1.18 mm 0.600mm 0.425mm 0.300mm 0.150mm	Breakwater, Tow 06/1137 ccimen Description Size DISTRIBUT % Passing 100	ION AS128	CI CLAY 39 3.6.1 Spec.	CL Test Liquid Limit % Plastic Limit % Plasticity Index % Linear Shrinkage % Moisture Content % Sample History : Preparation Method : Crumbling / Curling of L Linear Shrinkage Mould	Sampling Method Sample Identification with trace of sand. ASSIFICATION LIMITS AI Method AS1289 3.1.2 AS1289 3.2.1 AS1289 3.3.1 AS1289 3.4.1 AS1289 2.1.1	As Supplied to Labo BH 46 1.25-2.05m ND MOISTURE CON Result 49 19 30 13.0 60.7 Natural State Wet sieved No 150mm	oratory ITENT Spec. Lower
Abb Ref No. aboratory Spect S1726, App A, Se PARTICLE S Sieve Size 150 mm 100 mm 75 mm 53 mm 37.5 mm 26.5 mm 19.0 mm 13.2 mm 9.5 mm 6.7 mm 1.18 mm 0.600mm 0.425mm 0.300mm 0.150mm	06/1137 acimen Description Sect 2) SIZE DISTRIBUT % Passing 100 100 100 100 100 100 100 10	ION AS128	39 3.6.1 Spec.	CL Test Liquid Limit % Plastic Limit % Plasticity Index % Linear Shrinkage % Moisture Content % Sample History : Preparation Method : Crumbling / Curling of L Linear Shrinkage Mould	Sample Identification with trace of sand. ASSIFICATION LIMITS AI Method AS1289 3.1.2 AS1289 3.2.1 AS1289 3.3.1 AS1289 3.4.1 AS1289 2.1.1	BH 46 1.25-2.05m ND MOISTURE CON Result 49 19 30 13.0 60.7 Natural State Wet sieved No 150mm	TENT Spec. Lower
Aboratory Spec S1726, App A, Se PARTICLE S Sieve Size 150 mm 100 mm 75 mm 37.5 mm 26.5 mm 19.0 mm 13.2 mm 9.5 mm 6.7 mm 4.75 mm 2.36 mm 1.18 mm 0.600mm 0.425mm 0.300mm 0.150mm	Ecimen Description Sect 2) SIZE DISTRIBUT % Passing 100 100 100 100 100 100 100 10	ION AS128	39 3.6.1 Spec.	CL Test Liquid Limit % Plastic Limit % Plasticity Index % Linear Shrinkage % Moisture Content % Sample History : Preparation Method : Crumbling / Curling of L Linear Shrinkage Mould	with trace of sand. ASSIFICATION LIMITS AI Method AS1289 3.1.2 AS1289 3.2.1 AS1289 3.3.1 AS1289 3.4.1 AS1289 2.1.1 Inear Shrinkage : Length :	ND MOISTURE CON Result 49 19 30 13.0 60.7 Natural State Wet sieved No 150mm	ITENT Spec. Lower
S1726, App A, Se PARTICLE S Sieve Size 150 mm 100 mm 75 mm 53 mm 37.5 mm 26.5 mm 19.0 mm 13.2 mm 9.5 mm 6.7 mm 4.75 mm 2.36 mm 1.18 mm 0.600mm 0.425mm 0.300mm 0.150mm	Sect 2) SIZE DISTRIBUT % Passing 100 100 100 100 100 100 100 10	ION AS128	39 3.6.1 Spec.	CL Test Liquid Limit % Plastic Limit % Plasticity Index % Linear Shrinkage % Moisture Content % Sample History : Preparation Method : Crumbling / Curling of L Linear Shrinkage Mould	ASSIFICATION LIMITS AI Method AS1289 3.1.2 AS1289 3.2.1 AS1289 3.3.1 AS1289 3.4.1 AS1289 2.1.1	Result 49 19 30 13.0 60.7 No No 150mm	Spec. Lower
Sieve Size 150 mm 100 mm 75 mm 53 mm 37.5 mm 26.5 mm 19.0 mm 13.2 mm 9.5 mm 6.7 mm 4.75 mm 2.36 mm 1.18 mm 0.600mm 0.425mm 0.300mm 0.150mm	% Passing 100 100 100 100 100 100 100 10	Spec.	Spec.	Test Liquid Limit % Plastic Limit % Plasticity Index % Linear Shrinkage % Moisture Content % Sample History : Preparation Method : Crumbling / Curling of L Linear Shrinkage Mould	Method AS1289 3.1.2 AS1289 3.2.1 AS1289 3.3.1 AS1289 3.4.1 AS1289 2.1.1	Result 49 19 30 13.0 60.7 No No 150mm	Spec. Lower
150 mm 100 mm 75 mm 53 mm 37.5 mm 26.5 mm 19.0 mm 13.2 mm 9.5 mm 6.7 mm 4.75 mm 2.36 mm 1.18 mm 0.600mm 0.425mm 0.300mm 0.150mm	100 100 100 100 100 100 100 100 100 100			Liquid Limit % Plastic Limit % Plasticity Index % Linear Shrinkage % Moisture Content % Sample History : Preparation Method : Crumbling / Curling of L Linear Shrinkage Mould	AS1289 3.1.2 AS1289 3.2.1 AS1289 3.3.1 AS1289 3.4.1 AS1289 2.1.1	49 19 30 13.0 60.7 Natural State Wet sieved No 150mm	Spec. Lower
100 mm 75 mm 53 mm 37.5 mm 26.5 mm 19.0 mm 13.2 mm 9.5 mm 6.7 mm 4.75 mm 2.36 mm 1.18 mm 0.600mm 0.425mm 0.300mm 0.150mm	100 100 100 100 100 100 100 100 100 100			Plastic Limit % Plasticity Index % Linear Shrinkage % Moisture Content % Sample History : Preparation Method : Crumbling / Curling of L Linear Shrinkage Mould	AS1289 3.2.1 AS1289 3.3.1 AS1289 3.4.1 AS1289 2.1.1	19 30 13.0 60.7 Natural State Wet sieved No 150mm	ined
75 mm 53 mm 37.5 mm 26.5 mm 19.0 mm 13.2 mm 9.5 mm 6.7 mm 4.75 mm 2.36 mm 1.18 mm 0.600mm 0.425mm 0.300mm 0.150mm	100 100 100 100 100 100 100 100 100 100			Plasticity Index % Linear Shrinkage % Moisture Content % Sample History : Preparation Method : Crumbling / Curling of L Linear Shrinkage Mould	AS1289 3.3.1 AS1289 3.4.1 AS1289 2.1.1	30 13.0 60.7 Natural State Wet sieved No 150mm	ned
53 mm 37.5 mm 26.5 mm 19.0 mm 13.2 mm 9.5 mm 6.7 mm 4.75 mm 2.36 mm 1.18 mm 0.600mm 0.425mm 0.300mm 0.150mm	100 100 100 100 100 100 100 100 100 100			Linear Shrinkage % Moisture Content % Sample History : Preparation Method : Crumbling / Curling of L Linear Shrinkage Mould	AS1289 3.4.1 AS1289 2.1.1 inear Shrinkage : Length :	13.0 60.7 Natural State Wet sieved No 150mm	ned
37.5 mm 26.5 mm 19.0 mm 13.2 mm 9.5 mm 6.7 mm 4.75 mm 2.36 mm 1.18 mm 0.600mm 0.425mm 0.300mm 0.150mm	100 100 100 100 100 100 100 100 100 100			Moisture Content % Sample History : Preparation Method : Crumbling / Curling of L Linear Shrinkage Mould	AS1289 2.1.1 inear Shrinkage : Length :	60.7 Natural State Wet sieved No 150mm	ined
26.5 mm 19.0 mm 13.2 mm 9.5 mm 6.7 mm 4.75 mm 2.36 mm 1.18 mm 0.600mm 0.425mm 0.300mm 0.150mm	100 100 100 100 100 100 100 100 100 100			Sample History : Preparation Method : Crumbling / Curling of L Linear Shrinkage Mould	inear Shrinkage : Length :	Natural State Wet sieved No 150mm	ined
19.0 mm 13.2 mm 9.5 mm 6.7 mm 4.75 mm 2.36 mm 1.18 mm 0.600mm 0.425mm 0.300mm 0.150mm	100 100 100 100 100 100 100 100 100			Preparation Method : Crumbling / Curling of L Linear Shrinkage Mould	Length :	Wet sieved No 150mm	ined
13.2 mm 9.5 mm 6.7 mm 4.75 mm 2.36 mm 1.18 mm 0.600mm 0.425mm 0.300mm 0.150mm	100 100 100 100 100 100 100 100 100			Preparation Method : Crumbling / Curling of L Linear Shrinkage Mould	Length :	Wet sieved No 150mm	ined
9.5 mm 6.7 mm 4.75 mm 2.36 mm 1.18 mm 0.600mm 0.425mm 0.300mm 0.150mm	100 100 100 100 100 100 100 100			Crumbling / Curling of L Linear Shrinkage Mould	Length :	No 150mm	ined
6.7 mm 4.75 mm 2.36 mm 1.18 mm 0.600mm 0.425mm 0.300mm 0.150mm	100 100 100 100 100 100 100			Linear Shrinkage Mould	Length :	150mm	ined
4.75 mm 2.36 mm 1.18 mm 0.600mm 0.425mm 0.300mm 0.150mm	100 100 100 100 100 100			-	_		ined
2.36 mm 1.18 mm 0.600mm 0.425mm 0.300mm 0.150mm	100 100 100 100 100			NP = non-plastic	NO = not obtainable	ND = not determi	ined
1.18 mm 0.600mm 0.425mm 0.300mm 0.150mm	100 100 100 100						
0.600mm 0.425mm 0.300mm 0.150mm	100 100 100						
0.425mm 0.300mm 0.150mm	100 100						
0.300mm 0.150mm	100						
0.150mm							
	00						
0.075mm	35						
	90				· · · · · · · · · · · · · · · · · · ·		
				PARTICLE SIZE	DISTRIBUTION		
				0.075 0.150 0.300 0.425 0.600	-1.18 -2.36 -4.75 -6.70 -9.50 -13.2	37.5 53.0 75.0 1100	A.S. Sieves
100)						
90)	: : :		· · · · · · · · · · · · · · · · · · ·			ere per la A
. 80)				· · · · · · · · · · · · · · · · · · ·	م مراجع المراجع المراجع المراجع . مرجع المراجع المراجع من المراجع .	
DNIG 70	1						
ö							
)				dalah serten kada serte M		
9 50)						
etn : 40							
U U							
2 30				a a an	*****	a ana ang ang ang ang ang ang ang ang an	
° 20)				an a		
10							
	-			· .			
0	0.001	0.01		0.1	1 10	100	1000
0.		0.01		PARTICLE		100	1000
	FINE	SILT FRACTIO		SAND FRACTION	GRAVEL FRACTION	COBBLES	BOULDERS
		MEDIUM	COARSE	FINE MEDIUM C	2 6 20	COARSE	600

APPENDIX E

Ooze Blending / Lime Stabilisation Trials

E1 BLENDING TRIALS – OOZE

As part of the development of the construction methodology City Pacific requested that small scale trials be undertaken of potential ground treatment methods for improving the geotechnical performance of the ooze material. Two trials were initiated:

- Blending of Ooze material with quarry rock.
- Lime Stabilisation of Ooze Material.

The project construction methodology evolved through many different options and prior to the completion and reporting of these trials, Golder was instructed to halt the assessment. The following is a summary of the assessment completed for these trials.

E2 BLENDING WITH QUARRY ROCK

As requested Golder Associates undertook a laboratory blending test of Ooze material recovered from the Duck Pond and a crushed rock product supplied by CEC from Pinnacles Quarry.

The ooze material was collected from two sites within the duck pond by use of an excavator mounted on a large barge and consisted of a silty clay material with some sand. The crushed rock product supplied from Pinnacles quarry was found to be a 300mm minus material produced from the crushing of apparently high strength pink granite.

E3 SAMPLING

The locations at which the samples were taken are indicated on the attached sketch plan E-1.

The sampling process was as follows:

- The barge was towed into position with the excavator mounted at one end of the barge with a 1.5m bucket attached.
- The excavator extracted a bucket of the ooze material from the sea bed and slowly lifted to the water's surface.
- The excess water was then allowed to drain from the top of the bucket and the material was then brought onto the barge.
- A total of 12 large sample bags were filled with material from the bucket at each location. Care was taken to gain representative samples from the ooze sediments.
- GPS coordinates were recorded for each sampling location

E4 METHODOLOGY

1. After consideration and discussions the following methodology was adopted to try and replicate what might be attempted in the field:

2. A 100mm thick layer of ooze material was placed in the base of a large dust bin. The material was weighed and an estimate of the volume made (1.5×5 litre buckets of material added).

3. A 5 litre bucket of quarry product was then weighed and added to the dust bin. (Note: due to the diameter of the dust bin used particles greater than 150mm diameter were removed).

4. The materials were then mixed by ramming with a 9.5kg square ended rammer until the material appeared well mixed.

5. A tape measure that had been fixed to the side of the dust bin was then used to assess the increase in thickness of the layer of material within the dust bin

6. The material produced was then photographed.

7. Step 3 onwards was then repeated until a material was produced which would have low compressibility and where the quarry product interlocked, providing point to point contacts and increasing the shear strength of the blended product to a "suitable" level.

E5 BLENDING QUANTITIES

Ooze Material	Quarry Product	Blend Thickness	Ratio (Mass) Ooze: Product	Ratio (Volume) Ooze: Product
25.667 kg 0.01 m ³	-	100mm	-	-
25.667 kg 0.01 m ³	14.092 kg 0.005 m ³	140mm	1 : 1.8	2:1
25.667 kg 0.01 m ³	27.528 kg 0.01 m ³	170mm	1:0.9	1:1
25.667 kg 0.01 m ³	40.642 kg 0.015 m ³	190mm	1:0.63	2:3
25.667 kg 0.01m ³	50.542 kg 0.02 m^3	230mm	1: 0.51	1:2

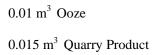
The following table shows the mix progression:

25.667 kg	62.396 kg			
0.01m ³	0.025 m ³	290mm	1:0.41	1 : 2.5

E6 THE BLENDING PROCESS

The following is a visual record of the trial ratios as blending was undertaken.

0.01 m³ Ooze 0.005 m³ Quarry Product


0.01 m³ Ooze 0.01 m³ Quarry Product

Products being blended

Rammer being used to blend materials

0.01 m³ Ooze 0.02 m³ Quarry Product

Blended material

0.01 m³ Ooze 0.025 m³ Quarry Product

Blended material

E7 OBSERVATIONS

The materials require relatively high mechanical effort to blend once a 1:1 ratio is reached

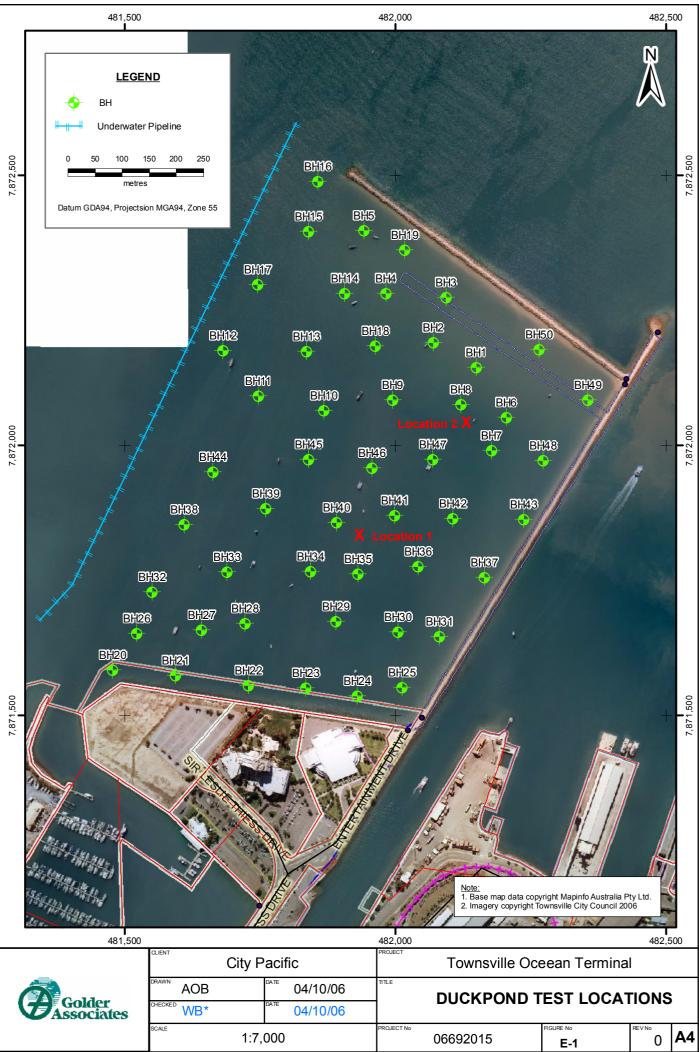
A well graded product appears to produce a "better" product than a gap graded material but requires more mechanical effort to mix.

Maximum particle size will likely be dependent on thickness of layer being blended and plant used.

Blended product must become "a gravel" ie point to point contacts are achieved and are evenly blended through mix

E6 LIME STABILISATION TRIALS

Assessment was initiated for potential treatment of the ooze material with lime. This was undertaken to help assess the potential for improvement of the geotechnical performance of ooze.


The following testing/ trials were undertaken:

- Atterberg Tests on unblended ooze material
- Treatment of ooze sub-samples with 2%, 3% and 5% GP cement (by weight)

- Treatment of ooze sub-samples with 3%, 4% and 6% lime (by weight).
- Atterberg limit tests on all six sets of treated sub-samples
- Unconfined compressive strength testing of each of the six treated sub-samples at 7 days after treatment and 28 days after treatment.

E7 TEST RESULTS

Laboratory test results for the above detailed assessment are included within this appendix.

File Location: \\TvI-server\data (d)\Data\Townsville\AA Files Current\06692015 City Pacific - TOT\Figures\GIS\Projects\ArcGIS\Draft\06692015_DuckPond_FieldworkSiteplan.mxd Note: The * beside the typed initials denotes the original drawing issue was signed or initialled by that respective person.

Client : Client Address:	P.O. Box 5298 Townsville M	I.C OLD 4810	Report Number:	TV3087 - 2
lob Number :	TV3087		Report Date:	22/02/2007
Project :	Proposed Marina Developm	ent	Order Number:	,,;
Location :	Townsville , North Queensia		Test Method:	AS1141.51
				Page 1 of 2
.ab No :	A6	A7	A8	A335
D No :	-	-	-	-
Lot No :	GP	GP	GP	GP
Item No :		-	-	-
Date Sampled :	15/12/2006	15/12/2006	15/12/2006	15/12/2006
Date Tested :	31/1/2007	31/1/2007	31/1/2007	21/2/2007
Material Source :	From Site	From Site	From Site	From Site
For Use As :	-	-	-	_
Sample Location :	Duck Pond' combined	Duck Pond' combined	Duck Pond' combined	Duck Pond' combined
	Samples 1 & 2	Samples 1 & 2	Samples 1 & 2	Samples 1 & 2
	2% GP cement	3% GP cement	5% GP cement	2% GP cement
	7 days	7 days	7 days	28 days
Moisture Content (%) :	15.57	15.09	13.89	14.99
Compactive Effort :	Standard	Standard	Standard	Standard
Dry Density (t/m³) :	1.743	1.727	1.736	1.72
Unconfined Compressive Strength (Mpa):	0.34	0.36	0.56	0.44
Remarks :				

	This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its scope of accreditation. This document shall not be reproduced, except in full.	Don Byers	FORM NUMBER
		NATA Accred No:2856	

Client :	GOLDER & ASSOCIATES PTY L	ГD	Report Number:	TV3087 - 2
Client Address:	P.O. Box 5298 Townsville M.C	QLD 4810		
Job Number :	TV3087		Report Date:	22/02/2007
Project :	Proposed Marina Development	:	Order Number:	
Location :	Townsville , North Queensland		Test Method:	A\$1141.51
				Page 2 of 2
Lab No :	A336	A337		

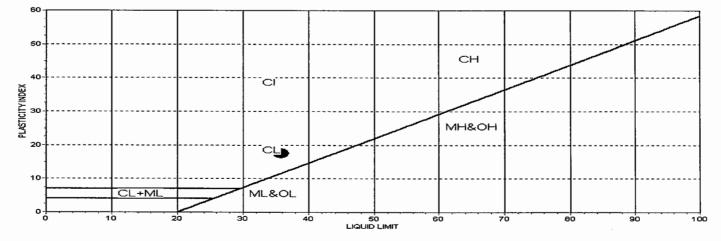
Lab No :	A336	A337	
ID No :	-	-	
Lot No :	GP	GP	
Item No :	-	-	
Date Sampled :	15/12/2006	15/12/2006	
Date Tested :	21/2/2007	21/2/2007	
Material Source :	From Site	From Site	
For Use As :	-	-	
Sample Location :	Duck Pond' combined Samples 1 & 2 3% GP cement 28 days	Duck Pond' combined Samples 1 & 2 5% GP cement 28 days	
Moisture Content (%) :	15.58	13.35	
Compactive Effort :	Standard	Standard	
Dry Density (t/m ³) :	1.718	1.736	
Unconfined Compressive Strength (Mpa):	0.5	0.84	
Remarks :			

		APPROVED SIGNATORY	FORM NUMBER
NATA	This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its scope of accreditation. This document shall not be reproduced,	Degeeus.	REP AUCS-1-16
	except in full.	Don Byers	
↓		NATA Accred No:2856	

Client : GOLDER & ASSOCIATES PTY LTD		Report Number:	TV3087 - 1	
Client Address:	P.O. Box 5298 Townsville M	.C QLD 4810		
Job Number :	TV3087		Report Date:	22/02/2007
Project :	Proposed Marina Developm	ent	Order Number:	
Location :	Townsville , North Queensla	and	Test Method:	A\$1141.51
				Page 1 of 2
Lab No :	A3	A4	A5	A332
ID No:	-	_	-	-
Lot No :	Lime	Lime	Lime	Lime
Item No :	-	-	-	-
Date Sampled :	15/12/2006	15/12/2006	15/12/2006	15/12/2006
Date Tested :	31/1/2007	31/1/2007	31/1/2007	21/2/2007
Material Source :	From Site	From Site	From Site	From Site
For Use As :	-	-	-	-
Sample Location :	Duck Pond' combined	Duck Pond' combined	Duck Pond' combined	Duck Pond' combined
Sample Location .	Samples 1 & 2	Samples 1 & 2	Samples 1 & 2	Samples 1 & 2
	3% Lime	4% Lime	6% Lime	3% lime
	7 days	7 days	7 days	28 days
Moisture Content (%) :	16.41	14.46	17.37	15.42
Compactive Effort :	Standard	Standard	Standard	Standard
Dry Density (t/m³) :	1.688	1.722	1.663	1.704
Unconfined Compressive Strength (Mpa):	0.3	0.3	0.4	0.32
Remarks :				

	APPROVED SIGNATORY	FORM NUMBER
This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its scope of accreditation. This document shall not be reproduced, except in full.	Don Byers NATA Accred No:2856	REP AUCS-1-16

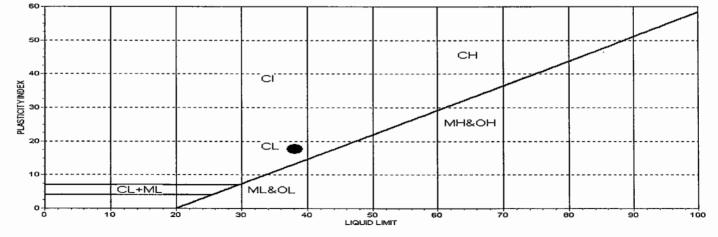
Client :	GOLDER & ASSOCIATES PTY LTD	Report Number:	TV3087 - 1
Client Address:	P.O. Box 5298 Townsville M.C QLD 4810		
Job Number :	TV3087	Report Date:	22/02/2007
Project :	Proposed Marina Development	Order Number:	
Location :	Townsville , North Queensland	Test Method:	AS1141.51


			Page	2 of 2
Lab No :	A333	A334		
ID No :	-	-		
Lot No :	Lime	Lime		
Item No :		-		
Date Sampled :	15/12/2006	15/12/2006		
Date Tested :	21/2/2007	21/2/2007		
Material Source :	From Site	From Site		
For Use As :	-	-		
Sample Location :	Duck Pond' combined	Duck Pond' combined		
	Samples 1 & 2	Samples 1 & 2		
	4% lime	6% lime		
	28 days	28 days		
Moisture Content (%) :	17.21	17.44		
Compactive Effort :	Standard	Standard		
Dry Density (t/m³) :	1.685	1.675		
Unconfined Compressive Strength (Mpa):	0.38	0.5		
Remarks :				

NATA	This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its scope of accreditation. This document shall not be reproduced,	Deycours.	FORM NUMBER
	except in full.	Don Byers	
•		NATA Accred No:2856	1

Client:	GOLDER & ASSOCIATES PTY LTD	Report Number:	TV3087 - 3	
Client Address:	P.O. Box 5298 Townsville M.C QLD 4810			
Job Number:	TV3087	Report Date:	22/02/2007	
Project:	Proposed Marina Development	Order Number:	-	
Location	Townsville , North Queensland	Page 1 of 7		
Lab No:	A2	Sample Lo	Sample Location	
Date Sampled:	15/12/2006	Duck Pond' combine	Duck Pond' combined	
Date Tested:	30/01/2007	Samples 1 & 2		
Sampled By:	CL	No Additives		
Sample Method:				
Material Source:	From Site	Spec Description:	Spec Description: -	
For Use As:	-	Lot Number:	Lot Number: -	
Remarks:	-	Spec Number:	Spec Number: -	

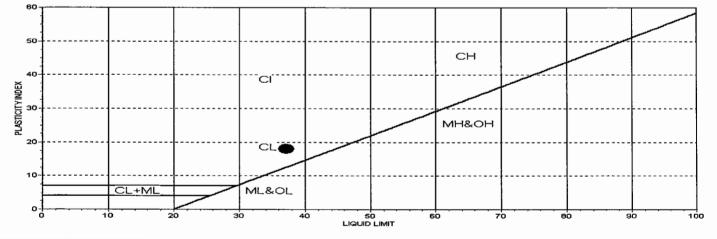
Plasticity Tests	Test Method	Specification	Result	Specification
		Minimum		Maximum
Liquid Limit (%)	AS1289.3.1.2		36	
Plastic Limit (%)	AS1289.3.2.1		18	
Plastic Index	AS1289.3.3.1		18	
Linear Shrinkage (%)	AS1289.3.4.1		10.0	



	This Laboratory is accredited by the National Association of Testing Authorities, Australla. The test(s) reported herein have been performed in accordance with its scope of accreditation. This document shall not be reproduced, except in full.	APPROVED SIGNATORY	FORM NUMBER
•		NATA Accred No:2856	

Client:	GOLDER & ASSOCIATES PTY LTD	Report Number:	TV3087 - 3	
Client Address:	P.O. Box 5298 Townsville M.C QLD 4810			
Job Number:	TV3087	Report Date:	22/02/2007	
Project:	Proposed Marina Development	Order Number:	-	
Location	Townsville , North Queensland	Page 2 of 7		
Lab No:	A3	Sample Lo	ocation	
Date Sampled:	15/12/2006	Duck Pond' combine	Duck Pond' combined	
Date Tested:	02/02/2007	Samples 1 & 2		
Sampled By:	CL	3% Lime		
Sample Method:		7 days		
Material Source:	From Site	Spec Description:	-	
For Use As:	-	Lot Number:	Lime	
Remarks:	-	Spec Number:	-	

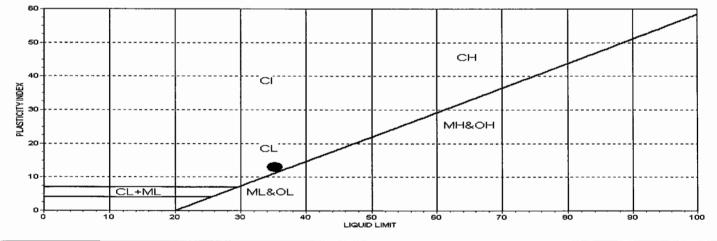
Plasticity Tests	Test Method	Specification	Result	Specification
		Minimum		Maximum
Liquid Limit (%)	AS1289.3.1.2		38	
Plastic Limit (%)	AS1289.3.2.1		21	
Plastic Index	AS1289.3.3.1		17	_
Linear Shrinkage (%)	AS1289.3.4.1		10.5	



	This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its scope of accreditation. This document shall not be reproduced, excent in full		FORM NUMBER
V		Don Byers	
		NATA Accred No:2856	

Client:	GOLDER & ASSOCIATES PTY LTD	Report Number:	TV3087 - 3	
Client Address:	P.O. Box 5298 Townsville M.C QLD 4810			
Job Number:	TV3087	Report Date:	22/02/2007	
Project:	Proposed Marina Development	Order Number:	-	
Location	Townsville, North Queensland	Page 3 of 7		
Lab No:	A4	Sample Lo	ocation	
Date Sampled:	15/12/2006	Duck Pond' combine	Duck Pond' combined	
Date Tested:	05/02/2007	Samples 1 & 2	Samples 1 & 2	
Sampled By:	CL	4% Lime		
Sample Method:		7 days	7 days	
Material Source:	From Site	Spec Description:	Spec Description: -	
For Use As:	-	Lot Number:	Lime	
Remarks:	-	Spec Number:	-	

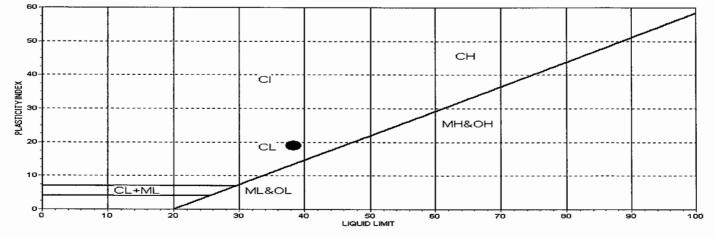
Plasticity Tests	Test Method	Specification	Result	Specification
		Minimum		Maximum
Liquid Limit (%)	AS1289.3.1.2		37	
Plastic Limit (%)	AS1289.3.2.1		19	
Plastic Index	AS1289.3.3.1		18	
Linear Shrinkage (%)	AS1289.3.4.1		9.0	



Don Byers

· · · · · · · · · · · · · · · · · · ·				
Client:	GOLDER & ASSOCIATES PTY LTD	Report Number:	TV3087 - 3	
Client Address:	P.O. Box 5298 Townsville M.C QLD 4810			
Job Number:	TV3087	Report Date:	22/02/2007	
Project:	Proposed Marina Development	Order Number:	-	
Location	Townsville, North Queensland	Page 4 of 7		
Lab No:	A5	Sample Lo	ocation	
Date Sampled:	15/12/2006	Duck Pond' combine	Duck Pond' combined	
Date Tested:	05/02/2007	Samples 1 & 2		
Sampled By:	CL	6% Lime		
Sample Method:		7 days		
Material Source:	From Site	Spec Description:	Spec Description: -	
For Use As:	-	Lot Number:	Lime	
Remarks:	-	Spec Number:	-	

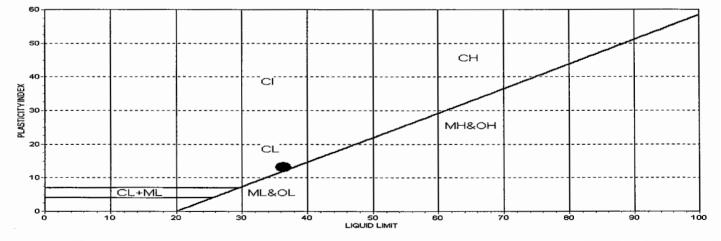
Plasticity Tests	Test Method	Specification	Result	Specification
		Minimum		Maximum
Liquid Limit (%)	AS1289.3.1.2		35	
Plastic Limit (%)	AS1289.3.2.1		22	
Plastic Index	AS1289.3.3.1		13	
Linear Shrinkage (%)	AS1289.3.4.1		6,5	



This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its scope of accreditation. This document shall not be reproduced, except in full.	Don Byers	FORM NUMBER
 	NATA Accred No:2856	

Client:	GOLDER & ASSOCIATES PTY LTD	Report Number:	TV3087 - 3	
Client Address:	P.O. Box 5298 Townsville M.C QLD 4810			
Job Number:	TV3087	Report Date:	22/02/2007	
Project:	Proposed Marina Development	Order Number:	-	
Location	Townsville, North Queensland	Page 5 of 7		
Lab No:	A6	Sample L	ocation	
Date Sampled:	15/12/2006	Duck Pond' combine	Duck Pond' combined	
Date Tested:	05/02/2007	Samples 1 & 2		
Sampled By:	CL	2% GP cement		
Sample Method:		7 days		
Material Source:	From Site	Spec Description:	-	
For Use As:	-	Lot Number:	GP	
Remarks:	-	Spec Number:	-	

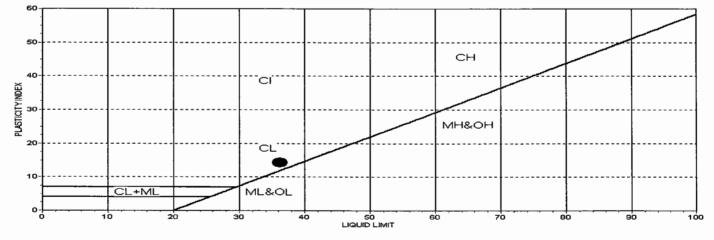
Plasticity Tests	Test Method	Specification	Result	Specification
		Minimum		Maximum
Liquid Limit (%)	AS1289.3.1.2		38	
Plastic Limit (%)	AS1289.3.2.1		20	
Plastic Index	AS1289.3.3.1		18	
Linear Shrinkage (%)	AS1289.3.4.1		9.0	



	This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its scope of accreditation. This document shall not be reproduced, except in full.	APPROVED SIGNATORY Dygeus Don Byers NATA Accred No:2856	FORM NUMBER	
--	---	--	-------------	--

Client:	GOLDER & ASSOCIATES PTY LTD	Report Number:	TV3087 - 3	
Client Address:	P.O. Box 5298 Townsville M.C QLD 4810			
Job Number:	TV3087	Report Date:	22/02/2007	
Project:	Proposed Marina Development	Order Number:	-	
Location	Townsville , North Queensland	Page 6 of 7		
Lab No:	A7	Sample Lo	ocation	
Date Sampled:	15/12/2006	Duck Pond' combine	Duck Pond' combined	
Date Tested:	05/02/2007	Samples 1 & 2	Samples 1 & 2	
Sampled By:	CL	3% GP cement		
Sample Method:		7 days		
Material Source:	From Site	Spec Description:	-	
For Use As:	-	Lot Number:	GP	
Remarks:		Spec Number:	-	

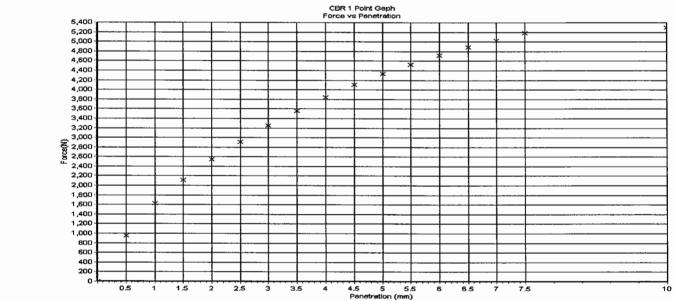
Plasticity Tests	Test Method	Specification	Result	Specification
		Minimum		Maximum
Liquid Limit (%)	AS1289.3.1.2		36	
Plastic Limit (%)	AS1289.3.2.1		23	
Plastic Index	AS1289.3.3.1		13	
Linear Shrinkage (%)	AS1289.3.4.1		7.5	



	This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its scope of accreditation. This document shall not be reproduced, except in full.	رسي. REP ATT-1-24
V	Don Byers	s
·	NATA Accred	d No:2856

Client:	GOLDER & ASSOCIATES PTY LTD	Report Number:	TV3087 - 3	
Client Address:	P.O. Box 5298 Townsville M.C QLD 4810			
Job Number:	TV3087	Report Date:	22/02/2007	
Project:	Proposed Marina Development	Order Number:	-	
Location	Townsville , North Queensland	Page 7 of 7		
Lab No:	A8	Sample Lo	ocation	
Date Sampled:	15/12/2006	Duck Pond' combined	Duck Pond' combined	
Date Tested:	02/02/2007	Samples 1 & 2	Samples 1 & 2	
Sampled By:	CL	5% GP cement		
Sample Method:		7 days		
Material Source:	From Site	Spec Description:	-	
For Use As:	-	Lot Number:	GP	
Remarks:	-	Spec Number:	-	

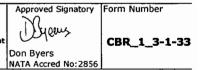
Plasticity Tests	Test Method	Specification	Result	Specification
		Minimum		Maximum
Liquid Limit (%)	AS1289.3.1.2		36	
Plastic Limit (%)	AS1289.3.2.1		22	
Plastic Index	AS1289.3.3.1		14	
Linear Shrinkage (%)	AS1289.3.4.1		7.0	



This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its scope of accreditation. This document shall not be reproduced, except in full.	APPROVED SIGNATORY Def QUUS Don Byers NATA Accred No:2856	FORM NUMBER	
---	--	-------------	--

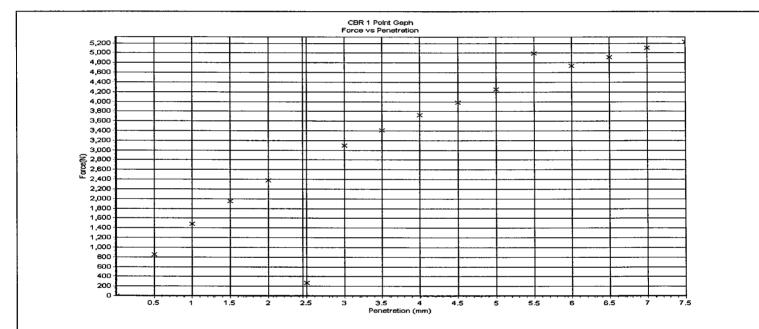
California Bearing Ratio Report (1 Point)

Client:	GOLDER & ASSOCIATES PTY LTD	Report Number:	TV3087 - 4	
Client address:	P.O. Box 5298 Townsville M.C QLD 4810			
Job Number:	TV3087	Report Date:	22/02/2007	
Project:	Proposed Marina Development	Order Number:		
Location	Townsville , North Queensland	Page	1 of 6	
Lab No:	A3	Sample Location		
Date Sampled:	15/12/2006	Duck Pond' combine	Duck Pond' combined	
Date Tested:	25/01/2007	Samples 1 & 2		
Sampled By:	CL	3% Lime		
Sample Method:		7 days		
Material Source:	From Site	Test Method :	AS1289.6.1.1	
For Use As:	-	Lot Number:	Lime	
Remarks:	-	Item Number :	-	



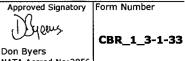
Maximum Dry Density ~ MDD (t/m ³) :	1.695	Dry Density after Soak (t/m ³) :	-
Optimum Moisture Content - OMC (%) :	17.8	Moisture Content after Soak (%) :	0
Compactive Effort :		Density Ratio after Soak (%) :	
Nominated % Maximum Dry Density Compaction :	100	Field Moisture Content (%) :	-
Nominated % Optimum Moisture Content Compaction :	100	Moisture Content (Top) after Penetration (%) :	24.1
Achieved Dry Density before Soak (t/m ³) :	1.569	Optional Moisture Content (Remainder) after Penetration (%) :	42.7
chleved Percentage of Maximum Dry Density (%):	93	CBR 2.5mm (%) :	20
Achieved Moisture Content (%) :	19.4	CBR 5.0mm (%) :	20
Achieved Percentage of Optimum Moisture Content (%) :	109	Minimum Specified CBR Value (%) :	-
est Condition (Soaked/Unsoaked) / Soaking Perlod (Days) :	Soaked / 4 days	CBR Value (%) :	20
Swell (%) / Surcharge (kg):	1.5 / 4.5 kg	+19mm Material (%)	Oversize replacement

Soil Description :


This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its scope of accreditation. This document shall not be reproduced, except in full.

California Bearing Ratio Report (1 Point)

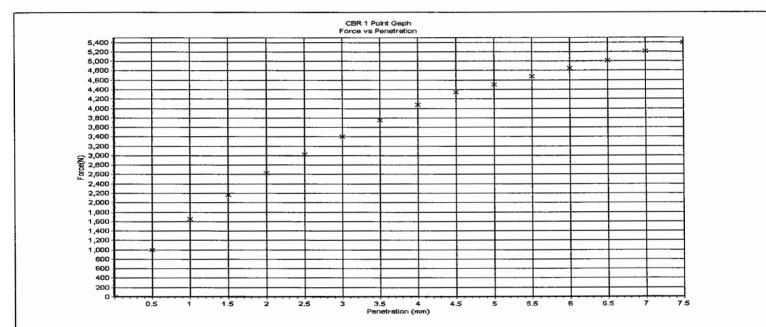
Client:	GOLDER & ASSOCIATES PTY LTD	Report Number:	TV3087 - 4
Client address:	P.O. Box 5298 Townsville M.C QLD 4810		
Job Number:	TV3087	Report Date:	22/02/2007
Project:	Proposed Marina Development	Order Number:	
Location	Townsville , North Queensland	Pag	e 2 of 6
Lab No:	A4	Sample Location	
Date Sampled:	15/12/2006	Duck Pond' combine	ed
Date Tested:	25/01/2007	Samples 1 & 2	
Sampled By:	CL	4% Lime	
Sample Method:		7 days	
Material Source:	From Site	Test Method :	AS1289.6.1.1
For Use As:	-	Lot Number:	Lime
Remarks:	-	Item Number :	-



Maximum Dry Density - MDD (t/m³) :	1.695	Dry Density after Soak (t/m³) :	-
Optimum Moisture Content - OMC (%) :	17.8	Moisture Content after Soak (%) :	0
Compactive Effort :		Density Ratio after Soak (%) :	
Nominated % Maximum Dry Density Compaction :	100	Field Moisture Content (%) :	-
Nominated % Optimum Moisture Content Compaction :	100	Moisture Content (Top) after Penetration (%) :	25.3
Achieved Dry Density before Soak (t/m ³) :	1.573	Optional Moisture Content (Remainder) after Penetration (%) :	23.5
Achieved Percentage of Maximum Dry Density (%) :	93	CBR 2.5mm (%) :	30
Achieved Moisture Content (%) :	19.1	CBR 5.0mm (%) :	25
Achieved Percentage of Optimum Molsture Content (%) :	107	Minimum Specified CBR Value (%) :	-
Test Condition (Soaked/Unsoaked) / Soaking Period (Days) :	Soaked / 4 days	CBR Value (%) :	30
Swell (%) / Surcharge (kg):	1.5 / 4.5 kg	+19mm Material (%)	Oversize replacement

Soil Description :

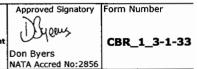
This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its scope of accreditation. This document shall not be reproduced, except in full.



NATA Accred No:2856

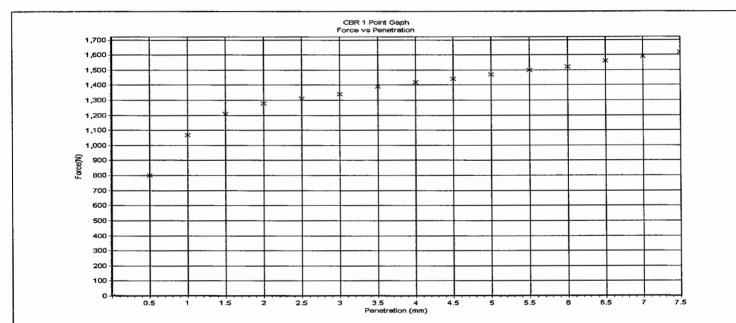
California Bearing Ratio Report (1 Point)

Client:	GOLDER & ASSOCIATES PTY LTD	Report Number: TV	3087 - 4
Client address:	P.O. Box 5298 Townsville M.C QLD 4810		
Job Number:	TV3087	Report Date: 22/	02/2007
Project:	Proposed Marina Development	Order Number:	
Location	Townsville , North Queensland	Page 3 of 6	
Lab No:	A5 ***	Sample Location	
Date Sampled:	15/12/2006	Duck Pond' combined	
Date Tested:	25/01/2007	Samples 1 & 2	
Sampled By:	CL	6% Lime	
Sample Method:		7 days	
Material Source:	From Site	Test Method : AS1289	9.6.1.1
For Use As:	-	Lot Number: Lime	
Remarks:		Item Number : -	



MaxImum Dry Density - MDD (t/m³) :	1.695	Dry Density after Soak (t/m ³) :	-
Optimum Moisture Content - OMC (%) :	17.8	Moisture Content after Soak (%) :	0
Compactive Effort :		Density Ratio after Soak (%) :	
Nominated % Maximum Dry Density Compaction :	100	Field Moisture Content (%) :	-
Nominated % Optimum Moisture Content Compaction :	100	Moisture Content (Top) after Penetration (%) :	25.8
Achieved Dry Density before Soak (t/m ³) :	1.590	Optional Moisture Content (Remainder) after Penetration (%) :	24.9
Achieved Percentage of Maximum Dry Density (%):	94	CBR 2.5mm (%) :	25
Achieved Moisture Content (%) :	17.8	CBR 5.0mm (%) :	25
Achieved Percentage of Optimum Moisture Content (%) :	100	Minimum Specified CBR Value (%) :	-
Test Condition (Soaked/Unsoaked) / Soaking Period (Days) :	Soaked / 4 days	CBR Value (%) :	25
Swell (%) / Surcharge (kg):	1.5 / 4.5 kg	+19mm Material (%)	Oversize replacement

Soil Description :

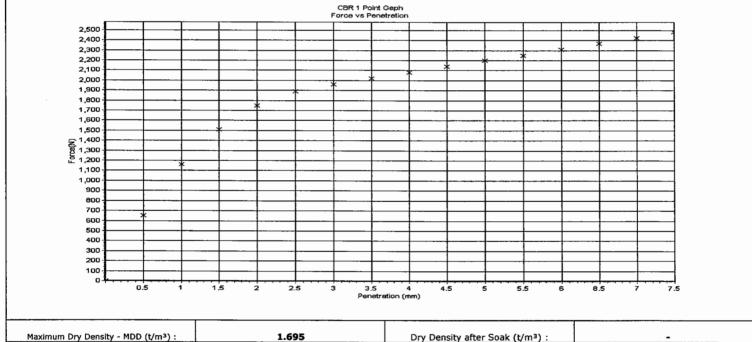

This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its scope of accreditation. This docume shall not be reproduced, except in full.

California Bearing Ratio Report (1 Point)

Client:	GOLDER & ASSOCIATES PTY LTD	Report Number: TV3087 - 4
Client address:	P.O. Box 5298 Townsville M.C QLD 4810	
Job Number:	TV3087	Report Date: 22/02/2007
Project:	Proposed Marina Development	Order Number:
Location	Townsville , North Queensland	Page 4 of 6
Lab No:	A6	Sample Location
Date Sampled:	15/12/2006	Duck Pond' combined
Date Tested:	25/01/2007	Samples 1 & 2
Sampled By:	CL	2% GP cement
Sample Method:		7 days
Material Source:	From Site	Test Method : AS1289.6.1.1
For Use As:	-	Lot Number: GP
Remarks:	-	Item Number : -

Maximum Dry Density - MDD (t/m³) : 1.695 Dry Density after Soak (t/m³) : 0 Moisture Content after Soak (%) : Optimum Moisture Content - OMC (%) : 17.8 Compactive Effort : Density Ratio after Soak (%) : Nominated % Maximum Dry Density Field Moisture Content (%) : Moisture Content (Top) after Penetration 100 Compaction : Nominated % Optimum Moisture Content 22.9 100 (%) Compaction : Optional Moisture Content (Remainder) 1.574 23.4 Achieved Dry Density before Soak (t/m3) : after Penetration (%) : Achieved Percentage of Maximum Dry Density 93 CBR 2.5mm (%): 10 (%): 7 Achieved Moisture Content (%) : 19.1 CBR 5.0mm (%): Achieved Percentage of Optimum Moisture Minimum Specified CBR Value (%) : Content (%) : 107 -Test Condition (Soaked/Unsoaked) / Soaking CBR Value (%): 10 Soaked / 4 days Period (Days) : Oversize Swell (%) / Surcharge (kg): 1.0 / 4.5 kg +19mm Material (%) replacement

Soil Description :


This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its scope of accreditation. This document shall not be reproduced, except in full.

	Approved Signatory	Form Number
t	Depens	CBR_1_3-1-33
	Don Byers	
	NATA Accred No:2856	

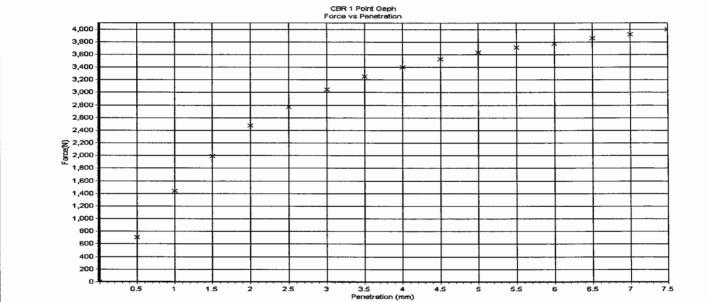
9 Catalyst Court, Mt St John, TOWNSVILLE Q. 4818. ses01@bigpond.com California Bearing Ratio Report (1 Point)

Client:	GOLDER & ASSOCIATES PTY LTD	Report Number: TV3087 - 4
Client address:	P.O. Box 5298 Townsville M.C QLD 4810	
Job Number:	TV3087	Report Date: 22/02/2007
Project:	Proposed Marina Development	Order Number:
Location	Townsville , North Queensland	Page 5 of 6
Lab No:	A7	Sample Location
Date Sampled:	15/12/2006	Duck Pond' combined
Date Tested:	25/01/2007	Samples 1 & 2
Sampled By:	CL	3% GP cement
Sample Method:		7 days
Material Source:	From Site	Test Method : AS1289.6.1.1
For Use As:	-	Lot Number: GP
Remarks:	-	Item Number : -

Swell (%) / Surcharge (kg):	0.5 / 4.5 kg	+19mm Material (%)	Oversize replacement
Test Condition (Soaked/Unsoaked) / Soaking Perlod (Days) :	Soaked / 4 days	CBR Value (%) :	14
Achieved Percentage of Optimum Moisture Content (%) :	113	Minimum Specified CBR Value (%) :	-
Achieved Moisture Content (%) :	20.2	CBR 5.0mm (%) :	11
Achieved Percentage of Maximum Dry Density (%):	92	CBR 2.5mm (%) :	14
Achieved Dry Density before Soak (t/m3) :	1.559	Optional Moisture Content (Remainder) after Penetration (%) :	21.9
Nominated % Optimum Moisture Content Compaction :	100	Moisture Content (Top) after Penetration (%):	24.5
Nominated % MaxImum Dry Density Compaction :	100	Field Moisture Content (%) :	-
Compactive Effort :		Density Ratio after Soak (%) :	
Optimum Moisture Content - OMC (%) :	17.8	Moisture Content after Soak (%) :	0
Maximum Dry Density - MDD (t/m ³) :	1.695	Dry Density after Soak (t/m ³) :	-

Soil Description :

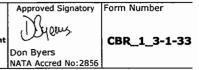
This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its scope of accreditation. This document shall not be reproduced, except in full.


Approved Signatory Approved Signatory Form Number CBR_1_3-1-33 CBR_1_3-1-33

NATA Accred No:2856

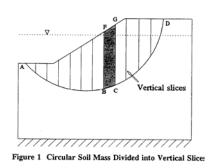
California Bearing Ratio Report (1 Point)

Client:	GOLDER & ASSOCIATES PTY LTD	Report Number: TV3087 - 4
Client address:	P.O. Box 5298 Townsville M.C QLD 4810	
Job Number:	TV3087	Report Date: 22/02/2007
Project:	Proposed Marina Development	Order Number:
Location	Townsville , North Queensland	Page 6 of 6
Lab No:	A8	Sample Location
Date Sampled:	15/12/2006	Duck Pond' combined
Date Tested:	25/01/2007	Samples 1 & 2
Sampled By:	CL	5% GP cement
Sample Method:		7 days
Material Source:	From Site	Test Method : AS1289.6.1.1
For Use As:	-	Lot Number: GP
Remarks:	-	Item Number : -



Maximum Dry Density - MDD (t/m ³) :	1.695	Dry Density after Soak (t/m ³) :	-
Optimum Molsture Content - OMC (%) :	17.8	Moisture Content after Soak (%) :	0
Compactive Effort :		Density Ratio after Soak (%) :	
Nominated % Maximum Dry Density Compaction :	100	Field Moisture Content (%) :	
Nominated % Optimum Moisture Content Compaction :	100	Moisture Content (Top) after Penetration (%) :	24.1
Achieved Dry Density before Soak (t/m ³) :	1.544	Optional Moisture Content (Remainder) after Penetration (%) :	24.5
Achieved Percentage of Maximum Dry Density (%) :	91	CBR 2.5mm (%) :	20
Achieved Moisture Content (%) :	21.3	CBR 5.0mm (%) :	18
Achieved Percentage of Optimum Moisture Content (%) :	120	Minimum Specified CBR Value (%) :	
Test Condition (Soaked/Unsoaked) / Soaking Period (Days) :	Soaked / 4 days	CBR Value (%) :	20
Swell (%) / Surcharge (kg):	1.0 / 4.5 kg	+19mm Material (%)	Oversize replacement

Soil Description :

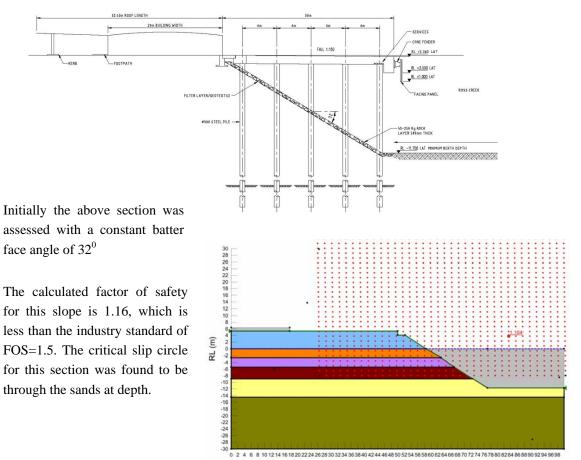

This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its scope of accreditation. This document shall not be reproduced, except in full.

Appendix F Stability Analysis

F1.0 STABILITY – REVETMENT WALLS AND TOT BERTH

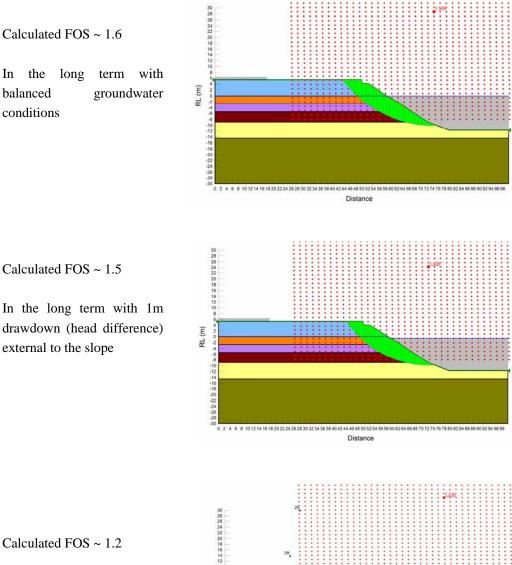
In the following, where stability analysis has been undertaken and reported, this analysis was done using Morgenstein and Price Method, via the computer program $SLOPE/W^1$. This is a well-accepted method of analysing for stability of slopes. In the method, the slope is divided into a large number of slices, each of which is subjected to calculation of "disturbing moment" and "available restoring moment". These moments are then expressed as a ratio to provide a calculated Factor of Safety (FOS) for a particular potential failure surface.

By using a computer, a large number of potential failure surfaces can be analysed, leading to determination of a "critical slip circle" (surface) with the lowest calculated Factor of Safety for the set of conditions being analysed. In the modelling undertaken, discussed in the following, a minimum of 20,000 potential slip surfaces were analysed for each case modelled.


Analyses were made for both static and earthquake conditions. The earthquake case was modelled using the method recommended by ANCOLD in their publication "Guidelines for Design Of Dams For Earthquake Loading" – 1998. Using this method a FOS of 1.0 or higher is considered "stable".

¹ SLOPE/W 2004 by GEO-SLOPE International Ltd

Stability assessment was undertaken on three cross-sections. Each cross-section is discussed in the following.


F1.1 TOT Berth – Cross Section 1

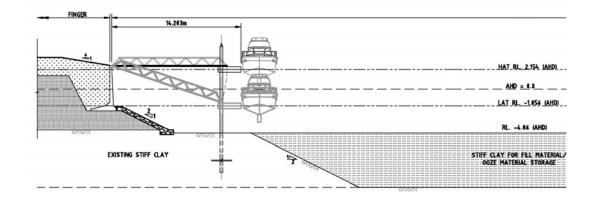
The following excerpt from the design drawings shows the profile assessed for TOT berth.

Distance

Therefore, the batter slope was flattened to 1:2 (v:h) through the sands, all other parameters were unchanged. The assessment results for the revised profile follow:

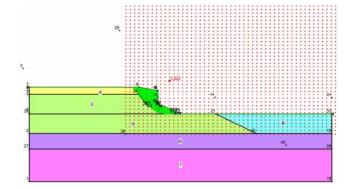
Calculated FOS ~ 1.2

In the long term with 1m drawdown (head difference) external to the slope and a horizontal seismic acceleration of 0.07g.

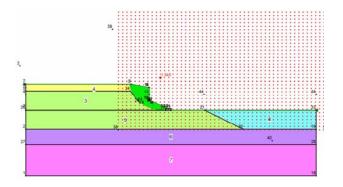


4

RL (m)

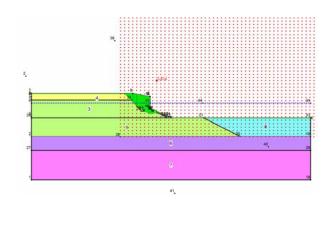

F1.2 Canals – Section 2

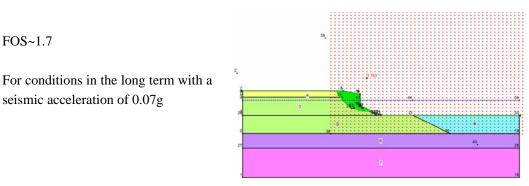
The following excerpt from the design drawings shows the profile assessed for canals:


FOS~1.6

For short term conditions (during construction)

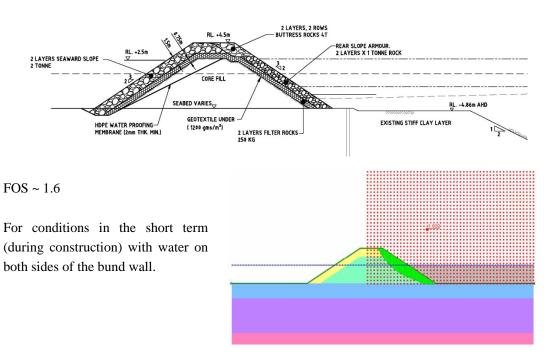
FOS~1.5


For short term conditions (during construction) and a horizontal seismic acceleration of 0.07g.



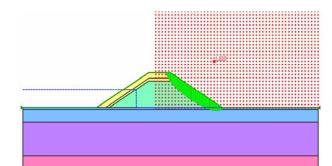
FOS~1.7

In the long term with balanced groundwater conditions

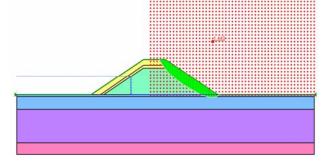


seismic acceleration of 0.07g

F1.3 Revetment Wall – Section 3


The following excerpt from the design drawings shows the profile assessed for revetment walls:

Golder Associates


FOS ~ 1.6

Long term conditions, dry inside of revetment wall

FOS ~ 1.4

Long term conditions, dry inside of revetment wall with a seismic acceleration of 0.07g.

F1.4 Further Testing

For long term analysis effective strength, drained, parameters have been used based on the conditions encountered in the field and on previous experience. It is therefore recommended that further laboratory testing is undertaken during the design stage to confirm parameters.

Appendix G Seepage Assessment

G SEEPAGE ASSESSMENT

G1.0 Scope

The scope has been extracted from a document containing conceptual figures, the captions of which give an indication of the scope which is given in the following points:

- Derive potential seepage from the sea into work area through the proposed breakwater wall; and
- Estimate requirements to dewater the canal excavation. Requirements include the number of wells and pump sizing.

Dewatering will be necessary:

- For stability of the canal excavations,
- For safe trafficking on the working surface, and
- To encourage consolidation of the materials emplaced to form the canal housing blocks and the underlying natural sediments.

G2.0 Method

Potential seepage, through the proposed wall, into the work area from the sea was estimated using a two-dimensional, SEEP/W, vertical section model. The model assumed that the breakwater walls were uniformly underlain by stiff clays with low permeability. And the purpose of the model was to estimate seepage through the liner not through other parts of the system.

Dewatering requirements were evaluated using a similar section model that included sand and clay layers below the breakwater wall. These sediment layers will influence dewatering requirements for excavation.

Specific analysis might be necessary to assess settlement or slope stability. Analysis for these aspects is beyond the scope of this groundwater modelling exercise.

Two different models were developed for the analysis; they are described separately in the following sections.

G3.0 Seepage Through The Breakwater Wall

G3.1 Conceptual Hydrogeology

The groundwater system is believed to be controlled by the following conditions:

- The area is currently submerged under about 4 m of seawater in Cleveland Bay off Townsville.
- The subsoils consist of:
 - Soft estuarine mud about 0.3 m thick;
 - Stiff clay underlying the estuarine mud with sandy lenses;
- The seabed is relatively flat at elevation of about -4.5 mAHD; and
- The estuarine sediments are saturated.

Most of the breakwater is made up of coarse pebbles and cobbles that give physical support to the walls but are so permeable that they do not influence groundwater pressure, they therefore do not need to be included in the model. The HDPE liner is assumed to be overlapped but not welded. It leaks at overlap joins and at defects such as tears and punctures a few of which are reported to be inevitable during placement of the liner.

The HDPE liner has no storage, as it controls seepage in the model, a steady state solution is all that is required. The main difference between a transient and steady state solution of groundwater flow equations is that the transient solution uses water from storage, if the material has no storage the solution reverts to a steady state solution.

The conceptual model on which this analysis is based is given in Figure F-1.

G3.2 Model Structure and Parametisation

The model arrangement is as follows:

- A section through the breakwater wall with dimensions as shown in Figure F-2;
- Four layers representing: HDPE liner, HDPE bedding sand, soft estuarine mud and silt, stiff sandy, silty clay;
- The rock fill of the breakwater walls is not included in the model;
- The ocean side has constant heads at the average ocean water elevation 0 m AHD;
- A gradient is imposed from the ocean side across the breakwater wall with a constant head node in the base of the canal excavation at -10.8 m AHD; and

Golder Associates

- Seepage is assumed to be the same at any point across any of the breakwater walls, since they are to be constructed similarly, the water pressure on the barrier is the same since it will be surrounded by ocean, and it was assumed that underlying material properties are uniform.
- Model calibration and initial runs showed that the model was insensitive to changes in the hydraulic properties of the soft estuarine mud and silt that occurs at the top of the sediment profile. This is possibly because the HDPE liner is bedded through the mud into the underlying stiff clay. The model geometry was based on a scale section that has mud elevation and thickness that is different from the depths reported from the sea bed "ooze" investigation. As the model is insensitive to this material differences in thickness will not influence model results.

Model parameters are uncertain, they were based on typical values for the described materials. Seepage across the HDPE barrier is therefore based on a likely case using typical values for the described materials and sensitivity to the parameters was checked by running scenarios with other possible parameter values, the result is a range of possible seepage values. The scenarios and related parameters are listed in the following points:

Model 1	Investigates possible seepage assuming that the HDPE liner leaks at 3× the higher					
	leakage rate from published values.	The higher leakage is probable because the				
	joins are overlapped rather than welde	ed.				

Material	Thickness (m)	K (m/s)	Remarks
Soft estuarine mud	Up to 0.3	2.5×10^{-8} to 8.4×10^{-9}	Material values based on SeepW clayey silt and clay/silt SeepW database Nos. 24 and 16
Stiff clay with sand lenses	More than 10	1.4×10 ⁻⁷	Material values based on SeepW sandy silty clay SeepW database No. 13
Sand for bedding geomembrane	About 0.5	1×10 ⁻⁴	Material values based on SeepW uniform sand SeepW database No. 18
Geomembrane (HDPE liner)	3 mm	3×10 ⁻⁷	Material values based on high end of published values

Model 2 Investigates expected seepage if fine sand layers dominate the hydraulic conductivity of the underlying stiff clay

Material	Thickness (m)	K (m/s)	Remarks
Soft estuarine mud	Up to 0.3	2.5×10^{-8} to 8.4×10^{-9}	Material values based on SeepW clayey silt and clay/silt (SeepW database Nos. 24 and 16)
Stiff clay with sand lenses	More than 10	1×10 ⁻⁶	Material values based on SeepW silt (SeepW database No. 9)
Sand for bedding geomembrane	About 0.5	1×10 ⁻⁴	Material values based on SeepW uniform sand SeepW database No. 18
Geomembrane (HDPE liner)	3 mm	3×10 ⁻⁷	Material values based on high end of published values

Model 3 Investigates expected seepage if fine sand layers dominate the hydraulic conductivity of the underlying stiff clay and the HDPE liner has $10\times$ the leakage of Model 1 and 2

Material	Thickness (m)	K (m/s)	Remarks
Soft estuarine mud	Up to 0.3	2.5×10^{-8} to 8.4×10^{-9}	Material values based on SeepW clayey silt and clay/silt SeepW database Nos. 24 and 16
Stiff clay with sand lenses	More than 10	1×10 ⁻⁶	Material values based on SeepW silt (SeepW database No. 9)
Sand for bedding geomembrane	About 0.5	1×10 ⁻⁴	Material values based on SeepW uniform sand SeepW database No. 18
Geomembrane (HDPE liner)	3 mm	3×10 ⁻⁶	Extreme material value tested

G3.3 Model Results

The section model gives results as seepage rate per meter. Based on the assumed uniform conditions, seepage across the breakwater perimeter was assumed to be the rate per meter multiplied by the breakwater length these results are given in Table 4.

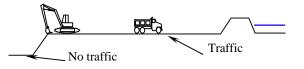
Seepage position	Length	Мо	Model 1		Model 2		Model 3	
		with underlying clay permeability that of		Typical liner leakage and underlying clay permeability that of clean fine sand or silt		High liner leakage and underlying clay permeability that of clean fine sand or silt		
	(m)	m ³ /day	L/s	m ³ /day	L/s	m³/day	L/s	
Seepage per m	1	0.0053	6.1×10 ⁻⁵	0.0348	4.0×10 ⁻⁴	0.0358	4.14×10 ⁻⁴	
Eastern breakwater	724	3.80	0.044	25.16	0.291	25.90	0.30	
Western breakwater	858	4.51	0.052	29.83	0.345	30.70	0.36	
Northern Breakwater	886	4.66	0.054	30.81	0.357	31.71	0.37	
Temp. wall across marina entrance	91	0.48	0.006	3.17	0.037	3.27	0.04	
Temp. wall across current marina entrance	156	0.82	0.009	5.42	0.063	5.58	0.06	
Total Perimeter	2715	14.27	0.165	94.40	1.093	97.16	1.12	

 Table 4
 Seepage Predictions across the Breakwater Wall

<u>Note</u>: Seepage from the Casino wall which is 650 m long is assumed to be 0 since it is not a sea wall, this wall is excluded from the assessment in this table.

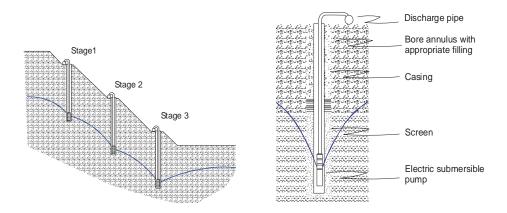
The underlying clay in these models has been assumed to be a uniformly mixed gravel, sand, silt and clay with hydraulic properties governed by the fine fractions. The real situation is layered with possible fine sand, silt, gravel and clay laminations. If sand layers are the dominant water conduits in this layered sequence and if they connect between the ocean and the work site, seepage could pass through the sea-bed under the breakwater wall, the liner would have little influence and seepage rates up to 50 L/s are possible.

G4.0 Dewatering Requirements

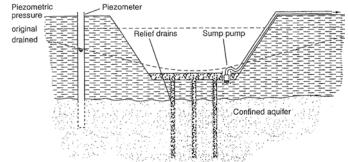

G4.1 Conceptual Hydrogeology and Design Implications

The groundwater system is believed to be controlled by the same conditions as described in Section 17.4.1 but in since the dewatering is influenced by deeper sediments they must be included.

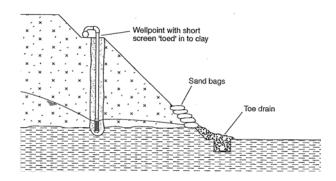
The conceptual model on which this analysis is based is given in Figure F-5. This model is may be too simplistic and may only be suitable for a first pass at evaluating the dewatering requirements.


The results will be influenced by the construction sequence and by the nature of the subsurface sediments including their hydraulic properties and distribution. The given conceptual; model includes dewatering bores that are in the base of the excavation, these would have to be installed once the excavation is complete, at which time they will not be necessary. For this reason development has been assumed to follow the following sequence:

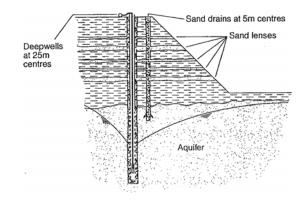
- 1. The breakwater walls are constructed creating a basin;
- 2. Ocean water is pumped out;
- 3. Dewatering wells are installed to lower the "groundwater" in formerly saturated shallow marine sediments;
- 4. The natural sediments are excavated to the base of loose silty clay, to form a flat uniform surface at approximately -4.5 to -4.86 m AHD at the top of the stiff clay; and
- 5. The canals are constructed using excavators working on the surface created in the previous step, i.e. the base and slopes of the canal excavations will not carry traffic.


The following considerations are important and influence modelling:

The base of the canal will be at 10.8 m AHD, this means that dewatering will be required to more than 11 m below the natural surface (which is at about -0.12 m AHD). Shallow groundwater extraction using wellpoints can only lower the water table (in fine grained sediments) to about 4 m below surface. To achieve deeper dewatering a multi-staged wellpoint system, deep wells, or ejector wells will be required.


- The layering, particularly as shown in the conceptual model (Figure F-5), suggests that wells placed in the sand layers will have the greatest dewatering influence.
- If the conceptual model structure is accurate the sand layers may be confined, if groundwater is under pressure in confined layers, dewatering may be achieved passively but depending on the layer structure may not achieve the desired outcome.

The sand layers are probably inter-fingering lenses, so rather than the straightforward



horizontal layers suggested by the conceptual model, sand distribution is expected to be quite complex.

- Connection of sand to sea water in the bay may introduce large flow volumes.
- Geotechnical logs describe a variety of silt, sand, clay and gravel mixes. Rather than being mixed these sediments are possibly finely layered or laminated, this may mean that dewatering would be difficult since some layers may remain saturated while others are dewatered.
- In layered systems it may not be possible to draw the water down completely or a perched watertable may remain above clay layers, this can cause seepage at the layer interface and may cause erosion or slumping of the material. In these cases the slope must be protected for example with a gravel berm, sandbags and surface drains.

• In some layered systems dewatering might require vertical drains or deep wells that are gravel packed over the whole sequence these would "join" isolated layers.

- In layered sediments of this type settlement, possibly differential settlement, is likely.
- For dewatering the rate of drawdown is important thus transient models are required. The material properties have not been measured so transient models increase the uncertainty of the results since they introduce additional "guessed" values for the water retention characteristics (storage) of the sediments.
- Modelling has used SeepW that simulates a section through the system. The layers
 were modified to conform to the conceptual model but the model extent is the same
 as the seepage model because the system is assumed to be symmetrical.

G4.2 Model Structure and Parametisation

The model arrangement is similar to that described in Section 17.4.2 but differs in the following ways:

- The model has seven layers representing: HDPE liner, HDPE bedding sand, soft estuarine mud and silt, stiff sandy, silty clay, and dense sand;
- The depths to dense sand layers were calculated from drill logs for Geotechnical boreholes TOT-1 to TOT-6. The descriptions were interpreted to define consistently sandy material and the elevations of the top and bottom of those layers were averaged to give average depths to the top and base of two consistently sandy zones. This produced layers that largely conform to the conceptual model. The assumption that there are two horizontal layers might not be valid, but provides an initial conceptual model for this evaluation.
- Dewatering wells were installed to test the influence of different dewatering arrangements, particularly different pump positions and depths; and
- Seepage is assumed to be the same at any point across any of the breakwater walls. This is based on the assumption that the walls will be constructed similarly, the water pressure

Golder Associates

on the barrier is the same everywhere since it will be surrounded by ocean, and the material properties are uniform through each layer.

Model parameters are uncertain, they were based on typical values for the described materials. The uncertainty, layers, and different pump positions means that there are many combinations that could be tested. Material types that were used are listed in Table 5 and shown in Figure F-6.

Material	Thickness (m)	K (m/s)	Remarks
Geomembrane (HDPE liner)	3 mm	3×10 ⁻⁷	Expected material value tested. This value did not change between model runs
Sand for bedding geomembrane	± 0.5	1×10 ⁻⁴	Material values based on SeepW uniform sand. SeepW database No. 18. This value did not change between model runs
Soft estuarine mud	<0.3	2.5×10 ⁻⁸	Material values based on SeepW clay/silt. SeepW database No. 16. This value did not change between model runs
Stiff clay	>10	Run 1 and 2 1.4×10 ⁻⁷	Material values based on SeepW sandy silty clay. SeepW database No. 13
layers	>10	Run 3 2.5×10 ⁻⁸	Material values based on SeepW clay/silt. SeepW database No. 16.
Sound Lawrence	Upper sand 1	Run 1 and 3 5×10 ⁻⁷	Material values based on SeepW silty sand. SeepW database No. 6
Sand layers	Lower sand 5.5	Run 2 4.3×10 ⁻⁶	Material values based on SeepW fine sand. SeepW database No. 20

Table 5	Material Properties used in Dewatering Model
---------	--

The following situations have been modelled:

- Steady state runs to test the influence of different bore positions with different combinations of material.
- Transient runs to determine the rate of pumping. Transient runs were necessary because pumping rates will decrease over time and steady state results show final (low) pumping rates that develop once the materials have been dewatered.

G5.0 Model Results

G5.1 Pump positions

The sand layers were targeted for dewatering. Shallow sand could be dewatered using a well point system while the deeper sands require a deep well or ejector wells.

Model pumps were simulated using constant head nodes one at the base of the upper sand and a second at the base of the lower sand layer. Initial model runs showed that the deep "pump" lowers the water table below the shallow pump so that the shallow "pump" starts putting water into the model thus giving a wrong pumping rate (this happens because the "pump" is a constant head). An example of such a model result is given in Figure F-7. Subsequent models were run with deep dewatering wells only.

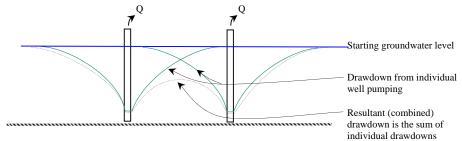
Apart from the model requirements there are practical advantages of a deep well system:

- It makes use of the natural underdrain characteristics of the deeper sand layer;
- Deep wells can be spaced further apart and so require fewer well installations; and
- Without the wellpoints there will be less surface infrastructure to get in the way of construction.

The model results are based on a single dewatering well in the deeper sand layer that can draw water down to -16.47 m AHD. (This depth is dimensionally correct relative to the sea bed elevation of -4.5 m AHD given in the dimensioned drawing.)

G5.2 Drawdown Development

From the transient model drawdown results were recorded at 3.6 hours, 1 day, 2 days 8 hours, 30 days, 4 months and 6 months.


The results of these models are shown for the three transient model runs in Figures F-8 to F-10.

The figures show that dewatering is almost complete for run 1 and 2 conditions by 4 months, in both cases dewatering progresses rapidly and between four and six months there is little change. This shows that a steady state is reached in about four months for the conditions simulated in model runs 1 and 2.

Model run 3 is different, it has assumed that the materials between the sand layers have low permeability, in this case it is difficult to dewater the upper sediment and a relatively persistent perched water layer remains even after fairly prolonged pumping. The perched layer will cause bleeding and erosion or stability problems in the upper sand layer, this will have to be controlled with drains and slope support. Perched water may have to be controlled with shallow wells or vertical drains as described and illustrated in Section 17.5.1.

G5.3 Bore spacing

The section modelling used for this assessment considers a 1 m wide slice. The results are therefore 2-dimensional and cannot be used to test the bore spacing. The drawdown curve development shown in Figures F-8 to F-10 however can be used to give an indication of the required bore spacing for the different modelled conditions. The theory of superposition states that drawdown from adjacent bores is cumulative, this is explained in the following sketch.

The aim of spacing the bores is to create sufficient overlap of the cone of dewatering so that the target water levels are achieved.

Based on Figures F-8 to F-10 the indicated bore spacing's are given in Table 6.

Figure No.	Model Run	Layer Materials	Dewatering bore spacing ¹ (centres) m	Comment
Figure 8	Transient Model Run 1	stiff clay = sandy silty clay aquifers = silty sand	17	Low bore spacing because of relatively low permeability materials
Figure 9	Transient Model Run 2	stiff clay = sandy silty clay aquifers = fine sand	30	High bore spacing because of relatively high permeability materials
Figure 10	Transient Model Run 3	stiff clay = clay/silt aquifers = silty sand	<20	Low but difficult to determine because of persistent perched groundwater in shallow layers

Table 6 Dewatering Bore Spacing Inferred from Model Drawdown Curves

¹Indicative bore spacing is based on the drawdown curves produced in a section across the breakwater walls. In this section the drawdown is controlled by the presence of constant head nodes along the breakwater. In section, parallel to the breakwater, the constant heads would have less influence and drawdown would be greater, in which case, wider bore spacing could be used. The bore spacings given in this table are therefore conservative estimates.

Better determination of how bore spacing influences drawdown in 3 dimensions might require additional analytical calculations or 3 dimensional modelling.

G5.4 Pumping rates

The section model gives results assuming that the model is 1 m wide. To estimate pumped volumes over an area requires multiplying the section results by the length measurements in the dimension not considered in the model. This assumes that the material properties and construction geometry is the same as that of the section everywhere else.

To calculate the pumped volume the section result must be multiplied by the distance that each bore influences the drawdown. For example assuming everything is symmetrical, with a bore spacing of 20 m the distance each bore influences the drawdown is 10 m radially around (on either side of the bore) the bore. An estimate of the pumping rate is therefore the section pumping rate multiplied by the bore spacing.

In a similar way the perimeter of the area can be used to get an indication of the requirements to dewater the perimeter. The central part of the development would require fewer bores to achieve the same result as the perimeter. Section modelling has not been used to investigate the central part of the development, it therefore does not give an indication of the dewatering requirements for the whole area.

Estimates of pumping rates are given in Table 7, the rates reduce over time as the water level falls as shown in Figure F-11.

	m ³	nping rate /day (L/s) pacing = 20 m	Pumping rate m³/day (L/s) Bore spacing = 30 m		
Model Run	First Day	After 6 Months (Approaches steady abstraction)	First Day	After 6 Months (Approaches steady abstraction)	
Run 1 Stiff clay = Sandy silty clay, & sand = silty sand	2.69 (0.03)	1.82 (0.02)	4.03 (0.05)	2.73 (0.03)	
Run 2 Stiff clay = Sandy silty clay, & sand = fine sand	12.55 (0.15)	6.73 (0.08)	18.82 (0.22)	10.09 (0.12)	
Run 3 Stiff clay = Clay/silt, & sand = fine sand	10.01 (0.12)	3.18 (0.04)	15.1 (0.17)	4.77 (0.06)	

Table 7 Dewatering (Pumping) Rates at two Bore Spacings Estimated from Section Model Results

The relatively low pumping rates indicated in Table 7 are more suited to an ejector well system than to use of electric submersible pumps.

With the range of modelled values the total pumping from bores around the perimeter could be between 4 and 30 L/s depending on the hydraulic properties of the underlying sediments.

Additional dewatering bores will be required in the central part of the development, but these could not be determined from the section modelling approach.

G6.0 Discussion of Results

Seepage through an HDPE liner has been estimated using a seepage section model. Seepage estimation has assumed that the liner is not joined (heat welded), rather that successive liner sheets overlap. Seepage through such a liner will depend on the number of accidentally formed holes and the smoothness of the underlying bedding sand, the latter influences leakage through the joins.

Hydraulic properties of the underlying sediments have not been tested and typical values for materials matching the underlying material descriptions were used for model parametisation. The section models showed low sensitivity to leakage through the liner but were sensitive to hydraulic properties of the underlying natural clays and sands. Depending on the properties of the underlying materials seepage through the liner could be between 0.17 and 1.12 L/s for the ocean bound perimeter (i.e. total perimeter minus the casino wall).

Dewatering requirements in terms of pump spacing and possible pumping rates were tested using a similar section model. This section model considered a layered sequence of clay and sand below the proposed development. The layering was assumed to be relatively simple horizontal layers. Layer positions were based on average values from six geotechnical boreholes. The hydraulic properties were not known but were selected from materials with similar descriptions in the modelling software database.

The material distribution as well as hydraulic properties will have an influence on dewatering. Theoretical considerations of some of the options have been discussed in this report and some of the aspects of these considerations have been included in the models. Some of the implications are:

- The sand layers may act as an underdrain, if the clayey materials have appreciable hydraulic conductivity dewatering from the main sand layer will dewater the system;
- The underdrain sands appear to be about 2 to 7 m thick and occur at about -14 m AHD. At these depths dewatering will require deep wells with a pumping system capable of about 14 m of lift;
- If the clayey materials have very low hydraulic conductivity, perched groundwater may develop. This will cause unstable conditions in the saturated sediments above the dewatered zone, in such cases surface drains and slope stability control may be needed;
- If the sediments are finely laminated silts, sand and clays (a common occurrence in estuarine and similar sedimentary sequences) perched conditions will also develop and dewatering may be difficult;

Golder Associates

- Dewatering difficulty may be overcome in layered sequences by using vertical drains or dewatering boreholes designed to connect the porous zones;
- Modelling tested situations that developed perched and more freely draining conditions. The successful dewatering conditions show that dewatering may be achieved with bore spacing at about 20 to 30 m and pumping at up to about 0.2 L/s per bore. The pumping rate decreases over time so that after about six months the rate may be up to about 0.1 L/s per bore; and
- A pumping system specifically designed to deal with these low pumping rates and drawdowns of about 10 m would be required. Shallow well-point dewatering systems have a drawdown limit of about 4 m and deep submersible pumps cannot be used at these low rates. Suction wells or ejector wells are systems that might work in this environment.

G7.0 Conclusions and Recommendations

This investigation was required to determine possible seepage rates through an HDPE lined breakwater wall and estimate the dewatering requirements such as pump spacing and pumping rates to dewater the sediments that must be excavated to create the marina and canal development.

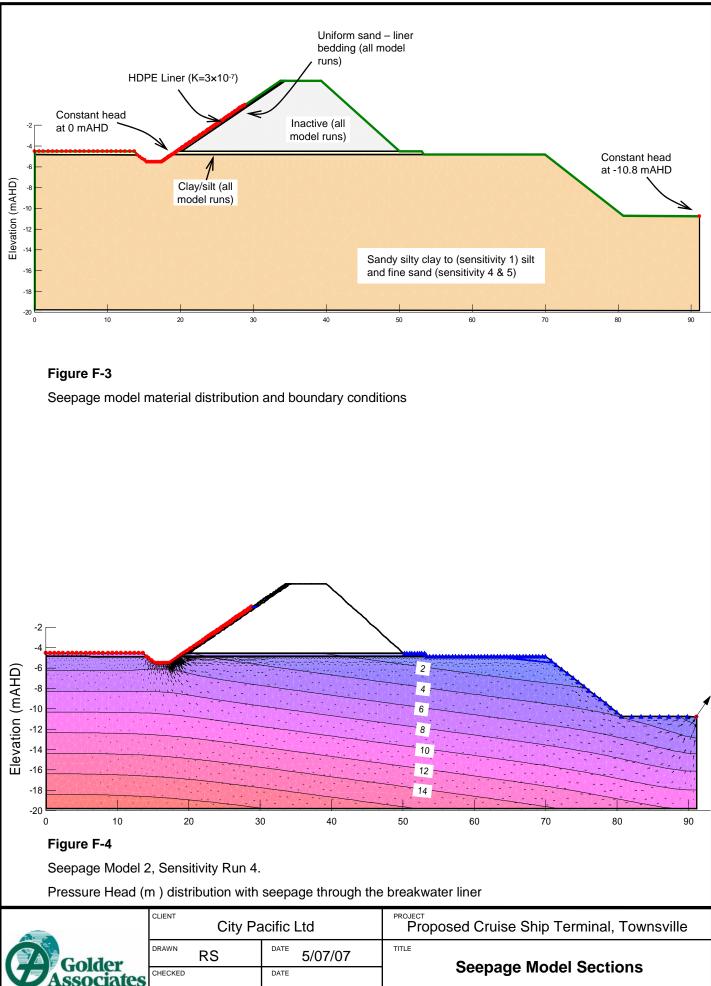
Seepage:

- Seepage modelling suggests that groundwater seepage through the HDPE lined breakwater wall could be about 10 to 14 m3/per day with possible high flows, if the stiff clay has hydraulic conductivity like silt rather than clay of about 94 m3/per day.
- Groundwater seepage is likely at the toe of the breakwater wall and on the excavated embankments particularly at the base of embankment benches. The sediments are likely to be saturated unless they are dewatered.

Dewatering requirements:

- The deepest canal excavations require dewatering to below 10.8 mAHD, this is more than 6 m below the natural surface this excludes shallow spear point dewatering systems that usually have a maximum depth of about 6 m, but in clayey sediments might only be successful to 3 or 4 m;
- The sediments are layered sands, silts and clays, there is a possibility that the sand layers may behave like an underdrain and assist dewatering. Dewatering bores in the sand would have to be 10 to 15 m deep;
- Dewatering bore spacing would have to be at 20 to 30 m centres;

- Dewatering rates could be between 0.1 and 0.2 L/s per bore and drawdown is expected to stabilise within 4 to 6 months;
- The total volume of water pumped from the system cannot be determined from 2-dimensional section modelling, but an indication based on an ocean bound perimeter length of about 2700 m suggests that 90 to 135 dewatering bores would be required, the total volume from these bores could be up to 30 L/s depending on the hydraulic properties of the underlying sediments. Additional bores would be required in the interior parts of the development.


The modelling used for this assessment is based on many assumptions, as a consequence the results presented in this report are uncertain. Assumptions include:

- Hydraulic conductivity and volumetric water content of the underlying sediments;
- The sequence of development and methods of excavation;
- Depths and arrangement of sedimentary layers; and
- The system is assumed to be symmetrical and isotropic so that the results from 2-dimensional modelling can be expanded to give 3-dimensional results.

Each of these assumptions influence the estimates presented in this report, if more accurate or verifiable estimates are required, additional testing and description would be necessary.

For proper evaluation of the combined impact of many dewatering points across an area with complex underlying aquifer arrangements 3-dimensional modelling may be required. However the requirement must be carefully considered since for dewatering the unsaturated zone must be included. Three dimensional unsaturated/saturated zone modelling is not available in all modelling packages and may require significant development before reliable predictions are achieved.

Analytical evaluation of seepage is also possible, the methods have not been used in this evaluation. It is recommended that some analytical checks of the predictions in this report be performed.

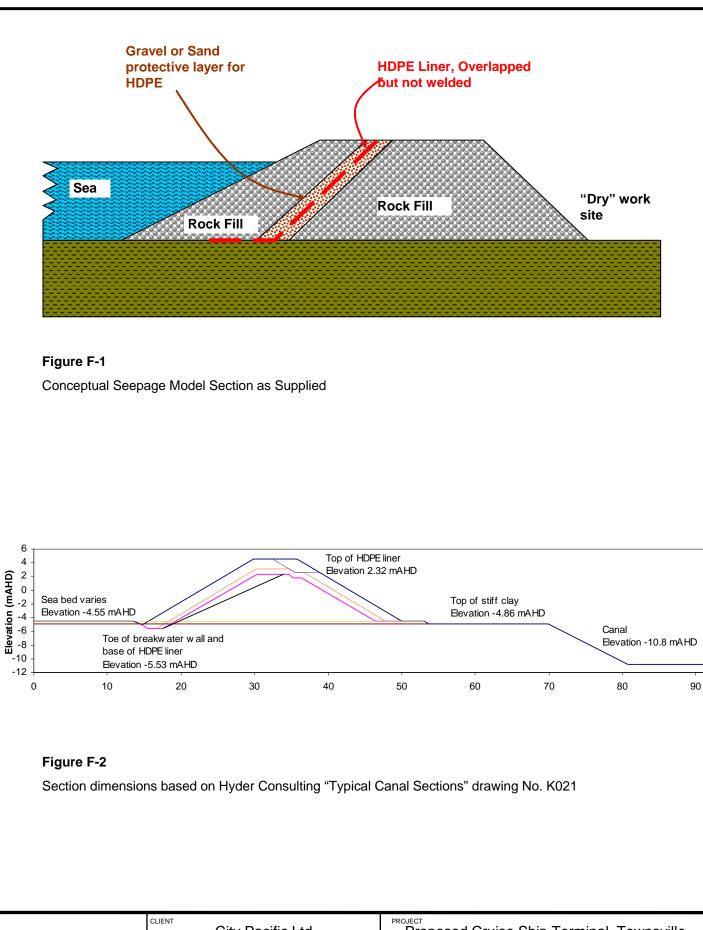
PROJECT No

06692015

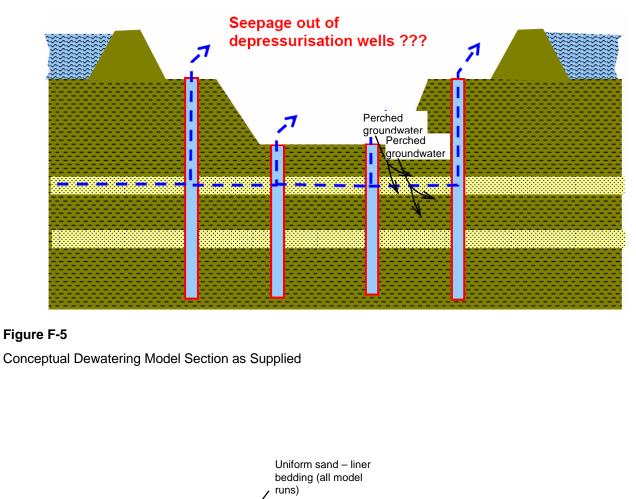
FIGURE No

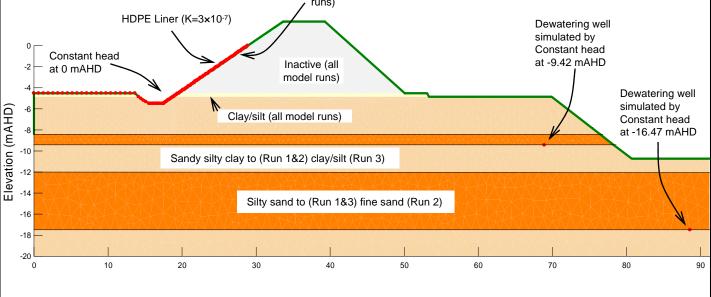
F-3 & F-4

REV No


D

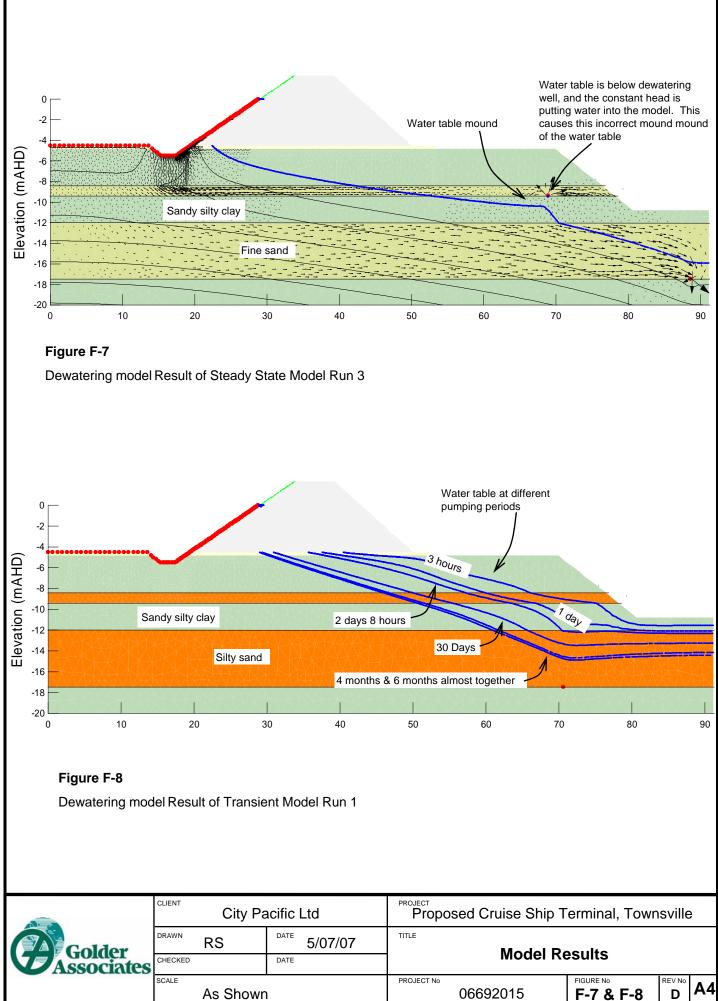
A4

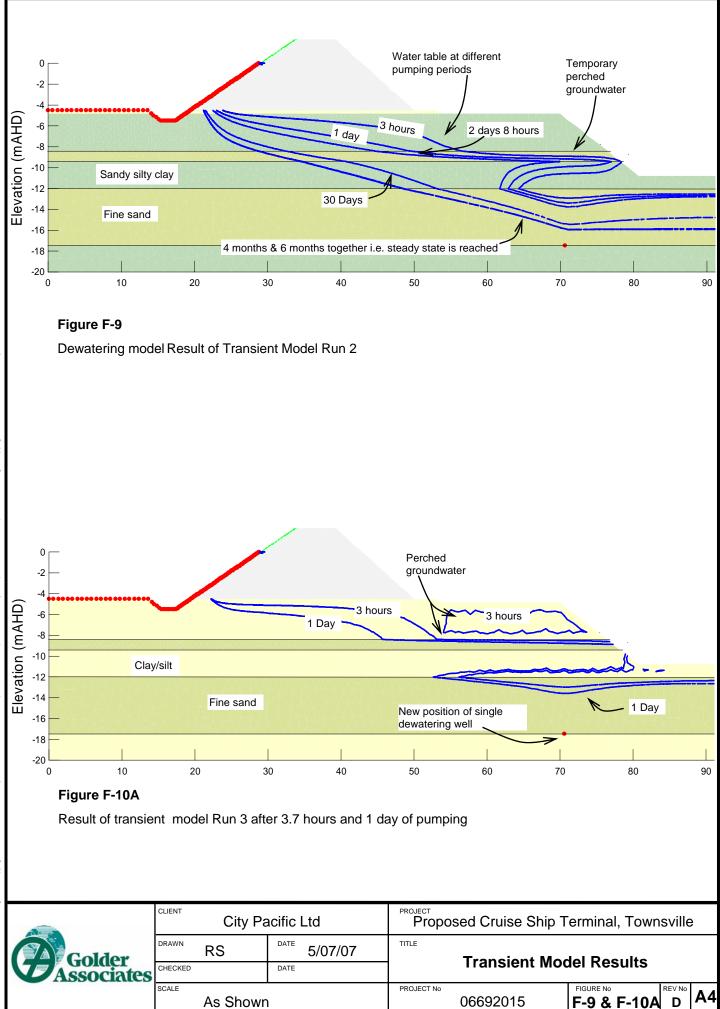

SCALE


As Shown

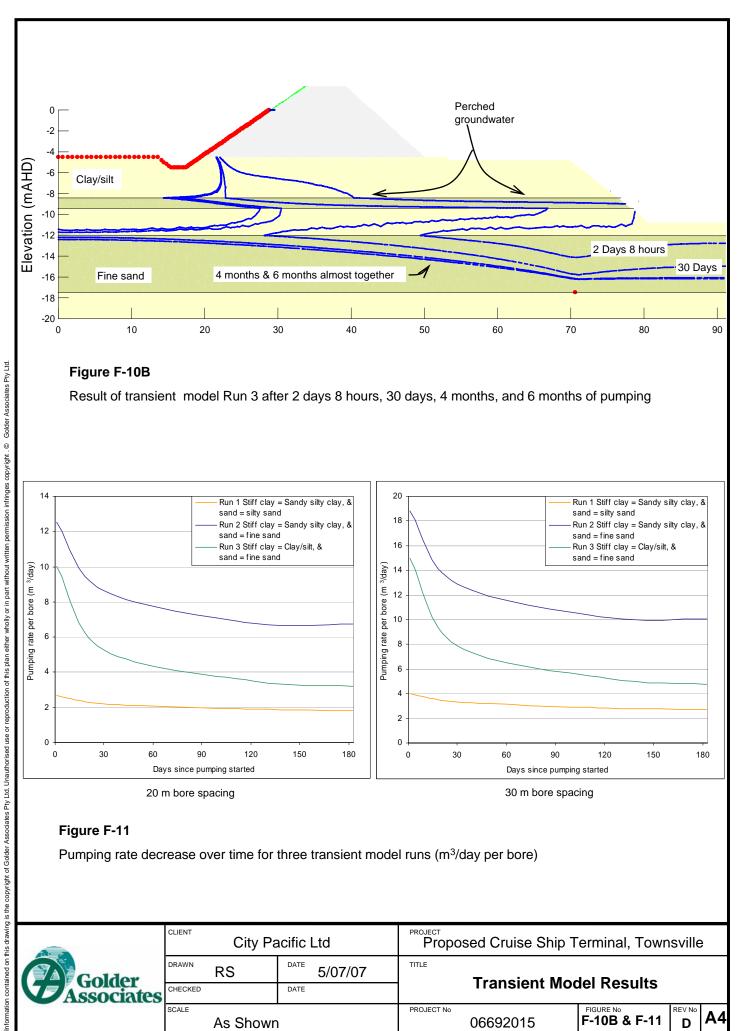
I:\Figure Templates\Powerpoint\A4 portrait.ppt

	City Pacific Ltd			PROJECT Proposed Cruise Ship Terminal, Townsville				;	
Golder	DRAWN RS DATE 5/07/07			TTLE Conceptual Section and Dimensions					
Associates	CHECKED		DATE		Conceptual Section and Dimensions				,
	SCALE	As Shown			PROJECT No	06692015	FIGURE № F-1 & F-2	REV No	A4
I:\Figure Templates\Powerpoint\A4 portrai	t.ppt								




Figure F-6

Dewatering model material distribution and boundary conditions


	City Pacific Ltd			PROJECT Proposed Cruise Ship Terminal, Townsville			;		
Golder	DRAWN	RS	DATE	5/07/07	TITLE Model Sections				
Associates	CHECKED		DATE		Model Sections				
	SCALE	As Shown)		PROJECT No	06692015	FIGURE № F-5 & F-6	REV No	A4
Figure Templates\Powerpoint\A4 portrait.ppt									

I:\Figure Templates\Powerpoint\A4 portrait.ppt

I:\Figure Templates\Powerpoint\A4 portrait.ppt

Golder	City Pacific Ltd				Project Proposed Cruise Ship Terminal, Townsville			;	
	DRAWN CHECKED	RS	DATE DATE	5/07/07	Transient Model Results				
Associates	SCALE	As Shown			PROJECT No	06692015	FIGURE № F-10B & F-11	rev № D	A4

Appendix H Important Information about your Geo-Environmental Report

Important Information About Your

Geo-environmental Report

These notes have been prepared by Golder Associates Pty Ltd using guidelines prepared by ASFE; The Association of Engineering Firms Practising in the Geosciences, of which Golder Associates Pty Ltd is a member. They are offered to help you in the interpretation of your Geo-environmental Report.

Geo-environmental studies are commissioned to gain information about environmental conditions on and beneath the surface of a site. The more comprehensive the study, the more reliable the assessment is likely to be. But remember, any such assessment is to a greater or lesser extent based on professional opinions about conditions that cannot be seen or tested. Accordingly, no matter how much data is accumulated, risks created by unanticipated conditions will always remain. Have realistic expectations. Work with your Geoenvironmental consultant to manage known and unknown risks. Part of that process should already have been accomplished, through the risk allocation provisions you and your Geo-environmental professional discussed and included in your contract's general terms and conditions. This document is intended to explain some of the concepts that may be included in your agreement, and to pass along information and suggestions to help you manage your risk.

Beware of Change; Keep Your Geoenvironmental Professional Advised

The design of a Geo-environmental study considers a variety of factors that are subject to change. Changes can undermine the applicability of a report's findings, conclusions, and recommendations. Advise your Geoenvironmental professional about any changes you become aware of them. Geo-environmental professionals cannot accept responsibility or liability for problems that occur because a report fails to consider conditions that did not exist when the study was designed. Ask your Geo-environmental professional about the types of changes you should be particularly alert to. Some of the most common include:

- modification of the proposed development or ownership group,
- sale or other property transfer,
- replacement of or additions to the financing entity,
- amendment of existing regulations or introduction of new ones, or
- changes in the use or condition of adjacent property

Should you become aware of any change, *do not rely on an existing Geo-environmental report.* Advise your Geo-environmental professional immediately; follow the professional's advice.

Recognize the Impact of Time

A Geo-environmental professional's findings, recommendations, and conclusions cannot remain valid indefinitely. The more time that passes, the more likely it is that important latent changes may occur. *Do not rely on a Geo-environmental report if too much time has elapsed since it was completed.* Ask your environmental professional to define "too much time." In the case of Phase I Environmental Site Assessments (ESAs), for example, more than 180 days after submission is generally considered "too much."

Prepare To Deal with Unanticipated Conditions

The findings. recommendations, and conclusions of a Phase I ESA report typically are based on a review of historical information, interviews, a site "walkover," and other forms of noninvasive research. When site subsurface conditions are not sampled in any way, the risk of unanticipated conditions is higher than it would otherwise be.

While borings, installation of monitoring wells, and similar invasive test methods can help reduce the risk of unanticipated conditions, do not overvalue the effectiveness of testing. Testing provides information about actual conditions only at the precise locations where samples are taken, and only when they are taken. Your Geo-environmental professional has applied that specific information to develop a general opinion about environmental conditions. Actual conditions in areas not sampled may differ (sometimes sharply) from those predicted in a report. For example, a site may contain an unregistered underground storage tank that shows no surface trace of its existence. Even conditions in areas that were tested can change, sometimes suddenly, due to any number of events, not the least of which include occurrences at adjacent sites. Recognize, too, that even some conditions in tested areas may go undiscovered, because the tests or analytical methods used were designed to detect only those conditions assumed to exist.

Manage your risks by retaining your Geo-environmental professional to work with you as the project proceeds. Establish a contingency fund or other means to enable your Geo-environmental professional to respond rapidly, in order to limit the impact of unforeseen conditions. To help prevent any misunderstanding, identify those empowered to authorize changes and the administrative procedures that should be followed.

Do Not Permit Any Other Party To Rely on the Report

Geo-environmental professionals design their studies and prepare their reports to meet the specific needs of the clients who retain them, in light of the risk management methods that the client and Geoenvironmental professional agree to, and the statutory, regulatory, or other requirements that apply. The study designed for a developer may differ sharply from one designed for a lender, insurer, public agency ... or even another developer. Unless the report specifically states otherwise, it was developed for you and only you. Do not unilaterally permit any other party to rely on it. The report and the study underlying it may not be adequate for another party's needs, and you could be held liable for shortcomings your Geo-environmental professional was powerless to prevent or anticipate. Inform your Geo-environmental professional when you know or expect that someone else - a third-party will want to use or rely on the report. Do not permit third-party use or reliance until you first confer with the Geoenvironmental professional who prepared the report. Additional testing, analysis, or study may be required and, in any event, appropriate terms and conditions should be agreed to so both you and your Geoenvironmental professional are protected from third-Any party who relies on a Geoparty risks. environmental report without the express written permission of the professional who prepared it and the client for whom it was prepared may be solely liable for any problems that arise.

Avoid Misinterpretation of the Report

Design professionals and other parties may want to rely on the report in developing plans and specifications. They need to be advised, in writing, that their needs may not have been considered when the study's scope was developed, and, even if their needs were considered, they might misinterpret Geo-environmental findings, conclusions, and recommendations. Commission your Geo-environmental professional to explain pertinent elements of the report to others who are permitted to rely on it, and to review any plans, specifications or other instruments of professional service that incorporate any of the report's findings, conclusions, or recommendations. Your Geo-environmental professional has the best understanding of the issues involved, including the fundamental assumptions that determined the study's scope.

Give Contractors Access to the Report

Reduce the risk of delays, claims, and disputes by giving contractors access to the full report, *providing that it is accompanied by a letter of transmittal that can protect you* by making it unquestionably clear that: 1) the study was not conducted and the report was not prepared for purposes of bid development, and 2) the findings, conclusions, and recommendations included in the report are based on a variety of opinions, inferences, and

assumptions and are subject to interpretation. Use the letter to also advise contractors to consult with your Geo-environmental professional to obtain clarifications, interpretations, and guidance (a fee may be required for this service), and that-in any event-they should conduct additional studies to obtain the specific type and extent of information each prefers for preparing a bid or cost estimate. Providing access to the full report, with the appropriate caveats, helps prevent formation of adversarial attitudes and claims of concealed or differing conditions. If a contractor elects to ignore the warnings and advice in the letter of transmittal, it would do so at its own risk. Your Geo-environmental professional should be able to help you prepare an effective letter.

Do Not Separate Documentation from the Report

Geo-environmental reports often include supplementary documentation, such as maps and copies of regulatory registrations, files. permits, citations, and correspondence with regulatory agencies. If subsurface explorations were performed, the report may contain final boring logs and copies of laboratory data. If remediation activities occurred on site, the report may include: copies of daily field reports, waste manifests, and information about the disturbance of subsurface materials, the type and thickness of any fill placed on site, and fill placement practices, among other types of documentation. Do not separate supplementary documentation from the report. Do not, and do not permit any other party to redraw or modify any of the supplementary documentation for incorporation into other professionals' instruments of service.

Understand the Role of Standards

Unless they are incorporated into statutes or regulations, standard practices and standard guides developed by the American Society for Testing and Materials (ASTM) and other recognized standards-developing organizations (SDOs) are little more than aspirational methods agreed to by a consensus of a committee. The committees that develop standards may not comprise those best qualified to establish methods and, no matter what, no standard method can possibly consider the infinite client and project-specific variables that fly in the face of the theoretical "standard conditions" to which standard practices and standard guides apply. In fact, these variables can be so pronounced that Geoenvironmental professionals who comply with every directive of an ASTM or other standard procedure could run foul of local custom and practice, thus violating the standard of care.

Accordingly, when Geo-environmental professionals indicate in their reports that they have performed a service "in general compliance" with one standard or another, it means they have applied professional judgement in creating and implementing a scope of service designed for the specific client and project involved, and which follows some of the general precepts laid out in the referenced standard. To the extent that a report indicates "general compliance" with a standard, you may wish to speak with your Geoenvironmental professional to learn more about what was and was not done. *Do not assume a given standard was followed to the letter*. Research indicates that that seldom is the case.

Realize That Recommendations May Not Be Final

The technical recommendations included in a Geoenvironmental report are based on assumptions about actual conditions, and so are preliminary or tentative. Final recommendations can be prepared only by observing actual conditions as they are exposed. For that reason, you should retain your Geo-environmental professional to observe construction and/or remediation activities on site, to permit rapid response to unanticipated conditions. The Geo-environmental professional who prepared the report cannot assume responsibility liability for the or report's recommendations if that professional is not retained to observe relevant site operations.

Understand That Geotechnical Issues Have Not Been Addressed

Unless geotechnical engineering was specifically included in the scope of professional service, a report is not likely to relate any findings, conclusions, or recommendations about the suitability of subsurface materials for construction purposes, especially when site remediation has been accomplished through the removal, replacement, encapsulation, or chemical treatment of on-site soils. The equipment, techniques, and testing used by geotechnical engineers differ markedly from those used by Geo-environmental professionals; their education, training, and experience are also significantly different. If you plan to build on the subject site, but have not yet had a geotechnical engineering study conducted, your Geo-environmental professional should be able to provide guidance about the next steps you should take. The same firm may provide the services you need.

Read Responsibility Provisions Closely

Geo-environmental studies cannot be exact; they are based on professional judgement and opinion. Nonetheless, some clients, contractors, and others assume Geo-environmental reports are or certainly should be unerringly precise. Such assumptions have created unrealistic expectations that have led to wholly unwarranted claims and disputes. To help prevent such problems, Geo-environmental professionals have developed a number of report provisions and contract terms that explain who is responsible for what, and how risks are to be allocated. Some people mistake these for "exculpatory clauses," that is, provisions whose purpose is to transfer one party's rightful responsibilities and liabilities to someone else. Read the responsibility provisions included in a report and in the contract you and your Geo-environmental professional agreed to. They are important.

Rely on Your Geo-environmental Professional for Additional Assistance

Membership in ASFE exposes Geo-environmental professionals to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a Geo-environmental project. Confer with your ASFE-member Geo-environmental professional for more information.

Appendix I McConnell Consulting – Preliminary Geotechnical Investigation – Townsville Ocean Terminal Report (T03-05-07).

Ocean Terminal Project

For Port of Townsville

1 THE SITE AND THE PROJECT

The site is shown in the adjacent plan and the photograph below.

The proposed project comprises a waterways or marina type reclamation plus a cruise ship terminal.

- The reclamation will be constructed within an area defined by two existing rock wall revetments. It will involve development of land for buildings, and canals and waterways for boating.
- The cruise ship terminal will be developed within Ross Creek's entrance, alongside the creek's edge revetment. It is possible that part of this revetment may be re-aligned or otherwise modified for this part of the project. Dredging will be required.
- There is currently relatively shallow water depth within the reclamation and waterways area. Some parts will need to be dredged to provide navigable conditions for boats.

2 THE SITE INVESTIGATION

Three boreholes were drilled at nominated locations, one in the cruise terminal area in Ross Creek and the other in the reclamation and waterways area.

Borehole locations are shown on Fig 1, page 2 of this report, along with a diagrammatic summary of the borehole findings.

Detailed results of these boreholes are presented in Appendix A.

Geotechnical & Geo-Environmental Consultants PO Box 5298 Townsville M.C Qld 4810, Australia Phone: (07) 4724-0311 Fax: (07) 4724-0511 Also in Brisbane, Phone (07) 3358-6152, Fax (07) 3358-4366 3 FINDINGS

752

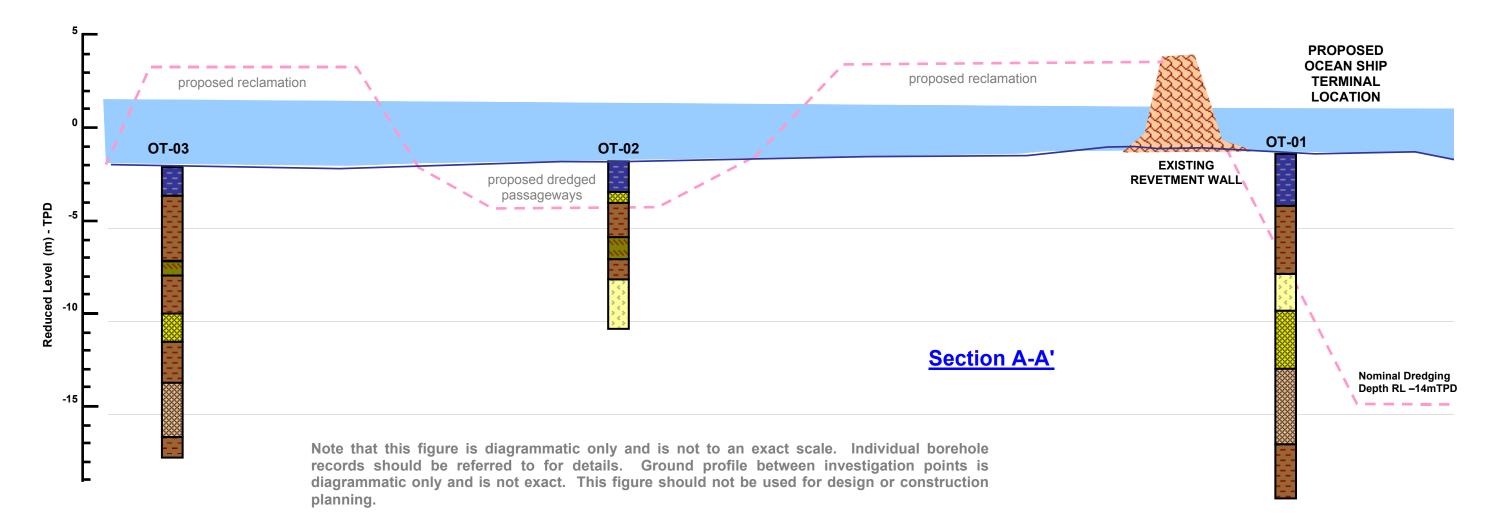
206 950

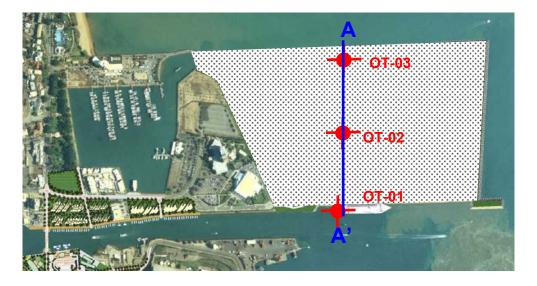
ABN 43

Refer to Figure 1, page 2.

All bores found an upper veneer of "extremely" soft organic clay "ooze" then interbedded bands of stiff to very stiff & hard clay, and medium dense to very dense sand.

Detailed results are presented in Appendix A.


Consequences are discussed in the following pages.


McConnell Consulting

T03-05-07(a)

19 August, 2003

Preliminary Investigation

LEGEND

Organic Clay Stiff Sandy Clay -7-7

Sandy Clay

Very Stiff / Hard Clay/

Medium Dense Sand Dense Sand/ Clayey Sand

Very Dense Sand

BOREHOLE PROFILE DIAGRAM Figure 1

4 SUMMARY OF INDIVIDUAL BOREHOLE FINDINGS

The conditions encountered in each individual borehole are depicted diagrammatically in Figure 1 (page 2) and are summarised below. See detailed borehole reports in Appendix A.

OT-01 (Ross Creek - Cruise Terminal Area)

BL – 2.8m: Very ("extremely") soft organic clay "ooze".

- 2.8m 6.3m: Very stiff clay and sandy clay.
- 6.3m 15.4m Medium dense then dense and very dense sand and clayey sand. Interlayered with hard sandy clay from 8.3m to 11.6m.

15.4m – 18.45m Hard sandy clay

OT-02 (Approximate Centre of Reclamation Site)

BL - 1.6m: Very ("extremely") soft organic clay and clayey silt "ooze".

1.6m – 6.2m : Stiff, very stiff and hard clay and sandy clay. Dense sand layer between 1.6m to 2.1m

6.3m – 8.95m Medium dense sand with some dense clayey sand bands

OT-03 (North Western Side Of Reclamation Site)

BL – 1.5m: Very ("extremely") soft organic clay "ooze".

1.5m – 11.5m: Stiff, very stiff and hard clay and sandy clay. Dense sand layer between 7.8m to 9.4m

11.5m - 14.5m: Dense sand with very dense bands

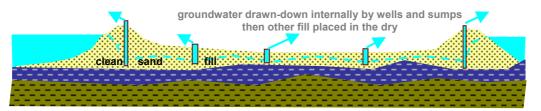
14.5m - 15.45m Hard silty clay

5 COMMENTS - DREDGING CONDITIONS & SPOIL PROPERTIES

No unusual difficulty would be expected in dredging any of the materials found in the boreholes to the depths presently envisaged, using normal heavy cutter-suction dredging methods. However, attention is drawn to the rock revetment walls and the possibility that loose rocks from these walls may exist within the development area. Such rocks could become obstructions to dredging.

Excavated materials will vary in type and properties with depth and also laterally across the area, as follows:

- The very soft organic clays that make up a surface veneer as found in the bores at 1.5-2.8m thickness would not make a useful quality of fill material. These materials are also likely to have acid sulphate potential.
- The stiff to hard clays will form into small lumps unless dredged by excavator, dragline or clamshell equipment. They would make potentially useful fill where they can be placed "in the dry". Underwater placement would however lead to a voidy, lumpy, fill that would soften as it absorbed water. If placed in the dry, these stiffer clays would be a relatively good fill, but they would need very careful moisture content control during compaction. Use of these clays as fill may result in a somewhat expansive foundation for structures. This would need to be managed by methods normally used for expansive sites.
- The sands would likely provide a good quality fill that could potentially be placed through water as well as in the dry. There may be some fines content that would need to be managed by normal ponding and settlement methods if placed through water or placed by pumping.


Attention is drawn to the fact that there is inadequate site investigation data available at this time to determine whether there is lateral continuity in the layering of strata identified in the boreholes. The presence or lack of such continuity will be an important consideration in planning and execution of a dredging program if reliance is to be placed on re-use of the materials won from dredging as fill on the project.

McConnell Consulting

6 COMMENTS – RECLAMATION CONDITIONS

The following options exist for reclamation works for this project:

- **Either: A.** Construction of full-depth low-permeability bunds or some other form of stable water-retaining system, dewatering, and then fill placement in the dry. With this system, conventional earthworks procedures could then be used, and conventional fill of a range of types could be considered for the project. It is considered relatively unlikely however that this approach will be deemed practical for the project given the depth of water, the tidal range and the need for weather protection for the project.
- **Or: B.** Placement of all fill by dredging or other means into and through water. This approach is common for marine reclamations. However, fill placement through water is only successful at an "engineering" level if the fill used is of a clean granular type such as clean sand, gravel or similar. Clayey fill placed in this way would soften in contact with water and would lead to a very weak and highly compressible and unstable platform. Thus, if this approach is to be taken, a source of clean granular fill will be needed.
- **Or: C.** A combination of A & B where clean granular fill is used to fill the reclamation areas to above water level, then other fill might be used, placed and compacted conventionally, for the above-water works. We understand that there will likely be a shortage of clean granular fill available for the project, so this combined method may be found most suitable. The volume of clean granular fill needed might be minimised by contouring the reclamation profile with high edges to act as a restraint to lateral flow of water, then dewatering between those raised edges to allow construction in the dry from a lower-than-otherwise level. This is shown in concept in the sketch figure below.

7 COMMENTS – LEAVE THE ORGANIC CLAY IN PLACE?

As mentioned in Section 5, the very soft organic clay veneer that presently forms the sea bed is likely to be of acid sulphate potential, and it will in other ways be unsuitable for use as fill (on this or any other project). There are good reasons to remove the veneer and thee are competing reasons to leave it in place below the new reclamation works, as summarised below.

For Removal	Against Removal
 These weak soils could lead to edge instability under fill loadings. Their removal would eliminate this potential problem. Instability problems could be eliminated however by removal just around the edges of the reclamation area. These clays are highly compressible and will lead to ground settlement under reclamation fill weight and other applied loadings. Compaction of new fill on top of compressible organic clays will be inhibited by the "springiness" of the materials. However, this would not be a problem if clean granular sand fill is used for the lower reclamation zone. 	 like materials, are a problem to dispose of. They can be very expensive to remove from site. Removal of these materials will increase the volume of fill required to reclaim the site. In particular this would apply to the volume of the lowest levels of fill, and these will need to be clean sand or other granular type. While they will produce settlement, preloading with a surcharge could be used to avoid this

McConnell Consulting

8 COMMENTS – PROJECT FOUNDATION SYSTEMS

8.1 General Comments

The type of foundation systems used for any engineered development on the reclaimed site will depend on:

- (a) the structures or features to be supported,
- (b) the fill material that has been used for the reclamation,
- (c) and the success of the operation overall.

For example, if:

- a good quality clean granular fill has been used for the lower layers of the fill, and
- good compaction has been achieved in any fill placed above it, and
- the very soft clays have been removed or properly preloaded,

then purpose-designed lightly-loaded raft footing systems, roads, car parks, services etc, could be satisfactorily supported within the fill platform, using normal engineering methods.

However, if the reclamation has not been so successfully implemented, then special ground improvement procedures such as stone columns or dynamic replacement might possibly be needed to support critical project elements. Alternatively piles could be used.

8.2 Pile Foundations

Pile foundations will probably be needed for any heavy or settlement–sensitive project elements on the site, such as brittle structures, multi-level buildings, etc. Piles might also be needed if the reclamation works are not done to a high enough standard.

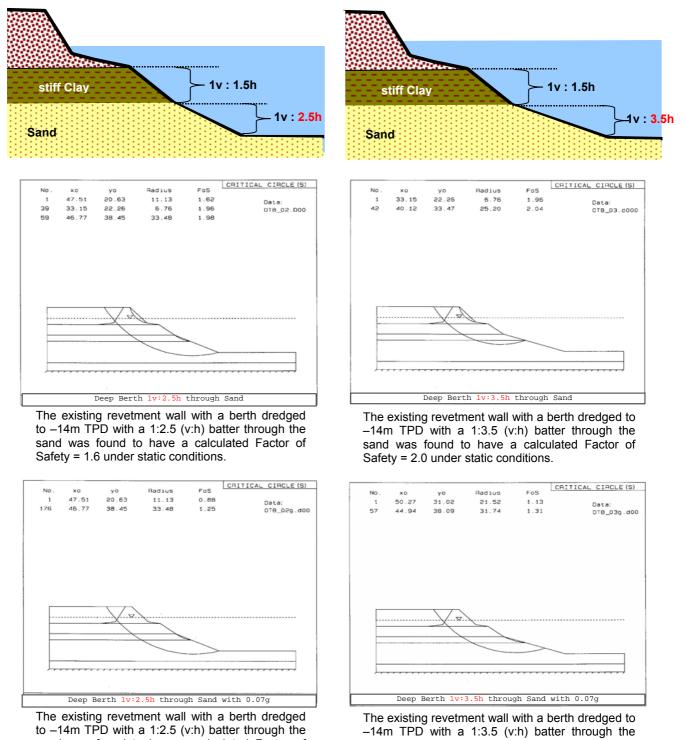
Driven piles would be most suitable for the project as there would be prohibitive construction difficulties with installation of normal un-cased bored piles due to non-cohesive fill, very soft clays, and copious groundwater.

Driven piles would reach a "set" (ie penetration resistance) adequate to carry their design loads with a penetration into the very stiff to hard clays and/or the dense and very dense sands.

The founding level and load capacity of piles will need to be assessed on a project-by-project basis, based on location-specific site investigations.

9 COMMENTS - REVETMENT WALL STABILITY AT CRUISE TERMINAL

9.1 Analysis Method


Stability analysis was done for two presumptive trial cross-sections for the proposed cruise terminal dredging area, using Bishop's Simplified Method, via the computer program XSLOPE Version 9.0¹.

Analyses were made for both static and earthquake conditions. The earthquake case was modelled using the method recommended by $ANCOLD^2$ in their publication "Guidelines for Design Of Dams For Earthquake Loading" – 1998.

The presumptive trial cross-sections assessed and the results of this assessment are shown on the following page.

¹ Centre for Geotechnical Research, University of Sydney (Author Dr N P Balaam)

² Australian National Committee On Large Dams

sand was found to have a calculated Factor of Safety = 0.9 under earthquake conditions.

sand was found to have a calculated Factor of Safety = 1.1 under earthquake conditions.

On the basis of the above analysis, preliminary indications are that a dredged cross-section similar to that shown above would be stable under normal static conditions. However, instability could develop due to earthquake if the under-water slope of batters through the sands was too steep. Based on this preliminarylevel analysis an under-water slope of 1:3.5 (v:h) in the sands will be needed for the earthquake case.

Note that this stability analysis has been at a very preliminary level. More detailed analysis will be needed, based on detailed site investigations, for the design phase of the project.

10 COMMENTS – THE NEED FOR ADDITIONAL SITE INVESTIGATION

This report is for a preliminary level site investigation based on only three boreholes and with limited information on the detail of the project (as this detail has not yet been decided).

For the project to proceed with a normal level of geotechnical risk, and for consideration to be properly given to aspects that will impact significantly on the economics of the project, additional site investigation and analysis will be needed.

Future site investigation should:

- Be based on a good site coverage by geotechnical tests such as boreholes.
- Include laboratory testing to confirm materials' classifications made in the field and quantitatively determine important design parameters such as soil compressibility, strength plasticity, etc.
- Sample for and properly assess the veneer of organic clay at sea bed level, for acid sulphate potential and other possible contaminant issues.
- Investigate for and properly consider possible on-site and off-site fill sources, especially clean granular fills that might be used for under-water reclamation works.
- Include detailed analysis of all data, taking specific account of the project details decided or desired for the project.

D.L.

Wyn Binmore

Appendix A

Borehole Record Sheets

McConnell Consulting

	Port Of Townsville Ocean Terminal Project Bore OT-01						
Job No: Elevatio		550482049 E * approx Supervised: ALT	7871458 N ³ Checked: V		03/06/03 :: 1 of 1		
Depth (m)	Interp		Sampling, Testing & Notes				
Bed Level	Very Soft Silty Clay "Ooze"	 Very ("extremely") soft dark grey silty with a little sand sand fine to coarse grained occasional shell fragments becoming sandy and firmer below 2.4m 	n	Bulk sample 0-1 SPT 1.00-1.50 SPT 2.00-2.50	1.0m 0/500mm 0/500mm		
2.8	Very Stiff Sandy Clay	 Very stiff orange brown and grey sandy pockets of gravel sand fine grained gravel fine to medium grained 	y clay with	SPT 3.50-3.95 SPT 4.50-4.95	7,9,10 N=19 4,6,6 N=12		
5.3	Very Stiff Clay	 Very stiff pale brown silty clay with so a little gravel sand fine to coarse grained gravel fine to medium grained rock fra 		SPT 5.50-5.95	4,7,9 N=16		
6.3	Medium Dense Sand	 Medium dense orange sand with a trace sand fine to coarse grained occasional shell fragments 	e of silt	SPT 6.50-6.95 SPT 8.00-8.45	3,6,10 N=16 13,19,24 N=43		
8.3	Interlayered Dense Sand And Hard Sandy Clay	Interlayered dense pale brown sand and clay • sand fine to coarse grained • occasional gravel	l hard sandy	SPT 9.50-9.95 SPT 11.50-11.95	12,19,21 N=40		
11.6	Very Dense Clayey Sand	 Occasional gravel Very dense orange and pale brown clay a trace of gravel sand fine grained 	vey sand with	SPT 15.00-15.30	. ,		
15.4 18.45	Hard Sandy Clay	Hard orange and pale brown sandy claysand fine grained	/	SPT 18.00-18.43	13,26,30/130mm		
	Terminated at 18.45m						
Ground	s is a text record of interp water: Borehole drilled Rotary mud flush to 18.			McCo	nnell		
Comme		nd held GPS to Port Grid system (AM	1G 66)	Consu	ulting		

	Of Townsv an Termina		Bo	ore O	T-02
Job No: Elevatio		550481894 E* Dapprox Supervised: WSB	7871726 N Checked	N* Date: AJM Sheet	28/05/03 : 1 of 1
Depth (m)	Interp	oreted Ground Conditions			Testing & tes
Bed Level	Very Soft Silty Clay "ooze"	 Very ("extremely") soft dark grey silty of some fine gravel and shell fragments in becoming sandy from 0.5m 		Bulk BL-0.5m SPT 0.50-1.00	0/500mm
1.0	Very Soft Clayey Silt	 Very soft dark grey clayey sandy silt occasional shell fragments and gravel sand fine grained stiffer clay band from 1.4 to 1.5m 		SPT 1.00-1.45	0,0,1 N=1
1.6	Dense Clayey Sand	 Dense grey clayey sand with some grave sand fine to coarse grained gravel fine grained 	el		1,15,20 N=35 2,2,8 N=10
2.1	Very Stiff Clay	 Very stiff orange-brown/ grey silty clay occasional fine gravel and sand bands some hard bands 			6,8,13 N=21 5,8,12 N=20
4.0	Stiff Sandy Clay	Stiff brown sandy clay some gravel with • sand fine grained	h depth	SPT 4.00-4.45 SPT 4.50-4.95	9,11,16 N=27 4,6,9 N=15 5,5,12 N=17 6,10,11 N=21
5.2	Hard Silty Clay	Hard pale grey silty clayoccasional sand and fine gravel		SPT 5.50-5.95 SPT 6.00-6.45	5,8,14 N=22 7,12,16 N=28
6.2 8.95	Medium Dense Sand	 Medium dense orange brown silty sand sand fine grained some dense clayey sand bands 7-8m 		SPT 7.00-7.45 SPT 7.50-7.95	5,9,14 N=23 8,12,21 N=33 8,12,17 N=29 3,5,7 N=12
	Borehole terminated at	8.95m	observations, r	not a scaled gra	phic log.
Ground	Iwater: Borehole drille	d over water		McCo	
1		and held GPS to Port Grid system (AN			

Comments: *coordinated by hand held GPS to Port Grid system (AMG 66) Depths are below sea bed level.

		550481612 E * 7871925 N	
Depth (m)		preted Ground Conditions	Sampling, Testing & Notes
Bed Level 1.5	Very Soft Silty Clay "Ooze" Very Stiff Clay	Very ("extremely") soft dark grey very silty clay "ooze" with a trace of sand • sand fine grained • some shell fragments Very stiff brown clay with a little sand and a trace of gravel	Bulk BL-0.35m SPT 0.50-1.00 0/500mm SPT 1.00-1.50 0/500mm SPT 1.50-1.95 3,6,8 N=14
3.2	Very Stiff Clay	 sand fine to coarse grained gravel fine grained thin gravelly bands Very stiff orange brown and grey clay with a trace of 	SPT 2.00-2.45 3,5,15 N=20 SPT 2.50-2.95 5,10,16 N=26 SPT 3.00-3.45 5,9,13 N=22
		sandsand fine grainedbecoming more sandy with depth	SPT 4.00-4.45 5,8,9 N=17
5.0	Stiff Sandy Clay	 Stiff orange-brown sandy clay with pockets of gravel sand fine grained gravel fine to medium grained black rock fragments 	SPT 5.00-5.45 5,7,9 N=16
5.8	Very Stiff Silty Clay	 Very stiff pale brown silty clay with a little sand some gravel sand fine grained gravel fine to medium grained black rock fragments thin bands of fine grained sand 	SPT 6.00-6.45 6,6,8 N=14 SPT 7.50-7.95 7,12,18 N=30
7.8	Dense Sand	Dense orange sand with some siltsand fine to medium grained	SPT 9.0-9.45 11,17,23 N=40
9.4	Hard Sandy Clay	Hard pale brown sandy claysand fine grained	SPT 10.50-10.95 8,12,16 N=28
11.5	Dense Sand	 Dense orange and pale brown sand with a trace of silt very dense bands sand fine to coarse grained becoming clayey with depth 	SPT 12.00-12.45 14,22,33 N=55 SPT 13.50-13.95 15,11,12 N=23
14.5 15.45	Hard Silty Clay	 Hard pale grey and orange brown fissured silty clay with a trace of sand sand fine to coarse grained occasional small fragments of wood 	
	Borehole terminated a	t 15.45m rpreted conditions from testing and observations,	SPT 15.00-15.45 10,15,16 N=31
Ground	States: Borehole drille I: Rotary mud flush to 15	ed over water	McConnell
Comme		hand held GPS to Port Grid system (AMG 66)	Consulting