GROUNDWATER MONITORING BORE
ROM_BXGGWG04_BORE_W

TOTAL DEPTH: 456.7 m
SCREEN INTERVAL: 443.7-455.5
LONGITUDE: 149°23'35.3"
LATITUDE: -26°36'12.6"
TOP OF CASING RL: 301.57 mA
COMPLETION DATE: 1 MARCH 2023
Santos GLNG

GLNG Gas Field Development Project
Groundwater Technical Report

31 October 2014
Document information

Client: Santos GLNG
Title: GLNG Gas Field Development
Groundwater Technical Report
Document No: 2175699P-UGE-RPT-7630 Rev1
Date: 31 October 2014

<table>
<thead>
<tr>
<th>Author, Reviewer and Approver details</th>
<th></th>
</tr>
</thead>
</table>
| Prepared by: | Ellen Kwantes, Louisa Rochford
Date: 31/10/2014 | Signature: |
| Reviewed by: | Stuart Brown
Date: 31/10/2014 | Signature: |
| Approved by: | Amanda O’Kane
Date: 31/10/2014 | Signature: |

Distribution
Santos GLNG, Parsons Brinckerhoff file, Parsons Brinckerhoff Library

©Parsons Brinckerhoff Australia Pty Limited 2013

Copyright in the drawings, information and data recorded in this document (the information) is the property of Parsons Brinckerhoff. This document and the information are solely for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or part for any purpose other than that for which it was supplied by Parsons Brinckerhoff. Parsons Brinckerhoff makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document or the information.

Document owner

Parsons Brinckerhoff Australia Pty Limited
ABN 80 078 004 798
Level 27 Ernst & Young Centre
680 George Street, Sydney NSW 2000
GPO Box 5394
Sydney NSW 2001
Australia
Tel: +61 2 9272 5100
Fax: +61 2 9272 5101
Email: sydney@pb.com.au
www.pbworld.com
Certified to ISO 9001, ISO 14001, AS/NZS 4801
A GRI Rating: Sustainability Report 2011
Contents

Glossary vii
Abbreviations xvii
Units xviii
Executive summary xix

1. Introduction 1
 1.1 Project description 2
 1.2 Project location 4
 1.3 Scope of works 6

2. Regulatory and policy framework 8
 2.1 Commonwealth legislation and policies 8
 2.1.1 Environment Protection and Biodiversity Conservation Act 1999 8
 2.2 Queensland legislation and policies 9
 2.2.1 Petroleum Act 1923 and Petroleum and Gas (Production and Safety) Act 2004 9
 2.2.2 Water Act 2000 9
 2.2.3 Environmental Protection Act 1994 11
 2.2.4 Waste Reduction and Recycling Act 2011 12
 2.2.5 Nature Conservation Act 1992 12
 2.2.6 Sustainable Planning Act 2009 13
 2.3 Santos GLNG policy framework 13
 2.3.1 Environment, Health and Safety Management System 13
 2.3.2 Environmental Policy 13
 2.3.3 Standards 13
 2.3.4 GFD Project Environmental Protocol for Constraints Planning and Field Development 14

3. Methodology 17
 3.1 Existing environment and environmental values 17
 3.2 Impact assessment and management measures 18
 3.2.1 Constraints planning 18
 3.2.2 Numerical groundwater modelling 22
 3.2.3 Significance assessment 22
 3.2.4 Mitigation and management measures 24
 3.2.5 Significance of residual impacts and environmental management planning 24
Contents (Continued)

4. Physical setting and geology

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Topography</td>
<td>25</td>
</tr>
<tr>
<td>4.2 Hydrology</td>
<td>25</td>
</tr>
<tr>
<td>4.2.1 Fitzroy River Basin</td>
<td>25</td>
</tr>
<tr>
<td>4.2.2 Condamine-Balonne River Basin</td>
<td>25</td>
</tr>
<tr>
<td>4.3 Climate</td>
<td>27</td>
</tr>
<tr>
<td>4.4 Geology</td>
<td>29</td>
</tr>
<tr>
<td>4.4.1 Geological setting</td>
<td>29</td>
</tr>
<tr>
<td>4.4.2 Geological structures</td>
<td>33</td>
</tr>
</tbody>
</table>

5. Hydrogeology

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Regional hydrogeological setting</td>
<td>37</td>
</tr>
<tr>
<td>5.1.1 Recharge</td>
<td>38</td>
</tr>
<tr>
<td>5.1.2 Discharge</td>
<td>39</td>
</tr>
<tr>
<td>5.2 Hydrogeological units</td>
<td>40</td>
</tr>
<tr>
<td>5.2.1 Alluvial aquifer systems</td>
<td>41</td>
</tr>
<tr>
<td>5.2.2 Tertiary fractured basalts and sediments</td>
<td>41</td>
</tr>
<tr>
<td>5.2.3 GAB hydrogeological units</td>
<td>41</td>
</tr>
<tr>
<td>5.2.4 Hydrogeological units underlying the GAB</td>
<td>47</td>
</tr>
<tr>
<td>5.3 Interconnectivity of the coal sequences</td>
<td>48</td>
</tr>
<tr>
<td>5.3.1 Interconnectivity studies</td>
<td>48</td>
</tr>
<tr>
<td>5.3.2 Walloon Coal Measures</td>
<td>48</td>
</tr>
<tr>
<td>5.3.3 Bandanna Formation</td>
<td>49</td>
</tr>
<tr>
<td>5.4 Groundwater-surface water interaction</td>
<td>50</td>
</tr>
<tr>
<td>5.5 Groundwater levels and flow direction</td>
<td>50</td>
</tr>
<tr>
<td>5.6 Hydrogeological parameters</td>
<td>53</td>
</tr>
<tr>
<td>5.7 Groundwater quality</td>
<td>55</td>
</tr>
<tr>
<td>5.7.1 Alluvial aquifer systems</td>
<td>60</td>
</tr>
<tr>
<td>5.7.2 Tertiary fractured basalts and sediments</td>
<td>60</td>
</tr>
<tr>
<td>5.7.3 GAB water bearing units</td>
<td>60</td>
</tr>
<tr>
<td>5.7.4 GAB aquitards</td>
<td>61</td>
</tr>
<tr>
<td>5.7.5 Hydrogeological units underlying the GAB</td>
<td>62</td>
</tr>
</tbody>
</table>

6. Receptors and environmental values

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Sensitive groundwater receptors</td>
<td>63</td>
</tr>
<tr>
<td>6.1.1 Hydrogeological units used for water supply</td>
<td>63</td>
</tr>
<tr>
<td>6.1.2 Springs</td>
<td>68</td>
</tr>
</tbody>
</table>
Contents (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Environmental values</td>
<td>73</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Environmental Protection (Water) Policy 2009</td>
<td>73</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Beneficial use of groundwater by hydrogeological unit</td>
<td>74</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Sensitivity of environmental values</td>
<td>76</td>
</tr>
<tr>
<td>7.</td>
<td>Numerical groundwater flow modelling results and cumulative impacts</td>
<td>78</td>
</tr>
<tr>
<td>7.1</td>
<td>Queensland framework for assessment and management of groundwater impacts</td>
<td>78</td>
</tr>
<tr>
<td>7.1.1</td>
<td>The Surat Cumulative Management Area</td>
<td>78</td>
</tr>
<tr>
<td>7.1.2</td>
<td>The Underground Water Impact Report for the Surat Cumulative Management Area</td>
<td>78</td>
</tr>
<tr>
<td>7.1.4</td>
<td>Replacement of the Underground Water Impact Report for the Surat Cumulative Management Area</td>
<td>79</td>
</tr>
<tr>
<td>7.2</td>
<td>Numerical groundwater modelling methodology</td>
<td>80</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Overview of the Surat CMA model</td>
<td>80</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Model assumptions and limitations</td>
<td>82</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Representing the extraction of gas</td>
<td>83</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Model calibration and predictions</td>
<td>83</td>
</tr>
<tr>
<td>7.2.5</td>
<td>The UWIR Scenario</td>
<td>84</td>
</tr>
<tr>
<td>7.2.6</td>
<td>The EIS Scenario</td>
<td>84</td>
</tr>
<tr>
<td>7.3</td>
<td>Impact assessment results</td>
<td>85</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Depressurisation impacts</td>
<td>85</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Impacts to landholder bores</td>
<td>90</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Impacts to springs</td>
<td>91</td>
</tr>
<tr>
<td>8.</td>
<td>Potential GFD Project impacts and management measures</td>
<td>109</td>
</tr>
<tr>
<td>8.1</td>
<td>Project activities and potential impacts</td>
<td>109</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Potential impacts related to coal seam depressurisation</td>
<td>109</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Potential impacts on groundwater levels related to other project activities</td>
<td>110</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Changes to water quality</td>
<td>111</td>
</tr>
<tr>
<td>8.1.4</td>
<td>Summary</td>
<td>114</td>
</tr>
<tr>
<td>8.2</td>
<td>Mitigation and management measures</td>
<td>117</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Groundwater extraction for gas production</td>
<td>121</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Construction of wells and shallow subsurface infrastructure</td>
<td>125</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Operation of water supply bores</td>
<td>125</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Hydraulic fracturing</td>
<td>125</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Coal seam water management</td>
<td>126</td>
</tr>
<tr>
<td>8.2.6</td>
<td>Brine management and injection</td>
<td>126</td>
</tr>
<tr>
<td>8.2.7</td>
<td>Managed Aquifer Recharge</td>
<td>127</td>
</tr>
<tr>
<td>8.2.8</td>
<td>Beneficial reuse for irrigation and stock watering</td>
<td>127</td>
</tr>
<tr>
<td>8.2.9</td>
<td>Surface activities</td>
<td>127</td>
</tr>
<tr>
<td>8.3</td>
<td>Significance assessment</td>
<td>128</td>
</tr>
</tbody>
</table>
Contents (Continued)

9. Monitoring and reporting 131
 9.1 Groundwater monitoring programs 131
 9.1.1 Groundwater pressure and quality 131
 9.1.2 Baseline assessments of landholder bores 135
 9.1.3 Springs monitoring 137
 9.1.4 Other impact monitoring 140
 9.2 Trigger levels and exceedance response 141
 9.2.1 Drawdown impacts to bores 141
 9.2.2 Drawdown impacts to springs 142
 9.2.3 Water quality impacts 143
 9.2.4 Subsidence impacts 144
 9.3 Reporting 144

10. References 145

List of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Petroleum tenures forming the GFD Project</td>
<td>5</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>GFD Project constraints relevant to the groundwater impact assessment</td>
<td>19</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Sensitivity criteria</td>
<td>22</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Magnitude criteria</td>
<td>23</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Significance matrix</td>
<td>23</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Significance classifications</td>
<td>24</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>BOM weather stations (BOM, 2013)</td>
<td>28</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Summary of geological stratigraphy</td>
<td>29</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Main hydrogeological units for water supply in the GFD Project tenures</td>
<td>40</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Groundwater levels for hydrogeological units in and around GFD Project tenures</td>
<td>51</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Hydraulic properties of water bearing formations in the GFD Project tenures</td>
<td>53</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>Hydraulic properties of water bearing formations in GFD Project tenures</td>
<td>53</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>Summary of Gubberamunda Sandstone aquifer hydraulic characteristics (URS, 2013b)</td>
<td>54</td>
</tr>
<tr>
<td>Table 5.6</td>
<td>Groundwater quality summary for each of the relevant hydrogeological units (median (range))</td>
<td>59</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Number of registered bores per hydrogeological unit in GFD Project tenures</td>
<td>65</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Volume of groundwater extracted across the GFD Project tenures</td>
<td>66</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>Summary of springs vents in the Surat CMA with EPBC Act and NC Act listings</td>
<td>69</td>
</tr>
</tbody>
</table>
List of tables (continued)

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 6.4</td>
<td>Conservation ranking for GAB springs (adopted from Fensham et al., 2012)</td>
<td>69</td>
</tr>
<tr>
<td>Table 6.5</td>
<td>Spring vents located in GFD Project tenures</td>
<td>70</td>
</tr>
<tr>
<td>Table 6.6</td>
<td>Watercourse springs located in GFD Project tenures</td>
<td>71</td>
</tr>
<tr>
<td>Table 6.7</td>
<td>Environmental values of groundwater in the Comet, Dawson and Condamine-Balonne river basins</td>
<td>73</td>
</tr>
<tr>
<td>Table 6.8</td>
<td>Groundwater quality guidelines</td>
<td>74</td>
</tr>
<tr>
<td>Table 6.9</td>
<td>Beneficial use of groundwater in GFD Project tenures</td>
<td>75</td>
</tr>
<tr>
<td>Table 6.10</td>
<td>Sensitivity of environmental values</td>
<td>76</td>
</tr>
<tr>
<td>Table 7.1</td>
<td>UWIR model layers and corresponding formations (QWC, 2012a)</td>
<td>82</td>
</tr>
<tr>
<td>Table 7.2</td>
<td>Change in maximum depressurisation and area of impact under the EIS Scenario compared to the UWIR Scenario</td>
<td>86</td>
</tr>
<tr>
<td>Table 7.3</td>
<td>Additional water bores cumulatively impacted under the EIS Scenario compared to the UWIR Scenario in the Surat CMA</td>
<td>90</td>
</tr>
<tr>
<td>Table 7.4</td>
<td>Impacted landholder bores in GFD Project tenures</td>
<td>91</td>
</tr>
<tr>
<td>Table 7.5</td>
<td>Spring complexes at risk of depressurisation impacts in the Surat CMA under the EIS scenario</td>
<td>93</td>
</tr>
<tr>
<td>Table 7.6</td>
<td>Watercourse springs at risk of depressurisation impacts in the Surat CMA under the EIS scenario</td>
<td>99</td>
</tr>
<tr>
<td>Table 7.7</td>
<td>Spring complexes at risk of depressurisation impacts within or near GFD Project tenure</td>
<td>104</td>
</tr>
<tr>
<td>Table 7.8</td>
<td>Watercourse springs at risk of depressurisation impacts within or near GFD Project tenures</td>
<td>106</td>
</tr>
<tr>
<td>Table 8.1</td>
<td>Potential impacts associated with GFD Project activities</td>
<td>115</td>
</tr>
<tr>
<td>Table 8.2</td>
<td>Santos GLNG management plans</td>
<td>118</td>
</tr>
<tr>
<td>Table 8.3</td>
<td>Significance assessment</td>
<td>129</td>
</tr>
<tr>
<td>Table 9.1</td>
<td>Summary of regional groundwater monitoring locations</td>
<td>131</td>
</tr>
<tr>
<td>Table 9.2</td>
<td>Monitoring locations to meet UWIR Water Monitoring Strategy requirements</td>
<td>133</td>
</tr>
<tr>
<td>Table 9.3</td>
<td>Spring vents currently monitored by Santos GLNG</td>
<td>137</td>
</tr>
<tr>
<td>Table 9.4</td>
<td>Watercourse springs currently monitored by Santos GLNG</td>
<td>137</td>
</tr>
<tr>
<td>Table 9.5</td>
<td>Additional spring vents currently monitored by Santos GLNG (JIP)</td>
<td>139</td>
</tr>
<tr>
<td>Table 9.6</td>
<td>Additional spring complexes for potential future monitoring</td>
<td>140</td>
</tr>
<tr>
<td>Table 9.7</td>
<td>Additional watercourse springs for potential future monitoring</td>
<td>140</td>
</tr>
</tbody>
</table>
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>GFD Project area and primary infrastructure</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Proposed GFD Project development schedule</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>GFD Project area for the groundwater assessment</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>Field development process</td>
<td>16</td>
</tr>
<tr>
<td>4.1</td>
<td>Topography and drainage</td>
<td>26</td>
</tr>
<tr>
<td>4.2</td>
<td>Monthly average rainfall</td>
<td>28</td>
</tr>
<tr>
<td>4.3</td>
<td>Geological basins and regional structures</td>
<td>34</td>
</tr>
<tr>
<td>4.4</td>
<td>Regional geology</td>
<td>35</td>
</tr>
<tr>
<td>4.5</td>
<td>Geological cross-section locations</td>
<td>36</td>
</tr>
<tr>
<td>5.1</td>
<td>Generalised cross-section of the Great Artesian Basin (DERM, 2011a)</td>
<td>37</td>
</tr>
<tr>
<td>5.2</td>
<td>Regional hydrostratigraphy (QWC, 2012a)</td>
<td>38</td>
</tr>
<tr>
<td>5.3</td>
<td>Great Artesian Basin (DERM, 2011a)</td>
<td>39</td>
</tr>
<tr>
<td>5.4</td>
<td>Monitoring network used to assess baseline groundwater conditions</td>
<td>52</td>
</tr>
<tr>
<td>5.5</td>
<td>Piper plots for each of the relevant hydrogeological units in the GFD Project tenures</td>
<td>56</td>
</tr>
<tr>
<td>5.6</td>
<td>Water quality for hydrogeological units in the GFD Project tenures (in stratigraphic order)</td>
<td>58</td>
</tr>
<tr>
<td>6.1</td>
<td>Registered landholder bores in the Surat CMA</td>
<td>64</td>
</tr>
<tr>
<td>6.2</td>
<td>Estimated volume of take for registered bores in GFD Project tenures (ML/year)</td>
<td>67</td>
</tr>
<tr>
<td>6.3</td>
<td>Spring vents and watercourse springs in the Surat CMA</td>
<td>72</td>
</tr>
<tr>
<td>7.1</td>
<td>Coal seam gas production areas in the Surat CMA</td>
<td>81</td>
</tr>
<tr>
<td>7.2</td>
<td>Areas of impact under the UWIR and EIS scenarios</td>
<td>87</td>
</tr>
<tr>
<td>7.3</td>
<td>Predicted aquifer depressurisation for a central location in GFD Project gas fields</td>
<td>89</td>
</tr>
<tr>
<td>7.4</td>
<td>Springs at risk of depressurisation impacts within or near GFD Project tenures</td>
<td>108</td>
</tr>
<tr>
<td>8.1</td>
<td>Monitoring and response plan for springs associated with an EPBC Act listing (Santos GLNG, 2013b)</td>
<td>124</td>
</tr>
<tr>
<td>9.1</td>
<td>Groundwater monitoring network</td>
<td>134</td>
</tr>
<tr>
<td>9.2</td>
<td>Bores where baseline assessments have been completed by Santos GLNG</td>
<td>136</td>
</tr>
<tr>
<td>9.3</td>
<td>Santos GLNG springs monitoring</td>
<td>138</td>
</tr>
</tbody>
</table>

List of appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Geological cross-sections for the GFD Project area</td>
</tr>
<tr>
<td>B</td>
<td>Groundwater level data</td>
</tr>
<tr>
<td>C</td>
<td>Vent and watercourse springs in the Surat CMA</td>
</tr>
<tr>
<td>D</td>
<td>Potential impact maps</td>
</tr>
<tr>
<td>E</td>
<td>Monitoring bore logs</td>
</tr>
<tr>
<td>F</td>
<td>Implementation Plan for UWIR Water Monitoring Program</td>
</tr>
</tbody>
</table>
Glossary

Alkaline Having the properties of any of various bases, the hydroxides of the alkali metals and of ammonium, which neutralise acids to form salts.

Alluvial Sediments deposited by flowing water.

Alluvium General term for unconsolidated deposits of inorganic materials (clay, silt, sand, gravel, boulders) deposited by flowing water.

Alluvium aquifer An aquifer formed within alluvium.

ANZECC guidelines Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2000)

Aquaculture Cultivation of the food resources of the sea or of inland waters.

Aquatic ecosystems The physical and chemical environment that contains a community of organisms (plants, animals, and microbes), and ecological processes within rivers and their riparian zones and reservoirs, lakes, wetlands and their fringing vegetation.

Aquifer Rock or sediment in a formation, group of formations or part of a formation that is saturated and sufficiently permeable to transmit economic quantities of water to wells and springs.

Aquifer testing The process where an aquifer is subjected to pumping to assess the hydraulic parameters of the aquifer.

Aquitard Saturated geological unit with a relatively low permeability that can store large volumes of water but does not readily transmit or yield significant quantities of water to bores or springs. An aquitard can sometimes, if completely impermeable, be called an aquiclude.

Artesian aquifer A confined aquifer whose water is pressurised i.e. if tapped by a bore, would flow naturally to the surface.

Artesian bore A term commonly used to describe a bore which is completed into an artesian aquifer.

Artesian storage The component of aquifer storage that is due to the compressibility of the aquifer material and water itself when the aquifer remains fully saturated. Artesian storage (also known as confined or elastic storage) is expressed as the volume of water released from or taken into storage by a unit change in water level. Confined storage is typically several orders of magnitude less than the total or unconfined storage.

Australian Height Datum (AHD) A level datum, uniform throughout Australia, that generally approximates mean sea level.

Authority to prospect (ATP) A petroleum tenure granted under the Petroleum Gas (Production and Safety) Act 2004 (Qld) allowing the holder to undertake petroleum
exploration activities and studies to evaluate the development potential of a defined resource.

Basalt
The dark, fine-grained igneous rock of a lava flow, composed essentially of plagioclase and pyroxene, and sometimes displaying a columnar structure.

Baseflow
The component of river or stream flow that is derived from groundwater discharge to the river or stream.

Baseline
A basic standard or level, usually regarded as a reference point for comparison.

Beneficial use
An alternative reuse for a material such as coal seam water or salt residues that changes the status of the material from a waste to a resource that can be used for a beneficial purpose.

Biodiversity
The number and variety of organisms found within a specified geographic region or within a given ecosystem.

Bore
Artificially constructed or improved groundwater cavity used for the purpose of accessing or recharging water from an aquifer.
Interchangeable with borehole, piezometer.

Borehole
Includes a well, excavation, or other artificially constructed or improved groundwater cavity which can be used for the purpose of intercepting, collecting or storing water from an aquifer, observing or collecting data and information on water in an aquifer; or recharging an aquifer.
Interchangeable with bores, wells, piezometers.

Brackish
Water that contains between 500 and 10,000 milligrams per litre of dissolved solids according to National Water Commission.

Brine
Concentrated wastewater produced by desalination (e.g. reverse osmosis) treatment that typically contains more than 35,000 milligrams per litre of dissolved solids.

Buffer
An area of land separating adjacent land uses that is managed for the purpose of mitigating impacts of one use on another. A buffer area consists of a separation distance and one or more buffer elements.

Cainozoic
Relating to the geological era of rocks of most Recent age (65.5 million years ago to present).

Catchment
The area of land that collects and transfers rainwater into a waterway.

Category A environmentally sensitive area
Means any environmentally sensitive area listed in Section 25 of the Environmental Protection Regulation 2008 (Qld).

Clay
Deposit of particles with a diameter less than 0.002 mm, typically contain variable amounts of water within the mineral structure, and exhibit high plasticity.

Coal
Carbon-based sedimentary rock formed by the accumulation and decomposition of plant material in layers, which can be used as a combustible fuel. Main types, in order of highest rank to lowest rank, are
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal seam gas (CSG)</td>
<td>Natural gas extracted from coal seams.</td>
</tr>
<tr>
<td>Coal seam water</td>
<td>Groundwater produced at the surface by the depressurisation of coal seams during gas production.</td>
</tr>
<tr>
<td>Coal seam water dams</td>
<td>Types of dam (storage or evaporation) used to contain coal seam water that is necessarily or unavoidably brought to the surface in the process of natural gas from coal seams extraction.</td>
</tr>
<tr>
<td>Colluvium</td>
<td>General term applied to loose, heterogeneous and incoherent sediment such as soil material and/or rock fragments transported by gravity and deposited or built up at the bottom of a low-grade slope.</td>
</tr>
<tr>
<td>Condamine</td>
<td>River in south eastern Queensland, rising on the western side of the Great Dividing Range and flowing west to join Dogwood Creek to form the Balonne River.</td>
</tr>
<tr>
<td>Confined aquifer</td>
<td>An aquifer bounded above and below by impervious (confining) layers. In a confined aquifer, the water is under sufficient pressure so that when wells are drilled into the aquifer, measured water levels rise above the top of the aquifer.</td>
</tr>
<tr>
<td>Confining layer</td>
<td>Layer of low permeability material underlying or overlying an aquifer, which restricts the vertical movement of water.</td>
</tr>
<tr>
<td>Conglomerate</td>
<td>Consolidated gravel consisting of rounded and waterworn pebbles etc. embedded in a finer cementing material.</td>
</tr>
<tr>
<td>Consolidated aquifer</td>
<td>Water bearing rock aquifer such as sandstone, coal, limestone, granite, etc.</td>
</tr>
<tr>
<td>Contour plot</td>
<td>Graphical technique for representing a three-dimensional surface by plotting contours, on a two-dimensional format.</td>
</tr>
<tr>
<td>Cretaceous</td>
<td>Relating to the third period within the Mesozoic era beginning approximately 145.6 million years ago and ending approximately 65 million years ago.</td>
</tr>
<tr>
<td>Cultural significance</td>
<td>The meaning or value ascribed to the cultural landscape. It normally stems from a combination of association and integrity.</td>
</tr>
<tr>
<td>Cumulative impact</td>
<td>The combined impact to one or more environmental values delivered by multiple projects being undertaken simultaneously within the same sphere of physical influence.</td>
</tr>
<tr>
<td>Dam</td>
<td>An engineered land-based structure that is designed to contain, divert or control liquid. A dam does not mean a fabricated or manufactured tank or container, designed and constructed to an Australian Standard that deals with strength and structural integrity of that tank or container.</td>
</tr>
<tr>
<td>Deep groundwater</td>
<td>Groundwater resources associated with aquifers and resources at depths >100 m.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Depressurisation</td>
<td>Reduction in groundwater pore pressure (pressure head) in a confined</td>
</tr>
<tr>
<td></td>
<td>groundwater system due to extraction of groundwater.</td>
</tr>
<tr>
<td>Dewatering</td>
<td>Draining, permanently or temporarily, a wet area of land or an aquifer.</td>
</tr>
<tr>
<td>Dissolved oxygen (DO)</td>
<td>The amount of oxygen dissolved in water.</td>
</tr>
<tr>
<td>Dissolved solids</td>
<td>Minerals and organic matter dissolved in water; a measure of salinity.</td>
</tr>
<tr>
<td>Drawdown</td>
<td>The change in groundwater level in a bore, or the change in water table</td>
</tr>
<tr>
<td></td>
<td>elevation in an unconfined groundwater system, due to the extraction of</td>
</tr>
<tr>
<td></td>
<td>groundwater.</td>
</tr>
<tr>
<td>Ecosystem</td>
<td>An organic community of plants, animals and bacteria and the physical</td>
</tr>
<tr>
<td></td>
<td>and chemical environment they inhabit.</td>
</tr>
<tr>
<td>Environmental authority (EA)</td>
<td>A licence to operate, issued in accordance with the Environmental Protection Act 1994 (Qld), that imposes conditions on authorised activities to reduce or avoid potential environmental impacts; used by Queensland Department of Environment and Heritage Protection to assess and administer regulatory environmental compliance of the project.</td>
</tr>
<tr>
<td>Environmental impact statement (EIS)</td>
<td>A document prepared to identify, describe and assess the potential impacts of a proposed action on the environment, and document ways to mitigate such impacts; it should provide sufficient detail to inform a decision on the proposal.</td>
</tr>
<tr>
<td>Environmental management plan (EMP)</td>
<td>Document that provides operational detail of how environmental management measures identified in the environmental impact statement will be implemented.</td>
</tr>
<tr>
<td>Environmental values</td>
<td>Desirable characteristics, properties and behaviours or an aspect of the environment.</td>
</tr>
<tr>
<td>EPBC threshold criteria</td>
<td>The rules or principles used to measure the significance of a plant, animal or ecosystem against the requirements of the Environment Protection and Biodiversity Conservation Act 1999 (Cth).</td>
</tr>
<tr>
<td>Ephemeral</td>
<td>Relates to the amount of time that surface water persists in a watercourse or wetland; ephemeral watercourses flow only during significant rainfall events and for a short-time following rainfall events.</td>
</tr>
<tr>
<td>Erosion</td>
<td>Wearing away of rock or soil caused by physical or chemical processes</td>
</tr>
<tr>
<td>Fault</td>
<td>Zone of displacement in rock formations resulting from forces of tension or compression in the earth’s crust.</td>
</tr>
<tr>
<td>Formation</td>
<td>General term used to describe a sequence of rock layers.</td>
</tr>
<tr>
<td>Fracture</td>
<td>Break in a rock including cracks, joints, and faults.</td>
</tr>
<tr>
<td>Groundwater</td>
<td>Water found in the subsurface in the saturated zone below the water table or piezometric surface i.e. the water table marks the upper surface of groundwater systems.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Groundwater flow</td>
<td>The movement of water through openings and pore spaces in rocks below the water table i.e. in the saturated zone.</td>
</tr>
<tr>
<td>Groundwater resource</td>
<td>Groundwater available for beneficial use, including human usage, aquatic ecosystems and the greater environment.</td>
</tr>
<tr>
<td>Hydraulic conductivity</td>
<td>Measure of the ease with which water will pass through earth material; defined as the rate of flow through a cross-section of one square metre under a unit hydraulic gradient at right angles to the direction of flow (metres per day).</td>
</tr>
<tr>
<td>Hydraulic fracturing</td>
<td>Hydraulic fracturing involves pumping a fluid under pressure into a coal seam to open up and connect fractures within the coal, increasing the opportunity for gas to move within the coal seam and flow toward the well.</td>
</tr>
<tr>
<td>Hydraulic gradient</td>
<td>Change in the hydraulic head over a certain distance.</td>
</tr>
<tr>
<td>Hydraulic head</td>
<td>Elevation to which water will rise in a borehole connected to a point in an aquifer.</td>
</tr>
<tr>
<td>Hydrogeology</td>
<td>The study of the interrelationships of geological materials and processes with water, especially groundwater.</td>
</tr>
<tr>
<td>Hydrograph</td>
<td>Graph that shows groundwater or surface water properties as a function of time.</td>
</tr>
<tr>
<td>Igneous rock</td>
<td>Rock formed from magma that has cooled and solidified either at the earth's surface (volcanic rock) or deep within the earth's crust (plutonic rock).</td>
</tr>
<tr>
<td>Impact</td>
<td>An event that disrupts ecosystem, community, or population structure and alters the physical environment, directly or indirectly.</td>
</tr>
<tr>
<td>Infiltration</td>
<td>The downward movement of water from the atmosphere into the ground; not to be confused with percolation.</td>
</tr>
<tr>
<td>Intrusion</td>
<td>The solidified remnants of an igneous flow of rock into sedimentary strata.</td>
</tr>
<tr>
<td>Jurassic</td>
<td>The geologic period that extends from ~200 million to ~145 million years ago. The period occurred within the Mesozoic era, following the Triassic and preceding the Cretaceous periods.</td>
</tr>
<tr>
<td>Landholder</td>
<td>The owner, occupier, manager, or controller of land or water, including anyone acting on their behalf.</td>
</tr>
<tr>
<td>Liquefied natural gas</td>
<td>Gas consisting primarily of methane, liquefied to facilitate transport and storage.</td>
</tr>
<tr>
<td>Lithology</td>
<td>The physical character of rocks.</td>
</tr>
<tr>
<td>Matters of national environmental signifi</td>
<td>Listed under the Environment Protection and Biodiversity Conservation Act 1999 (Cth); includes listed threatened species and ecological communities, migratory species protected under international agreements, Ramsar wetlands of international importance, the Commonwealth marine environment, World Heritage properties, National</td>
</tr>
</tbody>
</table>
Heritage places, the Great Barrier Reef Marine Park, nuclear actions and a water resource, in relation to coal seam gas development and large coal mining development

Mesozoic
The geological era from ~250 million to ~65 million years ago. It is the era between Palaeozoic and Cainozoic.

Meteorological
Relating to meteorology or to phenomena of the atmosphere or weather.

Mitigation
To appropriately protect and maintain the existing environment in accordance with relevant legislation and best-management principles; taken to have the same meaning as management.

Modelling
The creation of a computerised model that simulates natural environment, allows simulations to project future outcomes.

Monitoring bore
A bore used to monitor groundwater levels or quality.

Mudstone
A clayey rock of nearly uniform texture throughout, with little or no lamination.

Natural resource
Resource that occurs naturally, such as sunlight, wind, soil, or water.

Palaeochannel
Buried stream channel.

Percolation
The movement and filtering of fluids through porous materials.

Permeability
The ease with which a fluid can pass through a porous medium and is defined as the volume of fluid discharged from a unit area of an aquifer under unit hydraulic gradient in unit time (metres per day).

Permian
Geological period from approximately ~300 million years ago to ~251 million years ago. The Permian period occurred between the Carboniferous period and Triassic period.

pH
Absolute value of the decimal logarithm of the hydrogen-ion concentration (activity). Used as an indicator of acidity (pH < 7) or alkalinity (pH > 7).

Piezometer
Hydraulic structure within a borehole which, when properly designed and constructed, facilitates the measurement of groundwater levels and the collection of representative groundwater samples.

Piezometric level
The elevation to which groundwater levels rise in boreholes that penetrate confined or semi-confined aquifers.

Pleistocene
A time epoch of the Quaternary period. It began ~2-3 million years ago and extended to the commencement of the Holocene epoch ~10,000 years ago.

Production wells
A well that is designed to extract gas from one or more natural underground reservoirs.

Project
Gas Field Development Project, involving construction, operation and decommissioning of gas field and associated infrastructure to supply gas to market; the subject of this environmental impact statement.
Project area

The Gas Field Development Project area, comprising 10,676 square kilometres in the Surat and Bowen basins made up of 35 petroleum tenures:

- Arcadia gas field – PL 233, PL 234, PL 235, PL 236, PLA 420, PLA 421, PLA 440, ATP 526P (5 parts), ATP 653P (1 part), ATP 745P (2 parts), ATP 804P (1 part) (2,726 km2)
- Fairview gas field – PL 90, PL 91, PL 92, PL 99, PL 100, PL 232, ATP 655P (2 parts) (1,962 km2)
- Roma gas field – PL 3 (313), PL 6 (316), PL 7 (317), PL 8 (318), PL 9 (319), PL 10 (320), PL 11 (321), PL 13 (322), PL 93 (323), PL 309, PL 310, PL 314, PL 315, PLA 281, PLA 282, ATP 336P (2 parts), ATP 631P (2 parts), ATP 655P (2 parts), ATP 708P (1 part) (4,383 km2)
- Scotia gas field – PL 176, ATP 803P (1 part), ATP 868P (1 part) (1,605 km2).
- Possible area for supporting infrastructure

Proponent

Santos GLNG, a Joint Venture between Santos Limited, PETRONAS, Total and KOGAS.

Qualitative

Relating to or concerned with quality or qualities, rather than quantity or measured value.

Quantitative

An assessment based on quantities or quantifiable data.

Quaternary

The geological time period beginning ~2 to ~3 million years ago and extending to present; encompasses the Pleistocene and Holocene time epochs.

Raw water

Untreated water from the environment.

Receptor

That part of the environment that may be the recipient of environmental harm; receptors may include houses, schools, hospitals, surface waters, groundwater, land, ecosystems etc.

Recharge

Recharge is defined as the process by which water is added from outside to the zone of saturation of an aquifer, either directly into a formation, or indirectly by way of another formation.

Recovery

Rise of the water level in a bore or an aquifer after the pumping rate has been reduced or the pump has been shut off or when mining has ceased. Also known as rebound.

Registered groundwater bore

Groundwater bore that is recorded in the Queensland Department of Natural Resources and Mines database.

Regulatory framework

System of regulations and the means to enforce them, usually established by a government to regulate a specific activity.

Remediation

Removal of pollution or contamination from the environment to restore to health; requires that impact is reduced to some acceptable level.

Riparian

Situated along or near the bank of a waterway.
Runoff
All surface and subsurface flow from a catchment, but in practice refers to the flow in a river i.e. excludes groundwater not discharged into a river.

Salinity
The concentration of dissolved salts in water, usually expressed in electrical conductivity (EC) units (μS/cm) or total dissolved solids (TDS) units (mg/L TDS).

Sandstone
Rock formed by the consolidation of sand, the grains being held together by a cement of silica, lime, gypsum, or iron salts.

Sediment
Particles derived from rocks or biological materials that have been transported by air or water.

Sedimentation
Deposition or accumulation of mineral or organic matter deposited by air or water.

Seep
A diffuse wetland area where interflow and groundwater emerges, usually at a slow rate or small volume, to become surface flow.

Semi-confined aquifer
An aquifer that is partly confined by layers of lower permeability material through which recharge and discharge may occur, also referred to as a leaky aquifer.

Sensitive place or sensitive receptor
Area or structure sensitive to a predicted environmental impact (usually from air emissions or noise) such as a dwelling, a library, childcare centre, kindergarten, school, college, university or other educational institution; a hospital, surgery or other medical institution; a protected area or an area identified under a conservation plan as a critical habitat or an area of major interest under the Nature Conservation Act 1992 (Qld); a marine park under the Marine Parks Act 2004 (Qld); or a park or garden that is open to the public.

Shallow groundwater
In the context of the study, shallow groundwater has been recognised as groundwater resources not deeper than 100 m below ground surface.

Siltstone
Consolidated silt; fine-grained sedimentary rock.

Spring
Natural discharges of groundwater at the surface or within stream beds.

Stakeholder
Person or group affected by or concerned with an issue or enterprise.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statutory guideline</td>
<td>A document that provides direction for implementing the intent of legislation.</td>
</tr>
<tr>
<td>Storage capacity</td>
<td>The volume of water an aquifer releases from or takes into storage per unit surface area of the aquifer per unit change in head.</td>
</tr>
<tr>
<td>Storativity</td>
<td>The volume of water that a saturated confined aquifer releases from storage per unit surface area of the aquifer per unit decline in the water table. Quantifies an aquifer’s ability to release water.</td>
</tr>
<tr>
<td>Strata</td>
<td>Single bed of sedimentary rock, generally consisting of one kind of matter representing continuous deposition.</td>
</tr>
<tr>
<td>Stratigraphy</td>
<td>Branch of geology dealing with the classification, nomenclature, correlation, and interpretation of stratified rocks.</td>
</tr>
<tr>
<td>Terms of reference (ToR)</td>
<td>Written document developed by the regulatory authority (i.e. Queensland Coordinator-General) that provides the minimum expectations for the scope of an environmental impact statement.</td>
</tr>
<tr>
<td>Terrestrial</td>
<td>Relating to, consisting of, or representing the Earth; relating to the land as distinct from the water.</td>
</tr>
<tr>
<td>Tertiary</td>
<td>Relating to a geological period or a system of rocks that precedes the Quaternary and constitutes the earlier principal division of the Cainozoic era. ~65 ma to 2.6 ma.</td>
</tr>
<tr>
<td>Threatened species</td>
<td>Generic term for a plant or animal species listed as critically endangered, endangered, vulnerable or rare under either State or Commonwealth threatened species legislation. The terms 'threatened' and 'conservation significant' are interchangeable in this context.</td>
</tr>
<tr>
<td>Triassic</td>
<td>The geological time period extending from ~250 to ~200 million years ago. It is the earliest period of the Mesozoic era and occurred between the Permian and Jurassic periods.</td>
</tr>
<tr>
<td>Trigger level</td>
<td>The point at which some form of action is begun, such as exceedance of guidelines.</td>
</tr>
<tr>
<td>Unconfined aquifer</td>
<td>An aquifer with no confining layer between the water table and the ground surface where the water table is free to fluctuate.</td>
</tr>
<tr>
<td>Unconsolidated aquifer</td>
<td>Strata such as sand that has not been turned into rock.</td>
</tr>
<tr>
<td>Vulnerable</td>
<td>Designated as vulnerable under the Environment Protection and Biodiversity Conservation Act 1999 (Cth) and/or Nature Conservation Act 1992 (Qld). Refer to Environment Protection and Biodiversity Conservation Act 1999 (Cth) conservation status and Nature Conservation Act 1992 (Qld) conservation status for meaning of ‘vulnerable’ under these acts.</td>
</tr>
<tr>
<td>Water table</td>
<td>The surface in an unconfined aquifer or confining bed at which the pore water pressure is atmospheric; it can be measured by installing shallow wells extending a few feet into the zone of saturation and then measuring the water level in those wells.</td>
</tr>
</tbody>
</table>
Watercourse

A river, creek or other stream, including a stream in the form of an anabranch or a tributary, in which water flows permanently or intermittently, regardless of the frequency of flow events:

- In a natural channel, whether artificially modified or not
- In an artificial channel that has changed the course of the stream
- It also includes weirs, lakes and dams.

Well

A structure that is designed to bore through the earth’s surface in order to extract resources.

Wellhead

The component at the surface of an oil or gas well that provides the interface for drilling and production equipment.

Wetland

Numerous definitions of wetland exist. Under the Queensland Wetland Strategy, wetland is defined as ‘areas of permanent or periodic/intermittent inundation, whether natural or artificial, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed 6 m’. Three types of freshwater wetland (excluding aquifers) are recognised:

- **Riverine wetlands**, which are analogous to ‘watercourses’ used in this report.
- **Palustrine wetlands**, which are vegetated swamps. Many springs are also considered to be similar to palustrine wetlands.
- **Lacustrine wetlands**, which are areas of relatively deep, non-flowing water. Lakes, farm dams and large billabongs on floodplains are examples of lacustrine wetlands.

As ‘watercourse’ is used to refer to ‘riverine wetlands’, use of the term ‘wetland’ more specifically refers to palustrine and lacustrine wetlands.

Yield

The quantity of water removed from a water resource e.g. yield of a borehole.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHD</td>
<td>Australian Height Datum</td>
</tr>
<tr>
<td>ANZECC</td>
<td>Australian and New Zealand Environment and Conservation Council</td>
</tr>
<tr>
<td>ATP</td>
<td>Authority to Prospect</td>
</tr>
<tr>
<td>BOM</td>
<td>Bureau of Meteorology</td>
</tr>
<tr>
<td>CMA</td>
<td>Cumulative Management Area</td>
</tr>
<tr>
<td>CSG</td>
<td>Coal seam gas</td>
</tr>
<tr>
<td>DNRM</td>
<td>Department of Natural Resources and Mines</td>
</tr>
<tr>
<td>DOTE</td>
<td>Commonwealth Department of the Environment</td>
</tr>
<tr>
<td>EC</td>
<td>Electrical conductivity</td>
</tr>
<tr>
<td>EHP</td>
<td>Department of Environment and Heritage Protection</td>
</tr>
<tr>
<td>EPBC Act</td>
<td>Environment Protection and Biodiversity Conservation Act 1999 (Cth)</td>
</tr>
<tr>
<td>EVs</td>
<td>Environmental values</td>
</tr>
<tr>
<td>EWS</td>
<td>Early Warning System</td>
</tr>
<tr>
<td>EWS</td>
<td>Early Warning Monitoring Installations</td>
</tr>
<tr>
<td>GFDA</td>
<td>Gas Field Development Area</td>
</tr>
<tr>
<td>GQAL</td>
<td>Good Quality Agricultural Land</td>
</tr>
<tr>
<td>InSAR</td>
<td>Interferometric synthetic aperture radar</td>
</tr>
<tr>
<td>JIP</td>
<td>Joint Industry Plan</td>
</tr>
<tr>
<td>LPG</td>
<td>Liquefied petroleum gas</td>
</tr>
<tr>
<td>MNES</td>
<td>Matters of National Environmental Significance</td>
</tr>
<tr>
<td>OGIA</td>
<td>Office of Groundwater Impact Assessment</td>
</tr>
<tr>
<td>PL</td>
<td>Petroleum lease</td>
</tr>
<tr>
<td>QDEX</td>
<td>Queensland Digital Exploration Reports system</td>
</tr>
<tr>
<td>TDS</td>
<td>Total dissolved solids</td>
</tr>
<tr>
<td>TMP</td>
<td>Trigger Monitoring Points</td>
</tr>
<tr>
<td>ToR</td>
<td>Terms of Reference</td>
</tr>
<tr>
<td>UWIR</td>
<td>Underground Water Impact Report</td>
</tr>
<tr>
<td>WMS</td>
<td>Water Management System</td>
</tr>
<tr>
<td>WQOs</td>
<td>Water quality objectives</td>
</tr>
</tbody>
</table>
Units

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/L</td>
<td>Grams per litre</td>
</tr>
<tr>
<td>m</td>
<td>Metres</td>
</tr>
<tr>
<td>ma</td>
<td>Million years ago</td>
</tr>
<tr>
<td>mAHD</td>
<td>Metres Australian Height Datum</td>
</tr>
<tr>
<td>mbgl</td>
<td>Metres below ground level</td>
</tr>
<tr>
<td>m/day</td>
<td>Metres per day</td>
</tr>
<tr>
<td>m/year</td>
<td>Metres per year</td>
</tr>
<tr>
<td>µS/cm</td>
<td>Microsiemens per centimetre</td>
</tr>
<tr>
<td>mg/L</td>
<td>Milligrams per litre</td>
</tr>
<tr>
<td>ML/year</td>
<td>Megalitres per year</td>
</tr>
<tr>
<td>mm/yr</td>
<td>Millimetres per year</td>
</tr>
</tbody>
</table>
Executive summary

Santos GLNG has existing approvals for the exploration and production of gas from the Arcadia, Fairview, Roma and Scotia gas fields. The Santos GLNG Gas Field Development (GFD) Project may expand the approved gas fields from 6,887 km2 to 10,676 km2 and develop up to an additional 6,100 production wells beyond the currently authorised 2,650 wells. The GFD Project is scheduled to commence in 2016 and will involve the construction, operation, decommissioning and rehabilitation of wells and associated supporting infrastructure to supply gas over the next 30 years.

Parsons Brinckerhoff was engaged by Santos GLNG to complete an assessment of the potential impacts of the proposed GFD Project on groundwater resources. This groundwater technical report has been prepared to inform the environmental impact statement (EIS) process for approval of the GFD Project and is aligned with the requirements in the Terms of Reference supplied by the Office of the Queensland Coordinator-General. The methodology used in the assessment follows a similar approach to that used by the Queensland Government for the Underground Water Impact Report (UWIR) for the Surat Cumulative Management Area (CMA) in 2012.

Assessment framework

The UWIR for the Surat CMA is part of the Queensland Government’s framework to ensure the petroleum and gas industry develops in a responsible way in respect of impacts to groundwater. Petroleum tenure holders have the right to extract groundwater in the process of petroleum and gas production, but are required to monitor and manage the impacts on water supplies and springs. The Surat CMA is an area where gas fields are being developed by multiple companies and the impacts of groundwater extraction overlap. The UWIR was developed by the Queensland Government to assess cumulative groundwater impacts in this area and assign responsibility for monitoring and management to petroleum tenure holders.

In preparing the UWIR in 2012, the Queensland Government undertook numerical groundwater flow modelling to predict potential impacts of petroleum and gas production on groundwater pressure. The assessment included Santos GLNG’s currently approved operations as well as development by other companies, but did not include the GFD Project. In mid-2013 the Queensland Government re-ran the regional groundwater flow model for the Surat CMA to simulate the additional production associated with the GFD Project and another proponent’s development plans (the EIS Scenario). The EIS Scenario has been used to assess potential impacts of the GFD Project on groundwater pressure. Other potential groundwater-related impacts have been assessed using a qualitative significance assessment approach.

Environmental values

The GFD Project tenures are underlain by a number of aquifers that provide water for stock and domestic supply and to a lesser extent for urban water supply, agriculture (including irrigation and intensive stock watering) and industrial purposes. The major aquifers are associated with the Great Artesian Basin, which comprises water bearing units of the Surat and upper Bowen geological basins, as well as water bearing zones within Tertiary rocks and alluvial deposits. There are 872 registered bores in GFD Project tenures that are estimated to take 6,856 ML per year. Most registered bores in GFD Project tenures take groundwater from either the Mooga Sandstone, Gubberamunda Sandstone or the Hutton Sandstone. There are approximately 21,000 water bores in the Surat CMA, which are used for stock, irrigation, industry and urban consumption and extract around 215,000 ML/year (including 85,000 ML/year from the Great Artesian Basin (GAB)) (QWC, 2012a). The aquifers underlying the GFD Project tenures also sustain springs, including spring vents (grouped into spring complexes) and watercourse springs which provide baseflow to streams. A spring vent is a single
point in the landscape where groundwater is discharged at the surface. A watercourse spring is a section of a watercourse where groundwater enters the stream from a Great Artesian Basin (GAB) aquifer through the streambed. There are 72 spring complexes in the Surat CMA, 11 of which are located in GFD Project tenures. There are 43 watercourse springs in the Surat CMA, 11 of which are located in GFD Project tenures. Some spring vents are of conservation value and are protected under the Environment Protection Biodiversity Conservation Act 1999 (Cth) (EPBC Act). There are 13 EPBC Act listed spring vents located with the GFD Project tenures.

Potential impacts

The extraction of coal seam water is an integral part of the production of natural gas from coal seams and has the potential for long-term, regional scale aquifer depressurisation, drawdown and other impacts. Depressurisation is a reduction in groundwater pore pressure (pressure head) in a confined groundwater system due to extraction of groundwater. Drawdown is a reduction in groundwater level in a bore, or a reduction in water table elevation in an unconfined groundwater system, due to the extraction of groundwater.

Without adequate controls in place other GFD Project activities have the potential to increase the risk of short to long-term localised depressurisation of aquifers and localised changes in groundwater quality. These may include activities such as well construction and operation, hydraulic fracturing, shallow subsurface activities, management of coal seam water and fluids or brine generated through desalination of coal seam water and the storage and transportation of chemicals and fuels.

Numerical groundwater modelling results indicate there will be no increase to the maximum predicted depressurisation in aquifers underlying the Surat CMA due to the proposed additional development compared to what was predicted in the UWIR in 2012. The “area of impact” (the area that will experience groundwater pressure reductions greater than 5 m for consolidated aquifers, or 2 m for unconsolidated aquifers) will increase due to the expansion of areas being developed. The largest increases in depressurisation impacted areas will occur within the two target coal formations (the Walloon Coal Measures and the Bandanna Formation). There will also be increases in the extent of the depressurisation impacted areas within the overlying Springbok Sandstone, the Hutton/Marburg Sandstone and the Gubberamunda Sandstone.

Maximum depressurisation in the coal formations as a result of the GFD Project is expected to occur between 2020 and 2030. There will be a lag in the time to maximum depressurisation in overlying and underlying formations, with the timeframes dependent on how directly connected the formation is to the target coal formations. Depressurisation effects on aquifers are expected to persist for prolonged periods after extraction of gas has ceased.

The UWIR in 2012 predicted that 528 landholder bores would potentially be cumulatively impacted due to petroleum and gas development in the Surat CMA. Under the EIS Scenario, an additional 73 landholder bores in the Surat CMA, 48 of which are in GFD Project tenures, are predicted to be impacted. Landholder bores have been identified as potentially impacted where a decline in groundwater pressure of 5 m or more for consolidated aquifers, or 2 m or more for unconsolidated aquifers, is predicted at some time in the future at the location of the bore (following the methodology applied for the UWIR in 2012).

The UWIR in 2012 predicted that 11 spring complexes (excluding complex 507 which has been destroyed by cattle and local practices and complex 506 which is most likely associated with a perched groundwater system) and 22 watercourse springs would potentially be cumulatively impacted due to petroleum and gas development in the Surat CMA. A risk-based methodology, similar to that applied for the UWIR in 2012, was employed to identify springs at risk of impacts under the EIS scenario. The results indicate that two additional spring complexes (302 and 339) and one additional watercourse springs (W141) are predicted to be cumulatively impacted due to petroleum and gas
development in the Surat CMA under the EIS scenario. These springs are located within or near GFD Project tenures.

Management measures

The management measures identified for mitigating the potential impacts on environmental values are consistent with the existing environmental management framework developed and implemented for the Santos GLNG Project. This framework includes: the GFD Project Environmental Protocol for Constraints Planning and Field Development which guides site selection and placement of infrastructure to avoid, minimise and mitigate impacts on environmental values; the Water Resource Management Plan which details how Santos GLNG manages and monitors potential adverse impacts to water resources in accordance with Commonwealth requirements; the Coal Seam Water Management Strategy and Draft Environmental Management Plan which ensure coal seam water is managed in an integrated and sustainable way in accordance with regulatory requirements; and the Hydraulic Fracturing Risk Assessment which outlines the controls to minimise the risks associated with hydraulic fracturing.

The management measures for the GFD Project will also be in accordance with the commitments made in 2012 under the UWIR for the Surat CMA, and additional commitments required by future updates to this report. These commitments include the completion of bore assessments and make good agreements with specified landholders, completion of baseline assessments of landholder bores, development of Spring Impact Mitigation Strategies and undertaking groundwater and spring monitoring. Santos GLNG will also implement the commitments of the Joint Industry Plan for the Monitoring and Protection of the EPBC Act Springs, which provides an Early Warning System and response plan for springs protected by the EPBC Act to ensure that adequate time is available for assessment and implementation of management measures prior to potential adverse impacts.

Monitoring and reporting

Monitoring and reporting for the GFD Project will be undertaken in accordance with the UWIR and EPBC Act approval conditions for the GLNG Project. In addition, specific requirements are contained in each publication of the UWIR for the Surat CMA. This will include requirements for groundwater level and quality monitoring, baseline assessments of landholder bores and springs monitoring. If required following future updates and publication of the UWIR, Santos GLNG’s existing regional groundwater monitoring program will be adapted to ensure appropriate monitoring for the GFD Project activities. Targeted groundwater monitoring will also be undertaken in association with the GFD Project and may include:

- Monitoring of EPBC Act springs in accordance with the Joint Industry Plan
- Monitoring associated with coal seam water / fluid management and storage activities (including seepage monitoring) in accordance with Environmental Authority (EA) conditions
- Monitoring of subsidence in accordance with the Ground Deformation Monitoring and Management Plan
- Monitoring associated with hydraulic fracturing activities in accordance with the Stimulation Impact Monitoring Program and EA conditions
- Managed Aquifer Recharge activities in accordance with EA conditions.
1. Introduction

Parsons Brinckerhoff was engaged by Santos GLNG to complete an assessment of the potential impacts of the proposed GLNG Gas Field Development (GFD) Project on groundwater resources. This groundwater technical report has been prepared to inform the environmental impact statement (EIS) process for approval of the GFD Project. The assessment methodology is aligned with the requirements outlined in the Terms of Reference (ToR) for the GFD Project EIS, supplied by the Office of the Queensland Coordinator-General. The assessment methodology follows a similar approach to the Queensland Government’s legislative framework for assessment and management of cumulative impacts to groundwater resources (Queensland Water Commission (QWC), 2012a).

The Queensland Government’s legislative framework aims to ensure the petroleum and gas industry develops in a responsible way. Under the regime, petroleum tenure holders have the right to extract groundwater in the process of petroleum and gas production, but are required to monitor and manage the impacts on water supplies and springs. This includes a requirement to ‘make good’ the impairment of private bore supplies caused by the exercise of these rights.

In areas where gas fields are being developed by multiple companies, the impacts of water extraction on groundwater levels may overlap and a cumulative approach is required to assess and manage impacts. In 2011 the Queensland Government declared the Surat Cumulative Management Area (CMA) and the Office of Groundwater Impact Assessment (formerly the Queensland Water Commission) was made responsible for assessing cumulative impacts and establishing integrated management arrangements for this area through the preparation of an Underground Water Impact Report (UWIR). The UWIR for the Surat CMA was released in 2012 (QWC, 2012a).

In preparing the UWIR, the Office of Groundwater Impact Assessment (OGIA) undertook numerical groundwater modelling to predict potential impacts of petroleum and gas production on groundwater pressure. The assessment included the currently approved operations of Santos Limited, its subsidiaries and joint venture partners, as well as development by:

- Origin Energy, its subsidiaries and joint venture partners, such as Asia Pacific LNG (referred to as ‘Origin’ in this report)
- Queensland Gas Company, its subsidiaries and joint venture partners (referred to as ‘QGC’ in this report)
- Arrow Energy, its subsidiaries and joint venture partners (referred to as ‘Arrow’ in this report)
- Other petroleum tenure holders (as detailed in the UWIR).

The proposed GFD Project is located within the Surat CMA, however this development was not initially included in the assessment undertaken for the UWIR in 2012. The reason it was not included was because at the time the UWIR 2012 was produced, the GFD Project was not part of the Santos GLNG Project planning. This groundwater technical report assesses the impacts to groundwater resources associated with the GFD Project through the use of the same numerical groundwater model used for the UWIR and follows a methodology similar to that used in the UWIR.

This approach and modelling allowed for the potential impacts to groundwater resources, due to the proposed GFD Project, to be understood within the context of the potential cumulative impacts to groundwater resources associated with currently approved petroleum and gas development reported in the UWIR for the Surat CMA.
1.1 Project description

Santos GLNG intends to further develop its Queensland gas resources to augment supply of natural gas to its existing and previously approved Gladstone Liquefied Natural Gas (GLNG) Project.

The Santos GLNG Gas Field Development Project (the GFD Project) is an extension of the existing approved gas field development and will involve the construction, operation, decommissioning and rehabilitation of production wells and the associated supporting infrastructure needed to provide additional gas over a project life exceeding 30 years.

Specifically, the GFD Project seeks approval to expand the GLNG Project’s gas fields tenure from 6,887 km2 to 10,676 km2 to develop up to 6,100 production wells beyond the currently authorised 2,650 wells; resulting in a maximum of up to 8,750 production wells. The GFD Project will continue to progressively develop the Arcadia, Fairview, Roma and Scotia gas fields across 35 Santos GLNG petroleum tenures in the Surat and Bowen basins, and associated supporting infrastructure in these tenures and adjacent areas. The location of the GFD Project area and primary infrastructure is shown on Figure 1.1.

This GFD Project will include the following components:

- Production wells
- Fluid injection wells, monitoring bores and potentially underground gas storage wells
- Gas and water gathering lines
- Gas and water transmission pipelines
- Gas compression and treatment facilities
- Water storage and management facilities
- Access roads and tracks
- Accommodation facilities and associated services (e.g. sewage treatment)
- Maintenance facilities, workshops, construction support, warehousing and administration buildings
- Utilities such as water and power generation and supply (overhead and/or underground)
- Laydown, stockpile and storage areas
- Borrow pits and quarries
- Communications.

The final number, size and location of the components will be determined progressively over the GFD Project life and will be influenced by the location, size and quality of the gas resources identified through ongoing field development planning processes, which include consideration of land access agreements negotiated with landholders, and environmental and cultural heritage values.

Where practicable, the GFD Project will utilise existing or already approved infrastructure (e.g. accommodation camps, gas compression and water management facilities) from the GLNG Project or other separately approved developments. The GFD Project may also involve sourcing gas from third-party suppliers, as well as the sharing or co-location of gas field and associated facilities with third parties.

For the purposes of transparency this EIS shows an area off-tenure that may be used for infrastructure such as pipelines and temporary camps (supporting infrastructure area). While not assessed
Legend
- Towns
- Railways
- Major roads
- Waterways
- Major drainage

GFD Project area
- Arcadia gas field
- Fairview gas field
- Roma gas field
- Scotia gas field
- Proposed additional area required for GFD project
- Possible area for supporting infrastructure
- Surat CMA

Gas compression and water management and production facilities
- Proposed (indicative) facility
- Operating/Under construction facility
- Gladstone gas transmission pipeline
- GLNG Project tenures

GFD Project Infrastructure*
- Potential gas compression and water management facility
- Potential gas compression facility

* Indicative infrastructure locations – to be located within this area. For assessment purposes only.
specifically in this EIS, any infrastructure that may be located within this area would be subject to further approval processes separate to this EIS.

Approved exploration and appraisal activities are currently underway across the GFD Project’s petroleum tenures to improve understanding of the available gas resources. As the understanding of gas resources increases, investment decisions will be made about the scale, location and timing of the next stages of field development.

For the purposes of this EIS, a scenario based on the maximum development case was developed at the approval of the ToR. This scenario assumed that production from the wells and upgrading of the gas compression facilities in the Scotia gas field would commence in 2016, followed by the GFD Project wells in the Roma, Arcadia and Fairview gas fields in mid-2019. This schedule is indicative only and was used for the purpose of the impact assessment in this EIS.

The potential GFD Project schedule is outlined in Figure 1.2. This schedule provides an overall field development scenario for the purposes of assessment in this EIS.

Figure 1.2 Proposed GFD Project development schedule

<table>
<thead>
<tr>
<th>GAS FIELD</th>
<th>INFRASTRUCTURE</th>
<th>PROJECT YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCOTIA</td>
<td>Production wells</td>
<td>2016-2019</td>
</tr>
<tr>
<td></td>
<td>Facilities</td>
<td></td>
</tr>
<tr>
<td>ROMA</td>
<td>Production wells</td>
<td>2019-2020</td>
</tr>
<tr>
<td></td>
<td>Facilities</td>
<td></td>
</tr>
<tr>
<td>FAIRVIEW</td>
<td>Production wells</td>
<td>2020-2021</td>
</tr>
<tr>
<td></td>
<td>Facilities</td>
<td></td>
</tr>
<tr>
<td>ARCADIA</td>
<td>Production wells</td>
<td>2021-2022</td>
</tr>
<tr>
<td></td>
<td>Facilities</td>
<td></td>
</tr>
</tbody>
</table>

Decommissioning and rehabilitation will occur progressively throughout the life of the GFD Project as construction activities cease and exhausted gas wells are decommissioned. Final decommissioning and rehabilitation will occur at the end of gas production in accordance with relevant approvals and regulatory requirements.

1.2 Project location

The GFD Project will be located across an area covering 10,676 km² within the Bowen Basin and Surat Basin. The GFD Project is located in the Banana Shire Council and Central Highlands, Maranoa and Western Downs Regional Council areas. The nearest towns include Roma, Surat, Wallumbilla, Miles, Taroom, Wandoan, Injune and Rolleston.

The land tenures in the GFD Project area include freehold, leasehold, and Crown land (including various reserves, national parks and State forests), with the predominant tenure being freehold.

Santos GLNG has obtained the necessary petroleum tenures to authorise gas field development activities in Queensland: an authority to prospect (ATP) for exploration and appraisal activities, succeeded by a petroleum lease (PL) for advanced appraisal and production activities. Petroleum
tenures allow certain petroleum activities (i.e. gas production) to occur over other existing land tenures.

The GFD Project comprises 35 petroleum tenures including 11 ATPs and 24 PLs as listed in Table 1.1. For operational purposes, Santos GLNG has divided the petroleum tenures into four separate gas fields – Arcadia, Fairview, Roma and Scotia gas fields, shown on Figure 1.1.

Table 1.1 Petroleum tenures forming the GFD Project

<table>
<thead>
<tr>
<th>Gas field (number of tenures)</th>
<th>Tenure</th>
<th>Petroleum lease (PL) / Petroleum lease application (PLA)</th>
<th>Authority to prospect (ATP)</th>
<th>Area (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GLNG Project</td>
<td>Additional for GFD Project</td>
<td>GLNG Project</td>
</tr>
<tr>
<td>Arcadia (8 tenures)</td>
<td>PL 233</td>
<td>PL 234</td>
<td>PL 235</td>
<td>PL 236</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PLA 421</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairview (7 tenures)</td>
<td>PL 90</td>
<td>PL 91</td>
<td>PL 92</td>
<td>PL 99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PL 100</td>
<td>PL 232</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PLA 11 (321)</td>
<td>PLA 281</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PLA 282</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLNG Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GLNG Project</td>
<td></td>
</tr>
<tr>
<td>Scotia (3 tenures)</td>
<td>PL 176</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (35 tenures)</td>
<td>21 PLs</td>
<td>3 PLs</td>
<td>2 ATPs</td>
<td>9 ATPs</td>
</tr>
</tbody>
</table>
1.3 Scope of works

The GFD Project area for the groundwater assessment includes the hydrogeological units underlying GFD Project tenures and the Surat CMA (Figure 1.3).

To meet the requirements of the ToR for the GFD Project EIS and the Independent Expert Scientific Committee (IESC) Information Guidelines for Proposals Relating to the Development of Coal Seam Gas and Large Coal Mines where there is a Significant Impact on Water Resources (IESC, 2013), the scope of work for the groundwater technical report included:

- Acquisition of data from Santos GLNG, the Queensland Department of Natural Resources and Mines (DNRM) and from reports in the public domain.
- Data analysis:
 - Examination of climate data, the geology, water levels and water quality records, hydrochemistry and drilling records
 - Description of hydrogeological units, groundwater levels, flow directions, yield and assessment of critical dependencies and interconnectivity of the aquifers and coal sequences
 - Development of hydrogeological cross-sections and hydrogeological maps
 - Identification of groundwater users and groundwater dependent ecosystems, including springs
 - Description of groundwater-surface water interaction, interaction with saline water, possible sources of recharge and vulnerability to contamination.
- Assessment of potential impacts to groundwater resources:
 - Identification and evaluation of the environmental values that are relevant to the GFD Project, in accordance with published guidelines in relevant Queensland and Federal regulations
 - Numerical modelling using the UWIR model (QWC, 2012c) to predict aquifer depressurisation and to assess potential impacts on bores and springs using the criteria in the Water Act 2000 (Qld)
 - Assessment of other potential groundwater-related impacts using a qualitative significance assessment approach
 - Identification of mitigation measures and requirements for ongoing monitoring and management including environmental baseline and impact reporting.
2. Regulatory and policy framework

This section outlines the key regulatory requirements at the State and Commonwealth level that are applicable to the GFD Project, including relevant policies.

Santos GLNG’s corporate policy framework is also described in this section. The GFD Project activities will be undertaken in accordance with this framework.

2.1 Commonwealth legislation and policies

2.1.1 Environment Protection and Biodiversity Conservation Act 1999

Actions that are likely to have a significant impact on a matter of national environmental significance (MNES) are subject to the assessment and approval process under the Environment Protection and Biodiversity Conservation Act 1999 (Cth) (EPBC Act).

Amendments to the EPBC Act enacted on 22 June 2013 made water resources a MNES in relation to coal seam gas and large coal mining development (commonly known as the “water trigger”). This means that coal seam gas developments that have potential for significant impact on water resources must be referred to the Commonwealth Department of the Environment (DOTE) (formerly the Department of Sustainability, Environment, Water, Population and Communities (SEWPaC)) for assessment under the EPBC Act. Developments that have potential for significant impact on nationally threatened plants and animals, including Great Artesian Basin (GAB) spring communities, must also be referred for assessment.

Santos GLNG referred the GFD Project to DOTE on 5 November 2012 to determine if the GFD Project required assessment as a controlled action under Section 8 of the EPBC Act.

On 3 December 2012, the Minister for DOTE determined the GFD Project to be a controlled action for which an EIS is required. The controlling provisions are:

- Wetlands of international importance (Ramsar wetlands) (sections 16 and 17B)
- Listed threatened species and ecological communities (sections 18 and 18A)
- Listed migratory species (sections 20 and 20A).

On 17 October 2013, the Minister further determined the controlling provisions related to the impacts of coal seam gas and large coal mining development on water resources (sections 24D and 24E) are controlling provisions for the proposed GFD Project.

Santos GLNG also received confirmation from DOTE that the GFD Project would be assessed under the bilateral agreement between the Commonwealth and Queensland governments. As such, the preparation of this EIS in accordance with Part 4 of Queensland’s State Development and Public Works Organisation Act 1971 (Qld) is accredited as one of the accepted assessment pathways satisfying Section 8 of the EPBC Act.
The bilateral arrangement includes a decision process requiring review and support of the GFD Project’s EIS by both levels of government before the GFD Project can proceed. The ToR for the GFD Project EIS, issued by the Office of the Queensland Coordinator-General in March 2013, includes both the State and Commonwealth requirements for groundwater impact assessment.

Independent Expert Scientific Committee

The Independent Expert Scientific Committee on Coal Seam Gas and Large Coal Mining Development (IESC) is a statutory committee established in 2012 under the EPBC Act.

The IESC provides scientific advice to DOTE on the impact that coal seam gas and large coal mining development may have on water resources. State regulators can also seek the IESC’s advice in accordance with the terms of the National Partnership Agreement on Coal Seam Gas and Large Coal Mining Development.

2.2 Queensland legislation and policies

2.2.1 Petroleum Act 1923 and Petroleum and Gas (Production and Safety) Act 2004

The Petroleum Act 1923 (Qld) (Petroleum Act) and the Petroleum and Gas (Production and Safety) Act 2004 (Qld) (P&G Act) provide the rights to tenure holders to take or interfere with groundwater and to use the water for carrying out authorised activities.

The Petroleum Act and P&G Act provide the right to supply coal seam water to a landholder on the tenure (or adjacent land if common owner) for a domestic garden and stock watering purposes. Otherwise, a water licence under the Water Act 2000 (Qld) (Water Act) is required.

2.2.2 Water Act 2000

The Water Act is administered by the DNRM and its purpose is to provide a framework for the sustainable management of Queensland’s surface and groundwater resources. The Water Act regulates taking, supplying or interfering with water unless authorised under the Petroleum Act or the P&G Act.

The purpose of the Water Act is to provide for the sustainable management and efficient use of water and other resources, a regulatory framework for providing water services and the establishment and operation of water authorities.

The Water Act regulates groundwater impacts caused by petroleum tenure holders by setting out monitoring and reporting requirements, groundwater drawdown trigger threshold levels, and make good obligations if the extraction of coal seam water adversely affects groundwater supply to a third-party water bore or a natural spring.

The monitoring requirements include petroleum tenure holders undertaking baseline assessments of private water bores in areas where gas production testing or production has commenced. Baseline assessments are required to assist with proposed make good agreements and involve obtaining information about bores, including:

- The level and quality of groundwater in the bore
- How the bore is constructed
- The type of infrastructure used to pump water from the bore.
The groundwater drawdown trigger thresholds in the Water Act include:

- Bore trigger thresholds, where there is a decline in the water level in the aquifer that is:
 - Prescribed by regulation
 - For a consolidated aquifer—5 m
 - For an unconsolidated aquifer—2 m.

- Spring trigger thresholds, where there is a decline in the water level of the aquifer that is:
 - Prescribed by regulation
 - 0.2 m or greater.

An Immediately Affected Area (IAA) is defined under the Water Act as the area of an aquifer where the water level is predicted to decline, due to water extraction by petroleum tenure holders, by more than the bore trigger threshold within three years of the UWIR. An IAA bore is a bore located within this area.

A Long-term Affected Area (LAA) is defined under the Water Act as the area of an aquifer where the water level is predicted to decline, due to water extraction by petroleum tenure holders, by more than the bore trigger threshold at some time in the future.

A potentially affected spring is defined under the Water Act as a spring overlying an aquifer where the water level is predicted to decline by more than the spring trigger threshold at the location of the spring at some time in the future. The potentially affected aquifer is not necessarily the spring source aquifer. The UWIR includes springs within 10 km of the spring trigger threshold as potentially affected, to allow for the limitations of modelling small changes in water level/pressure (QWC, 2012a).

Where impacts to a bore occur and make good obligations apply, a petroleum tenure holder is required to:

- Undertake a bore assessment
- Enter into a make good agreement with the owner of the bore
- Comply with the make good agreement
- If asked to vary the make good agreement, negotiate a variation of the make good agreement.

The Water Act also defines the roles and responsibilities of the Office of Groundwater Impact Assessment (OGIA) for assessment and management of cumulative impacts on groundwater resources such as third-party bores and springs resulting from multiple resource projects in the Surat Basin. With the Surat and southern Bowen basins undergoing a major expansion in natural gas production in 2011, this led to declaration of the Surat Cumulative Management Area (Surat CMA). QWC has prepared an UWIR (QWC, 2012a) for the Surat CMA, which includes the GFD Project area.

Underground Water Impact Report for the Surat Cumulative Management Area

The UWIR for the Surat CMA was released in 2012 and is a statutory instrument under the Water Act. The report assesses the cumulative impacts of water extraction by conventional petroleum and gas production as well as non-conventional (including coal seam) gas production on groundwater in the Surat CMA, and establishes integrated management arrangements.

In preparing the UWIR, QWC undertook groundwater flow modelling to predict impacts on water levels and found that 85 registered water bores would experience water level declines by more than the trigger threshold within three years (by 2015), and a total of 528 bores would be affected at some time.
in the future (i.e. an additional 443 bores). Under the Water Act, petroleum tenure holders are required to ‘make good’ the impairment of private bore supplies that may result from petroleum and gas activities. The UWIR identifies which petroleum tenure holder is responsible as more than one tenure holder could be contributing to the impact.

The UWIR includes a Water Monitoring Strategy, an integrated regional water monitoring network to collect data on groundwater levels and basic groundwater quality in the Surat CMA. The network includes 498 water level monitoring points at 142 locations and 120 water quality monitoring points. There are already networks of monitoring bores in place, and the remaining monitoring points are being constructed by petroleum tenure holders.

There are five spring complexes in the Surat CMA where the predicted decline in groundwater level in the source aquifer is more than 0.2 metres at the location of the spring (QWC, 2012a). The Spring Impact Management Strategy in the UWIR requires petroleum tenure holders to evaluate and submit a report to OGIA on potential mitigation options at these locations. Petroleum tenure holders are also required to monitor conditions in springs and submit the results to OGIA. Santos GLNG is fulfilling the requirements of the Spring Impact Management Strategy as detailed in Section 9.1.

An Annual Report 2013 for the Surat Underground Water Impact Report was released in December 2013 which identifies a number of changes to the industry development profile and available information about private water bores since the UWIR was prepared. The changes have resulted in reduction in the number of private bores predicted to be impacted in the short term (by 2015) to 65 (OGIA, 2013b).

Water resource plans and resource operations plans

Water resource plans are subordinate legislation to the Water Act and define the availability and allocation of water to provide for the sustainable management of surface water (including overland flow) and groundwater resources in a catchment area. The objective of water resource plans is to achieve a sustainable balance between meeting human needs and those of the environment. Resource operations plans are developed to implement water resource plans and provide day-to-day rules for the sharing and management of water.

The GFD Project area lies within the water resource plan (WRP) areas for the following:

A water licence is required for water supply not authorised under the Petroleum Act or the P&G Act in accordance with the rules in the applicable water resource plan and resource operations plan.

2.2.3 Environmental Protection Act 1994

The *Environmental Protection Act 1994* (Qld) (EP Act) is the key legislation for environmental management and protection in Queensland. It aims to protect Queensland’s environment while allowing for development that improves quality of life and maintains ecological processes.

The EP Act addresses the management and disposal of coal seam water. Once coal seam water is extracted, (depending on its quality) it can be classified as a waste under the EP Act and through
either an environmental authority or a beneficial use approval (under the Waste Reduction and Recycling Act 2011 (Qld)) water can managed or used for beneficial uses.

Environmental Protection (Water) Policy 2009

The Environmental Protection (Water) Policy 2009 (Qld) (EPP Water) has been established to protect Queensland waters while allowing for ecologically sustainable development. It sets the broad environmental protection measures for the protection of Queensland waters and provides a framework for identifying environmental values for aquatic ecosystems and for human uses, and determining water quality guidelines and objectives to enhance or protect the environmental values.

The EPP Water states the relevant environmental values and water quality objectives for water, and the relevant water quality guidelines and indicators for protecting these values. Environmental values of specific waters to be protected or enhanced are defined in Schedule 1 of the EPP Water. Where waters are not specifically identified in Schedule 1, the environmental values are defined under Section 6(2) of the EPP Water.

Environmental Protection Regulation 2008

Regulated waste is defined in Schedule 7 of the Environmental Protection Regulation 2008 (Qld) (EP Regulation). An amendment to the regulation in September 2013 provides for better quality coal seam water to be exempt from the definition of regulated waste.

Coal Seam Gas Water Management Policy 2012

The aim of the Coal Seam Gas Water Management Policy 2012 (Qld) (EHP, 2012a) (CSWMP) is to encourage the beneficial use of coal seam water where practicable in a way that protects the environment and maximises its productive use as a valuable resource.

The policy requires that coal seam water be used for a purpose that is beneficial to the environment, existing or new water users, and/or existing or new water-dependent industries where practicable. If beneficial use options have been considered and are not feasible, treating and disposing of coal seam water must be undertaken in a way that firstly avoids, and then minimises and mitigates negative impacts on environmental values.

2.2.4 Waste Reduction and Recycling Act 2011

The Waste Reduction and Recycling Act 2011 (Qld) (WRR Act) aims to reduce the consumption of natural resources and minimise the disposal of waste by encouraging waste avoidance and the recovery, re-use and recycling of waste.

The WRR Act authorises particular and general beneficial uses of coal seam water. The granting of a beneficial use approval can change the status of coal seam water from a waste under the EP Act to a resource that is to be used for a beneficial purpose.

2.2.5 Nature Conservation Act 1992

Native flora and fauna species are protected in Queensland under the Nature Conservation Act 1992 (Qld) (NC Act). The subordinate Nature Conservation (Wildlife) Regulation 2006 (NC Regulation) contains the following categories reflecting both abundance and levels of legislative protection: Extinct in the Wild, Endangered, Vulnerable, Near Threatened and Least Concern. Protected areas on State land such as National Parks and Conservation Parks are listed in the Nature Conservation (Protected Areas) Regulation 1994. The NC Act lists and protects individual species and an ecological community associated with groundwater-dependent springs found within and surrounding the GFD Project area.
2.2.6 Sustainable Planning Act 2009

The purpose of the Sustainable Planning Act 2009 (Qld) (SP Act) is to achieve sustainable planning outcomes through managing the process by which development takes place and managing the effects of development on the environment.

The SP Act seeks to achieve ecological sustainability through managing development processes and associated environmental effects, and to streamline the coordination of planning and local, regional and State planning instruments.

Works for taking or interfering with groundwater in the GAB are assessable development under the SP Act and require a development permit.

2.3 Santos GLNG policy framework

2.3.1 Environment, Health and Safety Management System

The Santos GLNG Environment, Health and Safety Management System is a company-wide framework that describes the requirements for effective environmental and safety practice across Santos GLNG’s activities and operations.

The system, based on the International Organisation for Standardisation (ISO) 14001 and Australian Standard (AS) 4801 standards, has been designed to ensure consistent standards for employees and contractors. It incorporates industry best practice and includes 17 management standards and more than 30 hazard standards.

The Environment, Health and Safety Management System has been in place since the beginning of the GLNG Project in 2010 and is continually being improved to ensure it is current and effective in managing and mitigating environmental impacts.

The application of the Environment, Health and Safety Management System enables Santos GLNG to achieve the objectives detailed in Santos GLNG’s Environment and Health and Safety (EHS) policies, which provide the overall direction for the Environment, Health and Safety Management System.

2.3.2 Environmental Policy

Santos GLNG has a corporate Environmental Policy which details the company’s Environmental Vision to “continuously seek to find new ways to minimise our environmental impact across the lifecycle of our [Santos GLNG] activities”; it includes specific commitments for maintenance and improvement of the Environment, Health and Safety Management System; and provides general principles of environmental stewardship responsibilities for Santos GLNG employees and contractors. The Environmental Policy also outlines a commitment to operational compliance, including monitoring, auditing, and review and reporting processes.

2.3.3 Standards

Santos GLNG’s Environment, Health and Safety Management System includes two types of standards:

- Management standards, which define the requirements necessary to ensure that environmental, health, safety and process safety risk is systematically managed.
Hazard standards, which detail the controls required to manage the risks of specific hazards to acceptable levels.

Under the Environment, Health and Safety Management System, groundwater is specifically addressed through Environment hazard standard (EHS) 10: Water resources.

The purpose of EHS 10 is to ensure protection from degradation and sustainable use of watercourses, lakes, springs, overland flows, underground water and other natural ecosystems associated with these water resources. The key requirements of the standard include:

- Surface water and groundwater resources and the associated natural environment shall be included in planning of new or amended disturbances to enable the protection and sustainable use of the resource.
- Legislation, and local and regional water resource planning, shall be considered prior to undertaking development, new or modified operational activities, or harvesting surface water or groundwater.
- Necessary approvals, licences, permits and certificates required by regulatory authorities shall be obtained prior to extracting or interfering with surface water or groundwater.
- The quantity of water extracted shall be minimised where practical, and the quality and quantity monitored.
- Disposal of wastewater should consider the waste management hierarchy and shall be conducted in a manner which prevents the degradation of waters and land.

2.3.4 GFD Project Environmental Protocol for Constraints Planning and Field Development

The constraints approach is based upon the GFD Project environmental protocol for constraints planning and field development (Santos GLNG, 2014d) (Constraints protocol). The Constraints protocol applies to all gas field related activities. The scope of the Constraints protocol is to:

- Enable Santos GLNG to comply with all relevant State and Federal statutory approvals and legislation
- Support Santos’ environmental policies and the General Environmental Duty (GED) as outlined in the EP Act
- Promote the avoidance, minimisation, mitigation and management of direct and indirect adverse environmental impacts associated with land disturbances
- Minimise cumulative impacts on environmental values.

The Constraints protocol details the process that Santos GLNG will use to identify, assess and manage potential impacts to the environment during field planning and development. This process has been successfully used for the approved GLNG Project, which increases the certainty of GFD Project environmental outcomes.

The general principles of the Constraints protocol, in order of preference, are to:

- Avoid — avoid direct and indirect impacts to environmentally sensitive areas
- Minimise— minimise potential impacts on environmentally sensitive areas
- Mitigate — implement mitigation and management measures to minimise adverse impacts
- Remediate and rehabilitate — actively remediate and rehabilitate impacted areas
• Offset — offset residual risk in accordance with regulatory requirements.

Consistent with Santos GLNG’s environmental management hierarchy, the Constraints protocol prioritises avoidance of environmental impact during field planning by identifying those areas that are not amenable to development. This includes areas of high environmental value as identified in regulatory frameworks and Santos GLNG’s baseline surveys. For areas that are considered appropriate to develop, Santos GLNG will identify impacts to environmental values that could potentially occur due to the construction, operations and decommissioning activities of the GFD Project, and determine pre-mitigated impacts (i.e. those that would occur without mitigation).

Relevant mitigation and management measures based on the approved environmental management framework already implemented for the GLNG Project are then applied to the pre-mitigated impacts to identify the mitigated (residual) impacts. This process increases certainty about potential impacts by identifying those areas that are not amenable to development, and for those areas where development could occur, how development should proceed.

The post-EIS field development process is a continuation of the field planning process and will be ongoing throughout the life of the GFD Project. The field development process will inform the GFD Project’s design, together with a range of other factors including technical feasibility, cost and risk as required by standards applicable to the design, construction, operations, decommissioning and rehabilitation of gas developments. This information will be used to support the subsequent approvals process such as environmental approval application and the plan of operations.

The tasks involved in the field development process are summarised in Figure 2.1.
Figure 2.1 Field development process

![Diagram showing the field development process with phases and constraints planning and field development protocol.]

- **Infrastructure planning and design**
 - Preliminary site selection
 - Desktop assessment
 - Field scout
 - Detailed environmental assessment
 - GIS data verification and consolidation
 - Issue internal approval conditions

- **Construction**
 - Comply with approval conditions

- **Operation**
 - New land disturbance requires additional internal approval

- **Decommissioning**
 - New land disturbance requires additional internal approval

- **Rehabilitation**
 - New internal approval required
3. Methodology

The GFD Project area for the groundwater assessment includes the hydrogeological units underlying GFD Project tenures and within the Surat CMA (Figure 1.1).

3.1 Existing environment and environmental values

A desktop study was undertaken to establish an understanding of the existing groundwater environment, environmental values and sensitive receptors within the GFD Project area. The study results provided the basis from which to identify and assess potential impacts associated with the GFD Project activities.

The desktop study involved acquiring available data from Santos GLNG, government agencies and reports in the public domain and then analysing the data using tools including hydrogeological maps and cross-sections. Primary information sources included:

- Private bore and spring data provided by the OGIA (2013a).
- Published studies on GAB springs including:
 - Ecological and Botanical survey of springs in the Surat Cumulative Management Area (Fensham et al., 2012).
 - Desktop assessment of the source aquifer for springs in the Surat Cumulative Management Area (KCB, 2012b).
- Data from the Santos GLNG Baseline Assessment Manager (BAM) and Envirosys databases, including baseline assessment data for landholder bores and data from the Santos GLNG groundwater monitoring network (2013).
- Government reports including:
 - The Surat and Bowen Basins South-West Queensland (DME, 1997).
 - Hydrogeology of the Surat Cumulative Management Area (QWC, 2012b).
- Santos GLNG reports including:
 - CSG Water Monitoring and Management Plan – Stage 2 Revision 2, Santos GLNG Project Report (Santos GLNG, 2013d)
Groundwater (Deep Aquifer Modelling) for Santos GLNG Environmental Impact Statement (Matrixplus, 2009).

- EPP (Water), which provides the environmental values (EVs) and water quality objectives (WQOs) for the Fitzroy Basin.
- The draft EVs developed by the Queensland Murray-Darling Committee (2012) for the Maranoa-Balonne River Basin.

3.2 Impact assessment and management measures

A quantitative assessment of cumulative depressurisation impacts due to the production of gas has been undertaken using the OGIA (formerly QWC) numerical groundwater model for the Surat CMA. A qualitative assessment of other potential groundwater-related impacts has been undertaken using a significance assessment method. The groundwater impact assessment has been conducted within the context of the constraints planning process applied to the GFD Project.

3.2.1 Constraints planning

The planning and development of gas field infrastructure is an incremental process. The GFD Project will be progressively developed as the gas resource is realised. The GFD Project Environmental Protocol for Constraints Planning and Field Development (Santos GLNG, 2014d) (the Constraints Protocol) enables Santos GLNG to systematically identify and assess EVs and then avoid and manage potential environmental impacts as gas field development progresses.

Santos GLNG utilises the Santos Geographic Information System (GIS) for constraints planning and field development. The Santos GIS contains a number of mapping layers including environmental and social constraints as well as multiple infrastructure types. The GIS is used to identify constraints and locate infrastructure to avoid particular EVs. As new data becomes available, it is updated in the Santos GIS through a process of data acquisition, cleansing and verification.

A full list of current constraints that have been considered for the GFD Project and the relevant development restrictions that apply are detailed in Table 3.1. Potential (pre-mitigated) impacts have been determined following application of the avoidance measures in the constraints table. For example, the no-go areas in Table 3.1 were modelled as non-production zones in the groundwater numerical model with no simulated extraction of groundwater.
Table 3.1 GFD Project constraints relevant to the groundwater impact assessment

<table>
<thead>
<tr>
<th>Level of constraint</th>
<th>Constraint layer</th>
<th>Permitted activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-go area</td>
<td>Category A Environmentally Sensitive Areas (ESA’s) (as listed in section 25 on the Environmental Protection Regulation 2008 (EP Reg.)) (that are located within Santos GLNG tenures)</td>
<td>No petroleum activities are permitted.</td>
</tr>
<tr>
<td></td>
<td>• National parks 1 (Nature Conservation Act 1992 (NC Act))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Conservation parks (NC Act)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Forest reserves (NC Act)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spring vents and/or spring complexes that are protected under the EPBC Act (i.e. spring where the listed Threatened Ecological Community (TEC) The community of native species dependent on natural discharge of groundwater from the Great Artisan Basin has been identified and/or springs that support other EPBC listed threatened species) plus 200 m buffer zone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Wetlands of national importance (+ 200 m buffer)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Wetlands of High Ecological significance also known as ‘High conservation value wetlands’ as detailed in the Map of Referrable Wetlands dataset (QLD)</td>
<td></td>
</tr>
<tr>
<td>Surface development exclusion area</td>
<td>200m Primary Protection Zone buffers around Category A ESA’s (that are located within Santos GLNG tenures)</td>
<td>Low impact petroleum activities permitted.</td>
</tr>
<tr>
<td></td>
<td>• National parks (NC Act)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Conservation parks (NC Act)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Forest reserves (NC Act)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The following Category C ESAs (that are located within GLNG tenures):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Nature Refuges (defined under NC Act)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Koala Habitat Areas (as per the Nature Conservation (Koala) Conservation Plan 2006. (NC Koala Conservation Plan))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Declared Catchment Areas (defined under Water Act 2000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The following Category B ESAs (as listed in section 25 on the EP Reg.) (that are located within Santos GLNG tenures):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Coordinated conservation areas (as defined under the NC Act)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ramsar Sites (International Convention)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• State Forest Park / Special Forestry Areas (as defined under Forestry Act 1959)</td>
<td></td>
</tr>
<tr>
<td>High constraint area</td>
<td>Watercourses (Stream orders) + 100 m buffer</td>
<td>Linear infrastructure permitted with site-specific mitigation measures including pre-clearance survey.</td>
</tr>
<tr>
<td></td>
<td>‘General ecologically significant wetlands’ or ‘Wetlands of other environmental value’ as detailed in the Map of Referrable Wetlands dataset</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All other Spring vents / spring complexes (not protected under the EPBC Act) located within Santos GLNG tenures and a</td>
<td></td>
</tr>
<tr>
<td>Level of constraint</td>
<td>Constraint layer</td>
<td>Permitted activities</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Moderate constraint area</td>
<td>200 m primary protection buffer</td>
<td>stakeholder consultation, restrictive conditions, and potential offsets. Low impact petroleum activities permitted.</td>
</tr>
<tr>
<td></td>
<td>100 m Secondary buffer zone around Spring vents and/or spring complexes protected under the EPBC Act (including their 200 m primary buffer zone)</td>
<td>Linear infrastructure and all limited petroleum activities (both linear and Non-linear infrastructure), with specific mitigation measures applied, which may include pre clearance surveys, stakeholder consultation, site-specific controls, and potential offsets. Low impact petroleum activities permitted.</td>
</tr>
<tr>
<td></td>
<td>The following Category C ESAs (that are located within Santos GLNG tenures): State forests / Timber reserves (Forestry Act 1959)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Matters of National Environmental Significance (MNES) identified under the EPBC Act, including:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MNES Habitat – threatened species habitat and migratory species habitat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MNES Threatened Ecological Communities (TEC’s) derived from State Regional Ecosystem (RE) mapping</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MNES Flora species</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MNES Threatened TEC’s verified during field surveys</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 m Secondary Protection Zone buffer area around Category A ESA’s + the 200m buffer (located within Santos GLNG tenures)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• National parks (NC Act)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Conservation parks (NC Act)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Forest reserves (NC Act)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The following Category B ESAs (as listed in section 25 on the EP Reg.) + 200m Primary Protection buffer (that are located within Santos GLNG tenures):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ‘Endangered’ Regional Ecosystems (ERE’s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The following Category C ESAs + 200m Primary Protection buffer (that are located within Santos GLNG tenures):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Essential habitat (NC Act)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Essential regrowth habitat (NC Act)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ‘Of Concern’ Regional Ecosystems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Resource reserves (NC Act)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EVNT Species (NC Act)</td>
<td></td>
</tr>
<tr>
<td>Low constraint areas</td>
<td>High value regrowth (Endangered RE)</td>
<td>Wider range of project</td>
</tr>
</tbody>
</table>
Level of constraint
<table>
<thead>
<tr>
<th>Constraint layer</th>
<th>Permitted activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>High value regrowth (Of Concern RE)</td>
<td>activities, including all Petroleum activities are permitted in these areas with standard mitigation and management conditions. Offsets are unlikely.</td>
</tr>
<tr>
<td>No concern at present regional ecosystems</td>
<td></td>
</tr>
<tr>
<td>Non-remnant vegetation</td>
<td></td>
</tr>
<tr>
<td>Existing Santos infrastructure</td>
<td></td>
</tr>
<tr>
<td>Existing roads, rail, pipeline and other infrastructure that would have to be considered during field development</td>
<td></td>
</tr>
</tbody>
</table>

1 Specific and mutually beneficial activities in a (Limited Depth) National Park may be allowed with express written permission from DNPRSR. Santos will only seek permission to enter a (Limited Depth) National Park on limited occasions where no other feasible option exists.

2 Category C ESA as defined in the Environmental Authority PEN103814911

3 Low impact petroleum activities means petroleum activities which do not result in the clearing of native vegetation, earthworks or excavation work that cause either, a significant disruption to the soil profile or permanent damage to vegetation that cannot be easily rehabilitated immediately after the activity is completed. Examples of such activities include (but are not necessarily limited to) chipholes, coreholes, geophysical surveys, seismic surveys, soil surveys, topographic surveys, cadastral surveys, ecological surveys, construction of environmental monitoring equipment (including surface water).

4 Limited petroleum activities means any low impact petroleum activity and single well sites (includes observation, pilot, injection and production wells) and associated infrastructure (water pumps and generators, sumps, flare pits or dams) located on the well site, multi-well sites and associated infrastructure (water pumps and generators, sumps, flare pits, dams or tanks) located on the well sites, construction of new access tracks that are required as part of the construction or servicing a petroleum activity, upgrading or maintenance of existing roads or tracks, power and communication lines, gas gathering lines from a well site to the initial compression facility, water gathering lines from a well site to the initial water storage or dam, and camps within well site that may involve sewage treatment works that are a no release works.

5 Linear infrastructure means linear infrastructure including (but not limited to) gas and water gathering lines, low and high pressure gas and water pipelines, powerlines, communication, roads and access tracks (associated with limited petroleum activities and petroleum activities)

6 Non-linear infrastructure means infrastructure including (but not limited to) exploration and production wells, compressor stations, regulated dams, reverse osmosis plants, brine encapsulation facilities, workers camps, and maintenance facilities

7 Petroleum activities include low impact petroleum activities or limited petroleum activities and all other GFD Project activities including major facilities such as permanent accommodation camps, gas treatment facilities, air strips, water facilities including dams, water storage infrastructure, water treatment and amendment facilities, gas hubs, and nodal compressors.
3.2.2 Numerical groundwater modelling

The State of Queensland has developed a number of quantified criteria for depressurisation impacts related to development of gas to protect EVs.

A cumulative assessment of aquifer depressurisation related to petroleum and gas development (including conventional and non-conventional gas) in the Surat CMA, which includes development for the GFD Project, has been undertaken using the OGIA (formerly QWC) numerical groundwater model. The results of the modelling have been compared to the criteria as a measure of the level of impact.

The numerical groundwater modelling approach is detailed in Section 7.2 of this report. The criteria used to assess aquifer depressurisation impacts are in the Water Act, which defines the following groundwater drawdown trigger thresholds:

- **Bore trigger thresholds**, where there is a decline in the water level in an aquifer that is:
 - Prescribed by regulation
 - For a consolidated aquifer—5 m
 - For an unconsolidated aquifer—2 m.

- **Spring trigger thresholds**, where there is a decline in the water level of the aquifer that is:
 - Prescribed by regulation
 - 0.2 m.

Further detail on the approach to assessing depressurisation impacts on aquifers, bores and springs is provided in Section 7.

3.2.3 Significance assessment

For potential impacts to groundwater other than aquifer depressurisation due to groundwater extraction for production of gas, there are no relevant quantified guidelines available for assessment - it is the sensitivity or vulnerability of the EV and the potential magnitude of the impact that are important. For these activities and related impacts, a significance assessment methodology was applied.

The criteria used to rank the sensitivity of EVs are set out in Table 3.2.

Table 3.2 Sensitivity criteria

<table>
<thead>
<tr>
<th>Sensitivity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>The environmental value is listed on a recognised or statutory state, national or international register as being of conservation significance. The environmental value is intact and retains its intrinsic value. The environmental value is unique to the environment in which it occurs. It is isolated to the affected system/area, which is poorly represented in the region, territory, country or the world. It has not been exposed to threatening processes, or they have not had a noticeable impact on the integrity of the environmental value. GFD Project activities would have an adverse effect on the value.</td>
</tr>
<tr>
<td>Moderate</td>
<td>The environmental value is recorded as being important at a regional level, and may have been nominated for listing on recognised or statutory registers. The environmental value is in a moderate to good condition despite it being exposed to threatening processes. It retains many of its intrinsic characteristics and structural elements.</td>
</tr>
</tbody>
</table>
It is relatively well represented in the systems/areas in which it occurs but its abundance and distribution are limited by threatening processes. Threatening processes have reduced its resilience to change. Consequently, changes resulting from GFD Project activities may lead to degradation of the prescribed value. Replacement of unavoidable losses is possible due to its abundance and distribution.

Low

The environmental value is not listed on a recognised or statutory register. It might be recognised locally by relevant suitably qualified experts or organisations.

The environmental value is in a poor to moderate condition as a result of threatening processes, which have impacted its intrinsic value.

It is not unique or rare and numerous representative examples exist throughout the system/area.

It is abundant and widely distributed throughout the host systems/areas.

There is no detectable response to change or change does not result in further degradation of the environmental value.

The abundance and wide distribution of the environmental value ensures replacement of unavoidable losses is achievable.

The criteria used to rank the magnitude of potential impacts on EVs are set out in Table 3.3.

Table 3.3 Magnitude criteria

<table>
<thead>
<tr>
<th>Magnitude</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>An impact that is widespread, long lasting and results in substantial and possibly irreversible change to the environmental value. Avoidance through appropriate design responses or the implementation of area-specific environmental management controls are required to address the impact.</td>
</tr>
<tr>
<td>Moderate</td>
<td>An impact that extends beyond the area of disturbance to the surrounding area but is contained within the region where the GFD Project is being developed. The impacts are short term and result in changes that can be ameliorated with specific environmental management controls.</td>
</tr>
<tr>
<td>Low</td>
<td>A localised impact that is temporary or short term and either unlikely to be detectable or could be effectively mitigated through standard environmental management controls.</td>
</tr>
</tbody>
</table>

The significance of each potential impact was determined by combining the sensitivity and magnitude criteria in a risk assessment process as shown in Table 3.4.

Table 3.4 Significance matrix

<table>
<thead>
<tr>
<th>Magnitude</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
</tr>
<tr>
<td>High</td>
<td>Major</td>
</tr>
<tr>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Low</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

The significance classifications used in Table 3.4 (major, high, moderate, low and negligible) are defined in Table 3.5.
Table 3.5 Significance classifications

<table>
<thead>
<tr>
<th>Significance</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major</td>
<td>Arises when an impact will potentially cause irreversible or widespread harm to an environmental value that is irreplaceable because of its uniqueness or rarity. Avoidance through appropriate design responses is the only effective mitigation.</td>
</tr>
<tr>
<td>High</td>
<td>Occurs when the proposed activities are likely to exacerbate threatening processes affecting the intrinsic characteristics and structural elements of the environmental value. While replacement of unavoidable losses is possible, avoidance through appropriate design responses is preferred to preserve its intactness or conservation status.</td>
</tr>
<tr>
<td>Moderate</td>
<td>Results in degradation of the environmental value due to the scale of the impact or its susceptibility to further change even though it may be reasonably resilient to change. The abundance of the environmental value ensures it is adequately represented in the region, and that replacement, if required, is achievable.</td>
</tr>
<tr>
<td>Low</td>
<td>Occurs where an environmental value is of local importance and temporary or transient changes will not adversely affect its viability provided standard environmental management controls are implemented.</td>
</tr>
<tr>
<td>Negligible</td>
<td>Does not result in a noticeable change and hence the proposed activities will have negligible effect on environmental values. This typically occurs where the activities are located in already disturbed areas.</td>
</tr>
</tbody>
</table>

3.2.4 Mitigation and management measures

To manage the risk of adverse impact to the EVs of groundwater, measures such as avoidance, mitigation, and management were identified to reduce the level of impact identified through the assessment process. Mitigation and management measures will be applied, as appropriate, during the planning and design, construction, operation, decommissioning and rehabilitation phases of the GFD Project.

The mitigation and management measures identified are based on the existing measures contained within the approved environmental management framework that Santos GLNG has already developed and implemented for the GLNG Project. This approach is supported by the Santos GLNG Environment, Health and Safety Management System described in Section 2.3. Applying the same mitigation and measurement measures from the GLNG Project to the GFD Project will ensure a consistent approach by construction and operational personnel and a common understanding for both regulators and the community of the measures to be applied and that the required management outcomes are achieved.

3.2.5 Significance of residual impacts and environmental management planning

Impacts were assessed on the basis of the characterisation of the existing groundwater EVs detailed in this report. Both environmental sensitivity and potential magnitude of impacts were considered in the assessment. The significance of residual impacts was determined after consideration of the applicable existing Santos GLNG management and impact mitigation strategies. The assessment provided an indication of the effectiveness of such measures and strategies in managing the identified risk of adverse impact to groundwater EVs.
4. Physical setting and geology

4.1 Topography

The topographic relief in the GFD Project tenures is dominated by a north-south topographical high of the Expedition and Shotover ranges and the east-west topographical high of the Great Dividing Range. Topographically low areas are associated with major river catchments, specifically the Comet River, the Dawson River and the Balonne River as described further below. Surface elevations within the GFD Project area range between approximately 60 m and 1,230 m Australian Height Datum (AHD).

4.2 Hydrology

The GFD Project tenures are drained by three river systems; the Comet River in the northwest, the Dawson River in the central and eastern part and the Balonne River in the south and southwest.

The Condamine-Balonne Catchment is located in the Murray Darling Basin which eventually discharges to the Great Australian Bight in South Australia. The Dawson River and Comet River catchments are located in the Fitzroy River Basin which discharges into the Coral Sea near Rockhampton. The Fitzroy River Basin in Central Queensland is the largest catchment in eastern Australia, covering an area of approximately 142,000 km², consisting of six sub-catchments: Nogoa, Comet, Mackenzie, Isaac-Connors, Dawson and Lower Fitzroy. The Fairview and Scotia gas fields are located in the southern section of the Fitzroy River Basin in the upper reaches of the Dawson River catchment. The Arcadia gas field is located in the central-eastern portion of the Comet River catchment and the Roma gas field is located in the upper reaches of the Condamine-Balonne catchment (see Figure 4.1).

The majority of the rivers and streams in the GFD Project tenures are ephemeral and characterised by high variations in duration and volume of flows due to highly variable rainfall and runoff and high evaporation rates. Prolonged baseflow occurs only in wetter years in most streams. Some sections of streams in the GFD Project tenure are spring-fed (Figure 4.1). More information about watercourse springs in the Surat CMA is provided in Section 6.1.2.
4.2.1 Fitzroy River Basin

Dawson River Catchment

The Fairview and Scotia gas fields are within the upper reaches of the Dawson River catchment that extends upstream and westwards from Guluguba, encompassing the townships of Injune and Wandoan (Figure 4.1), up to the Dawson River north the Banana Shire within the larger Fitzroy Basin.

Major streams within the GFD Project tenures associated with the Upper Dawson River Catchment include the Dawson River, Hutton Creek, Baffle Creek, Juandah Creek and Eurombah Creek (URS, 2014).

Portions of the Arcadia gas field (along the surface water divide) are located within the Lower Dawson River catchment. Major streams within the GFD Project area of the lower Dawson catchment include Conciliation and Zamia creeks. Conciliation Creek flows east from Expedition State Forest with Zamia Creek flowing in a north easterly direction from Palmgrove National Park (URS, 2014). The Dawson River downstream of Dawson’s Bend is perennial, maintained by spring flows arising from the river bed and adjacent to the stream. This spring fed reach of the Dawson River extends from the outflow of Hutton Creek to Yebna Crossing (Golder, 2011; Coffey Environments, 2012 and QWC, 2012a).

Comet River Catchment

The Arcadia gas field is partially situated predominantly within the Comet River Catchment (Figure 4.1). The Comet River Catchment extends west of the Lower Dawson River catchment, encompassing the townships of Springsure, Rolleston and Fernlees in the west and the township of Comet in the northern extent within the larger Fitzroy Basin.

The main tributaries of the Comet River in the GFD Project tenures are Humbolt Creek, Planet Creek, Clematis Creek and Arcadia Creek (URS, 2014).

4.2.2 Condamine-Balonne River Basin

The Condamine-Balonne River Basin in southern Queensland extends about 100 km southwest into NSW and covers 14% of the total area of the Murray-Darling Basin. The Roma gas field tenures are predominantly located within the Condamine-Balonne catchment.

The Condamine River flows in a westerly direction from the Great Dividing Range near Warwick until the confluence with Dogwood Creek from where it becomes the Balonne River approximately 50 km northeast of Surat. Major tributaries of the Condamine River that are located in the Roma gas field tenures include Dogwood Creek, a tributary of the Condamine River, and Balonne River Upland Tributaries (URS, 2014).

4.3 Climate

The climate of the GFD Project tenures is classified as inland sub-tropical. The GFD Project tenures typically experience a dry winter season (April to September) with a relatively hot and wet December and January where temperatures can exceed 40ºC (BOM, 2013).

The Bureau of Meteorology (BOM) also measures meteorological data at a number of weather stations within and in the vicinity of GFD Project tenures, providing information on temperature, wind speed, wind direction, relative humidity, and rainfall that can be used to characterise the existing
environment. A summary of the BOM weather stations is provided in Table 4.1. The locations of the BOM weather stations are also shown in Figure 4.1.

Table 4.1 BOM weather stations (BOM, 2013)

<table>
<thead>
<tr>
<th>BOM Station</th>
<th>Station number</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Elevation (mAHD)</th>
<th>Mean rainfall (mm/yr) *</th>
<th>Evaporation (mm/yr)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roma Airport</td>
<td>043091</td>
<td>26°32’39” S</td>
<td>148°46’40” E</td>
<td>307</td>
<td>585</td>
<td>2,516</td>
</tr>
<tr>
<td>Injune</td>
<td>043015</td>
<td>25°50’34” S</td>
<td>148°34’01” E</td>
<td>390</td>
<td>635</td>
<td>na</td>
</tr>
<tr>
<td>Taroom</td>
<td>035070</td>
<td>25°38’27” S</td>
<td>149°47’45” E</td>
<td>199</td>
<td>674</td>
<td>na</td>
</tr>
<tr>
<td>Rolleston</td>
<td>042112/035129</td>
<td>24°27’36” S</td>
<td>148°37’48” E</td>
<td>214</td>
<td>639</td>
<td>na</td>
</tr>
</tbody>
</table>

(1) * long-term average (until 2013).
(2) na = not available.

The GFD Project tenures near Roma experience the lowest average annual rainfall and those near Taroom, experience the highest average annual rainfall (Figure 4.2). While rainfall is similar in winter months for the gas fields, the northern and central areas generally experience higher rainfall than the southern area during summer. Average annual evaporation rates are higher than rainfall in the GFD Project tenures based on observations at Roma.

Figure 4.2 Monthly average rainfall
4.4 Geology

4.4.1 Geological setting

The GFD Project tenures and target coal measures are located within Permian to Cretaceous Bowen and Surat geological basins (Figure 4.3). The Bowen Basin and Surat Basin have structurally separate sedimentary depositional centres, but they are stratigraphically and hydraulically connected (DME, 1997). Most of the basins’ sedimentary units dip at shallow angles (generally less than 10°) to the southwest (URS, 2013a).

The Early Permian to Mid-Triassic Bowen Basin geological units outcrop in the northern half of the GFD Project tenures, to about 100 km north of Taroom and about 50 km northeast of Injune. South of this area, sedimentary rocks of the Early Jurassic to Early Cretaceous Surat Basin sequence outcrop and unconformably overlie the older Bowen Basin units. Tertiary and Quaternary age volcanic and sedimentary rocks and unconsolidated sediments overlie these older formations in some areas. The geological setting of the GFD Project tenures is described in Table 4.2 and the regional geology is presented on Figure 4.4.

Conceptual geological cross-sections for the GFD Project area are shown in Appendix A: Geological cross-sections for the GFD Project area. The locations of these cross-sections are shown on Figure 4.5. The sections were generated using stratigraphic data from Santos GLNG and the Queensland Digital Exploration Reports System (QDEX) well logs, and the DNRM groundwater database. Cross-sections C-C’ to F-F’, O-O’ and N-N’ are adapted from the Stage 1 CSG Water Monitoring and Management Plan (CWMMP) (Golder, 2011) and cross-sections H-H’ to L-L’ are adapted from the Scotia factual report (Golder, 2012).

Table 4.2 Summary of geological stratigraphy

<table>
<thead>
<tr>
<th>Period</th>
<th>Basin</th>
<th>Group</th>
<th>Formation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quaternary</td>
<td>Alluvium</td>
<td></td>
<td>Alluvium/colluvium</td>
<td>Clay, silt, sand and gravel deposits; includes areas of colluvium and residual soils.</td>
</tr>
<tr>
<td>Tertiary</td>
<td>Main Range</td>
<td></td>
<td>Volcanics</td>
<td>Alkali-olivine basalt, minor tuff, sandstone, mudstone.</td>
</tr>
<tr>
<td></td>
<td>Sediments</td>
<td></td>
<td></td>
<td>Undifferentiated poorly consolidated sedimentary rocks; sub-labile to quartzose sandstone, siltstone, mudstone, minor conglomerate, coal, and limestone.</td>
</tr>
<tr>
<td>Cretaceous</td>
<td>Rolling</td>
<td>Wallumbilla</td>
<td>Formation – Coreena Member</td>
<td>Glaucopic siltstone, mudstone, very fine-grained sandstone, shelly fossils.</td>
</tr>
<tr>
<td>Surat</td>
<td>Downs</td>
<td>Doncaster Member</td>
<td></td>
<td>Mudstone, siltstone; minor quartz sandstone in part glauconitic, silty limestone, gypsum.</td>
</tr>
<tr>
<td>Blythesdale Group</td>
<td>Bungil Formation</td>
<td></td>
<td>Glaucopic, labile to quartzose, siltstone, mudstone.</td>
<td></td>
</tr>
<tr>
<td>Jurassic</td>
<td>Mooga Sandstone</td>
<td></td>
<td>Sandstone, siltstone, mudstone.</td>
<td></td>
</tr>
<tr>
<td>Injune Creek Group</td>
<td>Orallo Formation</td>
<td></td>
<td>Sandstone, siltstone, mudstone, conglomerate, coal.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gubberamunda Sandstone</td>
<td></td>
<td>Sandstone, minor conglomerate, siltstone.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Westbourne Formation</td>
<td></td>
<td>Fluvial-lacustrine sediments: fine-grained sandstone interbedded with siltstone, claystone, minor coal.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Springbok Sandstone</td>
<td></td>
<td>Clayey lithic sub labile to very lithic</td>
<td></td>
</tr>
<tr>
<td>Period</td>
<td>Basin</td>
<td>Group</td>
<td>Formation</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Triassic</td>
<td>Mimosa</td>
<td></td>
<td>Moolayember Formation</td>
<td>Micaceous lithic sandstone, micaceous siltstone.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clematis Sandstone</td>
<td>Medium to course grained quartzose to sublabile, micaceous sandstone, siltstone, mudstone.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rewan Group</td>
<td>Lithic sandstone, green to reddish brown mudstone and minor volcanolithic pebble conglomerate.</td>
</tr>
<tr>
<td>Permian</td>
<td>Blackwater</td>
<td></td>
<td>Bandanna Formation</td>
<td>Sandstone, siltstone, shale, mudstone, coal, tuff, conglomerate.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Black Alley Shale</td>
<td>Shale, siltstone, tuff bentonite, labile sandstone.</td>
</tr>
<tr>
<td></td>
<td>Back Creek</td>
<td></td>
<td>Peawaddy Formation</td>
<td>Carbonaceous mudstone and siltstone, lithic sublabile sandstone, coquinitic siltstone.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Catherine Sandstone</td>
<td>Quartzose to sublabile sandstone, siltstone, mudstone.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ingelara Formation</td>
<td>Conglomeratic sandy siltstone, mudstone, sandstone.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freitag Formation</td>
<td>Sublabile sandstone, pebbly sandstone, siltstone, mudstone.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aldebaran Sandstone</td>
<td>Quartzose to lithic sandstone, siltstone, carbonaceous shale and minor coal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cattle Creek Formation</td>
<td>Quartzose to sublabile sandstone and mudstone and coal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reids Dome Beds</td>
<td>Siltstone, shale, labile sandstone, lithic conglomerate and coal (including the Staircase Coal seams).</td>
</tr>
<tr>
<td>Devonian</td>
<td>Timbury Hills Formation</td>
<td></td>
<td></td>
<td>Fine-grained, quartz rich metasedimentary rocks.</td>
</tr>
</tbody>
</table>

(1) mbgl - metres below ground level, unconformities indicated with bold line.
The Roma gas field is underlain by sedimentary formations associated with the Surat Basin. Some of these formations are regionally significant aquifers. Jurassic to Cretaceous sedimentary formations outcrop across the GFD Project tenures, but are predominantly overlain by Quaternary alluvium. There is a Tertiary basalt intrusion at the Grafton Range in the north of the Roma area. The natural gas bearing formations of interest within the Roma field are the Jurassic age Walloon Coal Measures.

The Scotia gas field is directly underlain by the Jurassic formations of the lower Surat Basin (Hutton Sandstone, Evergreen Formation and Precipice Sandstone) and the Triassic formations of the upper Bowen Basin (Rewan Group). The natural gas bearing formations of interest within this field are the late Permian Bandanna Formation of the Blackwater Group and the Jurassic age Walloon Coal Measures (part of the Injune Creek Group).

The Fairview gas field is directly underlain by the Jurassic formations of the lower Surat Basin (Hutton Sandstone, Evergreen Formation and Precipice Sandstone) and the Triassic formations of the upper Bowen Basin (Moolayember Formation and Clematis Sandstone). The natural gas bearing formations of primary interest are the late Permian Bandanna Formation of the Blackwater Group and the early Permian Staircase Coals (Bowen Basin).

The Arcadia gas field area is located within the outcropping extent of the Bowen Basin. The target formation for natural gas production is the late Permian Bandanna Formation of the Blackwater Group.

Bowen Basin

The Early Permian to Middle Triassic aged Bowen Basin is a north-south trending belt extending through the GFD Project tenures. Geological units of the Bowen Basin outcrop in the northern half of the GFD Project tenures. The GFD Project tenures in the Arcadia gas field are located within the outcropping extent of the Bowen Basin (see Figure 4.3).

The Bowen Basin began as an extensive north-south trending back-arc basin developed on the landward (west) side of a continental arc associated with continent-ocean plate convergence. During the Early Permian period (~ 299 million years ago (ma)), the back-arc extended on the western margin of the basin producing a series of half-grabens, such as the Denison Trough, where initial deposition commenced. At the same time, andesite and volcaniclastics were deposited on the basin’s eastern margin. Following the incursion of the sea over the arc, deltaic facies developed, with the subsequent accumulation of extensive coal deposits. Compressive deformation during the Late Permian period resulted in the deposition of volcanolithic sediments. Subsequent infilling of the sea by prograding deltas translated into the formation of wetlands and associated fluvial systems. Compressive tectonics in Middle to Late Triassic (251 to 141 ma) terminated sediment accumulation and caused uplifting of the entire area (URS, 2013a).

Deposition in the Bowen Basin was concentrated in two depositional centres, the Taroom Trough on the eastern edge of the basin, within the GFD Project tenures, and the Denison Trough, which is west of the GFD Project tenures. The main structural feature through the GFD Project tenures is the Comet Ridge, located along the western margin of the Taroom Trough in the southern extent of the Bowen Basin. The Comet Ridge comprises mainly Devonian rocks and is covered by a relatively thin sequence of gently folded Permian and Triassic rocks which make up the Bowen Basin.

The oldest formation of the Bowen Basin is the Reids Dome Beds, a unit of highly variable thickness. The Reids Dome Beds unconformably underlie the Early Permian aged formations of the Back Creek Group, which include the Aldebaran Sandstone and a number of other formations. The Aldebaran Sandstone is the deepest aquifer to the northwest of the GFD Project tenures, near the town of Emerald. The other formations within the Back Creek Group are generally of low permeability. The Black Alley Shale consists of shale, siltstone, tuff, bentonite and labile sandstone. The Black Alley
Shale and the Bandanna Formation are part of the Late Permian Blackwater Group. The thickness of the Bandanna Formation is variable in the GFD Project tenures, ranging between 60 to 100 m.

The Bandanna Formation is unconformably overlain by the oldest formation of the Triassic Mimosa Group, the Rewan Group. This formation is the oldest formation to outcrop within the Arcadia Valley. The Clematis Sandstone is a prominent formation forming the steep cliffs of the Expedition Range, and is overlain by mudstone and sandstone units of the Moolayember Formation. Arcadia Valley has been in-filled with Cainozoic sandy sediments, which are overlain by Quaternary alluvium deposits along natural drainage features. The unconformable contact between the Moolayember Formation and the overlying Precipice Sandstone forms the boundary between the Bowen Basin and the Surat Basin.

The late Permian Bandanna Formation of the Blackwater Group contains the main gas bearing units in the Bowen Basin and is the target formation for natural gas production in the Arcadia and Fairview gas fields.

Surat Basin

The Surat Basin overlies the central portion of the Bowen Basin, and extends from the southern part of the Expedition Range southward to the Gunnedah Basin in New South Wales (Figure 4.3). The Surat Basin sequence formed during a widespread subsidence phase subsequent to an extensive period of uplift and erosion during the Middle-Late Triassic (251 to 141 ma.) (Schlumberger, 2010).

Sedimentation started in the Triassic and ceased in the Middle Cretaceous period (141 to 65 ma). The geologic succession cycle consists of braided stream deposits, followed by meandering stream and paludal coal-bearing sediments in the Jurassic period, shifting to coastal plain and shallow marine sediment accumulation as a result of the increase in sea level deposits in the Cretaceous period.

Thick, semi-impervious units separate the complex multilayered system of aquifers. The lower part of each depositional cycle is therefore predominantly sandstone with mostly siltstone, mudstone and coal in the upper parts (URS, 2013a).

Within the GFD Project tenures, the Surat Basin rocks generally comprise Cretaceous age fine grained sedimentary rocks (predominantly mudstone, siltstone and labile sandstone units of the Mooga Sandstone, Bungil Formation, Wallumbilla Formation) underlain by Jurassic age sandstone and mudstone units (typified by quartzose sandstone of the Precipice Sandstone, carbonaceous mudstone of the Evergreen Formation and predominantly quartzose Hutton Sandstone). The Jurassic age strata generally outcrop in the northern and north eastern portion of the GFD Project tenures. The regional dip of the Mesozoic age rocks is to the southwest with older units outcropping in the northeast and younger rocks towards the southwest. Locally, in the south eastern portion of the GFD Project tenures, the near surface layers of these Mesozoic age rocks are deeply weathered, lateritised or more commonly silicified, forming erosion resistant silcrete that developed during the Early Tertiary period.

The Walloon Coal Measures are the main gas bearing units within the Surat Basin and are the target formation for natural gas operations within the Roma and Scotia gas fields.

Tertiary and Quaternary sedimentation

Most of the surface geology is dominated by geological units belonging to the two Permian-Cretaceous basins. Tertiary (65 to 2.6 ma) and Quaternary (2.5 to 0 ma) age volcanic and sedimentary rocks, as well as unconsolidated sediments dominate the surface geology in some areas. The surface and near surface strata can be deeply weathered and laterised or, more commonly, silicified profiles that form erosion-resistant surficial silcrete.
Sedimentary deposition in the Tertiary consisted mostly of quartzose sandstone and conglomerate in small and isolated basins. Poorly consolidated siliciclastic sediments occur in the northern-most portion of the GFD Project tenures, as well as in a roughly east-west belt along the Condamine-Balonne River system, south of the Warrego Highway. A second group of Tertiary rocks in the GFD Project tenures comprises alkali basaltic to trachytic intrusive and extrusive rocks. The basalts and trachytes are typically small plugs and flows which generally form topographic highs.

Quaternary alluvium occurs in the lower-lying areas throughout the Surat Basin and the Bowen Basin overlying Permian, Mesozoic and Tertiary sediments and volcanics. Quaternary alluvium generally occurs along existing streams, forming very gently sloping alluvial plains or slightly elevated terraces. These young alluvial sediments generally reflect the characteristics of the parent rock material in the immediate source areas. The alluvium sourced from Permian age sedimentary rocks, Mesozoic age fine grained rocks (i.e. siltstone and mudstone), and Tertiary age volcanics are generally clay dominated with high shrink-swell and dispersive clays common. Alluvium sourced from sandstone-dominant Mesozoic age rocks and silicified or lateritised Tertiary age sedimentary rocks generally comprises sand or clayey sand.

4.4.2 Geological structures

Near the northern margin of the Surat Basin, the main geological units, including the targeted Walloon Coal Measures are not strongly deformed. The faulting and folding that is recognised in the older subsurface strata is either absent or attenuated in the outcropping Jurassic-Cretaceous sediments. Some features are, however, visible in the outcrop including the Alicker and Eurombah Anticlines, the Hutton-Wallumbilla Fault and a number of west northwest trending faults (Figure 4.3 and Figure 4.4). The northwest trending Hutton-Wallumbilla Fault is located west of Roma (Figure 4.3) and is downthrown to the west with a displacement of up to 450 m in the basement sediments and is highly variable over the Roma gas field. Displacement in the overlying Surat Basin sediments is less than 30 m. Minor faulting observed in the Surat Basin sequence is likely due to sediment compaction, differential sedimentation, and some fault reactivation, (URS, 2009).

West-northwest trending faults also occur in the Roma area. These faults are likely a result of gradual uplift or subsidence related to the Surat Basin through the Tertiary period (URS, 2009). These faults have limited or no vertical displacement but they leave a clearer topographic imprint than the larger faults in the same region due to their younger age.

The central part of the GFD Project tenures, near Injune, is situated between two large reverse fault systems that are oriented approximately north-south (Santos GLNG, 2013d). Immediately to the east of Injune is an anticline which plunges to the south-southeast and corresponds to a southerly extension of the Comet Ridge in the geological basement. The anticline is complementary to the Mimosa Syncline and runs through the eastern area of the GFD Project tenures near Taroom.

The major structural feature in the north of the GFD Project tenures is the Comet Ridge, which comprises mainly Devonian age basement rocks, and is covered by a relatively thin sequence of Permian and Triassic rocks. The Permian and Triassic sequence of sediments was folded principally during the late Triassic Period, although some of the deformation within the Permian sediments possibly occurred during the period of uplift and emergence in the Lower Permian. Fold axes are generally parallel trending northwest to the Comet Ridge axis. The Permian-Triassic folds are truncated by the erosional unconformity surface on which the Precipice Sandstone was deposited. The overlying Jurassic and Cainozoic rocks are not folded (Golder, 2011).
5. Hydrogeology

This section describes the hydrogeological setting of the GFD Project tenures, including the groundwater quality and yield in major aquifers, groundwater use and springs.

The GFD Project tenures are underlain by a number of aquifers that provide water supply for agriculture, industry and sustain numerous springs and groundwater dependent ecosystems. Major aquifers are associated with the GAB, which comprises groundwater bearing units of the Surat Basin and the upper Bowen Basin, as well as water bearing zones within Tertiary rocks and alluvial deposits.

5.1 Regional hydrogeological setting

The GFD Project tenures are located within the GAB, which consists of Surat Basin sediments and the uppermost aquifer (the Clematis Sandstone) of the underlying Bowen Basin (QWC, 2012a). The Rewan Group forms the basal unit of the GAB on a regional scale.

Figure 5.1 shows a generalised west-east cross-section of the GAB. The GAB comprises a sequence of alternating layers of permeable sandstone aquifers and lower permeability siltstone and mudstone aquitards, which generally dip in a south westerly direction. The thickness of the sedimentary sequence reaches nearly 2,500 m in the centre of the Mimosa syncline. The individual sandstone, siltstone and mudstone formations range in thickness from less than 100 m to more than 600 m (QWC, 2012a).

Regionally, the main aquifers and aquitards in the GAB are controlled by the lithology and extent of stratigraphic units or geologic formations. Figure 5.2 shows the sequence of the aquifers and aquitards within the basin. The sandstone units, defined as aquifers, store and transmit groundwater and are sufficiently permeable to yield economically significant quantities of groundwater. The siltstone and mudstone units within these systems are of low permeability. They restrict groundwater flow or leakage between aquifers, and are defined as aquitards. At a local level most of the aquifers contain minor inter-bedded siltstone and mudstone that are reflected in lower bore yields. Similarly, several aquitards contain minor aquifers of permeable sandstone and siltstone units that can yield reasonable quantities of water in these otherwise unproductive formations (QWC, 2012a).
5.1.1 Recharge

Figure 5.3 shows the main recharge areas and the dominant (regional) flow directions within the GAB. The GFD Project area is located in the recharge area of the GAB. Most recharge occurs along the outcrop areas in the north, northwest, northeast and east along the Great Dividing Range. Recharge occurs predominantly by rainfall, either by direct infiltration into the outcrop areas, or indirectly via leakage from streams or overlying aquifers. Calibrated recharge rates estimated from QWC's regional groundwater model give recharge rates into the GAB aquifers ranging geographically from 1 to 30 mm per year with a median of 2.8 mm per year (QWC, 2012a).
Recharge water flows primarily along the bedding planes and fractures of aquifers and aquitards from the recharge areas to the south, southwest and west, though there is a minor northward flow component in some aquifers (Hodgkinson et al., 2009), e.g. near Taroom. Groundwater moves very slowly and flow velocities in the GAB have been estimated to range from 1 to 5 m per year (Habermehl, 1980). Groundwater movement within the GAB is dominated by sub-horizontal flow in the aquifers, with vertical leakage from the aquifers through the low permeability aquitards occurring throughout the basin at a much slower rate.

The GAB aquifers are recharged mainly on the eastern margins of the GAB along the western slopes of the Great Dividing Range. Regional groundwater flow is from the topographically higher recharge areas around the basin margins towards the lowest parts of the basin in the southwest.

5.1.2 Discharge

Natural discharge from aquifers in GFD Project tenures occurs through vent springs, baseflow to rivers (watercourse springs), vertical leakage between aquifers and subsurface flow into adjoining areas. Further detail on discharge through springs is provided in Section 6.1.2.

Extraction of groundwater in GFD Project tenures occurs via bores used for stock and domestic supply or agriculture, uncontrolled artesian bores and petroleum and gas production. Further detail on discharge via bores is provided in Section 6.1.1.
5.2 Hydrogeological units

The main productive water bearing formations in the GFD Project area include:

- Quaternary alluvial aquifer systems associated with the unconsolidated sediments of the Condamine-Balonne River, the Dawson River and the Comet River systems.
- Tertiary fractured basalt and sediments caps.
- Water bearing formations of the GAB. These include the Clematis Sandstone, Precipice Sandstone, Hutton Sandstone, Springbok Sandstone, Gubberamunda Sandstone, Mooga Sandstone and Bungil Formation.

An overview of the main hydrogeological units for water supply in the GFD Project area is presented in Table 5.1. The Bungil and Orallo formations are generally not considered to be aquifers, but are used for water supply in the GFD Project area and have therefore been included in Table 5.1. The alluvial systems and Tertiary fractured basalts are not connected across the GFD Project areas; however, these formations are still targeted for water supply.

Table 5.1 Main hydrogeological units for water supply in the GFD Project tenures

<table>
<thead>
<tr>
<th>Aquifer</th>
<th>Outcrop area (Gas field)</th>
<th>Aquifer type</th>
<th>Thickness* (m)</th>
<th>Depth</th>
<th>Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alluvium</td>
<td>All</td>
<td>Unconfined</td>
<td></td>
<td>At surface</td>
<td>Limited, stock, seasonal</td>
</tr>
<tr>
<td>Tertiary fractured basalts and sediments</td>
<td>Arcadia, Roma</td>
<td>Unconfined</td>
<td>10 to 30</td>
<td>At surface</td>
<td>Limited, stock/domestic</td>
</tr>
<tr>
<td>Bungil Formation</td>
<td>Roma</td>
<td>Minor aquifer/water bearing formation</td>
<td>200</td>
<td>At surface north of Roma, dips south</td>
<td>Limited Stock/domestic</td>
</tr>
<tr>
<td>Mooga Sandstone</td>
<td>Roma</td>
<td>Important aquifer</td>
<td>25 to 200</td>
<td>At surface north of Roma, dips south</td>
<td>Stock/domestic, town water supplies, baseflow</td>
</tr>
<tr>
<td>Orallo Formation</td>
<td>Roma</td>
<td>Aquitard</td>
<td>140 to 270</td>
<td>At surface north of Roma, dips south</td>
<td>Limited, Stock/domestic</td>
</tr>
<tr>
<td>Gubberamunda Sandstone</td>
<td>Roma</td>
<td>Important aquifer</td>
<td>45 to 300</td>
<td>At surface north of Roma, dips south</td>
<td>Important GAB aquifer, town water supply, stock</td>
</tr>
<tr>
<td>Springbok Sandstone</td>
<td>Scotia, Fairview</td>
<td>Important aquifer</td>
<td>70</td>
<td>At surface south of Injune, dips south</td>
<td>Limited, discontinuous, stock</td>
</tr>
<tr>
<td>Hutton Sandstone</td>
<td>Scotia, Fairview</td>
<td>Important aquifer</td>
<td>700</td>
<td>At surface north of Injune and Taroom, dips south</td>
<td>Important GAB aquifer, Drinking water, town water supplies, stock, baseflow</td>
</tr>
<tr>
<td>Precipice Sandstone</td>
<td>Fairview</td>
<td>Important aquifer</td>
<td>80</td>
<td>At surface north of Injune and Taroom, dips south</td>
<td>Important GAB aquifer, Drinking water, town water supplies, stock, baseflow</td>
</tr>
<tr>
<td>Clematis Sandstone</td>
<td>Fairview, Arcadia</td>
<td>Important aquifer</td>
<td>130^</td>
<td>At surface south and west of Rolleston</td>
<td>Important GAB aquifer, town water supplies, stock, baseflow</td>
</tr>
</tbody>
</table>

(1) ^ Santos GLNG (2013d), ^ Geoscience Australia website.
5.2.1 Alluvial aquifer systems

Alluvial systems exist in the vicinity of GFD Project tenures associated with the main drainage systems: the Condamine-Balonne River system in the southern Roma area, the Dawson River system in the central-eastern Taroom area and the Comet River system in the northern area near Rolleston.

The Condamine Alluvium, located near Dalby, is the most significant and highly developed alluvial system in the Surat CMA. It consists of gravels and fine to coarse-grained channel sands inter-bedded with clays (QWC, 2012a). The Condamine Alluvium is remote from the GFD Project tenures (Figure 1.3).

Alluvial aquifers in the GFD Project tenures have been variably developed for irrigation, stock and domestic and town water supplies. Data from registered landholder bores in the alluvium indicates yields range between 1-23 L/s and water quality is typically fresh and slightly acidic to neutral. There are 29 registered landholder bores screened in the various alluvial aquifer systems in the GFD Project tenures mostly located near Scotia of which all are reported to support stock and domestic purposes with an estimated take of 87 ML/year (OGIA, 2013a).

5.2.2 Tertiary fractured basalts and sediments

The Tertiary Main Range Volcanics host aquifers used for irrigation, stock and domestic and town supplies. The aquifers occur at depths ranging from 2 to 155 m below ground surface with thicknesses generally varying from 10 to 30 m. Bore yields are highly variable due to variable aquifer properties. They range from less than 5 L/s to 50 L/s, with an average of approximately 20 L/s. Water quality is generally of good quality with a salinity range from less than 100 mg/L to approximately 1,100 mg/L. This is interpreted to indicate that the aquifers respond quickly to recharge from direct infiltration of rainfall, particularly in the elevated areas, and contribute recharge to connected aquifers. Tertiary basalts occur in the Arcadia gas field.

Tertiary basalts occur in the north of the GFD Project area overlying the Bowen Basin sediments. In general, the aquifers in these basalts are not as high yielding as that of the Main Range Volcanics (QWC, 2012a). Registered landholder bores installed in the northern Tertiary Basalts in the Arcadia gas field are used for stock and domestic purposes, have alkaline and brackish water quality and have low yields (0.5-2.5 L/s).

There are eight registered landholder bores screened in the Tertiary basalts in the GFD Project tenures of which all are reported to support stock and domestic purposes with an estimated take of 24 ML/year (OGIA, 2013a).

Tertiary aged sediments, comprising sub-labile to quartzose sandstone, siltstone, mudstone, minor conglomerate, coal, and limestone, underlie the northern GFD Project tenures in the Arcadia gas field. There are six registered landholder bores screened in the Tertiary aged sediments in the GFD Project tenures of which all are reported to support stock and domestic purposes with an estimated take of 18 ML/year (OGIA, 2013a). Water quality associated with Tertiary sediments is slightly alkaline and brackish and yields are low (0.5-1.3 L/s).

5.2.3 GAB hydrogeological units

5.2.3.1 Water bearing units

The main aquifers within the GAB, from the youngest to oldest, are the Bungil Formation, Mooga Sandstone, Gubberamunda Sandstone, Springbok Sandstone, Hutton Sandstone, Precipice Sandstone, and the Clematis Sandstone. The stratigraphy of these major GAB aquifers is laterally
continuous although this does not necessarily translate in a hydraulic continuity due to the variability of the sediments and depositional environments. These formations have equivalents in different sub-basins of the GAB (divided by structures) and a number of them have significant water in storage and zones of enhanced permeability. These units, depending on depth, can be extensively developed for groundwater use. Groundwater level contour maps that depict groundwater flow directions and aquifer extents are based on output from the calibrated UWIR model (QWC, 2012c) (Appendix B: Groundwater level data).

Water quality in most GAB aquifers is generally fresh to brackish and suitable for stock watering. Water quality is spatially variable due to the lateral and vertical variability in the lithology of the formation and variations in groundwater recharge and residence time.

Bungil Formation

The Bungil Formation was deposited in a shallow marine and deltaic environment and is up to 200 m thick in some areas of the Surat Basin (Santos GLNG, 2013d). It comprises sandstone, mudstone and siltstone. Recharge of the Bungil Formation occurs within outcropping areas of the formation north of Roma. The Bungil Formation outcrops in GFD Project tenure ATP 708P, where it is unconfined and potentially connected to surface water features. Groundwater flow is in a south to southwest direction (Appendix B.2, groundwater level contours for the Bungil Formation and Mooga Sandstone).

The Bungil Formation has a relatively good groundwater supply and is mainly used for stock and domestic purposes. Groundwater quality is slightly alkaline and typically fresh. There are 107 registered landholder bores screened in the Bungil Formation in the GFD Project tenures around Roma of which all are reported to support stock and domestic purposes with an estimated take of 649 ML/year (OGIA, 2013a). Yield information is available for one registered landholder bore (4.55 L/s).

Mooga Sandstone

The Mooga Sandstone comprises fluvial quartzose to sublabile sandstone with thinly inter-bedded dark grey mudstone and siltstone, of swamp origin (Santos GLNG, 2013d). The Mooga Sandstone underlies the Bungil Formation, and outcrops in the GFD Project tenures near Roma. Groundwater from the Mooga Sandstone is used in the southern GFD Project tenures around Roma and flows in a south to southwest direction (Appendix B.2, groundwater level contours for the Bungil Formation and Mooga Sandstone).

Groundwater is mainly used for stock and domestic purposes and town water supply for Roma, Wallumbilla and Yuleba (Santos GLNG, 2013d). The Mooga Sandstone is an important aquifer in the Surat Basin and provides supplies of good quality water (typically fresh). There are 262 registered landholder bores within the Mooga Sandstone in the GFD Project tenures around Roma, of which 257 are reported to support stock and domestic purposes with an estimated take of 1,459 ML/year (OGIA, 2013a). Bore yield varies from 1.2 to 8.2 L/s.

Gubberamunda Sandstone

The Gubberamunda Sandstone comprises fluviatile sandstone, minor conglomerate, siltstone and mudstone and has a measured thickness ranging between 45 to 300 m (Santos GLNG, 2013d). Groundwater within the Gubberamunda Sandstone aquifer is sub-artesian in places. It is the most highly developed aquifer (due to its shallow depth allowing for easy access) in the Surat Basin (Santos GLNG, 2013d). Groundwater flows in a south to southwest direction in the Gubberamunda Sandstone in the GFD Project tenures (Appendix B.3).

Groundwater from the Gubberamunda Sandstone is mainly used for stock watering in the southern GFD Project tenures around Roma. The Gubberamunda Sandstone is mapped to outcrop along the
northern and eastern margins of the Surat Basin, where it is intensely leached and ferruginised. Springs vents occur in these outcrop areas (Santos GLNG, 2013d). Details on these springs are provided in Section 6.1.2.

The Gubberamunda Sandstone provides good quality water and is typically slightly alkaline and brackish, but locally fresh. There are 153 registered landholder bores in the Gubberamunda Sandstone in the GFD Project tenures of which 139 are reported to support stock and domestic purposes (OGIA, 2013a). Estimated take from the Gubberamunda Sandstone within GFD Project tenures is 1,869 ML/year (OGIA, 2013a). Bore yield varies from 1 to 11 L/s.

Springbok Sandstone

The Springbok Sandstone unconformably overlies the Walloon Coal Measures and underlies the Westbourne Formation, a regional aquitard. Comprised of clayey lithic sandstone with localised calcareous deposits, the Springbok Sandstone is also inter-bedded with carbonaceous mudstone and siltstone units. The Weald Sandstone located in the upper part of the Springbok Sandstone is the main water-bearing unit in the Injune Creek Group (Santos GLNG, 2013d).

The Springbok Sandstone was deposited by fluvial systems which, in some areas, eroded into the upper siltstone and mudstone units of the Walloon Coal Measures and occasionally into its coal seams, resulting in direct contact of the Springbok Sandstone with the natural gas producing coal layers in some areas. In other areas, the Springbok Sandstone is separated from producing coal layers by low permeability sediments of the upper Walloon Coal Measures (Santos GLNG, 2013d). The Springbok Sandstone can be subdivided into a number of units with a very low hydraulic conductivity unit in the middle which would act as an aquitard. Groundwater flow in the Springbok Sandstone is in a south to southwest direction in the GFD Project tenures (Appendix B.4).

Sections of the Springbok Sandstone are good water bearing zones in some locations; in other locations the Springbok Sandstone is highly compacted with very low vertical permeability (QWC, 2012a). There are areas where a localised unconformable contact between the lower Springbok Sandstone and the upper coal beds of the Walloon Coal Measures results in hydraulic connection (Santos GLNG, 2013d). The Springbok Sandstone aquifer extends primarily underneath GFD Project tenures in the Roma area.

There is only one registered groundwater bore in the GFD Project tenures that is registered for use in the Springbok Sandstone (also screened across the Mooga Sandstone). This bore is used for urban water supply in PL 6 of the Roma Gas Field.

Walloon Coal Measures

The Walloon Coal Measures and its equivalents in Scotia are part of the Injune Creek Group and consist of siltstone, mudstone, fine-to-medium grained lithic sandstone, and coal deposited over time from rivers and into lakes and swamps across the Surat Basin and Clarence-Moreton Basin (Scott et al., 2004). In the Surat Basin, the Walloon Coal Measures have been subdivided into four formations; the Durabilla Formation, Taroom Coal Measures, Tangalooma Sandstone and Juandah Coal Measures.

The Walloon Coal Measures are considered to be an aquitard although in places it functions as an aquifer. In those cases, the volumes of water extracted are limited. The coal seams are generally the more permeable units within a sequence of dominantly low permeability mudstone, siltstone or fine-grained sandstone units. Permeability decreases with depth in the Walloon Coal Measures, especially vertical permeability which is very low at depths greater than 800 m (target depth for natural gas)(Queensland Carbon Geostorage Initiative (QCGI), 2009).
Groundwater flow is generally from higher elevations in the north and east toward the west and southwest. A groundwater level contour map has been created using calibrated UWIR model output (QWC, 2012b) for the Walloon Coal Measures and is presented in Figure B.5 (Appendix B: Groundwater level data).

Coal seams within the Walloon Coal Measures do not continue to the western margin of the basin. The Walloon Coal Measures grade into the siltstone and sandstone units of the Birkhead Formation (USQ, 2011). The Birkhead Formation acts primarily as a confining bed in the Surat Basin, providing only small supplies of poor quality water dominantly associated with fine grained sandstone units (QWC, 2012a).

The water quality is generally poor and bore yields are low. However, the Walloon Coal Measures are developed for stock, domestic, industrial and urban purposes where aquifers can be accessed at shallow depths near the outcrop areas (DNRM, 2005). In the GFD Project tenures, these outcrop areas occur near Injune (ATP 655P) and Taroom (ATP 803P, ATP 868P and PL176).

There are 61 registered landholder bores in the Walloon Coal Measures in the GFD Project tenures of which all are reported to be for stock and domestic purposes (OGIA, 2013a). Estimated take from the Walloon Coal Measures within GFD Project tenures is 337 ML/year (OGIA, 2013a). Bore yields are typically low (0.6-1.8 L/s).

Hutton Sandstone

The Hutton Sandstone underlies the Eurombah Formation (aquitard) of the Injune Creek Group. It consists of very fine to medium-grained sandstone with inter-bedded siltstone units. The Hutton Sandstone typically has the greatest aquifer thickness in the Surat Basin and is an important GAB aquifer, although it has many low permeability zones. The base of the Hutton Sandstone is generally more sand-rich and the most productive for groundwater. Highly permeable zones tend to be thin while the rest of the sequence provides a large storage capacity and contributes to the overall formation transmissivity (Santos GLNG, 2013d).

The groundwater flow direction in the Hutton Sandstone is south to southeast near Roma and north near Scotia, which differs from the general southwest groundwater flow direction observed for the other hydrogeological units of the GAB (Figure B.6, Appendix B: Groundwater level data). This is thought to demonstrate a low level of connectivity between the Injune Creek Group and the Hutton Sandstone (Santos GLNG, 2013d).

The Hutton Sandstone outcrops in the GFD Project tenures near Taroom (ATP 803P, PL176 and ATP 868P in the Scotia gas field); and also outcrops north of Injune near GFD Project tenure ATP 655P in the Fairview gas field. Groundwater in the Hutton is typically slightly alkaline and brackish. The Hutton Sandstone is not a reliable groundwater source due to its non-continuous distribution and poor water quality within the western tenures of the GFD Project tenures (Santos GLNG, 2013d).

A total of 94 registered landholder bores are licenced to take groundwater from the Hutton Sandstone within the GFD Project tenures of which 90 are reported to be for stock and domestic purposes (OGIA, 2013a). Estimated take from the Hutton Sandstone within GFD Project tenures is 1,198 ML/year (OGIA, 2013a). Bore yields vary from 0.1 to 12 L/s.

A number of springs hydraulically connected to the Hutton Sandstone are present in the vicinity of GFD Project tenures. Details on these springs are provided in Section 6.1.2.
Precipice Sandstone

The Precipice Sandstone is mainly comprised of sandstone and conglomerate. The Precipice Sandstone sediments were deposited in a fluvial environment in braided river systems. The Precipice Sandstone is approximately 80 m thick on average and hydraulically isolated from the Hutton Sandstone by the Evergreen Formation aquitard. The Precipice Sandstone is thin or absent in some areas near Roma (Santos GLNG, 2013d). Groundwater generally flows in an easterly direction within the Precipice Sandstone in the GFD Project tenures (Appendix B.7). The Precipice Sandstone outcrops in a narrow zone across the central part of the GFD Project tenures, and represents the basal (oldest and deepest) formation of the Surat Basin.

Water quality is typically fresh and of near neutral pH. The Precipice Sandstone sometimes exhibits very good aquifer potential and generally produces plentiful supplies of potable sub-artesian water in the Fairview and Scotia gas fields (Santos GLNG, 2013d), which is primarily used for stock.

Twenty-eight registered landholder bores are licenced to take groundwater from the Precipice Sandstone in the GFD Project tenures of which 25 are reported to be for stock and domestic purposes (OGIA, 2013a). Estimated take from the Precipice Sandstone within GFD Project tenures is 389 ML/year (OGIA, 2013a). Bore yields range from 0.4 to 9.2 L/s.

A number of springs, hydraulically connected to the Precipice Sandstone, are present in the GFD Project area. Details on these springs are provided in Section 6.1.2.

Clematis Sandstone

The Clematis Sandstone comprises medium to coarse grained quartzose to micaceous sandstone, siltstone and mudstone and granule to pebble conglomerate. The Clematis Sandstone is overlain by the Moolayember Formation (Santos GLNG, 2013d). The Clematis Sandstone outcrops in and around the northern GFD Project tenures (ATP 804P and ATP 745P). The Clematis Sandstone is thin or absent in some areas in near Roma and areas southwest of Fairview (Santos GLNG, 2013d). Groundwater flow directions in the Clematis Sandstone are east in the north of the GFD Project tenures and to the southeast in the south of the GFD Project tenures (Appendix B.8). The Clematis Sandstone can produce good supplies of potable groundwater.

Forty-five DNRM registered landholder bores within the GFD Project tenures are licenced for use in this unit, all of which are reported to support stock and domestic purposes (OGIA, 2013a). Bore yields range from 0.5 to 10 L/s.

There are many springs located along the Clematis Sandstone-Moolayember Formation boundary west of GFD Project tenures ATP 804P and ATP 745P, along the sandstone cliff walls of the Expedition Range. Details on these springs are provided in Section 6.1.2.

5.2.3.2 Aquitards

The main aquitards in the GFD Project tenures are the Rewan Group, Moolayember Formation, Evergreen Formation, Birkhead Formation, Westbourne Formation, Wallumbilla Formations and to a lesser extent the Orallo Formation. Minor aquifers occur within the Moolayember Formation and the Doncaster and Coreena Members of the Wallumbilla Formation and the Evergreen Formation. These minor aquifers are not high yielding or laterally continuous, and water quality is often poor; these units are therefore considered to behave regionally as aquitards.

The Westbourne Formation, ranging in thickness from 100 m to 200 m, separates the Gubberamunda Sandstone from the underlying Springbok Sandstone. The Evergreen Formation is a thick aquitard (averaging 300 m) lying between the Hutton Sandstone and underlying Precipice Sandstone aquifers.
Wallumbilla Formation

The Coreena Member comprises siltstone and fine sandstone inter-bedded with mudstone and the Doncaster Member comprises mainly mudstone, siltstone and minor quartz sandstone.

In the GFD Project tenures, two units of the Wallumbilla Formation outcrop in the area around Roma and Wallumbilla, the Coreena Member and the Doncaster Member. There are 18 registered landholder bores in GFD Project tenures around Roma that are licenced to take water from the Wallumbilla Formation and all are licensed for stock/domestic use (OGIA, 2013a). Groundwater quality is predominantly fresh and alkaline (URS, 2009).

Orallo Formation

The Orallo Formation is comprised of lithic sandstone, siltstone and mudstone deposited dominantly in swamps and as overbank deposits (Santos GLNG, 2013d). The formation thickness varies from 140 to 270 m, averaging 200 m. The Orallo Formation outcrops north of Roma in GFD Project tenure ATP 708P and acts as a confining bed for the Gubberamunda Sandstone. It is not present on the Nebine Ridge where the Mooga Sandstone rests directly on the Gubberamunda Sandstone. Recharge to the minor aquifers in Orallo Formation occurs in the northern and eastern margins of the Surat Basin.

Groundwater quality within the Orallo Formation is fresh to brackish and slightly alkaline (URS, 2009). Thirteen registered landholder bores are licenced to take water from the Orallo Formation for stock/domestic purposes in the GFD Project tenures (OGIA, 2013a). Bore yields vary from 1.8 to 14.3 L/s.

Westbourne Formation of the Injune Creek Group

The Westbourne Formation is part of the Injune Creek Group and underlies the Gubberamunda Sandstone. It comprises alternating sequences of mudstone and lithic sandstone with minor siltstone and coal in the upper portions and thinly-bedded siltstone and low permeability sandstone in the lower portions. The Westbourne Formation was deposited in a low energy fluvial and marginal-marine environment and reaches a thickness of greater than 60 m in the Roma gas field. The Westbourne Formation outcrops just north of GFD Project tenure ATP 708P. There are no landholder registered bores licenced to take water from this unit GFD Project tenures (OGIA, 2013a).

Eurombah Formation of the Injune Creek Group

The Eurombah Formation forms the base of the Injune Creek Group and is comprised of siltstone and mudstone deposited by swamps and low-energy streams. The Eurombah Formation forms the aquitard between the Walloon Coal Measures and the Hutton Sandstone aquifer and has an average thickness of 45 m. In some areas the Eurombah Formation is absent and there may be hydraulic connection between the Walloon Coal Measures and the Hutton Sandstone.

There are four registered landholder bores licenced to take water from the Eurombah Formation in GFD Project tenures ATP 803P west of Taroom and ATP 868P near Wandoan and all are licensed to take water for stock and domestic purposes (OGIA, 2013a). Bore yields are expected to be low with only one registered landholder bore (0.4 L/s).

Evergreen Formation

The Evergreen Formation comprises very fine, quartzose sandstone and acts as a thick (~ 500 m) confining bed that separates the Precipice Sandstone and Hutton Sandstone.
The Boxvale Sandstone, a member of the Evergreen Formation, is present as a discontinuous layer within the Evergreen Formation. Groundwater quality within the Evergreen Formation is slightly brackish and slightly alkaline. Eight registered landholder bores are licensed to take water from the Evergreen Formation for stock/domestic purposes in the GFD Project tenures. Bore yields range between 1.5 and 2.5 L/s.

Moolayember Formation

The Moolayember Formation is defined as a minor discontinuous aquifer, but regionally acts as an aquitard. The aquifer is not high yielding and water quality is often poor (QWC, 2012a). The Moolayember Formation consists of micaceous lithic sandstone and siltstone.

The Moolayember Formation is considered as the base aquitard in the Roma area, based on its low permeability and considerable thickness (Santos GLNG, 2013d).

There are two registered landholder bores licenced to take water from this unit and both are licensed to take water for stock and domestic purposes (OGIA, 2013a).

Rewan Group

The GAB aquifers are separated from the Bandanna Formation (from which gas is produced in the Bowen Basin) by a very thick sequence (~ 1,000 m) of fine-grained, low permeability siltstone and mudstone units of the Rewan Group (QWC, 2012a).

Groundwater quality is of neutral pH and saline. Nine registered landholder bores are completed within this unit in GFD Project tenure ATP 745P and all are licensed to take water for stock and domestic purposes (OGIA, 2013a). Bore yields are low, ranging from 0.6 to 1.2 L/s.

5.2.4 Hydrogeological units underlying the GAB

Bandanna Formation

The Bandanna Formation is the productive gas formation within the Bowen Basin and comprises interbedded coal, mudstone, siltstone and minor clayey sandstone. The thickness of the Bandanna Formation varies from 70 m to 250 m. The Bandanna Formation is the target coal seam in the northern and eastern GFD Project tenures (Arcadia, Fairview and Scotia gas fields). The outcrop area to the north of GFD Project tenure ATP 804P constitutes the primary recharge zone for the formation.

Groundwater flow within the Bandanna Formation is dependent on the permeability of individual coal seams, and their vertical and lateral interconnection. The coal seams of the Bandanna Formation have a slightly higher permeability than the predominantly low permeability sandstone and siltstone units. The coal seams therefore tend to be relative water bearing zones within the coal measures but due to their low permeability do not transmit significant groundwater, nor constitute useful aquifers.

Groundwater flow direction in the GFD Project tenures for the Bandanna Formation is primarily in an easterly direction. A groundwater level contour map has been created using the calibrated UWIR model output (QWC, 2012c) for the Bandanna Formation and is presented in Figure B.9, Appendix B: Groundwater level data.

Water quality within the Bandanna Formation is typically alkaline and brackish. There is limited groundwater extraction for agricultural purposes from this formation and there are no registered landholder bores within the GFD Project tenures.
Early Permian Sediments

Limited data is available on the groundwater conditions within the deeper Permian sedimentary rocks underlying the Bandanna Formation. However, in general these formations are fine-grained, cemented, and have low permeability (QWC, 2012a). As sedimentation was not continuous across the Bowen Basin, the formations are not as laterally extensive as in the GAB. The formations have complex geology and display laterally variable hydraulic properties. Water quality is poor with very high salinities in some places (QWC, 2012a).

5.3 Interconnectivity of the coal sequences

5.3.1 Interconnectivity studies

Santos GLNG has assessed the hydraulic connectivity between formations to characterise the level of hydraulic connectivity between the gas producing coal beds and the overlying and underlying aquifers. Santos GLNG is also further assessing potential horizontal pathways for impact propagation, i.e. assessing the horizontal variability of formation characteristics. This includes characterisation of the formations considered as aquitards. The studies carried out to date include (Santos GLNG, 2013d):

- Monitoring of water pressures at a number of multi-level pressure monitoring bores and vibrating wire piezometers to determine horizontal and vertical groundwater gradients.
- Monitoring water quality including isotopes (12/13C) at private bores, monitoring bores and gas wells to define the chemical signature of formations.
- A deep aquifer monitoring program involving conversion of eight conventional wells into monitoring wells.
- Fitting of existing landholder bores with pressure gauges and automatic recording loggers to observe response to pumping from nearby pumping activities.
- A field coring program involving in situ and laboratory testing of hydraulic conductivity.
- The Managed Aquifer Recharge (MAR) trials at Hermitage within the Roma gas field, which comprised injection and pumping trials and the assessment of the hydraulic responses.
- Ongoing testing of hydraulic conductivity in the major coal measures of the Walloon Coal Measures.

The results of the hydraulic connectivity program demonstrate that under natural conditions, there is limited hydraulic connectivity between the formations. Ongoing studies will provide further characterisation on the level of connectivity between the formations when coal seam water extractions start (Santos GLNG, 2013d). These studies comprise groundwater monitoring activities, hydrogeological investigations, and assessment of field data to inform refinement and calibration of the OGIA groundwater model.

Current conceptual understanding of the connectivity of the target coal seams to overlying and underlying formations is presented in the UWIR for the Surat CMA (QWC, 2012a) and summarised below.

5.3.2 Walloon Coal Measures

The coal seams within the Walloon Coal Measures are separated by lower permeability mudstone, siltstone and fine-grained sandstone. For the most part, low permeability units are found at the top of the formation, in between the productive coal seams and at the bottom of the formation, below the lowermost productive coal seams. These relatively low permeability units are aquitards that generally
separate the productive coal seams from the Springbok Sandstone aquifer above and the Hutton Sandstone aquifer below, except in areas where the upper aquitard has been eroded away (QWC, 2012a), i.e. the upper target coal seam is in direct contact with the Springbok Sandstone in those areas.

The thickness of the aquitard layer between the productive coal seams of the Walloon Coal Measures and the Springbok Sandstone is typically about 15 m, although in some places the aquitard can be absent. In the GFD Project tenures, the thickness of the upper aquitard ranges between < 5 m near PL10 and PL11 to > 40 m near ATP 708P in the southern area near Roma. Near Injune (ATP 655P) it ranges between 5 and 20 m and near Taroom it ranges between 0 and 40 m, decreasing in thickness towards the northeast (QWC, 2012a). In addition to this aquitard layer, the hydraulic properties of the lower part of the Springbok Sandstone vary greatly. The lower part of the Springbok Sandstone behaves in places as an aquitard.

The Eurombah Formation, an aquitard layer separating the lowermost productive coal seams (the Taroom Coal Measures) from the underlying Hutton Sandstone is about 45 m thick. In the GFD Project tenures, the lower aquitard is mostly greater than 40 m, except near Injune (ATP 655P) and to the northeast of Wandoan (PL176) where it can be thinner or absent.

The lithology of the aquitards is variable. Data presented in the UWIR estimates the horizontal permeability to range from 1.5 m/day to 2.5x10^-6 m/day, averaging 9x10^-3 m/day, and the vertical permeability to be one to three orders of magnitude lower (QWC, 2012a).

Prior to gas development in the Walloon Coal Measures, a difference in water levels existed between the coal measures and the overlying and underlying aquifers, implying limited hydraulic connection between the formations. However, steeper hydraulic gradients are generated due to depressurisation of the coal measures resulting in increased potential for induced flow between the units (QWC, 2012a).

In areas outside the GFD Project tenures to the southeast, the Walloon Coal Measures are considered to be hydraulically connected to the Condamine Alluvium (Figure 1.1). Groundwater modelling has predicted that there is likely to be negligible additional depressurisation of the underlying Walloon Coal Measures in the vicinity of the Condamine Alluvium due to GFD operations and therefore no increase in drawdown in the Condamine Alluvium. The OGIA has started the Condamine Interconnectivity Research Project which aims to improve understanding of the interconnectivity between the Condamine Alluvium and the underlying Walloon Coal Measures and the potential impacts of gas production on water pressure in underlying and overlying aquifers.

5.3.3 Bandanna Formation

The Bandanna Formation is laterally isolated from equivalent coal measures by erosion or faulting and therefore, depressurisation of the Bandanna Formation is unlikely to affect aquifers north and east of the GFD Project area.

The deeper Permian formations underlying the Bandanna Formation have low permeability and it is therefore considered unlikely that depressurisation of the Bandanna Formation will markedly affect the underlying formations.

The Bandanna Formation is generally isolated from the overlying main aquifers by the thick and low permeability mudstone units of the Rewan Group. Therefore, the depressurisation of the Bandanna Formation will generally be attenuated by those aquitard units. However, there is a narrow, north-south trending zone lying to the east of Injune, where the overlying Rewan Group and Clematis Sandstone have been eroded away prior to deposition of the Precipice Sandstone, bringing the Precipice Sandstone into direct contact with Bandanna Formation and underlying Permian formations.
Due to this unconformity, there is potentially a degree of hydraulic connection between the Bandanna Formation and the Precipice Sandstone in this area (QWC, 2012a). The area is now known to be smaller than the one published in the Surat UWIR (QWC, 2012a), which the current model assumes. This area of potential connection is to the south west of the Fairview gas field.

The Precipice Sandstone is separated from the overlying Hutton Sandstone by the Evergreen Formation, which is a thick aquitard. The Evergreen Formation is an effective seal recognised as a trap for conventional petroleum and gas resources. It is likely that depressurisation of the Bandanna Formation will be largely attenuated in the Precipice Sandstone and intervening Evergreen Formation, mitigating impacts on the overlying Hutton Sandstone (QWC, 2012a).

5.4 Groundwater-surface water interaction

An assessment of the environmental values of ecological systems that are dependent upon groundwater-surface interaction is presented in Section 6.1.2 which presents the occurrence of groundwater dependent ecosystems (GDEs) within the GFD Project area. In identifying the location, nature and environmental values of the GDEs, Section 6.1.2 describes the hydrogeological nature of groundwater-surface water interactions across the project in so far as they are relevant to approval of the proposed GFD Project.

In summary, however, groundwater – surface water interactions occur in the GFD Project area in three main forms:

- Discharge of groundwater to streams (watercourse or baseflow springs)
- Recharge of groundwater systems via leakage from streams
- Interaction between streams and associated alluvial groundwater resources.

Stream discharges in the GFD Project area typically show distinct seasonal variations with the majority of flow occurring during the summer wet months of December through March. Stream flows in the GFD Project area are predominately ephemeral, highly episodic and with discharges typically generated only as a result of significant runoff events.

Flow regimes for the largest catchments in the Project area, while semi-permanent, are still subject to prolonged periods of zero flow during the dry winter months or during periods of drought (URS, 2014). Prolonged periods of baseflow-dominated discharge are uncommon in the Project area except where watercourse springs occur such as near the Dawson River at Taroom and Utopia Downs. The watercourse springs in the GFD Project area that provide baseflow to streams are detailed in Section 6.1.2 and shown on Figure 6.3.

5.5 Groundwater levels and flow direction

Southern Central Queensland has a long history of economic development which has resulted in a steady expansion in the volume and rate of groundwater extracted, particularly for the agricultural sector in the region (DNRM, 2012). This long period of groundwater development has seen a marked decrease in groundwater pressure or levels within the sandstone aquifers and resulted in a large number of once artesian bores ceasing to flow within the GAB. During preparation of the Water Resource (Great Artesian Basin) Plan 2006, it was recognised that there was considerable uncertainty about trends in water resource conditions, and monitoring networks have since been installed to improve understanding (DNRM, 2012). Government initiatives to cap free flowing artesian bores have resulted in some restoration of pressure decreases in certain areas (DNRM, 2005).
Santos GLNG has installed a groundwater monitoring network for their current GLNG development in the GFD Project tenures. Groundwater level information is also available for DNRM monitoring bores installed within and adjacent to the GFD Project tenures. Figure 5.4 shows the groundwater monitoring network in and adjacent to the GFD Project tenures, including DNRM and Santos GLNG monitoring bores.

Table 5.2 presents the available groundwater level information in the GFD Project tenures by hydrogeological unit. Groundwater levels are shallowest in the alluvium, while the Gubberamunda Sandstone, Injune Creek Group and the Hutton Sandstone experience artesian conditions at some locations.

Table 5.2 Groundwater levels for hydrogeological units in and around GFD Project tenures (DNRM, 2013a and Santos GLNG, 2013a)

<table>
<thead>
<tr>
<th>Formation</th>
<th>Groundwater or piezometric level (mbgs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alluvium</td>
<td>-19.2 to -2.0</td>
</tr>
<tr>
<td>Tertiary volcanics</td>
<td>-61.4 to -18.0</td>
</tr>
<tr>
<td>Bungil Formation</td>
<td>-144.0 to +16.5</td>
</tr>
<tr>
<td>Mooga Sandstone</td>
<td>-100.6 to +44.3</td>
</tr>
<tr>
<td>Orallo Formation</td>
<td>-54.5 to -10.0</td>
</tr>
<tr>
<td>Gubberamunda Sandstone</td>
<td>-133.2 to +54.5</td>
</tr>
<tr>
<td>Injune Creek Group</td>
<td>-54.9 to +0.60</td>
</tr>
<tr>
<td>Hutton Sandstone</td>
<td>-118.6 to +21.30</td>
</tr>
<tr>
<td>Evergreen Formation</td>
<td>-110.5 to -7.0</td>
</tr>
<tr>
<td>Precipice Sandstone</td>
<td>-158.2 to 4.5</td>
</tr>
<tr>
<td>Moolayember Formation</td>
<td>-45.7</td>
</tr>
<tr>
<td>Clematis Sandstone</td>
<td>-21.1 to +46.8</td>
</tr>
<tr>
<td>Rewan Group</td>
<td>-54.9 to -18.3</td>
</tr>
<tr>
<td>Bandanna Formation</td>
<td>na</td>
</tr>
</tbody>
</table>

(1) na - not available.
(2) mbgs - metres below ground surface (positive groundwater levels indicate artesian heads).
(3) * includes Birkhead and Eurombah Formations.

Hydrographs presenting seasonal trends in groundwater levels for Santos GLNG monitoring bores installed in the Mooga Sandstone, Orallo Formation, Gubberamunda Sandstone, Springbok Sandstone and Westbourne Formation and the Precipice Sandstone are presented in Appendix B: Groundwater level data. Santos GLNG will install monitoring wells in GFD Project tenures in accordance with regulatory requirements.

Groundwater levels are influenced by seasonal variations as well as levels of groundwater extraction for water supply (irrigation, stock, domestic, industrial), conventional gas and non-conventional gas. Non-conventional gas development in the Bowen Basin commenced in 1995 and non-conventional gas development commenced in the Surat Basin commenced in 2002. Conventional oil and gas development has been occurring in parts of the Surat Basin such as near Roma since the late 1890’s (Converge, 2014).
Groundwater level contour maps, created using calibrated model heads (QWC, 2012c), for aquifers in the GFD Project tenures are presented in Appendix B: Groundwater level data. In general, groundwater flow direction for the Surat Basin sediments follows the hydraulic gradient towards the south. Groundwater flow in the alluvium generally follows topography and the flow direction of the associated creek. Groundwater flow directions in the Bowen Basin are typically in an easterly direction. Detail on groundwater flow direction for each hydrogeological unit is provided in Section 5.2.

5.6 Hydrogeological parameters

A number of flow and pressure tests have been carried out on bores in the GFD Project tenures to determine the transmissivity for producing aquifers. Hydraulic parameters were estimated from static recovery tests (over 240 tests) and exploration tests. The hydraulic parameters characterising the formations are presented by QWC in the UWIR (2012a) report. A summary of results is presented in Table 5.3.

Table 5.3 Hydraulic properties of water bearing formations in the GFD Project tenures (QWC, 2012a)

<table>
<thead>
<tr>
<th>Formation</th>
<th>Horizontal conductivity – range (m/day)</th>
<th>Horizontal conductivity – median (m/day)</th>
<th>Yield (L/s)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alluvium</td>
<td>$1.4 \times 10^{-1} - 1.5 \times 10^{2}$</td>
<td>8.6</td>
<td>$1.30 - 17.70$</td>
</tr>
<tr>
<td>Tertiary volcanics</td>
<td>$2.0 \times 10^{2} - 6.8$</td>
<td>5.4×10^{-1}</td>
<td>$0.50 - 2.52$</td>
</tr>
<tr>
<td>Bungil Formation/ Mooga Sandstone</td>
<td>$2.8 \times 10^{3} - 5.4$</td>
<td>4.1×10^{-2}</td>
<td>na</td>
</tr>
<tr>
<td>Orallo Formation</td>
<td>$9.3 \times 10^{5} - 5.9$</td>
<td>3.0×10^{-1}</td>
<td>na</td>
</tr>
<tr>
<td>Gubberamunda Sandstone</td>
<td>$3.7 \times 10^{3} - 3.3 \times 10^{1}$</td>
<td>8.5×10^{-1}</td>
<td>na</td>
</tr>
<tr>
<td>Westbourne Formation</td>
<td>$1.9 \times 10^{3} - 4.6$</td>
<td>1.0×10^{-2}</td>
<td>na</td>
</tr>
<tr>
<td>Springbok Sandstone</td>
<td>$1.7 \times 10^{8} - 4.1$</td>
<td>4.1×10^{-3}</td>
<td>na</td>
</tr>
<tr>
<td>Walloon Coal Measures – aquitards</td>
<td>$2.6 \times 10^{-6} - 1.5$</td>
<td>1.0×10^{-2}</td>
<td>$0.4 - 15.75$</td>
</tr>
<tr>
<td>Walloon Coal Measures – coal seams</td>
<td>$8.3 \times 10^{5} - 2.2$</td>
<td>7.8×10^{-2}</td>
<td></td>
</tr>
<tr>
<td>Hutton Sandstone</td>
<td>$8.3 \times 10^{-6} - 1.3 \times 10^{-1}$</td>
<td>5.0×10^{-2}</td>
<td>$0.01 - 9.00$</td>
</tr>
<tr>
<td>Evergreen Formation</td>
<td>$4.3 \times 10^{6} - 6.9$</td>
<td>3.4×10^{-3}</td>
<td>na</td>
</tr>
<tr>
<td>Precipice Sandstone</td>
<td>$2.6 \times 10^{-6} - 2.3 \times 10^{-1}$</td>
<td>2.0×10^{-2}</td>
<td>$9.19 - 9.90$</td>
</tr>
<tr>
<td>Moolayember Formation</td>
<td>$8.3 \times 10^{-6} - 1.0 \times 10^{-1}$</td>
<td>1.6×10^{-3}</td>
<td>na</td>
</tr>
<tr>
<td>Clematis Sandstone</td>
<td>$8.3 \times 10^{-6} - 5.5 \times 10^{-1}$</td>
<td>2.7×10^{-2}</td>
<td></td>
</tr>
<tr>
<td>Rewan Group</td>
<td>$8.3 \times 10^{-6} - 1.9$</td>
<td>3.6×10^{-4}</td>
<td>$0.01 - 1.20$</td>
</tr>
<tr>
<td>Bandanna Formation</td>
<td>$8.3 \times 10^{-6} - 7.8$</td>
<td>1.0×10^{-3}</td>
<td>na</td>
</tr>
</tbody>
</table>

(1) na - not available, * sourced from DNRM database for bores located in GFD Project tenures.
(2) # Birkhead and Eurombah Formations.

Santos GLNG also conducted packer testing in the field and constant head testing in the laboratory to assess hydraulic properties of the Mooga Sandstone, Orallo Formation, Gubberamunda Sandstone and Westbourne Formation in the GFD Project tenures. Packer testing has been performed at three locations: The Bend, Ben Bow and Duarran (shown on Figure 5.4). A summary of the results is presented in Table 5.4. The Gubberamunda Sandstone has the highest horizontal hydraulic conductivity of the four formations. Horizontal hydraulic conductivities are generally one to four orders of magnitude greater than vertical hydraulic conductivities.
Santos GLNG also conducted two constant rate pumping tests for the Roma Managed Aquifer Recharge (MAR) trial at two wells ('2i' and '4i') at The Bend to estimate aquifer transmissivity and storativity of the Gubberamunda Sandstone aquifer (URS, 2013b). The results confirmed the heterogeneity of the Gubberamunda Sandstone and are presented in Table 5.5.

Table 5.5 Summary of Gubberamunda Sandstone aquifer hydraulic characteristics (URS, 2013b)

<table>
<thead>
<tr>
<th>Location</th>
<th>Transmissivity (m²/day)</th>
<th>Storativity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representative of Gubberamunda Sandstone proximal to well '2i' (early time data)</td>
<td>20 to 40</td>
<td>~10 x 10⁻³</td>
</tr>
<tr>
<td>Representative of Gubberamunda Sandstone regional to well '2i' (late time data)</td>
<td>65 to 75</td>
<td>~1 x 10⁻⁴</td>
</tr>
<tr>
<td>Representative of Gubberamunda Sandstone regional to well '4i' (early and late time data)</td>
<td>75 to 85</td>
<td>~1 x 10⁻⁴</td>
</tr>
</tbody>
</table>
5.7 Groundwater quality

Groundwater quality for hydrogeological formations relevant to GFD Project activities was assessed using the following data:

- groundwater baseline assessment data, provided by Santos GLNG in June 2013 (Baseline Assessment Manager) (Santos GLNG, 2013a)
- groundwater monitoring network data, provided by Santos GLNG in June 2013 (Envirosys) (Santos GLNG, 2013a)
- available groundwater quality data in the DNRM database, provided by DNRM in May 2013 (DNRM, 2013a).

The use of these three datasets provides representative groundwater quality data for the relevant hydrogeological units in the GFD Project tenures. Groundwater monitoring data provided by Santos GLNG covers the GLNG upstream Project areas, including the GFD Project tenures. Ionic charge balance was used to calculate bicarbonate concentrations in cases where bicarbonate was not reported. Major ion chemistry for groundwater samples for each of the relevant hydrogeological units in the GFD Project tenures is presented in piper diagrams (Figure 5.5). A piper diagram is a graphical representation of the major ion chemistry of a water sample and can be used to graphically show the general water characteristics in terms of major ion concentrations (Ca$^{2+}$, Mg$^{2+}$, Na$^{+}$, K$^{+}$, Cl$^{-}$, HCO$_3^-$, and SO$_4^{2-}$).

EC and pH for groundwater samples for each of the relevant hydrogeological units in the GFD Project tenures is presented in Figure 5.6 in stratigraphic order. Water bearing units are shown in blue, aquitards in light grey and coal measures in dark grey. Groundwater quality results are also summarised in Table 5.6.
Figure 5.5 Piper plots for each of the relevant hydrogeological units in the GFD Project tenures

(a) Alluvial aquifer systems
(b) Tertiary fractured basalts and sediments
(c) Wallumbilla Formation
(d) Bungil Formation
(e) Mooga Formation
(f) Orallo Formation
(g) Gubberamunda Sandstone
(h) Injune Creek Group
Figure 5.6 Water quality for hydrogeological units in the GFD Project tenures (in stratigraphic order)
Table 5.6
Groundwater quality summary for each of the relevant hydrogeological units (median (range))

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Alluvium</th>
<th>Tertiary Basalts</th>
<th>Bungil Formation</th>
<th>Mooga Sandstone</th>
<th>Gubberamunda Sandstone</th>
<th>Injune Creek Group</th>
<th>Walloon Coal Measures</th>
<th>Hutton Sandstone</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>pH units</td>
<td>7.5 (7.5-8.3)</td>
<td>7.4-7.6*</td>
<td>8.3 (5.8-9.0)</td>
<td>8.4 (6.3-9.9)</td>
<td>8.3 (7.3-9.4)</td>
<td>8.1 (7.4-9.1)</td>
<td>7.7 (6.6-8.6)</td>
<td>8.1 (7.0-9.2)</td>
</tr>
<tr>
<td>Conductivity</td>
<td>µS/cm</td>
<td>1,530 (955-2,500)</td>
<td>2,100-7,510*</td>
<td>1,650 (1,161-8,000)</td>
<td>1,550 (121-10,000)</td>
<td>1,195 (542-2,700)</td>
<td>6,460 (2,700-9,000)</td>
<td>3,700 (935-23,400)</td>
<td>1,090 (367-16,000)</td>
</tr>
<tr>
<td>Fe</td>
<td>mg/L</td>
<td>na</td>
<td><0.05^</td>
<td>0.08 (0.01-4.00)</td>
<td>0.04 (0.01-1.15)</td>
<td>0.06 (0.01-6.09)</td>
<td>0.35^</td>
<td>0.04 (0.02-0.05)</td>
<td>0.04 (0.02-5.06)</td>
</tr>
<tr>
<td>Mn</td>
<td>mg/L</td>
<td>na</td>
<td>0.002^</td>
<td>0.010 (0.002-0.14)</td>
<td>0.010 (0.002-0.053)</td>
<td>0.010 (0.002-0.172)</td>
<td>0.043^</td>
<td>0.065 (0.02-0.11)</td>
<td>0.022 (0.01-0.758)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Precipice Sandstone</th>
<th>Clematis Sandstone</th>
<th>Wallumbilla Formation</th>
<th>Orallo Formation</th>
<th>Eurombah Formation</th>
<th>Evergreen Formation</th>
<th>Rewan Group*</th>
<th>Bandanna Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>pH units</td>
<td>7.7 (6.5-8.9)</td>
<td>8.0 (6.4-8.5)</td>
<td>7.9 (7.3-8.4)</td>
<td>8.7 (8.4-8.8)</td>
<td>7.8 (5.9-8.2)</td>
<td>7.6 (6.4-8.1)</td>
<td>7.2-7.4</td>
<td>8.6 (6.4-9.1)</td>
</tr>
<tr>
<td>Conductivity</td>
<td>µS/cm</td>
<td>557 (305-3,360)</td>
<td>870 (350-1,250)</td>
<td>4,535 (1,450-8,633)</td>
<td>1,220 (944-1,640)</td>
<td>1,100 (230-3,350)</td>
<td>730 (240-2,130)</td>
<td>5,760-6,260</td>
<td>4,057 (143-14,200)</td>
</tr>
<tr>
<td>Fe</td>
<td>mg/L</td>
<td>0.33 (0.04-1.93)</td>
<td>0.01 (0.01-0.60)</td>
<td>0.10 (0.03-0.16)</td>
<td>0.18 (0.12-0.30)</td>
<td>0.09^</td>
<td>0.6 (0.1-10.0)</td>
<td>na</td>
<td>0.16 (<0.05-27.00)</td>
</tr>
<tr>
<td>Mn</td>
<td>mg/L</td>
<td>0.083 (0.01-0.148)</td>
<td>0.01 (0.01-0.04)</td>
<td>0.030 (0.01-0.69)</td>
<td>0.009 (0.002-0.026)</td>
<td>0.03-0.08^</td>
<td>na</td>
<td>0.046-0.49</td>
<td>0.005 (0.001-0.350)</td>
</tr>
</tbody>
</table>

(1) Data sourced from DNRM (2013a) and Santos GLNG (2013a) databases.
(2) na = no data available.
(3) * Median not calculated as only 2 samples.
(4) ^ Only 1 sample available.
5.7.1 Alluvial aquifer systems

Groundwater quality data for the alluvial system is derived from 5 bores located in the Roma and Scotia gas fields. Hydrochemical results indicate alluvial groundwater quality is typically fresh, with a median electrical conductivity (EC) of 1,530 microsiemens per centimetre (µS/cm) (Table 5.6). The dominant ions are Na\(^+\), Ca\(^{2+}\), HCO\(_3^-\) and Cl\(^-\) (Figure 5.5).

5.7.2 Tertiary fractured basalts and sediments

Groundwater quality data for the Tertiary basalts is available near Rolleston (GFD Project tenure ATP 745P). Hydrochemical results indicate groundwater associated with Tertiary basalts in this area is typically brackish (Table 5.6). The dominant ions are Na\(^+\), Mg\(^{2+}\), Ca\(^{2+}\), Cl\(^-\) and HCO\(_3^-\) (Figure 5.5). Groundwater quality associated with Tertiary sediments is brackish, with an EC of 12,360 µS/cm. The dominant ions are Na\(^+\) and Cl\(^-\).

5.7.3 GAB water bearing units

Bungil Formation

Groundwater quality data for the Bungil Formation is only available in the Roma area near outcrop. Hydrochemical results indicate that groundwater from the Bungil Formation is typically brackish, with a median EC value of 1,650 µS/cm (Table 5.6). The dominant ions are Na\(^+\), Cl\(^-\) and HCO\(_3^-\) (Figure 5.5). Dissolved metal concentrations in the Bungil Formation are typically low, with the exception of elevated iron concentrations.

Mooga Sandstone

Groundwater quality data for the Mooga Sandstone is only available in the Roma area. Hydrochemical results indicate the Mooga Sandstone groundwater is fresh to brackish, with a median electrical conductivity value of 1,550 µS/cm (Table 5.6). The dominant ions are Na\(^+\), Cl\(^-\) and HCO\(_3^-\) (Figure 5.5).

Gubberamunda Sandstone

Groundwater quality data for the Gubberamunda Sandstone is only available in the Roma area. Hydrochemical results indicate the Gubberamunda Sandstone groundwater quality is typically fresh, with a median EC value of 1,195 µS/cm (Table 5.6). The dominant ions are Na\(^+\) and HCO\(_3^-\) (Figure 5.5). Dissolved metal concentrations are typically low, although some locations have elevated dissolved iron and manganese concentrations.

Springbok Sandstone (Injune Creek Group)

Groundwater quality data was not available for the Springbok Sandstone in the GFD Project tenures to provide an assessment, however groundwater quality data was available for the Injune Creek Group, including the Westbourne Formation and Springbok Sandstone, from the DNRM database. Groundwater quality specifically for the Walloon Coal Measures was not included in the Injune Creek Group summary statistics.

Hydrochemical results indicate the Injune Creek Group groundwater quality is typically brackish, with a median conductivity of 6,460 µS/cm (Table 5.6). The piper diagram (Figure 5.5) shows that the dominant ions are Na\(^+\), Cl\(^-\) and HCO\(_3^-\).

Walloon Coal Measures

Groundwater quality data for Walloon Coal Measures is available in the Scotia and Roma areas. Hydrochemical results indicate the groundwater is typically brackish, with a median EC value of
3,700 µS/cm (Table 5.6). The dominant ions are \(\text{Na}^+ \), \(\text{Cl}^- \) and \(\text{HCO}_3^- \) (Figure 5.5). Dissolved metal concentrations are typically low.

Hutton Sandstone

Groundwater quality data for the Hutton Sandstone is available in the Scotia, Fairview and Roma areas. Hydrochemical results indicate the groundwater quality is typically fresh to brackish, with a median EC value of 1,090 µS/cm (Table 5.6). The dominant ions are \(\text{Na}^+ \), \(\text{Cl}^- \) and \(\text{HCO}_3^- \) (Figure 5.5). Dissolved metal concentrations are typically low, although some locations have elevated dissolved metal concentrations, including iron and manganese.

Precipice Sandstone

Groundwater quality data for the Precipice Sandstone is available in the Scotia, Fairview and Roma areas. Hydrochemical results indicate groundwater quality is slightly alkaline, with a median EC value of 557 µS/cm (Table 5.6). The dominant ions are \(\text{Na}^+ \), \(\text{HCO}_3^- \) and \(\text{Cl}^- \) (Figure 5.5). Dissolved metal concentrations are typically low, with the exception of elevated iron concentrations.

Clematis Sandstone

Groundwater quality data for the Clematis Sandstone is available in the Arcadia and Roma areas. Groundwater is typically fresh, with a median EC of 870 µS/cm (Table 5.6). The dominant ions are \(\text{Na}^+ \), \(\text{HCO}_3^- \), \(\text{Cl}^- \) and \(\text{Ca}^{2+} \) at some locations (Figure 5.5). Dissolved metal concentrations are typically low, with the exception of elevated iron concentrations at some locations.

5.7.4 GAB aquitards

Wallumbilla Formation

Groundwater quality data for the Wallumbilla Formation is available in the Roma area. Groundwater quality ranges from fresh to saline, with a median EC of 4,535 µS/cm (Table 5.6). The dominant ions are \(\text{Na}^+ \) and \(\text{Cl}^- \) (Figure 5.5). Dissolved metal concentrations are typically low, with the exception of elevated manganese concentrations at some locations.

Orallo Formation

Groundwater quality data for the Orallo Formation is available in the Roma area. Hydrochemical results indicate groundwater is fresh to brackish, with a median EC of 1,220 µS/cm (Table 5.6). The dominant ions are \(\text{Na}^+ \), \(\text{HCO}_3^- \) and \(\text{Cl}^- \) (Figure 5.5). Dissolved metal concentrations are typically low.

Westbourne Formation of the Injune Creek Group

Groundwater quality data was not available for the Westbourne Formation in the GFD Project tenures to provide an assessment, however groundwater quality data was available for the Injune Creek Group (which comprises the Westbourne Formation and Springbok Sandstone) from the DNRM database. Data for the Injune Creek Group are provided in the Springbok Sandstone section of Section 5.7.3.

Eurombah Formation of the Injune Creek group

Groundwater quality data for the Eurombah Formation is available for the Scotia area. Groundwater is typically fresh to brackish, with a median EC of 1,100 µS/cm (Table 5.6). The dominant ions are \(\text{Na}^+ \) and \(\text{Cl}^- \) (Figure 5.5).
Evergreen Formation

Groundwater quality data for the Evergreen Formation is available in the Scotia and Fairview areas. Hydrochemical results indicate the groundwater is typically fresh, with a median EC of 730 µS/cm (Table 5.6). The dominant ions are Na⁺, Cl⁻ and HCO₃⁻ and at some locations Ca²⁺ and Mg²⁺ (Figure 5.5).

Moolayember Formation

Insufficient groundwater quality data was available for the Moolayember Formation in the GFD Project tenures to provide an assessment. However, the Moolayember Formation groundwater quality is recognised as typically fresh, although can be brackish to saline in parts; dominated by Na⁺, HCO₃⁻ and Cl⁻ (URS, 2009).

Rewan Group

Groundwater quality data for the Rewan Group is available in the Arcadia area. Hydrochemical results indicate groundwater is saline (Table 5.6). The dominant ions are Na⁺, and Cl⁻ (Figure 5.5).

5.7.5 Hydrogeological units underlying the GAB

Bandanna Formation

Groundwater quality data for Walloon Coal Measures are available in the Fairview gas field. Hydrochemical results indicate the groundwater is typically brackish, with a median EC of 4,057 µS/cm (Table 5.6). The dominant ions are Na⁺, Cl⁻ and HCO₃⁻ (Figure 5.5). Dissolved metal concentrations are typically low.
6. Receptors and environmental values

This section identifies sensitive groundwater receptors and the groundwater EVs in the Surat CMA and GFD Project tenures.

6.1 Sensitive groundwater receptors

The sensitive groundwater receptors in the Surat CMA and GFD Project tenures are:

- users that access groundwater from hydrogeological units for domestic water supplies and stock watering, and to a lesser extent, agriculture, aquaculture, urban and industrial purposes
- ecosystems dependent on groundwater from springs, including spring vents and watercourse springs which provide baseflow to streams.

OGIA (2013a) provided the data on landholder bores and springs that was used in this study, including interpretation of screened formation/source aquifer.

6.1.1 Hydrogeological units used for water supply

Groundwater bores in Queensland are registered in the DNRM groundwater database, and water licence information is recorded in the Water Management System (WMS). The bore data provided by the OGIA (2013a) for this assessment was originally sourced from the DNRM groundwater database and WMS.

Groundwater used for petroleum and gas production is exempt from requiring a water licence and is not considered in this section.

Groundwater users in the Surat CMA

The UWR indicates there are approximately 21,000 water bores in the Surat CMA, which are used for stock, domestic, agriculture, urban and industrial purposes and extract around 215,000 ML/year (including 85,000 ML/year from GAB formations) (QWC, 2012a). Of that about 80,000 ML/year is used for stock and domestic purposes, and about 105,000 ML/year is used for agricultural use, with the remainder for urban and industrial use (QWC, 2012a).

The spatial distribution of registered landholder bores in the Surat CMA and their use is shown on Figure 6.1. There could also be unregistered bores located within the Surat CMA.
Groundwater users in GFD Project tenures

The OGIA (2013a) bore data indicates that of the 21,000 registered landholder bores in the Surat CMA, 872 are located within GFD Project tenures. The number of registered bores in each hydrogeological unit in GFD Project tenures, and the volume of take estimated by the OGIA, are provided in Table 6.1. Most registered bores in GFD Project tenures take groundwater from the Mooga Sandstone. There are no registered bores screened in the Bandanna Formation in GFD Project tenures.

Table 6.1 Number of registered bores per hydrogeological unit in GFD Project tenures (OGIA, 2013a)

<table>
<thead>
<tr>
<th>Hydrogeological unit</th>
<th>Number of registered bores</th>
<th>Volume of estimated take (ML/year)</th>
<th>Gas fields</th>
<th>GFD Project tenures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alluvium</td>
<td>29</td>
<td>87</td>
<td>Arcadia, Scotia, Roma</td>
<td>ATP 803P, ATP 868P, PL 3, PL 13, PL 236</td>
</tr>
<tr>
<td>Cainozoic Sediments</td>
<td>6</td>
<td>18</td>
<td>Arcadia, Roma</td>
<td>ATP 526P, ATP 745P, PL 3</td>
</tr>
<tr>
<td>Tertiary Volcanics</td>
<td>8</td>
<td>24</td>
<td>Arcadia</td>
<td>ATP 745P</td>
</tr>
<tr>
<td>Mooga Sandstone and Springbok Sandstone</td>
<td>1</td>
<td>13</td>
<td>Roma</td>
<td>PL 6</td>
</tr>
<tr>
<td>Gubberamunda Sandstone and Precipice Sandstone</td>
<td>1</td>
<td>13</td>
<td>Roma</td>
<td>PL 6</td>
</tr>
<tr>
<td>Birkhead Formation</td>
<td>1</td>
<td>5</td>
<td>Scotia</td>
<td>PL 176</td>
</tr>
<tr>
<td>Eurombah Formation</td>
<td>4</td>
<td>46</td>
<td>Scotia</td>
<td>ATP 803P, ATP 868P</td>
</tr>
</tbody>
</table>
Registered bore data (OGIA, 2013a) indicates that groundwater in GFD Project tenures is mainly used for stock and domestic supply and to a lesser extent for agriculture (including irrigation and intensive stock watering), urban supply and industrial purposes. The number of bores used for stock and domestic, agriculture, urban and industrial purposes is provided in Table 6.2.

The total volume of groundwater taken from registered bores in GFD Project tenures is estimated to be 6,856 ML/year (OGIA, 2013a). Estimated annual volumes of groundwater take by purpose are provided in Table 6.2 and Figure 6.2.

Table 6.2 Volume of groundwater extracted across the GFD Project tenures (OGIA, 2013a*)

<table>
<thead>
<tr>
<th>Registered use</th>
<th>Stock/Domestic</th>
<th>Agriculture</th>
<th>Urban</th>
<th>Industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of bores</td>
<td>842</td>
<td>6</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>Total annual volume (megalitres per year (ML/year))</td>
<td>4,827^</td>
<td>105.7</td>
<td>442.1</td>
<td>1,481</td>
</tr>
<tr>
<td>Average annual volume per bore (ML/year)</td>
<td>5.7</td>
<td>17.6</td>
<td>24.6</td>
<td>246.8</td>
</tr>
</tbody>
</table>

(1) Groundwater taken for petroleum and gas production not presented.
(2) * Bore data provided by the OGIA (2013a) was originally sourced from the DNRM groundwater database and WMS.
(3) ^ Stock/domestic volumes estimated by the OGIA where not licensed.
Figure 6.2 Estimated volume of take for registered bores in GFD Project tenures (ML/year)
6.1.2 Springs

Groundwater dependent ecosystems (GDEs) are communities of plants, animals and other organisms that depend on groundwater for survival (Department of Land and Water Conservation, 2002). A GDE may be either entirely dependent on groundwater for survival, or may use groundwater opportunistically or for a supplementary source of water (Hatton and Evans, 1998). Within the Surat CMA and GFD Project tenures, the main types of GDEs are spring vents (grouped into complexes) and watercourse springs fed by natural discharge from aquifers of the GAB.

A spring vent is a single point in the landscape where groundwater is discharged at the surface. A spring vent can be mounded or flat and may be represented by wetland vegetation with no visible water at the location of the spring. Spring vents can form in locations including where there is a change in geology or permeability, a geologic structure provides a path to the surface or there is thinning of a confining layer (QWC, 2012a).

A group of spring vents located in close proximity to each other is called a spring complex. Spring vents in a spring complex are located in similar geology, are connected to the same source aquifer, and individual vents are never more than 6 km apart (QWC, 2012a).

A watercourse spring is a section of a watercourse where groundwater enters the stream from a GAB aquifer through the streambed. This type of spring is also referred to as a baseflow fed watercourse (QWC, 2012a). Watercourse springs provide baseflow to streams and support in-stream aquatic ecosystems, and may be of particular ecological importance during periods of low rainfall.

The regulatory framework in Queensland through the UWIR considers all potentially affected springs as a result of water extraction by petroleum tenure holders in the Surat CMA and implements a Spring Impact Management Strategy for those springs at risk of impact.

Spring vents in the Surat CMA

There are 72 spring complexes comprising 329 spring vents in the Surat CMA (OGIA, 2013a) (listed in Appendix C1 and shown on Figure 6.3). The UWIR identified 71 spring complexes comprising 330 spring vents, however this has since been revised by the OGIA because four of the spring vents in the original data set could not be found during field investigations (x346, x380, x381 and x431) and new spring vents within identified spring complexes have been recorded.

Some spring vents in the Surat CMA are of conservation significance as they provide unique ecological habitats and may be associated with a range of cultural heritage values. The need to protect the unique species associated with these springs has been recognised under:

This legislation recognises and lists both individual species associated with springs and ecological communities of native species dependent on springs (QWC, 2012a).

Table 6.3 provides a summary of the listings under these statutes for springs in the Surat CMA (Fensham et al., 2012).
Table 6.3 Summary of springs vents in the Surat CMA with EPBC Act and NC Act listings (QWC, 2012a)

<table>
<thead>
<tr>
<th>Listed species/ community</th>
<th>Conservation status</th>
<th>Number of springs complexes associated with the listing in the Surat CMA (spring vents)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EPBC Act</td>
<td>NC Act</td>
</tr>
<tr>
<td>The community of native species dependent on natural discharge of groundwater from the GAB</td>
<td>Endangered</td>
<td>10 (92)</td>
</tr>
<tr>
<td>Eriocaulon carsonii</td>
<td>Endangered</td>
<td>Endangered 5 (17)</td>
</tr>
<tr>
<td>Myriophyllum artesium</td>
<td>-</td>
<td>Endangered 1 (5)</td>
</tr>
<tr>
<td>Arthraxon hispidus</td>
<td>Vulnerable</td>
<td>Vulnerable 2 (17)</td>
</tr>
<tr>
<td>Phaius australis</td>
<td>Endangered</td>
<td>Endangered 1 (1)</td>
</tr>
<tr>
<td>Thelypteris confluens</td>
<td>-</td>
<td>Vulnerable 1 (2)</td>
</tr>
<tr>
<td>Livistona nitida</td>
<td>-</td>
<td>Near threatened 3 (7)</td>
</tr>
</tbody>
</table>

(1) * The number in the bracket represents the total number of spring vents within the complexes.

Within the Surat CMA, there are 94 spring vents contained in 12 spring complexes that are associated with an EPBC Act listing (OGIA, 2013a) (Appendix C1). Of these, 92 spring vents (in 10 spring complexes) are described as RE 11.3.22, which corresponds to the EPBC Act listed ‘community of native species dependant on natural discharge of groundwater from the GAB’ (Fensham et al., 2012).

The Queensland Herbarium provides conservation rankings for spring vents in the Surat CMA. The conservation rankings are described in Table 6.4 and are provided for each spring vent in Appendix C1.

Table 6.4 Conservation ranking for GAB springs (adopted from Fensham et al., 2012)

<table>
<thead>
<tr>
<th>Conservation ranking</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 1a</td>
<td>Contains at least one GAB endemic species not known from another location beyond this spring complex.</td>
</tr>
<tr>
<td>Category 1b</td>
<td>Contains endemic species known from more than one spring complex; or has populations of threatened species listed under State or Commonwealth legislation that do not conform to Category 1a.</td>
</tr>
<tr>
<td>Category 2</td>
<td>Provides habitat for populations of plant and/or animal species not known from habitat other than spring wetlands within 250km.</td>
</tr>
<tr>
<td>Category 3</td>
<td>Spring wetland vegetation without isolated populations (Category 2) with at least one native plant species that is not a widespread coloniser of disturbed areas (Appendix D: Potential impact maps).</td>
</tr>
<tr>
<td>Category 4a</td>
<td>Spring wetland vegetation comprised of exotic and/or only native species that are widespread colonisers of disturbed areas (Appendix D: Potential impact maps).</td>
</tr>
<tr>
<td>Category 4b</td>
<td>The original spring wetland is destroyed by impoundment or excavation. The probability of important biological values being identified in the future is very low.</td>
</tr>
<tr>
<td>Category 5</td>
<td>All springs inactive.</td>
</tr>
</tbody>
</table>
Spring vents in the GFD Project tenures

There are 11 spring complexes within GFD Project tenures. The complexes, their vents and conservation ranking are listed in Table 6.5.

Table 6.5 Spring vents located in GFD Project tenures

<table>
<thead>
<tr>
<th>Complex number</th>
<th>Complex name</th>
<th>Vent number</th>
<th>Source aquifer(s)</th>
<th>Gas field</th>
<th>EPBC Act</th>
<th>Conservation Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>78</td>
<td>551, 552</td>
<td>Clematis Sandstone</td>
<td>Arcadia</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td>229*</td>
<td>Ponies</td>
<td>284</td>
<td>Hutton Sandstone</td>
<td>Fairview</td>
<td>X</td>
<td>2</td>
</tr>
<tr>
<td>230</td>
<td>Lucky Last</td>
<td>287, 340, 686, 687, 687.1, 687.2, 687.3, 687.4, 687.5, 687.6, 688, 689</td>
<td>Evergreen Formation (Boxvale Sandstone), Precipice Sandstone</td>
<td>Fairview</td>
<td>✓</td>
<td>1b</td>
</tr>
<tr>
<td>308</td>
<td>308</td>
<td>nv383</td>
<td>Clematis Sandstone</td>
<td>Arcadia</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>327</td>
<td>327</td>
<td>nv385</td>
<td>Precipice Sandstone</td>
<td>Fairview</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>507^</td>
<td>VL_mile</td>
<td>188, 679, 680, 680.1</td>
<td>Gubberamunda Sandstone</td>
<td>Roma</td>
<td>X</td>
<td>4b</td>
</tr>
<tr>
<td>561</td>
<td>Spring Rock Creek</td>
<td>285</td>
<td>Evergreen Formation (Boxvale Sandstone), Precipice Sandstone</td>
<td>Fairview</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td>583®</td>
<td>Lenore Hills</td>
<td>nv621</td>
<td>Tertiary Volcanics, Clematis Sandstone</td>
<td>Arcadia</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td>591</td>
<td>Yebna 2</td>
<td>534</td>
<td>Evergreen Formation, Precipice Sandstone</td>
<td>Fairview</td>
<td>✓</td>
<td>3</td>
</tr>
<tr>
<td>592*</td>
<td>Abyss</td>
<td>286, 286.1, 286.2, 286.3</td>
<td>Hutton Sandstone</td>
<td>Fairview</td>
<td>286*</td>
<td>1b</td>
</tr>
</tbody>
</table>

(1) * These springs are most likely associated with perched groundwater systems and therefore unlikely to be affected by water level changes in the aquifer.
(2) ^ Vent 187 not located within GFD Project tenure.
(3) # Vent 682 and 716 not located within GFD Project tenure.
(4) @ Vents 710 and nv622 not located within GFD Project tenure
(5) + Vent 286 is listed under the EPBC Act.

Watercourse springs in the Surat CMA

There are 43 identified watercourse springs in the Surat CMA (OGIA, 2013a) (listed in Appendix C2 and shown on Figure 6.3). It is important to note that many of the watercourse springs in the Surat CMA have not been ground-truthed and may not actually be present.
Watercourse springs in GFD Project tenures

Eleven watercourse springs are located within GFD Project tenures. These are listed in Table 6.6.

Table 6.6 Watercourse springs located in GFD Project tenures

<table>
<thead>
<tr>
<th>Site number</th>
<th>Source aquifer (OGIA, 2013a)</th>
<th>Watercourse receiving baseflow</th>
<th>Gas field</th>
</tr>
</thead>
<tbody>
<tr>
<td>W10</td>
<td>Mooga Sandstone, Gubberamunda Sandstone</td>
<td>Blyth Creek</td>
<td>Roma</td>
</tr>
<tr>
<td>W14</td>
<td>Hutton Sandstone</td>
<td>Bungaban Creek</td>
<td>Scotia</td>
</tr>
<tr>
<td>W17</td>
<td>Mooga Sandstone</td>
<td>Bungeworgorai Creek</td>
<td>Roma</td>
</tr>
<tr>
<td>W18</td>
<td>Gubberamunda Sandstone</td>
<td>Bungil Creek</td>
<td>Roma</td>
</tr>
<tr>
<td>W19</td>
<td>Mooga Sandstone</td>
<td>Bungil Creek</td>
<td>Roma</td>
</tr>
<tr>
<td>W26</td>
<td>Clematis Sandstone</td>
<td>Clematis Creek</td>
<td>Arcadia</td>
</tr>
<tr>
<td>W35</td>
<td>Clematis Sandstone</td>
<td>Conciliation Creek</td>
<td>Arcadia</td>
</tr>
<tr>
<td>W40</td>
<td>Precipice Sandstone</td>
<td>Dawson River</td>
<td>Fairview</td>
</tr>
<tr>
<td>W81</td>
<td>Hutton Sandstone</td>
<td>Hutton Creek</td>
<td>Fairview</td>
</tr>
<tr>
<td>W82</td>
<td>Hutton Sandstone</td>
<td>Injune Creek</td>
<td>Fairview</td>
</tr>
<tr>
<td>W164</td>
<td>Mooga Sandstone</td>
<td>Yuleba Creek</td>
<td>Roma</td>
</tr>
</tbody>
</table>
6.2 Environmental values

6.2.1 Environmental Protection (Water) Policy 2009

The EPP Water provides a framework for identifying EVs for Queensland waters and the water quality guidelines (WQGs) and water quality objectives (WQOs) to enhance or protect those EVs. The EPP Water defines environmental values of water as:

“particular values or uses of the water that are conducive to a healthy ecosystem or for public amenity, safety or health and that require protection from the effects of habitat alteration, waste releases, contaminated runoff and changed flows”.

The Arcadia, Fairview and Scotia gas fields are located within the Comet and Dawson river sub-basins of the Fitzroy River Basin. Final EVs and WQOs have been adopted by the Queensland Government for these sub-basins and are included in the following Arcadia, Fairview and Scotia gas fields documents listed under Schedule 1 of the EPP Water:

- Comet River Sub-basin Environmental Values and Water Quality Objectives (DERM, 2011a)
- Dawson River Sub-basin Environmental Values and Water Quality Objectives (DERM, 2011b).

The Roma gas field is located in the Condamine-Balonne River Basin. Draft EVs have been developed by the Condamine Alliance (2012a and 2012b) for this river basin.

The EVs identified for the Comet, Dawson and Condamine-Balonne river basins are summarised in Table 6.7. The EVs of groundwater and surface water have been considered. Surface water EVs are relevant to this assessment because watercourse springs occur in each of the gas fields.

Table 6.7 Environmental values of groundwater in the Comet, Dawson and Condamine-Balonne river basins

<table>
<thead>
<tr>
<th>Environmental values</th>
<th>Comet River Sub-Basin</th>
<th>Dawson River Sub-Basin</th>
<th>Condamine-Balonne River Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection of aquatic ecosystem</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Primary contact recreation (e.g. swimming)*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Secondary recreation (e.g. boating)*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Visual (no contact) recreation*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Drinking water supplies</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Crop irrigation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Stock watering</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Farm supply/use</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Aquaculture (e.g. red claw, barramundi)*</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Human consumers of aquatic food*</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>Industrial use (including manufacturing plants, power generation)</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>Protection of cultural and spiritual activities</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

(1) * Primary and secondary recreational contact, visual recreation and aquaculture and human consumers of aquatic food have been included as EV’s for groundwater due to groundwater contributions to surface water baseflow in some tenures.
6.2.2 Beneficial use of groundwater by hydrogeological unit

The beneficial use of groundwater in GFD Project tenures has been assessed by hydrogeological unit considering:

- The use of registered bores in each hydrogeological unit
- The source aquifer of spring vents and watercourse springs
- The suitability of the groundwater in each hydrogeological unit for different uses based on an assessment of water quality.

The use of registered bores and source aquifer of springs has been assessed using the data provided by OGIA (2013a). The suitability of groundwater for different uses has been assessed by comparing available water quality data (Section 5.7) with the relevant guidelines for different beneficial uses. The relevant guidelines include the Australian and New Zealand Environment Conservation Council (ANZECC) (2000) Guidelines for Fresh and Marine Water Quality, the ANZECC (2000) Guidelines for Primary Industry, the National Health and Medical Research Council (NHMRC) (2011) Australian Drinking Water Guidelines (ADWG) and the Queensland Water Quality Guidelines (DERM, 2009). The Water Quality Objectives (WQOs) adopted by the Queensland government to protect groundwater quality and maintain Environmental Values have also been considered. WQOs are available for the Fitzroy River Basin (DERM, 2011a; DERM, 2011b) where the Arcadia, Fairview and Scotia gas fields are located, but are currently unavailable for the Condamine-Balonne River Basin where the Roma gas field is located.

The guideline values used to assess the beneficial use of groundwater (where groundwater quality data are available) are shown in Table 6.8. Beneficial use of groundwater for stock watering, drinking water and aquatic ecosystems (where groundwater discharges as a watercourse spring) have been considered. Other uses may also exist including industrial and agriculture.

Table 6.8 Groundwater quality guidelines

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>ANZECC 2000 Freshwater</th>
<th>ANZECC 2000 Livestock</th>
<th>Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>pH units</td>
<td>6.5-7.5</td>
<td>Na</td>
<td>6.5-8.5</td>
</tr>
<tr>
<td>Conductivity</td>
<td>µS/cm</td>
<td>30-3504</td>
<td>5,9707</td>
<td>900*</td>
</tr>
<tr>
<td>Na</td>
<td>mg/L</td>
<td>Na</td>
<td>Na</td>
<td>180*</td>
</tr>
<tr>
<td>Ca</td>
<td>mg/L</td>
<td>Na</td>
<td>Na</td>
<td>Na</td>
</tr>
<tr>
<td>Cl</td>
<td>mg/L</td>
<td>Na</td>
<td>Na</td>
<td>250*</td>
</tr>
<tr>
<td>SO$_4$</td>
<td>mg/L</td>
<td>Na</td>
<td>Na</td>
<td>500</td>
</tr>
<tr>
<td>Fe</td>
<td>mg/L</td>
<td>Na</td>
<td>Na</td>
<td>0.3*</td>
</tr>
<tr>
<td>Mn</td>
<td>mg/L</td>
<td>1.9</td>
<td>Na</td>
<td>0.5</td>
</tr>
</tbody>
</table>

(1) ANZECC 2000 Guidelines for Fresh and Marine Water Quality: trigger values for 95% protection; southeast Australia (upland rivers).

(2) ANZECC 2000 Guidelines for Primary Industry: trigger values for livestock water quality – Table 4.3.1: # value for beef cattle (Note this value has been converted from mg/L to µS/cm for comparison to sample results (EC (µS/cm) = TDS (mg/L)/0.67)).

(3) NHMRC 2011 Australian Drinking Water Guidelines for health (*in the absence of a guideline for health, the aesthetic guideline value is used, where available).

(4) The Queensland Water Quality Guidelines (DERM, 2009) have derived preliminary freshwater guideline values for EC for the Fitzroy central zone (340 µS/cm) and Maranoa-Balonne-Border Rivers zone (325 µS/cm).

Table 6.9 presents the beneficial use of groundwater in each hydrogeological unit in GFD Project tenures. Beneficial use is presented based on the use of bores in each hydrogeological unit and source aquifer of springs (OGIA, 2013a) and available groundwater quality data.
Table 6.9 Beneficial use of groundwater in GFD Project tenures

<table>
<thead>
<tr>
<th>Hydrogeological unit</th>
<th>Sensitive groundwater receptors in GFD Project tenures</th>
<th>Beneficial use based on bore and spring data (OGIA, 2013a)</th>
<th>Beneficial use according to groundwater quality data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alluvium</td>
<td>29 bores</td>
<td>Stock and domestic</td>
<td>Stock watering</td>
</tr>
<tr>
<td>Cainozoic Sediments</td>
<td>6 bores</td>
<td>Stock and domestic</td>
<td>Unsuitable for use</td>
</tr>
<tr>
<td>Tertiary Volcanics</td>
<td>8 bores, 1 spring vent</td>
<td>Stock and domestic, Aquatic ecosystems</td>
<td>Stock watering</td>
</tr>
<tr>
<td>Wallumbilla Formation</td>
<td>18 bores</td>
<td>Stock and domestic</td>
<td>Stock watering</td>
</tr>
<tr>
<td>Bungil Formation</td>
<td>107 bores</td>
<td>Stock and domestic</td>
<td>Stock watering</td>
</tr>
<tr>
<td>Mooga Sandstone</td>
<td>263 bores, 4 watercourse springs</td>
<td>Stock and domestic, Agriculture, Urban, Industrial, Aquatic ecosystems</td>
<td>Stock watering, Drinking water in some areas</td>
</tr>
<tr>
<td>Orallo Formation</td>
<td>13 bores</td>
<td>Stock and domestic</td>
<td>Stock watering in some areas</td>
</tr>
<tr>
<td>Gubberamunda Sandstone</td>
<td>154 bores, 1 spring vent, 2 watercourse springs</td>
<td>Stock and domestic, Agriculture, Urban, Industrial, Aquatic ecosystems</td>
<td>Drinking water in some areas, Stock watering</td>
</tr>
<tr>
<td>Springbok Sandstone</td>
<td>1 bore</td>
<td>n/a – bore screened across Mooga Sandstone</td>
<td>Stock watering in some areas</td>
</tr>
<tr>
<td>Birkhead Formation</td>
<td>1 bore</td>
<td>Stock and domestic</td>
<td>No data</td>
</tr>
<tr>
<td>Walloon Coal Measures</td>
<td>62 bores</td>
<td>Stock and domestic</td>
<td>Stock watering</td>
</tr>
<tr>
<td>Eurombah Formation</td>
<td>4 bores</td>
<td>Stock and domestic</td>
<td>Drinking water in some areas, Stock watering</td>
</tr>
<tr>
<td>Hutton Sandstone</td>
<td>94 bores, 2 spring vents, 3 watercourse springs</td>
<td>Stock and domestic, Agriculture, Urban, Industrial, Aquatic ecosystems</td>
<td>Drinking water in some areas, Stock watering</td>
</tr>
<tr>
<td>Evergreen Formation</td>
<td>30 bores, 3 spring vents</td>
<td>Stock and domestic, Aquatic ecosystems</td>
<td>Drinking water in some areas, Stock watering</td>
</tr>
<tr>
<td>Precipice Sandstone</td>
<td>29 bores, 5 spring vents, 1 watercourse spring</td>
<td>Stock and domestic, Urban, Aquatic ecosystems</td>
<td>Drinking water in some areas, Stock watering</td>
</tr>
<tr>
<td>Moolayember Formation</td>
<td>2 bores</td>
<td>Stock and domestic</td>
<td>Stock watering in some areas</td>
</tr>
</tbody>
</table>
6.2.3 Sensitivity of environmental values

The sensitivities of the EVs and associated sensitive groundwater receptors, ranked in accordance with the criteria in Table 3.2, are presented in Table 6.10.

Table 6.10 Sensitivity of environmental values

<table>
<thead>
<tr>
<th>Environment values</th>
<th>Sensitive groundwater receptors</th>
<th>Sensitivity^</th>
<th>Justification for sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection of aquatic ecosystems.</td>
<td>Spring complexes associated with an EPBC or NC Act listing.</td>
<td>High</td>
<td>Protected by legislation (EPBC or NC Act).</td>
</tr>
<tr>
<td></td>
<td>Spring complexes not associated with an EPBC or NC Act listing.</td>
<td>Moderate</td>
<td>Spring complexes are regionally important. Spring complexes vary in condition from poor to good.</td>
</tr>
<tr>
<td></td>
<td>Watercourse springs.</td>
<td>Moderate</td>
<td>Not EPBC or NC Act listed. Watercourse springs provide baseflow to streams and support in-stream ecosystems.</td>
</tr>
<tr>
<td>Groundwater supplies for drinking water.</td>
<td>GAB aquifers including the Mooga Sandstone, Gubberamunda Sandstone, Hutton Sandstone, Precipice Sandstone and Clematis Sandstone.</td>
<td>Moderate</td>
<td>Groundwater from these aquifers is used as a source of drinking water in the area</td>
</tr>
<tr>
<td></td>
<td>Water bearing formations including the Eurombah Formation and Evergreen Formation.</td>
<td>Moderate</td>
<td>Provide minor drinking water supplies.</td>
</tr>
<tr>
<td>Groundwater supplies for stock watering, agriculture, farm supply/use and industrial use (including manufacturing plants, power generation).</td>
<td>Alluvium, tertiary volcanics and GAB aquifers including the Bungil Formation, Mooga Sandstone, Gubberamunda Sandstone, Springbok Sandstone, Hutton Sandstone, Precipice Sandstone and Clematis Sandstone.</td>
<td>Moderate</td>
<td>Groundwater from these aquifers is a source of water for stock watering, agriculture, farm supply/use and industrial use in the area.</td>
</tr>
<tr>
<td></td>
<td>Water bearing formations including the Wallumbilla Formation, Orallo Formation,</td>
<td>Low</td>
<td>Provide minor stock watering, agriculture, farm and industrial</td>
</tr>
<tr>
<td>Environment values</td>
<td>Sensitive groundwater receptors</td>
<td>Sensitivity^</td>
<td>Justification for sensitivity</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Sensitive groundwater receptors</td>
<td>Eurombah Formation, Evergreen Formation, Moolayember Formation and Rewan Group.</td>
<td></td>
<td>supplies.</td>
</tr>
<tr>
<td>Surface water supplies for drinking water, stock watering, agriculture, farm supply/use and industrial use (including manufacturing plants, power generation).</td>
<td>Watercourse springs.</td>
<td>Moderate</td>
<td>Consistent baseflow associated with springs are observed in the Dawson River downstream of the confluence with Hutton Creek.</td>
</tr>
<tr>
<td>Surface water recreation, including primary contact recreation (e.g. swimming), secondary recreation (e.g. boating) and visual (no contact) recreation.</td>
<td>Watercourse springs.</td>
<td>Low</td>
<td>Consistent baseflow associated with springs are observed in the Dawson River downstream of the confluence with Hutton Creek and may support surface water recreation.</td>
</tr>
<tr>
<td>Aquaculture (e.g. red claw, barramundi) and human consumers of aquatic food.</td>
<td>Watercourse springs.</td>
<td>Moderate</td>
<td>Consistent baseflow associated with springs are observed in the Dawson River downstream of the confluence with Hutton Creek and may support aquaculture.</td>
</tr>
<tr>
<td>Protection of cultural and spiritual activities.</td>
<td>Spring complexes.</td>
<td>Moderate</td>
<td>There are no registered indigenous cultural heritage places registered on the World Heritage List, National Heritage List and Commonwealth Heritage List within the GFD Project area. For the State register there are 1,845 registered indigenous cultural heritage places registered on the cultural heritage databases and register maintained by the department of Aboriginal and Torres Strait Islander and Multicultural Affairs. A number of these sites are in close proximity to springs and may be linked to the presence of a permanent source of water. Cultural heritage values associated with springs may include mythological associations, ritual and ceremonial associations, economic and subsistence associations and major or personal historical events.</td>
</tr>
<tr>
<td>Watercourse springs.</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) ^ Only the highest sensitivity is recorded.
7. Numerical groundwater flow modelling results and cumulative impacts

An integral part of the production of natural gas from coal seams is the extraction of groundwater to depressurise the coal seam and enable gas to flow. The Queensland Government’s numerical groundwater model for the Surat CMA has been used to assess potential cumulative aquifer depressurisation and drawdown associated with the GFD Project and development proposed by other proponents.

Depressurisation is a reduction in groundwater pore pressure (pressure head) in a confined groundwater system due to extraction of groundwater. Drawdown is a decline in groundwater level in a bore, or a decline in water table elevation in an unconfined groundwater system, due to the extraction of groundwater.

7.1 Queensland framework for assessment and management of groundwater impacts

The Queensland Government has implemented a legislative regime to ensure the petroleum and gas industry develops in a responsible way. The regime applies to conventional petroleum and gas production as well as non-conventional (coal seam) gas production.

Under the regime, petroleum tenure holders have the right to extract groundwater in the process of petroleum and gas production (P&G Act), but are required to monitor and manage the impacts on springs and water supplies (Water Act). This includes a requirement to ‘make good’ impairment (due to changes in pressure or water quality) of private bore supplies caused by the exercise of these rights.

In areas where gas fields are being developed by multiple companies, the impacts of water extraction on groundwater levels may overlap. In these situations a cumulative approach is required to assess and manage impacts and a CMA may be declared. The OGIA is responsible for assessing cumulative impacts in these areas and establishing integrated management arrangements through the preparation of a UWIR.

7.1.1 The Surat Cumulative Management Area

The Surat CMA (Figure 7.1) was established in 2011 for the Surat Basin and the southern Bowen Basin, where development of gas by multiple different companies is occurring in adjacent areas. Gas is produced from the Walloon Coal Measures (and equivalents) of the Surat Basin and the Bandanna Formation of the Bowen Basin.

The Walloon Coal Measures is a geologic formation of the GAB. The GAB is the source of springs of high ecological and cultural significance and is also of economic importance. There are approximately 21,000 water bores in the Surat CMA, which are used for stock, irrigation, industry and urban consumption and extract around 215,000 ML/year (including 85,000 ML/year from GAB) (QWC, 2012a).

7.1.2 The Underground Water Impact Report for the Surat Cumulative Management Area

The UWIR for the Surat CMA was released in 2012 and is a statutory instrument under the Water Act. The report assesses the cumulative impacts of water extraction by petroleum tenure holders on groundwater
in the Surat CMA, and establishes integrated management arrangements. In preparing the UWIR, QWC undertook numerical groundwater modelling to predict potential impacts on water pressure.

The UWIR found that 85 registered water bores would experience water level declines of more than 5 m within three years, and 528 bores would be affected at some time in the future. Under the Water Act, petroleum tenure holders are required to ‘make good’ impairment of private bore supplies that result from petroleum and gas activities. The UWIR identifies which petroleum tenure holder is responsible for potential impacts to each bore as more than one tenure holder could be contributing to the impact.

The UWIR includes a Water Monitoring Strategy, which requires proponents to monitor groundwater levels and quality as part of an integrated regional water monitoring network for the Surat CMA. The network includes 498 water level monitoring points at 142 sites and 120 water quality monitoring points. There are already networks of monitoring bores in place, and the remaining works are being constructed by petroleum tenure holders. Santos GLNG’s program for monitoring bore construction to meet UWIR requirements is detailed in Section 9.1.1.

There are five spring complexes in the Surat CMA where the predicted decline in water levels in the source aquifer is more than 0.2 metres at the location of the springs. The Spring Impact Management Strategy in the UWIR requires petroleum tenure holders to evaluate and submit a report to OGIA on potential mitigation options at these sites. Petroleum tenure holders are also required to monitor conditions in springs, including flow, physical condition, water chemistry, and submit the results to OGIA.

The Annual Report 2013 for the Surat Underground Water Impact Report (OGIA, 2013b) outlines a number of changes to the industry development profile and available information about private water bores since the UWIR was prepared. Gas development in the Surat CMA has not commenced as early as planned, bore assessments conducted by tenure holders have found that the source aquifer for some bores is a shallower aquifer than the aquifer identified in the DNRM groundwater database and some unregistered bores have been identified. This has resulted in changes to the short term impacts described in the UWIR.

The UWIR found that 85 registered water bores would experience water level declines of more than 5 m within three years (by 2015). Based on the new development profile and updated bore data, the Annual Report assessed that 65 registered water bores would experience water level declines of more than 5 m within three years (by 2015) (OGIA, 2013b).

7.1.4 Replacement of the Underground Water Impact Report for the Surat Cumulative Management Area

Queensland’s regulatory framework requires that the OGIA reviews and replaces the UWIR at least every three years. The new UWIR for the Surat CMA is due to be prepared in 2015.

In developing a new UWIR, the OGIA may build a new model, re-calibrate with new monitoring data and/or incorporate changes to planned petroleum and gas development in model simulations.

If required, the OGIA will revise the assignment of responsible tenure holder obligations in the UWIR to reflect changes in tenure ownership and the new assessment of potential impacts to bores and springs. The OGIA will also assess if the Water Monitoring Strategy or Spring Impact Management Strategy should be revised.

The new UWIR will specify Santos GLNG’s responsibilities for making good on impacts to landholder bores, water monitoring, and requirements for monitoring of springs and or any mitigation responses. If approved, the GFD Project will be incorporated into the development scenarios that Santos GLNG will submit to OGIA for inclusion in subsequent UWIR reports.
7.2 Numerical groundwater modelling methodology

The numerical groundwater predictive model for the Surat CMA has been used to assess potential cumulative impacts associated with depressurisation of the Walloon Coal Measures and Bandanna Formation, associated with gas production.

The numerical groundwater flow model for the Surat CMA was developed to assess potential cumulative depressurisation impacts associated with water extraction for petroleum and gas production by Santos, QGC, Origin, and Arrow. The initial model simulation informed the UWIR (QWC, 2012a) and included Santos GLNG’s approved production activity.

Since the UWIR was released in 2012, and for the purpose of determining potential groundwater impact from the GFD Project, the numerical groundwater flow model has been refined and run twice. The first simulation provided a baseline scenario, referred to as ‘the UWIR Scenario’. This regional groundwater flow model for the Surat CMA included Santos GLNG’s production activities, as well as other production developments including all petroleum tenure holders.

In mid-2013 the OGIA modelled the regional groundwater flow for the Surat CMA to simulate development changes associated with the GFD Project and more development proposed by another proponent. This second simulation is referred to as ‘the EIS Scenario’

The production areas for Santos GLNG and other proponents under the UWIR and EIS scenarios are shown on Figure 7.1.

7.2.1 Overview of the Surat CMA model

The numerical groundwater flow model for the Surat CMA was developed using the MODFLOW 2005 code (Harbaugh, 2005), which has been comprehensively tested and utilised within the groundwater industry.

Each of the major proponents developing gas from coal seams in the Surat CMA (Santos, QGC, Origin and Arrow) initially provided QWC with hydrogeological information from field investigations, together with estimated coal seam depressurisation targets for their production areas.

The model has 19 layers to represent all of the major aquifers and aquitards within the Surat CMA (Table 7.1), distributed across more than 3 million 1.5 km x 1.5 km model cells (QWC, 2012a). A comprehensive description of the model is given in the UWIR (QWC, 2012a) and accompanying groundwater model report (QWC, 2012c) and predictive uncertainty report (QWC, 2012d).

The model was developed in line with the national groundwater modelling guidelines that were current at the time the model was prepared (Barnett et al., 2012).

Due to high levels of groundwater extraction from the Condamine Alluvium, the Condamine Alluvium was simulated using a separate sub-model (the Condamine model), which has a finer grid resolution, thus enabling a high resolution representation of drawdown in groundwater levels. The input to the Condamine Alluvium model was derived from distributed inter-aquifer leakage output from the regional Surat CMA groundwater model.
Table 7.1 UWIR model layers and corresponding formations (QWC, 2012a)

<table>
<thead>
<tr>
<th>Model layer</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alluvium (Condamine) and Main Range Volcanics</td>
</tr>
<tr>
<td>2</td>
<td>Griman Creek/Wallumbilla Formation and Surat Siltstone</td>
</tr>
<tr>
<td>3</td>
<td>Bungil Formation and Mooga Sandstone</td>
</tr>
<tr>
<td>4</td>
<td>Orallo Formation</td>
</tr>
<tr>
<td>5</td>
<td>Gubberamunda Sandstone</td>
</tr>
<tr>
<td>6</td>
<td>Westbourne Formation</td>
</tr>
<tr>
<td>7</td>
<td>Upper Springbok Sandstone</td>
</tr>
<tr>
<td>8</td>
<td>Lower Springbok Sandstone</td>
</tr>
<tr>
<td>9</td>
<td>Walloon Coal Measures (upper aquitard)</td>
</tr>
<tr>
<td>10</td>
<td>Walloon Coal Measures (coal, mudstone, siltstone and sandstone)</td>
</tr>
<tr>
<td>11</td>
<td>Walloon Coal Measures (lower aquitard)</td>
</tr>
<tr>
<td>12</td>
<td>Hutton/Marburg Sandstone</td>
</tr>
<tr>
<td>13</td>
<td>Evergreen Formation</td>
</tr>
<tr>
<td>14</td>
<td>Precipice Sandstone</td>
</tr>
<tr>
<td>15</td>
<td>Moolayember Formation</td>
</tr>
<tr>
<td>16</td>
<td>Clematis/Showground Sandstones</td>
</tr>
<tr>
<td>17</td>
<td>Rewan Group</td>
</tr>
<tr>
<td>18</td>
<td>Bandanna Formation</td>
</tr>
<tr>
<td>19</td>
<td>Permian Sediments</td>
</tr>
</tbody>
</table>

7.2.2 Model assumptions and limitations

The model for the Surat CMA simulates a simplified version of a complex geological and hydrogeological system (QWC, 2012c). This simplification is required to allow the model to be run, calibrated and utilised within a reasonable timeframe. Further, the model assumptions that were incorporated were deemed appropriate and acceptable given the purpose of the model, i.e. to investigate the regional scale effect of coal seam depressurisation on aquifers. In this context, the assumptions made are considered to be conservative in respect of the scale of the underground water impact that is predicted (i.e. the assumptions, when compounded, would tend to overestimate the scale of the impact).

A summary of the assumptions incorporated into the Surat CMA groundwater model, and their resulting limitations, include:

- The inability of the model to simulate features with an extent of less than 1.5 km across, as this is the grid spacing within the model. However, given the area of assessment and the scale of the impact being assessed, the model cell size and spacing are deemed appropriate and reasonable.

- The number of layers within the model has been limited to 19, preventing smaller-scale variations in permeability from being represented within the units listed in Table 7.1. However, again given the area of assessment, the scale of impact being assessed, vertical discretisation of the model layers is deemed appropriate and reasonable for the purpose of determining the likely impact to groundwater from coal seam depressurisation.
7.2.3 Representing the extraction of gas

Future extractions of gas have been represented in the model for the Surat CMA using the MODFLOW evapotranspiration (EVT) package, which allows the user to control groundwater levels, as opposed to the MODFLOW Well Package, which requires extraction rates to be specified. This is because plans for future extraction of gas are based on the groundwater level required to extract gas from the coal seams and do not explicitly specify extraction rates. By utilising the EVT package, extraction proceeds at a specified maximum rate until groundwater pressure drops below the level of the nominated EVT surface (40 m above the top of the target coal seam). Extraction rates gradually decrease between the level of the EVT surface and the EVT extinction depth (20 m above the top of the coal seam).

7.2.4 Model calibration and predictions

The model was used to represent current and historic trends in groundwater levels from approximately 1,500 bores in the Surat CMA, prior to predicting the future impacts of the extraction of gas. This process, known as model calibration, was achieved by varying the model input parameters until a satisfactory fit to observed groundwater levels was achieved. Available data on the hydraulic properties of each layer, from more than 3,000 hydraulic tests, were used to constrain the values of the input parameters which were applied to the model.

To account for the inherent uncertainties relating to key model parameter estimates, predictive model runs were undertaken using the null-space Monte Carlo approach (Watermark, 2012; Tonkin and Doherty, 2007). In this approach, the model is run multiple (200) times to derive a suite of parameter values, all of which result in acceptable calibration of the model. Model predictions from all calibrated runs are then aggregated to provide a probabilistic estimate of impacts. For instance, estimates of groundwater depressurisation at each model cell can be expressed in terms of the 50th percentile (median) and 95th percentile of all 200 calibrated model predictions.

As a precautionary approach, the 95th percentile of values were selected in each case (i.e. 95% of predictions show a reduction in groundwater level which is less than or equal to the chosen value). These values were used to produce contours of maximum predicted groundwater impacts in the Surat CMA.
7.2.5 The UWIR Scenario

This regional groundwater flow model for the Surat CMA included Santos GLNG’s production activities, as well as other production developments including all petroleum tenure holders such as QGC, Origin Energy, AGL and Arrow Energy.

Since the regional groundwater flow model was constructed to support preparation of the UWIR, minor amendments have been made to the model arising from local issues and to improve the operational efficiency of the model. The alterations do not affect predictions of short-term impacts and only slightly affect predictions of long-term impacts. In the long-term the alterations result in a slightly smaller number of affected bores than predicted in the UWIR. The alterations also result in slight changes to predicted impacts in aquifers beneath springs in the northern most part of the development area. In consideration of these changes and their consequences, the spring impact management arrangements specified in the UWIR remain precautionary and appropriate. The amended model is now used for assessment purposes and is referred to in this report as ‘the UWIR Scenario’.

7.2.6 The EIS Scenario

In mid-2013 the OGIA modelled the regional groundwater flow for the Surat CMA to simulate development changes associated with the GFD Project and more development proposed by another proponent. This second simulation is referred to as ‘the EIS Scenario’.

Model input files to simulate the proposed Santos GLNG GFD Project production were provided to the OGIA to combine with the files provided by another proponent so that the EIS Scenario could be modelled. The files provide information on the time-varying extraction rates in each model cell, based on the following approach:

- Production wells were assigned at evenly spaced intervals within the production zones of each GFD Project gas field tenure (shown on Figure 7.1) in every time step, based on data supplied by Santos GLNG based on the number of planned wells in each tenure.

- For each tenure, extraction rates from nearby operational production wells were used to estimate a typical water production curve over the life of each planned GFD Project production well. As a conservative measure, the highest producing well from the surrounding area was chosen to represent the production rates of each GFD Project production well. Water production rates for the Fairview Early Permian field were based on data provided by Santos GLNG.

- The estimated water production rates were used to provide an initial water extraction rate at each EVT boundary cell (simulated gas wells) and therefore simulate a realistic time to full depressurisation within the field. Within the model, the water production rate decreases below this initial rate as the simulated pressure head in the target coal seam approaches 40 m (head of water above the target coal seam).

- The target coal seam (and corresponding model layer) was identified for each tenure as the Walloon Coal Measures (Layer 10), the Bandanna Formation (Layer 18) or the Permian Sediments (Layer 19, although conservatively modelled as Layer 18).

- The development scenario modelled for the UWIR (QWC, 2012c) was assumed for the period prior to 1 January 2012. Model input files were prepared for the period from 1 January 2012, with existing wells in each gas field assumed to commence production on 1 January 2012.

- The life of each gas field was assumed to be 30 years from peak production for that tenure, i.e. 30 years from when the maximum number of wells for that tenure was installed.
7.3 Impact assessment results

Results for the EIS Scenario have been compared to the results for the UWIR Scenario to enable assessment of the change in cumulative impacts due to the additional production proposed by Santos GLNG and another proponent.

The model scenarios assess cumulative aquifer depressurisation due to groundwater extraction, including for conventional oil and gas production as well as non-conventional (coal seam) gas production in the Surat CMA. This includes the natural gas from coal seam development proposed by Santos, QGC, Origin and Arrow in 2011 (included in the UWIR Scenario and EIS Scenario), as well as the additional development proposed by the Santos GLNG GFD Project and another proponent (included in the EIS Scenario).

The cumulative impact assessment methodology follows a similar approach to the methodology in the UWIR. Impacts have been assessed using the 95th percentile results of the numerical groundwater flow modelling. The 95th percentile values have been used as a precautionary approach so the maximum likely impacts can be assessed (QWC, 2012c).

It should be noted that actual impacts are likely to be less than what is presented in this chapter of the report for the following reasons:

- The EIS Scenario is a maximum development scenario for this EIS.
- The impacts presented are the 95th percentile of 200 model runs. This means that 95% of predictions result in impacts that are less than or equal to the impacts presented in this report.
- The groundwater model does not simulate the effects of dual phase flow (i.e. water and gas flow) and represents only the flow of groundwater. This is expected to lead to an overestimation of impacts to groundwater, particularly within the project tenures.

7.3.1 Depressurisation impacts

Depressurisation impacts in the Surat CMA

The figures in Appendix D: Potential impact maps, show the long-term cumulative depressurisation pattern for each aquifer in the Surat CMA under the EIS Scenario. The depressurisation patterns are cumulative and include the impacts of the development proposed by Santos, QGC, Origin and Arrow in 2011 (reported in the UWIR), as well as the additional development recently proposed by the GFD Project and another proponent. For the purpose of this report, long-term relates to the period of the model scenario (3,000 years).

The change in maximum depressurisation for each aquifer due to the EIS Scenario, compared to the UWIR Scenario, is presented in Table 7.2. Model results indicate there will be no increase in the maximum depressurisation for each aquifer in the Surat CMA due to the additional development simulated in the EIS Scenario.

The change in area of impact due to the EIS Scenario, compared to the UWIR Scenario, is shown on Figure 7.2 and presented in Table 7.2. The area of impact has been assessed in a similar way to the Long Term Affected Area (LAA) described in the UWIR. The LAA is the area that will experience groundwater pressure reductions greater than 5 m for consolidated aquifers, or 2 m for unconsolidated aquifers, at some time in the future due to cumulative water extraction by petroleum tenure holders.

The results indicate the area of impact will increase due to the expansion of areas being developed. The largest increases in depressurisation impacted areas occur within the two target coal formations (the Walloon Coal Measures and the Bandanna Formation). There are also increases in the extent of the depressurisation impacted areas within the overlying Springbok Sandstone, the Hutton/Marburg Sandstone and the Gubberamunda Sandstone.
Table 7.2 Change in maximum depressurisation and area of impact under the EIS Scenario compared to the UWIR Scenario

<table>
<thead>
<tr>
<th>Aquifer</th>
<th>Change in maximum depressurisation (m)</th>
<th>Change in area of impact (km²)#</th>
<th>Location of change in area of impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condamine Alluvium and Main Range Volcanics</td>
<td>No change in maximum depressurisation*</td>
<td>N/A*</td>
<td>N/A*</td>
</tr>
<tr>
<td>Bungil Formation/Mooga Sandstone</td>
<td>0.3 m reduction in maximum depressurisation</td>
<td>No change</td>
<td>There is no area of impact under the UWIR Scenario or EIS Scenario.</td>
</tr>
<tr>
<td>Gubberamunda Sandstone</td>
<td>No change in maximum depressurisation</td>
<td>294 km² increase in area of impact</td>
<td>Expansion of the area of impact up to 15 km near Wallumbilla.</td>
</tr>
<tr>
<td>Springbok Sandstone</td>
<td>1 m reduction in maximum depressurisation</td>
<td>1,940 km² increase in area of impact</td>
<td>Expansion of the area of impact up to 15 km west near Hodgson and up to 10 km south near Wallumbilla.</td>
</tr>
<tr>
<td>Walloon Coal Measures</td>
<td>No change in maximum depressurisation</td>
<td>3,412 km² increase in area of impact</td>
<td>Expansion of the area of impact up to 20 km south near Surat, up to 15 km west near Hodgson and up to 25 km near Wandoan.</td>
</tr>
<tr>
<td>Hutton/Marburg Sandstone</td>
<td>No change in maximum depressurisation</td>
<td>1,027 km² increase in area of impact</td>
<td>No change in the contours in the east. Increase in area of impact near Wallumbilla by up to 15 km towards the west.</td>
</tr>
<tr>
<td>Precipice Sandstone</td>
<td>No change in maximum depressurisation</td>
<td>233 km² reduction in area of impact</td>
<td>No change in the contours in the east and south. No area of impact south-west of Injune under the EIS Scenario.</td>
</tr>
<tr>
<td>Clematis/Showground Sandstone</td>
<td>No change in maximum depressurisation</td>
<td>13 km² reduction in area of impact</td>
<td>Small reduction in area of impact.</td>
</tr>
<tr>
<td>Bandanna Formation</td>
<td>1 m reduction in maximum depressurisation</td>
<td>9,514 km² increase in area of impact</td>
<td>Large expansion of the area of impact 80 km north towards Rolleston and 35 km west near Injune.</td>
</tr>
</tbody>
</table>

(1) * Condamine model not run; no change in drawdown observed between the EIS Scenario and UWIR Scenario for the Walloon Coal Measures underlying the Condamine Alluvium, implying no additional drawdown in the Condamine Alluvium.

(2) # The area that will experience groundwater pressure reductions greater than 5 m for consolidated aquifers, or 2 m for unconsolidated aquifers, at some time in the future due to cumulative water extraction by petroleum tenure holders.
Depressurisation in GFD Project tenures

Based on the maximum development scenario for this EIS model results indicate that maximum depressurisation in GFD Project tenures will occur within the target coal formations where water extraction for production of gas is undertaken. Maximum depressurisation in the coal formations will occur between 2020 and 2030. There will be a lag in the time to maximum depressurisation (area of extent) in overlying and underlying formations, with the timeframes dependent on how directly connected the formation is to the target coal formations (i.e. dependent on vertical hydraulic conductivity). Predicted depressurisation and recovery trends in GFD Project tenures are as follows:

- **Roma** - Maximum depressurisation of the target Walloon Coal Measures will occur in approximately 2025. Maximum depressurisation in the Springbok Sandstone (75.4 m), Gubberamunda Sandstone (23.2 m) and Hutton Sandstone (20.7 m) will subsequently occur in 2058, 2069 and 2155, respectively. In aquifers that are effectively separated from gas bearing formations by aquitards, including the Bungil Formation/Mooga Sandstone, the predicted drawdown is comparatively small and there will be a significant time lag (decades) before maximum impacts occur.

- **Fairview** – Maximum depressurisation of the target Bandanna Formation coal seams will occur in approximately 2020. Maximum depressurisation of 5.4 m will occur in the Clematis/Showground Sandstone in 2053 and maximum depressurisation of 3.4 m will occur in the Precipice Sandstone in 2023. Predicted cumulative impacts in the Hutton/Marburg Sandstone and Walloon Coal Measures are less than 0.5 m and there will be a significant time lag before maximum impacts occur.

- **Arcadia** - Maximum depressurisation of the target Bandanna Formation will occur in approximately 2030. There will be a significant time lag before a maximum depressurisation of 0.2 m occurs in the Clematis/Showground Sandstone.

- **Scotia** - Maximum depressurisation of the Bandanna Formation will occur in approximately 2022 and maximum depressurisation of the Walloon Coal Measures will occur in 2058. There is likely to be less than 2 m of depressurisation to overlying and underlying formations, including the Springbok Sandstone, Hutton Sandstone, Precipice Sandstone and Clematis Sandstone. Maximum depressurisation of overlying and underlying formations will occur between 2058 and 2205.

Depressurisation effects on aquifers are expected to persist for prolonged periods after extraction of gas has ceased. The rate of recovery will be greatest in the years after water extraction ceases, but will reduce exponentially with time. It is estimated that for the coal measures and the significantly affected aquifers there will be a 50% recovery from maximum impact 30 to 80 years after maximum depressurisation. Poorly connected aquifers may take several hundred years to reach 50% recovery.

Figure 7.3 presents long-term cumulative depressurisation hydrographs for a central location (model cell) in each GFD Project gas field under the EIS Scenario (excluding the target coal measures).
Figure 7.3 Predicted aquifer depressurisation for a central location in GFD Project gas fields
7.3.2 Impacts to landholder bores

In accordance with the methodology applied for the UWIR, landholder bores have been identified as potentially impacted where a decline in groundwater pressure of 5 m or more for consolidated aquifers, or 2 m or more for unconsolidated aquifers, is predicted at some time in the future at the location of the bore.

The OGIA provided the bore data set used to identify source aquifers of bores within the Surat CMA. Bores that access the Westbourne Formation, Evergreen Formation, Rewan Group and Bowen Permian have not been assessed due to their classification as aquitards. This follows the methodology applied for the UWIR.

Impacted landholder bores in the Surat CMA

The UWIR identified 85 landholder bores where aquifer pressure is predicted to decline within three years by more than 5 m for consolidated aquifers and 2 m for unconsolidated aquifers. This was revised to 65 bores in the Annual Report for the UWIR (OGIA, 2013b). The predicted changes in depressurisation due to the proposed GFD Project will not result in additional impacts to landholder bores before 2015, as the additional production wells are not proposed to start production until after that date.

The UWIR identified 528 landholder bores where aquifer pressure is predicted to decline at some time in the future by more than 5 m for consolidated aquifers and 2 m for unconsolidated aquifers. Due to cumulative petroleum and gas development in the Surat CMA under the EIS Scenario, an additional 73 private water bores are predicted to be impacted by a decline in groundwater pressure of more than 5 m for consolidated aquifers and 2 m for unconsolidated aquifers at some time in the future. A summary of these additional water bores, including their use, is provided in Table 7.3.

Table 7.3 Additional water bores cumulatively impacted under the EIS Scenario compared to the UWIR Scenario in the Surat CMA

<table>
<thead>
<tr>
<th>Model layer used for assessment</th>
<th>Screened formation</th>
<th>Change in number of impacted bores</th>
<th>Bore use (OGIA, 2013a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Mooga Sandstone and Bungil Formation</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>Orallo Formation</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>Gubberamunda Sandstone</td>
<td>+ 17</td>
<td>Stock and domestic</td>
</tr>
<tr>
<td>8</td>
<td>Springbok Sandstone*</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>10</td>
<td>Walloon Coal Measures**</td>
<td>+ 46</td>
<td>Stock and domestic</td>
</tr>
<tr>
<td>12</td>
<td>Eurombah Formation</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>12</td>
<td>Hutton/Marburg Sandstone</td>
<td>+ 7</td>
<td>Stock and domestic (4) Agriculture (3)</td>
</tr>
<tr>
<td>14</td>
<td>Precipice Sandstone</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>16</td>
<td>Moolayember Formation</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>16</td>
<td>Clematis Sandstone</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>18</td>
<td>Bandanna Formation</td>
<td>+ 3</td>
<td>Stock and domestic</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>+ 73</td>
<td></td>
</tr>
</tbody>
</table>

1) * One bore screened in both Mooga Sandstone and Springbok Sandstone.
2) ** One bore screened in both Springbok Sandstone and Walloon Coal Measures.
Impacted landholder bores in GFD Project tenures

The cumulatively impacted landholder bores in GFD Project tenures under the UWIR Scenario and EIS Scenario are presented in Table 7.4.

Within GFD Project tenures, 48 additional landholder bores may be impacted in the Roma and Scotia gas fields under the EIS Scenario compared to the UWIR Scenario.

Table 7.4 Impacted landholder bores in GFD Project tenures

<table>
<thead>
<tr>
<th>Model layer used for assessment</th>
<th>Screened formation</th>
<th>UWIR Scenario</th>
<th>EIS Scenario</th>
<th>Change in number of impacted bores</th>
<th>Gas field</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Gumbaramunda Sandstone</td>
<td>1</td>
<td>16</td>
<td>+ 15</td>
<td>Roma</td>
</tr>
<tr>
<td>8</td>
<td>Springbok Sandstone*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Roma</td>
</tr>
<tr>
<td>10</td>
<td>Walloon Coal Measures**</td>
<td>7</td>
<td>39</td>
<td>+ 32</td>
<td>Scotia, Roma</td>
</tr>
<tr>
<td>12</td>
<td>Hutton/ Marburg Sandstones</td>
<td>4</td>
<td>5</td>
<td>+ 1</td>
<td>Roma</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>13</td>
<td>61</td>
<td>+ 48</td>
<td></td>
</tr>
</tbody>
</table>

1) * One bore screened in both Mooga Sandstone and Springbok Sandstone.
2) ** One bore screened in both Springbok Sandstone and Walloon Coal Measures.

7.3.3 Impacts to springs

The UWIR identified a total of 330 spring vents and 43 watercourse springs within the Surat CMA. However, the most up to date springs data set provided by the OGIA in August 2013 identified 329 spring vents. This is because four of the spring vents in the original data set could not be found during field investigations (x346, x380, x381 and x431) and three new spring vents have been identified by a proponent (complex 605 including spring vents nv717, nv718 and nv719). This assessment has considered the latest springs data set provided by OGIA.

Springs of interest

Groundwater model results for the EIS Scenario were used to conduct an initial screening to identify springs of interest; defined as springs underlain by a formation (including the coal seams) where the long-term maximum predicted impact on water pressures at the location of the spring (but not necessarily in the source aquifer of the spring) exceeds 0.2 m, or is within 10 km of 0.2 m of depressurisation. As a precautionary approach, EPBC springs located just outside the 10 km buffer were also included, which translated to including EPBC springs a further 5 km beyond the 10 km buffer. The buffers are precautionary as they allow for the limitations associated with modelling very small changes in water pressure.

There are 45 spring complexes (Table 7.5) and 33 watercourse springs (Table 7.6) located within the Surat CMA that have been recognised as springs of interest.

Springs at risk of impacts in the Surat CMA

A risk-based methodology was employed to assess the likelihood of the springs of interest experiencing depressurisation impacts due to the cumulative development of gas in the Surat CMA under the EIS scenario. The approach recognises that there is some uncertainty associated with the source aquifers.
nominated in the OGIA dataset. The methodology was developed in consultation with the OGIA and follows a similar approach to that used in the UWIR for the Surat CMA.

Springs where impacts to a source aquifer nominated in the OGIA (2013a) dataset were predicted under the EIS Scenario have been identified as being at risk of impacts. For the remaining springs of interest, the numerical groundwater modelling predicted impacts to an underlying aquifer that is not the source aquifer nominated in the OGIA dataset. These springs have only been identified as being at risk of impacts where:

- The spring is identified in the UWIR as requiring monitoring. It is understood that the risk assessment undertaken by the QWC for the UWIR applied a precautionary approach for these springs due to their high ecological value and/or hydrogeological uncertainty, such as source aquifer proximity to target production formations or the presence of structures.
- Hydrogeological assessment has indicated that the impacted aquifer could potentially be the source aquifer for the spring. Springs for which available information indicates a high level of confidence in the source aquifer nominated in the OGIA dataset were excluded.

Hydrogeological assessment involved:

- Interrogation of groundwater model results for the EIS Scenario to identify the impacted formations underlying each spring complex and watercourse spring, and the magnitude of the predicted impact.
- Mapping of the location of each spring complex and watercourse spring with surface geology, watercourses and geological basin structure data (i.e. mapped major faults, anticlines and synclines) from the Geological Survey of Queensland Digital Geoscience Vector Data (December 2011).
- Grouping of springs based on common underlying geology and their proximity to watercourses and geological structures.
- Review of the stratigraphy and structural information for each group of springs to assess whether an impacted formation underlying the spring could potentially be a source aquifer, for example based on the occurrence of faults or thick aquitards at the location of the springs. Geological data were sourced from the nearest QDEX exploration bore or geological cross section line.
- Surface geology and proximity to watercourses was also reviewed to identify springs that are most likely water table discharge.

A total of 13 spring complexes and 19 watercourse springs have been identified as being at risk of impacts due to the cumulative development of gas in the Surat CMA under the EIS scenario. The results are presented in Tables 7.5 and 7.6 and summarised as follows:

- Nine spring complexes and sixteen watercourse springs are predicted to have groundwater pressure reductions in an underlying source aquifer nominated in the OGIA dataset and are assessed to be at risk of impacts. Two spring complexes predicted to have groundwater pressure reductions in an underlying source aquifer are not considered to be at risk of impacts; spring complex 507 has been destroyed by cattle and local practices (QLD Herbarium, 2012) and spring complex 506 is most likely associated with a perched groundwater system and is therefore unlikely to be associated with water level changes in the aquifer (QWC, 2012a).
- Three spring complexes (229, 584 and 592) and three watercourse springs (W80, W81 and W82) are predicted to have groundwater pressure reductions in an underlying aquifer that is not the source aquifer nominated in the OGIA dataset and were identified in the UWIR as requiring monitoring. It is understood that the risk assessment undertaken by the QWC for the UWIR applied a precautionary approach for these springs due to their high ecological value and/or hydrogeological uncertainty and these springs are therefore assessed to be at risk of impacts.
- For the majority of the springs of interest, there is a large stratigraphic separation (over 1 km in most cases) and no major faults between the impacted formation underlying the spring (the Bandanna Formation in most cases) and the spring and there is negligible risk of impacts. One spring complex (302) was assessed to be potentially sourced from an impacted formation underlying the spring that is not the source aquifer nominated in the OGIA dataset.
Table 7.5 Spring complexes at risk of depressurisation impacts in the Surat CMA under the EIS scenario

<table>
<thead>
<tr>
<th>Spring complex number</th>
<th>Spring complex name</th>
<th>Vent number(s)</th>
<th>Most likely source aquifer (OGIA, 2013a)</th>
<th>Impacted in source aquifer or other underlying formation?</th>
<th>Risk assessment notes</th>
<th>At risk of cumulative impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rainbow spring</td>
<td>nv4, nv337, nv339, nv340, nv343, nv365, nv366, nv368, nv369, 549, 550</td>
<td>Precipice Sandstone, Clematis Sandstone</td>
<td>Bandanna Formation</td>
<td>Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
</tbody>
</table>
| 8 | Dawson River 8 | 26, 28, 38 | Hutton sandstone | Source aquifer | Source aquifer nominated in OGIA dataset impacted under the EIS scenario
Monitored by another proponent in accordance with UWIR or JIP requirements | Yes |
<p>| 9 | Cockatoo Creek | 64, 64.1, 65, 65.1, 65.2, 66, 319, 320, 320.1, 321, 321.1, 321.2, 321.3, 321.4, 321.5, 321.6, 321.7, 327.8, 684 | Precipice Sandstone | Bandanna Formation | KCB (2012b) indicates Bandanna Formation is unlikely to be the source aquifer, so the risk of impacts due to the EIS Scenario is negligible | No |
| 16 | 16 | 548 | Clematis Sandstone | Bandanna Formation | Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring | No |
| 35 | 35 | nv367, nv386 | Clematis Sandstone | Bandanna Formation | Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring | No |
| 68 | SF2120 | 547, nv341 | Clematis Sandstone | Bandanna Formation | Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring | No |
| 74 | Yebna | nv329 | Evergreen Formation, Precipice Sandstone, Clematis Sandstone | Bandanna Formation | Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring | No |
| 76 | Eden Vale | 701, nv605 | Evergreen Formation (Boxvale) | Bandanna Formation | KCB (2012b) indicates Bandanna Formation is unlikely to be the source aquifer, so the risk of | No |</p>
<table>
<thead>
<tr>
<th>Spring complex number</th>
<th>Spring complex name</th>
<th>Vent number(s)</th>
<th>Most likely source aquifer (OGIA, 2013a)</th>
<th>Impacted in source aquifer or other underlying formation?</th>
<th>Risk assessment notes</th>
<th>At risk of cumulative impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>78</td>
<td>551, 552</td>
<td>Clematis Sandstone</td>
<td>Bandanna Formation</td>
<td>Impacts due to the EIS Scenario is negligible</td>
<td>No</td>
</tr>
<tr>
<td>84</td>
<td>Conom</td>
<td>nv356, nv357, nv358</td>
<td>Clematis Sandstone</td>
<td>Bandanna Formation</td>
<td>Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>85</td>
<td>Newton</td>
<td>538, nv328, nv331, nv332</td>
<td>Hutton Sandstone</td>
<td>Bandanna Formation</td>
<td>Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>229</td>
<td>Ponies</td>
<td>284</td>
<td>Hutton Sandstone</td>
<td>Precipice Sandstone, Clematis Sandstone, Bandanna Formation</td>
<td>Identified in the UWIR as requiring monitoring due to the high ecological value and/or hydrogeological uncertainty associated with the spring Monitored by Santos GLNG in accordance with UWIR or JIP requirements</td>
<td>Yes</td>
</tr>
<tr>
<td>230</td>
<td>Lucky Last</td>
<td>287, 340, 686, 687, 687.1, 687.2, 687.3, 687.4, 687.5, 687.6, 688, 689</td>
<td>Evergreen Formation (Boxvale Sandstone), Precipice Sandstone</td>
<td>Source aquifer Source aquifer nominated in OGIA dataset impacted under the EIS scenario Monitored by Santos GLNG in accordance with UWIR or JIP requirements A spring impact mitigation strategy has been developed by Santos GLNG in accordance with the requirements of the UWIR</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>Moolayember</td>
<td>408, 675, 676</td>
<td>Clematis Sandstone</td>
<td>Bandanna Formation</td>
<td>KCB (2012b) indicates Bandanna Formation is unlikely to be the source aquifer, so the risk of impacts due to the EIS Scenario is negligible</td>
<td>No</td>
</tr>
<tr>
<td>254</td>
<td>254</td>
<td>nv5</td>
<td>Clematis Sandstone</td>
<td>Bandanna Formation</td>
<td>Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>260</td>
<td>Scott’s Creek</td>
<td>189, 190, 191, 192</td>
<td>Hutton Sandstone</td>
<td>Source aquifer Source aquifer nominated in OGIA dataset impacted</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Spring complex number</td>
<td>Spring complex name</td>
<td>Vent number(s)</td>
<td>Most likely source aquifer (OGIA, 2013a)</td>
<td>Impacted in source aquifer or other underlying formation?</td>
<td>Risk assessment notes</td>
<td>At risk of cumulative impacts</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>--</td>
<td>--</td>
<td>----------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>192.1</td>
<td></td>
<td></td>
<td></td>
<td>under the EIS scenario</td>
<td>Monitored by another proponent in accordance with UWIR or JIP requirements</td>
<td></td>
</tr>
<tr>
<td>267</td>
<td>267</td>
<td>nv6, nv7</td>
<td>Hutton Sandstone</td>
<td>Bandanna Formation</td>
<td>Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>283</td>
<td>Barton</td>
<td>702, 703</td>
<td>Gubberamunda sandstone</td>
<td>Source aquifer</td>
<td>Source aquifer nominated in OGIA dataset impacted under the EIS scenario</td>
<td>Yes</td>
</tr>
<tr>
<td>296</td>
<td>Carnarvon Gorge</td>
<td>553, 554, 554.3, 555, 556, 677, 678, 712, 713, 714, 715, nv392, nv394, nv396, nv435</td>
<td>Evergreen Formation (Boxvale Sandstone), Precipice Sandstone, Hutton Sandstone</td>
<td>Bandanna Formation</td>
<td>KCB (2012b) indicates Bandanna Formation is unlikely to be the source aquifer, so the risk of impacts due to the EIS Scenario is negligible</td>
<td>No</td>
</tr>
<tr>
<td>302</td>
<td>302</td>
<td>539, 539.1</td>
<td>Precipice Sandstone</td>
<td>Bandanna Formation</td>
<td>Hydrogeological assessment indicates the Bandanna Formation could potentially be the source aquifer for the spring</td>
<td>Yes</td>
</tr>
<tr>
<td>304</td>
<td>ExpedRange</td>
<td>541, 542, 543, 544, 544.1, 544.2, 544.3, 545, 546, nv2, nv3, nv348, nv349, nv350, nv351, nv352, nv353, nv354, nv355</td>
<td>Clematis Sandstone, Cainozoic Sediments</td>
<td>Bandanna Formation</td>
<td>Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>Spring complex number</td>
<td>Spring complex name</td>
<td>Vent number(s)</td>
<td>Most likely source aquifer (OGIA, 2013a)</td>
<td>Impacted in source aquifer or other underlying formation?</td>
<td>Risk assessment notes</td>
<td>At risk of cumulative impacts</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>--</td>
<td>--</td>
<td>----------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>306</td>
<td>306</td>
<td>nv371</td>
<td>Clematis Sandstone</td>
<td>Bandanna Formation</td>
<td>Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>307</td>
<td>Elgin</td>
<td>nv359, nv372, nv373, nv375, nv376, nv377, nv378, nv379</td>
<td>Clematis Sandstone</td>
<td>Bandanna Formation</td>
<td>Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>308</td>
<td>308</td>
<td>nv383</td>
<td>Clematis Sandstone</td>
<td>Bandanna Formation</td>
<td>Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>309</td>
<td>309</td>
<td>nv384</td>
<td>Clematis Sandstone</td>
<td>Bandanna Formation</td>
<td>Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>310</td>
<td>310</td>
<td>nv370</td>
<td>Precipice Sandstone</td>
<td>Bandanna Formation</td>
<td>Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
</tbody>
</table>
| 311 | 311 | 499, 500, 500.1, 535, 536, 536.1, 536.2, 537, 692, 693, 694, 695, 696, 697, 698, 699, 704 | Precipice Sandstone | Source aquifer | Source aquifer nominated in OGIA dataset impacted under the EIS scenario
Monitored by Santos GLNG in accordance with UWIR or JIP requirements
A spring impact mitigation strategy has been developed by Santos GLNG in accordance with the requirements of the UWIR | Yes |
<p>| 326 | 326 | 705 | Clematis Sandstone | Bandanna Formation | KCB (2012b) indicates Bandanna Formation is unlikely to be the source aquifer, so the risk of impacts due to the EIS Scenario is negligible | No |
| 327 | 327 | nv385 | Precipice Sandstone | Bandanna Formation | Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring | No |
| 328 | 328 | nv374 | Precipice Sandstone | Bandanna Formation | Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring | No |</p>
<table>
<thead>
<tr>
<th>Spring complex number</th>
<th>Spring complex name</th>
<th>Vent number(s)</th>
<th>Most likely source aquifer (OGIA, 2013a)</th>
<th>Impacted in source aquifer or other underlying formation?</th>
<th>Risk assessment notes</th>
<th>At risk of cumulative impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>335</td>
<td>335</td>
<td>nv406</td>
<td>Hutton Sandstone</td>
<td>Bandanna Formation</td>
<td>Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>339</td>
<td>Lonely Eddie</td>
<td>706, 707, 708, 709</td>
<td>Precipice Sandstone</td>
<td>Source aquifer</td>
<td>Source aquifer nominated in OGIA dataset impacted under the EIS scenario</td>
<td>Yes</td>
</tr>
<tr>
<td>506</td>
<td>SprRidge</td>
<td>184, 185, 186</td>
<td>Gubberamunda Sandstone</td>
<td>Source aquifer</td>
<td>The UWIR indicates these springs are most likely associated with a perched groundwater system and therefore unlikely to be affected by water level changes in the aquifer.</td>
<td>No</td>
</tr>
<tr>
<td>507</td>
<td>VI_mile</td>
<td>187, 188, 679, 680, 680.1</td>
<td>Gubberamunda Sandstone</td>
<td>Source aquifer</td>
<td>Destroyed by cattle and local practices (QLD Herbarium, 2012) and is not included in the UWIR monitoring or mitigation requirements</td>
<td>No</td>
</tr>
<tr>
<td>510</td>
<td>Cleanskins</td>
<td>nv417</td>
<td>Clematis Sandstone</td>
<td>Bandanna Formation</td>
<td>Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>561</td>
<td>Spring Rock Creek</td>
<td>285</td>
<td>Evergreen Formation (Boxvale Sandstone), Precipice Sandstone</td>
<td>Source aquifer</td>
<td>Source aquifer nominated in OGIA dataset impacted under the EIS scenario</td>
<td>Yes</td>
</tr>
<tr>
<td>583</td>
<td>Lenore Hills</td>
<td>710, nv621, nv622</td>
<td>Tertiary Volcanics, Clematis Sandstone</td>
<td>Bandanna Formation</td>
<td>Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>584</td>
<td>Wambo</td>
<td>711, 711.1</td>
<td>Cainozoic Sediments</td>
<td>Mooga Sandstone, Gubberamunda Sandstone, Springbok</td>
<td>Identified in the UWIR as requiring monitoring due to the high ecological value and/or hydrogeological uncertainty associated with the spring</td>
<td>Yes</td>
</tr>
<tr>
<td>Spring complex number</td>
<td>Spring complex name</td>
<td>Vent number(s)</td>
<td>Most likely source aquifer (OGIA, 2013a)</td>
<td>Impacted in source aquifer or other underlying formation?</td>
<td>Risk assessment notes</td>
<td>At risk of cumulative impacts</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>--</td>
<td>--</td>
<td>-----------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>586</td>
<td>Boxvale</td>
<td>nv437</td>
<td>Evergreen Formation (Boxvale Sandstone)</td>
<td>Bandanna Formation</td>
<td>Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>587</td>
<td>Timor</td>
<td>x436</td>
<td>Hutton Sandstone</td>
<td>Precipice Sandstone, Clematis Sandstone, Bandanna Formation</td>
<td>Hydrogeological assessment indicates the underlying impacted formations are unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>591</td>
<td>Yebna 2</td>
<td>534</td>
<td>Evergreen Formation, Precipice Sandstone</td>
<td>Source aquifer</td>
<td>Source aquifer nominated in OGIA dataset impacted under the EIS scenario Monitored by Santos GLNG in accordance with UWIR or JIP requirements A spring impact mitigation strategy has been developed by Santos GLNG in accordance with the requirements of the UWIR</td>
<td>Yes</td>
</tr>
<tr>
<td>592</td>
<td>Abyss</td>
<td>286, 286.1, 286.2, 286.3, 682, 716</td>
<td>Hutton Sandstone</td>
<td>Precipice Sandstone, Clematis Sandstone, Bandanna Formation</td>
<td>Identified in the UWIR as requiring monitoring due to the high ecological value and/or hydrogeological uncertainty associated with the spring Monitored by Santos GLNG in accordance with UWIR or JIP requirements</td>
<td>Yes</td>
</tr>
<tr>
<td>593</td>
<td>Cockatoo3</td>
<td>685</td>
<td>Precipice Sandstone</td>
<td>Bandanna Formation</td>
<td>KCB (2012b) indicates Bandanna Formation is unlikely to be the source aquifer, so the risk of impacts due to the EIS Scenario is negligible</td>
<td>No</td>
</tr>
<tr>
<td>594</td>
<td>Elgin2</td>
<td>540</td>
<td>Tertiary Basalt, Clematis Sandstone</td>
<td>Bandanna Formation</td>
<td>Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>605</td>
<td>Kangaroo Creek</td>
<td>nv717, nv718, nv719</td>
<td>Cainozoic Sediments, Springbok</td>
<td>Source aquifer</td>
<td>Source aquifer nominated in OGIA dataset impacted under the EIS scenario</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 7.6 Watercourse springs at risk of depressurisation impacts in the Surat CMA under the EIS scenario

<table>
<thead>
<tr>
<th>Site number</th>
<th>River/Reach</th>
<th>Most likely source aquifer (OGIA, 2013a)</th>
<th>Impacted in source aquifer or other underlying formation?</th>
<th>Risk assessment notes</th>
<th>At risk of cumulative impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>W6</td>
<td>Bethecurriba Creek</td>
<td>Kumbarilla Beds</td>
<td>Walloon Coal Measures, Hutton Sandstone</td>
<td>Hydrogeological assessment indicates the underlying impacted formations are unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>W7</td>
<td>Bethecurriba Creek</td>
<td>Kumbarilla Beds</td>
<td>Walloon Coal Measures, Hutton Sandstone</td>
<td>Hydrogeological assessment indicates the underlying impacted formations are unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>W10</td>
<td>Blyth Creek</td>
<td>Mooga Sandstone, Gubberamunda Sandstone</td>
<td>Source aquifers</td>
<td>Source aquifer nominated in OGIA dataset impacted under the EIS scenario</td>
<td>Yes</td>
</tr>
<tr>
<td>W14</td>
<td>Bungaban Creek</td>
<td>Hutton Sandstone</td>
<td>Source aquifer</td>
<td>Source aquifer nominated in OGIA dataset impacted under the EIS scenario</td>
<td>Yes</td>
</tr>
<tr>
<td>W15</td>
<td>Bungaban Creek (North)</td>
<td>Hutton Sandstone</td>
<td>Source aquifer</td>
<td>Source aquifer nominated in OGIA dataset impacted under the EIS scenario</td>
<td>Yes</td>
</tr>
<tr>
<td>W16</td>
<td>Bungeworgorai Creek</td>
<td>Gubberamunda Sandstone</td>
<td>Source aquifer</td>
<td>Source aquifer nominated in OGIA dataset impacted under the EIS scenario</td>
<td>Yes</td>
</tr>
<tr>
<td>W17</td>
<td>Bungeworgorai Creek</td>
<td>Mooga Sandstone</td>
<td>Gubberamunda Sandstone, Springbok Sandstone, Walloon Coal Measures, Hutton Sandstone, Precipice</td>
<td>Hydrogeological assessment indicates the underlying impacted formations are unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
</tbody>
</table>

(1) **Bold** Environment Protection and Biodiversity Conservation (EPBC) Act 1999 listed springs, including communities of native species dependant on natural discharge of groundwater from the Great Artesian Basin and springs containing individual EPBC listed species.
<table>
<thead>
<tr>
<th>Site number</th>
<th>River/Reach</th>
<th>Most likely source aquifer (OGIA, 2013a)</th>
<th>Impacted in source aquifer or other underlying formation?</th>
<th>Risk assessment notes</th>
<th>At risk of cumulative impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>W18</td>
<td>Bungil Creek</td>
<td>Gubberamunda Sandstone</td>
<td>Source aquifer</td>
<td>Source aquifer nominated in OGIA dataset impacted under the EIS scenario</td>
<td>Yes</td>
</tr>
<tr>
<td>W19</td>
<td>Bungil Creek</td>
<td>Mooga Sandstone</td>
<td>Source aquifer</td>
<td>Source aquifer nominated in OGIA dataset impacted under the EIS scenario</td>
<td>Yes</td>
</tr>
<tr>
<td>W22</td>
<td>Carnarvon Creek</td>
<td>Precipice Sandstone</td>
<td>Bandanna Formation</td>
<td>Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>W26</td>
<td>Clematis Creek</td>
<td>Clematis Sandstone</td>
<td>Bandanna Formation</td>
<td>Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>W28</td>
<td>Cockatoo Creek</td>
<td>Precipice Sandstone</td>
<td>Bandanna Formation</td>
<td>Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>W29</td>
<td>Cockatoo Creek</td>
<td>Precipice Sandstone</td>
<td>Hutton Sandstone, Bandanna Formation</td>
<td>Hydrogeological assessment indicates the underlying impacted formations are unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>W35</td>
<td>Conciliation Creek</td>
<td>Clematis Sandstone</td>
<td>Bandanna Formation</td>
<td>Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>W39</td>
<td>Dawson River</td>
<td>Hutton Sandstone</td>
<td>Source aquifer</td>
<td>Source aquifer nominated in OGIA dataset impacted under the EIS scenario</td>
<td>Yes</td>
</tr>
<tr>
<td>W40</td>
<td>Dawson River (Central)</td>
<td>Precipice Sandstone</td>
<td>Source aquifer</td>
<td>Source aquifer nominated in OGIA dataset impacted under the EIS scenario</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The UWIR inaccurately lists Santos GLNG as the responsible tenure holder for this spring, which actually falls on another proponent's tenure.
<table>
<thead>
<tr>
<th>Site number</th>
<th>River/Reach</th>
<th>Most likely source aquifer (OGIA, 2013a)</th>
<th>Impacted in source aquifer or other underlying formation?</th>
<th>Risk assessment notes</th>
<th>At risk of cumulative impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>W42</td>
<td>Dawson River (NW)</td>
<td>Precipice Sandstone</td>
<td>Bandanna Formation</td>
<td>Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>W59</td>
<td>Eurombah Creek</td>
<td>Hutton Sandstone</td>
<td>Source aquifer</td>
<td>Source aquifer nominated in OGIA dataset impacted under the EIS scenario</td>
<td>Yes</td>
</tr>
<tr>
<td>W76</td>
<td>Horse Creek (East Branch)</td>
<td>Gubberamunda Sandstone</td>
<td>Source aquifer</td>
<td>Source aquifer nominated in OGIA dataset impacted under the EIS scenario</td>
<td>Yes</td>
</tr>
<tr>
<td>W77</td>
<td>Horse Creek (East Branch)</td>
<td>Mooga Sandstone, Gubberamunda Sandstone</td>
<td>Source aquifers</td>
<td>Source aquifer nominated in OGIA dataset impacted under the EIS scenario</td>
<td>Yes</td>
</tr>
<tr>
<td>W78</td>
<td>Horse Creek (East Branch)</td>
<td>Mooga Sandstone, Gubberamunda Sandstone</td>
<td>Source aquifers</td>
<td>Source aquifer nominated in OGIA dataset impacted under the EIS scenario</td>
<td>Yes</td>
</tr>
<tr>
<td>W79</td>
<td>Horse Creek (East Branch)</td>
<td>Mooga Sandstone, Gubberamunda Sandstone</td>
<td>Source aquifers</td>
<td>Source aquifer nominated in OGIA dataset impacted under the EIS scenario</td>
<td>Yes</td>
</tr>
<tr>
<td>W80</td>
<td>Hutton Creek</td>
<td>Hutton Sandstone</td>
<td>Precipice Formation, Clematis Sandstone, Bandanna Formation</td>
<td>Identified in the UWIR as requiring monitoring due to the high ecological value and/or hydrogeological uncertainty associated with the spring Monitored by Santos GLNG in accordance with UWIR or JIP requirements</td>
<td>Yes</td>
</tr>
<tr>
<td>W81</td>
<td>Hutton Creek</td>
<td>Hutton Sandstone</td>
<td>Precipice Formation, Clematis Sandstone, Bandanna Formation</td>
<td>Identified in the UWIR as requiring monitoring due to the high ecological value and/or hydrogeological uncertainty associated with the spring Monitored by Santos GLNG in accordance with UWIR or JIP requirements</td>
<td>Yes</td>
</tr>
<tr>
<td>Site number</td>
<td>River/Reach</td>
<td>Most likely source aquifer (OGIA, 2013a)</td>
<td>Impacted in source aquifer or other underlying formation?</td>
<td>Risk assessment notes</td>
<td>At risk of cumulative impacts</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>W82</td>
<td>Injune Creek</td>
<td>Hutton Sandstone</td>
<td>Precipice Formation, Clematis Sandstone, Bandanna Formation</td>
<td>Identified in the UWIR as requiring monitoring due to the high ecological value and/or hydrogeological uncertainty associated with the spring Monitored by Santos GLNG in accordance with UWIR or JIP requirements</td>
<td>Yes</td>
</tr>
<tr>
<td>W105</td>
<td>Maranoa River</td>
<td>Gubberamunda Sandstone</td>
<td>Springbok Sandstone, Walloon Coal Measures, Hutton Sandstone</td>
<td>Hydrogeological assessment indicates the underlying impacted formations are unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>W106</td>
<td>Maranoa River</td>
<td>Mooga Sandstone, Gubberamunda Sandstone</td>
<td>Springbok Sandstone, Walloon Coal Measures, Hutton Sandstone</td>
<td>Hydrogeological assessment indicates the underlying impacted formations are unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>W113</td>
<td>Mimosa Creek</td>
<td>Clematis Sandstone</td>
<td>Bandanna Formation</td>
<td>Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>W114</td>
<td>Mimosa Creek Tributary</td>
<td>Clematis Sandstone</td>
<td>Bandanna Formation</td>
<td>Hydrogeological assessment indicates the Bandanna Formation is unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>W122</td>
<td>Murri Murri Creek</td>
<td>Kumbarilla Beds</td>
<td>Springbok Sandstone, Walloon Coal Measures, Hutton Sandstone, Precipice Sandstone</td>
<td>Hydrogeological assessment indicates the underlying impacted formations are unlikely to be the source aquifer for the spring</td>
<td>No</td>
</tr>
<tr>
<td>W141</td>
<td>Robinson Creek</td>
<td>Hutton Sandstone</td>
<td>Source aquifer</td>
<td>Source aquifer nominated in OGIA dataset impacted under the EIS scenario</td>
<td>Yes</td>
</tr>
<tr>
<td>W160</td>
<td>Western Creek</td>
<td>Kumbarilla Beds</td>
<td>Source aquifer</td>
<td>Source aquifer nominated in OGIA dataset impacted under the EIS scenario Located closer to another proponent’s tenure</td>
<td>Yes</td>
</tr>
<tr>
<td>W164</td>
<td>Yuleba Creek</td>
<td>Mooga Sandstone</td>
<td>Source aquifer</td>
<td>Source aquifer nominated in OGIA dataset impacted under the EIS scenario</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Springs at risk of impacts within or near GFD Project tenures

Of the 13 spring complexes and 19 watercourse springs in the Surat CMA identified as being at risk of impacts due to cumulative development of gas under the EIS scenario, 8 spring complexes and 12 watercourse springs are located within or near GFD Project tenures (Figure 7.4). Tables 7.7 and 7.8 present predicted maximum depressurisation, year of maximum depressurisation, and year the 0.2 m trigger is exceeded for these springs under the EIS scenario.

The UWIR identified 6 spring complexes and 12 watercourse springs located within or near Santos GLNG tenure to be at risk of impacts. Two additional spring complexes (302 and 339) and one additional watercourse spring (W141) located within or near GFD Project tenures have been assessed to be at risk of impacts under the EIS scenario.
Table 7.7 Spring complexes at risk of depressurisation impacts within or near GFD Project tenure

<table>
<thead>
<tr>
<th>Spring complex name</th>
<th>Spring complex number</th>
<th>Vent number(s)</th>
<th>Most likely source aquifer (OGIA, 2013a)</th>
<th>Impacted underlying formations where the source aquifer is not impacted*</th>
<th>Gas field</th>
<th>Summary of model predictions for the EIS Scenario</th>
<th>Maximum impact to source aquifer (m) (UWIR scenario maximum impact)</th>
<th>Year 0.2 m trigger is exceeded</th>
<th>Maximum impact^ (m)</th>
<th>Year of maximum impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponies</td>
<td>229</td>
<td>284</td>
<td>Hutton Sandstone</td>
<td>Precipice Sandstone, Clematis Sandstone, Bandanna Formation</td>
<td>Fairview</td>
<td><0.2</td>
<td>1999</td>
<td>508</td>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>Lucky Last</td>
<td>230</td>
<td>287,340, 686, 687, 687.1, 687.2, 687.3, 687.4, 687.5, 687.6, 688, 689</td>
<td>Evergreen Formation (Boxvale Sandstone), Precipice Sandstone</td>
<td>NA</td>
<td>Fairview</td>
<td>1.68 (1–1.5)</td>
<td>2016</td>
<td>1.68</td>
<td>2052</td>
<td></td>
</tr>
<tr>
<td>302</td>
<td>302</td>
<td>539, 539.1</td>
<td>Precipice Sandstone</td>
<td>Bandanna Formation</td>
<td>East of Arcadia</td>
<td><0.2</td>
<td>2093</td>
<td>26.3</td>
<td>2585</td>
<td></td>
</tr>
<tr>
<td>311</td>
<td>311</td>
<td>499, 500, 500.1, 535, 536, 536.1, 536.2, 537, 692, 693, 694, 695, 696, 697, 698, 699</td>
<td>Precipice Sandstone</td>
<td>NA</td>
<td>Fairview</td>
<td><0.2 (0.2–0.5)</td>
<td>NA</td>
<td><0.2</td>
<td>2054</td>
<td></td>
</tr>
<tr>
<td>Lonely Eddie</td>
<td>339</td>
<td>706, 707, 708, 709</td>
<td>Precipice Sandstone</td>
<td>NA</td>
<td>NW of Fairview</td>
<td><0.2</td>
<td>NA</td>
<td><0.2</td>
<td>2125</td>
<td></td>
</tr>
<tr>
<td>Spring Rock Creek</td>
<td>561</td>
<td>285</td>
<td>Evergreen Formation (Boxvale Sandstone), Precipice</td>
<td>NA</td>
<td>Fairview</td>
<td>1.89 (1–1.5)</td>
<td>2016</td>
<td>1.89</td>
<td>2054</td>
<td></td>
</tr>
</tbody>
</table>
Summary of model predictions for the EIS Scenario

<table>
<thead>
<tr>
<th>Spring complex name</th>
<th>Spring complex number</th>
<th>Vent number(s)</th>
<th>Most likely source aquifer (OGIA, 2013a)</th>
<th>Impacted underlying formations where the source aquifer is not impacted*</th>
<th>Gas field</th>
<th>Summary of model predictions for the EIS Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maximum impact to source aquifer (m) (UWIR scenario maximum impact)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maximum impact^ (m)</td>
</tr>
<tr>
<td>Sandstone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Year of maximum impact</td>
</tr>
<tr>
<td>Yebna 2</td>
<td>591</td>
<td>534</td>
<td>Evergreen Formation, Precipice Sandstone</td>
<td>NA</td>
<td>Fairview</td>
<td><0.2 (0.2–0.5)</td>
</tr>
<tr>
<td>Abyss</td>
<td>592</td>
<td>286, 286.1, 286.2, 286.3, 682, 716</td>
<td>Hutton Sandstone</td>
<td>Precipice Sandstone, Clematis Sandstone, Bandanna Formation</td>
<td>Fairview</td>
<td><0.2</td>
</tr>
</tbody>
</table>

1. NA – Not applicable
2. **Bold** Impacted under the EIS Scenario but not the UWIR Scenario
3. * Impacted underlying formations shown where the source aquifer is not impacted
4. ^ Impact assessment results are presented for the formation shown in italics
Table 7.8 Watercourse springs at risk of depressurisation impacts within or near GFD Project tenures

<table>
<thead>
<tr>
<th>Watercourse spring site number</th>
<th>Watercourse name</th>
<th>Most likely source aquifer (OGIA, 2013a)</th>
<th>Impacted underlying formations where the source aquifer is not impacted*</th>
<th>Gas field</th>
<th>Summary of model predictions for the EIS Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maximum impact to source aquifer (m)</td>
</tr>
<tr>
<td>W10</td>
<td>Blyth Creek</td>
<td>Mooga Sandstone, Gubberamunda Sandstone</td>
<td>NA</td>
<td>Roma</td>
<td>5.1</td>
</tr>
<tr>
<td>W14</td>
<td>Bungaban Creek</td>
<td>Hutton Sandstone</td>
<td>NA</td>
<td>Scotia</td>
<td>0.7</td>
</tr>
<tr>
<td>W15</td>
<td>Bungaban Creek (North)</td>
<td>Hutton Sandstone</td>
<td>NA</td>
<td>East of Scotia</td>
<td>0.7</td>
</tr>
<tr>
<td>W16</td>
<td>Bungeworgorai Creek</td>
<td>Gubberamunda Sandstone</td>
<td>NA</td>
<td>North West of Roma</td>
<td><0.2</td>
</tr>
<tr>
<td>W18</td>
<td>Bungil Creek</td>
<td>Gubberamunda Sandstone</td>
<td>NA</td>
<td>Roma</td>
<td><0.2</td>
</tr>
<tr>
<td>W19</td>
<td>Bungil Creek</td>
<td>Mooga Sandstone</td>
<td>NA</td>
<td>Roma</td>
<td>0.21</td>
</tr>
<tr>
<td>W40</td>
<td>Dawson River (Central)</td>
<td>Precipice Sandstone</td>
<td>NA</td>
<td>Fairview</td>
<td><0.2</td>
</tr>
<tr>
<td>W80</td>
<td>Hutton Creek</td>
<td>Hutton Sandstone</td>
<td>Precipice Formation, Clematis Sandstone, Bandanna Formation</td>
<td>West of Fairview</td>
<td><0.2</td>
</tr>
<tr>
<td>W81</td>
<td>Hutton Creek</td>
<td>Hutton Sandstone</td>
<td>Precipice Formation, Clematis Sandstone, Bandanna Formation</td>
<td>Fairview</td>
<td><0.2</td>
</tr>
<tr>
<td>Watercourse spring site number</td>
<td>Watercourse name</td>
<td>Most likely source aquifer (OGIA, 2013a)</td>
<td>Impacted underlying formations where the source aquifer is not impacted*</td>
<td>Gas field</td>
<td>Summary of model predictions for the EIS Scenario</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------</td>
<td>--</td>
<td>---</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sandstone, Bandanna Formation</td>
<td></td>
<td>Maximum impact to source aquifer (m)</td>
</tr>
<tr>
<td>W82</td>
<td>Injune Creek</td>
<td>Hutton Sandstone</td>
<td>Precipice Formation, Clematis Sandstone, Bandanna Formation</td>
<td>Fairview</td>
<td><0.2</td>
</tr>
<tr>
<td>W141</td>
<td>Robinson Creek</td>
<td>Hutton Sandstone</td>
<td>NA</td>
<td>West of Scotia</td>
<td><0.2</td>
</tr>
<tr>
<td>W164</td>
<td>Yuleba Creek</td>
<td>Mooga Sandstone</td>
<td>NA</td>
<td>Roma</td>
<td>0.54</td>
</tr>
</tbody>
</table>

(1) NA – Not applicable
(2) Bold Impacted under the EIS Scenario but not the UWIR Scenario.
(3) * Impacted underlying formations shown where the source aquifer is not impacted
(4) ^ Impact assessment results are presented for the formation shown in italics
8. Potential GFD Project impacts and management measures

A number of GFD Project activities, if undertaken without adequate management controls in place, have the potential to impact on the identified groundwater EVs. Section 7 of this report describes the modelled magnitude and extent of aquifer depressurisation and drawdown associated with the GFD Project, and also discusses the quantification of the potential impact on landholder bores and springs in the GFD Project area and the wider Surat CMA. This section (Section 8) describes qualitatively the other potential impacts to groundwater EVs due to depressurisation of coal seams and other GFD project activities. Mitigation and management measures are then identified and described, including those addressing the quantified impacts discussed in Section 7. Section 8 concludes with the significance assessment of the potential impacts and the residual impacts remaining after application of the mitigation and management measures.

8.1 Project activities and potential impacts

The key potential impacts to groundwater EVs associated with GFD Project activities are summarised in Table 8.1 and described in detail in the following sub-sections (Sub-sections 8.1.1 to 8.1.3). Sub-section 8.1.1 complements Section 7 and addresses other potential impacts related to coal seam depressurisation. Sub-section 8.1.2 deals with potential mechanisms to impact groundwater levels/pressures other than by coal seam depressurisation. Sub-section 8.1.3 assesses potential impacts to groundwater quality.

8.1.1 Potential impacts related to coal seam depressurisation

The extraction of coal seam water is an integral part of the production of natural gas and has the potential for long-term, regional scale aquifer depressurisation and other impacts. Coal seam depressurisation can result in:

- Decline in groundwater levels/pressure in bores and reduced supply to groundwater users.
- Reduced spring flow and loss or degradation of groundwater dependent ecosystems.
- Reduced stream base flow (watercourse spring flow) and loss or degradation of dependent aquatic ecosystems or loss or reduction of supply to downstream surface water users.
- Subsidence, altering groundwater flow and aquifer storage.
- Subsidence, causing ground surface displacement and altering surface water flow paths.

The impacts of depressurisation of the coal seams on bores and springs (including due to induced flow between aquifers) have been assessed quantitatively using numerical groundwater modelling. The modelling approach and impact assessment results are detailed in Section 7.

Subsidence

The risk of subsidence impacts to groundwater EVs due to coal seam depressurisation is very low. As groundwater is extracted and the coal seams are depressurised, an increase in vertical effective stress will occur, which can result in:
• Settlement of the overlying formations, altering groundwater flow paths and aquifer storage.
• Ground surface subsidence, altering surface water flow paths.

Although pressure reductions in the coal seams are expected to occur as a result of GFD Project operations (Section 7.3.1), the risk of significant subsidence of the land surface is very low because:

• The pressure reductions are predicted to occur in formations comprising consolidated rock.
• The greatest pressure reductions are predicted to occur at depths of several hundred metres or more below the surface.

Subsidence modelling undertaken for the current approved Santos GLNG activities indicate that for an average reduction in pressure of 700 m of head in the Walloon Coal Measures, the calculated subsidence in the Walloon Coal Measures is 0.28 m. For an average reduction in pressure of 1,000 m of head in the Bandanna Formation, the calculated subsidence in the Bandanna Formation is 0.15 m. At the surface, the calculated subsidence is considerably lower again. The modelling predicted maximum differential settlements at the surface of 0.06 m over a distance of 1.5 km for the Roma gas field, and 0.045 m over a distance of 3 km for the Arcadia and Fairview gas fields. Settlements of this scale are too small to cause changes to surface water or groundwater flow paths and as a result, no impact to groundwater EVs is expected (Santos GLNG, 2013d).

8.1.2 Potential impacts on groundwater levels related to other project activities

Without adequate controls in place construction, operation, decommissioning and rehabilitation of other project components of the gas field development may involve work with the potential to impact on groundwater levels/pressures in ways other than by depressurisation of coal seams. These components include:

• Production wells
• Fluid injection wells, monitoring bores and potentially underground gas storage wells
• Gas and water gathering lines
• Gas and water transmission pipelines (within or between tenures and gas fields)
• Gas compression and treatment facilities
• Water storage and management facilities
• Access roads and tracks
• Accommodation facilities and associated services (e.g. sewage treatment)
• Maintenance facilities, workshops, construction support, warehousing and administration buildings
• Utilities such as water and power generation and supply (overhead and/or underground)
• Laydown, stockpile and storage areas
• Borrow pits and quarries
• Communications.

Drilling and construction of wells

The drilling, construction, operation, maintenance and decommissioning of production wells, as well as the construction of re-injection wells, water supply bores and monitoring bores, is required for production of natural gas from coal seams. The wells to be constructed for the GFD Project will intersect multiple hydrogeological units and although the likelihood is considered remote with adequate management controls
in place, there is the potential for long-term, localised depressurisation of aquifers to occur through the following:

- Without adequate controls in place constructed wells can create a connection between previously isolated aquifers, inducing vertical leakage of groundwater within the borehole. This can affect water levels in nearby bores and spring flow, in turn affecting groundwater users and ecosystems dependent on springs.

- Without adequate controls management of artesian flow (where encountered) can lead to uncontrolled flow of groundwater at the surface. Groundwater level data from DNRM monitoring bores indicate that the Gubberamunda Sandstone, Injune Creek Group and Hutton Sandstone aquifers may be artesian in parts of the study area. Uncontrolled artesian flow can reduce pressure in aquifers and adversely affect water levels in nearby bores.

Hydraulic fracturing

Hydraulic fracturing, or coal seam stimulation, is a process used to improve the efficiency of natural gas extraction from coal seams. Hydraulic fracturing is not used for all wells and most wells drilled to date in Queensland have not been fracture stimulated. Hydraulic fracturing is generally, although not exclusively, used in areas where the coal seams have lower permeability. By improving the production efficiency, it potentially reduces the number of required wells to deliver the required rate of gas production.

In the hydraulic fracturing process, fluid is pumped down a well and then into the coal seams through small holes or perforations in the steel casing. The fluid is pumped at sufficient pressure to open small passageways into the coal seam and interconnect the naturally occurring fractures or cleats. Once the coal seam has been fractured, sand size particles (known as a propant) are placed by the fluid to hold open (prop open) the fracture connections. The fluid used in the stimulation process is then allowed to flow back into the well and is pumped to the surface.

The hydraulic fracturing process has the potential to impact groundwater levels or pressures by creating or enhancing a pathway between the coal seam and an aquifer. The likelihood of this occurring is considered to be low. The hydraulic fracturing process is engineered and designed to ensure that fracturing remains within the target coal seam, thus preventing the formation of new pathways to aquifers. Fractures created during the hydraulic stimulation process generally are of the order of several millimetres wide and may propagate many metres horizontally away from the well.

Shallow subsurface activities

Other GFD Project components with potential to impact on groundwater levels and pressures are the ancillary infrastructure activities such as installation of borrow pits, buried pipelines and storage dams. The disturbance created by these activities is generally the product of excavation and is restricted to within several metres of the surface. At these depths, aquifers are limited in extent, almost always unconfined and any depressurisation due to excavation activities is likely to be negligible.

8.1.3 Changes to water quality

A number of GFD Project activities have the potential to lead to changes in groundwater quality, including:

- Drilling and construction of production wells, re-injection wells, water supply bores and monitoring bores
- Groundwater extraction for gas production
- Hydraulic fracturing
- Storage of coal seam water
- Brine management and injection
Managed Aquifer Recharge
Beneficial use for irrigation or stock watering
Surface activities.

Degradation of groundwater quality can lead to:

- Loss or degradation of springs or other GDEs dependent on affected aquifers
- Degradation of the beneficial use of groundwater supplies
- Degradation of the beneficial use of surface water supplies (where watercourse springs are affected).

Drilling and construction of wells

The drilling, construction, operation, maintenance and decommissioning of production wells, as well as the construction of re-injection wells, water supply bores and monitoring bores, are required for production of gas. The wells to be constructed for the GFD Project will intersect multiple hydrogeological units and there is the potential for localised changes to the quality of groundwater to occur through the following:

- Without adequate controls constructed wells can create an artificial connection between previously isolated aquifers, inducing vertical leakage of groundwater within the borehole. This can change water quality.
- Without adequate controls management of artesian flow (where encountered) can lead to uncontrolled flow of groundwater at the surface. Uncontrolled artesian flows can adversely affect the quality of underlying shallow aquifers.

Groundwater extraction for gas production

Depressurisation of the coal seams for production of gas has the potential to induce flow between aquifers above and below the Walloon Coal Measures or Bandanna Formation. Although this can lead to changes in groundwater quality if aquifers of differing water quality become hydraulically connected, the results of numerical groundwater modelling indicate that depressurisation impacts are significantly reduced away from the coal seams, and the potential for increased vertical flux between aquifers is limited.

Hydraulic fracturing

As described in Section 8.1.2, the hydraulic fracturing process creates or enhances small fractures in the coal seam by pumping fluid and sand size particles into the coal seams through small holes or perforations in the well’s steel casing. Once the coal seam has been fractured, the fluid used in the stimulation process is then allowed to flow back into the well and is pumped to the surface.

Hydraulic fracturing fluid typically includes up to 99% water and sand, with about 1% of a range of additives in diluted quantities (EHP, 2014; USEPA, 2010). The additives assist in carrying and dispersing the sand into the coal seam. The materials used by Santos GLNG in the hydraulic fracturing process have been subjected to a risk assessment (Santos GLNG, 2014b) and are publicly disclosed on the Queensland Department of Environment and Heritage Protection (EHP) website. In accordance with Queensland regulations the materials used do not include benzene, toluene, ethylbenzene, xylene (BTEX) or polycyclic aromatic hydrocarbons (PAHs) compounds as additives.
The hydraulic fracturing process has the potential to impact groundwater through the subsurface transport of:

- Gas
- Remnant hydraulic fracturing fluids which have not been removed during the flowback process or by subsequent coal seam water extraction by production wells.

Transport of gas and remnant hydraulic fracturing fluids have the potential to impact water quality within the target coal seams and hydrogeological units connected to them. This may subsequently affect the water quality of landholder water supplies and springs (if present). The transport of gas and fluids from the coal seams may occur along faults or fractures/unconformities within the rock, or as a result of failures in the casing or seals of production wells.

The results of groundwater modelling indicate that the coal seams have limited connectivity with the adjacent aquifers. The majority of gas and fracturing fluid transport is therefore likely to occur within the target coal seams themselves. The hydraulic fracturing process is designed to ensure that fracturing remains within the target seam, thus preventing the formation of new pathways to other aquifers.

Impacts on groundwater quality, restricted to the Bandanna Formation in the northern area and the Walloon Coal Measures in the central and southern areas, may occur. The effects are expected to be localised within the target coal formations and within the GFD Project tenures. There may be impacts to springs where the coal seam is the source aquifer, or to groundwater users taking groundwater from the coal seams, however most of the fluids are removed during flowback and subsequent gas production.

Storage of coal seam water

The water extracted from coal seams in the study area is likely to be of variable quality and there is potential for the salinity of this water to be higher than shallow aquifers and surface water bodies in the area.

Coal seam water has the potential to impact on water quality in shallow aquifers through seepage from storage dams. The potential for this to occur is limited as storage dams will be constructed and operated in accordance with the EHP guidelines for the management of regulated dams (EHP, 2012b).

Brine management and injection

The quality of water extracted from coal seams will determine the management options for its beneficial use or disposal in accordance with the Coal Seam Gas Water Management Policy (EHP, 2012a). If the management of the water extracted from coal seams requires treatment such as desalination (e.g. using reverse osmosis technology), this will result in the generation of a concentrated effluent or brine from the process.

The management and injection of brine and disposal of solid salt has the potential to impact groundwater quality through:

- Seepage of brine from storage dams to shallow aquifers
- Leakage from licenced waste disposal facilities where salts are disposed
- Cross-flow of GAB aquifers due to poorly constructed injection wells or failure of injection wells due to corrosion.

The management of brine and/or solid salt will be in accordance with the Coal Seam Gas Water Management Policy (EHP, 2012a) and approval conditions. Considered management options include:

- Commercial salt production where practicable including collaboration with other proponents.
• Brine injection into selected deep saline aquifers. Santos GLNG currently has approval to inject brine into the Timbury Hills Formation in the Fairview Gas Field and is currently undertaking feasibility studies for injection into the Timbury Hills Formation in the Roma Gas field.

• Crystallisation to form solid salt for disposal into a licensed waste disposal facility.

Managed aquifer recharge

Managed aquifer recharge (MAR) is currently being considered for the Gubberamunda Sandstone aquifer near Roma and across other project areas. MAR involves the injection of treated coal seam water into aquifers.

The injection water proposed for the MAR scheme near Roma has a TDS of approximately 325 mg/L, which equates to an electrical conductivity of approximately 500 µS/cm. This is substantially lower (i.e. better quality) than the average electrical conductivity in the receiving Gubberamunda Sandstone aquifer, which is approximately 1,284 µS/cm (see Section 5.7.3). The MAR scheme proposed for the Gubberamunda Sandstone will therefore have a positive impact on groundwater pressure and quality.

Beneficial reuse for irrigation and stock watering

Options for the beneficial use of coal seam water include irrigation and stock watering. Over-irrigation using coal seam water has the potential to cause localised impact to shallow groundwater resources and impacts to nearby groundwater users and springs or other GDEs if not managed in accordance with regulatory water quality limits.

Surface activities

The construction and decommissioning of ancillary infrastructure where there is some component of excavation (such as borrow pits, buried pipelines and storage dams) without adequate controls in place has the potential to impact shallow aquifers through fuel leaks and spills. Potential impacts will be restricted to areas where groundwater is shallow or the water table is intersected, and will be short-term and localised.

Fuel spills, during construction and decommissioning activities, can leak into the underlying hydrogeological unit and impact the water quality of shallow aquifers. Without adequate controls in place and the presence of a flow pathway this has the potential to cause localised impacts to nearby shallow aquifers.

8.1.4 Summary

The potential impacts to groundwater EVs associated with GFD Project activities are summarised in Table 8.1.
Table 8.1 Potential impacts associated with GFD Project activities

<table>
<thead>
<tr>
<th>Potential impacts</th>
<th>Construction phase activities</th>
<th>Operations phase activities</th>
<th>Decommissioning and rehabilitation phase activities</th>
<th>Applicable management plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced spring flow and loss or degradation of dependent ecosystems (including EPBC listed springs).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced stream baseflow (watercourse spring flow) and loss or degradation of dependent aquatic ecosystems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subsidence, causing ground surface displacement and altering surface water flow paths.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential impacts</td>
<td>Construction phase activities</td>
<td>Operations phase activities</td>
<td>Decommissioning and rehabilitation phase activities</td>
<td>Applicable management plans</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>---</td>
<td>----------------------------</td>
</tr>
</tbody>
</table>
8.2 Mitigation and management measures

The mitigation and management measures identified for reducing the significance of potential impacts on groundwater EVs are based on the existing measures contained within the approved environmental management framework that Santos GLNG has previously developed and implemented for the GLNG Project. Applying the same mitigation and management measures from the GLNG Project to the GFD Project will ensure a consistent approach by construction and operational personnel and a common understanding for both regulators and the community of the measures to be applied and that the required outcomes are achieved. A summary of the Santos GLNG management plans currently in place is provided in Table 8.2. An overview of the key management measures to be applied for project activities to effectively manage potential impacts on groundwater EVs is provided in Sections 8.2.1 to 8.2.9.
Table 8.2 Santos GLNG management plans

<table>
<thead>
<tr>
<th>Management plan</th>
<th>Key provisions</th>
</tr>
</thead>
</table>
| **GFD Project Environmental Protocol for Constraints Planning and Field Development (Constraints Protocol)** | The Constraints protocol applies to all gas field related activities. The scope of the Constraints protocol is to:
 - Enable Santos GLNG to comply with all relevant State and Federal statutory approvals and legislation
 - Support Santos GLNG’s environmental policies and the General Environmental Duty (GED) as outlined in the Environmental Protection Act 1994 (Qld) (EP Act)
 - Promote the avoidance, minimisation, mitigation and management of direct and indirect adverse environmental impacts associated with land disturbances
 - Minimise cumulative impacts on environmental values.
 The Constraints Protocol provides a framework to guide placement of infrastructure and adopts the following management principles:
 - Avoidance — avoiding direct and indirect impacts
 - Minimisation — minimise potential impacts
 - Mitigation — implement mitigation and management measures
 - Remediation and rehabilitation — actively remediate and rehabilitate impacted areas
 - Offset — offset residual adverse impacts in accordance with regulatory requirements.
 The Constraints Protocol enables the systematic identification and assessment of environmental values and the application of development constraints to effectively avoid and/or manage environmental impacts. |
| **Water Resource Management Plan (WRMP)** | The WRMP has been developed to proactively detail how Santos GLNG manages and monitors potential adverse impacts to water resources, recently defined as a matter of national environmental significance.
 The WRMP includes the following management plans:
 - Hydraulic connectivity characterisation
 - Joint Industry Plan for EPBC Act listed springs
 - Evaluation of Prevention or Mitigation Options for Fairview Springs
 - Stimulation Impact Monitoring Program
 - Ground Deformation Monitoring and Management Plan
 - Hydraulic Fracturing Risk Assessment: Compendium of Assessed Fluid Systems
 - Dawson River Discharge Scheme Receiving Environment Monitoring Program. |
| **Coal Seam Water Management Strategy (CWMS)** | The CWMS outlines the overarching approach to managing coal seam water. The strategy prioritises the beneficial use of coal seam water where practicable, while avoiding, minimising and mitigating environmental impacts in accordance with the relevant regulatory framework. |
Management plan

<table>
<thead>
<tr>
<th>Key provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draft Environmental Management Plan (Draft EM Plan)</td>
</tr>
<tr>
<td>The Draft EM Plan identifies the environmental values potentially affected by the GFD Project and proposes measures to manage the risk of potential adverse impact to these environmental values. The Draft EM Plan comprises:</td>
</tr>
<tr>
<td>- Environmental values potentially affected by the GFD Project</td>
</tr>
<tr>
<td>- Environmental management objectives and associated management measures</td>
</tr>
<tr>
<td>- Environmental monitoring and reporting</td>
</tr>
<tr>
<td>- Coal seam water management</td>
</tr>
<tr>
<td>- Proposed conditions.</td>
</tr>
<tr>
<td>Hydraulic Fracturing Risk Assessment: Compendium of Assessed Fluid Systems</td>
</tr>
<tr>
<td>The Hydraulic Fracturing Risk Assessment report synthesises the hydraulic fracturing risk assessments completed on various hydraulic fracturing fluids and provides a framework for including new fluid systems within the risk assessment document.</td>
</tr>
<tr>
<td>The body of the report provides generalised information, including the geology and hydrogeology of the area, risk assessment methodologies (qualitative and quantitative) and a high level understanding of current results. The appendices include risk assessments of individual hydraulic fracturing fluid systems.</td>
</tr>
<tr>
<td>Contingency Plan for Emergency Environmental Incidents</td>
</tr>
<tr>
<td>The Contingency Plan details the management practices in place within Santos GLNG to minimise environmental harm during an emergency environmental incident. The plan identifies potential incidents, and provides response actions, including escalation, communication, reporting and monitoring.</td>
</tr>
<tr>
<td>Land Release Management Plan</td>
</tr>
<tr>
<td>The LRMP addresses the management of releases of water to land in Santos GLNG’s gas fields, including:</td>
</tr>
<tr>
<td>- Coal seam water use for irrigation, construction and operations purposes</td>
</tr>
<tr>
<td>- Treated sewage effluent releases to land</td>
</tr>
<tr>
<td>- Use of treated sewage effluent for construction and operational purposes</td>
</tr>
<tr>
<td>- Low point drain water releases to land</td>
</tr>
<tr>
<td>- Hydrostatic test water releases to land.</td>
</tr>
<tr>
<td>The document includes the principles, methods and controls to effectively manage and minimise the risk of environmental harm being caused by release of water to land.</td>
</tr>
<tr>
<td>Underground Water Impact Report for the Surat Cumulative Management Area</td>
</tr>
<tr>
<td>Santos GLNG will comply with the requirements of the Surat Cumulative Management Area (CMA) Underground Water Impact Report (UWIR) which include:</td>
</tr>
<tr>
<td>- Groundwater monitoring in accordance with the Water Monitoring Strategy</td>
</tr>
<tr>
<td>- Development of a Spring Impact Mitigation Strategy for specified springs</td>
</tr>
<tr>
<td>- Spring monitoring in accordance with the Spring Monitoring Program</td>
</tr>
<tr>
<td>Management plan</td>
</tr>
<tr>
<td>--</td>
</tr>
</tbody>
</table>
| **Joint-Industry Plan for an Early Warning System for EPBC Springs Quality Plan (EWS Plan)** | • Conducting bore assessments and entering into make good agreements with specified landholders
• Developing and implementing a Baseline Assessment Plan.

The Joint Industry Plan has been collaboratively developed by Santos GLNG, Origin Energy and Queensland Gas Company (the Proponents).
The objectives of the Joint Industry Plan are to:
• Summarise the monitoring requirements that have been requested of the proponents in the Surat Underground Water Impact Report for the Surat Cumulative Management Area (QWC, 2012a) and in the proponents’ approval conditions by the Department of the Environment.
• Propose an Early Warning System monitoring network and escalating levels of triggers to manage EPBC Act listed springs from adverse impacts associated with coal seam water extraction.
• Demonstrate that the proponents will endeavour to identify potential adverse impact early and adequately respond to prevent adverse impact to EPBC Act listed springs.
• Identify which proponent is responsible for management actions for each spring.
• Demonstrate the proponents’ commitments to meet the requirements of the EPBC Act approval. |
| **Ground Deformation Monitoring and Management Plan (GDMMP)** | The GDMMP details how Santos GLNG monitors and manages the risk from subsidence across its tenures. The plan includes monitoring methodology, exceedance management and response, and reporting requirements. |
| **Stimulation Impact Monitoring Program** | The plan was developed to provide a general description of the stimulation activities to be conducted by Santos GLNG, the regulatory requirements pertinent to stimulation monitoring, as well as the practices and procedures that comprise the monitoring program. |
8.2.1 Groundwater extraction for gas production

Groundwater monitoring will provide a mechanism for early identification of potential depressurisation impacts due to groundwater extraction for gas production and will inform the measures required to be implemented to avoid or minimise adverse impacts on groundwater users and springs. Details of Santos GLNG’s groundwater monitoring program for the GFD Project are provided in Section 9.

Bore impact management measures

The Water Act requires petroleum and gas companies to make good impairment to the adequacy of water supply from bores resulting from their water extraction. Petroleum tenure holders must carry out a bore assessment and enter into a make good agreement with the owner of bores in the immediately affected area (IAA), the area within which water levels are predicted by a UWIR to decline by more than 5 m within three years.

The UWIR assigns Santos GLNG as responsible for impacts to one bore located in the IAA. Santos GLNG has completed a bore assessment and entered into a make good agreement with the owner of this bore. The agreement specifies the measures to be implemented to minimise the impacts to the affected bore owner. Measures which may be considered for make good agreements include:

- Deepening of bores and/or pumps to increase available drawdown.
- Subsidising increased pumping costs.
- Replacing pumps.
- Replacing/relocating bores.
- Constructing additional bores.
- Increasing water storage capacity.
- Treating water to mitigate changes in water quality.
- Providing alternative water sources.

The predicted changes in depressurisation due to the proposed GFD Project will not result in additional impacts to landholder bores before 2015, as the proposed additional production wells are not scheduled to start production until after that date. This means the current IAA will not change under the GFD Project and there are no additional requirements for Santos GLNG to undertake bore assessments or enter into make good agreements with bore owners. Santos GLNG will comply with requirements for bore assessments and make good agreements identified in the subsequent UWIR.

Through Santos GLNG’s groundwater monitoring program, potential impacts on private bores will be identified before the impacts become material. Where monitoring indicates that water extraction by Santos GLNG is affecting, or has the potential to affect supply from an existing bore, then Santos GLNG will undertake a bore assessment and enter into a make good agreement with the bore owner.

The Water Act also requires petroleum tenure holders to carry out baseline assessments of water bores on their tenures before production commences. A baseline assessment is an assessment of a private bore to obtain information about the bore condition and performance and baseline water levels and quality. The objective of the baseline assessments is to support the settling of make good agreements should they be required in the future. Details of Santos GLNG’s baseline assessment program are provided in Section 9.1.2.

Spring Impact Mitigation Strategy

The UWIR assigns Santos GLNG as the tenure holder responsible for preparing Spring Impact Mitigation Strategies for three spring vent complexes in the Surat CMA: Lucky Last (230), Spring Rock Creek (561),
and 311/Yebna 2 (311/591). The UWIR requires that investigations be undertaken to assess potential options to prevent or mitigate predicted impacts to EVs at each site. At this stage, Spring Impact Mitigation Strategies are not required to include actions to directly prevent or mitigate predicted impacts on springs. This is because detailed investigations are required to understand the risks posed to EVs and the conceptual hydrogeology before potential mitigation options and their effectiveness can be adequately evaluated.

The springs identified in the UWIR as requiring development of a Spring Impact Mitigation Strategy are those where an impact of more than 0.2 m is predicted in the source aquifer of the spring. The results of the numerical groundwater modelling undertaken for the GFD Project indicate there are no new spring complexes where an impact of more than 0.2 m is predicted in the source aquifer under the EIS Scenario compared to the UWIR Scenario. However, Santos GLNG may be required to prepare a Spring Impact Mitigation Strategy where drawdown impacts have increased under the EIS Scenario, such as for Spring Ridge (complex 506).

The UWIR identifies a range of potential mitigation measures where EVs at springs are found to be at risk. The applicability of these measures to Lucky Last, Spring Rock Creek and 311/Yebna 2 have been investigated by Santos GLNG and an Evaluation of Prevention or Mitigation Options Report (EPMOR) (Golder, 2014) has been prepared and submitted to the OGIA for consideration.

The EPMOR identifies the following management measures for Lucky Last, Spring Rock Creek and 311/Yebna 2:

- Avoidance options to control and prevent changes in groundwater levels before they reach the springs by injecting coal seam water of appropriate quality into the source aquifer or underlying coal seams or by surface infiltration.
- Mitigation options to prevent adverse impacts at the springs by infiltrating or injecting coal seam water of appropriate quality into the source aquifer at or close to the spring.

The mitigation options identified in the EPMOR will be implemented when risks to the EVs of a spring are imminent. A program of monitoring the aquifer systems has commenced to ensure that potential impacts to groundwater pressure in the source aquifers of springs and impact propagation are detected in advance of reaching the spring areas (refer to Section 9.1.3).

Management measures for EPBC Act springs

As a condition of the GLNG Project EPBC approval Santos GLNG, together with three other proponents in the Surat CMA, have developed a Joint Industry Plan (JIP) for a groundwater monitoring and management system to have no adverse impact to EPBC springs protected by the EPBC Act from the production of gas (Santos GLNG, 2013b). The plan is a requirement of Santos GLNG’s current approval under the EPBC Act and has been developed in consultation with Geoscience Australia, the Commonwealth Department of the Environment, and the Expert Panel for Major Coal Seam Gas Projects. The plan aligns with the spring monitoring and mitigation requirements in the UWIR. A summary of the key points of the plan are to establish:

- Consistent monitoring and management across the CMA to manage the risk of the impacts, combined with a defined network of monitoring bores for each proponent.
- Use of the UWIR cumulative model to assess the risk to the springs.
- To measure groundwater drawdown at locations and times prior to adverse impact to EPBC springs.
- Single proponent responsibility for EPBC springs aligning with the UWIR; and
- Alignment on exceedance response processes and timing.
The JIP establishes an Early Warning System (EWS) to provide adequate time for assessment and implementation of management measures prior to potential adverse impacts on the EVs of springs associated with an EPBC Act listing. The EWS involves the concept of impact propagation pathways and the use of groundwater level variations as an early warning proxy for impact to the ecosystem supported by the spring. A groundwater monitoring bore network that focuses on the primary source aquifers of springs associated with an EPBC Act listing (primarily the Hutton Sandstone and Precipice Sandstone) is currently being installed and includes:

- Early Warning Monitoring Installations (EWMI) close to the area of coal seam water extraction or between the extraction areas and the spring. These early warning bores are located to provide initial drawdown data, and secondary data in support of interpretation of observations made closer to springs.
- Trigger Monitoring Points (TMP) located within close proximity of the spring.

Under the JIP, Santos GLNG is responsible for the monitoring, management and mitigation of adverse impacts to Lucky Last (230), Yebna 2 (591) and Abyss (592) and must establish EWMIs and TMPs for these springs.

The JIP establishes drawdown triggers that instigate actions commensurate with increasing risk to springs associated with an EPBC Act listing:

- Investigation triggers – a nominated value that triggers an action such as data review, model review, increased monitoring frequency, increased monitoring parameters.
- Management/mitigation triggers – a nominated value at a TMP that triggers some action to be taken to prevent an impact occurring at a spring associated with an EPBC Act listing.

The monitoring and response plan associated with the investigation and management/mitigation triggers is presented in Figure 8.1. The JIP also establishes drawdown limits, a nominated value at a TMP that, if exceeded would result in a breach of the proponent’s EPBC Act approval conditions.

Further detail on springs monitoring undertaken for the JIP is provided in Section 9.1.3.
Figure 8.1 Monitoring and response plan for springs associated with an EPBC Act listing (Santos GLNG, 2013b)
Subsidence management measures

Potential risks to the integrity of aquifers due to subsidence associated with the proposed GFD Project are considered to be very low as the major pressure reductions are predicted to occur in formations comprising consolidated rock at depths of several hundred metres below the surface. This is supported by the results of subsidence modelling undertaken for the current approved Santos GLNG activities (Santos GLNG, 2013c).

Notwithstanding the above conclusions, ground deformation and water level monitoring will be carried out to verify the above assumptions and the assessed risk, as described in Section 9.1.4.

8.2.2 Construction of wells and shallow subsurface infrastructure

Measures to minimise impacts to groundwater levels/pressure and quality from the drilling, construction and decommissioning of production wells, injection wells, water supply bores and monitoring bores, include the following:

- In addition to Santos GLNG’s own design standards and robust safety procedures, the construction, operation and decommissioning of production wells will be in accordance with the Code of practice for constructing and abandoning gas wells and associated bores in Queensland (DNRM, 2013b) and the Code of practice for gas well head emissions detection and reporting (DEEDI, 2011). These standards require that production wells be lined with steel casing, which is cemented in place to isolate aquifers overlying the coal seam, and are pressure cemented to surface once they are no longer producing commercial quantities of gas.
- Well Integrity Plans will be developed for gas wells. These are risk management plans which evaluate and address potential risks to the environment for each well.
- DNRM is responsible for regulating gas production well construction, reviewing construction logs and periodically auditing drilling and construction procedures.
- Fuel or oil storage facilities will be contained within bunded (secondary containment) areas and accurate records kept of fuel, oil or chemical volumes stored on-site to allow regular quantity monitoring.
- The construction of water supply bores and monitoring bores will be in accordance with the Minimum Construction Requirements for Water Bores in Australia (National Water Commission, 2012).

Measures to minimise impacts to groundwater from shallow sub-surface activities, including the rehabilitation of borrow pits, laydown areas, buried pipelines and storage dams, are detailed in the Rehabilitation Management Plan (Santos GLNG, 2014e).

8.2.3 Operation of water supply bores

The impacts of water supply authorised under the Petroleum Act and the P&G Act are considered in Section 7 and will be managed in accordance with the requirements of the UWIR (outlined in Section 8.2.1).

Water supply not authorised under the Petroleum Act and the P&G Act will require a water licence under the Water Act. The water licence will be conditioned to protect nearby groundwater users and springs. The operation of water supply bores will be in accordance with the conditions on the relevant water licence.

8.2.4 Hydraulic fracturing

The risk of impacts to groundwater from hydraulic fracturing are expected to be minimal, however, the following controls will be implemented to ensure the risks remain minimal:

- Spill containment procedures will be implemented to prevent migration of chemicals into shallow groundwater systems.
Pressure tests of well casing and cement will be conducted prior to hydraulic fracturing to confirm the integrity of the well.

Chemicals will be subject to assessment through a Quantitative Risk Assessment prior to use.

Process design will aim to retain fluids within the target seam.

Flow back fluids will be appropriately contained, managed, recycled or disposed of in accordance with regulatory requirements.

Further detail is provided in the Hydraulic Fracturing Risk Assessment (Santos GLNG, 2014b).

8.2.5 Coal seam water management

Coal seam water management will be undertaken in accordance with Santos GLNG’s Coal Seam Water Management Strategy (Santos GLNG, 2014f) and Draft Environmental Management Plan (Santos GLNG, 2014g) which have been developed to meet the requirements of the Queensland Government’s Coal Seam Gas Water Management Policy (EHP, 2012a).

Coal seam water management dams will be designed in accordance with the requirements for regulated dams in the *Manual for Assessing Hazard Categories and Hydraulic Performance of Dams* (EHP, 2012b). Seepage into shallow groundwater is controlled using measures such as geosynthetic liners to limit the migration of fluids. Seepage monitoring will be undertaken to ensure effectiveness of the control measures (refer to Section 9.1.4).

8.2.6 Brine management and injection

To minimise the potential risk for seepage of brine into shallow groundwater, brine containment dams will be designed in accordance with the EHP guidelines for the management of regulated dams (EHP, 2012b). Seepage monitoring at brine dams is also undertaken in accordance with regulatory requirements.

Management of the risk of cross-contamination of GAB aquifers associated with brine injection and injection well failure will be undertaken in accordance with regulatory requirements. These requirements include management controls such as:

- Injection wells are designed, cased and cemented to manage the risk of movement of injection fluids into or between water resource aquifers. Injection wells are constructed according to the current standards applicable to water bore drilling activities under the Water Act. (i.e. *Minimum Construction Requirements for Water Bores in Australia* (National Water Commission, 2012)).
- Injection of brine is to occur in accordance with the regulatory quality criteria
- Injection monitoring is undertaken to:
 - record injection pressure, flow rate, and cumulative volume of the injection fluid
 - record annulus pressure
 - record standing volume of annulus fluid
 - incorporate pressure testing of packer, casing and cement
 - incorporate an annual packer isolation test.

An Injection Management Plan (IMP) is developed for each new injection well or scheme. The content of an IMP satisfies specific requirements stipulated in specific Environmental Authorities and must be approved by the regulatory authority before injection is authorised to proceed. Authority to inject requires injection to be undertaken in accordance with the IMP and encompasses operational and reporting requirements to further ensure the long-term management of the risk of cross contamination of aquifers from brine injection.
The coal seam water management section of the Draft Environmental Management Plan (Santos GLNG, 2014g) provides management options to ensure that the long-term management of brine occurs in a safe and environmentally and socially responsible manner and considers additional options for the management of brine which will be required as production of gas increases.

8.2.7 Managed Aquifer Recharge

MAR schemes will be developed in a safe and environmentally and socially responsible manner, in accordance with the EP Act and Water Supply (S&R) Act licence conditions.

As part of the MAR feasibility studies, Santos GLNG will undertake water quality testing and analysis to determine the quality of the groundwater in the receiving aquifer, as well as that of the source water. The quality of coal seam water will be managed and where required treated to match, or better, the quality of groundwater in the receiving aquifer. Treatment may include desalination of the water, de-oxygenation or chemical balancing to achieve the required regulatory water quality limits.

8.2.8 Beneficial reuse for irrigation and stock watering

To minimise impacts to groundwater quality in shallow aquifers due to beneficial reuse for irrigation and stock watering, the following measures will be implemented:

- Water quality will comply with regulatory limits relevant to the beneficial use.
- Irrigation operation procedures will be followed to ensure the quantity and quality of coal seam water is appropriate for the proposed receiving environment.
- Monitoring will be undertaken to ensure effectiveness of the measures and so that adaptive management approaches can be employed (refer to Section 9.1.4).

8.2.9 Surface activities

To minimise the potential risk of impacts of surface operations on shallow groundwater resources the storage and management of fuels and chemicals will occur in accordance with regulatory requirements. In the event of a spill or release the Contingency Plan for Emergency Environmental Incidents (Santos GLNG, 2013e) will be implemented.

The Contingency Plan for Emergency Environmental Incidents provides a framework for Santos GLNG to:

- Prepare for and respond to emergency environmental incidents
- Communicate with the appropriate parties in the event of emergency environmental incidents
- Investigate the cause of emergency environmental incidents that have occurred
- Implement remedial actions to reduce the likelihood of recurrence of similar emergency environmental incidents
- Develop procedures and plans for the management of emergency environmental incidents as required during the GFD Project lifetime.

In the event of a spill that could potentially impact shallow groundwater resources, the general response will be to:

- Evacuate non-essential personnel and eliminate sources of ignition
- Stop the source of the incident (e.g. spill) and coordinate shut down of relevant equipment, if possible
- Notify relevant parties including regulatory or emergency services as required and internally within Santos GLNG
Identify the material (if unknown) and identify personal protective equipment, hazards and response procedures using safety data sheets

- Contain/isolate released material using emergency response equipment and/or set up perimeter to isolate area
- Stabilise and neutralise spilt material, e.g. using absorbents
- Clean up released materials, spill response materials and any affected media
- Evaluate and document the incident
- Investigate and remediate if necessary.

8.3 Significance assessment

An assessment of the magnitude and significance of the potential impacts to EVs associated with GFD Project activities was conducted in accordance with the methodology outlined in Section 3.2.3 and is presented in Table 8.3. Table 8.3 also presents an assessment of the magnitude and significance of the residual impacts remaining after application of the mitigation and management measures in Section 8.2.

The assessment in Table 8.3 does not consider depressurisation impacts associated with the operation of production wells for the GFD Project as these are quantitatively assessed in Section 7 using the numerical groundwater modelling.
Table 8.3 Significance assessment

<table>
<thead>
<tr>
<th>Potential impacts</th>
<th>Phase</th>
<th>Pre-mitigated significance</th>
<th>Mitigation</th>
<th>Residual significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sensitivity of environmental value*</td>
<td>Magnitude of impact^</td>
<td>Significance</td>
</tr>
<tr>
<td>Aquifer depressurisation</td>
<td>Construction</td>
<td>Moderate</td>
<td>Low^</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Operations</td>
<td></td>
<td>Low^</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Decommissioning</td>
<td></td>
<td>Low^</td>
<td>Low</td>
</tr>
<tr>
<td>Reduced stream baseflow (watercourse spring flow) and loss or reduction of supply to downstream surface water users</td>
<td>Construction</td>
<td>Moderate</td>
<td>Low^</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Operations</td>
<td></td>
<td>Low^</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Decommissioning</td>
<td></td>
<td>Low^</td>
<td>Low</td>
</tr>
<tr>
<td>Reduced spring flow and loss or degradation of dependent ecosystems (including EPBC listed springs)</td>
<td>Construction</td>
<td>High</td>
<td>Moderate^</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Operations</td>
<td></td>
<td>Moderate^</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Decommissioning</td>
<td></td>
<td>Moderate^</td>
<td>High</td>
</tr>
<tr>
<td>Reduced stream baseflow (watercourse spring flow) and loss or</td>
<td>Construction</td>
<td>Moderate</td>
<td>Low^</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Operations</td>
<td></td>
<td>Low^</td>
<td>Low</td>
</tr>
<tr>
<td>Potential impacts</td>
<td>Phase</td>
<td>Pre-mitigated significance</td>
<td>Mitigation</td>
<td>Residual significance</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>---</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sensitivity of environmental value*</td>
<td>Magnitude of impact^</td>
<td>Significance</td>
</tr>
<tr>
<td>degradation of dependent aquatic ecosystems</td>
<td>Decommissioning</td>
<td>Low^</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Subsidence, altering groundwater flow paths and aquifer storage</td>
<td>Construction</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Operations</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Decommissioning</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Subsidence, causing ground surface displacement and altering surface water flow paths</td>
<td>Construction</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Operations</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Decommissioning</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Changes to water quality</td>
<td>Degradation of the beneficial use of groundwater supplies</td>
<td>Construction</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Operations</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Decommissioning</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Loss or degradation of ecosystems dependent on springs sourced from affected aquifers (including EPBC listed springs)</td>
<td>Construction</td>
<td>High</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Operations</td>
<td>Moderate</td>
<td>High</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Decommissioning</td>
<td>Low</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

1) ^ Highest sensitivity of environmental value in Table 6.10.
2) ^ Does not include impacts due to operation of production wells, which are addressed in Section 7.
9. Monitoring and reporting

9.1 Groundwater monitoring programs

Santos GLNG’s groundwater monitoring program to meet the requirements of environmental authorities granted under the EP Act is outlined in the Draft Environmental Management Plan (Draft EM Plan) (Santos GLNG, 2014g). Santos GLNG’s groundwater monitoring program to meet the requirements of the Water Act through the UWIR and Commonwealth Government under the EPBC Act is outlined in the Water Resource Management Plan (Santos GLNG, 2014c).

If approved, the proposed GFD Project development will be included in the impact assessment for the subsequent UWIR and the resulting monitoring and reporting requirements will be incorporated into relevant Santos GLNG monitoring programs.

9.1.1 Groundwater pressure and quality

Regional groundwater monitoring program

Since 2008, Santos GLNG has implemented and operated a regional groundwater monitoring program to establish background groundwater conditions and monitor potential impact to GAB aquifers resulting from gas production (Santos GLNG, 2014g). The program involves monitoring three types of infrastructure:

- Dedicated groundwater monitoring bores targeting specific aquifers, monitoring water pressure and water quality.
- Private bores identified through the baseline assessment program undertaken by Santos GLNG as suitable for groundwater quality and/or groundwater level monitoring. These bores have been selected as they target a single known aquifer. Some have been included in the Santos GLNG Farm Wellhead Telemetry program, which provides for continuous monitoring of water levels in the bores.
- Multi-level vibrating wire piezometers (VWP), or quartz or sapphire pressure gauges, measuring the pressure of the surrounding formation at their installed depth. Multi-level installations allow for monitoring of water levels in various units within the same borehole. The piezometers, in the case of VWPs, are cement grouted during construction therefore no water sample can be collected from VWPs.

The current network extends across Santos GLNG’s approved gas fields, as well as a number of the proposed GFD Project tenures. A summary of the current network, including target formation, is provided in Table 9.1. The locations of the groundwater monitoring installations are shown on Figure 9.1. The constructions of completed monitoring bores and vibrating wire piezometers are provided in Appendix E: Monitoring bore logs.

Table 9.1 Summary of regional groundwater monitoring locations

<table>
<thead>
<tr>
<th>Formation</th>
<th>Private bores (including telemetered farm bores)</th>
<th>Santos GLNG vibrating wire piezometers</th>
<th>Santos GLNG groundwater monitoring bores</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bungil Formation</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Mooga Sandstone</td>
<td>27</td>
<td>9</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>Orallo Formation</td>
<td>20</td>
<td>-</td>
<td>3</td>
<td>23</td>
</tr>
<tr>
<td>Gubberamunda Sandstone</td>
<td>14</td>
<td>15</td>
<td>14</td>
<td>43</td>
</tr>
</tbody>
</table>
Santos GLNG also uses data from DNRM monitoring bores installed within and adjacent to the GFD Project tenures. The locations of DNRM monitoring bores in the vicinity of GFD Project tenures are shown on Figure 9.1.

Further development of the regional groundwater monitoring network is ongoing to meet the requirements of the Water Monitoring Strategy in the UWIR for the Surat CMA (detailed below). Existing and currently planned groundwater monitoring in the vicinity of GFD Project tenures will provide an initial baseline as well as early warning of unexpected impacts, and will allow appropriate groundwater management actions to be taken to manage and mitigate potential adverse impacts. If indicated to be required following future updates to the UWIR, Santos GLNG’s regional groundwater monitoring network will be adapted to ensure appropriate monitoring for the GFD Project area.

Water Monitoring Strategy

The UWIR for the Surat CMA (QWC, 2012a) includes a Water Monitoring Strategy which requires petroleum tenure holders to:

- Install groundwater monitoring locations to form a regional groundwater monitoring network for the Surat CMA.
- Conduct ongoing monitoring and reporting of groundwater pressure and quality.
- Collect and report water production data from petroleum and gas wells and water quality and bottom hole pressure in selected wells.

Santos GLNG is currently installing the monitoring network required by the Water Monitoring Strategy, which includes 120 water pressure monitoring points and 24 water quality monitoring points in various formations of the Surat CMA (Table 9.2). Water quality parameters are required only at key locations, primarily to assist in understanding hydrogeological processes and establishing water quality trends in response to groundwater extraction. Santos GLNG’s implementation plan for installation of the network, including details of the locations that are already in place, are provided in Appendix F: Implementation Plan for UWIR Water Monitoring Program. Santos GLNG regularly submits updates of the implementation plan to the OGIA.
Table 9.2 Monitoring locations to meet UWIR Water Monitoring Strategy requirements

<table>
<thead>
<tr>
<th>UWIR target unit</th>
<th>Water pressure monitoring points</th>
<th>Water quality monitoring points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mooga Sandstone</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Orallo Formation</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Gubberamunda Sandstone</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>Westbourne Formation</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Springbok Sandstone</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Walloon Coal Measures</td>
<td>43</td>
<td>0</td>
</tr>
<tr>
<td>Hutton Sandstone</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Evergreen Formation (=Boxvale SST)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Precipice Sandstone</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>Clematis Sandstone</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Bandanna Formation</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>120</td>
<td>24</td>
</tr>
</tbody>
</table>

The Water Monitoring Strategy requires water level data to be collected at a minimum frequency of once a fortnight. For water quality monitoring points, field electrical conductivity and temperature are to be measured on a fortnightly basis and detailed laboratory analysis is to be undertaken annually for analytes including:

- Field parameters: pH, temperature, electrical conductivity, redox potential, free gas at wellhead (methane).
- Major ions: total alkalinity, carbonate, bicarbonate, calcium, magnesium, sodium, potassium, sulphate, chloride.
- Dissolved metals: As, Ba, B, Cd, Cr, Co, Cu, Fe, Hg, Mn, Ni, Pb, Se, Sr and Zn.
- Fluoride, total dissolved solids.
- Dissolved gas (methane).

More frequent water sampling for detailed laboratory analysis may be necessary if analysis of the trends in field parameters or water pressure suggests that a material shift in water quality could occur (QWC, 2012a).

Santos GLNG will comply with updates to the Water Monitoring Strategy that may be required by future updates to the UWIR.
9.1.2 Baseline assessments of landholder bores

A baseline assessment is an assessment of a private bore by a petroleum tenure holder to obtain information about the bore condition and performance and baseline water levels and quality. The information supports the settling of agreements between bore owners and petroleum tenure holders to make good impairment of bore supply caused by the extraction of groundwater during production of gas. The water level and quality information gathered by petroleum tenure holders also assists the OGIA with its ongoing assessment of the groundwater system (QWC, 2012a).

Section 397 of the Water Act requires petroleum tenure holders to carry out baseline assessments of water bores on their tenures before production commences. The baseline assessments must be carried out in accordance with a baseline assessment plan approved by EHP and the Guideline for Baseline Assessments.

Santos GLNG completed baseline assessments between 2009 and 2013, involving assessment of 793 bores associated with the Santos GLNG tenures (Golder, 2012b; URS, 2013c) (note: a higher number of bores has been reported in Golder (2012b) and URS (2013c) due to bores being visited on more than one occasion). Bores where baseline assessments have been completed are shown on Figure 9.2. Some of the landholder bores assessed have been included in the Santos GLNG Farm Wellhead Telemetry program, which provides ongoing monitoring of water levels in the bores. Santos GLNG will undertake additional baseline assessments if required in accordance with the Water Act.

The UWIR also requires that baseline assessments be undertaken for bores where an impact of 1 m or more is predicted within three years (the Baseline Assessment Area). The UWIR for the Surat CMA released in 2012 did not identify bores that are the responsibility of Santos GLNG within the Baseline Assessment Area. Santos GLNG will comply with requirements for baseline assessments in subsequent updates to the UWIR.
9.1.3 Springs monitoring

UWIR spring monitoring program

The UWIR for the Surat CMA (QWC, 2012a) requires petroleum tenure holders in the Surat CMA to monitor springs in accordance with the spring monitoring program. The spring monitoring program aims to collect information on springs above an aquifer that may at some future time be affected by water extraction for petroleum and gas activities. The objective of the spring monitoring program is to identify changes in the volume and chemistry of water flowing to a spring, and changes to the general character of springs, such that the potential for change to EVs at the spring can be assessed.

The locations and details of springs that are currently being monitored by Santos GLNG in accordance with the spring monitoring program are provided in Table 9.3 and Table 9.4. All of the UWIR springs monitoring sites are located within or nearby the Santos GLNG Fairview gas field (Figure 9.3). The UWIR inaccurately lists Santos GLNG as the responsible tenure holder for watercourse spring W39, which falls on another proponent’s tenure.

Table 9.3 Spring vents currently monitored by Santos GLNG

<table>
<thead>
<tr>
<th>Spring complex name</th>
<th>Spring complex number</th>
<th>Vent number(s)</th>
<th>Location of spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abyss</td>
<td>592</td>
<td>Selected: 286, 286.1, 286.2, 286.3, 682</td>
<td>On and off Santos GLNG tenure</td>
</tr>
<tr>
<td>Lucky Last</td>
<td>230</td>
<td>All: 287, 340, 686, 687, 687.1, 687.2, 687.3, 687.4, 687.5, 687.6, 688, 689</td>
<td>On Santos GLNG tenure</td>
</tr>
<tr>
<td>Ponies</td>
<td>229</td>
<td>All: 284</td>
<td>On Santos GLNG tenure</td>
</tr>
<tr>
<td>Spring Rock Creek</td>
<td>561</td>
<td>All: 285</td>
<td>On Santos GLNG tenure</td>
</tr>
<tr>
<td>Yebna 2</td>
<td>591</td>
<td>All: 534</td>
<td>On Santos GLNG tenure</td>
</tr>
<tr>
<td>311</td>
<td>311</td>
<td>Selected: 535, 536, 537, 704</td>
<td>On Santos GLNG tenure</td>
</tr>
</tbody>
</table>

Table 9.4 Watercourse springs currently monitored by Santos GLNG

<table>
<thead>
<tr>
<th>Watercourse spring site number</th>
<th>Start Latitude</th>
<th>Start Longitude</th>
<th>Finish Latitude</th>
<th>Finish Longitude</th>
<th>Location of watercourse spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>W40</td>
<td>-25.6795</td>
<td>149.1373</td>
<td>-25.6848</td>
<td>149.0665</td>
<td>On Santos GLNG tenure</td>
</tr>
<tr>
<td>W80</td>
<td>-25.7434</td>
<td>148.6857</td>
<td>-25.6977</td>
<td>148.4273</td>
<td>Off-tenure</td>
</tr>
<tr>
<td>W81*</td>
<td>-25.7127</td>
<td>149.0837</td>
<td>-25.7151</td>
<td>149.0283</td>
<td>On Santos GLNG tenure</td>
</tr>
<tr>
<td>W82*</td>
<td>-25.8038</td>
<td>148.7799</td>
<td>-25.8119</td>
<td>148.7327</td>
<td>On Santos GLNG tenure</td>
</tr>
</tbody>
</table>

1) * Field studies indicate these locations are dry and do not receive baseflow - ongoing monitoring may not be required
Early warning monitoring for EPBC Act listed springs

As a condition of the GLNG Project EPBC approval Santos GLNG is also implementing the commitments of the Joint Industry Plan (JIP) for the Monitoring and Protection of EPBC Springs for the GLNG Project. The JIP (Santos GLNG, 2013b) establishes an EWS that involves the use of groundwater level variations as a proxy for early warning of impact to the ecosystem supported by the spring. Santos GLNG is responsible for a number of installations across the Surat CMA, including installations monitoring EPBC Act listed springs located on Santos tenures. The network includes an EWMI close to the area of coal seam water extraction or between the extraction areas and the spring, as well as a TMP located within close proximity of the spring.

The springs that are currently being monitored by Santos GLNG in accordance with the JIP are shown on Figure 9.3 and listed in Table 9.3, Table 9.4 and Table 9.5. The JIP includes the monitoring of the springs on a quarterly basis to match the frequency in the UWIR. Groundwater monitoring bores of the EWS are monitored daily for water level and six-monthly for water quality. The first year of quarterly spring monitoring was initiated by Santos GLNG in February 2013 for its on-tenures springs, and a joint industry spring baseline monitoring period of one year commenced in October 2013. The baseline monitoring includes assessment of fauna, flora and macro-invertebrates and collection of samples for isotope analysis in addition to water quality.

<table>
<thead>
<tr>
<th>Spring complex name</th>
<th>Spring complex number</th>
<th>Vent number(s)</th>
<th>Location of spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elgin 2</td>
<td>594</td>
<td>All: 540</td>
<td>Off-tenure</td>
</tr>
</tbody>
</table>

A Springs Quality Plan (Santos GLNG, 2013c) has been developed by the proponents for EWS monitoring which standardises:

- Field procedures for springs and groundwater sampling.
- Field quality assurance/quality control (QA/QC) procedures.
- Data management processes.
- Data control processes.

Additional springs for monitoring

Numerical groundwater modelling results, and a risk-based assessment of the potential impacts of aquifer depressurisation on springs (Section 7.3.3), indicate that under the EIS Scenario, there are two spring complexes and eight watercourse springs located within or near Santos GLNG tenures that are not currently monitored and may potentially be impacted due to cumulative petroleum and gas development in the Surat CMA (Table 9.6 and Table 9.7).

If identified and included within future publications of the UWIR, Santos GLNG or another petroleum tenure holder may be required to conduct site visits to ground truth the additional potentially impacted springs and develop plans for ongoing monitoring, including the selection of representative vents from each complex for monitoring. The locations of the additional springs for potential future monitoring are shown on Figure 9.3.
Table 9.6 Additional spring complexes for potential future monitoring

<table>
<thead>
<tr>
<th>Spring complex name</th>
<th>Spring complex number</th>
<th>Vents to be considered for ongoing monitoring</th>
<th>Location of complex</th>
</tr>
</thead>
<tbody>
<tr>
<td>302</td>
<td>302</td>
<td>539, 539.1</td>
<td>Off-tenure</td>
</tr>
<tr>
<td>Lonely Eddie</td>
<td>339</td>
<td>706, 707, 708, 709</td>
<td>Off-tenure</td>
</tr>
</tbody>
</table>

Table 9.7 Additional watercourse springs for potential future monitoring

<table>
<thead>
<tr>
<th>Watercourse spring site number</th>
<th>Start Latitude</th>
<th>Start Longitude</th>
<th>Finish Latitude</th>
<th>Finish Longitude</th>
<th>Location of watercourse spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>W10</td>
<td>-26.4247</td>
<td>149.0838</td>
<td>-26.4733</td>
<td>149.0170</td>
<td>On Santos GLNG tenure</td>
</tr>
<tr>
<td>W14</td>
<td>-25.8366</td>
<td>150.0612</td>
<td>-25.9224</td>
<td>150.2350</td>
<td>On Santos GLNG tenure</td>
</tr>
<tr>
<td>W15</td>
<td>-25.9224</td>
<td>150.2350</td>
<td>-25.9036</td>
<td>150.2611</td>
<td>Off-tenure</td>
</tr>
<tr>
<td>W141</td>
<td>-25.4535</td>
<td>149.4793</td>
<td>-25.4337</td>
<td>149.3694</td>
<td>Off-tenure</td>
</tr>
<tr>
<td>W164</td>
<td>-26.3641</td>
<td>149.4379</td>
<td>-26.4723</td>
<td>149.4003</td>
<td>On Santos GLNG tenure</td>
</tr>
</tbody>
</table>

9.1.4 Other impact monitoring

Hydraulic fracturing

Santos GLNG undertakes monitoring prior to, and during, hydraulic fracturing activities in accordance with the Stimulation Impact Monitoring Plan (Santos GLNG, 2012). The Stimulation Impact Monitoring Plan requires that a baseline assessment of bores be completed prior to undertaking a stimulation activity to assess the quality of:

- Active landholders’ groundwater bores (subject to access being permitted by the landholder) in an aquifer that is within 200 metres above or below the target gas producing formation and is spatially located with a two kilometre radius from the location of the stimulation initiation point.
- Other bores that could potentially be adversely impacted by the stimulation activities in accordance with the findings of the risk assessment required by conditions.

Ongoing monitoring of the well where hydraulic stimulation occurs is also undertaken in accordance with regulatory requirements.

Subsidence monitoring

Santos GLNG currently conducts baseline and ongoing geodetic monitoring programs to quantify deformation at the land surface.
The monitoring is undertaken in partnership with QGC, Arrow and APLNG, by consultant Altamira Information. The monitoring involves the use of interferometric synthetic aperture radar (InSAR), a radar technology used in geodesy and remote sensing, to assess ground surface motion across the gas fields (including the GFD Project tenures). The baseline monitoring, undertaken between Q4 2011 and Q2 2012 prior to the significant development of gas, did not detect large scale ground deformation, although several areas with local patterns of deformation related to various natural or anthropogenic factors were detected (Altamira Information, 2012).

Santos GLNG’s plan for ongoing geodetic monitoring is detailed in the Ground Deformation Monitoring and Management Plan (Santos GLNG, 2013d). Santos GLNG, together with QGC, Arrow and APLNG, have engaged Altamira Information to collect satellite images every 24 to 48 days over a spatial coverage which includes the GFD Project tenures and the area of potential aquifer depressurisation identified in Section 7.3.1. The data is then processed using GIS software.

Dam seepage monitoring

Coal seam water dams are monitored in accordance with regulatory requirements to detect whether seepage is occurring from the dam.

Santos GLNG currently monitors 22 shallow groundwater monitoring wells in the vicinity of existing coal seam water dams (Santos GLNG, 2014g).

Irrigation program

Monitoring of irrigation programs for the GFD Project will be undertaken in accordance with regulatory requirements and EA conditions.

Groundwater monitoring undertaken for Santos GLNG’s current irrigation programs includes monitoring of groundwater levels and quality within and surrounding the irrigation areas. Santos GLNG currently use a groundwater monitoring network which includes a combination of automated sensors and manual sampling.

9.2 Trigger levels and exceedance response

Groundwater monitoring data is managed in the Santos GLNG EQuIS database, which facilitates data interpretation such as trend analysis and comparison of data against baseline information and trigger levels. Exceedance above trigger levels results in an automated alert. Continuous water pressure and water production data is managed in ENVAULT, and mirrored in the Santos GLNG in-house database, Historian. ENVAULT is an environmental data collection and presentation service provided by Greenspan.

Santos GLNG, in collaboration with APLNG and QGC, has developed a statistical methodology to enable removal of natural variability from the water pressure data sets. The methodology relies on statistical techniques to assist in the removal of non-gas effect. Santos GLNG is developing these techniques further by developing a method for estimation of, and subsequent removal of, localised and regional “non-gas” water pressure variations. The methodology also ensures compliance with the ANZECC (2000) and *Queensland Water Quality Guidelines* (2009).

9.2.1 Drawdown impacts to bores

The trigger levels defined in the Water Act with respect to water levels in landholder bores potentially affected by petroleum and gas activities are as follows:

- 5 metre drawdown for consolidated aquifers.
- 2 metre drawdown for unconsolidated aquifers.
In the event that a trigger level is exceeded and the bore owner has noticed a reduction in a bore’s performance to the extent that it is causing some difficulty, Santos GLNG will undertake a bore assessment to establish whether the bore is, or is likely to be, impacted (i.e. have an impaired capacity) by the extraction of groundwater associated with petroleum and gas operations. A bore assessment may include the following response actions:

- Identify specific bores affected.
- Repeat measurement to confirm extent of drawdown and available water column.
- Establish whether the trigger level exceedance has resulted in impairment of the affected bore’s function such that it is unfit for its intended purpose.
- Establish the primary and secondary contributing factors to the decrease in water levels (e.g. gas development, groundwater extraction from other developments, sustained below average rainfall, etc.).
- If gas production activities are determined to be the principal or a significant contributing factor to the impairment of bore function, Santos GLNG will negotiate a make good agreement with the bore owner to establish a suitable course of action. A make-good agreement is an agreement between a petroleum tenure holder and a bore owner that provides details on the make good measures to be undertaken by the petroleum tenure holder to make good the impact. Under the Water Act, potential make-good measures may include:
 - Deepening the bore
 - Constructing a new bore
 - Providing an alternative water supply
 - Undertaking periodic bore assessments and ongoing monitoring
 - Monetary compensation.

9.2.2 Drawdown impacts to springs

Santos GLNG’s impact monitoring program for springs will ensure that both Commonwealth and Queensland State requirements for the monitoring and management of springs will be met.

State requirements

The trigger level defined in the Water Act with respect to water levels at springs potentially affected by extraction of gas is 0.2 metre drawdown. Exceedance of the trigger level prompts further investigation to assess the potential for impacts on EVs associated with the spring and consider the need for mitigation actions.

Commonwealth requirements

The JIP (Santos GLNG, 2013b) establishes the following triggers and drawdown levels for EPBC Act springs:

- Investigation triggers – a nominated value at an Early Warning Monitoring Installation and Trigger Monitoring Point that triggers an action such as data review, model review, increased monitoring frequency, increased monitoring parameters.
- Management/mitigation triggers – a nominated value at a Trigger Monitoring Point that triggers some action to be taken to prevent an impact occurring at an EPBC Act spring.
- Drawdown Limit – a nominated value at a Trigger Monitoring Point that, if exceeded, would be taken to represent a breach of the Commonwealth Approval Conditions. This value has been estimated to correspond to greater than 0 +/- 0.2 m impact in a source aquifer at an EPBC spring.
A groundwater level exceedance is defined as a value of the water level exceeding the defined drawdown levels for a continuous period of three months.

The monitoring and response plan associated with the investigation and management/mitigation triggers is presented in Figure 8.1. When an investigation trigger value is confirmed to be exceeded at an EWMI or TMP, Santos GLNG will verify the exceedance by:

- Assessing observation data with historical data for the bore. This may include the use of a statistical trend procedure to remove natural variations.
- Assessing water level data in neighbouring bores monitoring the same aquifer.
- Reviewing the model predictions and comparing with observed water levels.
- Identifying the potential causes that may have contributed to the exceedance.
- Increasing monitoring if necessary.
- Notifying the Department of the Environment within 10 days of confirmation of the exceedance.

Where an observed exceedance cannot be ruled out, Santos GLNG will undertake a risk assessment and other studies resulting in nomination of a concept mitigation approach. The mitigation concepts that may be considered could include:

- Blocking the impact propagation physically
- Blocking the impact propagation with some recharge
- Providing flow at the spring from an alternative supply
- Adding additional water to the shallow groundwater system (unconfined systems only)
- Using deeper artesian water for recharge of the source aquifer
- Increasing flow from the aquifer source to the surface
- Establishing spring impact offset through removal of impact from private usage.

Assessment of a suitable mitigation approach will involve field investigations to assess site specific features, assessment of the vulnerability of the spring to the level of predicted depressurisation and review of the hydrogeological conceptual model to understand the actual level of risk of impact to the spring.

When a management/mitigation trigger is exceeded, Santos GLNG will:

- Develop a mitigation design involving confirmation of the concept option nominated through additional field investigations, hydrogeological modelling and detailed engineering design studies.
- Develop a mitigation plan. The mitigation plan will identify the time before impact, the timing of mitigation and the value to be used as a “zero impact proxy”.
- Submit the mitigation plan to the Department of the Environment.
- Implement the mitigation plan.

9.2.3 Water quality impacts

Santos GLNG uses conservative water quality trigger levels, defined as a 10% change in physical or chemical parameter concentrations relative to baseline values, to provide an early warning of potential water quality impacts. The water quality trigger levels apply to bores and springs.

When a trigger level for water quality is reached, Santos GLNG undertakes the following response actions:

- Identify specific bores/springs affected.
- Resample and reanalyse to confirm extent of change to water quality – include revised analytical suite if warranted.
- Assess potential factors contributing to the change in water quality (e.g. gas development, groundwater extraction from other developments, etc.).
- Evaluate potential site-specific environmental values at risk from changes to water quality.
- Develop a second trigger level on the basis of the assessment, beyond which the water quality would be unfit for its intended purpose (likely to be a direct reference to published water quality guidelines, but may include derivation of site-specific guidelines for key parameters).
- Report to Santos GLNG management and to the regulator.

9.2.4 Subsidence impacts

Altamira Information has been engaged by Santos GLNG, QGC and APLNG to use interferometric synthetic aperture radar (InSAR) to establish a baseline of ground surface motion prior to significant development of gas and to conduct ongoing geodetic monitoring (Altamira Information, 2012).

Differentiation between gas production and non-gas production induced ground deformation will be possible through the analysis of the historic and ongoing InSAR measurements. The processed data provided by Altamira will be quantitatively processed in a GIS environment and a floating grid methodology will be used to evaluate areas of subsidence.

Ground motion is defined as stable where average annual deformation values are between –8 mm/year and +8 mm/year. Ground motions are defined as subsidence or uplift where average annual values are outside the range –16 mm/year and +16 mm/year respectively. The subsidence trigger (with non-gas production effects removed) is defined as an annual average ground motion of 16 mm/year for over 50% of data points of a 1.5 km x 1.5 km region. Sixteen millimetres represents an average annual rate of change equal to twice the magnitude considered ‘stable’ in the ground motion baseline.

Should the subsidence trigger be exceeded, Santos GLNG will carry out an analysis of the cause of the ground motion. Spatial and/or temporal analysis of the deformation data will provide a reasonable assessment of the possible cause. If deemed necessary, site walkovers, aerial photography, ground-based geodetic surveys and other environmental monitoring data may be commissioned as part of the ongoing monitoring plan.

9.3 Reporting

Santos GLNG publishes the following groundwater information online for public availability:

- Groundwater Impact Study (GWIS) updates.
- Other groundwater and surface water studies, e.g. supporting reports for regulatory authorities.

Santos GLNG will report to government in compliance with:

- The terms of environmental approvals issued by the DOTE and EHP.
- The terms of beneficial use approvals issued by EHP.
- UWIR requirements for the Water Monitoring Strategy, including a Water Monitoring Strategy network implementation report and required monitoring data every six months (QWC, 2012a).
- UWIR requirements for the Spring Impact Management Strategy (QWC, 2012a). JIP EWS commitments, which include simple reporting of data every year (data and plots of data against trigger as appropriate, trend analysis after collection of baseline) and a consolidated report every three years (Santos GLNG, 2013b).
10. References

- National Health and Medical Research Council (NHMRC) and Natural Resource Management Ministerial Council (NRMMC), 2011. Australian Drinking Water Guidelines (ADWG).
- Queensland Department of Environment and Resource Management (DERM), 2011b. Comet River Sub-basin Environmental Values and Water Quality Objectives, Basin No. 130 (part), including all waters of the Comet River Sub-basin, September 2011.
- Queensland Department of Environment and Resource Management (DERM), 2011c. Dawson River Sub-basin Environmental Values and Water Quality Objectives, Basin No. 130 (part), including all waters of the Dawson River Sub-basin, except the Callide Creek Catchment, September 2011.
- Santos GLNG, 2013a. Groundwater baseline assessment data (Baseline Assessment Manager) and groundwater monitoring network data (Envirosys), provided by Santos GLNG in June 2013.

URS Australia Pty Ltd (URS), 2013b, *Roma Managed Aquifer Recharge The Bend Scheme Baseline Pumping Test*, Reference 42627119/01/01, 5 August 2013.

University of Southern Queensland (USQ), 2011, *Preliminary Assessment of Cumulative Drawdown impacts in the Surat Basin Associated with the Coal Seam Gas industry*, Queensland.
Appendix A

Geological cross-sections for the GFD Project area
Figure A.2 CONCEPTUAL HYDROGEOLOGICAL CROSS-SECTION B - B’
Figure A.3 CONCEPTUAL HYDROGEOLOGICAL CROSS-SECTION C - C'

Figure A.4 CONCEPTUAL HYDROGEOLOGICAL CROSS-SECTION D - D’

Figure A.5 CONCEPTUAL HYDROGEOLOGICAL CROSS-SECTION E - E’

Figure A.5 CONCEPTUAL HYDROGEOLOGICAL CROSS-SECTION E - E’

Figure A.6 CONCEPTUAL HYDROGEOLOGICAL CROSS-SECTION F - F'

Figure A.7 CONCEPTUAL HYDROGEOLOGICAL CROSS-SECTION G - G'

Figure A.8 CONCEPTUAL HYDROGEOLOGICAL CROSS-SECTION H - H'
Figure A.9 CONCEPTUAL HYDROGEOLOGICAL CROSS-SECTION I - I’

Figure A.10 CONCEPTUAL HYDROGEOLOGICAL CROSS-SECTION J - J’

Figure A.11 CONCEPTUAL HYDROGEOLOGICAL CROSS-SECTION K - K'

Figure A.12 CONCEPTUAL HYDROGEOLOGICAL CROSS-SECTION L - L’

- HUTTON SANDSTONE
- INJUNE CREEK GROUP
- EVERGREEN FORMATION
- BOXVALE SANDSTONE
- PRECIPICE SANDSTONE
- REWAN GROUP
- BANDANNA FORMATION

Figure A.14 CONCEPTUAL HYDROGEOLOGICAL CROSS-SECTION N - N’

Northwest-Southeast Profile of groundwater and geohydrology for the project area.
Figure A.15 CONCEPTUAL HYDROGEOLOGICAL CROSS-SECTION O - O'

Appendix B

Groundwater level data
Groundwater level contours - Bungil Formation/Mooga Sandstone

Figure B.2

Modelled groundwater level contour (mAHD) (QWC baseline model)
Groundwater flow direction
Gas Field Development Tenements
Extent of Mooga Sandstone /Bungil and Equivalent Formation
Other Proponents Production Tenements
Surat CMA

Highway
Main road
Watercourse lines

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 Kilometers

Scale correct when printed at A3 Portrait
Coordinate System: GCS GDA 1994

© Parsons Brinckerhoff Australia Pty Ltd ("PB") Copyright in the drawings, information and data recorded ("the information") is the property of PB. This document and the information are solely for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or part for any purpose other than that which it was supplied by PB. PB makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document or the information.

Data Source: All data Supplied by Santos

Santos - GLNG Project

www.pb.com.au
Groundwater level contours - Gubberamunda Sandstone

Modelled groundwater level contour (mAHD) (QWC baseline model)

Groundwater flow direction

Gas Field Development

Tenements

Extent of Gubberamunda Sandstone and Equivalent Formation

Other Proponents Production Tenements

Surat CMA
Figure B.10 Groundwater levels at Bendemere 1

Figure B.11 Groundwater levels at Lettermore South 2
Figure B.18 Groundwater levels at Duarran VWP

Figure B.19 Groundwater levels at Hutton Creek monitoring bore
Figure B.20 Groundwater levels at Springwater West Plateau monitoring bore

Figure B.21 Groundwater levels at Springwater Central Plateau monitoring bore

Client: GLNG Operations Pty Ltd
Project: Gas Field Development Project
Location: Surat CMA
Figure B.22 Groundwater levels at Springwater Central Plateau VWPs
(Note the surface elevation was not known, so data is in mbgl)
Appendix C

Vent and watercourse springs in the Surat CMA
<table>
<thead>
<tr>
<th>Complex number</th>
<th>Complex name</th>
<th>Site number</th>
<th>Latitude (decimal degrees)</th>
<th>Longitude (decimal degrees)</th>
<th>Estimated spring flow (L/min)</th>
<th>Source aquifer(s)</th>
<th>Model layer</th>
<th>EBPC</th>
<th>Conservation ranking (complex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rainbow Spring</td>
<td></td>
<td>-23.919</td>
<td>149.114</td>
<td>8.3</td>
<td>Precipice Sandstone, Clematis Sandstone</td>
<td>14, 16</td>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>DawsonRiver2</td>
<td>42</td>
<td>-25.51502355</td>
<td>150.0586082</td>
<td>7.0</td>
<td>Evergreen Formation, Precipice Sandstone</td>
<td>13, 14</td>
<td>Yes</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>DawsonRiver3</td>
<td>16</td>
<td>-25.484418</td>
<td>150.1541</td>
<td>72.0</td>
<td>Precipice Sandstone</td>
<td>14</td>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>DawsonRiver4</td>
<td>34</td>
<td>-25.458418</td>
<td>150.1231</td>
<td>108.9</td>
<td>Precipice Sandstone</td>
<td>14</td>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Boggomoss</td>
<td>691</td>
<td>-25.471418</td>
<td>150.1221</td>
<td>0.1</td>
<td>Precipice Sandstone</td>
<td>14</td>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>DawsonRiver5</td>
<td>21</td>
<td>-25.45760833</td>
<td>150.0879637</td>
<td>0.2</td>
<td>Precipice Sandstone</td>
<td>14</td>
<td>No</td>
<td>2</td>
</tr>
</tbody>
</table>

... (Table continues with more rows)
<table>
<thead>
<tr>
<th>Complex number</th>
<th>Complex name</th>
<th>Site name</th>
<th>Site number</th>
<th>Latitude (decimal degrees)</th>
<th>Longitude (decimal degrees)</th>
<th>Estimated spring flow (L/min)</th>
<th>Source aquifer(s)</th>
<th>Model layer</th>
<th>EBPC</th>
<th>Conservation ranking (complex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>DawesRiver8</td>
<td></td>
<td>26</td>
<td>-25.55242</td>
<td>149.807705</td>
<td>0.6</td>
<td>Hutton Sandstone</td>
<td>12</td>
<td>Yes 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td>-25.55242</td>
<td>149.807705</td>
<td>0.9</td>
<td>Hutton Sandstone</td>
<td>12</td>
<td>Yes 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td>25.5685966</td>
<td>149.821111</td>
<td>58.1</td>
<td>Hutton Sandstone</td>
<td>12</td>
<td>Yes 3</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td>64</td>
<td>-25.7167972</td>
<td>150.2409226</td>
<td>34.2</td>
<td>Precipice Sandstone</td>
<td>14</td>
<td>Yes 1b</td>
<td></td>
</tr>
<tr>
<td>64.1</td>
<td></td>
<td></td>
<td>65</td>
<td>-25.7164643</td>
<td>150.2390982</td>
<td>3.7</td>
<td>Precipice Sandstone</td>
<td>14</td>
<td>Yes 1b</td>
<td></td>
</tr>
<tr>
<td>65.1</td>
<td></td>
<td></td>
<td>65.2</td>
<td>-25.7162944</td>
<td>150.2390233</td>
<td></td>
<td>Precipice Sandstone</td>
<td>14</td>
<td>Yes 1b</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Cockato Creek</td>
<td></td>
<td>232</td>
<td>CrystalBall</td>
<td>147.961126</td>
<td>16.8</td>
<td>Precipice Sandstone</td>
<td>14</td>
<td>No 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>236</td>
<td>Moolayember</td>
<td>147.981521</td>
<td>29.8</td>
<td>Precipice Sandstone</td>
<td>14</td>
<td>No 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>235</td>
<td>Moffat</td>
<td>148.701276</td>
<td>17.1</td>
<td>Precipice Sandstone</td>
<td>14</td>
<td>No 2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>24.9</td>
<td>254</td>
<td>148.84</td>
<td>5.0</td>
<td>Clematis Sandstone</td>
<td>14</td>
<td>Yes 1b</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>16</td>
<td>548</td>
<td>149.7151</td>
<td>0.6</td>
<td>Clematis Sandstone</td>
<td>16</td>
<td>No 3</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td>35</td>
<td>546.7</td>
<td>149.3163</td>
<td>8.3</td>
<td>Clematis Sandstone</td>
<td>16</td>
<td>No 3</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td></td>
<td></td>
<td>68</td>
<td>547</td>
<td>149.2231</td>
<td>6.3</td>
<td>Clematis Sandstone</td>
<td>16</td>
<td>No 2</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Yebra</td>
<td></td>
<td>74.0</td>
<td>551</td>
<td>149.2104</td>
<td>0.6</td>
<td>Clematis Sandstone</td>
<td>16</td>
<td>No 3</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Eden Vale</td>
<td></td>
<td>76</td>
<td>552</td>
<td>149.03504</td>
<td>1.1</td>
<td>Clematis Sandstone</td>
<td>16</td>
<td>No 3</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Conom</td>
<td></td>
<td>84</td>
<td>553</td>
<td>149.3631</td>
<td>12.2</td>
<td>Hutton Sandstone</td>
<td>12</td>
<td>No 2</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Newton</td>
<td></td>
<td>85</td>
<td>554</td>
<td>149.358</td>
<td>5.0</td>
<td>Hutton Sandstone</td>
<td>12</td>
<td>No 2</td>
<td></td>
</tr>
<tr>
<td>229</td>
<td>Pones</td>
<td></td>
<td>229</td>
<td>555</td>
<td>149.4</td>
<td>14.9</td>
<td>Precipice Sandstone</td>
<td>12</td>
<td>No 2</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>Lucky Last</td>
<td></td>
<td>230</td>
<td>556</td>
<td>149.36668</td>
<td>3.7</td>
<td>Precipice Sandstone</td>
<td>12</td>
<td>No 2</td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>CrystalBall</td>
<td></td>
<td>232</td>
<td>557</td>
<td>149.773173</td>
<td>2.7</td>
<td>Evergreen Formation (Boxvale Sandstone), Precipice Sandstone</td>
<td>13, 14</td>
<td>Yes 1b</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>340</td>
<td>558</td>
<td>149.734076</td>
<td>1.0</td>
<td>Evergreen Formation (Boxvale Sandstone), Precipice Sandstone</td>
<td>13, 14</td>
<td>Yes 1b</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>687</td>
<td>559</td>
<td>149.773796</td>
<td>0.8</td>
<td>Evergreen Formation (Boxvale Sandstone), Precipice Sandstone</td>
<td>13, 14</td>
<td>Yes 1b</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>687.1</td>
<td>560</td>
<td>149.773848</td>
<td></td>
<td>Evergreen Formation (Boxvale Sandstone), Precipice Sandstone</td>
<td>13, 14</td>
<td>Yes 1b</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>687.2</td>
<td>561</td>
<td>149.773828</td>
<td></td>
<td>Evergreen Formation (Boxvale Sandstone), Precipice Sandstone</td>
<td>13, 14</td>
<td>Yes 1b</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>687.3</td>
<td>562</td>
<td>149.7731634</td>
<td></td>
<td>Evergreen Formation (Boxvale Sandstone), Precipice Sandstone</td>
<td>13, 14</td>
<td>Yes 1b</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>687.4</td>
<td>563</td>
<td>149.7735415</td>
<td></td>
<td>Evergreen Formation (Boxvale Sandstone), Precipice Sandstone</td>
<td>13, 14</td>
<td>Yes 1b</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>687.5</td>
<td>564</td>
<td>149.7732965</td>
<td></td>
<td>Evergreen Formation (Boxvale Sandstone), Precipice Sandstone</td>
<td>13, 14</td>
<td>Yes 1b</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>687.6</td>
<td>565</td>
<td>149.7731888</td>
<td></td>
<td>Evergreen Formation (Boxvale Sandstone), Precipice Sandstone</td>
<td>13, 14</td>
<td>Yes 1b</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>687.8</td>
<td>566</td>
<td>149.773482</td>
<td>2.9</td>
<td>Evergreen Formation (Boxvale Sandstone), Precipice Sandstone</td>
<td>13, 14</td>
<td>Yes 1b</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>687.9</td>
<td>567</td>
<td>149.7728387</td>
<td>0.1</td>
<td>Evergreen Formation (Boxvale Sandstone), Precipice Sandstone</td>
<td>13, 14</td>
<td>Yes 1b</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>Moolayember</td>
<td></td>
<td>233</td>
<td>317.1</td>
<td>147.961126</td>
<td>16.8</td>
<td>Clematis Sandstone</td>
<td>16</td>
<td>No 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>317.2</td>
<td>147.976852</td>
<td>3.3</td>
<td>Hutton Sandstone</td>
<td>12</td>
<td>No 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>317.3</td>
<td>147.97622</td>
<td>3.3</td>
<td>Hutton Sandstone</td>
<td>12</td>
<td>No 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>408</td>
<td>147.5704143</td>
<td>16.8</td>
<td>Clematis Sandstone</td>
<td>16</td>
<td>No 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>675</td>
<td>147.584373</td>
<td>16.2</td>
<td>Clematis Sandstone</td>
<td>16</td>
<td>No 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>676</td>
<td>147.594119</td>
<td>1.4</td>
<td>Clematis Sandstone</td>
<td>16</td>
<td>No 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>316</td>
<td>148.701276</td>
<td>17.1</td>
<td>Precipice Sandstone</td>
<td>14</td>
<td>No 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>316.1</td>
<td>148.0539</td>
<td>15.0</td>
<td>Tertiary Volcanics</td>
<td>No 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>316.2</td>
<td>148.3333</td>
<td>15.0</td>
<td>Tertiary Volcanics, Evergreen Formation (Boxvale Sandstone)</td>
<td>13</td>
<td>No 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>236</td>
<td>Marong</td>
<td></td>
<td>236</td>
<td>309</td>
<td>147.981276</td>
<td>29.8</td>
<td>Precipice Sandstone</td>
<td>14</td>
<td>No 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>310</td>
<td>147.981276</td>
<td>29.8</td>
<td>Precipice Sandstone</td>
<td>14</td>
<td>No 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>254</td>
<td>248.84</td>
<td>0.0</td>
<td>Clematis Sandstone</td>
<td>16</td>
<td>No 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>254</td>
<td></td>
<td></td>
<td>254</td>
<td>24.92</td>
<td>147.84</td>
<td>0.1</td>
<td>Tertiary Volcanics</td>
<td>No 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site number</td>
<td>Complex name</td>
<td>Latitude (decimal degrees)</td>
<td>Longitude (decimal degrees)</td>
<td>Estimated spring flow (L/min)</td>
<td>Source aquifer(s)</td>
<td>Model layer</td>
<td>EBPC</td>
<td>Conservation ranking (complex)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
<td>-------------------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>------</td>
<td>-------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>Scotts Creek</td>
<td>189 -25.89150945</td>
<td>149.2859827</td>
<td>55.5</td>
<td>Hutton Sandstone</td>
<td>12</td>
<td>Yes 1b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>267</td>
<td>Barton</td>
<td>267 -25.32343</td>
<td>148.33333</td>
<td>5.0</td>
<td>Hutton Sandstone</td>
<td>12</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>296</td>
<td>Carnarvon Gorge</td>
<td>296 -25.323436</td>
<td>148.33333</td>
<td>5.0</td>
<td>Hutton Sandstone</td>
<td>12</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>302</td>
<td>Expanding Range</td>
<td>302 -25.09942</td>
<td>149.273109</td>
<td>163.6</td>
<td>Precipice Sandstone</td>
<td>14</td>
<td>No</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>304</td>
<td></td>
<td>304 -25.115</td>
<td>149.232</td>
<td>0.2</td>
<td>Precipice Sandstone</td>
<td>14</td>
<td>No</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>306</td>
<td></td>
<td>306 -25.033</td>
<td>148.13</td>
<td>16.7</td>
<td>Tertiary Volcanics</td>
<td>12</td>
<td>No</td>
<td>1a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>307</td>
<td></td>
<td>307 -24.183</td>
<td>149.15</td>
<td>5.0</td>
<td>Clematis Sandstone</td>
<td>16</td>
<td>No</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>308</td>
<td></td>
<td>308 -25.02024</td>
<td>148.986</td>
<td>16.8</td>
<td>Clematis Sandstone</td>
<td>16</td>
<td>No</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>309</td>
<td></td>
<td>309 -25.06252</td>
<td>148.878645</td>
<td>16.8</td>
<td>Clematis Sandstone</td>
<td>16</td>
<td>No</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>310</td>
<td></td>
<td>310 -25.019</td>
<td>149.223</td>
<td>16.8</td>
<td>Precipice Sandstone</td>
<td>16</td>
<td>No</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complex number</td>
<td>Complex name</td>
<td>Site name</td>
<td>Latitude (decimal degrees)</td>
<td>Longitude (decimal degrees)</td>
<td>Estimated spring flow (L/min)</td>
<td>Source aquifer(s)</td>
<td>Model layer</td>
<td>EBPC</td>
<td>Conservation ranking (complex)</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------------------------</td>
<td>----------------------------</td>
<td>-------------------------------</td>
<td>------------------</td>
<td>-------------</td>
<td>------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>325</td>
<td>325</td>
<td>nv363</td>
<td>-24.817</td>
<td>147.983</td>
<td>3.1</td>
<td>Precipice Sandstone, Tertiary Volcanics</td>
<td>14 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>326</td>
<td>326</td>
<td>325</td>
<td>144.69149</td>
<td></td>
<td></td>
<td></td>
<td>16 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>327</td>
<td>327</td>
<td>nv385</td>
<td>-25.501</td>
<td>148.982</td>
<td>16.8</td>
<td>Precipice Sandstone</td>
<td>14 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>328</td>
<td>328</td>
<td>nv374</td>
<td>-24.958</td>
<td>149.402</td>
<td>16.8</td>
<td>Precipice Sandstone</td>
<td>14 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>331</td>
<td>331</td>
<td>nv402</td>
<td>-25.29444</td>
<td>150.14745</td>
<td>66.7</td>
<td>Precipice Sandstone</td>
<td>14 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>334</td>
<td>334</td>
<td>nv405</td>
<td>-25.42506</td>
<td>150.19145</td>
<td>66.7</td>
<td>Precipice Sandstone</td>
<td>14 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>335</td>
<td>335</td>
<td>nv406</td>
<td>-25.09607</td>
<td>149.61327</td>
<td>66.7</td>
<td>Hutton Sandstone</td>
<td>12 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>339</td>
<td>LonelyEddie</td>
<td>706</td>
<td>148.71325</td>
<td></td>
<td>0.2</td>
<td>Precipice Sandstone</td>
<td>14 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>506</td>
<td>SprRidge</td>
<td>184</td>
<td>148.685537</td>
<td></td>
<td>3.3</td>
<td>Gubberamunda Sandstone</td>
<td>5 No</td>
<td>4b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>507</td>
<td>V1_mile</td>
<td>185</td>
<td>148.893863</td>
<td></td>
<td>0.7</td>
<td>Gubberamunda Sandstone</td>
<td>5 No</td>
<td>4b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>508</td>
<td>Prices</td>
<td>nv21</td>
<td>149.02935</td>
<td></td>
<td>1.8</td>
<td>Precipice Sandstone</td>
<td>14 Yes</td>
<td>1b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>509</td>
<td>Prices</td>
<td>nv22</td>
<td>149.101821</td>
<td></td>
<td></td>
<td></td>
<td>16 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>CleaRains</td>
<td>nv417</td>
<td>-23.933</td>
<td>149.186</td>
<td>163.6</td>
<td>Climaids Sandstone</td>
<td>16 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>561</td>
<td>SpRockCk</td>
<td>285</td>
<td>148.769787</td>
<td></td>
<td></td>
<td></td>
<td>13,14 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>580</td>
<td>Springer</td>
<td>nv509</td>
<td>148.252533</td>
<td></td>
<td></td>
<td></td>
<td>14 No</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>581</td>
<td>prices</td>
<td>nv610</td>
<td>148.246388</td>
<td></td>
<td></td>
<td></td>
<td>14 Yes</td>
<td>1b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>582</td>
<td>Lorens Hills</td>
<td>nv611</td>
<td>148.230572</td>
<td></td>
<td></td>
<td></td>
<td>14 Yes</td>
<td>1b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>583</td>
<td>Lorens Hills</td>
<td>nv612</td>
<td>148.221021</td>
<td></td>
<td></td>
<td></td>
<td>14 Yes</td>
<td>1b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>584</td>
<td>Wambo</td>
<td>nv615</td>
<td>149.114806</td>
<td></td>
<td>0.3</td>
<td>Climaids Sandstone</td>
<td>16 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>585</td>
<td>Bowenville</td>
<td>SP4</td>
<td>151.406991</td>
<td></td>
<td></td>
<td></td>
<td>16 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>586</td>
<td>Boxvale</td>
<td>nv37</td>
<td>148.448</td>
<td></td>
<td></td>
<td></td>
<td>13,14 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>587</td>
<td>Timor</td>
<td>x346</td>
<td>-25.672</td>
<td>148.455</td>
<td></td>
<td></td>
<td>12 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>589</td>
<td>Merivale</td>
<td>nv438</td>
<td>-25.478</td>
<td>148.216</td>
<td>0.0</td>
<td>Hutton Sandstone</td>
<td>12 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Non-GAB</td>
<td>nv509</td>
<td>148.252533</td>
<td></td>
<td></td>
<td></td>
<td>14 No</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>591</td>
<td>Yobna2</td>
<td>174</td>
<td>147.859126</td>
<td></td>
<td>0.6</td>
<td>Tertiary Volcanics</td>
<td>2 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>592</td>
<td>Abyss</td>
<td>286.1</td>
<td>147.79144</td>
<td>0.8</td>
<td>Hutton Sandstone</td>
<td>12 Yes</td>
<td>1b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>593</td>
<td>Cocklebay</td>
<td>685</td>
<td>148.266509</td>
<td></td>
<td>45.0</td>
<td>Precipice Sandstone</td>
<td>14 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>594</td>
<td>Eign2</td>
<td>540</td>
<td>149.165497</td>
<td>19.6</td>
<td>Climaids Sandstone, Tertiary Basalt</td>
<td>16 Yes</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>595</td>
<td>MoffaBasalt</td>
<td>nv604</td>
<td>148.123037</td>
<td></td>
<td></td>
<td></td>
<td>14 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>596</td>
<td>Bunya1</td>
<td>SP2</td>
<td>-26.877082</td>
<td>151.95989</td>
<td></td>
<td></td>
<td>16 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>597</td>
<td>Dally1</td>
<td>SP5</td>
<td>-27.21628</td>
<td>147.76085</td>
<td></td>
<td></td>
<td>1 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>598</td>
<td>Marburg1</td>
<td>SP44</td>
<td>-27.42621</td>
<td>151.90714</td>
<td></td>
<td></td>
<td>1 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>599</td>
<td>MainRangeVolc1</td>
<td>SP45</td>
<td>-27.49267</td>
<td>151.96507</td>
<td></td>
<td></td>
<td>1 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>MainRangeVolc2</td>
<td>SP1</td>
<td>-27.602449</td>
<td>151.93516</td>
<td></td>
<td></td>
<td>1 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>601</td>
<td>MainRangeVolc3</td>
<td>SP7</td>
<td>-27.61042</td>
<td>151.88995</td>
<td></td>
<td></td>
<td>1 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>602</td>
<td>MainRangeVolc4</td>
<td>SP6</td>
<td>-27.62125</td>
<td>151.62082</td>
<td></td>
<td></td>
<td>1 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>603</td>
<td>MainRangeVolc5</td>
<td>SP7</td>
<td>-27.68393</td>
<td>151.62351</td>
<td></td>
<td></td>
<td>1 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>604</td>
<td>MainRangeVolc6</td>
<td>SP9</td>
<td>-27.70738</td>
<td>151.72532</td>
<td></td>
<td></td>
<td>1 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>605</td>
<td>Kangaroo Creek</td>
<td>SP7</td>
<td>-26.17175</td>
<td>149.37178</td>
<td>5.0</td>
<td>Springbore Sandstone, Climaids Sandstone</td>
<td>1.8 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>606</td>
<td>Springbore</td>
<td>nv365</td>
<td>-26.13436</td>
<td>149.86325</td>
<td>5.0</td>
<td>Springbore Sandstone, Climaids Sandstone</td>
<td>1.8 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607</td>
<td>Springbore</td>
<td>nv379</td>
<td>-26.18709</td>
<td>149.37807</td>
<td>5.0</td>
<td>Springbore Sandstone, Climaids Sandstone</td>
<td>1.8 No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table C.2 Details of watercourse springs within the Surat CMA
Site
number

Watercourse
reach start
latitude

Watercourse reach
start longitude

Watercourse
reach finish
latitude

Watercourse
reach finish
longitude

Source aquifer(s)

River

W6

-28.47082

150.54052

-28.45634162

150.5582964

Kumbarilla Beds

Bethecurriba Creek

W7

-28.45634162

150.5582964

-28.44577

150.58419

Kumbarilla Beds

Bethecurriba Creek

W10

-26.42471219

149.0838375

-26.47332954

149.0169652

Mooga Sandstone,
Gubberamunda Sandstone

Blyth Creek

W14

-25.83663454

150.0612381

-25.92242

150.23495

Hutton Sandstone

Bungaban Creek

W15

-25.92242

150.23495

-25.90361441

150.2610792

Hutton Sandstone

Bungaban Creek (North)

W16

-26.21044718

148.4428536

-26.22838028

148.4744799

Gubberamunda Sandstone

Bungeworgorai Creek

W17

-26.39537781

148.6509133

-26.41800266

148.6438287

Mooga Sandstone

Bungeworgorai Creek

W18

-26.25520873

148.7095084

-26.30972286

148.7359845

Gubberamunda Sandstone

Bungil Creek

W19

-26.42196662

148.7874036

-26.45004641

148.8050478

Mooga Sandstone

Bungil Creek

W22

-25.0088

148.13407

-25.05176703

148.215057

Precipice Sandstone

Carnarvon Creek

W26

-25.00309

148.9985231

-24.92232915

148.8553936

Clematis Sandstone

Clematis Creek

W28

-25.72104166

150.2644189

-25.71078489

150.3286089

Precipice Sandstone

Cockatoo Creek

W29

-25.71824

150.22261

-25.72104166

150.2644189

Precipice Sandstone

Cockatoo Creek

W35

-24.625503

149.1288969

-24.64565

149.07425

W39

-25.72558012

149.3030749

-25.6767222

149.2350559

Clematis Sandstone

Conciliation Creek

Hutton Sandstone

Dawson River

W40

-25.67946031

149.1373406

-25.68479278

149.0664513

Precipice Sandstone

Dawson River (Cen)

W41

-25.4138029

150.1645459

-25.46614043

150.1095446

Precipice Sandstone

Dawson River (NE)

W42

-25.38224

148.6562884

-25.30424616

148.5904825

Precipice Sandstone

Dawson River (NW)

W50

-24.86795264

147.8492006

-24.83173699

147.8927038

Precipice Sandstone

Dooloogarah Creek Trib

W51

-24.84580301

147.8821576

-24.83916998

147.8900257

Precipice Sandstone

Dooloogarah Creek Trib

W59

-25.97985502

149.1941075

-25.98241233

149.1452382

Hutton Sandstone

Eurombah Creek

W76

-26.2017

149.5936

-26.22019489

149.6195567

Gubberamunda Sandstone

Horse Creek (East Branch)

W77

-26.26426187

149.6521547

-26.3062

149.66797

W78

-26.30970428

149.6747807

-26.34436603

149.6578244

W79

-26.3062

149.66797

-26.30970428

149.6747807

W80

-25.74343804

148.6856819

-25.69769506

148.4272692

Mooga Sandstone,
Gubberamunda Sandstone
Mooga Sandstone,
Gubberamunda Sandstone
Mooga Sandstone,
Gubberamunda Sandstone
Hutton Sandstone

Horse Creek (East Branch)
Horse Creek (East Branch) Tributary
Horse Creek (East Branch) Tributary
Hutton Creek

W81

-25.71268

149.08368

-25.715116

149.0282812

Hutton Sandstone

Hutton Creek

W82

-25.80381235

148.7798978

-25.81189

148.7326914

Hutton Sandstone

Injune Creek

W99

-28.4393

150.99137

-28.63505

150.75147

Kumbarilla Beds

MacIntyre Brook

W100

-28.42319578

151.1355142

-28.41378684

151.0548292

Kumbarilla Beds

Macintyre Brook

W105

-26.12940273

147.9079293

-26.15722822

147.8954374

Gubberamunda Sandstone

Maranoa River
Maranoa River
Maranoa River (West)

W106

-26.15722822

147.8954374

-26.29335852

147.92415

Mooga Sandstone,
Gubberamunda Sandstone

W108

-25.16160236

147.8375695

-25.28869

147.76752

Hutton Sandstone

W110

-25.34835116

148.0864674

-25.19238089

148.0939448

Hutton Sandstone

Merivale River

W111

-25.78833517

147.9608571

-25.34835116

148.0864674

Hutton Sandstone

Merivale River

Hutton Sandstone

Murri Murri Creek

Kumbarilla Beds

Merivale River (South Section)

W112

-25.85041372

147.8465135

-25.78439922

147.9272557

W122

-28.44224288

150.4040798

-28.47082

150.54052

W113

-23.80363

149.09999

-23.92110142

149.2383053

Clematis Sandstone

Mimosa Creek

W114

-23.79367139

149.0680085

-23.80363

149.09999

Clematis Sandstone

Mimosa Creek Tributary

W141

-25.45351869

149.4792696

-25.4336982

149.3693947

Hutton Sandstone

Robinson Creek

W146

-25.59519

148.15584

-25.54720833

148.1834157

Hutton Sandstone

Sandy Creek

Kumbarilla Beds

Western Creek

Mooga Sandstone

Yuleba Creek

W160

-27.75252

150.68218

-27.7935699

150.6963639

W164

-26.36411053

149.4378862

-26.47228

149.40031


Appendix D

Potential impact maps
Figure D.2
Long term impact pattern - Springbok Sandstone

- Gas Field Development Tenements
- 5m drawdown contour
- Condamine Alluvium Extent
- Extent of Springbok Sandstone and Equivalent Formation
- Other Proponents Production Tenements
- Surat CMA

Drawdown (metres)
- 5-10
- 10-20
- 20-50
- 50-100
- 100-200
- 200-500
- 500-1000
- >1,000
Gas Field Development Project

Long term impact pattern - Precipice Sandstone

Figure D.5

Data Source: DERM, Parsons Brinckerhoff and Santos supplied data

© The State of Queensland (Queensland Water Commission) [2012]. In consideration of the State permitting use of this data you acknowledge and agree that the State gives no warranty in relation to the data (including accuracy, reliability, completeness, currency or suitability) and accepts no liability (including without limitation, liability in negligence) for any loss, damage or costs (including consequential damage) relating to any use of the data. Data must not be used for direct marketing or be used in breach of the privacy laws.
Gas Field Development Project

Figure D.6

Long term impact pattern – Clematis/Showground Sandstone

Data Source: DERM, Parsons Brinckerhoff and Santos supplied data

'The State of Queensland (Queensland Water Commission) [2012]. In consideration of the State permitting use of this data you acknowledge and agree that the State gives no warranty in relation to the data (including accuracy, reliability, completeness, currency or suitability) and accepts no liability (including without limitation, liability in negligence) for any loss, damage or costs (including consequential damage) relating to any use of the data. Data must not be used for direct marketing or be used in breach of the privacy laws.'
Appendix E

Monitoring bore logs
GROUNDWATER MONITORING BORE CONSTRUCTION RECORD

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Roma Deep Monitoring Bore Programme</th>
<th>Document ID</th>
<th>7699-URS-4-3.3-0010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Ben Bow</td>
<td>Santos Bore ID</td>
<td>ROM_BBWGWG03_BORE_W</td>
</tr>
<tr>
<td>Coordinates</td>
<td>-26.430241 149.338663</td>
<td>URS Project</td>
<td>42626577</td>
</tr>
<tr>
<td>URS Supervisor</td>
<td>Matthew Ryan, Finnigan Johnson</td>
<td>Date Installed</td>
<td>03/02/11</td>
</tr>
<tr>
<td>Driller's Name</td>
<td>Peter Adams</td>
<td>Drilling Method</td>
<td>Mud Rotary</td>
</tr>
<tr>
<td>Drilling Company</td>
<td>Adams Drilling</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Top of Casing:	342.669 (mAHD)
Surface Elevation:	341.717 (mAHD)
Casing Diameter:	104 mm
Casing Material:	Schedule 10 Stainless Steel
Hole Diameter:	216 mm
Drilling Method:	PDC-Mud Rotary
Annular Seal:	3% Bentonite/Cement Grout
Volume/Quantity Used:	Return to surface
Top of Bentonite Seal:	240 mBGL
Top of Filter pack:	251 mBGL
Type of Screen:	Johnson Screen, stainless steel
Screen Aperture:	1 mm
Filter pack Material:	2-4 mm rounded gravel
Top of Screen:	260 mBGL
Bottom of Screen:	266 mBGL
Bottom of Sump:	267 mBGL
Terminal Depth Drilled:	320 mBGL

Groundwater parameters after bore development:
SWL: 47.65, EC: 1376µS/cm, pH: 9.10, TDS: 894 mg/L, Temperature: 27.8 °C, Redox: -53.8 mV

Formations:
- **Bungil Formation**: 91 mBGL
- **Mooga Sandstone**: 107 mBGL
- **Orallo Formation**: 250 mBGL
- **Gubberamunda Sandstone**: 280 mBGL
- **Westbourne Formation**: 280 mBGL
GROUNDWATER MONITORING BORE CONSTRUCTION RECORD

Project Name: Roma Deep Monitoring Bore Programme
Location: Ben Bow
Coordinates: -26.430227 149.338830
URS Supervisor: Matthew Ryan
URS Project: 426265 77

Driller’s Name: Peter Adams
Drilling Company: Adams Drilling
Drilling Method: Mud Rotary

Top of Casing: 342.478 (mAHD)
Surface Elevation: 341.602 (mAHD)

Casing Diameter: 104 mm
Casing Material: Schedule 10 Stainless Steel

Hole Diameter: 216 mm
Drilling Method: PDC Mud Rotary
Annular Seal: Bentonite
Volume/Quantity Used: Return to surface

Top of bentonite seal: 159 mBGL
Top of filter pack: 165 mBGL

Type of Screen: Johnson Screen, stainless steel
Screen Aperture: 1 mm
Filter pack Material: 2-4 mm rounded gravel

Top of Screen: 186.5 mBGL
Bottom of Screen: 192.5 mBGL
Bottom of Sump: 193.5 mBGL
Terminal Depth Drilled: 193.5 mBGL

Groundwater parameters after bore development:
SWL: 25.28mBGL, EC: 2087µS/cm, pH: 9.01, TDS: 1360 mg/L, Temperature: 26.50 degC, Redox: 6.9 mV
GROUNDWATER MONITORING BORE CONSTRUCTION RECORD

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Roma Deep Monitoring Bore Programme</th>
<th>Document ID</th>
<th>7699-URS-4-3.3-0002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Bel Bri</td>
<td>Santos Bore ID</td>
<td>ROM_BLBGWG01_BORE_W</td>
</tr>
<tr>
<td>Coordinates</td>
<td>-26.378797 148.936575</td>
<td>URS Project</td>
<td>42626577</td>
</tr>
<tr>
<td>URS Supervisor</td>
<td>Sian Smith, Tom Mackie</td>
<td>Date Installed</td>
<td>4/04/2011</td>
</tr>
<tr>
<td>Driller’s Name</td>
<td>Peter Adams</td>
<td>Drilling Method</td>
<td>Mud Rotary</td>
</tr>
<tr>
<td>Drilling Company</td>
<td>Adams Drilling</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Top of Casing: 433.969 (mAHD)
Surface Elevation: 433.243 (mAHD)

Casing Diameter: 104 mm(ID)
Casing Material: Schedule 10 Stainless Steel

Hole Diameter: 216 mm
Drilling Method: PDC Mud Rotary

Annular Seal: 3% Bentonite/Cement grout

Volume/quantity used: Return to surface

Top of Bentonite Seal: 266 mBGL

Top of Filterpack: 269 mBGL

Type of Screen: Johnson Screen, stainless steel
Screen Aperture: 1 mm
Filterpack Material: 2-4 mm rounded gravel

Top of Screen: 283 mBGL
Bottom of Screen: 289 mBGL
Bottom of Sump: 290 mBGL

Terminal Depth Drilled: 294 mBGL

Groundwater parameters after bore development:
SWL: 119.3 mBGL, EC: 1267uS/cm, pH: 8.26, Temperature: 29.6 °C, Redox: -48.8 mV

Monitoring Bore Construction Record
Prepared by: HS
Check by: MR
GROUNDWATER MONITORING BORE CONSTRUCTION RECORD

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Roma Deep Monitoring Bore Programme</th>
<th>Document ID</th>
<th>7699-URS-4-3.3-0004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Bel Bri</td>
<td>Santos Bore ID</td>
<td>ROM_BLBGWM01_BORE_W</td>
</tr>
<tr>
<td>Coordinates</td>
<td>-26.378927 148.936361</td>
<td>URS Project</td>
<td>42626577</td>
</tr>
<tr>
<td>URS Supervisor</td>
<td>Sian Smith, Tom Mackie</td>
<td>Date Installed</td>
<td>29/03/2011</td>
</tr>
<tr>
<td>Driller’s Name</td>
<td>Marc Adams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drilling Company</td>
<td>Adams Drilling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drilling Method</td>
<td>Mud Rotary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top of Casing:</td>
<td>433.502 (mAHD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Elevation:</td>
<td>432.822 (mAHD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Casing Diameter:</td>
<td>104 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Casing Material:</td>
<td>Schedule 10 Stainless Steel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hole Diameter:</td>
<td>216 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drilling Method:</td>
<td>PDC Mud Rotary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annular Seal:</td>
<td>Bentonite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume/Quantity Used:</td>
<td>Return to surface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top of Bentonite Seal:</td>
<td>66 mBGL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top of Filter pack:</td>
<td>69 mBGL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of Screen:</td>
<td>Johnson Screen, stainless steel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screen Aperture:</td>
<td>1 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filter pack Material:</td>
<td>2-4 mm rounded gravel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top of Screen:</td>
<td>75 mBGL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom of Screen:</td>
<td>81 mBGL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom of Sump:</td>
<td>82 mBGL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminal Depth Drilled:</td>
<td>88 mBGL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Groundwater parameters after bore development:
SWL: Dry

Bungil Formation
74 mBGL
Mooga Sandstone

Monitoring Bore Construction Record 1 of 1
Prepared by: HS
Check by: MR
GROUNDWATER MONITORING BORE CONSTRUCTION RECORD

Project Name: Roma Deep Monitoring Bore Programme
Document ID: 7699-URS-4.3.3-0030

Location: Duarran
Santos Bore ID: ROM_DRNGWG08_BORE_W

Coordinates: -26.681192 148.736275
URS Project: 42626577

URS Supervisor: Tom Mackie
Date Installed: 11/12/11

Driller’s Name: Marc Adams
Drilling Method: Mud Rotary

Casing Diameter: 150 mm
Casing Material: Schedule 40 Stainless Steel

Hole Diameter: 250 mm (0-466.4m), 152mm (466.4 – 492m)
Drilling Method: Mud Rotary

Annular Seal: Pressure Cement Grouted
Volume/Quantity Used: Return to surface

Top of Casing:
- **Surface Elevation**: 291.467 (mAHĐ)
- **Surface Elevation**: 290.850 (mAHĐ)

Base of Pressure Grouted Casing: 466.4 mBGL

Telescope Casing Material: Schedule 40 Stainless Steel
Telescope Casing Diameter: 104 mm
Type of Screen: Johnson Screen 0.5mm
Filterpack Material: Natural

Position of K - packer: 466 mBGL

Groundwater parameters after bore development:
- **SWL**: 37 mBGL
- **EC**: 988 µS/cm
- **pH**: 9.01
- **Temperature**: 36.1 °C
- **Redox**: 0.1 mV

Top of Screen: 478.5 mBGL
Bottom of Screen: 487.5 mBGL
Terminal Depth Drilled/Sump: 491.5 mBGL Sump
492 mBGL TD

Formations:
- **Wallumbilla Formation**: 134 mBGL
- **Bungil Formation**: 345 mBGL
- **Mooga Sandstone**: 361.5 mBGL
- **Orallo Formation**: 476.2 mBGL
- **Gubberamunda Sandstone**: 492 mBGL
- **Westbourne Formation**: 492 mBGL
<table>
<thead>
<tr>
<th>Project Name</th>
<th>Roma Deep Monitoring Bore Programme</th>
<th>Document ID</th>
<th>7699-URS-4-3.3-0016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Boxgrove</td>
<td>Santos Bore ID</td>
<td>ROM_BXGGWG04_BORE_W</td>
</tr>
<tr>
<td>Coordinates</td>
<td>-26.603497 149.373586</td>
<td>URS Project</td>
<td>42626577</td>
</tr>
<tr>
<td>URS Supervisor</td>
<td>Kitty van Cuylenburg</td>
<td>Date Installed</td>
<td>1/03/2011</td>
</tr>
<tr>
<td>Driller’s Name</td>
<td>Marc Adams</td>
<td>Drilling Method</td>
<td>Mud Rotary</td>
</tr>
<tr>
<td>Drilling Company</td>
<td>Adams Drilling</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Top of Casing:	301.574 (mAH)		
Surface elevation	300.868 (mAH)		
Casing Diameter:	104 mm	Schedule 10 Stainless Steel 0 to 300mBGL; Schedule 40 Stainless Steel 300 to 443.7 mBGL	
Casing Material:			
Hole Diameter:	216 mm	PDC Mud Rotary	
Annular Seal:	3% Bentonite MIX	Return to surface	
Type of Screen:	Johnson Screen, stainless steel		
Screen Aperture:	1 mm		
Filter pack Material:	2-4 mm rounded gravel		

| Groundwater parameters after bore development: |
| SWL: 28.30mBGL, EC: 1107 µS/cm, pH: 8.62, Temperature: 33.92 °C, Redox: -2.8 mV |

Bungil Formation 164 mBGL
Mooga Sandstone 196 mBGL
Orallo Formation 437 mBGL
Gubberamunda Sandstone
GROUNDWATER MONITORING BORE CONSTRUCTION RECORD

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Roma Deep Monitoring Bore Programme</th>
<th>Document ID</th>
<th>7699-URS-4-3.3-0018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Boxgrove</td>
<td>Santos Bore ID</td>
<td>ROM_BXGGWM02_BORE_W</td>
</tr>
<tr>
<td>Coordinates</td>
<td>-26.603333 149.373497</td>
<td>URS Project</td>
<td>42626577</td>
</tr>
<tr>
<td>URS Supervisor</td>
<td>Kitty van Cuylenburg</td>
<td>Date Installed</td>
<td>5/3/2011</td>
</tr>
<tr>
<td>Driller's Name</td>
<td>Marc Adams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drilling Company</td>
<td>Adams Drilling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drilling Method</td>
<td>Mud Rotary</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Top of Casing: 301.923 (mAHD)

Surface Elevation: 300.990 (mAHD)

Casing Diameter: 104 mm

Casing Material: Schedule 10 Stainless Steel

Hole Diameter: 216 mm

Drilling Method: PDC Mud Rotary

Annular Seal: 3% Bentonite/Cement Grout

Volume/Quantity Used: Return to surface

Top of Bentonite Seal: 177.0 mBGL

Top of Filter pack: 181.3 mBGL

Type of Screen: Johnson Screen, stainless steel

Screen Aperture: 1 mm

Filter pack Material: 2-4 mm rounded gravel

Top of Screen: 184 mBGL

Bottom of Screen: 190 mBGL

Bottom of Sump: 191 mBGL

Terminal Depth Drilled: 192 mBGL

Groundwater parameters after bore development:

SWL: Artesian, EC: 1674µS/cm, pH: 8.67, Temperature: 24.23 °C, Redox: 95.1 mV
GROUNDWATER MONITORING BORE CONSTRUCTION RECORD

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Roma Deep Monitoring Bore Programme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Duarran</td>
</tr>
<tr>
<td>Coordinates</td>
<td>-26.681403 148.736315</td>
</tr>
<tr>
<td>URS Supervisor</td>
<td>Tom Mackie</td>
</tr>
<tr>
<td>Driller's Name</td>
<td>Marc Adams</td>
</tr>
<tr>
<td>Drilling Company</td>
<td>Adams Drilling</td>
</tr>
<tr>
<td>Document ID</td>
<td>7699-URS-4-3.3-0032</td>
</tr>
<tr>
<td>Santos Bore ID</td>
<td>ROM_DRNGWM04_BORE_W</td>
</tr>
<tr>
<td>URS Project</td>
<td>42626577</td>
</tr>
<tr>
<td>Date Installed</td>
<td>21/01/2012</td>
</tr>
<tr>
<td>Drilling Method</td>
<td>Mud Rotary</td>
</tr>
</tbody>
</table>

Monitoring Bore Construction Details

- **Top of Casing:** 292.066 (mAHID)
- **Surface Elevation:** 290.866 (mAHID)

Casing Details

- **Casing Diameter:** 104 mm
 - Schedule 10 Stainless Steel 0 to 201.8 mBGL
 - Schedule 40 Stainless Steel 201.8 to 355.5 mBGL
- **Casing Material:**
 - 104 mm Schedule 10 Stainless Steel
 - 104 mm Schedule 40 Stainless Steel

Drilling Details

- **Hole Diameter:** 216 mm
- **Drilling Method:** Mud Rotary
- **Annular Seal:** 3% Bentonite/Cement
- **Volume/Quantity Used:** Return to surface

Groundwater Parameters

- **Top of Bentonite Seal:** 343 mBGL
- **Top of Filter pack:** 348 mBGL

Screen Details

- **Type of Screen:** Johnson Screen, stainless steel
- **Screen Aperture:** 1 mm
- **Filter pack Material:** 2-4 mm rounded gravel

- **Top of Screen:** 355.5 mBGL
- **Bottom of Screen:** 361.5 mBGL
- **Bottom of Sump:** 362.5 mBGL
- **Terminal Depth Drilled:** 365.5 mBGL

Groundwater Parameters after Bore Development:

- **SWL:** 13.72 mBGL
- **EC:** 1481 µS/cm
- **pH:** 8.67
- **Temperature:** 32.4 °C
- **Redox:** -134 mV

*Prepared by: HS
Check by: MR*
GROUNDWATER MONITORING BORE CONSTRUCTION RECORD

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Roma Deep Monitoring Bore Programme</th>
<th>Document ID</th>
<th>7699-URS-4-3.3-0036</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Pasadena</td>
<td>Santos Bore ID</td>
<td>ROM_PASGWO03_BORE_W</td>
</tr>
<tr>
<td>Coordinates</td>
<td>-26.577938 149.066142</td>
<td>URS Project</td>
<td>42626577</td>
</tr>
<tr>
<td>URS Supervisor</td>
<td>Hayden Seear</td>
<td>Date Installed</td>
<td>16/02/2011</td>
</tr>
<tr>
<td>Driller’s Name</td>
<td>Peter Adams</td>
<td>Drilling Method</td>
<td>Mud Rotary</td>
</tr>
<tr>
<td>Drilling Company</td>
<td>Adams Drilling</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Monitoring Bore Construction Record

- **Top of Casing:** 340.147 (mAH)
- **Surface Elevation:** 339.440 (mAH)
- **Casing Diameter:** 104 mm
- **Casing Material:** Schedule 10 Stainless Steel
- **Hole Diameter:** 216 mm
- **Drilling Method:** Mud Rotary
- **Annular Seal:** 3% Bentonite/Cement Grout
- **Volume/Quantity Used:** Return to surface
- **Top of Bentonite Seal:** 273 mBGL
- **Top of Filter pack:** 279 mBGL
- **Type of Screen:** Johnson Screen, stainless steel
 - **Screen Aperture:** 1 mm
 - **Filter pack Material:** 2-4 mm rounded gravel
- **Top of Screen:** 311.5 mBGL
- **Bottom of Screen:** 317.5 mBGL
- **Bottom of Sump:** 318.5 mBGL
- **Terminal Depth Drilled:** 339.0 mBGL

Groundwater parameters after bore development:
- SWL: 44.20 mBGL, EC: 1295 µS/cm, pH: 8.77, Temperature: 30.7 °C, Redox: 73.5 mV

Monitoring Bore Construction Record 1 of 1

Prepared by: HS
Check by: MR
Groundwater Monitoring Bore Construction Record

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Roma Deep Monitoring Bore Programme</th>
<th>Document ID</th>
<th>7699-URS-4-3.3-0006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>The Bend</td>
<td>Santos Bore ID</td>
<td>ROM_TBDGWG02_BORE_W</td>
</tr>
<tr>
<td>Coordinates</td>
<td>-26.465027, 149.014594</td>
<td>URS Project</td>
<td>42626577</td>
</tr>
<tr>
<td>URS Supervisor</td>
<td>Tom Mackie, Hayden Seear</td>
<td>Date Installed</td>
<td>5/05/2011</td>
</tr>
<tr>
<td>Driller’s Name</td>
<td>Marc and Peter Adams</td>
<td>Drilling Method</td>
<td>Mud Rotary</td>
</tr>
<tr>
<td>Drilling Company</td>
<td>Adams Drilling</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Project Details

- **Top of Casing:** 339.532 (mAHD)
- **Surface Elevation:** 338.536 (mAHD)
- **Casing Diameter:** 104 mm
- **Casing Material:** Schedule 10 Stainless Steel
- **Hole Diameter:** 216 mm
- **Drilling Method:** PDC Mud Rotary
- **Annular Seal:** 3% Bentonite/Cement Grout
- **Volume/Quantity Used:** Return to surface

Geologic Units

- **Bungil Formation:** 52 mBGL
- **Mooga Sandstone:** 63 mBGL
- **Orallo Formation:** 224 mBGL
- **Gubberamunda Sandstone:**
- **Westbourne Formation:** 266 mBGL

Groundwater Parameters

- **SWL:** 40.82 mBGL
- **EC:** 640 µS/cm
- **pH:** 8.49
- **Temperature:** 27.7 °C
- **Redox:** 176 mV

Monitoring Details

- **Top of Bentonite Seal:** 212.5 mBGL
- **Top of Filter Pack:** 222.5 mBGL
- **Type of Screen:** Johnson Screen, stainless steel
- **Screen Aperture:** 1 mm
- **Filter Pack Material:** 2-4 mm rounded gravel
- **Top of Screen:** 247 mBGL
- **Bottom of Screen:** 253 mBGL
- **Bottom of Sump:** 254 mBGL
- **Terminal Depth Drilled:** 270 mBGL

Additional Information

- **Groundwater Formation Details:**
 - Bungil Formation
 - Mooga Sandstone
 - Orallo Formation
 - Gubberamunda Sandstone
 - Westbourne Formation

Monitoring Bore Construction Record 1 of 1 Prepared by: HS Check by: MR
Groundwater Monitoring Bore Construction Record

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Roma Deep Monitoring Bore Programme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Wallabella</td>
</tr>
<tr>
<td>Coordinates</td>
<td>26.782535, 149.196870</td>
</tr>
<tr>
<td>URS Supervisor</td>
<td>Sian Smith</td>
</tr>
<tr>
<td>Driller’s Name</td>
<td>Marc Adams</td>
</tr>
<tr>
<td>Drilling Company</td>
<td>Adams Drilling</td>
</tr>
<tr>
<td>Drilling Method</td>
<td>Mud Rotary</td>
</tr>
<tr>
<td>Project ID</td>
<td>ROM_WBLGWG06_BORE_W</td>
</tr>
<tr>
<td>URS Project</td>
<td>42626577</td>
</tr>
<tr>
<td>Date Installed</td>
<td>25/10/11</td>
</tr>
<tr>
<td>Groundwater parameters after bore development:</td>
<td>SWL: ND mBGL, EC: 1085 µS/cm, pH: 9.04, 31.9 °C, Redox:-66.4 mV</td>
</tr>
</tbody>
</table>

Top of Casing:
- Surface Elevation: 272.636 (mAHD)

Casing Diameter:
- 150 mm

Hole Diameter:
- 250mm (0-574m), 152mm (574-657)

Drilling Method:
- Mud Rotary

Annular Seal:
- Pressure Cement Grouted

Volume/Quantity Used:
- Return to surface

Position of M-packers:
- 560 mBGL

Base of Pressure Grouted Casing:
- 574 mBGL

Telescope Casing Material:
- Schedule 40 Stainless Steel

Telescope Casing Diameter:
- 104 mm

Type of Screen:
- Johnson Screen, 0.5mm

Filter Pack Material:
- Natural

Top of Screen:
- 622 mBGL

Bottom of Screen:
- 634 mBGL

Terminal Depth Drilled/Sump:
- 650.0 mBGL Sump, 657.0 mBGL TD

Groundwater Formations:
- **Bungil Formation**: 192 mBGL
- **Mooga Sandstone**: 237 mBGL
- **Orallo Formation**: 570 mBGL
- **Gubberamunda Sandstone**: 570 mBGL
- **Westbourne Formation**: 654 mBGL
Project Name: Roma Deep Monitoring Bore Programme

Location: Wonga Park

Coordinates: -26.639432, 149.224799

URS Supervisor: Tom Mackie

Date Installed: 11/9/2011

Driller's Name: Marc Adams

Drilling Company: Adams Drilling

Drilling Method: Mud Rotary

Top of Casing: 292.131 (mAH)
Surface Elevation: 291.518 (mAH)

Casing Diameter: 150 mm
Casing Material: Schedule 40 Stainless Steel

Hole Diameter: 250mm (0-435m), 152mm (435-522.5m)
Drilling Method: PDC Mud Rotary

Annular Seal: Pressure Cement Grouted

Volume/Quantity Used: Return to surface

Position of M-packers: 428 mBGL

Base of Pressure Grouted Casing: 434.5 mBGL

Telescope Casing Material: Schedule 40 Stainless Steel
Telescope Casing Diameter: 104 mm
Type of Screen: Johnson Screen 0.5mm
Filter pack Material: Natural

Top of Screen: 482.5 mBGL
Bottom of Screen: 494.5 mBGL

Terminal Depth Drilled/Sump: 521.5 mBGL Sump
 TD

Groundwater parameters after bore development:

SWL: 24.15 mBGL, EC: 1485 µS/cm, pH: 9.17, 33.7 °C, Redox:-262.6 mV

Monitoring Bore Construction Record 1 of 1

Prepared by: HS
Check by: MR
Monitoring Bore Construction Record

GROUNDWATER MONITORING BORE CONSTRUCTION RECORD

Project Name: Roma Deep Monitoring Bore Programme

Location: Wonga Park

Coordinates: -26.639544 149.224491

URS Supervisor: Matthew Ryan

Date Installed: 20/07/2011

Driller’s Name: Peter Adams

Drilling Company: Adams Drilling

Water Parameters after Bore Development:
- SWL: ND
- EC: 1844 µS/cm
- pH: 8.78
- Temperature: 32.1 °C
- Redox: -72.2mV

URS Project: 426265 77

Santos Bore ID: ROM_WOPGWO02_BORE_W

Document ID: 7699-URS-4-3.3-0022

Top of Casing: 292.245 (mAH)

Surface Elevation: 291.361 (mAH)

Casing Diameter: 104 mm

Casing Material: 0-90m Schedule 10 Stainless Steel

90-362m Schedule 40 Stainless Steel

Top of Filter pack: 344 mBGL

Type of Screen: Johnson Screen, stainless steel

Screen Aperture: 1 mm

Filter pack Material: 2 – 4 mm rounded gravel

Top of Bentonite Seal: 339 mBGL

Annular Seal: 3% Bentonite/Cement Grout

Drilling Method: PDC Mud Rotary

Volume/Quantity Used: Return to surface

Terminal Depth Drilled: 364 mBGL

Groundwater Parameters:
- **Bungil Formation**: 241 mBGL
- **Mooga Sandstone**: 251 mBGL
- **Orallo Formation**: 241 mBGL

Prepared by: HS

Check by: MR
USC DESCRIPTION OF STRATA

TOPSOIL: SILTY CLAY moderate plasticity, red-pale brown, few fine grained SAND, slightly moist.

CLAYEY SAND: Pale brown-red, fine to medium grained, some quartzose and feldspathic pebbles, sub-angular to rounded, low to moderate plasticity CLAY, few SILT.

CLAY: Moderate plasticity, pale brown-grey, some SILT.

NO RECOVERY

SANDSTONE: High strength, moderate oxidation weathering, pale brown with red mottling, fine grained, some SILT, ~30% QUARTZ.

INTERBEDDED SILTSTONE-MUDSTONE: High strength, black to green-grey, uniform, and low strength, dark grey-black, uniform, few SILTY CLAY, low to moderate plasticity, dark grey.

MUDSTONE: High strength, black with pale grey laminations, fissile, few fine grained SAND, grey.

INTERBEDDED SILTSTONE-SANDSTONE: Moderate strength, dark grey, black on fresh surfaces, and very high strength, pale green-dark grey with few black grains.

INTERBEDDED SILTY-SANDSTONE: Very low strength.
USC DESCRIPTION OF STRATA

50

High strength, green-grey with few black grains, and low strength, black.

INTERBEDDED MUDSTONE-CLAY: Soft, moderate plasticity, black, and moderate plasticity, dark grey.

60

MUDSTONE: Black hummocky cross-bedding, fissile.

Low to moderate strength.

INTERBEDDED SILTSTONE-SANDSTONE: High strength, black, and very high strength, dark grey-green with few black grains, fine grained.

70

MUDSTONE: Low strength, dark grey-black, fissile.

SANDY-SILTSTONE: Low strength, dark grey-green with some black grains.

80

MUDSTONE: Low strength, black.

INTERBEDDED MUDSTONE AND SILTYSANDSTONE: Low to moderate strength, dark grey with black laminations.

90

INTERBEDDED MUDSTONE-SILTSTONE: Low to moderate strength, black, fissile, and moderate strength, grey.

No MUDSTONE.

100

INTERBEDDED MUDSTONE: Moderate strength, dark brown

Darker grey.

Schedule 40 150mm ID (168mm OD) stainless steel casing, pressure cemented

CONSTRUCTION DETAILS

Gamma (CPS)
OIH Caliper (mm)
Casing Caliper (mm)
Density (g/cc)

20 30 40 50 60 70 80 90 100
20 50 84 118 148 180
20 32.0 44.0 56.0 68.0 80.0

PROJECT NO.: 42626577

DOCUMENT ID: N/A

URS Australia Pty. Ltd.
Level 17, 240 Queen St, Brisbane QLD 4000
Phone: (07) 3243 2111

Phone: (07) 3243 2199
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>USC DESCRIPTION OF STRATA</th>
<th>CONSTRUCTION DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>SILTSTONE: Low strength, green-grey.</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>MUDSTONE: Low to moderate strength, black.</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Moderate to high strength. Low strength, pale grey, some sandy clay, moderate plasticity, dark yellow-brown, fine SAND.</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>INTERBEDDED MUDSTONE-SILTSTONE: Low to moderate strength, black, and moderate strength, grey-green with some black grains.</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Moderate strength, grey siltstone, trace fine grained SAND.</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>MUDSTONE: Low to moderate strength, dark grey-black.</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>INTERBEDDED MUDSTONE-SILTSTONE: Moderate strength, grey, few fine grained SAND.</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>SILTY SANDSTONE: Low strength, grey-green-white, and moderate strength, grey, few fine grained SAND.</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>SILTY SANDSTONE: Moderate to High</td>
<td></td>
</tr>
</tbody>
</table>

 Schedule 40 150mm ID (168mm OD) stainless steel casing, pressure cemented.
USC DESCRIPTION OF STRATA

- **MUDSTONE:** Low to moderate strength.
- **SILTY SANDSTONE:** Dark grey to black.
- **SILTY SANDSTONE:** Low strength, grey-green-white, and low strength, black, few MUD. Moderate strength, white-grey to dark grey.
- **SILTY SANDSTONE:** Low to moderate strength, pale grey-white to dark grey, some QUARTZ, and low strength, black, some MUD.
- Trace COAL, moderate strength, black, vitreous, very fine (<1mm) beds.
- Finely laminated interbedding of pale grey to dark grey SILTY SANDSTONE, fine grained.
- **SILTSTONE:** Moderate to high strength, pale grey with trace green-grey, some chips up to 2mm, few fine grained SAND. Trace MUD.
- **INTERBEDDED SILTY SANDSTONE:**
 - Low strength, grey-white, fine to medium grained.
 - Higher strength.

CONSTRUCTION DETAILS

Schedule 40 150mm ID (168mm OD) stainless steel casing, pressure cemented.
INTERBEDDED SANDSTONE-SILTSTONE:
Moderate to high strength, small platy chips, white with some black grains, fine grained, quartzose, and moderate strength, pale grey with dark grey-black mottling, some SAND.

SILTY SANDSTONE:
Medium strength, pale grey with black carbonaceous specks and minor black laminae, fine grained, trace COAL, black (~3mm thick). White with black carbonaceous specks, low strength, very fine grained.

Trace MUDDY SILSTONE layers, brown, and trace SANDSTONE, high strength, clean, fine grained, yellow matrix.

No MUD.

Trace high strength SILTSTONE layers and trace clean, fine grained SANDSTONE.

No clean SANDSTONE.

Minor black, carbonaceous laminae and trace SANDSTONE, high strength, grey-dark brown.

Medium strength, pale grey.

Minor SILTSTONE layers, high strength, dark brown-grey.

Low strength, pale grey, some layers containing

CONSTRUCTION DETAILS

Schedule 40 150mm ID (168mm OD) stainless steel casing, pressure cemented
250mm PDC

USC DESCRIPTION OF STRATA

Depth (m) Drilling Method Graphic Log

290

brown, carbonaceous laminae.

295

SILTSTONE: Medium strength, pale grey, black carbonaceous laminae; trace fine grained SAND, trace COAL (~1mm thick).

300

SILTY SANDSTONE: Medium strength, pale grey, black carbonaceous laminae, very fine grained, trace mica specks.

Minor high strength, dark grey shale layer (~0.5m thick).

Trace mica specks, trace clean SANDSTONE, fine grained, medium QUARTZ clasts.

310

Minor inclusions SILTSTONE, medium strength, grey-white, black carbonaceous specks, trace fine grained SAND.

315

INTERBEDDED SILTY-SANDSTONE: Medium strength, pale grey, black carbonaceous laminae, and pale grey-white, trace pale yellow, platy, crystalline material.

320

SILTY SANDSTONE: Medium strength, pale grey, black carbonaceous specks, very fine grained.

Black laminae, trace shale layers, high strength, dark grey.

SILTSTONE: Medium strength, pale grey, minor brown layers, black carbonaceous specks, clayey.

330

Minor SILTSTONE layers, high strength, grey, uniform.

335

SILTY SANDSTONE: Medium strength, pale grey, black carbonaceous laminae, very fine grained.

340

SILTSTONE: Medium strength, pale grey-brown, black carbonaceous specks, minor CLAYEY SANDSTONE, pale grey, black specks, fine to medium grained, trace COAL (~3mm thick).

Minor SILTSTONE, high strength, grey, uniform, trace COAL.

345

SILTY SANDSTONE: Medium strength, pale grey, black carbonaceous laminae, trace fine grained COAL (~1mm thick).
USC Description of Strata

- **Depth (m):**
 - 350
 - 355
 - 360
 - 365
 - 370
 - 375
 - 380
 - 385
 - 390
 - 395
 - 400
 - 405

- **Drilling Method:**
 - USC

- **Graphic Log:**

- **USC Description of Strata:**
 - **350 m:**
 - Minor SILTY-SANDSTONE, pale grey, black carbonaceous, very fine grained.
 - Fine to medium grained.
 - **355 m:**
 - SANDSTONE: White-yellow-clear, fine to coarse grained, sub-angular to sub-rounded, cemented, quartzose, trace black COAL.
 - **360 m:**
 - SANDSTONE: High strength, white, clear, yellow, fine to medium grained (<0.5mm), occasional coarse grains (<2mm), quartzose, rounded, cemented, minor SILTY SANDSTONE, very fine grained, trace COAL (<1mm thick).
 - Trace COAL, minor SILTSTONE, high strength, grey, uniform.
 - Trace QUARTZ gravel, loose, white-yellow, elongated (<5mm), trace COAL specks.
 - COAL seam, low strength, black (<10mm thick).
 - **365 m:**
 - SILTSTONE: Dark brown, carbonaceous, trace fine SAND, minor COAL.
 - MUDSTONE: Low strength, dark brown.
 - **370 m:**
 - SILTSTONE: Dark brown, carbonaceous, trace fine grained SAND, some COAL, black (<1.5mm).
 - Medium strength, pale grey, black carbonaceous specks and laminae, trace fine grained SAND matrix.
 - **375 m:**
 - SILTY SANDSTONE: Medium strength, white, black carbonaceous specks, fine to medium grained, trace CLAYEY matrix.
 - Some pale brown layers.
 - White-pale green, fine to coarse grained (<1mm), trace COAL.
 - **380 m:**
 - Fine to medium grained SAND, some SILT.

Construction Details

- **Schedule 40 150mm ID (168mm OD) stainless steel casing, pressure cemented**

Gamma (CPS):

- 90
- 200
- 180

OIL Caliper (mm):

- 50
- 54
- 116
- 148
- 180

Casing Caliper (mm):

- 45
- 54
- 116
- 148
- 180

Density (g/cc):

- 2.0
- 3.2
- 5.4
- 11.6
- 14.8

Depth:

- 350
- 355
- 360
- 365
- 370
- 375
- 380
- 385
- 390
- 395
- 400
- 405
USC Description of Strata

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>Graphic Log</th>
<th>USC Description of Strata</th>
</tr>
</thead>
<tbody>
<tr>
<td>410</td>
<td></td>
<td></td>
<td>Fine grained SAND, minor brown carbonaceous layers.</td>
</tr>
<tr>
<td>415</td>
<td></td>
<td></td>
<td>Minor clean SANDSTONE, very fine to fine grained.</td>
</tr>
<tr>
<td>420</td>
<td></td>
<td></td>
<td>Trace COAL specks.</td>
</tr>
<tr>
<td>425</td>
<td></td>
<td></td>
<td>Clean SANDSTONE, rounded, white-yellow-clear, fine to coarse grained (<2mm), cemented, trace COAL specks.</td>
</tr>
<tr>
<td>430</td>
<td></td>
<td></td>
<td>SANDSTONE: Medium strength, white-yellow-clear, fine to coarse grained (<2mm), sub-angular, trace COAL specks, poorly sorted.</td>
</tr>
<tr>
<td>435</td>
<td></td>
<td></td>
<td>SILTY SANDSTONE: Medium strength, pale grey, black carbonaceous specks, fine to medium grained, trace LIGNITE.</td>
</tr>
<tr>
<td>440</td>
<td></td>
<td></td>
<td>Minor clean SANDSTONE, trace SILTSTONE, high strength, grey-brown, uniform, trace COAL specks.</td>
</tr>
<tr>
<td>445</td>
<td></td>
<td></td>
<td>Fine to medium grained.</td>
</tr>
<tr>
<td>450</td>
<td></td>
<td></td>
<td>Minor LIGNITE.</td>
</tr>
<tr>
<td>455</td>
<td></td>
<td></td>
<td>Clean SANDSTONE, trace LIGNITE.</td>
</tr>
<tr>
<td>460</td>
<td></td>
<td></td>
<td>Minor clean SANDSTONE, trace SILTSTONE, pale brown.</td>
</tr>
<tr>
<td>465</td>
<td></td>
<td></td>
<td>Trace LIGNITE.</td>
</tr>
</tbody>
</table>

Construction Details

- **USC Construction Details**
- **Schedule 40 150mm ID (168mm OD) stainless steel casing, pressure cemented**

Schedule 40 150mm ID (168mm OD) stainless steel casing, pressure cemented
Trace clean SANDSTONE.

Trace COAL specks, trace CLAYEY SILTSTONE, pale brown.

CLAYEY SILTSTONE: Medium strength, pale brown.

SILTY SANDSTONE: Medium strength, white, black carbonaceous specks, some dark grey layers, minor LIGNITE layers (<5mm thick), trace clean SANDSTONE, fine to medium grained. Trace COAL specks.

Trace LIGNITE.

Minor LIGNITE.

MUDSTONE: Medium strength, grey-pale brown, trace SILT.

SILTY SANDSTONE: Clean.

MUDSTONE: Medium strength, grey, trace SILT, minor clean SANDSTONE.

SILTY SANDSTONE: Medium strength, pale grey, black laminae, minor sand, CLAYEY, fine grained. Trace COAL specks.

Pale brown-white, black carbonaceous specks, CLAYEY, trace SAND, fine grained.

Minor SILTY SANDSTONE, fine to medium grained.

SANDSTONE: Medium strength, white-clear-yellow-rose, sub-angular, fine to coarse grained (<2mm), clean, cemented, quartzose, poorly sorted, trace SILT, grey-brown.

SILTSTONE: Medium strength, grey-brown, CLAYEY, minor SILTY SANDSTONE.

SANDSTONE: Fine to coarse grained, clean, cemented. Trace COAL.

Fine to medium grained, trace COAL specks.

Minor clean SANDSTONE, fine to medium
SANDSTONE: Very low strength, white-clear-yellow-rose, medium to coarse grained (0.5-2mm), sub-angular, few QUARTZ gravel (~4mm), trace green lithics.

Rounded, grey, fine, clean.

Sub-rounded, grey-white, medium to coarse grained, some medium grained black fragments, well sorted.

MUDSTONE: Very low strength, dark grey, minor interbedded SANDSTONE.

SANDSTONE: Low strength, sub-angular, dark grey, fine to medium grained, minor SILTSTONE and MUDSTONE, some coarse grained QUARTZ. Pale grey, medium to coarse grained, poorly sorted.

Some dark grey fragments.

SANDSTONE: High strength, light grey to dark grey, angular, some black fragments, medium grained, poorly sorted.

Very low strength, pale grey, medium to fine grained, well sorted.

Grey.

CLAY matrix.

High strength, sub-rounded, minor black fragments, medium to coarse grained.
INTERBEDDED MUDSTONE-SILTSTONE:
Very low strength, black, trace QUARTZ.

SILTSTONE:
Very low strength, grey to dark grey, very fine grained, massive, minor interbedded SANDSTONE.

MUDSTONE:
Very low strength, grey to dark grey, massive.

INTERBEDDED MUDSTONE-SILTSTONE:
Low strength, dark grey-black, thinly laminated.

END OF HOLE 605.23 mBGL:

Zero-slot sump (592.956 - 605.23 mBGL)
USC Description of Strata

Clays
- **Clay:** Stiff, dry, orange-brown, high plasticity.

Sandy Gravels
- **Sandy Gravel:** Soft, orange-brown, moist, poorly graded, with some darker fragments present, angular with some medium sized gravel.
- **Sandy Gravel:** Soft, moist, light brown, coarse, poorly graded, with a trace of angular fine gravel.

Silty Sands
- **Silty Sand:** Soft, dry, medium grained, well graded, sub rounded, with a trace of fine angular clasts.

Clayey Sands
- **Clayey Sand:** Stiff, moist, brown, medium grained, poorly graded, with a trace of angular fine graded fragments.

Clays
- **Clay:** Soft, moist, orange-brown, high plasticity.

Silts
- **Siltstone:** High strength, dark grey.

Mudstones
- **Mudstone:** Low strength, grey, thinly interbedded.
- **Mudstone:** Low strength, grey, massive.

Silts
- **Siltstone:** Low strength, extremely weathered, dark grey, massive.

Interbedded Sandstones and Silts
- **Interbedded Sandstone and Siltstone:** Low strength, black, angular, clasts, possible COAL.
- **Interbedded Sandstone and Siltstone:** Low strength, black, angular, clasts, possible COAL.

Artesian Conditions
- **Artesian:** Pressure read: 0.6 psi (08.10.12)

Construction Details
- **Lockable metal standpipe**
- **Mild steel starter casing (254mm ID, 350mm OD) grouted in to 12m.**
- **Schedule 40 150mm ID (168mm OD) stainless steel casing, pressure cemented**

Drilling Details
- **Bore Size:** 350 mm
- **Total Depth:** 382.2 m
- **Casing Size:** 150 mm
- **Casing RL:** 279.281 m AHD
- **Coordinates:** Lat: -26.743843, Long: 148.916182
- **Permit No:** 0020-GLNG-4-1.2-00
- **Drill Type:** Mud Rotary
- **Drill Model:** Atlas Copco T3W
- **Drill Fluid:** Mud (bentonite & PAC)

Logs
- **Gamma (CPS):**
- **OH Caliper (mm):**
- **Casing Caliper (mm):**
- **Density (g/cc):**

Casing Caliper (mm)

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Casing Caliper (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>84.0</td>
<td>148.0</td>
</tr>
<tr>
<td>148.2</td>
<td>180.0</td>
</tr>
</tbody>
</table>

Density (g/cc)

<table>
<thead>
<tr>
<th>Density (g/cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
</tr>
</tbody>
</table>

Drilling Contractor:

- **Adams Drillers**

Project Details

- **Project Name:** 2010-12 Roma Drilling Programme
- **Project No.:** 42626577
- **Location:** Roma, QLD
- **Client:** Santos Ltd
- **Logged By:** DP, PO
- **Checked By:** MR
- **Date Started:** 5-8-12
- **Date Finished:** 19-9-12
- **Bore Size:** 350 mm
- **Total Depth:** 382.2 m
- **Casing Size:** 150 mm
- **Casing RL:** 279.281 m AHD
- **Permit No:** 0020-GLNG-4-1.2-00
- **Drill Type:** Mud Rotary
- **Drill Model:** Atlas Copco T3W
- **Drill Fluid:** Mud (bentonite & PAC)
USC Description of Strata

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>Graphic Log</th>
<th>USC Description of Strata</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td></td>
<td></td>
<td>MUDSTONE: Low strength, dark grey, massive.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increase in unconsolidated clay content throughout.</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td>INTERBEDDED MUDSTONE AND SILTSTONE: Very low strength, dark grey/black, with some medium strength SILTSTONE interbedded.</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td>MUDSTONE: Very low strength, dark grey/black, massive.</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td>SILTSTONE: Low strength, fresh, dark grey/black, massive.</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Construction Details

- **Gamma (CPS)**
- **OH Caliper (mm)**
- **Casing Caliper (mm)**
- **Density (g/cc)**

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Gamma (CPS)</th>
<th>OH Caliper (mm)</th>
<th>Casing Caliper (mm)</th>
<th>Density (g/cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>20</td>
<td>50</td>
<td>84</td>
<td>84.0</td>
</tr>
<tr>
<td>60</td>
<td>180</td>
<td>116.0</td>
<td>148.0</td>
<td>116.0</td>
</tr>
</tbody>
</table>

Schedule 40 150mm ID (168mm OD) stainless steel casing, pressure cemented.
INTERBEDDED MUDSTONE AND SILTSTONE: Very low strength, fresh, thinly laminated, interbedded siltstone layers, poorly developed.

MUDSTONE: Medium strength, dark grey/black, massive.

INTERBEDDED MUDSTONE AND SILTSTONE: Medium/high strength, dark grey/grey, with minor light brown clasts.

SILTSTONE: Medium strength, slight weathering, dark grey/grey with some green mottling on some fragments, some very fine SAND size black clasts throughout.

INTERBEDDED MUDSTONE AND SILTSTONE: Low/medium strength, dark grey, massive.

SILTSTONE: Low/medium strength, dark grey, thinly laminated.

Increase in strength.

INTERBEDDED SILTSTONE AND SANDSTONE: Low/medium strength, dark/light grey, SANDSTONE fine grained.

SANDSTONE: Medium strength, slightly weathered, grey, interbedded SILT-MUDSTONE clasts.

SANDSTONE: Medium strength, slightly weathered, grey, interbedded SILT-MUDSTONE clasts.

Decrease in strength.

INTERBEDDED SILTSTONE AND SANDSTONE: Medium strength, slightly...
USC DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>Graphic Log</th>
<th>USC Description of Strata</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td></td>
<td></td>
<td>weathered, dark grey, with grey fine grained interbedded SANDSTONE laminated layers.</td>
</tr>
<tr>
<td>180</td>
<td></td>
<td></td>
<td>SANDSTONE: Medium/high strength, light grey, fine grained. Decrease in strength.</td>
</tr>
<tr>
<td>190</td>
<td></td>
<td></td>
<td>Darker colour.</td>
</tr>
<tr>
<td>195</td>
<td></td>
<td></td>
<td>INTERBEDDED SILTSTONE AND SANDSTONE: High strength, dark/light grey, laminated, with fine grained SANDSTONE.</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td>SILTSTONE: Moderate strength, grey, trace green-grey specks (some chips up to 2mm), few fine grained SAND.</td>
</tr>
<tr>
<td>205</td>
<td></td>
<td></td>
<td>SILTY SANDSTONE: Low strength, grey-green, fine to medium grained, trace COAL, black, moderate strength, very fine (<2mm).</td>
</tr>
<tr>
<td>210</td>
<td></td>
<td></td>
<td>SILTSTONE: Low to medium strength, grey-green (some chips up to 2mm), trace COAL laminations, very fine (<1mm), black.</td>
</tr>
<tr>
<td>215</td>
<td></td>
<td></td>
<td>INTERBEDDED SILTSTONE AND SILTY SANDSTONE: Medium strength, pale grey to grey-green and brown, fine grained.</td>
</tr>
<tr>
<td>220</td>
<td></td>
<td></td>
<td>INTERBEDDED SILTSTONE AND SILTY MUDSTONE: As above, with some COAL, medium strength, very fine (<1mm), black, vitreous.</td>
</tr>
<tr>
<td>225</td>
<td></td>
<td></td>
<td>SILTY SANDSTONE: Medium strength, grey-green, fine grained. Medium strength, black-grey, laminated. Low strength, pale grey, fine to medium grained.</td>
</tr>
<tr>
<td>230</td>
<td></td>
<td></td>
<td>SANDSTONE: Low strength, pale grey, sub-rounded, fine to medium grained, few</td>
</tr>
</tbody>
</table>
USC DESCRIPTION OF STRATA

- **230 m**
 - SILTSTONE, low strength, dark grey.
 - No SILTSTONE.
 - Low to medium strength, medium grained.
 - Some SILTSTONE chips, medium strength, up to 2mm.

- **250 m**
 - SANDSTONE: Low to medium strength, grey-pale grey, fine to medium grained, few SILTSTONE chips, low strength, dark grey.

- **260 m**
 - No SILTSTONE.
 - Some COAL chips, low strength, black, vitreous, very fine (<1mm).
 - Few COAL.

- **270 m**
 - Some SILTSTONE chips, low to medium strength, dark grey.
 - Larger SILTSTONE chips, medium to high strength, sub-angular, fine to medium grained.
 - Light brown-dark grey, fine chips (<3mm), no SILTSTONE.

- **280 m**
 - Low to medium strength, some brown-grey chips, few QUARTZ (<3mm), white, crystalline.

CONSTRUCTION DETAILS

- **Casing:** Schedule 40 150mm ID (168mm OD) stainless steel casing, pressure cemented.

Log Details

- **Depth (m):** 230, 250, 260, 270, 280
- **Drilling Method:** USC
- **USC Description:**
 - SILTSTONE: low strength, dark grey
 - SANDSTONE: Low to medium strength, grey-pale grey, fine to medium grained, few SILTSTONE chips, low strength, dark grey
 - COAL: Some COAL chips, low strength, black, vitreous, very fine (<1mm)
 - QUARTZ: Some brown-grey chips, few QUARTZ (<3mm), white, crystalline

Material:

- **Density (g/cc):**
- **Gamma (CPS):**
- **Casing Caliper (mm):**
- **O.D. Caliper (mm):**

Location: URS Australia Pty. Ltd.

- **Address:** Level 17, 240 Queen St, Brisbane QLD 4000
- **Phone:** (07) 3243 2111

Document ID: N/A
Low to medium strength, grey-green, very fine chips (~2mm).

Medium to high strength, no grey-green chips.

Larger chips (10-20mm).

Medium strength, grey-pale grey, few pale brown chips, fine to medium grained, some chips up to 2mm, some SILTSTONE chips, low strength, black, very fine grained (~1mm).

High strength, few chips up to 5mm.

Medium strength.

Medium strength, few QUARTZ, white, up to 2mm.

High strength, few SILTSTONE chips, medium strength, black.

SANDSTONE: Low to medium strength, grey-pale grey, sub-angular, fine to medium grained, few COAL, low strength, brown-black, (up to 2mm), some wood fragments. Fewer COAL.

Very fine COAL (<1mm), some SANDSTONE and COAL interbedded.

No COAL.

INTERBEDDED SANDSTONE AND COAL: Low to medium strength, grey-pale grey, fine to medium grained, sub-angular, and low strength, black, chips up to 2mm, few QUARTZ, low strength, white, sub-rounded. Some QUARTZ.
High strength, few SANDSTONE chips, grey-green.

INTERBEDDED SANDSTONE AND SILTSTONE: Medium strength, grey-pale grey, sub-angular, fine to medium grained, and low strength, dark grey, sub-angular.

Some SILTSTONE, some QUARTZ, low strength, white, (<2mm grains), and COAL, low strength, black, laminated.

SANDSTONE: High strength, pale grey-white, medium grained, some very fine grained QUARTZ. Some very fine COAL chips (<1mm), low strength, black.

Larger COAL chips (10-30mm).

Few SANDSTONE chips, light brown, increased QUARTZ, translucent-white, more COAL, low to medium strength.

Medium to high strength, fewer COAL chips.

SANDSTONE: Medium strength, grey-pale grey, some light brown chips, sub-angular, medium to coarse grained, few QUARTZ, low strength, translucent, sub-angular, some COAL, black, very fine (<2mm).

END OF HOLE 382.20 mBGL.
Grout Mixture:

- Cement GP
- Potable water
- Plasticiser (retarder): SikaVisocrete 3015 at 1% to 2% weight of cement
- Suspension agent: METHOCELL 228 or K15MS at 0.15% to 0.25% weight of cement

Bungil Formation (Outcropping to 91 m BGL):

- Silty Sand: fine grained, grey-brown with ~30% fines
- Silty Clay: low to medium plasticity, brown to grey-brown with 15% fine grained Sand
- Sandstone: low strength, red-brown to yellow, very fine grained to fine grained with 20% fines
- Sandy Clay: low plasticity, yellow-brown to brown, with 20% fine grained Sand
- Sandstone: very low strength, yellow-brown, fine grained, well sorted, sub-angular
- Siltstone: very low strength, dark grey-brown, carbonaceous with 15% fine to very fine grained Sand
- Sandstone: low strength, dark grey to brown, fine grained, well sorted with 40% carbonaceous Siltstone
- As above however with decreasing Siltstone
- Sandstone: low strength, dark grey, fine to medium grained, well sorted with 20% carbonaceous Siltstone
- Siltstone: low to medium strength, grey with 15-20% fine grained Sand
- Siltstone: low strength, grey, carbonaceous with 20-30% clay and no Sand

Remarks:

This corehole log is the combination of core taken from three holes due to difficulties in the coring process, which resulted in the abandoning of the first 2 holes; all holes were within a 20 metre radius. For a summary of cored sections please refer to notes on the last two pages of the log.
VW P cables ingrout

Grout Mixture: Cement GP, potable water, plasticiser (retarder): SikaVisocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCELL228 or K15MS at 0.15% to 0.25% weight of cement.

As above however with 5% fine grained SAND.

As above however with 20-40% CLAY and <10% aggregates of pale brown, fine grained SANDSTONE.

As above however with SILTSTONE becoming low to medium strength, grey with 10% LIGNITE and organic fragments, to 2mm; minor gritty, calcareous, fine to medium grained, white material.

As above however with increasing organic component; highest in CLAY, to 20%.

CLAYSTONE; very low strength, grey, poorly developed fabric comprising 70% low to medium plasticity clay.

SILTSTONE; low to medium strength, grey to dark grey, carbonaceous, with 30% fine grained SAND and trace LIGNEOUS grains.

As above however with 10% aggregates of low strength, medium grained, calcareous SAND and CALCITE.

SILTSTONE; low strength, dark grey, carbonaceous.

SANDSTONE; low to medium strength, pale grey to black, ligneous with <20% fines and 10% fine grained, well sorted organic fragments.

MUDSTONE; low to medium strength, dark grey to black, carbonaceous with 20% LIGNITE, COAL and LITHICS.

CONSTRUCTION DETAILS

Drilling Method

Graphic Log

USC DESCRIPTION OF STRATA

Gamma (CPS)

O/H Caliper (mm)

25 60 90 120 150

VWP cables in grout

Grout Mixture: Cement GP, potable water, plasticiser (retarder): SikaVisocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCELL228 or K15MS at 0.15% to 0.25% weight of cement.

VWP cables in grout
SILTSTONE: low to medium strength, grey to dark grey, thin laminar fabric, carbonaceous with minor SAND.

As above however SILTSTONE becoming low strength.

SILTSTONE: low strength, grey to dark grey, carbonaceous with 50% interbedded, fine grained SANDSTONE and 25% COAL/LIGNITE.

As above however SILTSTONE becoming darker with 60% fines.

LIGNITE: medium strength, dark brown to black with <10% minor fines.

MUDSTONE: low to medium strength, dark grey with high organic component, carbonaceous and 25% LIGNITE.

SANDSTONE: low to medium strength, fine grained, grey-black-white quartz with 5-10% well sorted LIGNITE/COAL.

As above however SANDSTONE becoming low strength with minor SILTSTONE fragments.

Grout Mixture:
- Cement GP
- Potable water
- Plasticiser (retarder): SIKA Viscocrete 3015 at 1% to 2% weight of cement
- Suspension agent METHOCELL 228 or K15MS at 0.15% to 0.25% weight of cement
- VW P cables in grout
Ligneous CLAY; low plasticity, brown with 40% dark brown-black LIGNITE fragments.

Interbedded SANDSTONE-SILTSTONE; low to medium strength, pale brown to dark grey with fine grained SAND and trace fine grained LIGNITE.

MOOGA SANDSTONE (91 to 107 mBGL)
SANDSTONE; medium to high strength, fine to coarse grained, generally sub angular, well sorted with 15% grey-white, COAL/LIGNITE.

As above however with 15% interbedded SILTSTONE.

As above however SANDSTONE becoming fine to medium grained with 20% LIGNITE.

ORALLO FORMATION (107 to 247.9 mBGL)
MUDSTONE; medium strength, pale brown, poorly developed fabric with fine grained SAND and LIGNITE.

SANDSTONE; medium strength, fine to medium grained, sub angular, well sorted, pale to dark grey with 15-30% COAL/LIGNITE fragments.

As above however with 15% fines and 5% COAL/LIGNITE.
VW P cablerunning through HW T casing (95 - 315 m BGL)

Grout Mixture:
Cement GP, potable water, plasticiser (retarder): SIKA Viscocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCCELL 228 or K15MS at 0.15% to 0.25% weight of cement.

As above however SANDSTONE becoming fine grained, well sorted with 10-20% LIGNITE.

SANDSTONE:
- medium strength, fine grained, well sorted with 40% interbedded medium strength, dark grey-pale grey, very thin laminar SILTSTONE and 10-30% LIGNITE.
- As above however with 60-70% dark grey with pale grey SILTSTONE and fine grained, carbonaceous SHALE lenses.
- As above however SANDSTONE becoming low strength, pale grey with 30% SHALE.
- As above however with 60% fine grained SAND.

SANDSTONE:
- medium to high strength, pale grey, fine to medium grained, sub angular, moderately sorted with 70% quartz; 30% LITHICS and LIGNITE; 5-30 cm defect spacings and tight fractures.
- As above however with a CLAY layer, 10cm.
- As above however with medium to coarse grained SAND beds, to < 10cm.

CONSTRUCTION DETAILS

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>USC DESCRIPTION OF STRATA</th>
<th>Gamma (CPS)</th>
<th>O/H Caliper (mm)</th>
<th>CONSTRUCTION DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VWP cable running through HWT casing (95 - 315 m BGL)</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Grout Mixture: Cement GP, potable water, plasticiser (retarder): SIKA Visocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCCELL 228 or K15MS at 0.15% to 0.25% weight of cement.

CONSTRUCTION DETAILS

USC DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>USC Description of Strata</th>
</tr>
</thead>
<tbody>
<tr>
<td>175</td>
<td>COAL, MUDSTONE and SILTSTONE clasts, to 10mm; unbroken. As above however with increasing LITHICS comprising 60-70% quartz; 1-10% COAL clasts; lenses to 10mm; unbroken. As above however SANDSTONE becoming coarse grained with COAL, MUDSTONE and SILTSTONE clasts, to 10mm. As above however with MUDSTONE and SILTSTONE clasts, from 1-6cm. As above however with interbedded SILTSTONE.</td>
</tr>
<tr>
<td>180</td>
<td>SILTSTONE: medium strength, dark grey, fracture spacings >1m with occasional SANDSTONE beds, to 7cm. As above however with interbedded, medium strength, fine to medium grained SILTSTONE sandstone beds from 7-20cm. As above however with SANDSTONE and SILTSTONE clasts, from 1-10mm.</td>
</tr>
<tr>
<td>185</td>
<td>SAND: medium to coarse grained, moderately sorted SAND with coarse grained SANDSTONE and SILTSTONE beds, to 5cm at 50cm spacings. As above however SAND becoming fine to medium grained, moderately sorted SANDSTONE with 5-10% fines and trace COAL lamina. As above however with 45-60% MUDSTONE clasts, from 1-10mm at 178.35 - 178.6 mBGL. As above however with increasing coarse grained SAND and >80cm fracture spacings. As above however with trace COAL lenses/pockets.</td>
</tr>
<tr>
<td>190</td>
<td>CONGLOMERATE: coarse grained SAND to COBBLES, sub angular to sub rounded, poorly sorted comprising 50% quartz, 50% LITHICS, COAL and MUDSTONE.</td>
</tr>
<tr>
<td>195</td>
<td>SAND: fine to medium grained with some coarse SAND; unbroken. As above however with a low to medium strength fracture zone at 199.6 - 199.8 mBGL.</td>
</tr>
<tr>
<td>200</td>
<td>SILTSTONE: medium to high strength, dark grey, massive, fractured. SANDSTONE: fine to medium grained with some coarse SAND; unbroken. As above however with a low to medium strength fracture zone at 199.6 - 199.8 mBGL.</td>
</tr>
</tbody>
</table>
USC DESCRIPTION OF STRATA

- **205 m:** As above however with COAL clasts and lenses, from 1-50mm.
 - As above however with no COAL.
 - As above however with trace COAL lamina, to 1mm.
 - As above however SANDSTONE becoming medium to coarse grained with 0.5% COAL lamina, to 5mm.
 - Open fracture with MUDSTONE pebbles.
 - As above however SANDSTONE becoming fine to medium grained with poorly developed bedding; 1-2% COAL lamina and fracture spacings >40cm.
 - As above however SANDSTONE becoming medium grained.

- **210 m:**
 - CARBONACEOUS MUDSTONE; medium strength, brown-dark brown, very fine grained with 10-50cm fracture spacings.
 - As above however CARBONACEOUS MUDSTONE becoming medium strength, pale brown with decreasing COAL.
 - As above however with a low strength, pale green layer at 209.7 - 209.8 mBGL.
 - As above however CARBONACEOUS MUDSTONE becoming pale brown to grey-green with 10-60cm defect spacings.

- **215 m:**
 - SILTSTONE; medium strength, dark grey with some fine to medium grained SANDSTONE beds, to <10cm; 1-10% COAL lenses; 50 cm defect spacings and light fractures.
 - As above however with a low strength fracture (shear?) zone at 212.1 - 212.5 mBGL and <15 cm spacings at 10-70 degrees.
 - As above however SILTSTONE interbedded with fine grained SANDSTONE comprising 30% fines and <1% COAL.

- **220 m:**
 - SANDSTONE-MUDSTONE; grey-dark grey, hard with abundant fine COAL layers and sub angular to angular quartz grains.

- **225 m:**
 - SANDSTONE; grey with white bands, fine grained, sub angular, well sorted, quartz with some bright, thin COAL layers.

- **230 m:**
 - MUDSTONE; grey, finely layered with SILTSTONE grading to SANDSTONE at base.

- **235 m:**
 - SANDSTONE; grey, generally massive with fine grained, well sorted, grey quartz grains and some layering towards base.

As above however with a 3cm MUDSTONE band at 232mBGL.

CONSTRUCTION DETAILS

- **Grout Mixture:**
 - Cement GP, potable water, plasticiser (retarder): Sika Visocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCHEL228 or K15MS at 0.15% to 0.25% weight of cement.

VWP Cable Running Through HW T casing (95 - 315 mBGL)

- **Phone:** (07) 3243 2111
- **Depth:** 205 - 230 mBGL

Sheet 8 of 12
VW P cablerunning through HW T casing (95 - 315 m BGL)

Grout Mixture: Cement GP, potable water, plasticiser (retarder): SIKAViscocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCELL 228 or K15MS at 0.15% to 0.25% weight of cement.

SANDSTONE; grey, fine to medium grained, subaqueous quartz grains.

MUDSTONE; grey, finely layered.

SANDSTONE; grey, fine to medium grained, well sorted, subaqueous quartz grains; broken portions.

MUDSTONE; grey, layered with some bedding.

SANDSTONE; grey, fine to medium grained with transparent-grey, well sorted quartz grains.

MUDSTONE; grey, finely layered, generally massive.

SANDSTONE; grey, fine grained, well sorted with transparent-grey, subangular quartz grains.

CORE LOSS in MUDSTONE? SANDSTONE; grey, fine grained, well sorted with transparent-grey, subangular quartz grains; MUDSTONE bed at 244.1 - 244.6 m BGL and MUDSTONE inclusions below 246.8 m BGL.

MUDSTONE; grey, hard, finely layered.

GUBBERAMUNDA SANDSTONE (247.9 to 280 m BGL)

SANDSTONE; grey-dark grey, fine to medium grained, subangular, well sorted, quartz with CONGLOMERATE at 250-251 m BGL.

CORE LOSS; 3.74 m at 258 m BGL.

SANDSTONE; grey, medium to coarse grained, subangular, well sorted, quartz grains with numerous breaks.

CORE LOSS; 0.5 m at 261 m BGL.

CORE LOSS; 0.2 m at 264.6 m BGL.

Graout Mixture: Cement GP, potable water, plasticiser (retarder): SIKAViscocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCELL 228 or K15MS at 0.15% to 0.25% weight of cement.
In Summary the cored sections of the log were
USC DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>USC Description of Strata</th>
</tr>
</thead>
<tbody>
<tr>
<td>295</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
<td>SILTSTONE: with some coarse grained, sub angular, loose quartz grains.</td>
</tr>
<tr>
<td>305</td>
<td></td>
<td>SANDSTONE: low strength, pale grey, fine grained with 20% interbedded, dark grey Siltstone and some angular, loose quartz grains.</td>
</tr>
<tr>
<td>310</td>
<td></td>
<td>Siltstone: grey-dark grey with 10% COAL fragments.</td>
</tr>
<tr>
<td>315</td>
<td></td>
<td>As above however with some coarse grained, sub angular, loose quartz grains.</td>
</tr>
<tr>
<td>320</td>
<td></td>
<td>Siltstone: pale grey with major crossbedded MUDSTONE layers at 315.6mBG, 316mBG and 316.5mBG, otherwise thinly laminated MUDSTONE throughout.</td>
</tr>
<tr>
<td>325</td>
<td></td>
<td>MUDSTONE: high strength, dark grey, cross bedded with very fine grained, pale grey siltstone layers, to 10mm.</td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

Remarks:
- 140.45 - 212.5 mBGL (Location C1)
- 220.6 - 282.6 mBGL (Location C2)
- 282.6 - 315.4 mBGL (Location C3)

The surface to 140.25 mBGL was taken from the log of the water monitoring bore 15 metres from the corehole. The chips at this location were a lot easier to log due to the different sized PDC drill bit and a thicker drilling mud which provided better chip returns.
USC DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>USC Description</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>325</td>
<td></td>
<td>As above however thin, laminated SILTSTONE beds.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>As above however with decreasing SILTSTONE laminae and banding; infilled fracture at 329.2mBGL, 45 degrees.</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td></td>
<td>As above however MUDSTONE becoming very hard with trace SILTSTONE.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>As above however with cross bedded SILTSTONE bands, from 1-20mm with occasional very fine grained SANDSTONE, to 4cm; fracture at 335.7mBGL, 45 degrees.</td>
<td></td>
</tr>
<tr>
<td>335</td>
<td></td>
<td>As above however with very thinly interbedded SILTSTONE and occasional very fine grained SANDSTONE.</td>
<td></td>
</tr>
<tr>
<td>340</td>
<td></td>
<td>End of Hole, target depth achieved at 341.8 mBGL.</td>
<td></td>
</tr>
<tr>
<td>345</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

- Spaulding Drillers were engaged to continue the coring at the site 10 metres away from the first location. The second location was drilled mud rotary from surface to 220.6mBGL then cored from 220.6mBGL to 282.6mBGL at which no further coring was possible. Spaulding Drillers drilled the final hole, 10 metres from the second mud rotary from surface to 282.6 - 315.4 (Terminal Depth). The Vibrating Wire Piezometers were installed in this final hole.
WALLUMBILLA FORMATION (Outcropping to 134 mBGL)
Silty CLAY; red-brown, stiff with pebbles.
CLAY; low plasticity, grey, very stiff.
As above however CLAY becoming mottled orange.
As above however with a minor SAND layer.
MUDSTONE; low strength, grey, uniform composition.

VWP cable running through HWT casing (0 - 450.5 mBGL)

Grout Mixture: Cement GP, potable water, plasticiser (retarder); SIKA Viscocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCCELL228 or K15MS at 0.15% to 0.25% weight of cement.

HWT casing used to ensure the integrity of the hole during coring was not able to be removed at the completion of coring.
USC DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Graphic Log</th>
<th>O/H Caliper (mm)</th>
<th>CONSTRUCTION DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>VWP cable running through HW T casing (0 - 450.5 mBGL)</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td>As above however with a band of medium strength, dark grey MUDSTONE.</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td>As above however MUDSTONE becoming medium strength.</td>
</tr>
</tbody>
</table>

Grout mixture:
- Cement GP, potable water, plasticiser (retarder): SIKA Viscoocrete 3015 at 1% to 2% weight of cement,
- suspension agent METHOCELL228 or K15MS at 0.15% to 0.25% weight of cement.

VWP cable running through HW T casing (0 - 450.5 mBGL)
USC DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>USC Description of Strata</th>
<th>Gamma (CPS)</th>
<th>O/H Caliper (mm)</th>
<th>Construction Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td></td>
<td>SILTSTONE: high strength, grey.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>As above however SILTSTONE becoming low strength.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>As above however SILTSTONE becoming medium strength.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>As above however SILTSTONE becoming high strength.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>SILTSTONE: low strength, dark grey.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>SILTSTONE: high strength, grey with interbedded low strength, dark grey MUDSTONE.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grout Mixture:
- Cement GP, potable water, plasticiser (retarder): SIKA Viscocrete 3015 at 1% to 2% weight of cement
- Suspension agent METHOCCELL 228 or K15MS at 0.15% to 0.25% weight of cement

VW P cable running through HW T casing (0 - 450.5 m BGL)
VW P cablerunning through HW T casing (0 - 450.5 mBGL)

Grout Mixture:
- Cement GP, potable water, plasticiser (retarder): SIKA Viscocrete 3015 at 1% to 2% weight of cement,
- Suspension agent METHOCCELL 228 or K15MS at 0.15% to 0.25% weight of cement.

MUDSTONE; low to medium strength, dark grey.

As above however with minor interbedded SILTSTONE.

As above however MUDSTONE becoming low strength.

VWP cable running through HWT casing (0 - 450.5 mBGL)

Grout Mixture: Cement GP, potable water, plasticiser (retarder): SIKA Viscocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCCELL 228 or K15MS at 0.15% to 0.25% weight of cement.
VW P cablerunning through HW T casing (0 - 450.5 mBGL)

Grout Mixture:
Cement GP, potable water, plasticiser (retarder): SIKA Viscocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCCELL 228 or K15MS at 0.15% to 0.25% weight of cement.

As above however MUDSTONE becoming medium strength.

BUNGIL FORMATION (134 to 161 mBGL)
SILTSTONE; low strength, pale grey with some interbedded, low strength, dark grey MUDSTONE.

As above however with increasing SILTSTONE.

CONSTRUCTION DETAILS

Drilling Method

USC DESCRIPTION OF STRATA

Gamma (CPS)

OH Caliper (mm)

115
120
125
130
135
140

As above however MUDSTONE becoming low strength.

VWP cable running through HW T casing (0 - 450.5 mBGL)

Grout Mixture:
Cement GP, potable water, plasticiser (retarder): SIKA Viscocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCCELL 228 or K15MS at 0.15% to 0.25% weight of cement.
VWP cable running through HWT casing (0 - 450.5 m BGL)

As above however with minor fine grained, rounded, quartz SAND.

As above however with minor very fine grained, sub angular to rounded, transparent quartz grains.

SILTSTONE; high strength, grey with minor MUDSTONE.

As above however SILTSTONE becoming medium strength, dark grey.

As above however with a band of high strength MUDSTONE.
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>USC DESCRIPTION OF STRATA</th>
<th>CONSTRUCTION DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>175</td>
<td>As above however Siltstone becoming grey with minor very fine grained, transparent quartz grains.</td>
<td>VW P cable running through HW T casing (0 - 450.5 mBGL)</td>
</tr>
<tr>
<td>180</td>
<td>As above however with minor high strength, dark grey Mudstone.</td>
<td>Grout mixture: Cement GP, potable water, plasticiser (retarder): SIKA Viscocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCCEL228 or K15MS at 0.15% yo 0.25% weight of cement.</td>
</tr>
<tr>
<td>185</td>
<td>Mudstone; medium strength, dark grey with interbedded medium strength, pale grey, fine grained Sandstone.</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Mudstone; high strength, dark grey, consistent composition with interbedded low strength, orange-yellow Claystone.</td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>Siltstone; low to medium strength, pale grey.</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>As above however Siltstone becoming dark grey.</td>
<td></td>
</tr>
</tbody>
</table>
VW P cable running through HW T casing (0 - 450.5 mBGL)

Grout Mixture:
- Cement GP, potable water, plasticiser (retarder): SIKA Viscocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCELL 228 or K15MS at 0.15% to 0.25% weight of cement.

USC DESCRIPTION OF STRATA

- SANDSTONE; low strength, pale grey, fine grained, well sorted.
- SILTSTONE; low strength, pale grey.
- SANDSTONE; low strength, pale grey, fine grained, well sorted.
- SILTSTONE; low strength, pale grey with some coarse grained LITHICS.
VW P cablerunning through HW T casing (0 - 450.5 m BGL)

Grout Mixture: Cement GP, potable water, plasticiser (retarder): SIKAViscocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCCELL228 or K15MS at 0.15% to 0.25% weight of cement.

As above however with a high strength, dark grey SILTSTONE band.

As above however with a quartz rich band.

VWP cable running through HWT casing (0 - 450.5 m BGL)

GROUT MIXTURE:
- Cement GP
- Potable water
- Plasticiser (retarder): SIKAViscocrete 3015 at 1% to 2% weight of cement
- Suspension agent METHOCCELL228 or K15MS at 0.15% to 0.25% weight of cement.

VWP cable running through HWT casing (0 - 450.5 m BGL)
Grout Mixture:
- Cement GP, potable water, plasticiser (retarder): SIKAViscocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCELL 228 or K15MS at 0.15% to 0.25% weight of cement.

USC Description of Strata:

- **265m:**
 - As above however with minor quartz.

- **270m:**
 - As above however with a high strength, dark grey SILTSTONE band.

- **280m:**
 - Clayey SILTSTONE: high strength, pale grey, quartz rich with minor fine grained, transparent quartz.

- **285m:**
 - As above however SILTSTONE becoming low strength with decreasing quartz and trace COAL fragments.

CONSTRUCTION DETAILS

- **Gamma (CPS):**
 - 0 to 30
 - 60
 - 90
 - 120
 - 150

- **OH Caliper (mm):**
 - 30
 - 60
 - 90
 - 120
 - 150

VWP Cable Running Through HW T Casing:

- (0 - 450.5 m BGL)

Project No.:
- 42626577

Document ID:
- 7699-URS-4-3.3-0033
As above however with a very fine grained quartz SANDSTONE layer.

USC DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>Graphic Log</th>
<th>USC Description of Strata</th>
</tr>
</thead>
<tbody>
<tr>
<td>295</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>305</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>310</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>315</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **MUDSTONE:** high strength, grey with minor SILT and transparent quartz grains.
- **SILTSTONE:** medium strength, pale grey with very fine grained quartz and <5% COAL.
- **SILTSTONE:** medium strength, pale grey-brown-dark grey with interbedded, high strength, dark grey MUDSTONE; COAL, <1%; trace quartz, CLAY and dark-brown LIGNEOUS clasts, to <50mm.
- **SILTSTONE:** high strength, medium-dark grey with <1% COAL fragments.
- **SANDSTONE:** low strength, grey, fine to medium grained.
- **SILTSTONE:** pale grey with interbedded low strength, pale grey, fine to medium grained SANDSTONE; sub rounded to sub angular, transparent quartz and 5% COAL fragments.
- **SILTSTONE:** medium strength, pale grey with 5% COAL fragments.

CONSTRUCTION DETAILS

- **VWP cable running through HWT casing (0 - 450.5 mBGL)**

Grout Mixture:
- Cement GP, potable water, plasticiser (retarder): SIKA Visocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCELL228 or K19MS at 0.15% yo 0.25% weight of cement.
VW P cable running through HW T casing (0 - 450.5 mBGL)

As above however with 10% COAL fragments.

MOOGA SANDSTONE (353 to 365 mBGL)

SANDSTONE; pale grey, fine grained, well sorted with 10% COAL fragments, to 2mm.

As above however with no COAL.

SANDSTONE; pale grey, fine to medium grained, uniform sorting with 20% medium grained, sub angular, transparent, loose quartz and 10% COAL fragments.
USC DESCRIPTION OF STRATA

355 m:
- **Quartzose:** medium to coarse grained, sub rounded, uniform sorting, transparent with 5% loose coal fragments.

360 m:
- **Orallo (365 to 472 mBGL):**
 - Sandstone: medium to coarse grained, sub rounded, uniform sorting, transparent with 5% loose coal fragments.

365 m:
- **Grout mixture:**
 - Cement GP, potable water, plasticiser (retarder): Sika Viscocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCELL228 or K15MS at 0.15% to 0.25% weight of cement.

370 m:
- **Silty Sandstone:** pale grey, fine grained, well sorted with no visible quartz grains and 20% coal fragments.

375 m:
- **Sandstone:** grey, very fine grained, well sorted with 20% coal fragments.

380 m:
- As above however with increasing brown-black coal, to 15%.

CONSTRUCTION DETAILS

Drilling Method

Graphical Log

USC DESCRIPTION OF STRATA

Depth (m): 355, 360, 365, 370, 375, 380

Gamma (CPS):

O/H Caliper (mm):

Perforated section of HWT casing (347 - 368 mBGL):

VWP cable running through HWT casing (0 - 450.5 mBGL):

Grout mixture:
- Cement GP, potable water, plasticiser (retarder): Sika Viscocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCELL228 or K15MS at 0.15% to 0.25% weight of cement.
USC DESCRIPTION OF STRATA

- **Depth (m):** 385
- **Drilling Method:** Graphic Log

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>USC Description of Strata</th>
</tr>
</thead>
<tbody>
<tr>
<td>385</td>
<td>A above however with 10% COAL.</td>
</tr>
<tr>
<td>390</td>
<td>SANDSTONE: pale grey, fine to medium grained comprising sub angular to sub rounded, transparent quartz grains with interbedded low strength, pale grey, fine to medium grained SILTSTONE comprising sub rounded to sub angular, transparent quartz grains and 5% COAL fragments.</td>
</tr>
<tr>
<td>400</td>
<td>As above however with decreasing COAL, <5% and a hard SILTSTONE band.</td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

- **Gamma (CPS):**
- **O/H Caliper (mm):**

Grout Mixture:
- Cement GP, potable water, plasticiser (retarder): SIKA Viscocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCCELL 228 or K15MS at 0.15% to 0.25% weight of cement.

VWP cable running through HW T casing (0 - 450.5 mBGL).
VWP cable running through HWT casing (0 - 450.5 mBGL)

Grout Mixture:
- Cement GP, potable water, plasticiser (retarder): SIKA Viscocrete 3015 at 1% to 2% weight of cement,
- Suspension agent METHOCELL 228 or K15MS at 0.15% to 0.25% weight of cement.
- As above however with some brown, ligneous SILT.
- As above however with 10% COAL.
- As above however with 5% COAL.
- As above however with 10-15% COAL.
USC DESCRIPTION OF STRATA

- **445 m (mBGL)**
 - SILTSTONE; medium to high strength, grey with minor fine grained SAND.
 - As above however with decreasing SAND.

- **450 m (mBGL)**
 - As above however with very minor fine grained SAND and 10% COAL.
 - COMMENCE CORING at 451.5 mBGL
 - Clayey SILTSTONE grey with 30% very fine grained SAND.
 - SANDSTONE; grey-black-white, fine grained, sub angular to rounded, transparent, quartz with COAL laminae and flecks.
 - SANDSTONE; low to medium strength, pale grey, medium to coarse grained, poorly sorted, quartzose with minor SILTSTONE layers.
 - As above however with minor COAL lithics, to

- **455 m (mBGL)**
 - **COMMENCE CORING at 451.5 mBGL**
 - Clayey SILTSTONE grey with 30% very fine grained SAND.
 - SANDSTONE; grey-black-white, fine grained, sub angular to rounded, transparent, quartz with COAL laminae and flecks.

- **460 m (mBGL)**
 - SILTSTONE; pale and dark grey laminae interbedded with pale grey, fine grained SANDSTONE and thin COAL lamina.
 - SANDSTONE; grey-black-white, fine grained, sub angular to rounded, transparent, quartz with common green, yellow, brown grains; very low strength section at 460.6 - 460.9 mBGL.
 - As above however with a very low strength section at 461.6 - 461.9 mBGL.

- **465 m (mBGL)**
 - As above however SANDSTONE becoming high strength, pale grey, very fine grained with patchy interbedded SILTSTONE and MUDSTONE.
 - SILTSTONE; medium to high strength, pale grey with very fine grained sand and interbedded MUDSTONE.

- **470 m (mBGL)**
 - Interbedded SANDSTONE-SILTSTONE medium strength, grey-blue with minor COAL laminations and flecks throughout.

Grout Mixture:
- Cement GP, potable water, plasticiser (retarder): SIKA Viscocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCEL228 or K15MS at 0.15% yo 0.25% weight of cement.

VWP in Orallo Formation
- Drvnwwo (455 mBGL)

CONSTRUCTION DETAILS

- **Drilling Method:**
 - USC DESCRIPTION OF STRATA
 - Gamma (CPS)
 - OH Caliper (mm)
 - Depth (m)
 - Graphic Log
USC DESCRIPTION OF STRATA

Depth (m)

- **475**
 - As above however with interbedded COAL lithics, to <4mm.
 - As above however SANDSTONE becoming medium strength, grey, fine to medium grained, moderately sorted with COAL fragments.
 - As above however SANDSTONE becoming low to medium strength, coarse grained, fractured.
 - As above however SANDSTONE becoming medium to high strength, fine to medium grained.
 - As above however with a 5cm lens of white, medium grained, sub angular, well sorted QUARTZOSE.
 - As above however with trace coarse grained, sub rounded to sub angular, white, quartzose GRAVEL.
 - As above however SANDSTONE becoming high strength, very fine to fine grained, moderate to well sorted with black COAL flecks.
 - As above however SANDSTONE becoming low to medium strength, coarse grained, moderate to poorly sorted.
 - As above however SANDSTONE becoming medium strength, fine grained, well sorted with <5% fine grained, sub angular to sub rounded quartz grains.
 - As above however SANDSTONE becoming low strength, fine to coarse grained, poorly sorted.

- **480**
 - As above however with minor COAL lithics, to <2mm.

- **485**
 - As above however SANDSTONE becoming medium strength, fine to coarse grained, poorly sorted.

- **490**
 - Interbedded MUDSTONE-SILTSTONE: high strength, grey-green with 15-20% very fine grained SAND.
 - Interbedded MUDSTONE-SANDSTONE: low to medium strength, olive-grey, fine to medium grained, moderately sorted.

- **495**
 - Interbedded MUDSTONE-SILTSTONE: medium to high strength, grey-green interbedded with medium grained SILTSTONE.
 - SANDSTONE: low strength, fine to coarse grained, poorly sorted.

- **500**
 - SANDSTONE: <10mm then back to SANDSTONE as at 487.1mBGL.

Grout Mixture:
- Cement GP, potable water, plasticiser (retarder): Sika Visocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCELL228 or K15MS at 0.15% yo 0.25% weight of cement.

CONSTRUCTION DETAILS

Drilling Method

Graphic Log

USC DESCRIPTION OF STRATA

Depth (m)

- **475**
 - VWP in Gubberamunda Formation DRNWVG1 (478 mBGL)
 - VWP cables in grout

Gamma (CPS)

O/H Caliper (mm)
500.3m BGL with brown, rounded CLAYSTONE clasts, to 7cm. As above however SANDSTONE becoming low to medium strength, grey, alternating between medium to coarse grained with minor COAL laminae.

Interbedded SILTSTONE-SANDSTONE; very low to low strength, coarse grained.

SANDSTONE; medium to high strength, grey, very fine to fine grained with COAL flecks.

SANDSTONE; low strength, grey, medium to coarse grained with fine grained, sub rounded, quartz GRAVEL.

Interbedded MUDSTONE-SILTSTONE; medium to high strength, olive grey-brown.

SANDSTONE; grey, medium grained, well sorted, medium strength.

COAL SEAM

SANDSTONE; medium strength, pale grey-blac-transparent, fine grained, rounded quartz in 40% white matrix.

CLAY; grey-brown with very coarse grained, angular to sub rounded, white, quartz sub rounded SAND, to <4mm.

INTERBEDD MUDSTONE-SILTSTONE.
VW P cables ingrout

Grout Mixture: Cement GP, potable water, plasticiser (retarder): SIKA Viscocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCCELL 228 or K15MS at 0.15% to 0.25% weight of cement.

Medium to high strength, pale to dark grey.

SANDSTONE; medium to coarse grained grading to fine to very fine grained with thin COAL laminations and bedding.

MUDSTONE: dark grey, very hard with COAL layers at 536mBGL (0.1m) and 536.4mBGL (0.1m).

VW P cables ingrout

Medium to high strength, fine to medium grained with very minor COAL flecks.

As above however with 2% interbedded COAL grains/fragments.

SANDSTONE; high strength, fine to medium grained with very minor COAL flecks.

As above however SANDSTONE becoming medium strength, grey, fine grained with COAL flecks and seams; trace fine to medium grained, sub angular, transparent-opaque quartz grains.

CLAY; grey.

As above however with increasing quartz.

As above however with minor quartz and a 0.1m COAL seam at 541mBGL.

As above however COARSE grained quartz, sub angular, clear/white/opaque interbedded into grey SANDSTONE, with minor coal flecks throughout.

COAL seams at 75mBGL and 110mBGL.

As above however SANDSTONE becoming coarse to very coarse with minor COAL flecks.

As above however SANDSTONE becoming fine grained with very minor cross bedded COAL laminations and minor interbedded grey, hard SILTSTONE.

As above however with a very minor COAL lens at 543.4 mBGL.

As above however with a 0.02m grey, hard, cross bedded SILTSTONE.

As above however with a 0.01m COAL seam at 545.2 mBGL.

QUARTZOSE: coarse to very coarse grained, sub angular, well sorted, opaque cemented with a very minor fine grained matrix.

As above however with a 0.01m COAL seam at 547.4 mBGL.

As above however with a 0.01m COAL seam at 548.1 mBGL.

As above however with a 0.01m COAL seam at 548.5 mBGL.

As above however with a 0.01m COAL seam at 548.7 mBGL.

As above however with a 0.01m COAL seam at 550 mBGL.

As above however with a 0.02m COAL seam at 550.4 mBGL.

INTERBEDDED SANDSTONE; medium to high strength, grey, fine grained with interbedded, fine grained COAL interbedded laminations and SILTSTONE.

WESTBOURNE FORMATION (556.7 to Terminal Depth - 600 mBGL)

INTERBEDDED SILTSTONE-MUDSTONE; high strength, grey-green.

As above however SILTSTONE-MUDSTONE becoming fine grained quartzose with minor grained, sub rounded COAL to <2mm; mica flecks observed in horizontal fractures.

INTERBEDDED SILTSTONE-SANDSTONE; high strength, grey-green with thin laminae.
VWP in Westbourne Formation
DRNVWW1 (570 mBGL)

VWP in Westbourne Formation
DRNVWW2 (585 mBGL)

Grout Mixture:
- Cement GP, potable water, plasticiser (retarder): Sika Visocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCELL228 or K15MS at 0.15% yo 0.25% weight of cement.

30 60 90 120 150

CONSTRUCTION DETAILS

Interbedded SILTSTONE-SANDSTONE; high strength, grey-green.

As above however with a very minor COAL layer.

MUDSTONE: high strength, dark grey, very fine grained with very minor SILTSTONE laminations.

As above however SILTSTONE laminations decrease with depth and minor mica fragments present.

lamination.

USC DESCRIPTION OF STRATA

CONSTRUCTION DETAILS

Gamma (CPS) O/H Caliper (mm)

Drilling Method

Graphic Log

Depth (m)
USC Description of Strata

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>Gamma (CPS)</th>
<th>O/H Caliper (mm)</th>
<th>Construction Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>595</td>
<td></td>
<td></td>
<td></td>
<td>Groin in sump below final VWP (585 mBGL)</td>
</tr>
<tr>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td>TARGET DEPTH ACHIEVED. End of Hole at 600 mBGL.</td>
</tr>
<tr>
<td>605</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>610</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>615</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>620</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BUNGIL FORMATION (Outcropping to 52.6 mBGL)

- **SILCRETE;** with grey-brown, fine grained, sub-rounded, quartz SANDSTONE.

COMMENCE CORING

- **Clayey SILTSTONE;** green-grey with a layer of coarse grained GRAVEL at 5.5-6 mBGL.

MUDSTONE; brown-yellow, layered.

- **CLAY;** orange-brown with some fine grained, rounded, quartz pebbles at 7.5-8 mBGL.

Clayey SANDSTONE; brown-orange, fine grained, quartz; broken at 8.3-8.7 mBGL.

- **SILTSTONE;** grey, hard, very fine grained, rounded, well sorted with one 50 degree fracture, 20 cm at 8.3-8.7 mBGL.

- **MUDSTONE;** brown-orange, soft with silty fine grained quartz.

- **CORE LOSS 8.85-9.4 mBGL**

- **SILTSTONE;** pale brown, fine grained quartz with moderate hardness at 8.85-9.4 mBGL.

- **SANDSTONE;** grey-brown, medium to fine grained, rounded with moderate hardness at 10.0-10.2 mBGL.

- **Clayey SAND-GRAVEL;** fine to coarse grained, brown-yellow with some coarse, rounded quartz, from 3-5 mm and white-black pebbles from 10.2-10.3 mBGL.

- **SILTSTONE;** brown-orange, fine grained, rounded, quartz.

- **CORE LOSS 10.45-11.5 mBGL**

SILTSTONE-MUDSTONE; dark grey, very fine grained, laminar.

SANDSTONE; grey, coarse grained, sub-angular, clear with soft parting.

SILTSTONE-MUDSTONE; dark grey, very fine grained, laminar.

CONSTRUCTION DETAILS

- **USC DESCRIPTION OF STRATA**

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling method</th>
<th>USC DESCRIPTION OF STRATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Drilling Method</td>
<td>USC DESCRIPTION OF STRATA</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>BUNGIL FORMATION (Outcropping to 52.5 mBGL)</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>COMMENCE CORING</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Core loss 8.85-9.4 mBGL</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>Core loss 10.45-11.5 mBGL</td>
</tr>
</tbody>
</table>

Remarks: Significant washouts of the formation occurred throughout the Gubberamunda Sandstone and the drilling was completed using mud rotary from 285 to 299 mBGL. A 12 metre length of the HWTC casing came unscrewed and it was not possible to remove it from the borehole, it fell down the hole through the washouts and remains at 251.4 - 264.4 mBGL. Downhole geophysics is from the groundwater monitoring bore approximately 40 metres from the corehole.
USC DESCRIPTION OF STRATA

- **25 m**: SANDSTONE; grey, coarse to fine grained, sub rounded, well sorted quartz with some fine laminations and minor carbonaceous material.
- **30 m**: MUDSTONE; grey, finely layered, medium hardness.
- **35 m**: CLAY; high plasticity, grey, medium hardness.
- **37 m**: MUDSTONE; grey, finely layered, medium hardness.
- **39 m**: CLAY; grey, crumbly.
- **40 m**: MUDSTONE; grey, finely layered, medium hardness.
- **SILTSTONE**: grey, fine grained, hard.
- **41 m**: SANDSTONE; grey, fine to medium grained, well sorted, translucent-grey, quartz, hard.
- **42 m**: SILTSTONE; grey, massive, hard.
- **45 m**: SANDSTONE; grey, fine to medium grained, translucent, quartz.
- **50 m**: SILTSTONE; grey, finely layered, black and grey, turbulent cross bedding, generally massive.
- **51 m**: SANDSTONE; grey, fine to medium grained, well sorted, translucent-black, quartz with occasional quartz layers, 1-3mm; cross bedding and minor black, carbonaceous material.
- **52 m**: SILTSTONE; grey, fine grained with pale carbonaceous bands.
- **53 m**: MUDSTONE; grey-dark grey, finely layered, laminar with carbonaceous laminations.
- **56 m**: SILTSTONE-SANDSTONE; grey, fine grained, banded.
- **58 m**: MOOGA SANDSTONE (52.6 - 63.4 mBGL); grey, fine to medium grained, well sorted, sub rounded, quartz; layered at approximately 15 degrees with minor very fine grained, black layers.

Grout Mixture:
- Cement GP, potable water, plasticiser (retarder): SIKA Viscocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCELL228 or K15MS at 0.15% to 0.25% weight of cement.

CONSTRUCTION DETAILS

Drilling Method
- USC Description of Strata

Gamma (CPS)

O/H Caliper (mm)

VWP cables in grout
VW P in Mooga Sandstone

Grout Mixture: Cement GP, potable water, plasticiser (retarder): SIKA Viscocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCELL228 or K15MS at 0.15% to 0.25% weight of cement.

VWP cables in grout
VWP cables ingrout

Grout Mixture: Cement GP, potable water, plasticiiser (retarder): SIKA Viscocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCELL229 or K15MS at 0.15% to 0.25% weight of cement.

MUDSTONE; grey-brown with dark pebbles, to 2mm. As above however glauconitic.

MUDSTONE; grey, finely layered, generally compact with two 45 degree fractures at 84 mBGL.

CLAY-MUDSTONE; grey-brown, soft with abundant pebbles, from 0-3mm.

MUDSTONE; brown-dark brown, finely layered, highly carbonaceous with a thin SANDSTONE layer at 89.6 mBGL and some glauconitic CLAY.

As above however MUDSTONE becoming dark grey, laminar, broken.

SILTSTONE; grey-white, finely layered, subangular, well sorted, quartz with some black minerals; CARBONACEOUS mateir at 92.9 mBGL and minor CLAY.

SANDSTONE; broken. As above however SANDSTONE becoming grey, fine grained, sub angular, well sorted quartz grains with some cross bedding and minor COAL layering at 93.6 mBGL.

MUDSTONE; grey-brown, fine grained with COAL.

SANDSTONE; grey-dark grey, fine to medium grained, subrounded, well sorted quartz with several interbedded COAL layers.

MUDSTONE; dark grey, finely layered with fine COAL laminae.

SANDSTONE; grey-dark grey with grey-white, sub angular, poorly sorted quartz grains and black minerals.

SANDSTONE; grey-pale grey, coarse grained, subrounded, poorly sorted quartz with finely interlayered COAL layers.

As above however SANDSTONE becoming grey, fine to medium grained, well sorted quartz with a COAL layer at 102.6 mBGL.

MUDSTONE; grey-dark grey, finely layered.

SANDSTONE; grey, fine to medium grained, subrounded, well sorted quartz with black minerals.

Interbedded SILTSTONE-MUDSTONE; grey with fine bands of carbonaceous material.
SANDSTONE; low strength, grey, fine to medium grained, well sorted quartz with several partings at 15-20 degrees.

As above however unbroken.

As above however paler in colour with some partings.

SANDSTONE; low strength, grey, medium to coarse grained, sub rounded, well sorted, quartz and black minerals with 12-20 degree and numerous partings.

As above however with minor COAL and low strength, coarse grained section at 132-132.4mBGL.

As above however with a thin band of MUDSTONE, 4cm at 137.4mBGL.

Broken 140-140.5mBGL.
VW P cables ingrout

Grout Mixture: Cement GP, potable water, plasticiser (retarder): SIKA Viscocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCCEL 228 or K15MS at 0.15% to 0.25% weight of cement.

Broken - 146.6 mBGL.

As above however with a COAL inclusion.

As above however with a COAL inclusion and layering.

As above however SANDSTONE becoming fine to medium grained, sub-rounded, well sorted, quartz with some large inclusions, from 6-8 cm.

SANDSTONE; grey, fine to medium grained, well sorted quartz with bed partings and fine COAL layers.

MUDSTONE; brown-grey, hard.

SILTSTONE; grey-dark grey, very fine grained, quartz, very finely layered with thin bands of fine grained SANDSTONE.

Silty MUDSTONE; dark grey with several partings.

SILTSTONE; grey, very fine layered with several bed partings; some minor cross bedding, and some turbiditic bands.

Interbedded SILTSTONE-MUDSTONE carbonaceous.

SANDSTONE; grey, medium to coarse grained, sub angular, well sorted, quartz with some cobbles at 168mBGL.

SILTSTONE; grey, fine grained, massive with a thin COAL.

SANDSTONE; grey, fine to medium grained, sub angular, well sorted quartz with an occasional thin layer of COAL.

VWP cables in grout

Grout Mixture:
Cement GP, potable water, plasticiser (retarder): SIKA Viscocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCCEL 228 or K15MS at 0.15% to 0.25% weight of cement.
USC DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>Graphic Log</th>
<th>USC Description of Strata</th>
</tr>
</thead>
<tbody>
<tr>
<td>175</td>
<td></td>
<td></td>
<td>As above however with a thin band of bright COAL.</td>
</tr>
<tr>
<td>180</td>
<td></td>
<td></td>
<td>As above however broken at 186-187mBGL.</td>
</tr>
<tr>
<td>185</td>
<td></td>
<td></td>
<td>SANDSTONE: grey, fine grained, sub angular to sub rounded, well sorted with dark grey minerals.</td>
</tr>
<tr>
<td>190</td>
<td></td>
<td></td>
<td>As above however SANDSTONE becoming medium grained with thin COAL layers and pebble inclusions.</td>
</tr>
<tr>
<td>195</td>
<td></td>
<td></td>
<td>MUDSTONE: grey-dark grey, finely laminated with some thin SILTSTONE/SANDSTONE layers.</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td>SANDSTONE: grey, with interbedded, fine grained MUDSTONE and minor SANDSTONE.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MUDSTONE: grey-dark grey, finely laminated with some thin SILTSTONE/SANDSTONE layers.</td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

- Grout Mixture:
 - Cement GP, potable water, plasticiser (retarder): SIKA Viscocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCELL 228 or K15MS at 0.15% to 0.25% weight of cement.

- VWP cables in grout.
Grout Mixture: Cement GP, potable water, plasticiser (retarder): SIKA Viscocrete 3015 at 1% to 2% weight of cement, suspension agent METHOCCELL 228 or K15MS at 0.15% to 0.25% weight of cement.

VWP cables ingrout

NO SAMPLE. Coring stopped at 207.85m BGL to reem hole and case off due to washouts. Recommend coring at 210.4m BGL.

Interbedded MUDSTONE - SILTSTONE - SANDSTONE; thinly laminated. As above however with a very coarse grained SANDSTONE layer at 212m BGL - and 212.6m BGL.

SANDSTONE banding. Interbedded SILTSTONE - SANDSTONE.

SANDSTONE banding. Interbedded SANDSTONE - MUDSTONE; fine to medium grained, sub rounded to sub angular.

MUDSTONE GUBBERAMUNDA SANDSTONE (224 - 265.2 mBGL) SAND; coarse grained, sub angular to sub rounded, well sorted, quartz.

CARBONACEOUS LAMINAE; very fine grained.

SANDSTONE coarse grained, sub angular to sub rounded, well sorted, quartz. As above however with a fine to medium grained SAND layer at 228 mBGL.

As above however with a SILTSTONE layer at 229.7 - 229.85 mBGL.

As above however with a very fine CARBONACEOUS LAMINAE at 231.3 mBGL.
USC DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>USC Description of Strata</th>
</tr>
</thead>
<tbody>
<tr>
<td>235</td>
<td></td>
<td>As above however with a SAND horizon at 235.2 mBGL.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>As above however with a SILTSTONE horizon at 235.3 - 235.4 mBGL.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>As above however with coarse grained, very poorly quartz and lithics, to 2cm; carbonaceous laminae, to 1mm and large COAL clasts at 237.6 - 242mBGL.</td>
</tr>
<tr>
<td>240</td>
<td></td>
<td>As above however SANDSTONE becoming medium to coarse grained, poorly sorted.</td>
</tr>
<tr>
<td>245</td>
<td></td>
<td>As above however with a COAL seam, 6cm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>As above however with COAL laminae at 246.3 mBGL and 246.9 - 247.1 mBGL.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>As above however with a MUDSTONE seam, 6cm at 247.3 mBGL.</td>
</tr>
<tr>
<td>250</td>
<td></td>
<td>As above however with a minor COAL seam at 250.6 to 250.8mBGL.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>As above however SANDSTONE becoming coarse grained.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>As above however SANDSTONE becoming sub angular, well sorted, quartz and lithics.</td>
</tr>
<tr>
<td>255</td>
<td></td>
<td>As above however SANDSTONE becoming medium grained with lenses of coarse grained SAND at 256mBGL and 258.8-259.2m; thin COAL laminae at 260.2mBGL, 260.8mBGL and 261.3mBGL.</td>
</tr>
<tr>
<td>260</td>
<td></td>
<td>SANDSTONE; with 25% interbedded</td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

- **VW P in Gubberamunda Formation**
- **TBDVWG (240 mBGL)**
- **VW P cables running through HW T casing (251.4 - 264.4 mBGL)**
- **As above however with a SAND horizon at 235.2 mBGL.**
- **As above however with a SILTSTONE horizon at 235.3 - 235.4 mBGL.**
- **As above however with coarse grained, very poorly quartz and lithics, to 2cm; carbonaceous laminae, to 1mm and large COAL clasts at 237.6 - 242mBGL.**
- **As above however SANDSTONE becoming medium to coarse grained, poorly sorted.**
- **As above however with a COAL seam, 6cm.**
- **As above however with COAL laminae at 246.3 mBGL and 246.9 - 247.1 mBGL.**
- **As above however with a MUDSTONE seam, 6cm at 247.3 mBGL.**
- **As above however with a minor COAL seam at 250.6 to 250.8mBGL.**
- **As above however SANDSTONE becoming coarse grained.**
- **As above however SANDSTONE becoming sub angular, well sorted, quartz and lithics.**
- **As above however SANDSTONE becoming medium grained with lenses of coarse grained SAND at 256mBGL and 258.8-259.2m; thin COAL laminae at 260.2mBGL, 260.8mBGL and 261.3mBGL.**
- **SANDSTONE; with 25% interbedded**
CONSTRUCTION DETAILS

- **USC DESCRIPTION OF STRATA**
 - **Depth (m):** 265, 270, 275, 280, 285, 290
 - **Drilling Method:** Graphic Log
 - **Gamma (CPS):**
 - **O/H Caliper (mm):**

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>USC DESCRIPTION OF STRATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>265</td>
<td>MUDSTONE and 5% SILTSTONE.</td>
</tr>
<tr>
<td></td>
<td>WESTBOURNE FORMATION (265 to 299.1 mBGL)</td>
</tr>
<tr>
<td></td>
<td>Interbedded SILTSTONE-MUDSTONE fine bedded.</td>
</tr>
<tr>
<td></td>
<td>As above however with a very low competency MUDSTONE horizon at 267.4 mBGL</td>
</tr>
<tr>
<td>270</td>
<td>As above however with minor coarse grained SAND 269 mBGL, 2cm.</td>
</tr>
<tr>
<td></td>
<td>As above however with cross bedding at 270mBGL and minor cross bedding throughout.</td>
</tr>
<tr>
<td>275</td>
<td>As above however with a medium grained, poorly sorted SANDSTONE lens at 271.6 mBGL.</td>
</tr>
<tr>
<td>280</td>
<td>Stop coring at 285 mBGL due to vibrations in drill pipe. Switch to mud rotary to terminal depth. Interbedded SILTSTONE-MUDSTONE</td>
</tr>
<tr>
<td>285</td>
<td>VWP cables in grout</td>
</tr>
<tr>
<td>290</td>
<td>VWP in Westbourne Formation TBDVW1 (285 mBGL)</td>
</tr>
</tbody>
</table>

Grouting Details:
- **Grout in sump below final VWP (285.3 mBGL):**
- **Grout Mixture:**
 - Cement GP, potable water, plasticiser (retarder): SIKA Viscocrete 3015 at 1% to 2% weight of cement,
CONSTRUCTION DETAILS

- **Drilling Method:**
 - **Graphic Log:**

- **USC DESCRIPTION OF STRATA**
 - **Gamma (CPS):**
 - 30
 - 60
 - 90
 - 120
 - 150

- **O/H Caliper (mm):**

- **SUSPENSION AGENT:**
 - METHOCELL228 or K15MS at 0.15% yo 0.25% weight of cement.

- **End of Hole. Target depth achieved at 299 mBGL**

SANTOS GAMMA/CAL (VWP/MW) ROMA GINT MASTER_001A.GPJ WCC_AUS.GDT 20/9/12

URS Australia Pty. Ltd.
Level 17, 240 Queen St, Brisbane QLD 4000
Phone: (07) 3243 2199

Phone: (07) 3243 2111
Document ID: 7699-URS-4-3.3-0007

Project No.: 42626577
DESCRIPTION OF STRATA

CELLAR
- NO SAMPLE

SANDY CLAY: High plasticity, light brown to black with orange mottle, sand is grey, poorly graded, subangular to subrounded, with trace silt. 18m: Clay orange to brown, sand is subangular

CLAY: Low to medium plasticity, dark grey, with some siltstone, low strength, grey

SANDY SILTSTONE: Low strength, white to grey, poorly graded, sand is medium grained, with clay, dark grey
- 27m: Increasing clay component, very low strength

SILTY MUDSTONE: Very low strength, dark grey, thinly laminated, trace sand, fine grained, grey, subrounded

SANDY SILTSTONE: Low strength, pale grey to dark grey, massive, with clay, high plasticity, dark grey
- 45m: Becoming medium strength, increasing clay component

CONSTRUCTION DETAILS

Drill Model: Mud Rotary

Bore Dia.: 177.8 mm
Total Depth: 950.0 m
Casing I.D.: 102.3 mm

Casing RL: 360.53 m AHD
Coordinates: Lat: -26.533140, Long: 149.054771

Permit No: GDEQGW12-76

Loggable metal standpipe with flange
Conductor casing (BTC; K55 SCT; 9 5/8", 36 lb/ft)
Surface casing (OZCON; MWBCF; J55, 7" OD; 22.6 lb/ft)

Class A Cement, 36.0 bbl, Cement slurry density of 15.6 ppg, yield 1.18 cuft/sk
Description of Strata

- **Sandy Siltstone**: Medium strength, light grey, massive, sand is fine to medium grained, subrounded. 54m: Trace clay, high plasticity, grey.

- **Mooga Sandstone - 60 m BGL**: Silty Sandstone: Medium to high strength, orange to white to grey, massive, sand is fine to medium grained, subrounded. 63m: Becoming high strength.

- **Sandy Mudstone**: Very low strength, dark grey, medium grained, subrounded, with trace silt.

- **Silty Sandstone**: Low to medium strength, grey, medium grained, subrounded, orange to white to grey. 75m: Trace coal. 78m: Becoming low strength. 81m: Trace coal, increasing mudstone component. 84m: Medium strength, trace mudstone. 87m: Thinly laminated.

- **Sandstone**: Low strength, grey, very fine grained, trace clay.

- **Silty Sandstone**: Low strength, highly weathered, grey, massive, sand is fine grained.

- **Silty Sandstone**: Low strength, highly weathered, grey, massive, sand is very fine grained, trace coal. 108m: Becoming coarse grained, subangular.

Construction Details

- **SWL = 51.12 m BGL (10/11/13)**

Drilling Method

- Graphic Log

Depth (m)

50 60 70 80 90 100

Drilling Method

Graphical Log

Detailed Description of Strata

Construction Details

Class A Cement, 36.0 bbls, Cement slurry density of 15.6 ppg, yield 1.18 cu ft/sk.

Surface casing (OZCON, MWBCF, J55, 7" OD, 22.6 lb/ft)

SWL = 51.12 m BGL (10/11/13)

BBNGWH02 (FINAL)

42626910

130228_BBNGWH02_DRILLLOG_FINAL_REV1

Phone: (07) 3243 2111

Urs Australia Pty. Ltd.

Level 17, 240 Queen St, Brisbane QLD 4000

50 60 70 80 90 100

Urban Exploration Services

18/12/13

SANTOS NOGAMMA 121203 QWC GINT MASTER_REV1.GPJ WCC_AUS.GDT 18/12/13

Sheet 2 of 17

Phone: (07) 3243 2199

SANTOS NOGAMMA_12/12/13_STRUCTMASTER_RVT_GDP_VCC.AUS.GDT 18/12/13

SANTOS NOGAMMA_12/12/13_STRUCTMASTER_RVT_GDP_VCC.AUS.GDT 18/12/13
DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Stratigraphic Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>Silty Sandstone</td>
<td>Medium strength, grey, massive, sand is very fine grained</td>
</tr>
<tr>
<td>117</td>
<td></td>
<td>High strength, grey, massive, very fine grained, with some quartz</td>
</tr>
<tr>
<td>120</td>
<td>Sandstone</td>
<td>High strength, fresh, grey, massive, fine to medium grained, quartzose</td>
</tr>
<tr>
<td>130</td>
<td>Sandstone</td>
<td>Medium strength, grey, very fine grained, trace silt</td>
</tr>
<tr>
<td>140</td>
<td>Silty Sandstone</td>
<td>Low to medium strength, grey, sand is very fine grained, trace siltstone, medium strength, large chips</td>
</tr>
<tr>
<td>140</td>
<td>Interbedded Silts and Mudstone</td>
<td>Very low strength, moderately weathered, light grey to white, massive</td>
</tr>
<tr>
<td>150</td>
<td>Interbedded Sandstone and Silts</td>
<td>Sandstone is low strength, grey, very fine grained, siltstone is medium strength, dark grey, massive</td>
</tr>
<tr>
<td>150</td>
<td>Sandstone</td>
<td>Medium strength, grey, massive, very fine grained, medium grained, trace quartz</td>
</tr>
<tr>
<td>150</td>
<td>Silty Sandstone</td>
<td>Low strength, highly weathered, grey, very fine grained</td>
</tr>
<tr>
<td>150</td>
<td>Interbedded Silts and Mudstone</td>
<td>Siltstone is low strength, dark grey, massive, mudstone is low strength, highly weathered, dark grey, massive</td>
</tr>
<tr>
<td>155</td>
<td>Interbedded Silts and Sandstone</td>
<td>Sandstone is medium strength, light grey, siltstone is low strength, dark grey, massive, trace coal</td>
</tr>
<tr>
<td>160</td>
<td>Siltstone</td>
<td>Low to medium strength, moderately weathered, grey to light grey, massive, trace clay</td>
</tr>
<tr>
<td>170</td>
<td>Silts and Sandstone</td>
<td>Medium strength, fresh, light grey, medium grained, subangular, trace coal</td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

- **Surface casing**: (OZCON, MW45; J55, 7" OD, 22.6 lb/ft)
- **Class A Cement**: 36.0 bbls, Cement slurry density of 15.6 ppg, yield 1.18 cuft/hr

117m: High strength, grey, massive, very fine grained, with some quartz

168m: White to grey, subangular to subrounded, quartzose
171m: Trace coal

SANDY SILTSTONE: Low strength, highly weathered, light to dark grey, sand is fine to medium grained, white to grey, subrounded

177m: White to orange-grey, medium to coarse grained, subrounded to subangular, trace coal

SANDSTONE: Medium to high strength, white to dark grey, medium to coarse grained, trace silt, light grey, trace organic matter, trace coal

SILTY SANDSTONE: Low to medium strength, white to dark grey, fine to medium grained, silt is light to dark grey, trace organic matter, trace coal

SILTSTONE: Medium strength, fresh, light grey to dark grey, thinly laminated, trace sand, poorly graded, white to grey, trace organic fragments (25mm)

195m: Medium to high strength (35mm)

198m: Trace coal

INTERBEDDED MUDSTONE AND SILTSTONE: Very low strength, light grey, massive, trace organic matter

SILTSTONE: High strength, fresh, dark grey, laminated, trace sand, white to grey, moderately graded, fine to medium grained, trace mudstone, trace coal

INTERBEDDED SANDSTONE AND SILTSTONE: Low strength, white to grey, massive

210m: Brown to dark brown, trace mudstone, very low strength, light grey to dark grey

SANDSTONE: Very low strength, light grey to dark grey, fine to medium grained, trace mudstone, low strength, light grey, trace coal

219m: Trace siltstone, medium strength, dark brown to grey, thinly laminated

222m: Trace coal, fragments up to 7mm

SANDY SILTSTONE: Low strength, grey to dark grey, sand is white to grey, moderately graded, fine to medium grained, trace coal

Surface casing

Class A Cement, 36.0 bbls, Cement slurry density of 15.6 ppg, yield 1.18cuf/ft

8 1/2" TRICONE

Description of Strata
231m: Trace mudstone, very low strength, white

SANDSTONE: Low to very low strength, grey to white, trace silt, trace coal

240m: Trace mudstone, very low strength, white

SILT SANDSTONE: Low strength, light grey to dark grey, massive, fine to medium grained, trace mudstone, trace coal

250m: Trace mudstone, very low strength, white

SANDSTONE: Medium strength, white to grey, fine to coarse grained, trace silt, trace coal

260m: Trace mudstone, very low strength, white

SILT SANDSTONE: Low to medium strength, grey to dark grey, fine to coarse grained, silt is dark grey, trace coal

INTERBEDDED SANDSTONE AND SILTSTONE: Sandstone is Low strength, light grey, line to coarse grained, siltstone is medium strength, dark grey, finely laminated, trace coal

270m: Trace mudstone, very low strength, white

SILT SANDSTONE: Low to medium strength, grey to dark grey, line to coarse grained, silt is dark grey, trace coal

INTERBEDDED SILTSTONE AND SANDSTONE: Low strength, light grey, fine to coarse grained, siltstone is medium strength, dark grey, finely laminated, trace coal

280m: Trace mudstone, very low strength, white

SANDSTONE: Medium strength, highly weathered, white to light grey, medium to coarse grained, subrounded, trace mudstone, low strength, light grey, trace coal

279m: Low to medium strength, trace siltstone, medium strength, dark grey

282m: Grey to light grey, medium grained, trace silt, trace coal

Surface casing
(OZCON; MWBCF; J55, 7" OD, 22.6bbl/ft)

Class A Cement, 36.0 bbls, Cement slurry density of 15.6 ppg, yield 1.18cf/ft

8 1/2" TRICONE
DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Sampling Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>291m</td>
<td></td>
<td>Grey, fine to medium grained, subrounded.</td>
</tr>
<tr>
<td>294m</td>
<td></td>
<td>Trace coal.</td>
</tr>
<tr>
<td>306m</td>
<td></td>
<td>Trace coal.</td>
</tr>
<tr>
<td>308m</td>
<td></td>
<td>Silty sandstone: Medium strength, highly weathered, grey, fine grained, trace quartz, trace siltstone, dark grey.</td>
</tr>
<tr>
<td>310m</td>
<td></td>
<td>Silty sandstone: Medium strength, grey, fine grained.</td>
</tr>
<tr>
<td>311m</td>
<td></td>
<td>Silty sandstone: Medium strength, grey to light grey, very fine grained, with quartz.</td>
</tr>
<tr>
<td>319m</td>
<td></td>
<td>Sandy siltstone: Medium strength, slightly weathered, grey, with dark grey fragments.</td>
</tr>
<tr>
<td>320m</td>
<td></td>
<td>Sandy siltstone: Medium strength, slightly weathered, grey, with dark grey fragments.</td>
</tr>
<tr>
<td>321m</td>
<td></td>
<td>Sandy siltstone: Medium strength, grey to dark grey, massive, very fine grained.</td>
</tr>
<tr>
<td>325m</td>
<td></td>
<td>Gubbermunda Sandstone - 325 mBGL: Silty sandstone: Medium strength, grey to dark grey, massive, trace sand.</td>
</tr>
<tr>
<td>336m</td>
<td></td>
<td>Sandy siltstone: Medium strength, grey to dark grey, massive, very fine grained.</td>
</tr>
<tr>
<td>337m</td>
<td></td>
<td>Sandy siltstone: Medium strength, grey to dark grey, massive, very fine grained.</td>
</tr>
<tr>
<td>339m</td>
<td></td>
<td>Sandstone: Low to medium strength, slightly weathered, grey, massive, fine to very fine grained, trace silt.</td>
</tr>
<tr>
<td>350m</td>
<td></td>
<td>Becoming low strength, fresh, medium grained, quartzose.</td>
</tr>
<tr>
<td>363m</td>
<td></td>
<td>Interbedded siltstone and sandstone: Sandstone is low to medium strength, grey, siltstone is dark grey.</td>
</tr>
<tr>
<td>365m</td>
<td></td>
<td>Siltstone: Medium to high strength, slightly weathered, dark grey, massive, trace sand.</td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

- **Surface casing**: OZCON; MWBCF; J55, 7" OD, 22.6 lb/ft.
- **Class A Cement**: 36.0 bbls, Cement slurry density of 15.6 ppg, yield 1.18 cu ft/rl.

Drilling Method

- **Graphic Log**

** Depths (m)**

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>Graphic Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (m)</td>
<td>Description of Strata</td>
<td>Construction Details</td>
</tr>
<tr>
<td>----------</td>
<td>------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>350</td>
<td>SANDSTONE: Low strength, highly weathered, grey, very fine grained, trace coal</td>
<td>8 1/2" TRICONE 6 1/8" PDC Float Collar @ 391.71mBGL</td>
</tr>
<tr>
<td>360</td>
<td>357m: Fine to medium grained, trace siltstone, medium strength, dark grey, massive</td>
<td>Surface casing (OZCON, J55, 7" OD, 22.6lb/ft)</td>
</tr>
<tr>
<td>370</td>
<td>363m: Trace mudstone, very low strength, medium grey</td>
<td>Class A Cement, 36.0 bbls, Cement slurry density of 15.8 ppg, yield 1.18 cuft/ft</td>
</tr>
<tr>
<td>380</td>
<td>SANDY SILTSTONE: Low to medium strength, light grey with dark grey fragments up to 20mm, sand is white to light grey, fine to medium grained, subrounded to rounded, quartzose, trace mudstone, dark grey</td>
<td></td>
</tr>
<tr>
<td>390</td>
<td>SILTY SANDSTONE: Low strength, light to dark grey, medium to coarse grained, subrounded, trace siltstone, low strength, dark grey, trace coal</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>372m: Becoming medium strength</td>
<td></td>
</tr>
<tr>
<td>410</td>
<td>SANDY SILTSTONE: Medium to high strength, light to dark grey, thinly laminated, sand is subrounded to rounded, white to grey, well graded, trace mudstone, low strength, white</td>
<td></td>
</tr>
<tr>
<td>420</td>
<td>378m: Trace mudstone, trace coal</td>
<td></td>
</tr>
<tr>
<td>430</td>
<td>381m: Becoming fine to medium grained</td>
<td></td>
</tr>
<tr>
<td>440</td>
<td>SANDSTONE: Low to medium strength, light grey to dark grey, fine to medium grained, trace silt</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>387m: Trace siltstone, medium strength, dark grey, finely laminated, with coal</td>
<td></td>
</tr>
<tr>
<td>460</td>
<td>Wesborne Formation: 390 mBGL, SILTSTONE: Low to medium strength, moderately weathered, dark grey, thinly laminated, trace sand, fine to medium grained, poorly graded, subrounded, trace mudstone, low strength, grey to white</td>
<td></td>
</tr>
<tr>
<td>470</td>
<td>393m: Trace mudstone</td>
<td></td>
</tr>
<tr>
<td>480</td>
<td>396m: Becoming medium strength, light grey to dark grey</td>
<td></td>
</tr>
<tr>
<td>490</td>
<td>399m: Becoming low strength, grey to brown</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>SILTY MUDSTONE: Medium strength, brown to dark grey, very thinly laminated, silt is dark grey, trace sand, grey</td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>INTERBEDDED SILTSTONE AND MUDSTONE: Mudstone is medium strength, brown to dark grey, very thinly laminated, siltstone is medium to high strength, dark grey, thinly laminated</td>
<td></td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

- **Drilling Method**
- **Graphic Log**
- **Depth (m)**
- **Description of Strata**
- **Construction Details**

SANTOS NOGAMMA 121203 QWC GINT MASTER_REV1.GPJ WCC_AUS.GDT 18/12/13
DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>Graphic Log</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>410</td>
<td></td>
<td></td>
<td>411m: Becoming low strength, grey to brown</td>
</tr>
<tr>
<td>410</td>
<td></td>
<td></td>
<td>SILTSTONE: Low strength, fresh, dark grey, thinly laminated, trace mudstone, extremely low strength, light grey to white</td>
</tr>
<tr>
<td>410</td>
<td></td>
<td></td>
<td>Weald Sandstone - 417 mBGL SILTY SANDSTONE: Low to medium strength, light grey, fine to medium grained, silt is dark grey</td>
</tr>
<tr>
<td>420</td>
<td></td>
<td></td>
<td>SANDY SILTSTONE: Low to medium strength, medium to dark grey, sand is medium grained, light grey, poorly graded</td>
</tr>
<tr>
<td>420</td>
<td></td>
<td></td>
<td>423m: Trace coal</td>
</tr>
<tr>
<td>420</td>
<td></td>
<td></td>
<td>SILTY SANDSTONE: Low to medium strength, light grey, fine to medium grained, silt dark grey (10mm), trace coal</td>
</tr>
<tr>
<td>430</td>
<td></td>
<td></td>
<td>Springbok Sandstone - 432 mBGL SANDSTONE: Medium strength, Fresh, light grey, massive, fine to medium grained, quartzose</td>
</tr>
<tr>
<td>430</td>
<td></td>
<td></td>
<td>435m: Trace silt</td>
</tr>
<tr>
<td>440</td>
<td></td>
<td></td>
<td>444m: Medium to high strength</td>
</tr>
<tr>
<td>440</td>
<td></td>
<td></td>
<td>SILTSTONE: Low to medium strength, dark grey, massive, trace clay</td>
</tr>
<tr>
<td>450</td>
<td></td>
<td></td>
<td>450m: Trace coal (10mm)</td>
</tr>
<tr>
<td>450</td>
<td></td>
<td></td>
<td>SILTY SANDSTONE: Low strength, highly weathered, light to medium grey, fine to medium grained, subrounded, silt dark grey, trace coal</td>
</tr>
<tr>
<td>460</td>
<td></td>
<td></td>
<td>SILTSTONE: Low to medium strength, highly weathered, medium to dark grey, thinly laminated, trace sand, light grey, subangular, trace mudstone, light to medium grey</td>
</tr>
<tr>
<td>465</td>
<td></td>
<td></td>
<td>465m: Trace coal</td>
</tr>
<tr>
<td>465</td>
<td></td>
<td></td>
<td>SILTY SANDSTONE: Medium strength, light grey, fine to medium grained, subrounded, silt is light grey, trace coal (13mm)</td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

- **Completion casing**: OZCON; HWT; 5L; 4 1/2''; 10.8lb/ft
- **Class A Cement**: 64.5 bbl, Cement slurry density of 12 ppg, yield 2.15 cuft/sk
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>DESCRIPTION OF STRATA</th>
<th>CONSTRUCTION DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>470</td>
<td>SANDSTONE: Medium to high strength, light to medium grey, fine grained, subrounded to subangular, trace silt. 474m: Trace coal</td>
<td></td>
</tr>
<tr>
<td>480</td>
<td>INTERBEDDED SILTSTONE AND SANDSTONE: Sandstone is medium to high strength, light grey, subrounded to rounded, very fine to fine grained, siltstone is low strength, dark grey. SANDSTONE: Medium to high strength, medium grey, fine to medium grained, subrounded, trace mudstone, medium strength, brown, thinly laminated. SILTSTONE: Medium strength, dark grey to black, massive, with clay, trace coal.</td>
<td></td>
</tr>
<tr>
<td>490</td>
<td>MUDSTONE: Very low strength, highly weathered, dark grey to black, massive. SANDSTONE: Very low strength, highly weathered, light grey, massive, very fine grained. 501m: Trace day</td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>SILTSTONE: Low strength, highly weathered, dark brown to dark grey, thinly laminated, trace sandstone, very low strength, pale grey, fine to medium grained. SILTY SANDSTONE: Medium strength, light grey, fine to medium grained, subangular, silt is light grey. SANDSTONE: Low to medium strength, light to medium grey, fine to medium grained, trace silt, dark grey, with coal 519m: Trace coal (<1mm)</td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>SILTSTONE: Low strength, highly weathered, pale grey, trace sand, light to medium grey to black, subrounded to subangular. 525m: Grey to brown, trace sandstone, light grey, fine grained 528m: Becoming medium strength, trace mudstone, very low strength, medium brown, trace coal</td>
<td></td>
</tr>
</tbody>
</table>

Completion casing (OZCON; HWT; 5L; 4 1/2''; 10.8lb/ft)
Class A Cement, 64.5 bbl, Cement slurry density of 12 ppg, yield 2.15 cuft/lb.
DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>Graphic Log</th>
<th>Description of Strata</th>
</tr>
</thead>
<tbody>
<tr>
<td>530</td>
<td></td>
<td></td>
<td>Sandy Siltstone: Very low strength, light grey, sand is grey, fine grained, trace coal</td>
</tr>
<tr>
<td>540</td>
<td></td>
<td></td>
<td>Upper Juandah Coal Measures - 536 mGGL Sandstone: Low to medium strength, highly weathered, medium grey, fine to coarse grained, subrounded to subangular, with quartz, trace coal. 537m: Coarse grained, no coal</td>
</tr>
<tr>
<td>550</td>
<td></td>
<td></td>
<td>Siltstone: Medium to high strength, moderately weathered, dark grey, trace coal</td>
</tr>
<tr>
<td>560</td>
<td></td>
<td></td>
<td>Mudstone: Low strength, highly weathered, grey to dark grey, with sand</td>
</tr>
<tr>
<td>570</td>
<td></td>
<td></td>
<td>Proud Sandstone - 565 mGGL Sandstone: Very low strength, highly weathered, light grey, massive, very fine grained, with clay</td>
</tr>
<tr>
<td>580</td>
<td></td>
<td></td>
<td>Lower Juandah Coal Measures - 580 mGGL Silty Sandstone: Low strength, moderately weathered, grey to light grey, fine to medium grained</td>
</tr>
<tr>
<td>590</td>
<td></td>
<td></td>
<td>Sandy Siltstone: Low to medium strength, dark grey to black, fine grained</td>
</tr>
<tr>
<td>600</td>
<td></td>
<td></td>
<td>Siltstone: Low strength, grey, minor sand, fine grained</td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

Completion casing (OZCON; HWT; 5L; 4 1/2''; 10.8 lb/ft)

Class A Cement, 64.5 bbls, Cement slurry density of 12 ppg, yield 2.15 cuft/sk
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>Graphic Log</th>
<th>DESCRIPTION OF STRATA</th>
<th>CONSTRUCTION DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>590</td>
<td></td>
<td></td>
<td>MUDSTONE: Medium strength, black, minor coal, low to medium strength, black, trace siltstone, low to medium strength, grey</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td></td>
<td></td>
<td>SILTY SANDSTONE: Low strength, dark grey to brown, fine grained</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td></td>
<td></td>
<td>SILTSTONE: Low strength, grey to black, with sandstone, low strength, grey, fine grained</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td></td>
<td></td>
<td>SILTY SANDSTONE: Low strength, fine to medium grained, grey to black, with quartz</td>
<td></td>
</tr>
<tr>
<td>609m</td>
<td></td>
<td></td>
<td>SILTSTONE: Low to medium strength, pale grey to brown, trace sandstone, fine grained</td>
<td></td>
</tr>
<tr>
<td>609m</td>
<td></td>
<td></td>
<td>609m: Some coal (~50) medium strength, black, lustrous, trace mudstone, low strength, dark brown to grey, trace sand, fine grained</td>
<td></td>
</tr>
<tr>
<td>610</td>
<td></td>
<td></td>
<td>618m: Trace siltstone</td>
<td></td>
</tr>
<tr>
<td>610</td>
<td></td>
<td></td>
<td>Tangalooma Formation - 627 mBGL SILTSTONE: Low strength, grey to dark grey, trace coal</td>
<td></td>
</tr>
<tr>
<td>620</td>
<td></td>
<td></td>
<td>INTERBEDDED MUDSTONE AND SILTSTONE: Siltstone is low strength, grey to dark grey, mudstone is low to medium strength, pale grey</td>
<td></td>
</tr>
<tr>
<td>630</td>
<td></td>
<td></td>
<td>636m: Trace mudstone, medium strength, black</td>
<td></td>
</tr>
<tr>
<td>640</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Completion casing (OZCON; HWT; 5L; 4 1/2''; 10.8 lb/ft)
Class A Cement, 64.5 bbl, Cement slurry density of 12 ppg, yield 2.15 cuft/sk
651m: Trace mudstone

MUDSTONE: Medium strength, dark grey to black, trace siltstone, grey to brown

660m: Trace coal

666m: Trace siltstone

669m: Medium to high strength, with siltstone

INTERBEDDED MUDSTONE AND SILTSTONE: Siltstone is medium strength, pale grey, mudstone is high strength, dark brown, larger fragments (~3mm), trace coal

Taroom Coal Measures - 693 mBGL SILTSTONE: Medium strength, light brown, trace mudstone, high strength, dark brown, trace coal

684m: Trace mudstone, trace coal

693m: Trace sandstone, very fine grained, subangular

INTERBEDDED COAL AND SILTSTONE: Siltstone is low strength, grey to brown, coal is medium strength, black, lustrous

705m: Minor sand, fine grained, trace mudstone, black, medium strength, trace coal

708m: Low strength, grey-brown, trace coal, black

Completion casing (OZCON; HWT; 5L; 4 1/2''; 10.8 lb/ft)

Class A Cement, 64.5 bbl, Cement slurry density of 12 ppg, yield 2.15 cuft/sk
INTERBEDDED MUDSTONE AND SANDY SILTSTONE: Siltstone is low strength, grey to white, mudstone is low strength, brown

SANDY SILTSTONE: Low strength, grey to white, subrounded, fine to medium grained

723m: Becoming subangular sand

SANDY SILTSTONE: Low strength, grey to white, trace quartz, trace coal

747m: Becoming dark grey to brown, fine grained, trace mudstone, black

INTERBEDDED MUDSTONE AND SILTSTONE: Siltstone is dark grey to brown, mudstone is low strength, black, trace sand

INTERBEDDED SILTSTONE AND SANDSTONE: Sandstone is low strength, pale grey, fine to medium grained, siltstone is dark grey to brown

INTERBEDDED MUDSTONE AND SILTSTONE: Siltstone is dark grey to brown, mudstone is low to medium strength, brown to black, trace coal

Eurombah Formation - 760 mBGL
INTERBEDDED SANDSTONE AND SILTSTONE: Siltstone is dark grey to brown, Sandstone is low strength, grey to white, fine grained, trace quartz

762m: Siltstone becoming red to brown, trace quartz

Completion casing (OZCON; HWT; SL 4 1/2"; 10.8 lb/ft)

Class A Cement, 64.5 bbl, Cement slurry density of 12 ppg, yield 2.15 cuft/lb
DESCRIPTION OF STRATA

CONSTRUCTION DETAILS

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Graphic Log</th>
<th>Drilling Method</th>
<th>Completion casing</th>
<th>Class A Cement, 64.5 bbls, Cement slurry density of 12 ppg, yield 2.15 cuft/sk</th>
</tr>
</thead>
<tbody>
<tr>
<td>771</td>
<td>Trace coal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>771m:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>780</td>
<td>Light grey, with sand, trace subangular quartz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>783</td>
<td>Very fine to fine grained, subrounded quartz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>791</td>
<td>Trace mudstone, trace sand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>804</td>
<td>Trace coal, trace sand, fine to medium grained</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>810</td>
<td>Interbedded sandstone and siltstone: Siltstone is medium strength, light grey, sandstone is high strength, light grey, medium to coarse grained, trace quartz, trace coal, trace mudstone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>820</td>
<td>Sandy siltstone: Medium strength, grey, subangular, fine to medium grained, trace coal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>822</td>
<td>Sandy siltstone: Medium strength, grey, sand is medium grained, subangular, trace quartz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>822m:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>824</td>
<td>Sandy siltstone: Medium strength, grey, sand is medium grained, subangular, trace quartz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>830</td>
<td>Sandstone: Low strength, light grey to white, fine to medium grained, quartzose, trace mudstone</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DESCRIPTION OF STRATA

830m: Silty sandstone: Low strength, grey to white, fine grained, trace quartz, trace coal.

834m: Becoming fine to medium grained, trace quartz, coarse grained.

840m: Sandy siltstone: Low strength, light grey, sand is fine grained, quartzose, subrounded.

843m: Becoming dark grey to brown, medium grained, trace mudstone, low strength, black.

843m: Minor quartz, medium to fine grained.

852m: Fine to very fine grained, quartzose, subrounded.

852m: Silty sandstone: Low strength, grey to white, fine to very fine grained, quartzose, rounded to subrounded.

852m: Sandy siltstone: Low strength, grey to brown, fine grained, trace sand, very fine grained, trace coal.

860m: Silty siltstone: Medium strength, grey.

864m: Trace sand, very fine grained.

870m: Mudstone: Medium strength, brown.

878m: Trace sand, very fine grained.

879m: Trace coal.

885m: Trace coal.

888m: Trace sand, subrounded to subangular quartz, clean.

CONSTRUCTION DETAILS

Completion casing (OZCON, HWT; SL: 4 1/2"; 10.8 lb/ft).

Class A Cement, 64.5 bbls, Cement slurry density of 12 ppg, yield 2.15 cuft/sk.
DESCRIPTION OF STRATA

- **Silty Sandstone:** High strength, grey, very fine grained, silt is medium strength, grey, trace coal
- **Siltstone:** Medium strength, grey, trace mudstone, high strength, dark grey to brown, trace very fine laminations, trace sand, fine grained
- **Mudstone:** Medium to high strength, brown, trace siltstone, low strength, pale grey, trace sand
- **Silty Mudstone:** Low strength, brown to grey, few sand, fine grained, trace quartz
- **Silty Sandstone:** Low strength, grey, fine to very fine grained, quartzose, subangular

CONSTRUCTION DETAILS

- 915m: Grey to white, quartzose, subrounded, trace mudstone, very low strength
- 918m: Some fine grained, subangular quartz
- **Completion casing** (OZCON; HWT; 5L; 4 1/2''; 10.8 lb/ft)
- Class A Cement, 64.5 bbls, Cement slurry density of 12 ppg, yield 2.15 cuft/sk
- **Float Collar @ 935.84 mBGL**
- **Rat hole from 948.95 mBGL to**
- **945m:** Trace mudstone, high strength, brown
- **948m:** Trace coal

EOH 950 mBGL - 22/02/13
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>Graphic Log</th>
<th>DESCRIPTION OF STRATA</th>
<th>CONSTRUCTION DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>950</td>
<td></td>
<td></td>
<td>950 mBGL</td>
<td>950 mBGL</td>
</tr>
<tr>
<td>960</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>970</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>980</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>990</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DESCRIPTION OF STRATA

CELLAR

- **NO SAMPLE**

SANDY CLAY: High plasticity, light brown to black with orange mottle, sand is grey, poorly graded, subangular to subrounded, with trace silt

18m: Clay orange to brown, sand is subangular

CLAY: Low to medium plasticity, dark grey, with some siltstone, low strength, grey

SANDY SILTSTONE: Low strength, white to grey, poorly graded, sand is medium grained, with clay, dark grey

27m: Increasing clay component, very low strength

SILTY MUDSTONE: Very low strength, dark grey, thinly laminated, trace sand, fine grained, grey, subrounded

SANDY SILTSTONE: Low strength, pale grey to dark grey, massive, with clay, high plasticity, dark grey

45m: Becoming medium strength, increasing clay component

CONSTRUCTION DETAILS

Lockable metal standpipe with flange

Conductor casing (BTC; K55 5CT; 9 5/8"; 36 lb/ft)

Surface casing (OZCON; MWBCF; J55, 7" OD; 22.6 lb/ft)

Class A Cement, 55.3 bbls, Cement slurry density of 16.06 ppg

Drilling Contractor: Spaulding Drillers

Logged By: RF, SC

Checked By: MR

Date Started: 21-1-13

Date Finished: 2-2-13

Bore Dia.: 177.8 mm

Total Depth: 535.6 m

Casing I.D.: 102.3 mm

Casing RL: 360.50 m AHD

Coordinates: Lat: -26.533170

Long: 149.054605

Permit No: GDEQGW12-76

Drilling Method: Graphic Log

Drill Type: Mud Rotary

Drill Model: Foremost 24 HD

Drill Fluid: MUD (refer to mud programme)
DESCRIPTION OF STRATA

- **SANDY SILTSTONE**: Medium strength, light grey, massive, sand is fine to medium grained, subrounded
 - 54m: Trace clay, high plasticity, grey

- **Mooga Sandstone - 60 mBGL**: Silty Sandstone
 - Medium to high strength, orange to white to grey, massive, sand is fine to medium grained, subrounded
 - 63m: Becoming high strength

- **SANDY MUDSTONE**: Very low strength, dark grey, medium grained, subrounded, with trace silt

- **SILTY SANDSTONE**: Low to medium strength, grey, massive, sand is fine to medium grained, subrounded, orange to white to grey
 - 75m: Trace coal
 - 78m: Becoming low strength
 - 81m: Trace coal, increasing mudstone component
 - 84m: Medium strength, trace mudstone
 - 87m: Thinly laminated

- **SANDSTONE**: Low strength, grey, very fine grained, trace clay

- **SILTY SANDSTONE**: Low strength, highly weathered, grey, massive, sand is fine grained

- **SILTY SANDSTONE**: Low strength, highly weathered, grey, massive, sand is very fine grained, trace coal
 - 108m: Becoming coarse grained, subangular

CONSTRUCTION DETAILS

- Surface casing (OZCON; MWBCF; J55, 7" OD, 22.6lb/ft)
- Class A Cement, 55.3 bbls, Cement slurry density of 16.06 ppg
DESCRIPTION OF STRATA

- **117m**: High strength, grey, massive, very fine grained, with some quartz
- **SANDSTONE**: High strength, fresh, grey, massive, fine to medium grained, quartzose
- **SANDSTONE**: Medium strength, grey, very fine grained, trace silt
- **SILTY SANDSTONE**: Low to medium strength, grey, sand is very fine grained, trace siltstone, medium strength, large chips
- **INTERBEDDED SILTSTONE AND MUDSTONE**: Very low strength, moderately weathered, light grey to white, massive
- **INTERBEDDED SANDSTONE AND SILTSTONE**: Sandstone is low strength, grey, very fine grained, siltstone is medium strength, dark grey, massive
- **SANDSTONE**: Medium strength, grey, massive, very fine grained, medium grained, trace quartz
- **SILTY SANDSTONE**: Low strength, highly weathered, grey, very fine grained
- **INTERBEDDED SILTSTONE AND MUDSTONE**: Silstone is low strength, dark grey, massive, mudstone is low strength, highly weathered, dark grey, massive
- **INTERBEDDED SILTSTONE AND SANDSTONE**: Sandstone is medium strength, light grey, siltstone is low strength, dark grey, massive, trace coal
- **SILTSTONE**: Low to medium strength, moderately weathered, grey to light grey, massive, trace clay
- **SILTSTONE**: Low to medium strength, moderately weathered, grey, with coal, trace quartz
- **GLARE FORMATION** (116m): White to grey, subangular to subrounded, quartzose

CONSTRUCTION DETAILS

- Surface casing (OZCON, MWBCF, J55, 7" OD, 22.6lb/ft)
- Class A Cement, 55.3 bbls, Cement slurry density of 16.06 ppg
171m: Trace coal

SANDY SILTSTONE: Low strength, highly weathered, light to dark grey, sand is fine to medium grained, white to grey, subrounded

177m: White to orange-grey, medium to coarse grained, subrounded to subangular, trace coal

SANDSTONE: Medium to high strength, white to dark grey, medium to coarse grained, trace silt, light grey, trace organic matter, trace coal

SILTY SANDSTONE: Low to medium strength, white to dark grey, fine to medium grained, silt is light to dark grey, trace organic matter, trace coal

SILTSTONE: Medium strength, fresh, light grey to dark grey, thinly laminated, trace sand, poorly graded, white to grey, trace organic fragments (25mm)

195m: Medium to high strength (35mm)

198m: Trace coal

INTERBEDDED MUDSTONE AND SILTSTONE: Very low strength, light grey, massive, trace organic matter

SILTSTONE: High strength, fresh, dark grey, laminated, trace sand, white to grey, moderately graded, fine to medium grained, trace mudstone, trace coal

INTERBEDDED SANDSTONE AND SILTSTONE: Low strength, white to grey, massive

210m: Brown to dark brown, trace mudstone, very low strength, light grey to dark grey

SANDSTONE: Very low strength, light grey to dark grey, fine to medium grained, trace mudstone, low strength, light grey, trace coal

219m: Trace siltstone, medium strength, dark brown to grey, thinly laminated

222m: Trace coal, fragments up to 7mm

SANDY SILTSTONE: Low strength, grey to dark grey, sand is white to grey, moderately graded, fine to medium grained, trace coal

CONSTRUCTION DETAILS

Surface casing (OZCON; MWBCF; J55, 7" OD, 22.6lb/ft)

Class A Cement, 55.3 bbls, Cement slurry density of 16.06 ppg
231m: Trace mudstone, very low strength, white

SANDSTONE: Low to very low strength, grey to white, trace silt, trace coal

SILTY SANDSTONE: Low strength, light grey to dark grey, massive, fine to medium grained, trace mudstone, trace coal

SANDSTONE: Medium strength, white to grey, fine to coarse grained, trace silt, trace coal

SILTY SANDSTONE: Low to medium strength, grey to dark grey, fine to coarse grained, silt is dark grey, trace coal

INTERBEDDED SANDSTONE AND SILTSTONE: Sandstone is Low strength, light grey, fine to coarse grained, siltstone is medium strength, dark grey, finely laminated, trace coal

SILTY SANDSTONE: Low to medium strength, grey to dark grey, fine to coarse grained, silt is dark grey, trace coal

INTERBEDDED SILTSTONE AND SANDSTONE: Low strength, light grey, fine to coarse grained, siltstone is medium strength, dark grey, finely laminated, trace coal

SILTY SANDSTONE: Very low strength, light grey to grey, fine to medium grained, silt is dark grey, trace coal

SANDSTONE: Medium strength, highly weathered, white to light grey, medium to coarse grained, subrounded, trace mudstone, low strength, light grey, trace coal

279m: Low to medium strength, trace siltstone, medium strength, dark grey

282m: Grey to light grey, medium grained, trace silt, trace coal

CONSTRUCTION DETAILS

Surface casing (OZCON; MWBCF; J55, 7" OD, 22.6lb/ft)

Class A Cement, 55.3 bbl, Cement slurry density of 16.06 ppg
DESCRIPTION OF STRATA

- **291m:** Grey, fine to medium grained, subrounded
- **294m:** Trace coal

- **306m:** Trace coal

- **SILTY SANDSTONE:** Medium strength, highly weathered, grey, fine grained, trace quartz, trace siltstone, dark grey

- **SANDY SILTSTONE:** Medium strength, slightly weathered, grey, with dark grey fragments

- **Gubbermunda Sandstone - 325 mBGL SILTSTONE:** Medium strength, grey to dark grey, massive, trace sand, trace clay

- **SANDY SILTSTONE:** Medium strength, grey to dark grey, massive, very fine grained

- **336m:** Becoming low strength, fresh, medium grained, quartzose

CONSTRUCTION DETAILS

- **Float Collar @ 295.96 mBGL**
- **Surface casing (OZCON; MWBCF; J55, 7''OD; 22.6lb/ft) Float Shoe 307.8 mBGL - 2 Joint Shoe Track**
- **Completion casing (OZCON; HWT; 5L; 4 1/2''; 10.8lb/ft)**
- **Class A Cement, 55.3 bbls, Cement slurry density of 16.06 ppg**
- **Class A Cement, 47.8 bbls, Cement slurry density of 13.5 ppg**
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>DESCRIPTION OF STRATA</th>
<th>CONSTRUCTION DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>SANDSTONE: Low strength, highly weathered, grey, very fine grained, trace coal</td>
<td></td>
</tr>
<tr>
<td>360</td>
<td>357m: Fine to medium grained, trace siltstone, medium strength, dark grey, massive</td>
<td>Completion casing (OZCON; HWT; SL: 4 1/2”; 10.8lb/ft)</td>
</tr>
<tr>
<td>363</td>
<td>363m: Trace mudstone, very low strength, medium grey</td>
<td>Class A Cement, 47.6 bbls, Cement slurry density of 13.5 ppg</td>
</tr>
<tr>
<td>370</td>
<td>SANDY SILTSTONE: Low to medium strength, light grey with dark grey fragments up to 20mm, sand is white to light grey, fine to medium grained, subrounded to rounded, quartzose, trace mudstone, dark grey</td>
<td></td>
</tr>
<tr>
<td>372</td>
<td>372m: Becoming medium strength</td>
<td></td>
</tr>
<tr>
<td>380</td>
<td>SILTY SANDSTONE: Low strength, light to dark grey, medium to coarse grained, subrounded, trace siltstone, low strength, dark grey, trace coal</td>
<td></td>
</tr>
<tr>
<td>381</td>
<td>381m: Becoming fine to medium grained</td>
<td></td>
</tr>
<tr>
<td>390</td>
<td>SANDY SILTSTONE: Medium to high strength, light to dark grey, thinly laminated, sand is subrounded to rounded, white to grey, well graded, trace mudstone, low strength, white</td>
<td></td>
</tr>
<tr>
<td>393</td>
<td>393m: Trace mudstone, trace coal</td>
<td></td>
</tr>
<tr>
<td>396</td>
<td>396m: Becoming medium strength, light grey to dark grey</td>
<td></td>
</tr>
<tr>
<td>399</td>
<td>399m: Becoming low strength, grey to brown</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>SILTY MUDSTONE: Medium strength, brown to dark grey, very thinly laminated, silt is dark grey, trace sand, grey</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTERBEDDED SILTSTONE AND MUDSTONE: Mudstone is medium strength, brown to dark grey, very thinly laminated, siltstone is medium to high strength, dark grey, thinly laminated</td>
<td></td>
</tr>
<tr>
<td>Depth (m)</td>
<td>DESCRIPTION OF STRATA</td>
<td>CONSTRUCTION DETAILS</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>410</td>
<td>411m: Becoming low strength, grey to brown</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILTSTONE: Low strength, fresh, dark grey, thinly laminated, trace mudstone, extremely low strength, light grey to white</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weald Sandstone - 417 mBGL SILTY SANDSTONE: Low to medium strength, light grey, fine to medium grained, silt is dark grey</td>
<td></td>
</tr>
<tr>
<td>420</td>
<td>SANDY SILTSTONE: Low to medium strength, medium to dark grey, sand is medium grained, light grey, poorly graded</td>
<td></td>
</tr>
<tr>
<td></td>
<td>423m: Trace coal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILTY SANDSTONE: Low to medium strength, light grey, fine to medium grained, silt dark grey (10mm), trace coal</td>
<td></td>
</tr>
<tr>
<td>430</td>
<td>Springbok Sandstone - 432 mBGL SANDSTONE: Medium strength, fresh, light grey, massive, fine to medium grained, quartzose</td>
<td></td>
</tr>
<tr>
<td></td>
<td>435m: Trace silt</td>
<td></td>
</tr>
<tr>
<td>440</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>444m: Medium to high strength</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILTSTONE: Low to medium strength, dark grey, massive, trace clay</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>450m: Trace coal (10mm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILTY SANDSTONE: Low strength, highly weathered, light to medium grey, fine to medium grained, subrounded, silt dark grey, trace coal</td>
<td></td>
</tr>
<tr>
<td>460</td>
<td>SILTSTONE: Low to medium strength, highly weathered, medium to dark grey, thinly laminated, trace sand, light grey, subangular, trace mudstone, light to medium grey</td>
<td></td>
</tr>
<tr>
<td></td>
<td>465m: Trace coal</td>
<td></td>
</tr>
<tr>
<td>470</td>
<td>SILTY SANDSTONE: Medium strength, light grey, fine to medium grained, subrounded, silt is light grey, trace coal (13mm)</td>
<td></td>
</tr>
</tbody>
</table>

Completion casing (OZCON; HWT; SL: 4 1/2''; 10.8lb/ft)

Class A Cement, 47.6 bbls, Cement slurry density of 13.5 ppg
DESCRIPTION OF STRATA

470m: Sandstone: Medium to high strength, light to medium grey, fine grained, subrounded to subangular, trace silt

474m: Trace coal

480m: Sandstone: Medium to high strength, light grey, subrounded to rounded, very fine to fine grained, siltstone is low strength, dark grey

490m: Sandstone: Medium to high strength, medium grey, fine to medium grained, subrounded, trace mudstone, medium strength, brown, thinly laminated

Siltstone: Medium strength, dark grey to black, massive, with clay, trace coal

Mudstone: Very low strength, highly weathered, dark grey to black, massive

Sandstone: Very low strength, highly weathered, light grey, massive, very fine grained

501m: Trace clay

510m: Siltstone: Low strength, highly weathered, dark brown to dark grey, thinly laminated, trace sandstone, very low strength, pale grey, fine to medium grained

Silty sandstone: Medium strength, light grey, fine to medium grained, subangular, silt is light grey

Sandstone: Low to medium strength, light to medium grey, fine to medium grained, subrounded, trace silt, dark grey, with coal

519m: Trace coal (<1mm)

520m: Siltstone: Low strength, highly weathered, pale grey, trace sand, light to medium grey to black, subrounded to subangular

525m: Grey to brown, trace sandstone, light grey, fine grained

529m: Becoming medium strength, trace mudstone, very low strength, medium brown, trace coal

CONSTRUCTION DETAILS

Completion casing (OZCON; HWT; SL: 4 1/2", 10.8lb/ft)

Class A Cement, 47.8 bbls, Cement slurry density of 13.5 ppg

Float Collar @ 520.7 mBGL

BBNGWS02 (FINAL)
SANDY Siltstone: Very low strength, light grey, sand is grey, fine-grained, trace coal

SANDSTONE: Low to medium strength, highly weathered, medium grey, fine to coarse grained, subrounded to subangular, with quartz, trace coal

Rat Hole from 533.2 mBGL to 535.6 mBGL

EOH - 535.6 mBGL - Target Depth Reached 02/02/2013
DESCRIPTION OF STRATA

CELLAR
- **SAND**: Well graded, subangular, brown-orange, trace quartz, translucent, subangular, dry, firm

CLAYEY SAND: Well graded, subangular to subrounded, dark brown to orange, trace quartz, translucent, subangular, few black chips, dry, hard
- 11 m: Increasing sand component
- 18 m: Medium plasticity, orange-brown, stiff, sand is well sorted, fine grained, subrounded to subangular
- 21 m: Very well sorted, subrounded
- 24 m: Grey, very stiff, trace sand

ORALLO FORMATION - 27 mBG
- **MUDSTONE**: Medium strength, brown to grey, trace sand
- 30 m: Some finely bedded, no sand
- 33 m: Trace sand
- 36 m: Hard, bedded, sand is very fine to fine grained, subangular

SANDSTONE: Low strength, grey, fine to medium grained, rounded to subrounded, high sphericity, well sorted
- 42 m: Clear quartz grains, trace silt
- 45 m: Subrounded to subangular
- 48 m: Increasing silt component

CONSTRUCTION DETAILS
- **Drill Model**: Foremost 24 HD
- **Drill Fluid**: MUD (Bentonite & PAC)
- **Class A Cement**, 13.4 ppg, 3% Bentonite
DESCRIPTION OF STRATA

- **52 m:** Increasing sand component, quartzose
 - **54 m:** SIMILAR SANDSTONE: Medium to high strength, grey to brown, finely laminated, trace sand, very fine to fine grained, well sorted

- **57 m:** Laminations less prominent

- **60 m:** SANDSTONE: Medium strength, grey, very finely laminated, well sorted

- **GUBBERAMUNDA SANDSTONE - 66 mBGL**
 - SANDSTONE: Low to medium strength, grey, fine to medium grained, well sorted
 - **69 m:** Clean quartz grains

- **69 m:** Clean quartz grains

- **74 m:** SANDSTONE: High strength, grey, fine to medium grained, moderately sorted

- **76 m:** SANDSTONE: Medium strength, light grey, fine grained, moderately well sorted

- **81 m:** Medium grained, subrounded, clean quartz

- **84 m:** Increasing silt component (~40%)

- **93 m:** Fine to medium grained sand, decrease in silt component (~20-25%)

- **97 m:** Trace coal

- **100 m:** Increasing coal component (~10-15%)

- **104 m:** Coarse grained, well sorted, rounded with subangular to angular bands, clean quartz

- **108 m:** Increasing silt component

CONSTRUCTION DETAILS

- **Completion casing**
 - Ozcon flush joint; 5L B; 4 1/2" / 4.026" ID; 22.6 lb/ft

- **Class A Cement, 13.4 ppg, 3% Bentonite**

- **Bentonite Plug**

- **Natural Backfill**

- **4" (nominal) S/S screen (Johnson; 1 mm ap.)**
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>Graphic Log</th>
<th>DESCRIPTION OF STRATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td></td>
<td></td>
<td>WESTBOURNE FORMATION - 111.5 mBGL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SILTY SANDSTONE: Very high strength, grey to blue, finely laminated, trace coal, trace quartz</td>
</tr>
<tr>
<td>113.5</td>
<td></td>
<td></td>
<td>EOH 113.5 mBGL - Target Depth Reached 26/11/12</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td>Zero slot sump</td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS
ARMGWH01 (INTERIM)

Drilling Contractor: Spaulding Drillers

Logged By: DGP, RP, PO, SH
Checked By: MR
Date Started: 12-12-12
Date Finished: 11-1-13

Bore Dia.: 177.8 mm
Total Depth: 700.6 m

Wellhead to be confirmed

Casing I.D.: 102.3 mm
Casing RL: 382.54 mAHD

Coordinates:
Lat: -26.387256
Long: 149.125871

Drilling Method: Graphic Log

Depth (m):

- **0 m:** Conducting casing (BTC; K55 5CT; 9 5/8”; 36 lb/ft)
- **10 m:** Increasing sand component
- **11 m:** Increasing sand component
- **12-1/4 PDC:** Well graded, subangular, brown-orange, trace quartz, translucent, subangular, dry, firm
- **18 m:** Medium plasticity, orange-brown, stiff, sand is well sorted, fine grained, subrounded to subangular
- **21 m:** Very well sorted, subrounded
- **24 m:** Grey, very stiff, trace sand
- **30 m:** Some finely bedded, no sand
- **33 m:** Trace sand
- **36 m:** Hard, bedded, sand is very fine to fine grained, subangular
- **42 m:** Clear quartz grains, trace silt
- **45 m:** Subrounded to subangular
- **48 m:** Increasing silt component

CONSTRUCTION DETAILS

Well Head to be Confirmed

CONTRACTOR: Spaulding Drillers
Permit No: GDEQGW12-07

Drill Model: Foremost 24 HD
Drill Fluid: MUD (refer to mud program)
DESCRIPTION OF STRATA

52 m: Increasing sand component, quartzose

57 m: Laminations less prominent

59 m: Laminations less prominent

62 m: Laminations less prominent

64 m: Laminations less prominent

66 m: Clean quartz grains

69 m: Clean quartz grains

74 m: Clean quartz grains

76 m: Medium fine grained, fine to medium grained sandstone, moderately well sorted

81 m: Medium grained, subrounded, clean quartz

84 m: Increasing silt component (~40%)

93 m: Fine to medium grained sand, decrease in silt component (~20-25%)

97 m: Trace coal

100 m: Increasing coal component (~10-15%)

104 m: Coarse grained, well sorted, rounded with subangular to angular bands, clean quartz

108 m: Increasing silt component

CONSTRUCTION DETAILS

Class A Cement, 33 bbl of density 15.6 ppg, yield 1.18 cuft/ft.
WESTBOURNE FORMATION - 111.5 mBGL

Silty Sandstone: Very high strength, grey to blue, finely laminated, trace coal, trace quartz

Siltstone: Medium strength, grey to dark grey, laminated, trace sandstone, fine grained, pale grey

120 m: Pale grey to grey, trace sandstone, pale grey, fine grained

123 m: Medium to high strength, pale green

126 m: With mudstone, low to medium strength, grey to dark grey

INTERBEDDED SILTSTONE AND MUDSTONE: Mudstone is low to medium strength, grey to dark grey, siltstone is medium to high strength, grey

130 m: With mudstone, low to medium strength, dark grey, some banding

Siltstone: Medium strength, grey to dark grey, laminated, trace mudstone, low strength, dark grey

136 m: With mudstone, low to medium strength, dark grey, some banding

Mudstone: Low to medium strength, dark grey, thinly laminated, moderately well developed

144 m: Medium to high strength

147 m: Low to medium strength, very thinly laminated

150 m: Laminations less prominent

Silty Mudstone: Low strength, brown, siltstone is low strength, light brown, thinly laminated

Siltstone: Low to medium strength, pale brown, trace very fine sand, subrounded, well sorted, pale brown

160 m: High strength, very fine grained, with siltstone

WEALD FORMATION - 160 mBGL

Sandstone: High strength, pale brown, fine grained, subangular, moderately sorted, trace siltstone

165 m: High strength, very fine grained, with siltstone

SPRINGBOK FORMATION - 167 mBGL

Mudstone: Medium to high strength, dark brown, trace very thinly laminated

CLASS A CEMENT, 33 bbl of density 15.6 ppg, yield 1.18 cuft/ft.
DESCRIPTION OF STRATA

- **SANDY MUDSTONE**: Medium strength, dark brown, sand is fine grained, brown, subangular, trace coal.
- **MUDSTONE**: High strength, dark brown, thinly laminated, well developed, trace coal.
- **SANDY MUDSTONE**: High strength, dark brown, very thinly laminated, sand is very fine grained, brown, subangular.
- **MUDSTONE**: High strength, dark brown, thinly laminated, well developed, trace coal.
- **SANDY MUDSTONE**: Light brown.
- **MUDSTONE**: Low to medium strength, pale brown, no lamination, with trace very fine grained sand, trace coal.
- **MUDSTONE**: Increasing mudstone component (~40%).

CONSTRUCTION DETAILS

- **Class A Cement**: 33 bbl of density 15.6 ppg, yield 1.18 cuft/ft.
- **Float seal at 190.22 mBGL**
- **Surface casing**: (Ozcon FJ; J55; 7”; 22.6 lb/ft) 197.36 mBGL - 2 Joint Shoe Track at 197.36 mBGL.
DESCRIPTION OF STRATA

- **SANDSTONE**: Very low strength, grey, moderately sorted, very fine grained
- **SILTY MUDSTONE**: Very low strength, grey, massive
- **MUDSTONE**: Low strength, brown, with siltstone, medium strength, brown, trace coal (<5%)
- **COAL**: Fresh, pale grey, laminated, trace mudstone (~10%)
- **UPPER JUANDAH COAL MEASURES - 270 mBGL**: Increasing mudstone component
- **SANDSTONE**: Medium to high strength, pale grey, fine to medium grained, moderately sorted

CONSTRUCTION DETAILS

- **Drilling Method**
- **Gamma (API)**

Completion casing (Ozcon FJ, SL B; 4.026" ID, 10.8 lb/ft)

Class A Cement, Lead Slurry: 35.2 bbl of density 13.5 ppg, yield 1.75 cuft/ft and Tail slurry: 2.9 bbl of density 15.6 ppg, yield 1.18 cuft/ft.
6 1/8" PDC

Completion casing (Ozcon FJ; 5L B; 4.026" ID; 10.8lb/ft)

sorted, trace siltstone, medium strength, grey, trace coal (<5%)

PROUD SANDSTONE - 294 mBGL

SANDSTONE: Medium to high strength, laminated, medium grained, trace siltstone, medium strength, grey, thinly laminated, no coal
297 m: Medium strength, decreasing siltstone component

LOWER JUANDAH COAL MEASURES - 302 mBGL

High strength, trace siltstone, trace interbedded coal, black, thinly laminated, trace oxidation levels

INTERBEDDED SILTSTONE AND SANDSTONE:
Siltstone is medium to high strength, grey to dark grey, thinly laminated, trace oxidation levels, sandstone is pale grey, moderately sorted, laminated, fine to medium grained
312 m: Increasing siltstone component

MUDSTONE:
Low to medium strength, grey, trace sandstone, medium strength, grey to dark grey, thinly laminated
318 m: Trace sandstone, medium to high strength, pale grey to grey

SILTSTONE:
Medium strength, grey to dark grey, laminated, trace mudstone, low strength, grey
327 m: Decreasing siltstone, increasing coal component

330 m: Very high strength, trace siltstone, laminated, decreasing coal component (<5%)

333 m: Trace sandstone, trace coal

INTERBEDDED MUDSTONE AND SILTSTONE:
Mudstone is low strength, grey, siltstone is medium strength, grey to dark grey, finely laminated, trace coal (<5%)
339 m: Increasing siltstone, increasing coal component

342 m: Increasing coal (>40%), decreasing siltstone component

345 m: Decreasing coal component (<5%), trace sandstone, high strength, brown

COAL:
Low strength, black, trace siltstone, medium strength, brown to dark grey, thinly

CONSTRUCTION DETAILS

Class A Cement, Lead Slurry; 35.2 bbl of density 13.5 ppg, yield 1.75 cuft/ft and Tail slurry; 2.9 bbl of density 15.6 ppg, yield 1.18 cuft/ft.
DESCRIPTION OF STRATA

- **SILTSTONE**: Medium to high strength, brown to grey, very fine, fine laminar fabric, trace sandstone, high strength, brown to medium grained, trace coal
- **SANDSTONE**: High strength, brown to pale grey, moderately sorted, fine to medium grained, trace siltstone, medium strength, grey to dark grey, no coal
- **INTERBEDDED SILTSTONE AND MUDSTONE**: Low to medium strength, brown, very fine, laminated, trace sandstone, high strength, pale grey, fine to medium grained, trace coal
- **SANDSTONE**: High strength, pale grey to brown, fine to medium grained, trace siltstone, medium strength, grey to dark grey, trace coal
- **TANGALOOMA FORMATION - 367 mBGL**
 - SANDSTONE
 - **369 m**: Trace coal
 - **375 m**: Trace mudstone
 - **SILTY SANDSTONE**: Medium strength, pale grey, fine grained, trace coal (<5%)
 - **381 m**: Becoming low to medium strength, some oxidation levels, increasing coal component (~10-15 %)
 - **SANDSTONE**: Medium to high strength, pale grey, very fine grained, moderately sorted, trace siltstone, medium strength, brown to dark grey, trace coal
 - **INTERBEDDED MUDSTONE AND SANDSTONE**: Low to medium strength, pale grey, very fine grained, trace siltstone, dark grey, trace coal
 - **SILTSTONE**: Medium to high strength, grey to dark grey, trace sandstone, dark grey, trace coal
 - **INTERBEDDED SILTSTONE AND MUDSTONE**: Siltstone is medium to high strength, dark grey, mudstone is low strength, pale grey to dark grey, trace coal
 - **399 m**: Increasing siltstone component, mudstone is pale grey, very finely laminated (black) (<1mm)
 - **MUDSTONE**: Low strength, pale grey, laminated (black), trace siltstone, medium strength, dark grey
 - **405 m**: Decreasing siltstone component, trace coal
 - **COAL**: Fresh, with interbedded siltstone and mudstone (30%), siltstone is medium to high

CONSTRUCTION DETAILS

- **Completion casing**: (Ozcon FJ; 8 B; 4.026” ID; 10.8 lb/ft)
- **Class A Cement, Lead Slurry**: 35.2 bbl of density 13.5 ppg, yield 1.75 cuft/ft and Tail slurry: 2.9 bbl of density 15.6 ppg, yield 1.18 cuft/ft.
DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Strata Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>410</td>
<td>INTERBEDDED SILTSTONE AND MUDSTONE: Siltstone is medium to high strength, dark grey, mudstone is low strength, brown to pale grey, laminated (black)</td>
</tr>
<tr>
<td>420</td>
<td>MUDSTONE: Pale grey, trace coal</td>
</tr>
<tr>
<td>430</td>
<td>COAL: Fresh, with siltstone (20%), medium to high strength, dark grey</td>
</tr>
<tr>
<td>426</td>
<td>MUDSTONE: Low strength, pale grey with black coal fragments, trace siltstone, medium to high strength, dark grey</td>
</tr>
<tr>
<td>435</td>
<td>SILTSTONE: Medium to high strength, dark grey, trace mudstone, low strength, pale grey, laminated, trace coal</td>
</tr>
<tr>
<td>440</td>
<td>INTERBEDDED SILTSTONE AND MUDSTONE: Siltstone is medium to high strength, dark grey, mudstone is low strength, brown, trace coal</td>
</tr>
<tr>
<td>447</td>
<td>TAROOM COAL MEASURES - 438 mBGL</td>
</tr>
<tr>
<td>448</td>
<td>MUDSTONE: Low strength, pale grey with black coal fragments, trace siltstone, dark grey</td>
</tr>
<tr>
<td>450</td>
<td>INTERBEDDED SILTSTONE AND MUDSTONE: Low to medium strength, grey to dark grey, laminated trace coal</td>
</tr>
<tr>
<td>456</td>
<td>SILTSTONE: Medium strength, grey to dark grey, trace mudstone, pale grey, no coal</td>
</tr>
<tr>
<td>462</td>
<td>INTERBEDDED MUDSTONE AND SILTSTONE: Low strength, pale grey to grey, trace sandstone, medium strength, fine to medium grained</td>
</tr>
<tr>
<td>465</td>
<td>INTERBEDDED MUDSTONE AND SILTSTONE: Low strength, pale grey to grey, trace sandstone, medium strength, fine to medium grained</td>
</tr>
<tr>
<td>468</td>
<td>COAL: Fresh, with siltstone (20%), medium to high strength, dark grey</td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

- Class A Cement, Lead Slurry: 35.2 bbl of density 13.5 ppg, yield 1.75 cuft/ft and Tail slurry: 2.9 bbl of density 15.6 ppg, yield 1.18 cuft/ft.
471 m: Decreasing mudstone component, increasing coal (40%), black, subangular, trace sandstone
474 m: Decreasing coal component (30%)
477 m: Decreasing coal component (20-30%), trace sandstone
483 m: Increasing coal component
486 m: Decreasing mudstone component

INTERBEDDED SILTSTONE AND SANDSTONE: Medium to high strength, pale grey to dark grey, sandstone is fine to medium grained, trace coal

MUDSTONE: Low strength, pale grey, trace siltstone, medium strength, grey to dark grey, trace sandstone, pale grey, trace coal

501 m: Increasing sandstone component, high strength, pale grey, fine to medium grained

EUROMBAH FORMATION - 502 mBGL

504 m: Increasing coal component

SILTSTONE: Medium strength, pale grey to dark grey, finely laminated, trace sandstone, high strength, pale grey, fine to medium grained, trace coal

INTERBEDDED SANDSTONE AND SILTSTONE: Siltstone is medium strength, pale grey to grey, sandstone is fine to medium grained, finely laminated, trace coal

INTERBEDDED SILTSTONE AND MUDSTONE: Low to medium strength, pale grey, siltstone is dark grey, laminated, trace coal

MUDSTONE: Low strength, pale grey, trace sandstone, grey, fine grained, trace siltstone, medium strength, brown

INTERBEDDED SANDSTONE AND MUDSTONE: Sandstone is medium strength, grey, fine to medium grained, mudstone is low strength, pale grey, trace coal
DESCRIPTION OF STRATA

- **530 m:** Sandstone: Medium to high strength, grey, fine grained, trace siltstone, medium to high strength, dark grey, trace mudstone, grey, trace coal.

- **INTERBEDDED SILTSTONE AND MUDSTONE:** Siltstone is medium to high strength, dark grey, laminated, mudstone is low strength, brown, trace sandstone.

- **INTERBEDDED SANDSTONE AND SILTSTONE:** Sandstone is medium to high strength, grey, fine grained, siltstone is medium to high strength, brown to dark grey, laminated, trace mudstone.

- **INTERBEDDED SANDSTONE AND MUDSTONE:** Sandstone is medium to high strength, paler grey, trace siltstone, medium to high strength, dark grey, trace sandstone, medium to high strength, grey, fine grained, trace mudstone.

- **INTERBEDDED SANDSTONE AND MUDSTONE:** Sandstone is medium to high strength, grey to dark grey, medium to coarse grained, some quartz gravel, fine grained, subrounded, trace mudstone, low strength, pale grey, trace siltstone, medium to high strength, brown.

- **MUDSTONE:** Low strength, pale grey, trace sandstone, medium to high strength, grey, fine grained, trace mudstone.

- **SILTSTONE:** Medium to high strength, grey to dark grey, trace siltstone, medium to high strength, grey, fine grained, trace mudstone.

- **MUDSTONE:** Low strength, pale grey, trace sandstone, medium to high strength, grey, fine grained, laminated, trace siltstone, medium to high strength, brown.

- **MUDSTONE:** Low strength, pale grey, trace sandstone, medium to high strength, grey to dark grey, fine grained, laminated, trace siltstone, medium to high strength, brown.

- **INTERBEDDED SILTSTONE AND MUDSTONE:** Siltstone is medium strength, pale grey to dark grey, medium to coarse grained, trace siltstone, medium to high strength, dark grey, trace sandstone, medium to high strength, grey, fine grained, trace mudstone.

- **MUDSTONE:** Low strength, pale grey, trace sandstone, medium to high strength, grey to dark grey, fine grained, laminated, trace mudstone.

- **INTERBEDDED MUDSTONE:** Sandstone is medium strength, pale grey to dark grey, medium to coarse grained, some quartz gravel, fine grained, subrounded, trace mudstone, low strength, pale grey, trace siltstone, medium to high strength, brown.

- **INTERBEDDED MUDSTONE:** Sandstone is medium strength, pale grey to dark grey, medium to coarse grained, some quartz gravel, fine grained, subrounded, trace mudstone, low strength, pale grey, trace siltstone, medium to high strength, brown.

- **INTERBEDDED SILTSTONE AND MUDSTONE:** Siltstone is medium strength, pale grey to dark grey, medium to coarse grained, trace siltstone, medium to high strength, dark grey to brown, trace mudstone, low strength, brown.

- **SILTSTONE:** Medium to high strength, dark grey to brown, trace mudstone, low strength, brown.

CONSTRUCTION DETAILS

- **Completion casing:** OZCON FJ; 5L B; 4.026" ID; 10.8 lb/ft.

- **Class A Cement:** Lead Slurry: 35.2 bbl of density 13.5 ppg, yield 1.75 cuft/ft.

- **Tail slurry:** 2.9 bbl of density 15.6 ppg, yield 1.18 cuft/ft.
DESCRIPTION OF STRATA

- **590 m**: Trace siltstone, trace coal (<5%)
- **600 m**: Trace mudstone, low strength, pale grey
- **603 m**: Trace siltstone, medium strength, dark grey
- **612 m**: Trace mudstone, low strength, pale grey, trace coal
- **615 m**: With quartz gravel, fine grained, subangular to subrounded
- **618 m**: Trace coal, trace siltstone
- **633 m**: Trace mudstone (<5%)
- **645 m**: Trace coal (<5%)
- **648 m**: Increasing mudstone component, low strength, pale grey

CONSTRUCTION DETAILS

- **597 m**: Trace siltstone, trace coal (<5%)
- **600 m**: Trace mudstone, low strength, pale grey
- **603 m**: Trace siltstone, medium strength, dark grey

Completion casing

- Class A Cement, Lead Slurry: 35.2 bbl of density 13.5 ppg, yield 1.75 cuft/ft
- Tail slurry: 2.9 bbl of density 15.6 ppg, yield 1.18 cuft/ft.
DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>657</td>
<td>Trace mudstone (5-10%)</td>
</tr>
<tr>
<td>660</td>
<td>Increasing strength, trace siltstone, medium strength, dark grey, trace mudstone</td>
</tr>
<tr>
<td>669</td>
<td>Light to dark grey, very fine to fine grained, trace siltstone</td>
</tr>
<tr>
<td>672</td>
<td>Medium to high strength, light grey, fine grained, trace quartz</td>
</tr>
<tr>
<td>681</td>
<td>High strength, grey, fine to very fine grained, with quartz (40%)</td>
</tr>
<tr>
<td>690</td>
<td>Trace mudstone</td>
</tr>
<tr>
<td>696</td>
<td>High strength, fine to medium grained, with quartz, subangular</td>
</tr>
<tr>
<td>699</td>
<td>Trace mudstone, trace coal (<5%)</td>
</tr>
<tr>
<td>700</td>
<td>Rat Hole from 698.00 mBGL to 700.58 mBGL</td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

- **Class A Cement, Lead Slurry:** 35.2 bbl of density 13.5 ppg, yield 1.75 cuft/ft and Tail slurry; 2.9 bbl of density 15.8 ppg, yield 1.18 cuft/ft.

- **Float Seal at 685.15 mBGL**

- **Rat Hole from 698.00 mBGL to 700.58 mBGL**

- **Completion casing (Ozcon FJ; SL B; 4.028" ID; 10.8 lb/ft)**

EOH 700.58 mBGL - Target Depth Reached 11/01/2013

698.00 mBGL - 1 Joint Shoe Track
CONSTRUCTION DETAILS

Gamma (API)

DESCRIPTION OF STRATA

CELLAR

SAND: Well graded, subangular, brown-orange, trace quartz, translucent, subangular, dry, firm

CLAYEY SAND: Well graded, subrounded to subrounded, dark brown to orange, trace quartz, translucent, subangular, few black chips, dry, hard

11 m: Increasing sand component

18 m: Medium plasticity, orange-brown, stiff, sand is well sorted, fine grained, subrounded to subangular

21 m: Very well sorted, subrounded

24 m: Grey, very stiff, trace sand

ORALLO FORMATION - 27 mBGL

MUDSTONE: Medium strength, brown to grey, trace sand

30 m: Some finely bedded, no sand

33 m: Trace sand

36 m: Hard, bedded, sand is very fine to fine grained, subangular

SANDSTONE: Low strength, grey, fine to medium grained, rounded to subrounded, high sphericity, well sorted

42 m: Clear quartz grains, trace silt

45 m: Subrounded to subangular

48 m: Increasing silt component

CONSTRUCTION DETAILS

Well Head to be confirmed

Conductor casing (BTC; K55 5CT; 9 5/8”; 36 lb/ft)

Drill Type: Mud Rotary

Drill Model: Foremost 24 HD

Cement: Class A, 48 bbl of density 15.6 ppg, yield 1.18 cuft/lb
DESCRIPTION OF STRATA

- **52 m**: Increasing sand component, quartzose

- **SANDY SILTSTONE**: Medium to high strength, grey to brown, finely laminated, trace sand, very fine to fine grained, well sorted

- **57 m**: Laminations less prominent

- **SILTSTONE**: Medium strength, grey, very finely laminated, well sorted

- **GUBBERAMUNDA SANDSTONE - 66 m BGS**: Low to medium strength, grey, fine to medium grained, well sorted

- **69 m**: Clean quartz grains

- **SANDY SILTSTONE**: High strength, grey, fine grained, moderately sorted

- **74 m**: Clean quartz grains

- **SANDSTONE**: Medium strength, light grey, fine grained, moderately well sorted

- **81 m**: Medium grained, subrounded, clean quartz

- **84 m**: Increasing silt component (~40%)

- **93 m**: Fine to medium grained sand, decrease in silt component (~20-25%)

- **97 m**: Trace coal

- **100 m**: Increasing coal component (~10-15%)

- **104 m**: Coarse grained, well sorted, rounded with subangular to angular bands, clean quartz

- **108 m**: Increasing silt component

CONSTRUCTION DETAILS

- **Class A Cement, 48 bbl of density 15.6 ppg, yield 1.18 cuft/ft.**

Gamma (API)

Drilling Method

Graph Log

Depth (m)

- 50
- 60
- 70
- 80
- 90
- 100

SURFACE CASING (Ozcon FJ; J55; 7”; 22.6 lb/ft)

Gamma (API)

CONSTRUCTION DETAILS

- **Class A Cement, 48 bbl of density 15.6 ppg, yield 1.18 cuft/ft.**

Surface casing (Ozcon FJ; J55; 7”; 22.6 lb/ft)
Westbourne Formation - 111.5 m BGL

- **Silty Sandstone**: Very high strength, grey to blue, finely laminated, trace coal, trace quartz
- **Siltstone**: Medium strength, grey, thinly laminated, trace sandstone, fine grained, pale grey

120 m: Pale grey to grey, trace sandstone, pale grey, fine grained

123 m: Medium to high strength, pale green

126 m: With mudstone, low to medium strength, grey to dark grey

Interbedded Siltstone and Mudstone: Mudstone is low to medium strength, grey to dark grey, siltstone is medium to high strength, grey

135 m: With mudstone, low to medium strength, dark grey, some banding

Springbok Formation - 167 m BGL

- **Mudstone**: Medium to high strength, dark brown, trace very thinly laminated

165 m: High strength, very fine grained, with siltstone

Springbok Formation - 167 m BGL

- **Mudstone**: Medium to high strength, dark brown, trace very thinly laminated

165 m: High strength, very fine grained, with siltstone

Weald Formation - 160 m BGL

- **Sandstone**: High strength, pale brown, fine grained, subangular, moderately sorted, trace siltstone

165 m: High strength, very fine grained, with siltstone

Gamma (API)

Construction Details

- Float seal at 116.09 m BGL

- Surface casing (Ozcon FJ; J55 3CT; 7”; 22.6 lb/ft)

 - 128.94 m BGL - 2 Joint Shoe Track at 128.94 m BGL

- Completion casing (Ozcon FJ; SL B; 4.026” ID; 10.6 lb/ft)

- Class A Cement, 48 bbl of density 15.6 ppg, yield 1.16 cuft/ft.

- Class A Cement, 20.9 bbl of 13.3 ppg density lea slurry; Tail slurry at 15.6 ppg density
SANDY MUDSTONE: Medium strength, dark brown, sand is fine grained, brown, subangular, trace coal

MUDSTONE: High strength, dark brown, thinly laminated, well developed, trace coal

SANDY MUDSTONE: High strength, dark brown, very thinly laminated, sand is very fine grained, brown, subangular

183 m: Light brown
186 m: Medium strength, brown
189 m: Low to medium strength, pale brown, no laminations, with trace very fine grained sand, trace coal
192 m: Increasing mudstone component (~40%)

SILTY MUDSTONE: Medium strength, brown, thinly laminated, trace silt, trace coal

201 m: With coal (>20%)

SANDY SILTSTONE: Low to medium strength, pale brown, sand is very fine grained, poorly sorted, subangular, trace coal

SILTY MUDSTONE: Low to medium strength, brown, thinly laminated, trace coal

SANDY SILTSTONE: Low to medium strength, pale brown, sand is very fine grained, subrounded, moderately sorted, trace coal

SILTY SANDSTONE: Low strength, very fine to fine grained, subrounded, moderately sorted, trace coal

219 m: Increasing silt component

222 m: Increasing silt component (sand 55%, silt 35%), coal (10%)

228 m: Increasing sand component (sand 65%, silt 30%), coal (~5%)
Description of Strata

- **231 m:** Increasing silt component (sand 60%, silt 35%)
- **234 m:** Becoming well sorted, moderately to well sorted sand, trace coal
- **240 m:** Moderately sorted, trace sand (~5%), medium grained
- **243 m:** Fine to medium grained
- **249 m:** Larger coal fragments (1 to 2mm)
- **SANDSTONE:** Very low strength, grey, moderately sorted, very fine grained
- **255 m:** Some interbedded siltstone
- **259 m:** Becoming low strength, grey, well sorted, angular, very fine grained
- **SILTY MUDSTONE:** Very low strength, grey, massive
- **264 m:** High clay content
- **COAL:** High strength, fresh, black, thinly laminated, massive

Construction Details

- **Class A Cement:** 20.9 bbl of 13.3 ppg density lea slurry; Tail slurry at 15.6 ppg density
- **Rat Hole from 268.92 mBGL to 271.68 mBGL**
- **Float Seal at 249.7 mBGL**
- **ECD - 271.68 mBGL - Target Depth Reached 12/12/2012**
- **Completion casing (Ozcon FJ; BL B; 4.026" ID; 10.8 lb/ft) 3 Joint Shoe Track at 268.6 mBGL**
DESCRIPTION OF STRATA

CELLARNO SAMPLE

BUNGIL FORMATION - 20 mBGL

SILTSTONE: Medium to high strength, black, massive, chips (<35 mm)

24m: Low to medium strength, black to dark brown, with clay

27m: Low strength, trace sand, fine to medium grained

Medium to high strength, dark grey to black, larger chips <40mm, labile, with clay, dark brown to black

SILTY MUDSTONE: Low to medium strength, dark brown to black, massive, with clay

INTERBEDDED SILTSTONE AND SANDSTONE: Siltstone is medium strength, black to dark grey, sandstone is low strength, pale grey to white, trace green, fine grained, with glauconite

CONSTRUCTION DETAILS

Lockable metal standpipe with flange

Conductor casing (BTC; K55 5CT; 9 5/8"; 36 lb/ft)

Surface casing (OZCON; BTC; J55, 7" OD; 23.0lb/ft)

Class A cement; 20.5 bbls, density 13.5 ppg

Drilling Method

12 1/4" PDC Drill bit

8 1/2" PDC Bit

Graphic Log

Depth (m) 0 10 20 30 40

Bore Dia.: 177.8 mm

Total Depth: 565.7 m

Casing I.D.: 102.3 mm

Casing RL: 324.54 mAHD

Coordinates: Lat: -26.583025 Long: 148.851223

Permit No: GDR12-75

Drilling Contractor: Spaulding Drillers

Client: Santos Ltd

Location: Roma

Project Name: Santos Deep Drilling Programme

Project No.: 42626910

Drill Type: Mud Rotary

Drill Model: Foremost 24 HD

Drill Fluid: MUD (refer to mud programme)

Logged By: RF, SC, TF, DGP

Checked By: MR

Date Started: 25-2-13

Date Finished: 5-3-13

Bore Dia.: 177.8 mm

Total Depth: 565.7 m

Casing I.D.: 102.3 mm

Casing RL: 324.54 mAHD

Coordinates: Lat: -26.583025 Long: 148.851223

Permit No: GDR12-75

Drill Type: Mud Rotary

Drill Model: Foremost 24 HD

Drill Fluid: MUD (refer to mud programme)
DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>51m</td>
<td>Siltstone low to medium strength, sandstone fine to medium grained, no glauconite</td>
</tr>
<tr>
<td>57m</td>
<td>With quartz</td>
</tr>
<tr>
<td>63m</td>
<td>Sandstone white to dark grey, siltstone very thinly laminated, well developed</td>
</tr>
<tr>
<td>Silty Mudstone: Low strength, black, with silty sandstone, trace quartz</td>
<td></td>
</tr>
<tr>
<td>Interbedded Sandstone and Siltstone: Sandstone is low strength, pale grey to brown, fine to medium grained, trace glauconite, weathered, siltstone is low strength, grey to brown</td>
<td></td>
</tr>
<tr>
<td>75m</td>
<td>Siltstone low to very low strength</td>
</tr>
<tr>
<td>81m</td>
<td>Sandstone fine grained, siltstone low strength</td>
</tr>
<tr>
<td>84m</td>
<td>Trace mudstone, low strength, black</td>
</tr>
<tr>
<td>90</td>
<td>Siltstone low to medium strength, dark grey to black, trace quartz</td>
</tr>
<tr>
<td>93m</td>
<td>Sand very fine to fine grained</td>
</tr>
<tr>
<td>96m</td>
<td>Siltstone very low strength, chips <1mm</td>
</tr>
<tr>
<td>99m</td>
<td>Sandstone medium strength, grey to white</td>
</tr>
<tr>
<td>105m</td>
<td>Siltstone medium strength, pale grey to dark grey, massive</td>
</tr>
<tr>
<td>108m</td>
<td>Siltstone low to very low strength, light brown</td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

- Surface casing (OZCON; BTC; J55, 7” OD; 23.0lb/ft)
- Class A cement; 20.5 bbls, density 13.5 ppg
DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>INTERBEDDED SILTSTONE AND MUDSTONE: Siltstone is low strength, pale grey to brown, massive, mudstone is medium to high strength, dark brown, massive, chips (~35mm)</td>
</tr>
<tr>
<td>120</td>
<td>Mudstone high strength, trace very thin laminations, poorly developed</td>
</tr>
<tr>
<td>123</td>
<td>Siltstone medium strength</td>
</tr>
<tr>
<td>132</td>
<td>Siltstone trace thin laminations, poorly to well developed</td>
</tr>
<tr>
<td>141</td>
<td>Siltstone massive, with coal, black, vitreous, small chips (<1mm)</td>
</tr>
<tr>
<td>150</td>
<td>SANDSTONE: Medium strength, grey, very fine grained, subangular, quartzose</td>
</tr>
<tr>
<td>155</td>
<td>INTERBEDDED SILTSTONE AND MUDSTONE: Siltstone is medium to high strength, pale grey, very thinly laminated, well developed, mudstone is high strength, dark brown, thinly laminated, poorly to well developed</td>
</tr>
<tr>
<td>159</td>
<td>MODGA SANDSTONE - 155 mBGL</td>
</tr>
<tr>
<td>160</td>
<td>INTERBEDDED SILTSTONE AND SANDSTONE: Siltstone medium strength, pale to dark grey, massive, sandstone low to medium strength, grey, very fine to fine grained</td>
</tr>
<tr>
<td></td>
<td>Trace coal, black, vitreous</td>
</tr>
<tr>
<td></td>
<td>No coal</td>
</tr>
<tr>
<td></td>
<td>SILTSTONE: Medium to high strength, grey, thinly laminated, poorly to well developed, with sand, fine grained, subangular, coarse quartz, clean</td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

- **Surface casing (OZCON, BTC, J55, 7" OD; 23.0 lb/ft)**
- **Class A cement; 20.5 bbls, density 13.5 ppg**
174m: Medium strength, no coarse quartz

180m: Trace fine grained sand, subrounded

186m: Thinly laminated, well developed

191m: Very high strength, red to brown, massive, with iron

LITHIC SANDSTONE: Very high strength, pale grey to yellow, matrix based, few grains

198m: Trace lithic sandstone (<10%)

SILTY SANDSTONE: Medium to high strength, pale grey to grey, fine grained, subrounded, trace lithic sandstone (~15%), chips (~1mm)

204m: Trace coal (~5%), black, vitreous

208m: With coal (~20%)

213m: No coal

216m: Lignified matter (~30%)

219m: Lignified matter (~30%)

220m: Lignified matter, brown to black, thinly laminated, poorly developed

ORALLO FORMATION - 220 mBGL SILTSTONE: Medium strength, pale grey, trace thin laminations, poorly developed, trace lignified matter (~15%), trace sand (~10%)

High strength, trace mudstone, brown to black, thinly laminated, poorly developed

228m: Trace sand (~5%)
DESCRIPTION OF STRATA

231m: Medium strength

234m: Trace sand (~10%)

SILTY SANDSTONE: Medium strength, grey to dark grey, massive, fine-grained, subangular, siltstone low strength, grey, trace coal (~10%)

246m: Low strength, pale grey, fine to medium grained

SILTSTONE: Low strength, dark brown, massive

252m: Medium to high strength, grey to brown

255m: Low to medium strength, trace mudstone, dark grey

INTERBEDDED SANDSTONE AND SILTSTONE: Sandstone low strength, pale grey to white, fine to medium grained, subangular, quartzose, siltstone high strength, dark grey, large chips (<40mm)

264m: Trace coal

270m: Siltstone high strength

279m: Sandstone fine grained, with quartz

282m: Siltstone low strength, dark brown, trace mudstone

SILTSTONE: Low to medium strength, dark brown, massive, with sand, pale grey, fine to medium grained
DESCRIPTION OF STRATA

SANDSTONE: Low strength, grey, fine to medium grained, with coal, chips (<2mm)

INTERBEDDED SANDSTONE AND SILTSTONE: Sandstone is low strength, grey, fine to medium grained, with coal, low strength chips (<2mm). Siltstone is medium strength, dark grey, massive, trace mudstone, black.

306m: Siltstone low to medium strength, with sand, very fine grained

SANDY SILTSTONE: Low strength, dark grey, fine grained, massive

SILTY SANDSTONE: Low strength, dark grey, fine grained, massive

321m: Medium strength, dark grey, fine to medium grained

SANDY SILTSTONE: Very low strength, light to medium grey, sand (~30%), light to dark grey, fine grained, subrounded

SILTY SANDSTONE: Low strength, light grey, fine grained, massive

340m: Medium strength, light grey to black, fine to medium grained, subrounded to subangular, silt (~40%), medium to dark grey, trace mudstone (<5%), dark grey

SANDY SILTSTONE: Low to medium strength, light to medium grey, sand (~30%), light to dark grey, fine grained, subrounded

CONSTRUCTION DETAILS

- **Surface casing (OZCON; BTC; J55, 7'' OD; 23.0lb/ft)**
 - Surface shoe @ 322.93 m BGL
 - Class A cement; 20.5 bbls, density 13.5 ppg

- **Completion casing (OZCON; HWT; 5L; 4 1/2''; 10.8lb/ft)**
 - Surface casing (OZCON; BTC; J55, 7'' OD; 23.0lb/ft)
 - Completion casing (OZCON; HWT; 5L; 4 1/2''; 10.8lb/ft)
 - Class A cement; 48.9 bbls, density 13.5 ppg
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Description of Strata</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>Silty Sandstone: Medium strength, light to medium grey, fine to medium grained, subangular, siltstone (~35%), light grey with dark brown to grey chips. Decrease in siltstone (~30%), no chips.</td>
</tr>
<tr>
<td>360</td>
<td>Sandstone: Low to medium strength, medium brown to grey, thinly laminated, with sandstone (~20%), low strength, light grey to black, fine grained, subangular.</td>
</tr>
<tr>
<td>369</td>
<td>Gubberamunda Sandstone - 363 mBGL Sandstone: Low to medium strength, light grey, fine to medium grained, subrounded, trace silt (~10%), medium grey.</td>
</tr>
<tr>
<td>370</td>
<td>Silty Sandstone: Very low strength, light grey, fine grained, subrounded, with quartz, silt (~40%), light grey, trace coal (<1%).</td>
</tr>
<tr>
<td>379</td>
<td>Sandstone: Medium to high strength, light grey, line to medium grained, subangular to angular, quartzose, with silt (~10%), light grey.</td>
</tr>
<tr>
<td>380</td>
<td>Gubberamunda Sandstone - 363 mBGL Sandstone: Low to medium strength, light grey, fine to medium grained, subrounded, trace silt (~10%), medium grey.</td>
</tr>
<tr>
<td>390</td>
<td>Silty Sandstone: Very low strength, light grey, fine grained, subrounded, with quartz, silt (~40%), light grey, trace coal (<1%).</td>
</tr>
<tr>
<td>400</td>
<td>Gubberamunda Sandstone - 363 mBGL Sandstone: Low to medium strength, light grey, fine to medium grained, subrounded, trace silt (~10%), medium grey.</td>
</tr>
<tr>
<td>410</td>
<td>Silty Sandstone: Very low strength, light grey, fine grained, subrounded, with quartz, silt (~40%), light grey, trace coal (<1%).</td>
</tr>
<tr>
<td>420</td>
<td>Sandstone: Medium to high strength, light grey, line to medium grained, subangular to angular, quartzose, with silt (~10%), light grey.</td>
</tr>
<tr>
<td>430</td>
<td>Gubberamunda Sandstone - 363 mBGL Sandstone: Low to medium strength, light grey, fine to medium grained, subrounded, trace silt (~10%), medium grey.</td>
</tr>
<tr>
<td>440</td>
<td>Sandstone: Medium to high strength, light grey, line to medium grained, subangular to angular, quartzose, with silt (~10%), light grey.</td>
</tr>
<tr>
<td>450</td>
<td>Gubberamunda Sandstone - 363 mBGL Sandstone: Low to medium strength, light grey, fine to medium grained, subrounded, trace silt (~10%), medium grey.</td>
</tr>
<tr>
<td>460</td>
<td>Silty Sandstone: Very low strength, light grey, fine grained, subrounded, with quartz, silt (~40%), light grey, trace coal (<1%).</td>
</tr>
</tbody>
</table>

Westbourne Formation - 407 mBGL Silty Mudstone: Medium grey mottled dark grey, silt (~30%) light to medium grey.
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>DESCRIPTION OF STRATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>410</td>
<td>MUDDY SILTSTONE: Low strength, medium grey, trace sand (~10%), white to grey, medium grained, subangular</td>
</tr>
<tr>
<td>417</td>
<td>Siltstone chips (~5%), medium strength, brown, sand medium to coarse grained</td>
</tr>
<tr>
<td>420</td>
<td>Decrease in sand (<1%), siltstone chips dark brown to grey, thinly laminated</td>
</tr>
<tr>
<td>430</td>
<td>SILTSTONE: Low to medium strength, medium brown to grey, chips (~2mm), trace mudstone (~10%), white</td>
</tr>
<tr>
<td>438</td>
<td>Highly weathered, light grey to grey, massive, with siltstone (~20%),</td>
</tr>
<tr>
<td>441</td>
<td>Trace siltstone (~15%)</td>
</tr>
<tr>
<td>445</td>
<td>MUDSTONE: Very low strength, moderately weathered, light grey, thinly laminated, poorly developed</td>
</tr>
<tr>
<td>450</td>
<td>SILTY MUDSTONE: Very low strength, highly weathered, light grey to grey, massive</td>
</tr>
<tr>
<td>460</td>
<td>SANDY SILTSTONE: Low strength, slightly weathered, dark grey to light grey, thinly laminated, minor sand, very fine grained</td>
</tr>
<tr>
<td>465</td>
<td>SILTY MUDSTONE: Very low strength, highly weathered, dark grey, massive</td>
</tr>
<tr>
<td>470</td>
<td>SANDY SILTSTONE: Very low strength, highly weathered, light grey, massive, very fine grained</td>
</tr>
<tr>
<td>475</td>
<td>SILTY SANDSTONE: Very low strength, highly weathered, light grey, massive, very fine grained, with silt (~30%)</td>
</tr>
<tr>
<td>Depth (m)</td>
<td>DESCRIPTION OF STRATA</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>471m</td>
<td>With silt (~20%)</td>
</tr>
<tr>
<td>474m</td>
<td>Trace coal (~5%)</td>
</tr>
<tr>
<td>475m</td>
<td>SANDY SILTSTONE: Very low strength, highly weathered, dark grey, massive, trace sand, very fine grained</td>
</tr>
<tr>
<td>482m</td>
<td>WEALD SANDSTONE: 482 mBGL</td>
</tr>
<tr>
<td>486 m</td>
<td>SANDSTONE: Very low strength, highly weathered, grey, massive, very fine grained</td>
</tr>
<tr>
<td>490m</td>
<td>SPRINGBOK SANDSTONE: 486 mBGL</td>
</tr>
<tr>
<td></td>
<td>SILTSTONE: Very low strength, highly weathered, dark grey to grey, very fine grained</td>
</tr>
<tr>
<td>495m</td>
<td>INTERBEDDED SILTSTONE AND SANDSTONE: Siltsone-low strength, highly weathered, black, sandstone very low strength, highly weathered, grey, very fine grained</td>
</tr>
<tr>
<td>500m</td>
<td>SILTY SANDSTONE: Low strength, moderately weathered, massive, grey, very fine grained, with silt (~20%)</td>
</tr>
<tr>
<td>510m</td>
<td>SANDSTONE: Low strength, highly weathered, grey, massive, very fine grained, trace coal (~5%)</td>
</tr>
<tr>
<td>516m</td>
<td>With coal (~15%)</td>
</tr>
<tr>
<td>520m</td>
<td>Very low strength, brown, massive</td>
</tr>
<tr>
<td>525m</td>
<td>Grey, well sorted</td>
</tr>
<tr>
<td>528m</td>
<td>Trace coal (~5%)</td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

Completion casing (OZCON; HWT; SL: 4 1/2'; 10.8lb/ft)

Class A cement; 48.5bbls, density 13.5ppg
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>DESCRIPTION OF STRATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>530-537m</td>
<td>Fine grained, larger sandstone fragments (>1mm)</td>
</tr>
<tr>
<td>540-543m</td>
<td>Silty Sandstone: Very low to low strength, medium grey, fine grained, subangular, silt (~40%) light to dark grey, chips <3mm</td>
</tr>
<tr>
<td>546-549m</td>
<td>Sandstone: Low strength, light grey, fine to medium grained, subrounded, with silt (~30%), light grey</td>
</tr>
<tr>
<td>550-553m</td>
<td>Sandy Siltstone: Low to medium strength, dark grey, thinly laminated, sand (~30%) light to dark grey, medium grained, subrounded to subangular, trace mudstone (~5%), white, soft</td>
</tr>
<tr>
<td>560-563m</td>
<td>Silty Sandstone: Low strength, light grey, fine grained, subrounded to angular, silt (~40%), light grey</td>
</tr>
<tr>
<td>563-565.72m</td>
<td>Trace coal (<5%), trace siltstone (<5%), medium strength, dark brown to grey, thinly laminated</td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

- Completion casing (OZCON; HWT; SL: 4 1/2"; 10.8lb/ft)
- Float Collar @ 550.57 mBGL
- Class A cement: 48.9 bbls, density 13.5 ppg
- Rat Hole from 563.72 mBGL to 565.72 mBGL

END OF HOLE @ 565.72m BGL
DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>Graphic Log</th>
<th>DESCRIPTION OF STRATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12 1/4" PDC Drill</td>
<td></td>
<td>Ceiling</td>
</tr>
<tr>
<td>0</td>
<td>8 1/2" PDC Drill</td>
<td></td>
<td>No Sample</td>
</tr>
<tr>
<td>20</td>
<td>8 1/2" PDC Drill</td>
<td></td>
<td>- Wallcoon Coal Measures (0.0 - 96.0 mBGL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sandstone: Very low strength, some oxidation weathering, yellow-brown to grey, fine grained, some siltstone, grey</td>
</tr>
<tr>
<td>20</td>
<td>8 1/2" PDC Drill</td>
<td></td>
<td>- Silty Sandstone: Low to medium strength, grey to brown, with white quartz inclusions, fine to medium grained, few clay</td>
</tr>
<tr>
<td>30</td>
<td>8 1/2" PDC Drill</td>
<td></td>
<td>- Siltstone: Low strength, dark grey, few sand, fine grained, trace coal flecks</td>
</tr>
<tr>
<td>30</td>
<td>8 1/2" PDC Drill</td>
<td></td>
<td>Low to medium strength, few coal flecks, few clay</td>
</tr>
<tr>
<td>40</td>
<td>8 1/2" PDC Drill</td>
<td></td>
<td>- Silty Sandstone: Low to medium strength, grey to white, fine to medium grained, ~20% quartz, some feldspar, subangular</td>
</tr>
<tr>
<td>40</td>
<td>8 1/2" PDC Drill</td>
<td></td>
<td>- Interbedded Silty Sandstone - Silty Siltstone: Silty sandstone is low to medium strength, grey to white, fine to medium grained, ~20% quartz, some feldspar, subangular, siltstone is low strength, brown to black, laminated</td>
</tr>
<tr>
<td>40</td>
<td>8 1/2" PDC Drill</td>
<td></td>
<td>Siltstone is medium strength, grey to black</td>
</tr>
<tr>
<td>50</td>
<td>8 1/2" PDC Drill</td>
<td></td>
<td>- Sandstone: Low to medium strength, white to grey, fine to medium grained, ~50% quartz, medium grained, some siltstone flecks</td>
</tr>
<tr>
<td>50</td>
<td>8 1/2" PDC Drill</td>
<td></td>
<td>Fine grained</td>
</tr>
<tr>
<td>60</td>
<td>8 1/2" PDC Drill</td>
<td></td>
<td>- Interbedded Sandstone - Sandy Siltstone: Sandstone is low to medium strength, white to grey, fine to medium grained, ~50% quartz, medium grained, sandy siltstone is, low strength, dark grey, fine grained, trace coal, black, non-vitreous</td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

- **Drill Model:** Mud Rotary
- **Drill Type:** Foremost 24 HD
- **Drill Fluid:** K2SO4 (refer to mud program)
- **Contractor:** Spaulding Drillers
- **Location:** Fairview
- **Permit No.:** GDFVN13-010
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>DESCRIPTION OF STRATA</th>
<th>CONSTRUCTION DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Low strength, medium grained</td>
<td>Completion casing (OZCON; HWT; 8 1/2"; 10.8lb/ft)</td>
</tr>
<tr>
<td></td>
<td>INTERBEDDED SANDSTONE - SILTSTONE: Sandstone is low to medium strength, white to grey, fine to medium grained, ~50% quartz, medium grained, siltstone is low to medium strength, black and grey laminae, trace sand, fine grained</td>
<td>Class A cement; 18.2bbls, 14.2ppg, yield of 2.28ft/sk</td>
</tr>
<tr>
<td></td>
<td>SILTY SANDSTONE: Low to medium strength, grey-green, fine grained, ~35% quartz, poorly sorted</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>INTERBEDDED SILTY SANDSTONE - SILTSTONE: Silty sandstone is low to medium strength, grey-green, fine grained, ~35% quartz, poorly sorted, siltstone is low to medium strength, alternating grey and black laminae, few sand, fine grained</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTERBEDDED SANDSTONE AND SANDY SILTSTONE: Sandstone is low strength, grey, fine to medium grained, sandy siltstone is medium strength, grey to black, fine grained</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SANDY SILTSTONE: Low to medium strength, grey to black, fine grained, ~20% quartz, few coal flecks, black, non-vitreous</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILTSTONE: Low to medium strength, dark grey to black, laminated, few sand, fine grained, ~30% quartz</td>
<td>Fine to medium grained</td>
</tr>
<tr>
<td></td>
<td>SILTY SANDSTONE: Low strength, pale grey, fine to medium grained, subangular to subrounded, ~30% quartz, trace mudstone, medium strength, dark brown, trace fine laminations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MUDSTONE: Medium strength, dark brown, fine laminations, trace sand, fine grained, subrounded</td>
<td>Trace sand (~10-15%)</td>
</tr>
<tr>
<td></td>
<td>Dark brown to black, no sand</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILTY MUDSTONE: Low to medium strength, dark brown, trace fine laminations, pale grey</td>
<td>Increased siltstone content ~40%</td>
</tr>
<tr>
<td></td>
<td>MUDSTONE: Medium strength, dark brown, fine laminations, trace sand, very fine to fine grained, subangular to subrounded, 25% quartz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILTY SANDSTONE: Very low to low strength, pale grey, fine grained, subrounded, 20% quartz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HUTTON SANDSTONE (96.0 to 210.0 mBGL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILTY SANDSTONE: Low to medium strength, ~25% quartz, trace mudstone (5-10%), medium strength, brown, massive</td>
<td>No mudstone</td>
</tr>
<tr>
<td></td>
<td>SANDY SILTSTONE: Low strength, pale grey, massive, fine grained</td>
<td>Increased silt content (~40%)</td>
</tr>
<tr>
<td>Depth (m)</td>
<td>DESCRIPTION OF STRATA</td>
<td>CONSTRUCTION DETAILS</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>110</td>
<td>subrounded, 10% quartz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pale to dark grey</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trace lignified matter (10%), low strength, brown</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>SILTY SANDSTONE: Low strength, pale grey, fine grained, subangular to subrounded</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>SANDSTONE: High strength, pale grey to pale yellow, medium grained, subangular to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>subrounded, lithic, trace siltstone, low strength, grey</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trace mudstone (5%), medium strength, dark brown, finely laminated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medium to coarse grained, 30% quartz, 10 -15% mudstone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No mudstone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fine to medium grained</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pale grey to grey</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>Medium strength, grey to dark grey, 15% quartz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High strength</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dark grey</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coarse grained, 25% quartz, trace coal (10%), black, non-vitreous</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No coal, pale grey</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dark grey, siltstone is medium strength</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pale grey, 15% quartz, coarse grained</td>
<td></td>
</tr>
<tr>
<td>8 1/2'' PDC Bit</td>
<td></td>
<td>Completion casing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(OZCON; HWG;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SLB, 4 1/2'';</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.8lb/ft)</td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

- Completion casing: OZCON; HWG; SLB, 4 1/2''; 10.8lb/ft
- Class A cement; 18.2bbls, 14.2ppg, yield of 2.26ft/sk
DESCRIPTION OF STRATA

20% quartz, coarse grained, subrounded, clean

Increased silt content (35-40%)

Trace coal flecks (5%)

SILTSTONE: Low strength, black to dark grey, trace sand, very fine grained

Fine grained, 30% quartz, some coal, black, vitreous to subvitreous

Dark grey, fine to medium grained, few coal

Few sand, fine grained, trace coal

INTERBEDDED SILTY SANDSTONE - SILTSTONE: Silty sandstone is low strength, grey, fine grained, subangular to subrounded, ~40% quartz, siltstone is low strength, dark grey

SANDSTONE: Low strength, grey, fine to coarse grained, some silt, quartzose, subangular to subrounded, trace coal

Few quartz, coarse grained, subrounded

SILTSTONE: Low to medium strength, dark grey, few sand, fine grained, ~10% quartz, trace coal, black, subvitreous

EVERGREEN FORMATION (210.0 - 345.0 mBGL)

SILTSTONE: Medium strength, dark grey to black, some sand, fine grained, few coal

Dark grey, few sand, fine grained

INTERBEDDED SILTY SANDSTONE - SILTSTONE: Silty sandstone is low strength, dark grey to black, fine grained, siltstone is low strength, grey to green

Increased siltstone content, black, few coal, subvitreous

SILTSTONE: Low to medium strength, dark grey, trace sand, fine grained, few coal, black, vitreous to subvitreous

Medium to high strength, dark grey to black, no sand, trace coal

Low strength, thinly laminated

CONSTRUCTION DETAILS

Completion casing (OZCON; HWIT; SLB: 4 1/2"; 10.8lb/ft)

Class A cement; 18.2bbls, 14.2ppg, yield of 2.26ft/sk
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>Graphic Log</th>
<th>DESCRIPTION OF STRATA</th>
<th>CONSTRUCTION DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>230</td>
<td></td>
<td></td>
<td>Few coal, black, subvitreous, trace oxidation weathering</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low to medium strength</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td></td>
<td></td>
<td>Medium to high strength, grey, trace sand, fine grained, trace mudstone, low to medium strength, black</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High strength, moderately hard, dark grey, some sand, very fine grained</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTERBEDDED SILTSTONE - SANDY SILTSTONE: Silstone is high strength, dark grey, sandy silstone is low strength, pale grey, fine grained, few coal flecks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
<td></td>
<td>SILTSTONE: Medium strength, brown to black, trace coal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Very high strength, dark grey to black, no sand, few mudstone</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Medium to high strength, black, some mudstone, some coal, black-brown, vitreous</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SANDSTONE: Very low strength, grey to white, translucent, medium to coarse grained, quartzose, some silstone, black</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>~80% quartz, very coarse grained, subrounded to subangular, few coal flecks, black, subvitreous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>INTERBEDDED SANDSTONE - SANDY SILTSTONE: Sandstone is very low strength, grey to white, very coarse grained, sandy silstone is low strength, moderately hard, dark grey to black</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILTSTONE: Medium strength, dark grey black, some mudstone, some coal, black, subvitreous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILTY SANDSTONE: Low strength, pale grey to black, medium to fine grained, quartzose, trace coal, trace silstone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>SANDY SILTSTONE: Low to medium strength, pale grey to dark grey, fine grained, trace coal, trace quartz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fine to medium grained, some quartz, subangular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low strength, dark grey, few sand, fine grained</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>INTERBEDDED SILTSTONE - SILTY SANDSTONE: Silstone is low to medium strength, grey, finely laminated, and silty sandstone is low strength, pale grey to black, medium to fine grained, quartzose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trace coal, black, subvitreous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILTSTONE: Medium strength, dark grey to black, trace sand, fine grained, trace coal, black, subvitreous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dark grey</td>
<td></td>
<td></td>
<td>Completion casing (OZCON: HW1; 5LB; 4 1/2''; 10.8lb/ft; 18.2bbls, 14.2ppg, yield of 2.26ft/sk)</td>
</tr>
<tr>
<td>Depth (m)</td>
<td>DESCRIPTION OF STRATA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>MUDSTONE: Medium strength, dark brown, massive, trace sand, very fine grained, trace coal, black</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILTSTONE: Low to medium strength, pale grey, trace quartz (~10-15%), fine to medium grained, trace coal, black, dull lustre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pale grey, coal is subvitreous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increased sand content (~25%), fine grained, subrounded, clean quartz, no coal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>SILTSTONE: Medium strength, grey to brown, trace sand, fine grained, trace coal, black, dull lustre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sand (>30%), fine to medium grained</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILTY SANDSTONE: Medium strength, grey, fine to medium grained, subrounded, 30% quartz, trace coal, black, vitreous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>SANDY SILTSTONE: Low to medium strength, pale grey to grey, fine grained, subrounded, ~20% quartz, rounded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decrease in quartz (~5%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MUDSTONE: Low to medium strength, dark brown, medium grained, trace fine laminations, few quartz, medium grained</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILTSTONE: Medium to high strength, dark grey, massive, trace fine laminations, ~10% quartz, coarse grained</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>INTERBEDDED SILTSTONE - SANDSTONE: Silstone is medium to high strength, dark grey, massive, trace fine laminations, sandstone is medium to high strength, pale grey, fine grained, subangular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increased sand content</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILTY SANDSTONE: Medium strength, pale grey, medium grained, subangular to subrounded, ~15% quartz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>INTERBEDDED SILTY SANDSTONE - SILTSTONE: Silty sandstone is medium strength, pale grey, medium grained, subangular to subrounded, ~15% quartz, siltstone is medium strength, black, few coal, black, vitreous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILTY SANDSTONE: Medium strength, pale grey, medium grained, subangular to subrounded, ~15% quartz, few siltstone, low to medium strength, dark grey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SANDSTONE: Low strength, grey-white, coarse grained, few siltstone, as</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

- Completion casing (OZCON; HW1; S1B; 4 1/2"; 10.8lb/ft)
- Class A cement; 18.2bbls, 14.2ppg, yield of 2.26ft/sk
- 8 1/2" PDC Bit
- Completion casing (OZCON; HWT; 5LB; 4 1/2''; 10.8lb/ft)

DESCRIPTION OF STRATA

CONSTRUCTION DETAILS

- Completion casing (OZCON; HW1; S1B; 4 1/2"; 10.8lb/ft)
- Class A cement; 18.2bbls, 14.2ppg, yield of 2.26ft/sk
- 8 1/2" PDC Bit
- Completion casing (OZCON; HWT; 5LB; 4 1/2''; 10.8lb/ft)
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>DESCRIPTION OF STRATA</th>
<th>CONSTRUCTION DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>above Medium grained, few coal, low strength, black, subvitreous</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>SILTSTONE: Low strength, grey to dark grey, few sand, fine grained, trace coal</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>SANDY SILTSTONE: Low strength, pale grey to dark grey, fine to medium grained, ~30% quartz, no coal</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>Medium grained, some coal</td>
<td></td>
</tr>
<tr>
<td>370</td>
<td>SILTSTONE: Low strength, pale grey to dark grey, few sand, fine grained, trace coal</td>
<td></td>
</tr>
<tr>
<td>370</td>
<td>INTERBEDDED SANDSTONE - SILTSTONE: Sandstone is low strength, grey-white, translucent, medium to coarse grained, subrounded, siltstone is low strength, pale grey to dark grey, few sand, fine grained, trace coal</td>
<td></td>
</tr>
<tr>
<td>370</td>
<td>Siltstone is medium to coarse grained, subrounded, siltstone is low strength, black</td>
<td></td>
</tr>
<tr>
<td>370</td>
<td>Siltstone has few sand, medium grained</td>
<td></td>
</tr>
<tr>
<td>370</td>
<td>Fine to medium grained</td>
<td></td>
</tr>
<tr>
<td>380</td>
<td>INTERBEDDED SANDSTONE - SANDY SILTSTONE: Sandstone is low strength, grey-white, translucent, medium to coarse grained, subrounded, sandy siltstone is low strength, grey, fine grained, ~80% quartz, trace coal</td>
<td></td>
</tr>
<tr>
<td>380</td>
<td>Few siltstone</td>
<td></td>
</tr>
<tr>
<td>380</td>
<td>Coarse grained, subrounded, trace silt</td>
<td></td>
</tr>
<tr>
<td>390</td>
<td>Medium to coarse grained, subangular to subrounded, few feldspar</td>
<td></td>
</tr>
<tr>
<td>390</td>
<td>INTERBEDDED SANDSTONE - SILTSTONE: Sandstone is medium to coarse grained, subangular to subrounded, few feldspar, siltstone is low to medium strength, dark grey</td>
<td></td>
</tr>
<tr>
<td>390</td>
<td>Fewer sand, subrounded</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>Medium to coarse grained, white to grey, translucent, quartzose, subrounded to subangular, few siltstone, low strength, black</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>Siltstone is medium strength, dark grey, poorly sorted, quartz is angular to subrounded</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>Fine to medium grained, 80% quartz, subangular to subrounded, increased siltstone</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>Siltstone is pale to dark grey, clean quartz</td>
<td></td>
</tr>
</tbody>
</table>

Completion casing:
- OZCON; HWT; 5LB; 4 1/2''; 10.8lb/ft
- Class A cement; 18.2bbls, 14.2ppg, yield of 2.26ft/sk

Drilling Method Graphic Log
- 8 1/2" PDC Bit
- 393.0 mBGL - Top of perforation interval
- 399.0 mBGL - Bottom of perforation interval
- 393.0 mBGL - Top of perforation interval
- Rat hole; 7.79m (390.14-397.93mBGL)
- 399.0 mBGL - Bottom of perforation interval
Siltstone is dark grey

SILTSTONE: Low to medium strength, dark grey, trace fine laminations, ~5% quartz, trace sandstone, pale grey.

>85% quartz, translucent, medium to coarse grained, angular to subrounded, clean, trace siltstone, as above.

SILTSTONE: Medium strength, dark grey, trace very fine laminations, ~60% quartz, translucent, fine to coarse grained, poorly sorted, trace sandstone, as above.

Medium to coarse grained, ~80% quartz, translucent to white.

~50% quartz, angular to subrounded.

~85% quartz, medium to very coarse grained, trace coal, low strength, black, dull lustre.

MOOLAYEMBER FORMATION (ETHEM)

SILTSTONE: Medium strength, dark grey, trace thin laminations, trace quartz, fine to medium grained, subrounded. Low to medium strength, dark grey to black, no quartz.

END OF HOLE: 443.0 m BGL

CONSTRUCTION DETAILS

Completion casing (OZCON; HWT; 5LB; 4 1/2''; 10.8lb/ft)

Bentonite Seal (2m)

Filter sand; 1m

Class A cement; 18.2bbls, 14.2ppg, yield of 2.26ft/sk

Gravel Pack; 2-4mm gravel (421.2 - 441.3 m BGL)

Johnson Stainless Steel 1mm Aperture Screen (426.2 - 438.2 m BGL)
DESCRIPTION OF STRATA

EVERGREEN FORMATION (0 - 52 mBGL) SANDSTONE: Low to medium strength, ~50% highly weathered, ~50% fresh, pale brown-red to pale grey, fine grained, massive, quartzose

12m: Medium strength, fresh, pale grey to grey

INTERBEDDED SANDSTONE AND SILTSTONE: Sandstone is medium strength, fresh, grey, fine grained, massive, siltstone is medium strength, black, thinly laminated, poorly developed

SILTSTONE: Very low strength, highly weathered, dark grey, massive, some sand, fine grained

INTERBEDDED SANDSTONE AND SILTSTONE: Sandstone is medium strength, grey, fine grained, massive, siltstone is medium strength, black, massive

SANDSTONE: Medium strength, moderately weathered, grey to red-brown, fine grained, massive, subrounded, poorly sorted

27m: Low to medium strength, extensive oxidation weathering, fine to very fine grained

INTERBEDDED SANDSTONE AND SILTSTONE: Siltstone is medium strength, black, massive

SANDSTONE: Medium strength, moderately weathered, red-brown to grey, fine grained, massive

36m: Medium grained, some orange mottling

39m: Becoming dark brown

42m: Low strength, dark red, fine to medium grained, massive, well sorted

45m: Becoming pale red

INTERBEDDED SANDSTONE AND SILTSTONE: Sandstone is low strength, slightly weathered, grey, fine grained, massive, siltstone is low strength, fresh, black, massive

CONSTRUCTION DETAILS

Conductor casing (BTC; K55 5CT; 9 5/8"; 36 lb/ft)

Completion casing (OZCON; HWT; 5LB; 4 1/2''; 10.8lb/ft)

Class A Cement: 9.1 bbls, 13.5 ppg, 3 % bentonite slurry

Bentonite Seal (48.2-51.8 mBGL)
DESCRIPTION OF STRATA

PRECIPICE SANDSTONE (52 - 90 mBGL) SANDSTONE: Low to medium strength, fresh, grey to pale grey, fine to medium grained, massive, well sorted. 54m: High strength, fresh, grey-white, medium to coarse grained, subrounded, quartzose.

63m: Trace siltstone, very low strength, grey, poorly sorted.

66m: Trace fine laminations, red, poorly developed.

69m: Medium to high strength, fine to medium grained.

INTERBEDDED SANDSTONE AND SILTSTONE: Sandstone is medium to high strength, fresh, pale grey to white, fine to medium grained, massive; siltstone is low strength, black to dark grey, massive.

84m: Medium to coarse grained, rounded to subrounded.

89m: Coarse grained, trace feldspar.

REWAN FORMATION (90 mBGL - EOH)

END OF HOLE: 93.70 mBGL

CONSTRUCTION DETAILS

Filter Sand: 1-3 mm sand (51.8-54.5 mBGL)

Gravel Pack: 2-4 mm gravel (54.5-90.7 mBGL)

Johnson Stainless Steel 1mm Apperture Screen (77.5-89.7 mBGL)

Rat hole: 3m (90.7-93.7 mBGL)
WELL ABANDONED

DESCRIPTION OF STRATA

CELLAR
- Sample: NO SAMPLE

WALLUMBILLA FORMATION (0-184mBGL)
- **CLAY:** Medium to high plasticity, uniform, yellow orange, trace grey silt, tightly packed, stiff
- **SILT:** Medium plasticity, dark grey, trace yellow orange uniform clay, tightly packed, stiff
- 27m: Decrease in clay (<5%)

SILSTONE: Medium strength, fresh, grey, massive, trace subrounded quartz
- 34m: Becoming low to medium strength
- 37m: Medium strength, grey to dark grey
- 43m: Trace thin lamination, well developed, no quartz
- 49m: Becoming low to medium strength

CONSTRUCTION DETAILS

Drill Fluid: K2SO4 (refer to mud program)

Class A cement: 3% bentonite slurry, 410L of water, and 13sk's cement, 14.1ppg

Class A cement; Pumped 64.6bbl @ 6bpm, 260psi, density of 13.5ppg

Conductor casing (BTC; K55 5CT; 9 5/8", 36 lb/ft)

Surface casing (5CT; J55, 7", 23.0lb/ft)
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>DESCRIPTION OF STRATA</th>
<th>CONSTRUCTION DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>Medium to high strength, trace very fine quartz, subangular</td>
<td>well construction record</td>
</tr>
<tr>
<td>70</td>
<td>Grey to dark brown, trace mudstone</td>
<td>Bridge Plug @ 56mBGL</td>
</tr>
<tr>
<td>73</td>
<td>Very fine to fine grained quartz</td>
<td>Class A cement: Pumped 64.6bbl @ 6bpm, 260psi, density of 13.5ppg</td>
</tr>
<tr>
<td>82</td>
<td>Grey, no mudstone, very fine grained quartz</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>No quartz</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>Becoming high strength</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>Medium strength</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Light grey, trace fine grained sand, subangular</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Dark grey, massive</td>
<td></td>
</tr>
</tbody>
</table>
DESCRIPTION OF STRATA

133m: Increased sand content (~15%)

INTERBEDDED SILTSTONE - SANDSTONE: Siltstone is medium strength, grey, massive, sandstone is medium strength, light grey, fine grained, subrounded

145m: Grey to brown, sandstone is fine to medium grained

151m: Fine grained

154m: Fine to medium grained

157m: Increase in sandstone (~40%)

SANDSTONE: Medium strength, light grey, fine grained, subangular, clean quartz (~5-10%), trace siltstone, medium strength, light grey

163m: Trace fine black minerals

CONSTRUCTION DETAILS

- **Perforation Zone 3**: 129.6mBGL - 131.8mBGL. For full details refer to well construction record
- **Surface casing** (5CT; J55, 7", 23.0lb/ft)
- **Class A cement**: Pumped 64.6bbl @ 6bpm, 260psi, density of 13.5ppg
DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>Graphic Log</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175m</td>
<td></td>
<td></td>
<td>175m: Becoming dark grey</td>
</tr>
<tr>
<td>180</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>187m</td>
<td></td>
<td></td>
<td>187m: Trace very fine siltstone</td>
</tr>
<tr>
<td>193m</td>
<td></td>
<td></td>
<td>193m: Sandstone, very fine</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>202m</td>
<td></td>
<td></td>
<td>202m: Increasing sandstone</td>
</tr>
<tr>
<td>210</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220m</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BUNGIL FORMATION (184-271mBGL)

INTERBEDDED SANDSTONE - MUDSTONE: Sandstone is medium strength, grey, fine grained, subrounded, mudstone is low strength, carbonaceous sand

187m: Trace very fine siltstone

SANDSTONE: Medium strength, grey, fine to medium grained, clean, subrounded, sorted quartz grains

MUDSTONE: Medium strength, grey to dark grey, trace siltstone

INTERBEDDED MUDSTONE - SILTSTONE: Mudstone is medium strength, grey to dark grey, siltstone is medium strength, dark grey, fine to very fine quartz grains

CONSTRUCTION DETAILS

- **Perforation Zone 2:** 171mBGL - 173mBGL For full details refer to well construction record
- **Surface casing:** SCT; J55, 7", 23.0lb/ft
- **Class A cement:** Pumped 64.6bbl @ 6bpm, 260psi, density of 13.5ppg
247m: Siltstone, light to dark grey

SANDSTONE: Medium strength, light to dark grey, medium to coarse-grained, subangular quartz, trace siltstone, grey

262m: Trace brown mudstone

SANDY SILTSTONE: Medium strength, grey, massive, trace fine-grained sand

268m: Trace lignified matter, low strength, dark brown

MOOGA SANDSTONE (271-403m)

SANDY SILTSTONE: Low strength, grey, massive, trace fine-grained sand and trace brown mudstone

274m: Decreasing sand (<10%)

277m: Increasing sand (~15-20%)

280m: Sand fine to medium grained

283m: Sand fine grained

SILTY SANDSTONE: Low strength, grey, fine grained, subangular to subrounded, trace light grey silt, trace grey to brown mudstone

289m: Coarse quartz grains, subangular, trace lithic sandstone
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>DESCRIPTION OF STRATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>292</td>
<td>292m: Fine to medium grained</td>
</tr>
<tr>
<td>301</td>
<td>301m: Increasing siltstone (~30%), no mudstone</td>
</tr>
<tr>
<td>304</td>
<td>304m: Becoming coarse, well rounded quartz</td>
</tr>
<tr>
<td>307</td>
<td>307m: Trace mudstone</td>
</tr>
<tr>
<td>313</td>
<td>SANDY SILTSTONE: Low strength, pale grey, massive, trace fine to medium grained, well rounded quartz</td>
</tr>
<tr>
<td>316</td>
<td>316m: Grey to brown</td>
</tr>
<tr>
<td>322</td>
<td>322m: Very low strength, decrease in sand (~15%)</td>
</tr>
<tr>
<td>334</td>
<td>SILTSTONE: Low strength, pale grey, massive, trace fine sand (~10%)</td>
</tr>
<tr>
<td>340</td>
<td>340m: Trace to no sand</td>
</tr>
<tr>
<td>343</td>
<td>343m: Trace coal (~5%)</td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

- **Surface casing** (5CT, J55, 7", 23.0lb/ft)
- **Class A cement:** Pumped 64.6bb @ 6bpm, 260psi, density of 13.5ppg
DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>Graphic Log</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td></td>
<td></td>
<td>very fine quartz</td>
</tr>
<tr>
<td>361</td>
<td></td>
<td></td>
<td>SANDSTONE: Medium to high strength, grey to clear, quartz (<50%), clean, subrounded, trace siltstone</td>
</tr>
<tr>
<td>367</td>
<td></td>
<td></td>
<td>Trace black coal</td>
</tr>
<tr>
<td>388</td>
<td></td>
<td></td>
<td>SILTSTONE: Low strength, grey, trace quartz, fine grained, subrounded, uniform</td>
</tr>
<tr>
<td>388</td>
<td></td>
<td></td>
<td>MUDSTONE: Medium strength, grey to dark grey, trace sandstone</td>
</tr>
<tr>
<td>398</td>
<td></td>
<td></td>
<td>Trace coal</td>
</tr>
</tbody>
</table>

ORALLO FORMATION (403-540m BGL)

- SANDSTONE: Medium strength, grey, fine grained, subrounded, uniform, clear quartz grains, trace siltstone, trace mudstone and trace coal

CONSTRUCTION DETAILS

- **Surface casing**: 5CT; J55, 7", 23.0lb/ft
- **Class A cement**: Pumped 64.66bl @ 6bpm, 260psi, density of 13.5ppg
INTERBEDDED SANDSTONE - MUDSTONE: Sandstone is medium strength, grey, fine to medium grained, subrounded, uniform, mudstone is medium strength, grey, trace black coal.

COAL: Medium strength, black, vitreous.

INTERBEDDED SANDSTONE - MUDSTONE: Sandstone is medium strength, grey, fine to medium grained, subrounded, uniform, mudstone is medium strength, grey, trace black coal.

424m: Sandstone medium to high strength.

INTERBEDDED SANDSTONE - MUDSTONE: Sandstone is medium strength, grey, fine to medium grained, subrounded, uniform, mudstone is medium strength, grey, trace black coal.

439m: Trace sandstone.

END OF HOLE: 442.07m BGL.
DESCRIPTION OF STRATA

1. **EVERGREEN FORMATION (0 - 134mBGL) SANDSTONE**: Low to medium strength, pale grey to white, fine to medium grained, quartzose, well sorted.

2. **INTERBEDDED SANDSTONE - SILTSTONE**: Sandstone is medium strength, medium grained, siltstone is low strength, dark grey to black.

3. **SILTSTONE**: Low strength, dark grey to black.

4. **SANDY SILTSTONE**: Low to medium strength, dark grey to brown, trace fine grained quartz (~5%)

5. **SILTSTONE**: Medium to high strength, dark grey, trace very fine grained sand

6. **SILTY SANDSTONE**: Medium strength, dark grey and trace white to green, fine to medium grained, some quartz (~30%)

7. **SANDY SILTSTONE**: Low to medium strength, black, fine grained

8. **SILTSTONE**: Low strength, grey to black. Trace fine to medium grained sand

CONSTRUCTION DETAILS

- **Drill Type**: Mud Rotary
- **Drill Model**: Foremost 24 HD
- **Drill Fluid**: K2SO4 (refer to mud program)

- **Permit No**: GDFVN13-009
- **Client**: Santos Ltd
- **Location**: Fairview
- **Drill Fluid**: Class A cement; 61.5bbls, 13.5ppg, yield of 1.76ft/sk

- **Casing RL**: mAHD
- **Casing ID**: 102.3 mm

- **Drill Model**: Mud Rotary
- **Drill Type**: Mud Rotary
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>DESCRIPTION OF STRATA</th>
<th>CONSTRUCTION DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>SANDY SILTSTONE: Low to medium strength, grey to black, fine to medium grained quartz (~30%), moderately sorted</td>
<td>Class A cement; 61.5bbls, 13.5ppg, yield of 1.76ft/sk</td>
</tr>
<tr>
<td>60</td>
<td>SILTSTONE: Low to medium strength, grey to black, trace fine grained sand</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>SANDY SILTSTONE: Medium strength, black, sand fine grained (~20%)</td>
<td></td>
</tr>
<tr>
<td>76m</td>
<td>SANDY SILTSTONE: Medium strength, dark grey to black, fine grained</td>
<td></td>
</tr>
<tr>
<td></td>
<td>76m: Some medium strength, black mudstone interbedded</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>SILTSTONE: Low to medium strength, grey to black, fine grained, trace quartz (~10%), trace mudstone, laminated</td>
<td></td>
</tr>
<tr>
<td>88m</td>
<td>SANDY SILTSTONE: Medium strength, dark grey, trace quartz (~10%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>88m: Interbedded medium strength, black, laminated mudstone</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>SANDY SILTSTONE: Medium strength, dark grey to black, fine grained, laminated, some quartz (~25%), some silt interbedded</td>
<td></td>
</tr>
<tr>
<td>96m</td>
<td>SANDY SILTSTONE: Medium strength, dark grey to black, fine grained</td>
<td></td>
</tr>
<tr>
<td>96m</td>
<td>96m: Low to medium strength</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>SILTSTONE: Low to medium strength, grey to black, trace fine grained sand</td>
<td></td>
</tr>
<tr>
<td>103m</td>
<td>SILTSTONE: Low to medium strength, grey to black, trace fine grained sand, trace coal</td>
<td></td>
</tr>
<tr>
<td>109m</td>
<td>SILTY SANDSTONE: Low to medium strength, dark grey to black, fine to coarse grained, poorly sorted, some quartz (~30%), trace coal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>109m: Some interbedded medium strength, black siltstone</td>
<td></td>
</tr>
<tr>
<td>Depth (m)</td>
<td>Description of Strata</td>
<td>Construction Details</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>112m</td>
<td>Some low strength, black mudstone, trace coal</td>
<td></td>
</tr>
<tr>
<td>120m</td>
<td>SANDSTONE: Low strength, grey to white, fine to medium grained, quartzose, interbedded with low to medium strength, black, very fine grained siltstone</td>
<td></td>
</tr>
<tr>
<td>127m</td>
<td>SILTY SANDSTONE: Low to medium strength, grey to white, fine grained, some siltstone</td>
<td></td>
</tr>
<tr>
<td>130m</td>
<td>SILTSTONE: Medium strength, grey, trace fine grained sand</td>
<td></td>
</tr>
<tr>
<td>134m - 168m</td>
<td>PRECIPICE SANDSTONE: Low strength, dark grey to green, trace fine sand</td>
<td></td>
</tr>
<tr>
<td>148m</td>
<td>Becoming medium grained</td>
<td></td>
</tr>
<tr>
<td>151m</td>
<td>Becoming medium to coarse grained, some siltstone, trace coal</td>
<td></td>
</tr>
<tr>
<td>160m</td>
<td>Becoming coarse grained, quartzose (~90% quartz), subrounded</td>
<td></td>
</tr>
<tr>
<td>163m</td>
<td>Becoming very coarse grained, trace siltstone</td>
<td></td>
</tr>
<tr>
<td>166m</td>
<td>Becoming medium to coarse grained, some low strength, dark siltstone</td>
<td></td>
</tr>
</tbody>
</table>
DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>Graphic Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td></td>
<td>SLITSTONE: Low strength, black to dark grey, fine grained sand, trace quartz, trace coal</td>
</tr>
<tr>
<td>180</td>
<td></td>
<td>SANDY SILTSTONE: Very low strength, grey to dark grey, medium to coarse grained quartz sand (~40%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180m: Some coal, black, very low strength</td>
</tr>
<tr>
<td>190</td>
<td></td>
<td>SANDY SILTSTONE: Low strength, white to dark grey, medium to coarse grained, poorly sorted, some quartz (~35%)</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td>SILTY SANDSTONE: Low strength, white to black, medium to coarse grained, some quartz (~30%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SANDY SILTSTONE: Low strength, dark grey, fine to medium grained, trace quartz, trace low strength brown to black coal</td>
</tr>
<tr>
<td>210</td>
<td></td>
<td>SILTSTONE: Low to medium strength, grey to dark grey, trace fine grained sand, trace quartz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>202m: Some low to medium strength, dark brown to black mudstone</td>
</tr>
<tr>
<td>220</td>
<td></td>
<td>SANDY SILTSTONE: Low strength, dark grey, fine grained, trace quartz, poorly sorted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SILTSTONE: Low strength, dark grey to black, trace fine grained sand, trace quartz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>223m: Becoming very low strength, some quartz (~20%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>226m: Trace low strength mudstone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>229m: Trace fine grained sand</td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

- **Completion casing**: OZCON; HWT; 5LB; 4 1/2''; 10.8lb/ft
- **Class A cement**: 61.5bbls, 13.5ppg, yield of 1.76ft/sk
DESCRIPTION OF STRATA

232m: Becoming low to medium strength, some medium strength mudstone, trace coal

235m: Thinly laminated siltstone, some mudstone (~30%), trace quartz (~5%)

238m: Some light grey mudstone (~30%), trace coal (~2%)

SANDSTONE: Medium strength, grey to dark grey, medium to coarse grained, massive

INTERBEDDED SANDSTONE - SILTSTONE: Sandstone is high strength, grey to dark grey, medium to coarse grained, massive, siltstone is medium to high strength, dark grey to black

SILTSTONE: Medium strength, fresh, dark grey to black, massive

SANDSTONE: High strength, dark grey, fine to medium grained, massive

SANDSTONE: High strength, light grey to dark grey, fine to medium grained, massive

SANDSTONE: High strength, moderately weathered, dark grey to grey, fine to medium grained, massive

CLEMATIS SANDSTONE (288mBGL - 397mBGL)

289m: Becoming low strength, quartz grains interbedded within white to grey

CONSTRUCTION DETAILS

Completion casing (OZCON; HWT; SLB: 4 1/2"; 10.8lb/ft)

Class A cement; 61.5bbls, 13.5spg, yield of 1.76ft/sk
INTERBEDDED SANDSTONE - SILTSTONE: Sandstone is low strength, highly weathered, grey, fine grained, massive, siltstone is medium strength, dark grey, massive

SANDY SILTSTONE: Medium strength, medium to high strength, black, massive, with fine grained white sand (~30%)

SILTSTONE: Medium strength, black, massive, trace grey, fine grained sandstone

INTERBEDDED SANDSTONE - SILTSTONE: Sandstone is low to medium strength, slightly weathered, grey, medium grained, massive, siltstone is medium strength, black, massive

SANDSTONE: Low to medium strength, dark grey, massive, poorly sorted, fine to coarse grained, subrounded quartz

SILTSTONE: Low strength, fresh, black, thinly laminated, poorly developed

SANDSTONE: Low to medium strength, dark grey, massive, poorly sorted, fine to coarse grained

SILTSTONE: High strength, fresh, black, massive, trace sandstone

INTERBEDDED SANDSTONE - SILTSTONE: Sandstone is very low strength, fresh, light grey, fine to medium grained, white to grey cement, well sorted, siltstone is high strength, black, massive

Completion casing (OZCON; HW1; 6LBF; 4 1/2''; 10.8lb/ft)

Class A cement; 61.5bbls, 13.5spig, yield of 1.76ft/sk
DESCRIPTION OF STRATA

350 m
- **Sandstone**: Medium to high strength, slightly weathered, grey, fine grained, massive, some high strength siltstone

360 m
- **Siltstone**: Medium to high strength, dark brown to black, massive, trace thinly laminated sandstone, well developed
- **Sandstone**: Low strength, grey, fine grained, massive, some siltstone, white to grey cement
- **Interbedded Sandstone - Siltstone**: Sandstone is low strength, grey, fine grained, siltstone is medium strength, dark grey to black, massive (~20%)
- **Siltstone**: High strength, dark grey to black with trace dark brown, massive, some sandstone (~20%)
- **Sandstone**: Medium strength, fresh, white to grey, medium grained, massive, some siltstone (~15%)
- **Interbedded Sandstone - Siltstone**: Sandstone is medium strength, grey to dark grey, massive, fine grained, siltstone is high strength, black, massive

370 m
- **Sandstone**: Medium strength, grey to light grey, fine to coarse grained, poorly sorted, some siltstone (~25%)
- **390m**: Becoming low strength,
- **391m**: Becoming fine grained, some siltstone, large fragments 20mm (~20%)
- **394m**: Becoming low strength
- **Rewan Formation**: High strength, brown to red, massive, trace sandstone (~5%)

380 m
- **Rewan Formation**: High strength, brown to red, massive, trace sandstone (~5%)

390 m
- **Rewan Formation**: High strength, brown to red, massive, trace sandstone (~5%)

397 m
- **Rewan Formation**: High strength, brown to red, massive, trace sandstone (~5%)

400 m
- **Rewan Formation**: High strength, brown to red, massive, trace sandstone (~5%)

CONSTRUCTION DETAILS

- **Completion casing**: OZCON; HWT; 4 1/2”; 10.8 lb/ft
- **Bentonite Seal**: Class A cement; 61.5 bbls, 13.5 ppg, yield of 1.76 ft/sk
- **Rat hole**: 7.79m (390.14-397.93 m BGL)
- **Gravel Pack**: 2-4mm gravel (372.14-397.93 m BGL)
- **Johnson Stainless Steel 1mm Aperture Screen**: 377.14m BGL - 389.14m BGL
- **Class A cement**: 61.5 bbls, 13.5 ppg, yield of 1.76 ft/sk
Description of Strata

Cellar
- **Juanda Coal Measures (0 - 36 mBGL)**
 - Interbedded Sandstone and Mudstone:
 - Sandstone is low strength, grey with black flecks, medium gained, angular, mudstone is medium strength, light brown, massive.
 - **SANDSTONE:**
 - Very low strength, highly weathered, grey with black flecks, massive, medium to fine grained, poorly sorted, angular.
 - 18 m: Medium strength, moderately weathered, medium grained, well sorted.
 - **COAL:**
 - High strength, black, massive.
 - **MUDSTONE:**
 - Very low strength, highly weathered, brown, massive.

Tangalooma Sandstone (36 - 57 mBGL)
- **Sandstone:**
 - Extremely low strength, highly weathered, grey, laminated, poorly developed, fine grained, with mudstone (~30%).
 - 45 m: With coal, black.
 - 48 m: Very low strength, massive, well sorted.

Construction Details
- **Lockable metal standpipe with flange**
- **Conductor casing (BTC K55; 7", 33.7 kg/m)**
- **Completion casing (ECPS; HWT; 5LB; 4 1/2"; 16.1 kg/m)**
- **CBM Cement - total slurry 46.0 bbl, density 13.50 ppg**
51 m: Increasing strength

INTERBEDDED SANDSTONE AND SILTSTONE: Sandstone is low strength, grey, fine grained, siltstone is medium strength, fresh, dark grey, massive

TAROOM COAL MEASURES (57 - 140 mBGL)

INTERBEDDED MUDSTONE AND SILTSTONE: Mudstone is very low strength, brown, siltstone is medium strength, dark grey, massive

60 m: Siltstone low strength, mudstone extremely low to very low strength, light grey

66 m: With interbedded coal, medium strength, black, vitreous

72 m: Mudstone is extremely low strength, no coal

75 m: Increase in mudstone

MUDSTONE: Extremely low strength, light grey, trace siltstone, dark grey

90 m: Trace coal, black, vitreous

93 m: Mudstone light to medium grey, siltstone low to medium strength, medium to dark grey

INTERBEDDED MUDSTONE AND SILTSTONE: Mudstone is extremely low strength, light grey, siltstone is low to medium strength, medium to dark grey, trace sandstone, medium strength, light grey, fine grained

SILTSTONE: Medium strength, medium grey with black rootlets, with mudstone (~20%), extremely low strength, white to very light grey

MUDSTONE: Extremely low strength, light grey with black flecks, trace siltstone, low strength, grey

Completion casing (ECPS; HWT; SLB; 4 1/2"; 16.1 kg/m)

CBM Cement - total slurry 46.0 bbl, density 13.50 ppg
DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>Interbedded Mudstone and Siltstone: Mudstone is extremely low strength, light grey with black flecks, siltstone is medium to low strength, medium grey, trace coal, extremely low strength, black</td>
</tr>
<tr>
<td>120</td>
<td>Interbedded Mudstone and Siltstone: Mudstone is extremely low strength, light grey with black flecks, siltstone is medium strength, medium grey, trace coal, vitreous</td>
</tr>
<tr>
<td>130</td>
<td>Interbedded Mudstone, Sandstone and Siltstone: Mudstone is extremely low strength, light grey with black flecks, lithic, siltstone is medium strength, medium grey</td>
</tr>
<tr>
<td>138</td>
<td>No coal</td>
</tr>
<tr>
<td>140</td>
<td>Silty Sandstone: Low to medium strength, light grey with black flecks, very fine to fine grained, argillaceous, with mudstone (~20%), extremely low strength, light grey</td>
</tr>
<tr>
<td>141</td>
<td>Eurombah Formation (140 - 330 mBGL)</td>
</tr>
<tr>
<td>150</td>
<td>Silty Sandstone: Low to medium strength, light grey with black flecks, very fine to fine grained, lithic, argillaceous</td>
</tr>
<tr>
<td>160</td>
<td>Sandy Mudstone: Low strength, light grey with black flecks, very fine to fine grained</td>
</tr>
<tr>
<td>168</td>
<td>Interbedded Mudstone and Siltstone: Mudstone is low strength, light grey, siltstone is medium strength, medium grey, trace coal (~10%), black, vitreous</td>
</tr>
<tr>
<td>170</td>
<td>Sandy Mudstone: Low strength, light grey with black flecks, very fine to fine grained, with sandy mudstone, low strength, light grey with black flecks, very fine to fine grained</td>
</tr>
<tr>
<td>180</td>
<td>Mudstone: Low strength, brown and light grey, with sandy mudstone, low strength, light grey with black flecks, very fine to fine grained</td>
</tr>
<tr>
<td>190</td>
<td>Sandy Mudstone: Low strength, light grey with black flecks, very fine to fine grained</td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

- Completion casing (ECPS: HWT; SLB: 4 1/2”; 16.1 kg/m)
- CBM Cement - total slurry 46.0 bbl, density 13.50 ppg
DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>Graphic Log</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td></td>
<td></td>
<td>SILTY SANDSTONE Medium strength, light grey with black flecks, very fine to fine grained, trace coal, fine chips</td>
</tr>
<tr>
<td>180</td>
<td></td>
<td></td>
<td>MUDSTONE Low strength, brown and light grey, with sandy mudstone, low strength, light grey with black flecks, very fine to fine grained</td>
</tr>
<tr>
<td>190</td>
<td></td>
<td></td>
<td>INTERBEDDED SILTSTONE AND SILTY SANDSTONE Siltstone is medium strength, grey, silty sandstone is low strength, light grey, very fine to fine grained</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td>SANDY MUDSTONE Extremely low to low strength, light grey, sand is very fine to fine grained, trace coal</td>
</tr>
<tr>
<td>210</td>
<td></td>
<td></td>
<td>MUDSTONE Extremely low to low strength, medium to dark grey and brown, trace coal, trace siltstone</td>
</tr>
<tr>
<td>220</td>
<td></td>
<td></td>
<td>INTERBEDDED MUDSTONE AND SILTSTONE Mudstone is extremely low to low strength, brown and light grey, siltstone is medium strength, grey</td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

- **Completion casing** (ECPS; HWT; SLB: 4 1/2”; 16.1 kg/m)

- **CBM Cement - total slurry 46.0 bbl, density 13.50 ppg**
DESCRIPTION OF STRATA

237 m: Trace silt, brown to red

SANDY MUDSTONE: Low strength, light grey with black flecks, trace coal (10%), extremely low strength, black and dark brown

INTERBEDDED MUDSTONE AND SILTSTONE: Mudstone is extremely low to low strength, light grey, siltstone is medium strength, medium grey, trace coal, black and brown

MUDSTONE: Extremely low strength, light and dark grey, thinly laminated

255 m: With siltstone (~20%), medium strength, dark grey

INTERBEDDED MUDSTONE AND SILTSTONE: Mudstone is extremely low to low strength, brown and light grey, thinly laminated, siltstone is medium strength, dark grey

267 m: Trace siltstone (~5%), medium strength, dark grey

INTERBEDDED SANDSTONE AND SILTSTONE: Sandstone is low strength, slightly weathered, grey, massive, fine grained, well sorted, siltstone is low strength, dark grey, fresh, massive

SANDSTONE: Very low strength, highly weathered, grey, massive, fine grained, well sorted

INTERBEDDED MUDSTONE AND SANDSTONE: Sandstone is very low strength, highly weathered, grey, massive, fine grained, well sorted, mudstone is very low strength, brown, massive

280 m: Trace siltstone, low strength, grey, massive, fine grained, white matrix, with mudstone (~25%)

285 m: Trace siltstone, medium to high strength, brown

288 m: Extremely low strength, thinly laminated, poorly developed

CONSTRUCTION DETAILS

- **Completion casing:** ECPS; HWT; 5LB; 4 1/2''; 16.1 kg/m
- **CBM Cement - total slurry:** 46.0 bbl, density 13.50 ppg
SILTSTONE: Low to medium strength, slightly weathered, dark grey to dark brown, massive

INTERBEDDED MUDSTONE AND SILTSTONE: Mudstone is extremely low strength, brown, massive, siltstone is low strength, dark grey and brown, massive

SANDSTONE: Very low strength, moderately weathered, grey, massive, fine grained, with siltstone (~25%)

INTERBEDDED MUDSTONE AND SILTSTONE: Mudstone is extremely low strength, brown, massive, siltstone is medium strength, dark grey, massive, trace coal (~5%)

HUTTON SANDSTONE (330 - 467 mBGL)

SANDSTONE: Low strength, slightly weathered, grey with dark grey mottle, massive, very fine grained, well sorted, trace siltstone (~5%),

333 m: With siltstone (~15%)

336 m: Sandstone dark grey

342 m: Very low strength

Completion casing (ECPS; HWT; SLB: 4 1/2”; 16.1 kg/m)

CBM Cement - total slurry 46.0 bbl, density 13.50 ppg
INTERBEDDED SANDSTONE AND SILTSTONE:
Sandstone is very low strength, grey to dark grey, massive, fine grained, siltstone is medium strength, dark grey, massive

393 m: Sandstone extremely low to low strength, light grey to grey, very fine to fine grained

SANDSTONE: Extremely low to low strength, light to medium grey, very fine to fine grained, with mudstone (~10%)

INTERBEDDED MUDSTONE AND SILTSTONE:
Mudstone is extremely low to low strength, light grey, thinly laminated, siltstone is low to medium strength, medium grey

Completion casing (CDPS; HWT; SLB: 4 1/2"; 16.1 kg/m)

CBM Cement - total slurry 46.0 bbl, density 13.50 ppg

Annular Casing Packer (381.51 - 384.55 mBGL)

Johnson stainless steel 0.5 mm aperture screen

1 m Johnson Stainless Steel zero-slot sump
Description of Strata

- **Mudstone**: Extremely low to low strength, light grey, very fine to fine grained sand, trace sand.
- **Interbedded Mudstone and Siltstone**: Mudstone is extremely low to low strength, light grey, thinly laminated, siltstone is low to medium strength, medium grey.
- **Mudstone**: Extremely low to low strength, light grey, very fine to fine grained sand, trace sand.

END OF HOLE: 420.0 mBGL
DESCRIPTION OF STRATA

EVERGREEN FORMATION (0 - 56 mBGL)

SILTSTONE: Low strength, dark grey to black, massive

INTERBEDDED SILTSTONE - SANDSTONE: Sandstone is low strength, slightly weathered, grey, massive, fine grained, siltstone is low strength, black, massive

SANDSTONE: Low strength, light grey, fine to medium grained

- 24 m: Light grey with black flecks
- 27 m: Fine to coarse grained
- 36 m: With siltstone, dark grey, orange and black
- 39 m: Low to medium strength with quartz, orange, coarse grained

CONSTRUCTION DETAILS

- Lockable metal standpipe with flange
- Conductor casing (BTC; K55 5CT; 9 5/8"; 53.6 kg/m)
- Surface casing (BTC; J55 5CT; 7"; 33.7 kg/m)
- Class A cement; Pumped 33.7 bbl, density of 11.0 ppg
DESCRIPTION OF STRATA

SILTSTONE: Low strength, medium to dark grey, with sandstone

PRECIPICE SANDSTONE (56 - 96 m BGL)
- **INTERBEDDED SILTSTONE - SANDSTONE:** Siltstone is low strength, dark grey, sandstone is light grey, coarse grained, well graded

SANDSTONE: Light grey, coarse grained, quartzose, trace coal
- **63 m:** Subangular to subrounded, poorly graded, with some black siltstone
- **66 m:** Light grey and white
- **79 m:** Sandstone orange, medium to coarse grained, with siltstone, dark grey, angular

INTERBEDDED SILTSTONE - SANDSTONE: Sandstone is medium grey, white, some orange, medium to coarse grained, subangular to subrounded quartz, poorly graded, siltstone is low strength, dark grey

SANDSTONE: Light grey, medium to coarse grained, subangular to subrounded, with some black siltstone chips (~0.2 to 0.5mm)
- **91 m:** Light grey, red and orange
- **94 m:** Coarse grained

MOOLAYEMBER FORMATION (96 - 281 m BGL)
- **INTERBEDDED SILTSTONE - SANDSTONE:** Siltstone is low strength, medium grey, sandstone is light grey, fine grained
- **97 m:** Medium to light grey, fine to coarse grained

SILTSTONE: Low strength, medium grey, with sand, fine grained

INTERBEDDED SILTSTONE - SANDSTONE: Siltstone is medium grey.
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>Graphic Log</th>
<th>DESCRIPTION OF STRATA</th>
<th>CONSTRUCTION DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td></td>
<td></td>
<td>Sandstone is low strength, fine to medium grained</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>6 1/8 PDC bit</td>
<td></td>
<td>Siltstone: Low strength, medium grey, with sandstone, fine grained</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>6 1/8 PDC bit</td>
<td></td>
<td>Interbedded Siltstone - Sandstone: Siltstone is dark grey, sandstone is white with black flecks, fine grained, quartzose</td>
<td>Completion casing (OZCON; HWT; SLB; 4 1/2"; 16.1 kg/m)</td>
</tr>
<tr>
<td>140</td>
<td></td>
<td></td>
<td>Sandstone: White to light grey with black flecks, fine grained</td>
<td>Class A cement; Pumped 42.1 bbl, 13.5 ppg</td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
<td>Interbedded Siltstone - Sandstone: Siltstone is dark grey, sandstone is white with black flecks, fine grained</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>6 1/8 PDC bit</td>
<td></td>
<td>143 m: Increase in siltstone</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>6 1/8 PDC bit</td>
<td></td>
<td>161 m: Siltstone low strength, medium grey</td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>6 1/8 PDC bit</td>
<td></td>
<td>164 m: Siltstone dark to medium grey, sandstone light grey to white with black flecks</td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>6 1/8 PDC bit</td>
<td></td>
<td>167 m: Siltstone medium to light grey, sandstone medium strength, light grey</td>
<td></td>
</tr>
</tbody>
</table>
173 m: Siltstone medium grey

SILTSTONE: Low strength, medium grey to dark grey, sandstone is fine grained, light grey with black flecks, thinly bedded

INTERBEDDED SILTSTONE - SANDSTONE: Silts tone is low strength, medium grey to dark grey, sandstone is fine grained, light grey with black flecks, thinly bedded

Completion casing (OZCON; HWT; SLB; 4 1/2"; 16.1 kg/m)

Class A cement;
Pumped 42.1 bbl, 13.5ppg
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>DESCRIPTION OF STRATA</th>
<th>CONSTRUCTION DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>230</td>
<td>SANDSTONE: Light grey with black flecks, fine grained, quartzose</td>
<td>Completion casing (OZCON; HWT; SLB; 4 1/2", 16.1 kg/m)</td>
</tr>
<tr>
<td>250</td>
<td>INTERBEDDED SILTSTONE - SANDSTONE: Sandstone is light grey and white with black flecks, fine grained, siltstone is dark grey</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>INTERBEDDED SILTSTONE - MUDSTONE: Dark and medium grey</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>CLEMATIS SANDSTONE (281 - 518 mBGL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Class A cement; Pumped 42.1 bbl, 13.5ppg</td>
<td></td>
</tr>
<tr>
<td>Depth (m)</td>
<td>DESCRIPTION OF STRATA</td>
<td>CONSTRUCTION DETAILS</td>
</tr>
<tr>
<td>----------</td>
<td>------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>290</td>
<td>With mudstone, brown and grey</td>
<td>Completion casing (OZCON; HWT; SLB; 4 1/2"; 16.1 kg/m)</td>
</tr>
<tr>
<td>300</td>
<td>INTERBEDDED SILTSTONE - SANDSTONE: Siltstone is very low strength, black, massive, sandstone is low strength, highly weathered, grey, very fine grained, massive with white cement</td>
<td>Class A cement; Pumped 42.1 bbl, 13.5ppg</td>
</tr>
<tr>
<td>310</td>
<td>SILTSTONE: Very low strength, black, massive</td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>INTERBEDDED SILTSTONE - SANDSTONE: Siltstone is low strength, black, massive, sandstone is low strength, grey, massive, fine grained, with siltstone (~30%)</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>SANDSTONE: Low to medium strength, grey, massive, fine grained, with siltstone (~30%)</td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>INTERBEDDED SILTSTONE - SANDSTONE: Siltstone is low strength, black, massive, sandstone is low strength, grey, massive, fine grained</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>SANDSTONE: Low strength, slightly weathered, grey, fine grained, massive, well sorted, white cement</td>
<td></td>
</tr>
<tr>
<td>360</td>
<td>INTERBEDDED SILTSTONE - SANDSTONE: Sandstone is low strength, grey, massive, fine grained, siltstone is low strength, black, massive</td>
<td></td>
</tr>
<tr>
<td>370</td>
<td>SILTSTONE: Siltstone is low strength, black, massive, trace sandstone</td>
<td></td>
</tr>
<tr>
<td>380</td>
<td>SANDSTONE: Low strength, grey to light grey, massive, fine to medium grained, with siltstone</td>
<td></td>
</tr>
</tbody>
</table>
DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Strata Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>No siltstone</td>
</tr>
<tr>
<td>359</td>
<td>Sandstone medium grained</td>
</tr>
<tr>
<td>362</td>
<td>Sandstone fine grained</td>
</tr>
<tr>
<td>370</td>
<td>INTERBEDDED SILTSTONE - SANDSTONE: Sandstone is low strength, grey and dark grey, massive, fine grained, siltstone is low-strength, black</td>
</tr>
<tr>
<td>380</td>
<td>Trace coal (~5%)</td>
</tr>
<tr>
<td>383</td>
<td>No coal</td>
</tr>
<tr>
<td>390</td>
<td>SILTSTONE: Low strength, dark grey, massive, trace sandstone (~10%)</td>
</tr>
<tr>
<td>392</td>
<td>Sandstone fine grained</td>
</tr>
<tr>
<td>400</td>
<td>INTERBEDDED SILTSTONE - SANDSTONE: Siltstone is low to medium strength, light grey, fine to medium grained, massive, subrounded</td>
</tr>
<tr>
<td>405</td>
<td>SILTSTONE: Medium strength, dark grey to black, massive</td>
</tr>
<tr>
<td>410</td>
<td>SANDSTONE: Low strength, highly weathered, grey to pale grey, massive, very fine grained, well sorted, with siltstone</td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

- **Completion casing:** OZCON; HWT; 5LB; 4 1/2'; 16.1 kg/m
- **Class A cement:** Pumped 42.1 bbl, 13.5 ppg
410 m: Becoming dark grey

413 m: Thinly laminated

419 m: Medium strength, grey to dark grey, thinly laminated, fine grained, rounded, grey cement

422 m: Becoming coarse grained

SILTSTONE: Medium strength, dark grey

SANDSTONE: Light grey, medium to coarse grained, quartzose, subrounded, with siltstone, dark grey and black

SILTSTONE: Medium strength, dark and medium grey

SANDSTONE: Pale grey, massive, medium to coarse grained, subrounded, with siltstone chips, black

INTERBEDDED SILTSTONE - SANDSTONE: Siltstone is dark grey and black, sandstone is medium grained, with mudstone, low strength, light grey

SILTSTONE: Dark grey, fine grained, with mudstone, low strength, light grey

INTERBEDDED SILTSTONE - MUDSTONE - SANDSTONE: Siltstone is dark grey, black, sandstone is light grey and white, medium to coarse grained, mudstone is very low strength, light grey

INTERBEDDED SILTSTONE - MUDSTONE: Siltstone is dark grey, mudstone is light grey with some white, fine grained sandstone

Completion casing (OZCON; HWT; 5LB; 4 1/2''; 16.1 kg/m)

Class A cement; Pumped 42.1 bbl, 13.5 ppg
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Description of Strata</th>
</tr>
</thead>
<tbody>
<tr>
<td>470</td>
<td>470 m: With sandstone, very fine grained, cemented</td>
</tr>
<tr>
<td></td>
<td>INTERBEDDED SILTSTONE - SANDSTONE: Sandstone is medium to fine grained, cemented, siltstone is dark grey</td>
</tr>
<tr>
<td></td>
<td>SANDSTONE: Light grey to white, medium grained, subangular to subrounded, poorly graded, with siltstone chips (0.5-1 mm), black and dark grey</td>
</tr>
<tr>
<td></td>
<td>SILTY SANDSTONE: Light grey to white and dark grey, fine to medium grained sand in a light grey, silty matrix</td>
</tr>
<tr>
<td></td>
<td>485 m: Increase in siltstone</td>
</tr>
<tr>
<td>480</td>
<td>SILTSTONE: Low strength, dark grey to black, massive</td>
</tr>
<tr>
<td></td>
<td>491 m: Becoming medium strength</td>
</tr>
<tr>
<td>490</td>
<td>INTERBEDDED SILTSTONE - MUDSTONE: Siltstone is low strength, dark grey to black, massive, mudstone is very low strength, pale grey, thinly laminated</td>
</tr>
<tr>
<td></td>
<td>MUDSTONE: Very low strength, pale grey, massive, trace siltstone</td>
</tr>
<tr>
<td>500</td>
<td>INTERBEDDED SILTSTONE - SANDSTONE: Sandstone is medium strength, pale grey to grey, fine grained, well sorted, siltstone is medium strength, dark grey, massive</td>
</tr>
<tr>
<td>510</td>
<td>CLEMATIS SANDSTONE (518 mBGL - TD): INTERBEDDED SILTSTONE - MUDSTONE: Siltstone is medium strength, dark grey, massive, mudstone is low strength, red-brown, massive</td>
</tr>
<tr>
<td>520</td>
<td>END OF HOLE: 522.02 mBGL</td>
</tr>
</tbody>
</table>
DESCRIPTION OF STRATA

CELLAR JUANDAH COAL MEASURES (0 - 36 mBGL)

- **INTERBEDDED SANDSTONE AND MUDSTONE:** Sandstone is low strength, grey with black flecks, medium grained, angular. Mudstone is medium strength, light brown, massive.
 - **Sandstone:** Very low strength, highly weathered, grey with black flecks, medium to fine grained, poorly sorted, angular.
 - **18 m:** Medium strength, moderately weathered, medium grained, well sorted.

COAL: High strength, black, massive.

MUDSTONE: Very low strength, highly weathered, brown, massive.

TANGALOOMA SANDSTONE (36 - 57 mBGL)

- **SANDSTONE:** Extremely low strength, highly weathered, grey, laminated, poorly developed, fine grained, with mudstone (~30%).
 - **45 m:** With coal, black.
 - **48 m:** Very low strength, massive, well sorted.

CONSTRUCTION DETAILS

- **Lockable metal standpipe with flange**
- **Conductor casing:** (BTC K55; 7", 33.7 kg/m)
- **Completion casing:** (ECPS; HWT; 5LB; 4 1/2"; 16.1 kg/m)
- **CBM Cement - total slurry 46.0 bbl, density 13.50 ppg**
DESCRIPTION OF STRATA

51 m: Increasing strength

INTERBEDDED SANDSTONE AND SILTSTONE: Sandstone is low strength, grey, fine grained, siltstone is medium strength, fresh, dark grey, massive

TAROOM COAL MEASURES (57 - 140 mBGL)

INTERBEDDED MUDSTONE AND SILTSTONE: Mudstone is very low strength, brown, siltstone is medium strength, dark grey, massive

60 m: Siltstone low strength, mudstone extremely low to very low strength, light grey

66 m: With interbedded coal, medium strength, black, vitreous

72 m: Mudstone is extremely low strength, no coal

75 m: Increase in mudstone

MUDSTONE: Extremely low strength, light grey, trace siltstone, dark grey

90 m: Trace coal, black, vitreous

93 m: Mudstone light to medium grey, siltstone low to medium strength, medium to dark grey

INTERBEDDED MUDSTONE AND SILTSTONE: Mudstone is extremely low strength, light grey, siltstone is low to medium strength, medium to dark grey, trace sandstone, medium strength, light grey, fine grained

SILTSTONE: Medium strength, medium grey with black rootlets, with mudstone (~20%), extremely low strength, white to very light grey

MUDSTONE: Extremely low strength, light grey with black flecks, trace siltstone, low strength, grey

CONSTRUCTION DETAILS

Drilling Method

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>Graphic Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>61/8" PDC Bit</td>
<td>Completion casing (ECPS, HWT; SLB; 4 1/2"; 16.1 kg/m)</td>
<td>CBM Cement - total slurry 46.0 bbl, density 13.50 ppg</td>
</tr>
</tbody>
</table>

Completion casing (ECPS, HWT; SLB; 4 1/2"; 16.1 kg/m)

CBM Cement - total slurry 46.0 bbl, density 13.50 ppg
INTERBEDDED MUDSTONE AND SILTSTONE: Mudstone is extremely low strength, light grey with black flecks, siltstone is medium to low strength, medium grey, trace coal, extremely low strength, black.

INTERBEDDED MUDSTONE, SANDSTONE AND SILTSTONE: Mudstone is extremely low strength, light grey, sandstone is extremely low strength, light grey with black specks, lithic, siltstone is medium strength, medium grey.

INTERBEDDED MUDSTONE AND SILTSTONE: Mudstone is extremely low strength, light grey, siltstone is medium strength, medium grey, trace coal (~10%), black, vitreous.

INTERBEDDED MUDSTONE AND SANDSTONE: Mudstone is extremely low to low strength, light grey, sandstone is light grey with black specks, fine to very fine grained, lithic.

SILTY SANDSTONE: Low to medium strength, light grey with black flecks, very fine to fine grained, argillaceous, with mudstone (~20%), extremely low strength, light grey.

INTERBEDDED MUDSTONE AND SILTSTONE: Mudstone is low strength, light grey, siltstone is medium strength, medium grey, trace mudstone (~10%), black, vitreous.

INTERBEDDED MUDSTONE AND SANDSTONE: Mudstone is extremely low strength, light grey, siltstone is medium strength, medium grey, trace coal, black, vitreous.

SILTY SANDSTONE: Low to medium strength, light grey with black flecks, very fine to fine grained, lithic, argillaceous.

EUROMBAH FORMATION (140 - 330 mBGL): Siltstone dark to medium grey.

SILTY SANDSTONE: Low to medium strength, light grey with black flecks, very fine to fine grained, lithic, argillaceous.

SANDY MUDSTONE: Low strength, light grey with black flecks, very fine to fine grained.

INTERBEDDED MUDSTONE AND SILTSTONE: Mudstone is low strength, light grey, with sand, siltstone is medium strength, dark grey, trace white clay.

MUDSTONE: Low strength, brown and light grey, with sandy mudstone, low strength, light grey with black flecks, very fine to fine grained.

SANDY MUDSTONE: Low strength, light grey with black flecks, very fine to fine grained.
SILTY SANDSTONE: Medium strength, light grey with black flecks, very fine to fine grained, trace coal, fine chips

MUDSTONE: Low strength, brown and light grey, with sandy mudstone, low strength, light grey with black flecks, very fine to fine grained

INTERBEDDED SILTSTONE AND SILTY SANDSTONE: Siltstone is medium strength, grey, silty sandstone is low strength, light grey, very fine to fine grained

SANDY MUDSTONE: Extremely low to low strength, light grey, very fine to fine grained, trace coal

MUDSTONE: Extremely low to low strength, medium to dark grey and brown, trace coal, trace siltstone

INTERBEDDED MUDSTONE AND SILTSTONE: Mudstone is extremely low to low strength, brown and light grey, siltstone is medium strength, grey

SANDY MUDSTONE: Extremely low to low strength, light grey with black flecks

CLAYEY, SILTY SANDSTONE: Low strength, light grey with black flecks, fine grained, lithic, argillaceous

210 m: Medium strength

INTERBEDDED COAL AND SANDSTONE: Coal is black and brown, extremely low strength, sandstone is low strength, light grey with black flecks, fine grained, silt and clay matrix

SILTY SANDSTONE: Medium strength, light grey with black flecks, fine grained, lithic, argillaceous
237 m: Trace silt, brown to red

SANDY MUDSTONE: Low strength, light grey with black flecks, trace coal (10%), extremely low strength, black and dark brown

INTERBEDDED MUDSTONE AND SILTSTONE: Mudstone is extremely low to low strength, light grey, siltstone is medium strength, medium grey, trace coal, black and brown

MUDSTONE: Extremely low strength, light and dark grey, thinly laminated

255 m: With siltstone (~20%), medium strength, dark grey

INTERBEDDED MUDSTONE AND SILTSTONE: Mudstone is extremely low to low strength, brown and light grey, thinly laminated, siltstone is medium strength, dark grey

267 m: Trace siltstone (~5%), medium strength, dark grey

INTERBEDDED SANDSTONE AND SILTSTONE: Sandstone is low strength, slightly weathered, grey, massive, fine grained, well sorted, siltstone is low strength, dark grey, fresh, massive

SANDSTONE: Very low strength, highly weathered, grey, massive, fine grained, well sorted

INTERBEDDED MUDSTONE AND SANDSTONE: Sandstone is very low strength, highly weathered, grey, massive, fine grained, well sorted, mudstone is very low strength, brown, massive

SANDSTONE: Low strength, grey, massive, fine grained, white matrix, with mudstone (~25%)

285 m: Trace siltstone, medium to high strength, brown

288 m: Extremely low strength, thinly laminated, poorly developed

Completion casing (ECPS; HWVT; SLB: 4 1/2”; 16.1 kg/m)

CBM Cement - total slurry 46.0 bbl, density 13.50 ppg
DESCRIPTION OF STRATA

Depth (m)

- **290 m**: Silstone: Low to medium strength, slightly weathered, dark grey to dark brown, massive.
- **300 m**: Interbedded mudstone and siltstone: Mudstone is extremely low strength, brown, massive; siltstone is low strength, dark grey and brown, massive.
- **310 m**: Sandstone: Very low strength, moderately weathered, grey, massive, fine grained, with siltstone (~25%).
- **320 m**: Interbedded mudstone and siltstone: Mudstone is extremely low strength, brown, massive; siltstone is medium strength, dark grey, massive, trace coal (~3%).
- **330 m**: Hutton Sandstone (330 - 467 mBGL)
 - Sandstone: Low strength, slightly weathered, grey with dark grey mottle, massive, very fine grained, well sorted, trace siltstone (~5%).
 - 333 m: With siltstone (~15%)
 - 336 m: Sandstone dark grey
 - 342 m: Very low strength

CONSTRUCTION DETAILS

- **Completion casing** (ECPS; HWT; 5LB; 4 1/2''; 16.1 kg/m)
- **CBM Cement** - total slurry 46.0 bbl, density 13.50 ppg
INTERBEDDED SANDSTONE AND SILTSTONE: Sandstone is very low strength, grey to dark grey, massive, fine grained, siltstone is medium strength, dark grey, massive

393 m: Sandstone extremely low to low strength, light grey to grey, very fine to fine grained

SANDSTONE: Extremely low to low strength, light to medium grey, very fine to fine grained, with mudstone (~10%)

INTERBEDDED MUDSTONE AND SILTSTONE: Mudstone is extremely low to low strength, light grey, thinly laminated, siltstone is low to medium strength, medium grey

CONSTRUCTION DETAILS

- **Completion casing:** ECPS, HW, SLB: 4 1/2", 16.1 kg/m
- **Annular Casing Packer:** (381.51 - 384.55 mBGL)
- **Johnson Stainless Steel 0.5 mm aperture screen**
- **1 m Johnson Stainless Steel zero-slot sump**
- **CBM Cement - total slurry 46.0 bbl, density 13.50 ppg**
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>Graphic Log</th>
<th>DESCRIPTION OF STRATA</th>
<th>CONSTRUCTION DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>410</td>
<td></td>
<td></td>
<td>MUDSTONE: Extremely low to low strength, light grey, very fine to fine grained sand, trace sand</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>INTERBEDDING MUDSTONE AND SILTSTONE: Mudstone is extremely low to low strength, light grey, thinly laminated, siltstone is low to medium strength, medium grey</td>
<td></td>
</tr>
<tr>
<td>420</td>
<td></td>
<td></td>
<td>MUDSTONE: Extremely low to low strength, light grey, very fine to fine grained sand, trace sand</td>
<td>END OF HOLE: 420.0 mBGL</td>
</tr>
</tbody>
</table>
DESCRIPTION OF STRATA

BUNGIL FORMATION (0-199 mBGL)

- **SILTSTONE:** Extremely low strength, moderately weathered, black, massive, trace fine sand

INTERBEDDED SILTSTONE - MUDSTONE

- Mudstone is low strength, brown and dark grey, laminated, poorly developed

CONSTRUCTION DETAILS

Drill Log

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>Graphic Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NO SAMPLE</td>
<td></td>
</tr>
<tr>
<td>12.14</td>
<td>12.14 PDC Drill Bit</td>
<td></td>
</tr>
<tr>
<td>11-10-13</td>
<td>DGP, CH, TF</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Low to medium strength, moderately weathered, black, massive</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Low strength</td>
<td></td>
</tr>
</tbody>
</table>

Casings

- **Conductor casing (BTC; K55 5CT; 9 5/8"; 36 lb/ft)**
- **Surface casing (5CT; J55, 7", 23.0 lb/ft)**
- **Class A cement; Pumped 39.3 bbl, density of 13.5 ppg**

Drilling Parameters

- **Drill Type:** Mud Rotary
- **Drill Model:** Foremost 24 HD
- **Drill Fluid:** K2SO4 (refer to mud programme)

Drilling Details

- **Logged By:** DGP, CH, TF
- **Checked By:** TB
- **Date Started:** 11-10-13
- **Date Finished:** 21-10-13
- **Bore Dia.:** 177.8 mm
- **Total Depth:** 720.2 m
- **Casing I.D.:** 102.3 mm
- **Casing RL:** mAHD
- **Coordinates:** Lat:
- **Long:**
- **Permit No.:** GDR13-115
- **Project No.:** 42626910
- **Client:** Santos Ltd
- **Location:** Roma
INTERBEDDED SILTSTONE - SANDSTONE:
- Siltstone is low strength, black, massive, sandstone is low strength, grey, massive, laminated, well-developed, fine-grained, well-sorted

SANDSTONE:
- Low strength, moderately weathered, grey, fine-grained, well-sorted

INTERBEDDED SILTSTONE - SANDSTONE:
- Siltstone is low strength, black, massive, sandstone is low strength, moderately weathered, grey, fine-grained, well-sorted

SILTSTONE:
- Low strength, black, massive, trace sandstone
- 72 m: Trace sandstone
- 75 m: Siltstone black, massive

INTERBEDDED SANDSTONE - SILTSTONE:
- Sandstone is low strength, grey, massive, fine-grained, siltstone is low strength, black, massive

SILTSTONE:
- Low strength, grey, black, massive, trace sandstone
- 84 m: With sandstone (~20%)

SANDSTONE:
- Low strength, grey to dark grey, massive, fine-grained
- 90 m: With siltstone (~20%)

SILTSTONE:
- Low strength, grey, black, massive, trace sandstone

SANDSTONE:
- Low strength, grey to dark grey, massive, fine-grained, clay matrix
- 105 m: Trace siltstone
DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>Graphic Log</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td></td>
<td></td>
<td>SILTSTONE: Low to medium strength, dark grey to black, massive</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td>SANDSTONE: Low strength, grey, massive, fine grained, silt matrix</td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
<td>INTERBEDDED SILTSTONE - MUDSTONE: Siltstone is low to medium strength, dark brown to black, massive, mudstone is low strength, brown, massive</td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
<td>INTERBEDDED SILTSTONE - SANDSTONE: Sandstone is low strength, dark grey, massive, fine grained, silt matrix, siltstone is low to medium strength, black, massive</td>
</tr>
<tr>
<td>135</td>
<td></td>
<td></td>
<td>135 m: Clay matrix</td>
</tr>
<tr>
<td>140</td>
<td></td>
<td></td>
<td>MUDSTONE: Extremely low strength, brown, massive</td>
</tr>
<tr>
<td>140</td>
<td></td>
<td></td>
<td>INTERBEDDED SANDSTONE - SILTSTONE: Sandstone is low strength, dark grey to grey, massive, fine grained, silt matrix, siltstone is low strength, black, massive</td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
<td>SANDSTONE: Low strength, moderately weathered, grey, massive, fine grained, white matrix</td>
</tr>
<tr>
<td>160</td>
<td></td>
<td></td>
<td>MUDSTONE: Low strength, brown, massive</td>
</tr>
<tr>
<td>160</td>
<td></td>
<td></td>
<td>SANDSTONE: Low strength, moderately weathered, grey, massive, fine grained, white matrix</td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

- **Surface casing:**
 - 8 1/2" PDC Bit
 - 131012_OBGGWS01_DRILLLOG_INTERIM_REV1
 - Pumped 39.3 bbl, density of 13.5 ppg

- **Class A cement:**
 - Project No.: 42626910
 - Document ID: 131012_OBGGWS01_DRILLLOG_INTERIM_REV1
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>DESCRIPTION OF STRATA</th>
<th>CONSTRUCTION DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>With some organic matter (~20%) (coal / rootlets)</td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>Laminated, poorly developed</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>INTERBEDDED SANDSTONE - MUDSTONE: Sandstone is low strength, moderately weathered, grey, massive, fine grained, while to pale grey matrix, mudstone is very low strength, brown, massive</td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>MUDSTONE: Very low strength, brown, massive</td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>INTERBEDDED MUDSTONE - SILTSTONE: Mudstone is very low strength, brown, massive, siltstone is medium strength, black, massive</td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>MOOGA SANDSTONE (199-218 mBGL) SANDSTONE: Low strength, dark grey, massive, fine grained</td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>INTERBEDDED SILTSTONE - MUDSTONE - SANDSTONE: Sandstone is low strength, dark grey, massive, fine grained, siltstone is medium strength, black, massive, mudstone is very low strength, brown, massive</td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>Grey, well sorted</td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>ORALLO FORMATION (218-371 mBGL)</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>INTERBEDDED SILTSTONE - MUDSTONE: Siltstone is medium strength, black to dark brown, massive, mudstone is very low strength, brown, massive</td>
<td></td>
</tr>
</tbody>
</table>

Surface casing (SCT; J55, 7", 23.0 lb/ft)

Class A cement; Pumped 39.3 bbl, density of 13.5 ppg
INTERBEDDED SANDSTONE - BRECCIA

SANDSTONE: Low strength, grey, laminated, poorly developed, fine-grained, well sorted

258 m: Poorly sorted

COAL and MUDSTONE

INTERBEDDED MUDSTONE-SILTSTONE: Mudstone is very low strength, brown and dark brown, massive, siltstone is medium to high strength, black, massive

SANDSTONE: Low strength, grey, laminated, poorly developed, fine-grained, well sorted

273 m: Low to medium strength, trace coal

INTERBEDDED SILTSTONE - MUDSTONE: Low strength, grey, with coal chips

279 m: Trace coal chips

MUDSTONE: Low to medium strength, pale grey and grey, with coal chips

285 m: Trace fine grained sandstone chips, trace coal chips

CONSTRUCTION DETAILS

Class A cement; Pumped 39.3 bbl, density of 13.5 ppg

Surface casing (5CT, J55, 7", 23.0lb/ft)

Drilling Method

Depth (m)

230
240
250
260
270
280
290
300

DESCRIPTION OF STRATA

230
240
250
260
270
280
290

[Diagram of stratigraphic layers with descriptions and depths]
DESCRIPTION OF STRATA

SANDSTONE: Low strength, pale grey, fine grained, poorly sorted, trace coal and mudstone chips

- 297 m: With mudstone chips
- 300 m: Trace very low strength, brown siltstone chips, trace coal chips
- 303 m: With very low strength mudstone

MUDSTONE: Low strength, pale grey, with sandstone chips

- 309 m: With siltstone and sandstone chips

INTERBEDDED MUDSTONE - SILTSTONE - SANDSTONE: Low strength, grey and brown, trace coal

SANDSTONE: Low strength, pale grey, fine grained, poorly sorted, with siltstone chips

- 327 m: With grey siltstone chips

SILTSTONE: Low strength, grey

INTERBEDDED MUDSTONE - SILTSTONE: Low strength, grey, with sandstone chips

SANDSTONE: Low strength, pale grey, fine grained, poorly sorted, with siltstone chips

- 339 m: Trace mudstone chips

SILTSTONE:

INTERBEDDED MUDSTONE - SILTSTONE: Low strength, grey, with sandstone chips

SANDSTONE: Low strength, pale grey, fine grained, poorly sorted, with siltstone chips

- 348 m: Slightly weathered, grey, massive, fine to medium grained, moderately well sorted
357 m: Fine grained, well sorted

MUDSTONE: Very low strength, highly weathered, brown, massive, with fine grained sand (~20%)

INTERBEDDED SILTSTONE - MUDSTONE: Siltstone is medium strength, black, massive, mudstone is very low strength, highly weathered, brown, massive

GUBBERAMUNDA SANDSTONE (371-481 mBGL)

375 m: Trace medium strength siltstone

SANDSTONE: Low strength, moderately weathered, grey, massive, fine grained

381 m: Slightly weathered, fine to medium grained, poorly sorted

384 m: Trace siltstone

387 m: Medium grained

390 m: Thinly laminated, fine grained, well sorted

396 m: Trace coal (~5%) and organic matter

399 m: Fine to medium grained

402 m: Fine grained

Completion casing (HWT; GLB; 4 1/2"; 10.8lb/ft)

Class A cement; Pumped 42.1 bbl, density of 13.5 ppg
DESCRIPTION OF STRATA

Depth (m)

- **417 m**: Medium grained
- **426 m**: Grey to pale grey
- **432 m**: Moderately weathered, dark grey to grey, well sorted, clay matrix

MUDSTONE: Extremely low strength, dark grey to dark brown, massive

SANDSTONE: Low strength, grey, massive, fine grained, well sorted

INTERBEDDED SANDSTONE - MUDSTONE: Sandstone is low strength, grey to dark grey, massive, fine grained, mudstone is low strength, brown, massive

456 m: Trace coal

459 m: High strength, fresh, medium grained, quartzite

468 m: Low strength, fine grained

CONSTRUCTION DETAILS

Completion casing (HWT; SLB, 4 1/2"; 10.8lb/ft)

Class A cement; Pumped 109.6 bbl, @ 3.8bpm, 320psi, density of 13.5ppg

Completion casing (HWT; SLB, 4 1/2"; 10.8lb/ft)

Class A cement; Pumped 42.1 bbl, density of 13.5ppg
Description of Strata

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>Graphic Log</th>
<th>Description of Strata</th>
</tr>
</thead>
<tbody>
<tr>
<td>470</td>
<td></td>
<td></td>
<td>SILTSTONE: Low strength, dark brown to black, massive, with sandstone (~20%)</td>
</tr>
<tr>
<td>480</td>
<td></td>
<td></td>
<td>SANDSTONE: Low strength, grey, thinly laminated, poorly developed, fine grain</td>
</tr>
<tr>
<td>480</td>
<td></td>
<td></td>
<td>WESTBOURNE FORMATION (481-570 mBGL)</td>
</tr>
<tr>
<td>490</td>
<td></td>
<td></td>
<td>MUDSTONE: Low strength, dark brown, massive</td>
</tr>
<tr>
<td>504</td>
<td></td>
<td></td>
<td>504 m: Trace sandstone</td>
</tr>
<tr>
<td>510</td>
<td></td>
<td></td>
<td>SANDSTONE: Low strength, grey, massive, fine grained, well sorted</td>
</tr>
<tr>
<td>520</td>
<td></td>
<td></td>
<td>INTERBEDDED SANDSTONE - MUDSTONE: Sandstone is low strength, grey, massive, fine grained, well sorted, mudstone is very low strength, brown to dark brown, massive</td>
</tr>
</tbody>
</table>

Construction Details

- Completion casing
 - TH: 5LB, 4 1/2": 10.8lb/ft
 - Class A cement: Pumped 42.1 bbl, density of 13.5 ppg

OBGGWS01 (INTERIM)

URS Australia Pty. Ltd.
Level 17, 240 Queen St, Brisbane QLD 4000

Phone: (07) 3243 2111
Project No.: 42626910
Phone: (07) 3243 2199
Document ID: 131012_OBGWS01_DRILLLOG_INTERIM_REV1

SANTOS NOGAMMA 121203 QWC GINT MASTER_REV1.GPJ WCC_AUS.GDT 14/11/13
DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>530</td>
<td>MUDSTONE</td>
<td>Very low strength, brown to dark brown, massive, with sandstone</td>
</tr>
<tr>
<td></td>
<td>INTERBEDDED MUDSTONE - SILTSTONE</td>
<td>Mudstone is very low strength, brown to dark brown, massive, siltstone is medium strength, black, massive</td>
</tr>
<tr>
<td></td>
<td>MUDSTONE</td>
<td>Low strength, dark grey, trace siltstone and sandstone</td>
</tr>
<tr>
<td></td>
<td>SILTSTONE</td>
<td>Low strength, dark grey, with low strength, pale grey, siltstone chips</td>
</tr>
<tr>
<td>549</td>
<td>MUDSTONE</td>
<td>Dark grey and grey</td>
</tr>
<tr>
<td>552</td>
<td>SILTSTONE</td>
<td>Trace siltstone and sandstone</td>
</tr>
<tr>
<td>561</td>
<td>WEALD SANDSTONE (570-574 mBGL)</td>
<td>Very low strength, pale grey, medium to coarse grained, trace shale and siltstone*</td>
</tr>
<tr>
<td></td>
<td>SPRINGBOK SANDSTONE (574 mBGL-EOH)</td>
<td>Very low strength, pale grey, with fine grained sandstone chips</td>
</tr>
<tr>
<td></td>
<td>SILLSTONE</td>
<td>Very low strength, pale grey, massive, with sandstone chips</td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

- **Completion casing**: HWT; SLB; 4 1/2"; 10.8 lb/ft
- **Class A cement**: Pumped 42.1 bbl, density of 13.5 ppg
591 m: With fine grained sandstone chips, trace coal

597 m: Grey

600 m: Low strength, dark grey, with sandstone chips

MUDSTONE: Very low strength, pale grey, with siltstone chips

SILTSTONE: Very low strength, pale grey, with shale and sandstone chips

MUDSTONE: Very low strength, pale grey, with shale and siltstone chips

SILTSTONE: Low strength, grey, with shale fragments

INTERBEDDED SILTSTONE - MUDSTONE: Siltstone is low strength, black, massive, mudstone is very low strength, grey and brown, massive

INTERBEDDED SANDSTONE - SILTSTONE: Sandstone is low strength, grey, massive, fine grained, siltstone is low strength, black, massive

SANDSTONE: Low strength, grey, massive, fine grained, with siltstone

SILTSTONE: Low strength, black, massive with mudstone

Completion casing (HWT; SLB; 4 1/2"; 10.8 lb/ft)

Class A cement: Pumped 42.1 bbl, density of 13.5 ppg
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method</th>
<th>Graphic Log</th>
<th>DESCRIPTION OF STRATA</th>
<th>CONSTRUCTION DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>650</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>660</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>670</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>680</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>690</td>
<td></td>
<td></td>
<td>INTERBEDDED SANDSTONE - SILTSTONE: Sandstone is low strength, moderately weathered, grey, massive, fine grained, siltstone is medium strength, black, massive</td>
<td></td>
</tr>
<tr>
<td>693</td>
<td></td>
<td></td>
<td>SANDSTONE: Low strength, moderately weathered, grey, fine grained, massive, well sorted, trace siltstone, fine grained white matrix</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td></td>
<td></td>
<td>INTERBEDDED SANDSTONE - SILTSTONE: Sandstone is low strength, grey, massive, fine grained, well sorted, siltstone is medium strength, black, massive</td>
<td></td>
</tr>
<tr>
<td>708</td>
<td></td>
<td></td>
<td>INTERBEDDED SANDSTONE - SILTSTONE: Sandstone is low strength, pale grey to white, fine to medium grained, siltstone is medium strength, dark grey</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MUDSTONE: Low strength, medium grey, with siltstone (~30%), medium strength, dark grey, thinly laminated</td>
<td></td>
</tr>
</tbody>
</table>

690 m: No siltstone
693 m: Fine to medium grained

Class A cement; Pumped 42.1 bbl, density of 13.5 ppg
Weatherford BullDog ACP and stage tool

Johnson stainless steel screen, 0.5 mm aperture screens

Class A cement; Pumped 109.6 bbl, @ 3.8 bpm, 320 psi, density of 13.5 ppg

Rat hole from 696.03 to 720.16 mBGL

Sump @ 696.03 mBGL
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>DRILLING METHOD</th>
<th>GRAPHIC LOG</th>
<th>DESCRIPTION OF STRATA</th>
<th>CONSTRUCTION DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>710</td>
<td></td>
<td></td>
<td>SILTY SANDSTONE: Low to medium strength, white to grey, fine to medium grained, siltstone (~35%) medium strength, brown to dark grey, trace (~5%) coal.</td>
<td></td>
</tr>
<tr>
<td>720</td>
<td>6 1/8" PDC Bit</td>
<td></td>
<td>SANDSTONE: Medium strength, white, brown and black, massive, fine to medium grained, poorly sorted with low to medium strength, brown, thinly laminated siltstone (~10%), trace coal (~5%). 720 m: Increase in siltstone (~25%)</td>
<td></td>
</tr>
</tbody>
</table>

END OF HOLE: 720.16 mBGL
DESCRIPTION OF STRATA

MOOGA SANDSTONE (0 - 82 m BGL)
CLAY: high plasticity, brown to orange, high moisture content, dense

MUDSTONE: Very low strength, highly weathered, dark grey, massive

SILTSTONE: Extremely low strength, grey massive

SANDSTONE: Low strength, highly weathered, grey, massive, fine grained, with some very low strength siltstone

MUDSTONE: Very low strength, highly weathered, grey, massive with some sandstone

SANDSTONE: Low strength, highly weathered, grey, massive, fine grained

CONSTRUCTION DETAILS

Lockable metal standpipe with flange

Surface casing (BTC; J55 5CT; 7", 33.7 kg/m)

Completion casing (ECPS; HWT; 5LB; 4 1/2"; 16.1 kg/m)

CBM Cement; Pumped 43.7 bbl, density of 13.50 ppg
Description of Strata

- **Intercalated Siltstone - Sandstone:** Sandstone is very low strength, grey, fine grained, siltstone is low strength, dark grey, massive.
- **Siltstone:** Low strength, dark grey, massive.
- **Sandstone:** Low strength, light grey, massive, fine to medium grained.
 - 75m: Becoming fine to medium grained, poorly sorted.
- **Sandstone:** Low strength, light grey, massive, fine to medium grained, fine white matrix throughout, trace coal.
- **Orallo Sandstone (82 - 221 mBGL):**
 - Intercalated Sandstone - Siltstone: Sandstone is low strength, light grey, massive, fine to medium grained, siltstone is low strength, dark grey, massive, high quartz content.
 - **Siltstone:** Low strength, dark grey, massive.
 - **Sandstone:** Low strength, dark grey, massive, high quartz content.
 - 93m: Trace coal throughout.
 - 99m: Becoming medium grained.
 - 102m: Becoming very low strength.
- **Intercalated Siltstone - Sandstone:** Sandstone is low strength, grey, fine to medium grained, poorly sorted, siltstone is low strength, dark grey, massive.
- **Sandstone:** Sandstone is low strength, grey, fine to medium grained, poorly sorted.

Construction Details

- Completion casing (ECPS; HWT; 5LB; 4 1/2”; 16.1 kg/m).
- CBM Cement; Pumped 43.7 bbl, density of 13.50 ppg.
DESCRIPTION OF STRATA

- **SILTSTONE**: Low to medium strength, fresh, dark grey to brown, massive
- **SANDSTONE**: Low strength, light grey, massive, fine to medium grained, with some coal throughout
- **SANDSTONE**: Low strength, light grey, massive, trace mudstone
- **SANDSTONE**: Low strength, light grey, massive, fine to medium grained
- **SANDSTONE**: Low strength, light grey, massive, fine to medium grained, poorly sorted

CONSTRUCTION DETAILS

- Completion casing (ECPS; HWT; 5LB; 4 1/2''; 16.1 kg/m)
- CBM Cement; Pumped 43.7 bbl, density of 13.50 ppg

Drilling Method

- Graphic Log
- Depth (m)
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>DESCRIPTION OF STRATA</th>
<th>CONSTRUCTION DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>SILTSTONE: Low strength, grey, trace sandstone</td>
<td>CBM Cement; Pumped 43.7 bbl, density of 13.50 ppg</td>
</tr>
<tr>
<td>183</td>
<td>MUDSTONE: Low strength, grey, trace siltstone and sandstone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>183m: With some sandstone and siltstone</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>SANDSTONE: Low strength, grey, fine grained, with some siltstone throughout</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>SILTSTONE: Low strength, grey, with some sandstone</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>SANDSTONE: Low strength, grey, fine grained, poorly sorted;</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>SILTSTONE: Low strength, grey, with some fine sandstone</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>GUBBERAMUNDA SANDSTONE (221 - 250 mBGL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SANDSTONE: Low strength, light grey, medium grained, well sorted, clay matrix</td>
<td></td>
</tr>
</tbody>
</table>
Description of Strata

Westbourne Formation (250 - 330 mBGL)

- **Siltstone:** Low strength, grey, massive

276m: Becoming moderately sorted

- **Sandstone:** Low strength, light grey, fine grained, well sorted

282m: With some siltstone

- **Siltstone:** Low strength, dark grey, massive

Construction Details

- **Completion casing:** (ECPS; HWT; SLB: 4 1/2"; 16.1 kg/m)
- **CBM Cement:** Pumped 43.7 bbl, density of 13.50 ppg
DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Stratigraphic Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>290</td>
<td>MUDSTONE</td>
<td>Low strength, dark grey, massive</td>
</tr>
<tr>
<td>310</td>
<td>SILTSTONE</td>
<td>Low strength, dark grey</td>
</tr>
<tr>
<td>312</td>
<td></td>
<td>312m: Becoming low to medium strength</td>
</tr>
<tr>
<td>330</td>
<td>WEALD SANDSTONE</td>
<td>Low strength, light grey, fine grained, poorly sorted</td>
</tr>
<tr>
<td>330</td>
<td>SPRINGBOK SANDSTONE</td>
<td>Low strength, light grey, fine grained</td>
</tr>
<tr>
<td>340</td>
<td>SANDSTONE</td>
<td>Low to medium strength, grey</td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

- **Completion casing**
 - ECPS; HWT; 4 1/2''; 16.1 kg/m
- **CBM Cement**
 - Pumped 43.7 bbl, density of 13.50 ppg
DESCRIPTION OF STRATA

- **INTERBEDDED SILSTONE - SANDSTONE:** Sandstone is low to medium strength, grey, siltstone is low strength, dark grey

- **356m:** Minor coal fragments

- **381m:** Trace coal

- **390m:** Trace coal

CONSTRUCTION DETAILS

- **End Of Hole:** 403.5 mBGL (05-10-13)

- **6 1/8" PDC Bit**

- **Anular Casing Packer, (372.43 - 343.51 mBGL)**

- **Johnson Stainless Steel 0.5 mm Aperture Screen**

- **1 m Johnson Stainless Steel Zero Sump**
NO SAMPLE

BUNGIL FORMATION (0-199 mBGL)
SILTSTONE: Low strength, grey to brown

MUDSTONE: Very low strength, dark grey

SILTSTONE: Low to medium strength, moderately weathered, black, massive

45 m: With fine grained sandstone

MUDSTONE: Very low strength, brown and dark grey with fine grained sandstone
DESCRIPTION OF STRATA

51 m: Dark grey

69 m: With (<10%) fine grained sandstone

SANDSTONE: Very low strength, grey, fine grained, with mudstone

MUDSTONE: Very low strength, dark grey

INTERBEDDED MUDSTONE - SANDSTONE: Sandstone is very low strength, grey, fine grained, mudstone is very low strength, dark grey

MUDSTONE: Very low strength, dark grey

INTERBEDDED MUDSTONE - SANDSTONE: Sandstone is very low strength, grey, fine grained, mudstone is very low strength, dark grey

Completion casing (HWT; SLB, 4 1/2", 10.8 lb/ft)

Class A cement; Pumped 52.5 bbl, density of 13.5 ppg
Description of Strata

- **SANDSTONE:** Very low strength, grey, fine grained, with siltstone and mudstone.
- **SANDSTONE:** Very low strength, grey, fine grained, trace mudstone.
- **MUDSTONE:** Very low strength, dark grey.
- **126 m:** Trace sandstone.
- **138 m:** Trace sandstone.
- **139 m:** With mudstone.
- **159 m:** With mudstone.

Construction Details

- **Completion casing:** HWT; 5LB, 4 1/2", 10.8 lb/ft.
- **Class A cement:** Pumped 52.5 bbl, density of 13.5 ppg.
DESCRIPTION OF STRATA

- **MUDSTONE**: Very low strength, dark grey, with fine grained sandstone.
- **MOOGA SANDSTONE (199-218 mBGL)**
 - Very low strength, grey, fine to coarse grained.
- **INTERBEDDED MUDSTONE - SANDSTONE**
 - Mudstone is very low strength, dark grey, sandstone is very low strength, grey, fine grained.
- **SANDSTONE**: Very low strength, grey, fine grained.
 - 213 m: Fine to coarse grained, trace mudstone.
- **ORALLO FORMATION (218-371 mBGL)**
 - 225 m: Fine grained, poorly sorted.

CONSTRUCTION DETAILS

- Completion casing
 - HWT; SLB, 4 1/2", 10.8 lb/ft
- Class A cement
 - Pumped 52.5 bbl, density of 13.5 ppg
237 m: Very low to low strength, with mudstone and siltstone

249 m: Trace coal

273 m: With mudstone and trace coal

237 m: Very low to low strength, with mudstone and siltstone

249 m: Trace coal

273 m: With mudstone and trace coal

Completion casing (HWT; SLB, 4 1/2", 10.8 lb/ft)

Class A cement; Pumped 52.5 bbl, density of 13.5 ppg
INTERBEDDED MUDSTONE - SANDSTONE: Mudstone is medium strength, dark grey, sandstone is low strength, grey, fine grained, trace coal

308 m: Mudstone becoming medium to high strength

SANDSTONE: Low strength, grey, fine grained, trace siltstone and coal

317 m: Pale grey, fine grained, well sorted, trace coal

SILTY SANDSTONE: Low strength, grey

346 m: With mudstone

349 m: Grey, fine grained, with siltstone and coal

Completion casing (HWT; SLB, 4 1/2", 10.8 lb/ft)

Class A cement; Pumped 52.5 bbl, density of 13.5ppg
DESCRIPTION OF STRATA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Drilling Method Graphic Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>Interbedded Mudstone - Sandstone: Sandstone is low strength, grey, fine to coarse grained, mudstone is medium to high strength, dark grey</td>
</tr>
<tr>
<td>360</td>
<td>Sandstone: Low strength, brown to grey, fine grained</td>
</tr>
<tr>
<td>370</td>
<td>Interbedded Mudstone - Sandstone: Sandstone is low strength, brown-grey, fine grained, mudstone is medium strength, dark grey</td>
</tr>
<tr>
<td>380</td>
<td>Gubberamura Sandstone (371-481 mBGL)</td>
</tr>
<tr>
<td>399</td>
<td>Sandstone: Low strength, grey, fine grained, with coal fragments</td>
</tr>
</tbody>
</table>

CONSTRUCTION DETAILS

- **Completion casing:** HWT; 5LB, 4 1/2", 10.8 lb/ft

- **Class A cement:** Pumped 52.5 bbl, density of 13.5ppg

6 1/8" PDC Bit

SANTOS NOGAMMA 121203 QWC GINT MASTER_REV1.GPJ WCC_AUS.GDT 14/11/13
DESCRIPTION OF STRATA

CONSTRUCTION DETAILS

INTERBEDDED SANDSTONE - SILTSTONE: Sandstone is low strength, grey, fine grained, siltstone is low strength, grey, trace coal

SILTY SANDSTONE: Low strength, grey, fine grained, with bands of dark brown and black coal

INTERBEDDED SILTSTONE - SANDSTONE: Sandstone is dark grey, very fine grained, siltstone is high strength, dark grey

444 m: Trace coal

465 m: Very low to low strength, fine to medium grained, with siltstone

468 m: Very low strength, medium grained, poorly sorted, trace coal

Completion casing: (HWT; SLB, 4 1/2", 10.8 lb/ft)

Class A cement: Pumped 52.5 bbl, density of 13.5 ppg

Weatherford BullDog ACP and stage tool

Johnson stainless steel screen, 0.5 mm aperture screens

Weatherford eighteen (18) 4 1/2" screens

Rat hole from 461.43 to 476.05 mBGL

Johnson stainless steel, zero-slot sump at 461.43 mBGL
SILTY SANDSTONE: Low strength, dark grey to pale brown, coarse grained, poorly sorted, with siltstone

474 m: Pale grey, fine to medium grained, trace coal

End of HOLE: 476.05 mBGL
Appendix F
Implementation Plan for UWIR Water Monitoring Program
| # | Tenure | Name of Tenure | Localised Tenure | Sandstone | G. Measures | Distance | monitoring frequency | Start Date | If planned monitoring start date meets requirement: Reason for delay | If Location not between existing monitoring point (km) | If Tenure Holder Monitoring Unit not same as UWIR proposed monitoring unit: Tenure Holder’s endorsement | If Tenure Holder monitoring unit specified for proposed location: Reason for delay | If distance between existing monitoring point and proposed location is >5km: Issues/Site access issues | if Distance >5km: options to ensure monitoring requirement | If planned monitoring start date does not meet requirement: Reason for delay | Planned monitoring start date | Minerals Exploration Tenure holder | Minerals Exploration Tenure holder endorsement | Minerals Exploration planned monitoring start date | Minerals Exploration proposed monitoring location | Minerals Exploration planned monitoring frequency | Minerals Exploration proposed monitoring unit
56	Santos	13303	Gubberamunda	Precipice Sandstone	fortnightly	2013 Latemore 2	Yes	Continuous data logging	Q2 2014	N/a	Already	Yes	No	6.2	5-10 km	Reinjection site	Q2 2014	No	No	Yes	Q2 2014	No	Yes	Continuous data logging	Yes	No	No
57	Santos	13304	Hereford	Hutton Sandstone	fortnightly	2013 Binbinette	Yes	Continuous data logging	Q2 2014	N/a	Already	Yes	No	0.034482	5-10 km	Not applicable	Yes	Q2 2014	No	No	Yes	N/a	Yes	Continuous data logging	Yes	No	No
58	Santos	13305	Hereford	Precipice Sandstone	fortnightly	2013 Latemore 2	Yes	Continuous data logging	Q2 2014	N/a	Already	Yes	No	6.2	5-10 km	Reinjection site	Q2 2014	No	No	Yes	Q2 2014	No	Yes	Continuous data logging	Yes	No	No
59	Santos	13306	Hereford	Precipice Sandstone	fortnightly	2013 Latemore 2	Yes	Continuous data logging	Q2 2014	N/a	Already	Yes	No	6.2	5-10 km	Reinjection site	Q2 2014	No	No	Yes	Q2 2014	No	Yes	Continuous data logging	Yes	No	No
60	Santos	13307	Hereford	Precipice Sandstone	fortnightly	2013 Latemore 2	Yes	Continuous data logging	Q2 2014	N/a	Already	Yes	No	6.2	5-10 km	Reinjection site	Q2 2014	No	No	Yes	Q2 2014	No	Yes	Continuous data logging	Yes	No	No
61	Santos	13308	Hereford	Precipice Sandstone	fortnightly	2013 Latemore 2	Yes	Continuous data logging	Q2 2014	N/a	Already	Yes	No	6.2	5-10 km	Reinjection site	Q2 2014	No	No	Yes	Q2 2014	No	Yes	Continuous data logging	Yes	No	No
62	Santos	13309	Hereford	Precipice Sandstone	fortnightly	2013 Latemore 2	Yes	Continuous data logging	Q2 2014	N/a	Already	Yes	No	6.2	5-10 km	Reinjection site	Q2 2014	No	No	Yes	Q2 2014	No	Yes	Continuous data logging	Yes	No	No
63	Santos	13310	Hereford	Precipice Sandstone	fortnightly	2013 Latemore 2	Yes	Continuous data logging	Q2 2014	N/a	Already	Yes	No	6.2	5-10 km	Reinjection site	Q2 2014	No	No	Yes	Q2 2014	No	Yes	Continuous data logging	Yes	No	No
64	Santos	13311	Hereford	Precipice Sandstone	fortnightly	2013 Latemore 2	Yes	Continuous data logging	Q2 2014	N/a	Already	Yes	No	6.2	5-10 km	Reinjection site	Q2 2014	No	No	Yes	Q2 2014	No	Yes	Continuous data logging	Yes	No	No
65	Santos	13312	Hereford	Precipice Sandstone	fortnightly	2013 Latemore 2	Yes	Continuous data logging	Q2 2014	N/a	Already	Yes	No	6.2	5-10 km	Reinjection site	Q2 2014	No	No	Yes	Q2 2014	No	Yes	Continuous data logging	Yes	No	No
66	Santos	13313	Hereford	Precipice Sandstone	fortnightly	2013 Latemore 2	Yes	Continuous data logging	Q2 2014	N/a	Already	Yes	No	6.2	5-10 km	Reinjection site	Q2 2014	No	No	Yes	Q2 2014	No	Yes	Continuous data logging	Yes	No	No
67	Santos	13314	Hereford	Precipice Sandstone	fortnightly	2013 Latemore 2	Yes	Continuous data logging	Q2 2014	N/a	Already	Yes	No	6.2	5-10 km	Reinjection site	Q2 2014	No	No	Yes	Q2 2014	No	Yes	Continuous data logging	Yes	No	No
68	Santos	13315	Hereford	Precipice Sandstone	fortnightly	2013 Latemore 2	Yes	Continuous data logging	Q2 2014	N/a	Already	Yes	No	6.2	5-10 km	Reinjection site	Q2 2014	No	No	Yes	Q2 2014	No	Yes	Continuous data logging	Yes	No	No
69	Santos	13316	Hereford	Precipice Sandstone	fortnightly	2013 Latemore 2	Yes	Continuous data logging	Q2 2014	N/a	Already	Yes	No	6.2	5-10 km	Reinjection site	Q2 2014	No	No	Yes	Q2 2014	No	Yes	Continuous data logging	Yes	No	No
70	Santos	13317	Hereford	Precipice Sandstone	fortnightly	2013 Latemore 2	Yes	Continuous data logging	Q2 2014	N/a	Already	Yes	No	6.2	5-10 km	Reinjection site	Q2 2014	No	No	Yes	Q2 2014	No	Yes	Continuous data logging	Yes	No	No
71	Santos	13318	Hereford	Precipice Sandstone	fortnightly	2013 Latemore 2	Yes	Continuous data logging	Q2 2014	N/a	Already	Yes	No	6.2	5-10 km	Reinjection site	Q2 2014	No	No	Yes	Q2 2014	No	Yes	Continuous data logging	Yes	No	No
Responsible Latitude	Responsible Longitude	Proposed Site	Distance from Proposed Site	Sandstone or siltstone or coal seam	Monitoring Frequency	Requirement Monitoring Unit	Tenure Holder	Longevity																			
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>UWIR Site 77 392 Santos -26.4391 148.8004 Upper Juandah Coal Measures fortnightly 2012 The Bend The Bend</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UWIR Site 76 385 Santos -26.465 149.0187 Orallo Formation fortnightly 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UWIR Site 74 384 Santos -26.4948 149.3649 Taroom Coal Measures fortnightly 2012 Bendemere 1 Bendemere 1 Yes Not applicable Yes -26.4948 149.3649 Yes 0 0-1 km Not applicable Yes N/a Already</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UWIR Site 74 381 Santos -26.4948 149.3649 Springbok Sandstone fortnightly 2012 Bendemere 1 Bendemere 1 Yes Not applicable Yes -26.4948 149.3649 Yes 0 0-1 km Not applicable Yes N/a Already</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OGIA Responsible Latitude UWIR Responsible Longitude UWIR Target Unit UWIR Requirement Monitoring Unit Location Completion Date Monitoring Frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>77 393 Santos -26.4391 148.8004</td>
<td>82 425 Santos -26.3685 149.106 coal seam of the Upper Juandah Coal Measures fortnightly 2013 Armidale 82 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>77 392 Santos -26.4391 148.8004 Upper Juandah Coal Measures fortnightly 2012 The Bend The Bend</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenor ID</td>
<td>Tenor Name</td>
<td>Location</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Command Plan</td>
<td>Completion Date</td>
<td>Monitoring Frequency</td>
<td>Frequency</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>--------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>83 429 542 Santos</td>
<td>Mooga Sandstone</td>
<td>fortnightly 2012</td>
<td>-26.3789</td>
<td>148.9636</td>
<td>Yes N/a</td>
<td>No</td>
<td>Continuous data logging</td>
<td>Yes</td>
</tr>
<tr>
<td>83 432 Santos</td>
<td>Upper Juandah Coal</td>
<td>fortnightly 2013</td>
<td>-26.2952</td>
<td>148.633</td>
<td>Yes</td>
<td>No</td>
<td>Continuous data logging</td>
<td>Yes</td>
</tr>
<tr>
<td>83 432 Santos</td>
<td>Lower Juandah Coal</td>
<td>fortnightly 2013</td>
<td>-26.2952</td>
<td>148.633</td>
<td>Yes</td>
<td>No</td>
<td>Continuous data logging</td>
<td>Yes</td>
</tr>
<tr>
<td>83 429 Santos</td>
<td>Moonga Sandstone</td>
<td>fortnightly 2012</td>
<td>-26.3789</td>
<td>148.9636</td>
<td>Yes N/a</td>
<td>No</td>
<td>Continuous data logging</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The table provides information about monitoring points, including the tenor name, location, latitude, longitude, command plan, completion date, monitoring frequency, frequency, recovery schedule, notes, distance, timeline, planned monitoring measures, external monitoring required, and monitoring schedule. The data is organized in a tabular format with columns for each of these attributes. The table includes notes and timelines for the monitoring activities, indicating the planned and actual completion dates, as well as the distance and timeline for monitoring. The data is specific to the Santos region and includes details about the monitoring points, such as the type of sandstone, coal, and the planned and actual monitoring frequencies and schedules.
| Site ID | Tenure Holder | Coal Seam | Monitoring Frequency | Water Quality (WQ) | Well Completion Date | Required Date for Preliminary Water Quality (WQ) | Required Date for Water Quality (WQ) | Reason for a Proposed Change | Monitoring to be Undertaken | Potential Impact on the Environment | Required Date for Preliminary Groundwater (GW) | Required Date for Groundwater (GW) | Reason for a Proposed Change | Monitoring to be Undertaken | Potential Impact on the Environment | Required Date for Preliminary Groundwater (GW) | Required Date for Groundwater (GW) | Reason for a Proposed Change | Monitoring to be Undertaken | Potential Impact on the Environment |
|--------|---------------|-----------|-------------------|------------------|------------------|---|---------------------------------|-------------------------------|-------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------------|----------------------------------|----------------------------------|
| 119 | Santos | -25.6843 | 149.1875 | Precipice Sandstone | fortnightly | 2013 | Spring Gully | Yes | Continuous sampling for both WQ & GW | Yes | 0-1 km | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes |
| 119 | Santos | -24.7348 | 149.14 | Clematis Sandstone | fortnightly | 2012 | Santos Bore ID | Yes | Continuous sampling for both WQ & GW | Yes | 0-1 km | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes |
| 119 | Santos | -25.9325 | 148.6363 | Walloon Coal Measures | fortnightly | 2016 | KNAGWP01 | Yes | Continuous sampling for both WQ & GW | Yes | 0-1 km | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes |
| 122 | Santos | -26.9346 | 149.6603 | coal seam of the Lower | annual | 2016 | Expedition National | Yes | Continuous sampling for both WQ & GW | Yes | 0-1 km | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes |
| 122 | Santos | -26.9346 | 149.6603 | coal seam of the Upper | annual | 2016 | Expedition National | Yes | Continuous sampling for both WQ & GW | Yes | 0-1 km | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes |
| 122 | Santos | -25.9325 | 148.6363 | Walloon Coal Measures | annual | 2016 | Expedition National | Yes | Continuous sampling for both WQ & GW | Yes | 0-1 km | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes |
| 122 | Santos | -26.9346 | 149.6603 | coal seam of the Lower | annual | 2016 | Expedition National | Yes | Continuous sampling for both WQ & GW | Yes | 0-1 km | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes |
| 122 | Santos | -26.9346 | 149.6603 | coal seam of the Upper | annual | 2016 | Expedition National | Yes | Continuous sampling for both WQ & GW | Yes | 0-1 km | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes |
| 133 | Santos | -25.6843 | 149.1875 | Bandanna Formation coal | fortnightly | 2016 | Expedition National | Yes | Continuous sampling for both WQ & GW | Yes | 0-1 km | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes |
| 133 | Santos | -25.6843 | 149.1875 | Bandanna Formation coal | fortnightly | 2013 | TBD | Yes | Continuous sampling for both WQ & GW | Yes | 0-1 km | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes |
| 133 | Santos | -25.6843 | 149.1875 | Bandanna Formation coal | fortnightly | 2013 | Cattle Creek | Yes | Continuous sampling for both WQ & GW | Yes | 0-1 km | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes |
| 133 | Santos | -25.6843 | 149.1875 | Bandanna Formation coal | fortnightly | 2013 | FV 87 OB1 | Yes | Continuous sampling for both WQ & GW | Yes | 0-1 km | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes |
| 133 | Santos | -25.6843 | 149.1875 | Bandanna Formation coal | fortnightly | 2013 | Possibly Mongool | Yes | Continuous sampling for both WQ & GW | Yes | 0-1 km | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes |
| 133 | Santos | -25.6843 | 149.1875 | Bandanna Formation coal | fortnightly | 2013 | MB12-E | Yes | Continuous sampling for both WQ & GW | Yes | 0-1 km | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes |
| 1349 | Santos | -24.8937 | 149.094 | - | 2.9 1-5km | - | - | Continuous sampling for both WQ & GW | Yes | 0-1 km | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes |
| 1349 | Santos | -24.8937 | 149.094 | - | 2.9 1-5km | - | - | Continuous sampling for both WQ & GW | Yes | 0-1 km | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes | Continuous sampling for both WQ & GW | Yes |

Notes:
- **Monitoring Frequency:** fortnightly
- **Water Quality (WQ):** Yes
- **Well Completion Date:** Q4 2013
- **Required Date for Preliminary Water Quality (WQ):** Yes
- **Required Date for Water Quality (WQ):** Yes
- **Reason for a Proposed Change:** Make use of existing infrastructure.
- **Monitoring to be Undertaken:** Yes
- **Potential Impact on the Environment:** Yes
- **Required Date for Preliminary Groundwater (GW):** Yes
- **Required Date for Groundwater (GW):** Yes
- **Reason for a Proposed Change:** Continuous monitoring.
- **Monitoring to be Undertaken:** Yes
- **Potential Impact on the Environment:** Yes
| Point ID (New | Monitoring Frequency | Tenure Holder | Longitude | Water Quality UWIR | Water Quality Requirement Monitoring Unit Location | Water Quality Reason for a Proposed Change | Water Quality Frequency | Planned Monitoring Frequency | Planned Monitoring Start Date | Modelling Requirement UWIR \n|---|---|---|---|---|---|---|---|---|---|---|---|
| 123 576 Santos | 2016 | Precipice Sandstone | 148.6363 | Bandanna Formation coal | Not provided | Yes 0.7 0-1 km | Site access issues | Yes | Q2 2016 | No | Continuous data logging | Yes | Not applicable | Yes |
| 123 577 Santos | 2016 | Precipice Sandstone | 148.6363 | Bandanna Formation coal | Not provided | Yes 0.7 0-1 km | Site access issues | Yes | Q2 2016 | No | Continuous data logging | Yes | Not applicable | Yes |
| 123 578 Santos | 2016 | Precipice Sandstone | 148.6363 | Bandanna Formation coal | Not provided | Yes 0.7 0-1 km | Site access issues | Yes | Q2 2016 | No | Continuous data logging | Yes | Not applicable | Yes |
| 123 579 Santos | 2016 | Precipice Sandstone | 148.6363 | Bandanna Formation coal | Not provided | Yes 0.7 0-1 km | Site access issues | Yes | Q2 2016 | No | Continuous data logging | Yes | Not applicable | Yes |
| 123 580 Santos | 2016 | Precipice Sandstone | 148.6363 | Bandanna Formation coal | Not provided | Yes 0.7 0-1 km | Site access issues | Yes | Q2 2016 | No | Continuous data logging | Yes | Not applicable | Yes |
| 123 581 Santos | 2016 | Precipice Sandstone | 148.6363 | Bandanna Formation coal | Not provided | Yes 0.7 0-1 km | Site access issues | Yes | Q2 2016 | No | Continuous data logging | Yes | Not applicable | Yes |
| 123 582 Santos | 2016 | Precipice Sandstone | 148.6363 | Bandanna Formation coal | Not provided | Yes 0.7 0-1 km | Site access issues | Yes | Q2 2016 | No | Continuous data logging | Yes | Not applicable | Yes |
| 123 583 Santos | 2016 | Precipice Sandstone | 148.6363 | Bandanna Formation coal | Not provided | Yes 0.7 0-1 km | Site access issues | Yes | Q2 2016 | No | Continuous data logging | Yes | Not applicable | Yes |
| 123 584 Santos | 2016 | Precipice Sandstone | 148.6363 | Bandanna Formation coal | Not provided | Yes 0.7 0-1 km | Site access issues | Yes | Q2 2016 | No | Continuous data logging | Yes | Not applicable | Yes |