

REPORT

Caval Ridge Groundwater Impact Assessment

BM Alliance Coal Operations Pty Ltd

Level 33 Riparian Plaza 71 Eagle Street Brisbane QLD 4000

20 March 2009 42626158

CAVAL RIDGE GROUNDWATER IMPACT ASSESSMENT

Project Manager:

Project Director:

Stephen Denner

Associate Hydrogeologist

URS Australia Pty Ltd

Level 16, 240 Queen Street Brisbane, QLD 4000 GPO Box 302, QLD 4001

Australia

Tel: 61 7 3243 2111 Fax: 61 7 3243 2199

Chris Piggot Senior Principal

> Date: 20 March 2009 Reference: Caval Ridge_GW

Technical_R001v4.doc

Status: Final

Table of Contents

1	Intro	duction	າ	1
	1.1	Scope	of Work	1
	1.2	Descri	ption of Environmental Values	3
2	Rev	iew of Ir	nformation	4
3	Exte	ent of Fi	eld Investigations	5
	3.1	Drilling	g and Installation of Groundwater Monitoring Wells	5
	3.2	Falling	/Rising Head Tests	6
	3.3	Ground	dwater Sampling	7
4	Exis	ting Gr	oundwater Environment	10
	4.1	Geolog	gy and Groundwater Occurrence	10
		4.1.1	Geology	10
		4.1.2	Groundwater Occurrence	11
	4.2	Ground	dwater Levels and Flows	14
	4.3	Ground	dwater Use	16
	4.4	Ground	dwater Quality	17
	4.5	Assess	sment of Environmental Value	18
5	Pote	ential Im	pacts and Mitigation Measures	20
	5.1	Potent	ial Impacts during Development and Operation	20
		5.1.1	Impacts on Regional Groundwater Levels	20
		5.1.2	Impacts on Groundwater Quality	24
		5.1.3	Other Impacts	25
	5.2	Potent	ial Impacts Post Mining	25
		5.2.1	Impacts on Regional Groundwater Levels	26
		5.2.2	Impacts on Groundwater Quality	26
	5.3	Mitigat	tion Measures of Potential Impacts	26
		5.3.1	General Groundwater Monitoring Program	27
		5.3.2	Seepage from Stockpiles and Ponds	28
		5.3.3	Hydrocarbon and Chemical Contamination	29
	5.4	Ground	dwater Management Strategies and Legislation	29
6	Refe	erences		31

Tables, Charts, Figures, Appendices

т	a	h	عما
	а	U	IC 3

Table 3-1	Summary of Monitoring Well Construction Details	5
Table 3-2	Summary of Falling Head Tests	7
Table 3-3	Groundwater Level Monitoring and Sampling Procedure Summary	8
Table 4-1	Litho-stratigraphy of the Caval Ridge Area	10
Table 4-2	Summary of Hydrogeological Conditions Observed at Monitoring Wells	15
Table 4-3	Groundwater Physico-Chemical Parameters	17
Table 5-1	Groundwater Ingress Data for Horse Pit	22
Table 5-2	Groundwater Ingress Data for Heyford Pit	22
Charts Chart 4-1	Histogram of Airlift Yields of Exploration Bores	14
Figures		
Figure 1	Study Area Locality	
Figure 2	Location of Bores within 10 km of Site Registered with DNRW Overlain on Geology	
Figure 3	Location of Groundwater Monitoring Wells Installed around the Project Area	
Figure 4	Groundwater Elevation Contours of Permian Moranbah Coal Measures	

Appendices

A	DNRW Database Search Results
В	BMA Peak Downs Monitoring Well Data
С	Installed Monitoring Well Logs
D	Falling/Rising Head Test Data
E	Groundwater Monitoring Well Purge Sheets
F	Groundwater Analytical Laboratory Documentation

Introduction

Section 1

URS Australia Pty Ltd (URS) was commissioned by BHP Billiton Mitsubishi Alliance Coal Operations Pty Ltd (BMA) to conduct a baseline groundwater investigation and impact assessment, as part of the Environmental Impact Statement (EIS) for the proposed Caval Ridge Mine.

The Caval Ridge Mine is a proposed open-cut coal mine located in Central Queensland. It will be located north of the existing Peak Downs Mine, 30km south of Moranbah (**Figure 1**).

This report provides an assessment of groundwater impacts associated with the proposed development of the mine and includes recommended mitigation measures and monitoring protocols.

1.1 Scope of Work

The scope of work for the groundwater investigation was based on the Terms of Reference (TOR) for the Bowen Basin Coal Growth Project released by the Queensland Department of Infrastructure and Planning (DIP 2008).

The sections of the TOR relevant to groundwater are reproduced below.

The EIS should review the quality, quantity and significance of groundwater in the Project area, together with groundwater use in neighbouring areas.

The review should include a survey of existing groundwater supply facilities (bores, wells, or excavations) within the area of any potential environmental harm. The information to be gathered for analysis is to include:

- location;
- pumping parameters and yield at nearby bores;
- draw down and recharge at normal pumping rates; and
- seasonal variations (if records exist) of groundwater levels.

A network of observation points which would satisfactorily monitor groundwater resources both before and after commencement of operations should be developed.

This section should include reference to:

- nature of the aquifer/s:
 - geology/stratigraphy such as alluvium, volcanic, metamorphic;
 - aquifer type such as confined, unconfined; and
 - depth to and thickness of the aquifers.
- hydrology of the aquifer/s:
 - depth to water level and seasonal changes in levels;
 - groundwater flow directions (defined from water level contours);
 - interaction with surface water;
 - interaction with sea/salt water;

Introduction

- possible sources of recharge; and
- vulnerability to pollution.

The data obtained from the groundwater survey should be sufficient to enable specification of the major ionic species present in the groundwater, pH, electrical conductivity and total dissolved solids.

Describe the environmental values of the underground waters of the affected area in terms of:

- values identified in the EPP (Water) [Environmental Protection (Water) Policy 1997];
- sustainability, including both quality and quantity; and
- physical integrity, fluvial processes and morphology of groundwater resources.

The EIS should include an assessment of the potential environmental harm caused by the proposal to local groundwater resources as expressed in the EPP (Water) 1997.

The impact assessment should define the extent of the area within which groundwater resources are likely to be affected by the proposed operations and any final void(s) left after mining ceases, and the significance of the project to groundwater depletion or recharge, and propose management options available to monitor and mitigate these effects. The response of the groundwater resource to the progression and finally cessation of the proposal should be described.

An assessment should be undertaken of the impact of the project on the local ground water regime caused by the altered porosity and permeability of any land disturbance and any final void(s) left after mining ceases.

An assessment of the potential to contaminate groundwater resources and measures to prevent, mitigate and remediate such contamination should be discussed.

Water management controls should be described, addressing groundwater quality and quantity. The beneficial (environmental, production and recreational) use of nearby groundwater should be discussed. Monitoring programs should be described which will assess the effectiveness of management strategies for protecting water quality during the construction, operation and decommissioning of the proposal.

The objective of this study was to assess the potential impacts of the coal mining activities on the hydrogeological regime and, if necessary, identify measures for monitoring and/or mitigation of impacts as specified in the TOR. To achieve this objective, the scope of work included:

- a review of hydrogeological and geological data existing in the public domain, including reports and records held in the Department of Mine and Energy (DME) and Department of Natural Resources and Water (DNRW) libraries and maps published by the Geological Survey of Queensland;
- a review of exploration bore data provided by BMA;
- a review of hydrogeological data held on the DNRW Groundwater Database for existing water bores in the area;
- field investigations comprised of drilling and monitoring bore installation, groundwater sampling and falling/rising head tests;

Introduction

Section '

- an assessment and analysis of all available hydrogeological data though the development of a conceptual hydrogeological model and empirical calculations; and
- preparation of a report detailing the potential impacts of the proposed development on the groundwater regime.

1.2 Description of Environmental Values

The Environmental Protection (Water) Policy 1997 and the Environmental Protection (Water) Amendment Policy (No. 1) 2007 [herein collectively referred to as the EPP (Water)] serves to protect Queensland's waters while allowing for ecologically sustainable development. The purpose of this policy is achieved by providing a framework for:

- Identifying environmental values for Queensland waters;
- Deciding and stating water quality guidelines and objectives to enhance or protect the environmental values:
- Making consistent and equitable decisions about Queensland waters that promote efficient use of resources and best practice environmental management; and
- Involving the community through consultation and education, and promoting community responsibility.

The location of the proposed Caval Ridge Mine is outside those areas described in Schedule 1 of the EPP (Water). The EPP (Water) states that for waters not listed in Schedule 1 the environmental values to be enhanced or protected are the following qualities:

- Biological integrity of a pristine or modified aquatic ecosystem;
- Suitability for recreational use (primary recreation, secondary recreation, visual appreciation);
- Suitability for minimal treatment before supply as drinking water;
- Suitability for use in primary industries (irrigating crops, farm use, stock water, aquaculture, aquatic food for human consumption);
- Suitability for industrial use; and
- Cultural and spiritual values.

Review of Information

This groundwater assessment is based on a review of available information and additional data collected on-site between May 2008 and March 2009. The previous studies undertaken within the study area and the additional data collected have been used to describe the baseline groundwater resources.

The description of existing hydrogeological conditions at the site is based on the following available data sources:

- Historical reports and data collected by BMA from the exploration drilling conducted on-site;
- Environmental impact studies conducted for other coal mines in the area including
 - Daunia Coal Mine Project (Daunia) EIS (SKM, 2008);
 - Poitrel Coal Mine Project (Poitrel) EIS (SKM, 2005);
 - Integrated Issac Plains Project (IIPP) Supplementary EIS (Matrix+ Consulting Pty Ltd, 2008);
 - Carborough Downs Mine Expansion Draft EIS (Matrix+ Consulting Pty Ltd, 2007);
- Mount Coolon 1:250,000 Geological Map (Sheet SF55-7);
- Clermont 1:250,000 Geological Map (Sheet SF55-11);
- A search of the DNRW groundwater and licensing database for registered bores located within a 10 km radius of the site:
- Historical groundwater monitoring data for the period 2005 to 2007, recorded by BMA for the Peak Downs Mine; and
- Additional groundwater and lithological data collected on-site by URS between May 2008 and March 2009.

A search of the DNRW registered bore database on 8 November 2007 revealed that 13 groundwater bores have been installed and registered within a 10 km radius of the proposed project site. Of these 13 bores, 3 have been destroyed, 9 have been installed for private use, and 4 have been installed by DNRW for groundwater monitoring and assessment. The locations of these registered groundwater bores are shown on **Figure 2**. Extracts of the bore records from the DNRW groundwater database are provided in **Appendix A**.

A number of previous studies have assessed groundwater conditions in the vicinity of the project area. An EIS was prepared for the IIPP proposed coal mine by Matrix+ Consulting Pty Ltd (2008). The IIPP site is located approximately 9 km east of the proposed Caval Ridge Mine. An EIS was prepared for the Carborough Downs mine expansion by Matrix+ Consulting Pty Ltd (2007). The Carborough Downs mine site is located approximately 16 km northeast of the proposed Caval Ridge Mine. An EIS was prepared for the Poitrel coal mine by SKM (2005). The Poitrel coal mine site is located approximately 14 km east of the proposed Caval Ridge Mine. An EIS was prepared for the proposed Caval Ridge Mine. The Daunia site is located approximately 21 km east of the proposed Caval Ridge Mine.

The BMA operated Peak Downs coal mine undertakes monitoring of a network of groundwater monitoring wells as part of the environmental monitoring of its operations. The locations of these monitoring wells are displayed on **Figure 3**. The full set of data supplied by BMA are provided in **Appendix B**.

Extent of Field Investigations

Section 3

Following the review of available information, a gap analysis determined that field investigations were required to provide additional information in order to describe the groundwater environment of the study area.

Field investigations undertaken to obtain site specific data for the proposed Caval Ridge Mine comprised drilling and monitoring well installation, groundwater sampling, and variable head tests.

A total of 16 bores were drilled and monitoring wells installed between 12 and 23 May 2008. After development, falling or rising head tests were conducted within the monitoring wells. Groundwater samples were collected from these monitoring wells during three sampling rounds from 5 to 8 June 2008, from 8 to 11 September 2008, and from 27 February to 3 March 2009.

3.1 Drilling and Installation of Groundwater Monitoring Wells

Sixteen bores were drilled and monitoring wells installed at eleven sites. At some sites a nest of monitoring wells were installed targeting separate geological formations. The locations of the monitoring wells are shown on **Figure 3**. A construction summary of each monitoring well is presented in **Table 3-1** and the detailed lithology and construction logs are presented in **Appendix C**. All monitoring wells were constructed in accordance with the *Minimum Construction Requirements for Water Bores in Australia* (LWBC, 2003)

Table 3-1 Summary of Monitoring Well Construction De
--

Monitoring Well	Easting (m) ^a	Northing (m) ^a	Top of Casing Elevation (mAHD) ^a	Ground Level Elevation (mAHD) ^a	Bore Depth (mbgl)	Well Screen Interval (mbgl)	Formation Screened
Pz01	609752	7560149	TBD	218	85.5	82.5-85.5	Coal Seam D04
Pz02	608384	7558233	TBD	240	35	24-35	Basalt
Pz03-S	608920	7556710	TBD	246	26.5	17.5-26.5	Basalt
Pz03-D	608920	7556710	TBD	246	42.8	39.8-42.8	Coal Seam D04
Pz04	610730	7555327	TBD	279	93.1	87.1-93.1	Coal Seam Q
Pz05	608929	7554114	TBD	255	118	115-118	Coal Seam D04
Pz06-S	611129	7551675	TBD	242	31	22-31	Basalt
Pz06-D	611129	7551675	TBD	242	84	81-84	Coal Seam P02
Pz07-S	612441	7550671	TBD	226	16	9-15	Alluvium
Pz07-D	612441	7550671	TBD	226	44	41-44	Coal Seam Q01
Pz08-S	611249	7549500	TBD	231	16	9-15	Alluvium
Pz08-D	611249	7549500	TBD	231	63	60-63	Sandstone Interburden
Pz09	614317	7548834	TBD	224	77	71-77	Coal Seam P08
Pz10	613679	7548084	TBD	234	83	77-83	Coal Seam H08
Pz11-S	616863	7547756	TBD	219	58	6-9	Alluvium
Pz11-D	616863	7547756	TBD	219	58	55-58	Coal Seam P08

a) The bores had not been surveyed at the time of report preparation; hence the location and elevation to AHD cannot be accurately determined. The values in this table were developed based on GPS readings and the 1m topographical contours for the site. Easting, Northing and Elevation values are approximate only, exact details will be provided when bores are surveyed.

TBD - To be determined after the bores have been surveyed.

Extent of Field Investigations

All bores were drilled using a top head drive UDR 650 rig and the monitoring wells installed by Capricorn Weston Drilling Group, under direction from a Class 2 licensed water driller from Wizard Drilling. The drilling and installation sequence undertaken for the monitoring bores was as follows:

- 1) A 165 mm diameter hole was drilled to the desired depth using the rotary air method.
- 2) Class 9 or class 12 uPVC slotted screen and class 9 or class 12 uPVC casing (class dependent on depth of installation) was installed to the desired depth in the hole.
- 3) The annulus between the bore and the casing/screen was gravel packed from the base to the desired height above the screen. A 1 m bentonite seal was installed above the gravel pack and then the bore was backfill to approximately 6 m below surface elevation. The bore was then grouted above the backfill to surface.
- 4) A lockable steel standpipe was cemented in place over the top of the bore.
- 5) Each newly constructed monitoring well was developed at the time of installation by jetting water to the bottom of the bore and air lifting. Development was not possible on Pz02, Pz03-S, Pz06-S, Pz07-S, Pz08-S and Pz11-S as these bores were dry when installed.

3.2 Falling/Rising Head Tests

Variable head tests were conducted to determine estimates of the aquifer hydraulic conductivity (K) as outlined below:

- An electronic data logging pressure transducer was set to take water level measurements at 1 second intervals;
- 2) The transducer was installed inside the monitoring well below the water level;
- 3) The standing water level was measured using the electronic water level tape;
- 4) A slug of water was inserted (falling) or removed (rising) from the monitoring well to produce an instantaneous change in head;
- 5) The bore was allowed to recover to at least 80% of the initial standing water level;
- 6) The transducer was retrieved and the data was downloaded; and
- 7) The data was analysed graphically using the methods of Hvorslev (1951) and Bouwer and Rice (1989) to determine estimates of the aquifer hydraulic conductivity.

A summary of the results is presented in **Table 3-2** with the analysis graphs for the falling/rising head tests provided in **Appendix D**. No falling/rising head test was conducted on monitoring well Pz11-S as it was dry.

Extent of Field Investigations

Section 3

Table 3-2 Summary of Falling Head Tests

Monitoring Well	Formation Screened	Hydraulic Conductiv	ity [K] (m/day)
		Bouwer & Rice Method	Hvorslev Method
Pz01	Coal Seam D04	1.00 x 10 ⁻¹	1.30 x 10 ⁻¹
Pz02	Basalt	5.18 x 10 ⁻³	6.49 x 10 ⁻³
Pz03-S	Basalt	8.25 x 10 ⁻²	1.11 x 10 ⁻¹
Pz03-D	Coal Seam D04	4.60 x 10 ⁻¹	5.90 x 10 ⁻¹
Pz04	Coal Seam Q	2.60 x 10 ⁻¹	3.25 x 10 ⁻¹
Pz05	Coal Seam D04	2.49 x 10 ⁻²	3.36 x 10 ⁻²
Pz06-S	Basalt	1.38 x 10 ⁻¹	1.91 x 10 ⁻¹
Pz06-D	Coal Seam P02	6.12 x 10 ⁻²	7.92 x 10 ⁻²
Pz07-S	Alluvium	2.69 x 10 ⁻¹	3.79 x 10 ⁻¹
Pz07-D	Coal Seam Q01	2.60 x 10 ⁻¹	3.30 x 10 ⁻¹
Pz08-S	Alluvium	8.78 x 10 ⁻²	1.22 x 10 ⁻¹
Pz08-D	Sandstone Interburden	2.60 x 10 ⁻²	3.40 x 10 ⁻²
Pz09	Coal Seam P08	1.25 x 10 ⁻¹	1.60 x 10 ⁻¹
Pz10	Coal Seam H08	2.82 x 10 ⁻²	3.60 x 10 ⁻²
Pz11-S	Alluvium	Dry	Dry
Pz11-D	Coal Seam P08	2.90 x 10 ⁻²	3.70 x 10 ⁻²

3.3 Groundwater Sampling

Groundwater level monitoring and sampling was conducted using standard industry procedures. These procedures are summarised in **Table 3-3**.

Extent of Field Investigations

Table 3-3 Groundwater Level Monitoring and Sampling Procedure Summary

Activity/Item	Details			
Groundwater Level Monitoring	The groundwater levels in all monitoring wells were measured using a depth to water interface probe. The total depth of the bore was also checked using this probe, with the exception of Pz05 which was 118 m deep and beyond the limit of the tape.			
Monitoring Bore Purging and Sampling	A low flow air operated purging/sampling pump was used to purge monitoring wells with air supplied from a compressor. Groundwater physico-chemical parameters including Electrical Conductivity (EC), pH, Temperature, Redox (Eh), and Dissolved Oxygen (DO) were measured and recorded at regular intervals during purging. The monitoring wells were considered purged when the groundwater physico-chemical parameters had stabilised.			
	The following monitoring wells were purged using the pump: Pz01, Pz02, Pz03-D, Pz05, Pz06-D, Pz07-D, Pz08-D, Pz09, Pz10 and Pz11-D.			
	Dedicated disposable plastic bailers were used to purge shallow monitoring wells with low water levels, where the pump was not suitable. A minimum of three bore volumes were removed and the groundwater physico-chemical parameters were measured after each bore volume to check for stabilisation. The monitoring wells were considered purged when the groundwater physico-chemical parameters had stabilised.			
	The following monitoring wells were purged using bailers: Pz03-S, Pz06-S, Pz07-S and Pz08-S.			
	One monitoring well, Pz04, was not purged as the static water level was at the limit of the pump and the large bore volume (approximately 52 L) would make purging three bore volumes with a bailer an unacceptable manual handling risk. A grab sample was collected from the unpurged bore.			
	Immediately following purging, a groundwater sample was collected from each monitoring well using the same method as used to purge the bore.			
	It is considered that monitoring wells PZ01, Pz05, Pz09, Pz10 and Pz11-D may not have been adequately purged prior to sampling during the June 2008 monitoring event and monitoring wells Pz01 and Pz05 during the September 2008 monitoring event as the water quality from these wells was considerably poorer from the February-March 2009 monitoring event.			
Sample Preservation	Samples were placed in laboratory-supplied bottles containing appropriate preservatives. Samples were stored at $\pm4^{\circ}C$ and in the dark while on-site and in transit to the laboratory. Samples collected for dissolved metals analysis were filtered through 0.45 μm filters in the field before being placed in the laboratory-supplied bottles containing acid preservative.			
Disposal of Purged Groundwater	Purged water from the monitoring wells was disposed to ground adjacent to each monitoring well.			
Decontamination Procedure	Non-disposable monitoring and sampling equipment was decontaminated with Decon 90 solution and rinsed with water (potable or distilled, as required) between monitoring wells. Disposable equipment was used once only before being disposed.			
Quality Assurance and Quality Control	In line with established guidelines, quality control samples were collected during the field investigations in order to assess the integrity of the sampling procedures and of the analytical results. These QA samples included field blanks used to identify any potential contamination of the rinsate water or sampling containers supplied by the laboratory, equipment rinsate blanks used to identify any potential cross contamination between samples and potential influences from the sampling equipment used, and duplicate samples to assess repeatability of the laboratory determinations.			

Groundwater purge details are presented in **Appendix E** and results of the measurements of the physicochemical parameters at the end of the purging are discussed in **Section 4.4**.

Extent of Field Investigations

Section 3

All monitoring well and QA/QC samples were sent to ALS, an analytical laboratory in Brisbane that is NATA-accredited for the required analyses, with appropriate Chain of Custody (CoC) forms. All laboratory documentation is provided in **Appendix F** and the analytical results are discussed in **Section 4.4**.

Existing Groundwater Environment

4.1 Geology and Groundwater Occurrence

4.1.1 Geology

The proposed Caval Ridge Mine is located on the relatively undisturbed western limb of the northern Bowen Basin which overlies the Collinsville Shelf (part of the Clermont Block) in the area. The Bowen Basin in the area is characterised by a relatively thin accumulation of sediments, gentle easterly dips and minor to moderate deformation.

Regionally, the stratigraphic sequence is summarised as follows: the Permo-Triassic sediments of the Bowen Basin are overlain by a veneer of unconsolidated Quaternary alluvium and colluvium, poorly consolidated Tertiary sediments and, in places, remnants of Tertiary basalt flows.

The litho-stratigraphy of the area is shown in **Table 4-1**. The local geology of the area is presented in **Figure 2**. The Moranbah Coal Measures, which contain the coal seams proposed to be extracted by the project, conformably overlie the German Creek Formation and are conformably overlain by the Fort Cooper Coal Measures.

Table 4-1 Litho-stratigraphy of the Caval Ridge Area

Age	Group	Formation	Description
Quaternary	Undifferentiated alluvium and colluvium		Alluvium, mainly clay, silt, sand and gravel
Tertiary	Undifferentiated basalts		Olivine basalt lava flows
	Undifferentiated sediments		Soil, alluvium, gravel, scree, sand, duricrust
Late Permian	Blackwater Group	Rangal Coal Measures	Sandstone, siltstone, mudstone, coal, tuff, conglomerate
		Fair Hill Formation,Fort Cooper Coal Measures	Sandstone, conglomerate, mudstone, carbonaceous shale, coal, cherty tuff
		Moranbah Coal Measures	Labile sandstone, siltstone, mudstone, coal
	Back Creek Group	German Creek Formation	Sandstone, siltstone, carbonaceous shale, minor coal and sandy coquinite

All units of the Permo-Triassic sequence generally dip from west to east at between 3 and 6 degrees in the vicinity of the site. The sequence within the northern extension of the Peak Downs Mine (located to the south of the Caval Ridge Mine) shows considerable deformation with strata dipping to 30 degrees and along strike flexures in excess of 10 degrees. Faulting and seam splitting is common, producing local steepening of the coal seam dips to over 10 degrees. Minor faulting occurs in the seams in the proposed Caval Ridge Mine area. Vertical displacement along faults ranges from less than 1 metre to 36 metres along the regional Harrow Creek Fault in the Peak Downs Mine.

The lithology of the Moranbah Coal Measures is generally characterised by 300 m of fine-grained sandstone, siltstone, mudstone, claystone and coal, which remains uniform throughout the entire site. The Moranbah Coal Measures are characterised by several laterally persistent, relatively thick, coal seams interspersed with several thin minor seams which commonly split and coalesce. The target seams for the proposed Caval Ridge Mine are

Existing Groundwater Environment

Section 4

all the seams in the lease that are > 30 cm thick. The primary targets are the Q seam - P seam zone, the Harrow Creek (H) group of seams, and the Dysart (D) seams.

The poorly consolidated Tertiary sediments unconformably overlie an irregular erosion surface of Permian strata. These sediments consist of lenses of river channel gravels and sands separated by sandy silts, sandy clays, and clays. The Tertiary silts and clays are densely compacted, hard and generally dry. Most of the clean sand and gravel lenses are permeable but are of limited lateral and vertical extent. Lag deposits of sand and gravel are found directly on the Tertiary/Permian unconformity, but can also be present related to recent Quaternary deposition from the drainage lines in the area.

In the north remains of Tertiary basalt flows overlay the Permian sequence. The basalt is typically variably weathered.

4.1.2 Groundwater Occurrence

An aquifer is defined as a groundwater bearing formation sufficiently permeable to transmit and yield water in useable quantities. The Quaternary alluvial formations, Tertiary sediment and basalt formations, and the Permian coal measures generally yield low sustainable volumes of poor quality groundwater and are not recognised aquifers in the area. However, as groundwater levels in these formations are likely to be affected by mining, for the purposes of this investigation each unit will be considered as an aquifer.

Quaternary Alluvial Aquifers

Quaternary alluvial deposits in the region occur predominantly along creeks such as Horse Creek and Cherwell Creek. Along Cherwell Creek the alluvium comprises 6 - 9 m of clay and silt at the surface which is underlain by up to 10 m of sand and gravel with varying proportions of clay and silt as observed in monitoring wells Pz07-S and Pz08-S. No alluvium was encountered adjacent to Horse Creek at monitoring well Pz01, and the alluvium encountered at monitoring well Pz11-S (8 m thick) adjacent to Winchester Creek was dry at the time of installation. Potential for groundwater exists within the sand and gravel deposits of the alluvium, and represents an unconfined to semi-confined aquifer. Groundwater movement within the alluvium is predominantly via intergranular flow.

Recharge to the shallow alluvial aquifer comes from two main sources:

- Recharge from surface water flow or flooding (losing river); and
- Surface infiltration of rainfall and overland flow, where alluvium is exposed and no substantial clay barriers
 occur in the shallow sub-surface.

Due to their shallow depth and limited extent and continuity, the Quaternary alluvium is not considered a significant aquifer. However, during periods of creek flow, the alluvium may become fully saturated and discharge to sub-cropping coal seams. The groundwater level in the alluvium, measured at Pz07-S and Pz08-S, were approximately 0.5 and 12 m above the piezometric water level in the coal at the same locations (Pz07-D and Pz08-D). This indicates possible slow groundwater movement from the alluvium to the coal seams. It is unlikely that changes in coal water levels would significantly impact on groundwater levels in the alluvium.

Hydraulic testing of the Quaternary alluvium provided hydraulic conductivity rates between 0.09 and 0.4 m/day, which are typical for silt to fine sand. The Quaternary alluvial aquifers are not regionally extensive and, accordingly, groundwater extraction at high rates would not be sustainable in the long term.

Existing Groundwater Environment

Tertiary Sediment Aquifers

The Tertiary sediments of the region consist of lenses of palaeochannel gravels and sands separated by sandy silts, sandy clays and clays. A review of the borehole logs for the project showed the Tertiary sediments vary in thickness from non-existent to approximately 30 m. The silts and clays are densely compacted, hard and generally dry. Potential for groundwater exists within sandy and gravely sections of the sediment pile, and represents an unconfined to confined aquifer depending on location. Most of the clean sand and gravel lenses are permeable but are of limited lateral and vertical extent. Groundwater movement within the Tertiary sediment is predominantly via inter-granular flow.

Recharge to the Tertiary sediment aquifers is likely to come from surface infiltration of rainfall and overland flow, where the Tertiary sediments are exposed and no substantial clay barriers occur in the shallow sub-surface. Recharge may also occur by vertical seepage from overlying Quaternary alluvial aquifers.

The nature of the Tertiary sediment aquifers, and hence their permeability and porosity, is likely to be highly variable, depending on the proportion of fine material. A review of borehole logs for the project area showed that the Tertiary stratigraphy is dominated by clays, sandy clays, and compacted sands with isolated areas of loose sand. The drilling program undertaken as part of this study showed that the Tertiary sediments do not contain significant volumes of groundwater locally. However, where the sediment is coarse in composition, the unit may have local zones of moderate to high hydraulic conductivity. Historically mining issues with Tertiary sediment derived groundwater at the Peak Downs Mine to the south of the proposed Caval Ridge Mine appear to have been limited to pit wall stability rather than ongoing problems with groundwater inflow, indicating the limited lateral extent of the more permeable areas.

Tertiary Basalt Aquifers

An aeromagnetic geophysical survey has been undertaken over the proposed Caval Ridge Mine site. The aeromagnetics show that Tertiary basalt extends from north of the project area, along the ridge adjacent to Horse Creek in a north-south direction as shown in **Figure 3**. The interpretation of the aeromagnetic geophysical survey indicated that there is approximately 81.5 Mm³ of basalt in the area of Horse Creek. The areal extent of the basalt is approximately 7.2 Mm², giving the basalt an average thickness of approximately 11 m. Tertiary basalt also occurs in the area between the Peak Downs Highway and Cherwell Creek in the project area, with a stinger of basalt crossing Cherwell Creek in a southeasterly direction toward the Heyford Pit of the Peak Downs Mine.

For the exploration boreholes and monitoring wells that intersected basalt, the basalt is logged as fresh to highly weathered with variable clay, and is up to 35 m thick. The distribution of less-weathered, water-bearing fractured and vesicular basalt is quite variable.

Recharge to the Tertiary basalt aquifers is likely to come from surface infiltration of rainfall and overland flow, where the basalt is exposed and no substantial clay barriers occur in the shallow sub-surface. Recharge may also occur by vertical seepage from overlying Quaternary alluvial aquifers. The generally clayey nature of the weathered upper basalt and the Tertiary sediments associated with the basalt, indicate that the potential of recharge is low. The groundwater level in the alluvium, measured at Pz03-S and Pz06-S, were \pm 4 and 6 m above the piezometric water level in the coal at the same locations (Pz03-D and Pz06-D) which indicates groundwater movement is downwards.

The permeability and porosity of the Tertiary basalt aquifers is highly variable, depending on the degree of weathering and the intensity of fracturing. Interpreted hydraulic conductivity values of 5.18 x 10⁻³ to 1.91 x 10⁻¹ m/day were obtained from the falling/rising head tests for monitoring wells Pz02, Pz03-S and Pz06-S. However,

Existing Groundwater Environment

Section 4

where the basalt is less weathered and more fractured or vesicular, the unit may have local zones of moderate to high hydraulic conductivity. The drilling program undertaken as part of this study showed that the Tertiary basalt appears to be highly heterogeneous and discontinuous locally. Historically mining issues with Tertiary basalt derived groundwaters at the Peak Downs Mine immediately to the south appear to have been limited to pit wall stability rather than ongoing problems with groundwater inflow, indicating the limited lateral extent of the more permeable areas on site.

Permian Strata Aquifers

Primary porosity in the Permian strata is limited, as even the sandstone beds have a significant clay or cement content. Excluding the larger scale discontinuities such as faults, flow in this unit is likely to be predominantly via fracture flow. Aquifer permeability will be controlled by the spacing, aperture size and interconnectivity of the discontinuities. These parameters are not well defined for the site.

In common with other areas in the Bowen Basin, the coal seams constitute the main aquifers in the Permian strata, but the jointed sandstone overburden and interburden may also be locally important for storage and transmittal of groundwater. The vertical anisotropy in the Permian strata may restrict upward/downward leakage, both between layers within the Permian and from the overlying Tertiary formations and alluvium. Consequently, perched water tables may be present above layers of low permeability material, such as mudstones or unfractured rock within or above the Permian. However there will be local interconnection of aquifers along fault planes.

There are three main coal seams in the proposed Caval Ridge Mine area, the Q seam - P seam zone, the Harrow Creek (H) group of seams and the Dysart (D) seams. These main coal seams form the most extensive aquifers locally. The coal seams subcrop in the western half of the site, and the coal seam aquifers are semi-confined to confined depending on location.

Recharge of coal seams is generally by infiltration of rainfall and overland flow in subcrop areas, and by downward leakage from overlying aquifers in the Tertiary formations and Quaternary alluvium. It is considered that due to the clayey nature of the Tertiary formations unconformably overlying the coal seams, recharge from rainfall infiltration will be limited. Leakage between aquifers through faults is governed by the hydraulic conductivity of the fault, the interburden thickness between the aquifers, and the piezometric level in the aquifers.

Interpreted hydraulic conductivity values determined during investigations as part of this study are presented in **Section 3.2**. The testing indicates that the cleats and joints in the coal are less open with depth, with a corresponding decrease in permeability.

An interrogation of the BMA exploration bore database was undertaken to assess airlift yields determined during drilling. Of the 2427 exploration bores identified on site, 164 had recorded airlift yields. Airlift yields recorded during drilling of the exploration bores are summarised in the histogram presented as **Chart 4-1**.

Existing Groundwater Environment

Chart 4-1 Histogram of Airlift Yields of Exploration Bores

The data indicates that approximately 60% of the exploration bores yielded 0.5 L/s or less, with approximately 30% of bores yielding between 0.5 and 2 L/s. Less than 2% of exploration bores yielded greater than 5L/s. Many of the exploration bores that did not have recorded airlift yields in the exploration database may have been dry, thus the histogram may overestimate the yield from the Permian strata. The length of time for which the airlifting was conducted was not available, therefore the sustainability of these yields is not known.

Historically, mining issues with the Permian strata derived groundwaters in the Peak Downs Mine immediately to the south appear to have been limited to pit wall stability rather than ongoing problems with groundwater inflow, indicating the generally low permeability of the Permian strata on site. Groundwater and surface water inflow are removed by pumping from in-pit sumps.

4.2 Groundwater Levels and Flows

The 16 groundwater monitoring wells installed on-site were accessible for level monitoring during three separate events in June 2008, September 2008, and February-March 2009. The locations of these bores are shown on **Figure 3**. A summary of the hydrogeological conditions encountered at each monitoring well site is summarised in **Table 4-2**.

Existing Groundwater Environment

Section 4

Table 4-2 Summary of Hydrogeological Conditions Observed at Monitoring Wells

Monitoring Bore ID	Aquifer Aquifer Standing Water Level Material Type (mbgl)		Level	Sta	inding Water (mAHD)ª	Level		
			June 2008	September 2008	March 2009	June 2008	September 2008	March 2009
Pz01	Coal Seam D04	Confined	8.44	8.39	8.21	210	210	210
Pz02	Basalt	Unconfined	25.65	25.64	25.69	214	214	214
Pz03-S	Basalt	Unconfined	25.49	25.53	25.57	221	220	220
Pz03-D	Coal Seam D04	Confined	31.76	31.73	31.76	214	214	214
Pz04	Coal Seam Q	Confined	67.58	67.53	67.49	211	211	212
Pz05	Coal Seam D04	Confined	37.60	37.57	37.69	217	217	217
Pz06-S	Basalt	Unconfined	26.23	26.25	26.21	216	216	216
Pz06-D	Coal Seam P02	Confined	29.94	29.96	30.00	212	212	212
Pz07-S	Alluvium	Unconfined	13.49	13.67	13.67	213	212	212
Pz07-D	Coal Seam Q01	Confined	14.15	14.22	14.27	212	212	212
Pz08-S	Alluvium	Unconfined	14.05	13.11	13.27	217	218	218
Pz08-D	Sandstone Interburden	Confined	27.05	25.61	25.29	204	205	206
Pz09	Coal Seam P08	Confined	19.68	19.44	19.87	204	205	204
Pz10	Coal Seam H08	Confined	41.56	41.86	Destroyed	192	192	Destroyed
Pz11-S	Alluvium	Unconfined	Dry	Dry	Dry	Dry	Dry	Dry
Pz11-D	Coal Seam P08	Confined	11.78	12.00	12.20	207	207	207

a) The bores had not been surveyed at the time of report preparation; hence the standing water level relative to AHD cannot be accurately determined. The values in this table were developed based on GPS readings and the 1m topographical contours for the site. Exact details will be provided when bores are surveyed.

The main factors influencing natural groundwater levels are groundwater recharge, evapotranspiration, and regional flow patterns. The low number of groundwater wells in the area indicates that groundwater extraction is unlikely to have had a significant impact on historical regional groundwater levels. On a time-frame of years and decades, land-use and land-cover changes may have significantly altered the natural water-balance and groundwater levels. The typical impact in Australia has been a tendency towards deforestation and greater net recharge and therefore higher water-tables.

Quaternary Alluvial, Tertiary Sediment and Tertiary Basalt Aquifers

The depth to water in monitoring wells on-site in the Quaternary alluvium aquifer during this investigation was typically less than 15 m below ground level (mbgl). The depth to water on-site in the Tertiary basalt aquifer was less than 30 mbgl. No depth to groundwater information exists for the Tertiary sediment at this time as the Tertiary sediment encountered during groundwater monitoring well installation was shallow and dry, but is likely to be similar to the depth to groundwater in the Quaternary alluvium and basalt aquifers in areas of thicker sediment accumulation.

Due to the heterogeneity and discontinuity of the Quaternary alluvial aquifers and Tertiary sediment and basalt aquifers, the groundwater flow direction cannot be determined on a regional scale for these aquifers. The groundwater flow direction is likely to be topographically controlled, flowing from higher elevations to lower elevations. The groundwater level in the Cherwell Creek alluvium falls from approximately 218 to 212 mAHD as

Existing Groundwater Environment

it traverses the site (Pz08-S to Pz07-S), indicating that groundwater will generally flow along the line of the creek. The groundwater level in the basalt in the north of the site falls from approximately 220 to 214 mAHD (Pz03-S to Pz02) to the north.

No data exist on the seasonal fluctuations of groundwater level within the Tertiary or Quaternary aquifers. However due to the shallow depth of these aquifers, they are expected to show a relatively rapid response to rainfall in areas where the coarser sediments or fractured basalt are exposed and no substantial clay barriers occur in the shallow sub-surface.

Permian Strata Aquifers

The groundwater flow direction in the coal seam aquifers north of Cherwell Creek appears to be from west to east across the site as shown in **Figure 4**. This flow direction is consistent with recharge to the coal seams occurring at the subcrops in the west of the site. The flow direction has been altered locally with groundwater flow towards the existing mine pits in the Peak Downs Mine to the south of Cherwell Creek.

No data exist on the seasonal fluctuations of groundwater level within the Permian aquifers. However due to the depth and confined nature of these aquifers, they are expected to show a subdued response to recharge.

Effects of Geological Structures on Groundwater Flow Patterns

The effects of faults and dykes on local and regional groundwater flow patterns are not known, but could be substantial. Faults may either restrict or enhance flow, depending on the transmissivity of the fault zones, which is not possible to predict with the current level of information.

4.3 Groundwater Use

In Queensland, a number of areas have been declared as subartesian areas under the Water Act 2000 which is administered by DNRW. The study area is within the Highlands Declared Subartesian Area and there is a requirement for all wells in this area to be licensed with an allocation by the DNRW for uses other than stock and domestic supply. In Queensland, all wells deeper than six metres, including monitoring wells, must be constructed by, or under the supervision of, a licensed water bore driller who has the correct endorsements on their licence for the type of activity being performed. It is a requirement of the Water Act 2000 that a licensed water bore driller submit the records of the drilling and installation of a water well to DNRW within 30 days of completion of the well. These records are entered in the DNRW database.

13 groundwater bores have been installed and registered within a 10 km radius of the proposed project site. Data on registered bores within the vicinity of the study area are presented in **Appendix A** and their locations are shown on **Figure 2**. Of the 13 groundwater bores installed, 9 have been installed for private use, and 4 have been installed by DNRW for groundwater monitoring and assessment. Of the 9 bores installed for private use, none have been installed in the Moranbah Coal Measures, 4 have been installed in the Back Creek Group underlying the coal measures to the west of the site, 4 have been installed to unknown depth by Mitsubishi Gas Company (MGC) for coal seam gas exploration, and 1 (RN 103210) has been installed into the Fort Cooper Coal Measures overlying the Moranbah Coal Measures.

Local groundwater use is primarily for livestock watering purposes owing to the variable salinity levels and generally low yields.

Existing Groundwater Environment

Section 4

4.4 Groundwater Quality

Groundwater chemistry samples were collected from the monitoring wells installed around the site as discussed in **Section 3.3**. The physico-chemical results have been summarised and presented in **Table 4-3**, and the laboratory analytical results are presented in the attached **Analytical Results Table**.

Table 4-3 Groundwater Physico-Chemical Parameters

Bore ID	Aquifer Type		EC (µS/c	m)	рН			
		June 2008	September 2008	February- March 2009	June 2008	September 2008	February- March 2009	
Pz01	Coal Seam D04	PDMW	PDMW	15,610	PDMW	PDMW	6.87	
Pz02	Basalt	2,580	1,540	2,180	7.94	NR	7.87	
Pz03-S	Basalt	13,520	12,470	10,930	6.78	NR	6.96	
Pz03-D	Coal Seam D04	19,970	21,450	16,570	7.10	NR	6.72	
Pz04	Coal Seam Q	1,529	1,107	1,111	6.74	NR	6.66	
Pz05	Coal Seam D04	PDMW	PDMW	13,630	PDMW	PDMW	7.21	
Pz06-S	Basalt	NR	1,639	1,688	7.73	NR	7.67	
Pz06-D	Coal Seam P02	1,691	1,981	1,813	6.81	NR	6.89	
Pz07-S	Alluvium	NR	351	443	6.35	NR	6.51	
Pz07-D	Coal Seam Q01	NR	3,890	3,960	6.84	NR	7.15	
Pz08-S	Alluvium	NR	1,861	2,129	6.49	NR	6.99	
Pz08-D	Sandstone Interburden	NR	12,510	11,380	6.43	NR	6.83	
Pz09	Coal Seam P08	PDMW	12,510	9,790	PDMW	7.15	7.26	
Pz10	Coal Seam H08	PDMW	9,090	Destroyed	PDMW	7.24	Destroyed	
Pz11-D	Coal Seam P08	PDMW	8,650	7,220	PDMW	7.62	7.47	
ANZECC (2000) Water Quality Guidelines for Livestock (Beef Cattle) Drinking Water ¹ Upper limits Some reluctance to drink No adverse affects			7,500 - 15,0 6,000 - 7,5 0 - 6,000	00				

NR – Not reported due to equipment failure. An undetected fracture of the glass bulb of the pH probe caused pH readings of approximately pH 4 which are inconsistent with the nature of the aquifers and the pH recorded during the previous monitoring round.

PDMW – Not reported due to suspected poor development of monitoring well.

Poor development and purging of five of the monitoring wells during the first round of sampling and two of the monitoring wells during the second round of sampling is suspected due to inconsistent salinity and dissolved solids compared to the third sampling round. It is believed that water used for flushing the screens during development of these monitoring wells was not completely removed from the surrounding aquifer prior to the first round of sampling. An undetected fracture of the glass bulb of the pH probe during the second monitoring round caused erroneous pH readings (approximately pH 4) after the first day of sampling, which are inconsistent with the nature of the aquifers and the pH recorded during the previous and subsequent monitoring round.

The physico-chemical results indicate the water chemistry is typically of near neutral pH for all formations. The coal seam and basalt formation groundwaters have a variable salinity level (measured as electrical conductivity), ranging from brackish to saline, while the alluvium groundwaters are fresh to brackish.

^{1 –} Electrical Conductivity value based on guideline value of Total Dissolved Solids value for livestock (EC [μS/cm] = 1.5 x TDS [mg/L]).

Existing Groundwater Environment

The laboratory analytical results indicate that sodium is the dominant cation in the groundwater from all monitoring wells apart from Pz07-S in the alluvium which is calcium dominant. The dominant anion is chloride in monitoring wells in the coal measures (Pz01, Pz03-D, Pz05, Pz07-D, Pz08-D, Pz09, Pz10 and Pz11), basalt (Pz03-S) and alluvium (Pz08-S) while the dominant anion is bicarbonate in the other monitoring wells in the coal measures (Pz04 and Pz06-D), basalt (Pz02 and Pz06-S) and alluvium (Pz07-S).

4.5 Assessment of Environmental Value

The EPP (Water) identifies environmental values of groundwater to be protected or enhanced in Queensland as discussed in **Section 1.2**. The existing groundwater environment has been assessed against these environmental values.

Biological Integrity of a Pristine or Modified Aquatic Ecosystem

The local area around the proposed Caval Ridge Mine has been cleared and used for agriculture, predominantly beef cattle grazing, since at least 1957. These farming practices modify the landscape, affecting the volume and rate of runoff, the flow characteristics of the creeks, and the recharge to groundwater. As such, the aquatic ecosystems of the area have been modified.

Water available to ecosystems may include a mix of groundwater with soil water (unsaturated zone) and surface water. Groundwater Dependant Ecosystems (GDEs) are ecosystems which have their species composition and natural ecological processes determined in part by groundwater. The groundwater parameters that sustain GDEs are flux, level, pressure and quality, with dependence potentially being a function of one or all of these factors.

The water level measurements undertaken for this study indicate that the water table within the alluvium of Cherwell Creek is approximately 13 to 14 mbgl, and that other areas of alluvium may be dry. The water level in the coal measures is between 8 and 67 mbgl and the water table in the basalt is approximately 25 to 26 mbgl. These depths to groundwater, and the lack of springs or seeps in the area, indicate that GDEs are not likely to exist in the vicinity of the site. The vegetation species and regional soil/geology types suggest that the level of groundwater dependence is likely to be relatively low and vegetation is likely to be able to satisfy plant water requirements using retained soil moisture.

The groundwater analytical results, as presented in the **Analytical Results Table**, have been assessed against the ANZECC (2000) and Queensland (2006) water quality guidelines (for the protection of moderately disturbed freshwater ecosystems, central region, upland streams) to consider the potential effect of discharge of groundwater into surface water bodies. The assessment of groundwater quality using surface water guideline values has an inherent level of conservatism due to the assumptions made regarding the behaviour, fate and transport of the analytes detected in groundwater and the subsequent effects in the surface water ecosystem. The existing concentrations of some dissolved metals and nutrients in the groundwater are above the water quality guidelines for freshwater ecosystems. Exceedence of a guideline value does not indicate that an impact has occurred or is likely to occur, but may warrant further investigation.

Suitability for recreational use

This category of environmental values is considered not applicable to groundwater in the area. There are no groundwater springs or seeps that supply surface water bodies in the area that are used for recreational use.

Existing Groundwater Environment

Section 4

Suitability for minimal treatment before supply as drinking water

The groundwater analytical results, as presented in the **Analytical Results Table**, have been assessed against the Australian Drinking Water Guidelines (2004) to consider the potential health effects of drinking minimally treated groundwater. The water quality from the monitoring wells indicate that in general, the water is unsuitable for human consumption. This is due to elevated levels of sulphate and some dissolved metals (manganese, nickel and selenium) in some of the groundwaters. The groundwaters also generally have elevated levels of salinity (>1000 mg/L) which are above the guideline for aesthetics based on unsatisfactory taste. The ease of obtaining a mains water or rainwater tank supply, and the generally low yield of the water bores in the area, are also factors which preclude the usage and potential for usage of the groundwater as a drinking water source.

Suitability for primary industry use

The number of registered bores in the area indicate that water quality suitable for some agricultural use is obtainable.

Use of groundwater within the area is generally as drinking water for beef cattle. The groundwater, as presented in the **Analytical Results Table**, has been assessed against the ANZECC (2000) guidelines for stock drinking water quality for beef cattle to consider the potential effect of drinking of groundwater by stock. Compared to the ANZECC (2000) guidelines, groundwater present within the groundwater wells is generally useable for livestock drinking water. The groundwater from some monitoring wells has a slightly elevated level of sulphate and/or selenium above the guideline values. The salinity of the groundwater in some of the monitoring wells, as shown in **Table 4-3**, is above the upper limit for beef cattle, which would cause some loss of production and deterioration in animal health.

The generally low sustainable yield of the water bores in the area precludes the usage and potential for usage of the groundwater as a source of irrigation water or water for aquaculture or the production of aquatic foods.

Suitability for industrial use

It is believed that there are no industrial users of the groundwater within the local area. The potential for industrial usage of the water is considered to be greater than that for either agricultural or drinking water usage. Industrial users generally have the capital required to drill and equip bores and if necessary appropriately treat the water before use. However, industrial users tend to require large volumes of water which would be unsustainable in the area due to the low sustainable yield of the aquifers.

Maintenance of Cultural and Spiritual Values

There are no groundwater springs or seeps that supply surface water bodies in the area that may have significant indigenous and/or non-indigenous cultural heritage.

Potential Impacts and Mitigation Measures

The impacts on groundwater from the development, operation, closure and post-closure of the proposed Caval Ridge Mine have been evaluated as follows:

5.1 Potential Impacts during Development and Operation

The proposed Caval Ridge Mine is located adjacent to the BMA operated Peak Downs Mine, along the strike of the Moranbah Coal Measures. Given the close proximity of the two coal mines, this assessment considers the cumulative impact of both mines on the surrounding groundwater resources.

The only other existing mine within a 10 km radius of the proposed Caval Ridge Mine is the Issac Plains Mine operated by Vale Australia Pty Ltd. This mine is located ± 8 km northeast of the proposed Caval Ridge Mine. An EIS has been prepared and submitted for the Integrated Issac Plains Project, a proposed extension to the Issac Plains Mine to be located 7 km east of the proposed Caval Ridge Mine.

The Eagle Downs Coal Mine Project, for which an EIS has not yet been submitted by the proponent Bowen Central Coal Joint Venture Parties, is located approximately 3 km east of the proposed Caval Ridge Mine. The Grosvenor Coal Mine Project, for which an EIS has not yet been submitted by the proponent Anglo Coal (Grosvenor) Pty Ltd, is located approximately 5 km north of the proposed Caval Ridge Mine. Neither of these proposed developments have been included in the assessment of cumulative impacts as their EIS' were not available for review.

The locations of these proposed and existing mines are shown on Figure 1.

5.1.1 Impacts on Regional Groundwater Levels

The project area is within the declared Highlands Subartesian Management area; however limited information is available on groundwater users locally. From a search of the NRW groundwater database, 13 registered bores are located within 10 km of the site boundary as discussed in **Section 4.3**.

Impacts on Permian Formation Aquifers

A good indicator for evaluating the potential impacts of the proposed mine on the groundwater regime is to compare historical and current impacts of the existing mining operations in the area.

While the main aquifers within the area are associated with the coal seams, inflow from the seams to the current mine pits at Peak Downs Mine have not been significant. Dewatering in advance of mining is generally not required at the Peak Downs Mine. When wet conditions in the pit (following rainfall) inhibit mining, water is removed from the pit floor by pumping from in-pit sumps. The water collected from these sumps may contain some groundwater inflow but mainly comprises rainwater (direct rainfall and catchment run-off).

Groundwater ingress into the pits will cause drawdown around the pits, which in turn causes regional groundwater levels to lower as seen around the existing Heyford Pit of the Peak Downs Mine, as shown in **Figure 4**. Following the cessation of mining, groundwater will continue to discharge to the final voids until water levels within the surrounding aquifers recover to an equilibrium with the new hydrological regime.

In order to assess the possible impacts of the proposed mining operations on the groundwater resources an estimate of groundwater inflows, and thus dewatering / discharge requirements, was calculated. This estimate is based on the hydrogeological conceptualisation and an assumption of the final pit size.

The available information indicates that the vertical hydrogeology within the Permian formation can be divided into three main zones:

Potential Impacts and Mitigation Measures

Section 5

- Zone 1 the upper weathered overburden which based on drilling results is assumed to act as an aquitard;
- Zone 2 the interburden sandstone and siltstone which has a permeability an order of magnitude lower than the coal seams and is estimated to be up to 150 m thick; and
- Zone 3 the coal seams with a coalesced thickness of up to 30 m.

The groundwater ingress model for the proposed mine pits can be likened to a large diameter well, which fully penetrates the coal seams. For the purpose of the model, it is assumed that the base of the pit is impermeable.

To calculate groundwater inflow estimates to the pit, the Thiem-Dupuit steady state equation is used (Kruseman & de Ridder 1991):

$$Q = \frac{\pi k (h_o^2 - h_w^2)}{\ln(R/r_e)}$$

where

 $Q = inflow (m^3/day),$

k = hydraulic conductivity (m/day)

 h_o = head at distance R from centre of pit (m),

 h_w = head at distance r_e (m) at pit face (seepage face)

R = radius of "influence" or distance to negligible drawdown (m)

 r_e = radius of "well" (m)

For the aquifer R can be estimated as

 $R = r_e + 3000(H-h) \sqrt{k}$ (k for this calculation is measured in m/s)

The equivalent radius of the pit as a "well" is estimated from the equation below: -

$$r_e = \sqrt{\frac{ab}{\pi}}$$

In order to calculate an initial estimate of groundwater ingress into the proposed surface mine the following assumptions were made:

- The final surface extent of the pit is assumed for the entire "well" (8000 m x 2000 m for the Horse Pit and 5000 m x 2000 m for the Heyford Pit);
- The removal of the overburden Quaternary and Tertiary formations will allow the underlying aquifer(s) to be unconfined;

Potential Impacts and Mitigation Measures

- No groundwater ingress will occur within the Zone 1 aquitard;
- The hydraulic conductivity for Zone 2 is based on the falling head tests at monitoring well Pz08-D (0.03 m/day), with a sensitivity of one order of magnitude above and below this value;
- The hydraulic conductivity for Zone 3 is based on the average falling/rising head tests for monitoring wells in the coal seams, 0.17 m/day, with a sensitivity of one order of magnitude above and below this value; and
- Groundwater ingress through the pit floor will be negligible when compared to the major inflows within the coal seams and overburden.

Based on these assumptions, **Table 5-1** presents a summary of the range of groundwater ingress volumes calculated for the Horse Pit and **Table 5-2** presents a summary of the range of groundwater ingress volumes calculated for the Heyford Pit.

Table 5-1 Groundwater Ingress Data for Horse Pit

Zone	Saturated thickness	K (m/s)	K (m/day)	R (m)	Re (m)	Ingress (m³/day)
Interburden (expected)	150	3 × 10 ⁻⁷	0.03	265	2257	19100
Interburden (low case)	150	3 × 10 ⁻⁸	0.003	84	2257	5800
Interburden (high case)	150	3 × 10 ⁻⁶	0.3	839	2257	67100
Coal Seams (expected)	30	2 × 10 ⁻⁶	0.17	126	2257	8800
Coal Seams (low case)	30	2 × 10 ⁻⁷	0.017	40	2257	2700
Coal Seams (high case)	30	2 × 10 ⁻⁵	1.7	399	2257	29500

Table 5-2 Groundwater Ingress Data for Heyford Pit

Zone	Saturated thickness	K (m/s)	K m/day)	R (m)	Re (m)	Ingress (m3/day)
Interburden (expected)	150	3 × 10 ⁻⁷	0.03	265	1784	15300
Interburden (low case)	150	3 × 10 ⁻⁸	0.003	84	1784	4600
Interburden (high case)	150	3 × 10 ⁻⁶	0.3	839	1784	55000
Coal Seams (expected)	30	2 × 10 ⁻⁶	0.17	126	1784	7000
Coal Seams (low case)	30	2 × 10 ⁻⁷	0.017	40	1784	2200
Coal Seams (high case)	30	2 × 10 ⁻⁵	1.7	399	1784	23800

Potential Impacts and Mitigation Measures

Section 5

As the pit depth increases, the inflow rate into the pit void increases. The estimated hydraulic conductivity (k) values utilised for the three layers indicates that the combined ingress of groundwater to the bottom of the pits, some 180 m below surface, will be \pm 27,900 m³/day (up to \pm 96,600 m³/day) for the Horse Pit and \pm 22,300 m³/day (up to \pm 78,800 m³/day) for the Heyford Pit. These ingress rates equate to \pm 2 m³/day (up to \pm 7 m³/day) per metre of the circumference of both the Horse Pit and Heyford Pit. This ingress rate is calculated for an equivalent well at steady state in an infinite homogeneous aquifer and assumes drawdown to the base of the pit. In reality the mine pits are located in or close to the outcrop of the coal seams such that ingress to the pit from upgradient of the pit will be negligible, and that the seepage face on pit walls will be above the base of the pit, which will decrease the expected ingress into the pits by at least a half of that calculated. Seepage into the pits will be collected in in-pit sumps and used for dust suppression or as process water where suitable.

The radius of influence of the drawdown of the groundwater level (distance to negligible drawdown) is also calculated to extend up to approximately 800 m down dip from the high wall and along strike from the end wall of the pits. This radius of influence is calculated for an equivalent well at steady state in an infinite aquifer. In reality the mine pits are located in the recharge area of the coal seams such that recharge to the coal seams will be reduced, which will have an additional impact on the extent of drawdown of groundwater levels. The extent of the radius of influence of the current Heyford Pit extends approximately 1,800 m from the highwall. The radius of influence of the proposed pits is thus expected to be in the order of 1,800 m, taking into account the reduction of recharge to the coal measures.

The Peak Downs Mine is located along the strike of the Moranbah Coal Measures to the south of the project area. The cumulative impact of the Peak Downs Mine and the proposed Caval Ridge Mine will be to superimpose the drawdown of each mine along strike, resulting in a greater drawdown between the mines. No groundwater users were identified between the mines. The drawdown of the mines down-gradient of each mine will be as a result of that particular mine such that there will be no cumulative impact of drawdown on groundwater levels.

The Integrated Issac Plains Project, a proposed extension to the Issac Plains Mine, is located 7 km east of the proposed Caval Ridge Mine. The Integrated Issac Plains Project proposes to extract coal from the Permian Rangal Coal Measures. The Rangal Coal Measures overlie and are separated from the Moranbah Coal Measures by the Fort Cooper Coal Measures. The low vertical permeability of the Moranbah and Rangal Coal Measures and the separation by the Fort Cooper Coal Measures would limit vertical flow between these formations such that the cumulative impact of the drawdown in the Moranbah Coal Measures due to the proposed Caval Ridge Mine would be negligible in the Rangal Coal Measures.

The groundwater wells identified on neighbouring properties are greater than 2 km from the site, thus it is anticipated that the proposed mine activities and subsequent groundwater drawdown will not have a significant impact on the regional groundwater users of the Permian aquifers.

Impacts on Tertiary and Quaternary Aquifers

All creeks within the study area are ephemeral and there are no perennial water holes or groundwater dependant environments present as discussed in **Section 4.5**. Under dry season conditions, groundwater does not contribute to surface water flow within these creeks. In exceptionally wet years it is possible that the Quaternary alluvium and shallow Tertiary aquifers may contribute some groundwater to the surface water system along water courses. The drawdown of the potentiometric surface of the Permian strata aquifers during mining is unlikely to have an impact on these discharges as the shallow aquifers sit above, and are generally poorly connected to, the aquifers below.

Potential Impacts and Mitigation Measures

If the pits encounter the Quaternary alluvium, pit inflow will occur. Due to their shallow depth and lack of continuity and thickness, the Quaternary alluvium is not considered a significant aquifer. However, during periods of creek flow, the alluvium may become fully saturated and discharge to the pits.

Based on the heterogeneity and discontinuous nature of the Tertiary basalt, it is anticipated that the proposed mine activities will not have a significant impact on the isolated areas of basalt. No regional groundwater users of the Tertiary basalt aquifers were identified.

5.1.2 Impacts on Groundwater Quality

The groundwater quality of the Permian strata is brackish to brine and not suitable for human consumption or irrigation, but has some use for stock water (according to the Australian Drinking Water Guidelines (2004) and Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2000).

During mining operations, water quality within aquifers surrounding the site is expected to remain the same as pre-mining water quality for these aquifers. No change in water quality during mining operations (as compared to pre-mining) is expected for the following reasons:

- during mining operations, groundwater will be continually extracted from the pit to ensure a safe working
 environment within the pit. Extraction of groundwater from the pit will create a depression in the
 potentiometric surface at this location, and groundwater surrounding the mine pit will travel towards this
 depression. The net movement of groundwater towards the pit during mine operation will prevent the
 movement of potentially poorer quality water (that may have been impacted by mining) from moving away
 from the mine operation area and into the surrounding aquifers; and
- aquifers outside of the mine pit area will continue to receive recharge via the same processes that occurred pre-mining.

Groundwater quality data also suggests that groundwater in the alluvial aquifers and basalt are of similar or better quality compared to the Moranbah Coal Measures with respect to major ions and metals. Hence any inadvertent mixing of groundwater (during mining) by downward movement from the upper to lower aquifers is unlikely to result in a deterioration of water quality in either aquifer but lead to an improvement in water quality in the deeper aquifers.

During mine operation, water quality within aquifers surrounding the mine pit will continue to be suitable for the same purposes applicable during the pre-mining period.

A geochemical assessment was undertaken for the Project Site, which is discussed separately in the EIS. The geochemical assessment found that not only are almost all mineral waste materials (overburden and CHPP rejects) non-acid forming (NAF), but the high acid neutralising capacity (ANC) of many of the samples combined with the very low sulphur concentrations, indicates there would be excess alkalinity to buffer the small quantity of acid that could potentially be produced by a very small proportion of the likely mineral waste materials. As the direction of groundwater flow is expected to be towards the pit, buffering capacity of the groundwater is expected to neutralise any oxidation products of the coal seams due to mine dewatering, and any potential for the development of acid mine drainage is low.

The geochemical assessment found that the water extracts from all composite samples of mineral waste have soluble metal concentrations below applied ANZECC (2000) values for livestock drinking water. It also found that the electrical conductivity (EC) of the materials is moderate to high, ranging from 388 to 1970 μ S/cm (median 679 μ S/cm), and is similar for both overburden and potential rejects. This range of electrical conductivity is comparable to the low end of salinity found in the groundwater monitoring wells (351 to

Potential Impacts and Mitigation Measures

Section 5

1861 µS/cm in the alluvium) and indicates that initial water solubility of these materials with respect to salinity in mineral waste materials from Caval Ridge may contribute some salt load to the shallow groundwater through seepage from the waste or CHPP.

The quality of the groundwater in the shallow aquifers that may exist within the study area (i.e. Quaternary alluvium and Tertiary sediments) have the potential to be impacted by chemical or fuel storage facilities. The risks from chemical or fuel storage will be minimised by using the management systems described in **Section 5.1.3** below.

The groundwater quality within the aquifers surrounding the Project Site will be monitored to ensure no marked deterioration in groundwater is occurring as a result of the proposed mining activities.

5.1.3 Other Impacts

Compression of the ground surface associated with the construction of roads and building foundations is not expected to greatly alter the permeability of strata immediately beneath the site, and as such will not markedly hinder the recharge of the underlying aquifers.

During mining, mobile and stationary machinery including excavators, cranes, trucks and other vehicles will be required. There is potential for hydrocarbon contamination of the soil associated with leaks or spills from this machinery (or fuel storage areas for the maintenance of machinery). Dissolved and free-phase hydrocarbon may impact on the shallow aquifers underlying and down-gradient of areas of fuel spillage.

Areas of hydrocarbon and chemical storage will have spill control measures and regular inspection regimes in order to prevent and monitor activities that could potentially lead to contamination of groundwater. Spill control measures for hydrocarbon facilities will include concrete slab bases that are bunded with oil-water separators installed on all hydrocarbon above-ground storage, refuelling and washdown areas.

Any accidental spills will be assessed on a case-by-case basis and remediated, which may include excavation and disposal of any contaminated soil in accordance with the requirements of the EPA.

There may be instances of groundwater restrictions where subsurface permanent structures (building foundations, road embankments) are constructed. This type of subsurface construction can cause groundwater flow to be impeded and pressure heads to build up on the up-gradient area and reduced down-gradient. Pressure head relief engineering solutions will be utilised in subsurface constructions, where required.

5.2 Potential Impacts Post Mining

The main features of the final landform after mining ceases will consist of waste rock dumps to the west, and final voids in the east. The final voids will collect and accumulate water from groundwater ingress through the walls of the final void and from areas of backfill material, direct rainfall into the void and from overland surface flows from the slopes of the waste dumps draining into the void. Typically, the final void will contain long-term water levels and water quality dependent on a number of inter-related hydrological and geochemical processes.

A final void study has not been conducted as part of this investigation. It is recommended that a final void study be undertaken towards the end of mine life to determine backfill and contouring requirements for the final voids, the hydrological regime of the final voids, and the expected water quality of the final voids.

Areas of backfill within the pits will have a higher porosity and permeability than the pre-existing Permian strata, forming unconsolidated and unconfined aquifers. These aquifers will be recharged by rainfall and overland flow, and may interact through lateral flow with the adjacent Permian strata aquifers and the final voids.

Potential Impacts and Mitigation Measures

5.2.1 Impacts on Regional Groundwater Levels

After mining is complete, the groundwater system will re-adjust to the new aquifer conditions surrounding the mined area. Water levels/pressures within the regional aquifers will over time attain a new equilibrium level. This new equilibrium for the groundwater system will have a different potentiometric surface from that which was present pre-mining owing to the presence of final voids in the east of the mined area and the different hydrogeological parameters of the backfill material.

Water levels in the pit void will determine whether the void will act as a net groundwater source (if final void water levels are high relative to groundwater levels surrounding the void) or act as a net groundwater sink (if final void water levels are low relative to groundwater levels surrounding the void). Given the climate of the area is semi-arid, experience suggests that a final void water level will form, but the evaporative demand will result in the void behaving as a groundwater sink. Continued evaporation will also produce a rising TDS concentration.

This is likely to result in residual drawdown immediately surrounding the final void area when the potentiometric surface reaches the new equilibrium level. In the Moranbah Coal Measures, drawdown of the potentiometric surface close to the final voids at the cessation of mining is likely to begin to recover immediately following cessation of mining. This initial rise in the potentiometric surface close to the pits is related to the likely rise in the water levels within the final voids as dewatering from in-pit sumps is stopped.

In contrast, outside the immediate vicinity of the final void, the potentiometric surface is likely to continue to fall in the near term following cessation of mining as the groundwater system adjusts to new regional aquifer conditions. This drop in water level at distances away from the final voids (post-mining) occurs as a result of a flattening of the regional hydraulic gradient, as the groundwater system moves towards its new equilibrium state.

5.2.2 Impacts on Groundwater Quality

A rise in the final void water salinities may result from evaporative concentration processes, and from atmospheric weathering of excavated exposed bedrock. Although water quality in the final void is expected to deteriorate over time, this deterioration in water quality is not expected to impact the surrounding aquifers as the voids are expected to operate locally as a groundwater sink (i.e. groundwater flow will be toward the void), so that water within the void will not recharge the groundwater system unless water levels in the void rise above existing groundwater levels in the coal seams.

Current and previous geochemical analysis in the Moranbah Coal Measures lithology show the overburden, coal rejects, and fine tailings have low acid generation potential. Thus there is a low risk that metals will be mobilised from spoil and co-disposal dumps.

Post-mining water quality within all aquifers surrounding the project area is expected to remain the same as premining water quality.

5.3 Mitigation Measures of Potential Impacts

Groundwater monitoring wells installed around the site for this investigation will be maintained to enable the long term monitoring of groundwater levels and quality. Routine monitoring will provide early warning of any variation in response of the groundwater system to that predicted. This will enable the proponent to undertake mitigation measures to minimise impact on surrounding groundwater users and the environment. In addition, the groundwater monitoring will enable the identification of any cumulative groundwater level drawdown impacts as a consequence of other mining operations in the area.

Potential Impacts and Mitigation Measures

Section 5

Groundwater level and quality monitoring will initially be undertaken regularly to enable the detection of seasonal fluctuations and any groundwater level or quality trends or impacts. In turn, the monitoring data (level and chemistry) will be entered into a BMA environmental monitoring database to enable a regular assessment and interrogation to evaluate potential groundwater impacts.

Should a detrimental impact on landholder groundwater supplies be detected, and shown to be related to the Caval Ridge mining operations, then the proponent will seek to reach mutually agreeable arrangements with affected neighbouring groundwater users for the provision of alternate supplies throughout the mine life, and after mine closure. Regular groundwater monitoring will enable groundwater level drawdown to be identified prior to any impacts being experienced in surrounding landholder bores. In turn, alternative water supplies can be put in place before supplies from relevant existing landholder bores are adversely affected. Options for alternate supplies include:

- installations of new pumps capable of extracting groundwater from greater depth within existing bores;
- deepening of existing bores;
- installation of a new bore at another location on the property; and
- provision of piped water sourced from the mine (i.e. surplus water from the mine pit void dewatering program, depending on quality).

The specific arrangements for affected properties will be discussed with each relevant landholder with a view to reaching a mutually acceptable agreement.

5.3.1 General Groundwater Monitoring Program

The following monitoring routine will be undertaken:

- Groundwater levels will be monitored monthly, in the entire monitoring network, for the first two years following commencement of construction to assess seasonal, natural, groundwater fluctuations;
- Thereafter, groundwater levels will be monitored quarterly a year, preferably at a similar time of year to eliminate variation from seasonal changes;
- Groundwater sampling will be undertaken on a quarterly basis from all groundwater monitoring bores for analysis of the parameters:- pH, EC, TDS, major cations and anions, nutrients (total N, NOx, ammonia, phosphorous) and selected dissolved metals (boron, chromium, copper, iron, manganese, nickel, selenium and zinc); and
- Measurement of daily precipitation, evaporation and mine dewatering volumes.

An annual review of the monitoring program will be conducted to evaluate the effectiveness of each monitoring location, to assess where new locations and modifications to the monitoring programme may be needed, and to evaluate what impacts may be occurring. A special monitoring round will be considered in the event of a significant environmental incident.

The level of data required for advanced hydrologic modelling of final voids for the mine cannot practically be obtained at the pre-mining stage. As soon as possible, the mining operation should incorporate opportunistic monitoring of temporary pit storages and groundwater within the spoil to assist in the development and calibration of a long-term predictive model. It will be important to commence field trials and monitoring (i.e. water sample collection and analysis) early so that actions necessary at the end of the life of the mine can be

Potential Impacts and Mitigation Measures

included in planning and scheduling. To model the final void environment there is a need to understand the nature of the spoil hydrology process in order to identify or develop appropriate models to simulate the hydrological behaviour and water quality and to plan field data collection for model validation and calibration.

Post-mining groundwater monitoring will be subject to detailed closure/relinquishment conditions. It is expected that during the operational phase of the Project, the groundwater data collected for the region will be comprehensive enough to accurately predict the long term recovery of the aquifers and the final void water balance and water quality. This will assist in the development and implementation of the closure strategy and the refinement of post-mining groundwater monitoring programs.

5.3.2 Seepage from Stockpiles and Basins

Good environmental practice requires that every reasonable effort be made to minimise the effect of seepage on the groundwater system. Potential sources of seepage, such as sediment basins and water storages, should be lined if the natural material is not of sufficiently low permeability to limit seepage. Additional mitigation measures may include limiting the extent of ponded water in tailings dams, installation of cut-off trenches within the foundation along the alignment of the containment embankments, installation of a seepage collection system, and during construction of the containment embankments any fracture zones identified should be treated to reduce their permeability.

An extensive water management system to prevent discharge of surface storm water contaminants to off-site water bodies is proposed in the surface water section of the EIS. This system will be managed as a non release system under normal operating conditions, with discharge only expected during rainfall events when water courses are underflow conditions. Stockpiles will be contained within hardstand areas and connected via open channel drains to dedicated sediment basins. The project pond system will be designed in accordance with best-practice engineering principles, including being lined with suitable low permeability material to prevent seepage of solutes or contaminants into underlying aquifers.

Early detection of seepage will enable management of any potential problems. Potential seepage from the project ponds and stockpile areas will be regularly assessed through the installation and monitoring of the monitoring bore network on-site, including down-gradient of all potential contaminant sources. This will include monitoring of water in settlement ponds for potential contaminants.

Installation of monitoring bores down-gradient of potential seepage sources is proposed to enable early detection of any leachate entering the shallow Quaternary alluvial or Tertiary sediment aquifers. The key indicator parameters of seepage will be monitored including (but not restricted to) standing water level, salinity (as TDS), dissolved metals, and major ions initially on a three monthly basis.

In the unlikely event of groundwater impact, mitigation strategies will include some or all of the following measures (depending on the specific requirements):

- Investigation of water management system integrity;
- Removal of contaminant source and repair/ redesign of any water management structures as required;
- Installation of and pumping from, groundwater interception wells; and
- Installation of and pumping from groundwater interception trenches.

At mine closure, shaping and rehabilitation of waste piles and infrastructure footprints will be required to limit infiltration and runoff of potentially poor quality water and to monitor the effectiveness of rehabilitation.

Potential Impacts and Mitigation Measures

Section 5

5.3.3 Hydrocarbon and Chemical Contamination

Areas of hydrocarbon and chemical storage will have spill control measures and regular inspection regimes in order to prevent and monitor construction and operational activities that could potentially lead to contamination of groundwater. Bunded areas for hydrocarbon and chemicals storage will be provided with spill cleanup kits in accordance with the relevant Australian Standards. All transfers of fuels and chemicals will be controlled and managed to prevent spillage outside bunded areas.

Potential for leaks and spills from operating equipment will be reduced by ensuring that all equipment is well maintained.

Installation and monitoring of the monitoring bore network on-site, including down-gradient of all potential contaminant sources, will enable early detection of any contaminated seepage.

Any accidental spills will be assessed on a case-by-case basis and remediated, which may include excavation and disposal of any contaminated soil to a licensed facility and installation of a groundwater monitoring and remediation system, in accordance with the requirements of the EPA.

5.4 Groundwater Management Strategies and Legislation

The proposed Caval Ridge Mine is situated within the Highlands Subartesian Declared Area as defined under the Queensland Water Act 2000. The site is located within the Isaac River sub-catchment of the Fitzroy Basin. Under the Water Act, the DNRW is planning to advance the sustainable management and allocation of groundwater within the Isaac River sub-catchment to provide secure supplies for both water users and the environment. When the Fitzroy Basin Water Resources Plan (WRP) was finalised in 1999, no provision was made for management of the basin's groundwater resources. However, the demand for groundwater, driven mainly by mining and agriculture, in the Isaac-Connors Rivers catchment has increased significantly. The prolonged drought and record low water levels in some aquifers have raised concerns that the groundwater resource may be at risk of being overcommitted. Under provisions of the Water Act, WRP's at risk in these circumstances must be amended to regulate groundwater. Amending the Fitzroy WRP to include the groundwater resources in the Isaac-Connors catchment will enable the integrated management of the surface water and groundwater resources. The amendment will provide for the sustainable use of the groundwater resource, effective water sharing arrangements, improved definition and security of water entitlements, a framework for tradable water entitlements, water for the environment, salinity management and monitoring and reporting.

In November 2006 the minister for Natural Resources and Water announced a moratorium on the use of subartesian water contained in the alluvial aquifers of the Isaac-Connors catchment. The intent of the moratorium is to ensure the water entitlement *status-quo* remains while the draft amendment to the WRP is being developed. In the project area, the moratorium applies to:

- subartesian water in the alluvial aquifers in the unconsolidated Quaternary deposits in the area associated with the Isaac River, the Connors River and all tributaries of those rivers;
- for that part of the area that is declared as the Highlands Subartesian Area, to all applications for or about water licences to take the subartesian water mentioned above, whether made before or after the moratorium notice date; and
- for that part of the area that is undeclared (i.e. outside the Highlands Subartesian Area), works to take the subartesian water mentioned in the first dot point.

Potential Impacts and Mitigation Measures

However, Clause 8 of the moratorium notes that the following works to take water are exempt:

- town water supply;
- stock purposes;
- domestic purposes;
- the construction, operation or maintenance of public assets and utilities;
- mining purposes, to the extent that the water is to be taken for dewatering purposes; or
- a significant project declared under Section 26 of the State Development and Public Works Organisation Act 1979.

The moratorium is expected to apply until the draft amendment has been finalised. In effect, the moratorium does not restrict the development of dewatering activities for the proposed development.

The taking of water from an aquifer within the Declared Highlands Subartesian Area is regulated by the Queensland Water Act 2000 and Water Regulation 2002 and requires a licence. Furthermore, construction and development of bores required to extract water from an aquifer under a licence is an assessable development under the Integrated Planning Act 1997.

If dewatering of the coal measures in advance of mining is required, water licences for the taking of groundwater for the proposed Caval Ridge Mine will have to be obtained by the proponent from DNRW. The licences will stipulate a maximum annual take from each relevant aquifer. Under the Water Act 2000, the DNRW has authority to direct the licensee to provide and maintain access to alternative water supplies for other water entitlement holders who would be affected by the granting of a licence.

References

Section 6

Australian and New Zealand Environment and Conservation Council, (ANZECC, 2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality, National Water Quality Management Strategy. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Paper No. 4, October 2000.

Australian Government National Health and Medical Research Council, 2004. National Water Quality Management Strategy Australian Drinking Water Guidelines 6. http://www.nhmrc.gov.au

Bouwer, H. and R.C. Rice, (1976). A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resources Research, vol. 12, no. 3, pp. 423-428.

Hvorslev, M.J., (1951). Time Lag and Soil Permeability in Ground-Water Observations, bul. no. 26, Waterways Experiment Station, Corps of Engineers, U.S. Army, Vicksburg, Mississippi.

Matrix+ Consulting Pty Ltd (2008). Vale Australia Pty Ltd Integrated Issac Plains Project – Supplementary Environmental Impact Statement.

Matrix+ Consulting Pty Ltd (2007). Carborough Downs Coal Management Pty Ltd Carborough Downs Mine Expansion – Draft Environmental Impact Statement.

Queensland Department of Mines and Energy Geological Mapping for the Bowen Basin (polygon vector mapping of 1:100,000 sheet areas).

Queensland Department of Natural Resources and Water search of the groundwater and licensing database for registered bores on 8 November 2007.

Queensland Department of Natural Resources and Water (2006). Fitzroy Basin Water Resource Plan, draft amendment Isaac-Connors catchment. Queensland Department of Natural Resources and Water. Rockhampton Queensland.

Queensland Department of Natural Resources. (2003). Minimum Construction Requirements for Water Bores in Australia Edition 2. Mines and Energy Library, the State Library of Queensland and the National Library, Canberra.

Queensland Parliamentary Counsel, 2007. Environmental Protection Act 1994 Environmental Protection (Water) Policy 1997.

Sinclair Knight and Merz (2008). BHP Billiton Mitsubishi Alliance Coal Operations Pty Ltd Daunia Coal Mine Project – Draft Environmental Impact Statement.

Sinclair Knight and Merz (2005). BHP Billiton Poitrel Coal Mine Project - Environmental Impact Statement.

URS (2008). Electromagnetic Survey for Basalt Delineation at Peak Downs Mine Site. Consultants report 42626162 for BM Alliance Coal Operations Pty Ltd, July 2008.

Analytical Results Table

Location	
Date Sampled	
Sample Type	

PZ	01		PZ02			PZ0	PZ03-D			
10/09/2008	3/03/2009	7/06/2008	10/09/2008	3/03/2009	7/06/	2008	10/09	/2008	3/03/	2009
Primary	Primary	Primary	Primary	Primary	Primary	Duplicate	Primary	Duplicate	Primary	Duplicate
Sample	Sample	Sample Sample Sample Sample				Sample	Sample	Sample	Sample	Sample

Analyte	LOR	Units	ANZECC (2000) and QWQG (2006) - Freshwater Ecosystems	ANZECC (2000) - Livestock Drinking Water - Beef Cattle	Human Drinking											
Major Ions		•														
Sodium	1	mg/L	ne	ne	ne	1210	3120	243	319	413	3310	3250	3110	3380	3600	3370
Calcium	1	mg/L	ne	1000	ne	177	411	40	29	36	324	324	284	323	322	340
Magnesium	1	mg/L	ne	ne	ne	204	610	52	33	41	708	710	628	701	657	690
Potassium	1	mg/L	ne	ne	ne	7	20	4	8	10	28	28	28	32	28	29
Chloride	1	mg/L	ne	ne	ne	2270	6700	114	131	352	7200	6750	6310	7290	7400	7250
Sulphate	1	mg/L	ne	1000	500	422	860	94	168	92	1000	998	1030	1020	1080	1140
Bicarbonate Alkalinity as CaCO3	1	mg/L	ne	ne	ne	458	670	633	531	538	667	659	599	666	680	670
Carbonate Alkalinity as CaCO3	1	mg/L	ne	ne	ne	21	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Hydroxide Alkalinity as CaCO3	1	mg/L	ne	ne	ne	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Fluoride	0.1	mg/L	ne	2	1.5	-	-	1.4	-	-	0.3	0.3	-	-	-	-
Nutrients																
Ammonia as N	0.01	mg/L	0.01	ne	ne	0.82	2.75	-	0.24	0.07	-	-	1.36	1.6	1.33	1.38
Nitrite + Nitrate as N	0.01	mg/L	0.015	ne	ne	<0.01	0.17	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Total Kjeldahl Nitrogen as N	0.1	mg/L	ne	ne	ne	1.4	2.7	-	0.3	<0.1	-	-	1.6	1.9	1.8	1.9
Total Nitrogen as N	0.1	mg/L	0.25	ne	ne	1.4	2.8	-	0.3	<0.1	-	-	1.6	1.9	1.8	1.9
Phosphorus (total)	0.01	mg/L	0.03	ne	ne	0.81	0.02	-	10	0.48	-	-	1.86	0.86	0.04	0.05
Reactive Phosphorus - Filtered	0.01	mg/L	0.015	ne	ne	-	-	<0.01	-	-	<0.01	<0.01	-	-	-	-

Exceeds the ANZECC/ARMCANZ (2000) and QWQG (2006) trigger values for moderately disturbed upland stream freshwater ecosystems

Exceeds the ANZECC/ARMCANZ (2000) guidelines for livestock watering of beef cattle

PZ	01		PZ02		PZ03-D								
10/09/2008	3/03/2009	7/06/2008 10/09/2008 3/03/2009 7/06/2008 10/09/2008						3/03/2009					
Primary	Primary	Primary	Primary	Primary	Primary	Duplicate	Primary	Duplicate	Primary	Duplicate			
Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample			

Analyte Metals (Dissolved)	LOR	Units	ANZECC (2000) and QWQG (2006) - Freshwater Ecosystems	ANZECC (2000) - Livestock Drinking Water - Beef Cattle	ADWG (2004) - Human Drinking Water		<u> </u>		ı	T	ı	1			<u> </u>	
Aluminium	0.01	mg/L	0.055	5	ne	<0.01	0.02	_	<0.01	0.02		_	<0.01	<0.01	0.02	0.46
Antimony	0	mg/L	ne	ne	0.003	<0.001	<0.001	-	<0.001	<0.001	-	-	<0.001	<0.001	<0.001	<0.001
Arsenic	0.001	mg/L	0.013	0.5	0.007	<0.001	0.001	0.001	0.001	0.006	0.004	0.003	<0.001	<0.001	<0.001	<0.001
Barium	0.001	mg/L	ne	ne	0.7	0.077	0.099	0.055	0.069	0.098	0.044	0.044	0.042	0.041	0.042	0.045
Beryllium	0.001	mg/L	ne	ne	ne	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	0.001	<0.001	<0.001	<0.001	<0.001
Boron	0.05	mg/L	0.37	5	4	0.5	1.5	-	0.28	0.29	-	-	3.17	3.09	2.79	2.88
Cadmium	0.0001	mg/L	0.0002	0.01	0.002	<0.0001	0.0001	0.0001	<0.0001	0.0002	<0.0001	<0.0001	< 0.0001	<0.0001	0.0001	0.0001
Chromium	0.001	mg/L	0.001	1	0.05	0.013	<0.001	<0.001	0.007	0.002	0.002	0.002	0.013	0.019	0.002	0.002
Cobalt	0	mg/L	ne	1	ne	<0.001	0.001	0.002	<0.001	<0.001	0.001	0.001	<0.001	<0.001	<0.001	<0.001
Copper	0.001	mg/L	0.0014	1	2	0.001	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	0.003	0.003	0.002	0.002
Gallium	0.005	mg/L	ne	ne	ne	<0.001	<0.001	-	<0.001	<0.001	-	-	<0.001	<0.001	<0.001	<0.001
Iron	0.05	mg/L	ne	ne	ne	0.44	1.11	-	0.2	0.14	-	-	4.08	0.9	3.26	3.3
Lead	0.001	mg/L	0.0034	0.1	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Lithium	0.001	mg/L	ne	ne	ne	0.203	0.619	-	0.073	0.092	-	-	0.419	0.441	0.464	0.475
Manganese	0	mg/L	1.9	ne	0.5	0.162	0.153	0.399	0.399	0.38	0.301	0.173	0.466	0.461	0.482	0.494
Mercury	0.0001	mg/L	0.0006	0.002	0.001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0001	<0.0001	<0.0001	<0.0001
Molybdenum	0.001	mg/L	ne	0.15	0.05	<0.001	<0.001	-	0.024	0.026	-	-	0.001	0.001	0.001	<0.001
Nickel	0.001	mg/L	0.011	1	0.02	0.008	0.009	0.019	0.012	0.025	0.02	0.019	0.012	0.012	0.008	0.007
Selenium	0.01	mg/L	0.005	0.02	0.01	0.011	<0.01	-	<0.01	<0.01	-	-	0.038	0.042	<0.01	<0.01
Strontium	0.001	mg/L	ne	ne	ne	10.1	30.1	-	0.558	0.82	-	-	7.55	7.75	7.07	7.13
Thorium	0.001	mg/L	ne	ne	ne	<0.001	<0.001	-	<0.001	<0.001	-	-	<0.001	<0.001	<0.001	<0.001
Titanium	0.01	mg/L	ne	ne	ne	<0.01	<0.01	-	<0.01	<0.01	-	-	0.02	<0.01	<0.01	<0.01
Uranium	0.001	mg/L	ne	0.2	0.02	0.001	0.006	-	0.003	0.002	-	-	<0.001	<0.001	<0.001	<0.001
Vanadium	0.001	mg/L	ne	ne	ne	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc	0.001	mg/L	0.008	20	ne	<0.005	0.021	0.013	0.011	0.006	<0.005	<0.005	0.01	800.0	0.037	0.038

freshwater ecosystems

Exceeds the ANZECC/ARMCANZ (2000) guidelines for livestock watering of beef cattle

Location	
Date Sampled	
Sample Type	

	PZ03-S		PZ04 PZ05					PZ06-D					
7/06/2008	10/09/2008	3/03/2009	8/06/2008	11/09/2008	3/03/2009	28/02/2009	5/06/	2008	10/09/2008	27/02/2009			
Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Duplicate	Primary	Primary			
Sample	Sample Sample Sample Sample				Sample	Sample	Sample	Sample	Sample	Sample			

Analyte	LOR	Units	ANZECC (2000) and QWQG (2006) - Freshwater Ecosystems	ANZECC (2000) - Livestock Drinking Water - Beef Cattle	ADWG (2004) - Human Drinking Water											
Major Ions																
Sodium	1	mg/L	ne	ne	ne	2100	2200	2250	187	209	207	2720	298	300	347	290
Calcium	1	mg/L	ne	1000	ne	203	184	195	29	33	30	414	36	36	36	33
Magnesium	1	mg/L	ne	ne	ne	571	476	560	11	12	12	435	41	42	43	43
Potassium	1	mg/L	ne	ne	ne	14	13	13	<1	1	1	25	4	4	4	3
Chloride	1	mg/L	ne	ne	ne	4810	4450	4730	135	142	164	5690	256	254	365	312
Sulphate	1	mg/L	ne	1000	500	468	411	497	19	15	3	406	105	105	75	60
Bicarbonate Alkalinity as CaCO3	1	mg/L	ne	ne	ne	866	824	896	314	345	350	667	474	466	484	476
Carbonate Alkalinity as CaCO3	1	mg/L	ne	ne	ne	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Hydroxide Alkalinity as CaCO3	1	mg/L	ne	ne	ne	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Fluoride	0.1	mg/L	ne	2	1.5	0.6	-	-	0.2	-	-	-	0.4	0.4	-	-
Nutrients																
Ammonia as N	0.01	mg/L	0.01	ne	ne	-	0.17	0.09	-	1.08	0.19	1.46	-	-	0.42	0.29
Nitrite + Nitrate as N	0.01	mg/L	0.015	ne	ne	0.319	0.39	0.93	<0.01	0.02	<0.01	0.03	<0.01	<0.01	<0.01	<0.01
Total Kjeldahl Nitrogen as N	0.1	mg/L	ne	ne	ne	-	0.6	0.1	-	2.1	0.3	1.9	-	-	0.8	2.9
Total Nitrogen as N	0.1	mg/L	0.25	ne	ne	-	1	1	-	2.1	0.3	1.9	-	-	0.8	2.9
Phosphorus (total)	0.01	mg/L	0.03	ne	ne	-	1.65	0.8	-	0.52	0.03	0.04	-	-	0.51	80.0
Reactive Phosphorus - Filtered	0.01	mg/L	0.015	ne	ne	0.01	-	-	0.023	-	-	-	<0.01	<0.01	-	-

Exceeds the ANZECC/ARMCANZ (2000) and QWQG (2006) trigger values for moderately disturbed upland stream freshwater ecosystems

Exceeds the ANZECC/ARMCANZ (2000) guidelines for livestock watering of beef cattle

	PZ03-S			PZ04		PZ05		PZ	206-D	
7/06/2008	10/09/2008	3/03/2009	8/06/2008	11/09/2008	3/03/2009	28/02/2009	5/06/	2008	10/09/2008	27/02/2009
Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Duplicate	Primary	Primary
Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample

Analyte Metals (Dissolved)	LOR	Units	ANZECC (2000) and QWQG (2006) - Freshwater Ecosystems	ANZECC (2000) - Livestock Drinking Water - Beef Cattle	ADWG (2004) - Human Drinking Water			Г	ı	Γ	T		Г	ı	.	T
Aluminium	0.01	mg/L	0.055	5	ne	-	<0.01	0.02	-	0.01	0.02	0.03	-	-	<0.01	0.02
Antimony	0	mg/L	ne	ne	0.003	-	<0.001	<0.001	-	<0.001	<0.001	<0.001	-	-	<0.001	<0.001
Arsenic	0.001	mg/L	0.013	0.5	0.007	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.007	0.005	0.005	<0.001	<0.001
Barium	0.001	mg/L	ne	ne	0.7	0.186	0.184	0.12	0.025	0.049	0.065	0.398	0.09	0.09	0.07	0.076
Beryllium	0.001	mg/L	ne	ne	ne	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Boron	0.05	mg/L	0.37	5	4	-	1.14	1.28	-	0.07	<0.05	2	-	-	0.3	0.25
Cadmium	0.0001	mg/L	0.0002	0.01	0.002	<0.0001	<0.0001	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0002	0.0003	<0.0001	0.0002
Chromium	0.001	mg/L	0.001	1	0.05	0.003	0.014	<0.001	<0.001	800.0	0.001	0.002	<0.001	<0.001	0.012	<0.001
Cobalt	0	mg/L	ne	1	ne	0.029	0.037	0.02	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	0.001	mg/L	0.0014	1	2	0.001	0.002	0.002	<0.001	<0.001	<0.001	0.001	<0.001	<0.001	<0.001	0.001
Gallium	0.005	mg/L	ne	ne	ne	-	<0.001	<0.001	-	<0.001	<0.001	<0.001	-	-	<0.001	<0.001
Iron	0.05	mg/L	ne	ne	ne	-	1.38	0.43	-	1.04	2.23	0.46	-	-	0.4	0.91
Lead	0.001	mg/L	0.0034	0.1	0.01	<0.001	<0.001	0.004	<0.001	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Lithium	0.001	mg/L	ne	ne	ne	-	0.211	0.278	-	0.002	0.003	0.485	-	-	0.029	0.028
Manganese	0	mg/L	1.9	ne	0.5	1.49	2.73	0.841	0.061	0.134	0.163	1.09	0.061	0.062	0.084	0.077
Mercury	0.0001	mg/L	0.0006	0.002	0.001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Molybdenum	0.001	mg/L	ne	0.15	0.05	-	0.004	0.002	-	<0.001	<0.001	<0.001	-	-	0.004	0.003
Nickel	0.001	mg/L	0.011	1	0.02	0.031	0.041	0.023	0.002	0.002	<0.001	0.007	0.004	0.004	0.006	0.004
Selenium	0.01	mg/L	0.005	0.02	0.01	-	0.024	<0.01	-	<0.01	<0.01	<0.01	-	-	<0.01	<0.01
Strontium	0.001	mg/L	ne	ne	ne	-	5.88	6.35	-	0.233	0.281	10.4	-	-	0.989	0.867
Thorium	0.001	mg/L	ne	ne	ne	-	<0.001	<0.001	-	<0.001	<0.001	<0.001	-	-	<0.001	<0.001
Titanium	0.01	mg/L	ne	ne	ne	-	<0.01	<0.01	-	<0.01	<0.01	0.01	-	-	<0.01	<0.01
Uranium	0.001	mg/L	ne	0.2	0.02	-	0.01	0.013	-	<0.001	<0.001	0.001	-	-	<0.001	<0.001
Vanadium	0.001	mg/L	ne	ne	ne	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc	0.001	mg/L	0.008	20	ne	0.006	0.012	0.018	< 0.005	<0.005	0.008	0.007	0.006	0.016	<0.005	0.015

freshwater ecosystems

Exceeds the ANZECC/ARMCANZ (2000) guidelines for livestock watering of beef cattle

Location	
Date Sampled	
Sample Type	

	PZ06-S			PZ07-D		PZ07-S					
5/06/2008	10/09/2008	27/02/2009	5/06/2008	9/09/2008	28/02/2009	5/06/2008	9/09/2008	28/02/2009			
Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary			
Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample			

			ANZECC (2000) and QWQG (2006) -	ANZECC (2000) - Livestock Drinking Water - Beef Cattle	ADWG (2004) - Human Drinking Water									
			Freshwater	Water - Beer Gattle	Water									
Analyte	LOR	Units	Ecosystems											
Major Ions														
Sodium	1	mg/L	ne	ne	ne	245	220	223	563	646	682	15	14	20
Calcium	1	mg/L	ne	1000	ne	51	30	42	75	79	83	27	29	33
Magnesium	1	mg/L	ne	ne	ne	90	73	77	74	83	87	17	16	19
Potassium	1	mg/L	ne	ne	ne	4	4	4	6	7	7	6	6	7
Chloride	1	mg/L	ne	ne	ne	336	296	265	814	936	928	26	34	41
Sulphate	1	mg/L	ne	1000	500	58	30	37	150	151	168	6	6	15
Bicarbonate Alkalinity as CaCO3	1	mg/L	ne	ne	ne	494	462	554	489	503	546	130	127	134
Carbonate Alkalinity as CaCO3	1	mg/L	ne	ne	ne	<1	<1	<1	<1	<1	<1	<1	<1	<1
Hydroxide Alkalinity as CaCO3	1	mg/L	ne	ne	ne	<1	<1	<1	<1	<1	<1	<1	<1	<1
Fluoride	0.1	mg/L	ne	2	1.5	0.2	-	-	0.2	-	-	0.3	-	-
Nutrients														-
Ammonia as N	0.01	mg/L	0.01	ne	ne	-	0.5	0.04	-	0.71	0.64	-	0.16	<0.01
Nitrite + Nitrate as N	0.01	mg/L	0.015	ne	ne	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	0.076	<0.01	<0.01
Total Kjeldahl Nitrogen as N	0.1	mg/L	ne	ne	ne	-	0.7	<0.1	-	2.4	2.1	-	25.4	<0.1
Total Nitrogen as N	0.1	mg/L	0.25	ne	ne	-	0.7	<0.1	-	2.4	2.1	-	25.4	<0.1
Phosphorus (total)	0.01	mg/L	0.03	ne	ne	-	2.03	0.23	-	0.45	0.11	-	3.24	0.12
Reactive Phosphorus - Filtered	0.01	mg/L	0.015	ne	ne	<0.01	-	-	<0.01	-	-	<0.01	-	-

Exceeds the ANZECC/ARMCANZ (2000) and QWQG (2006) trigger values for moderately disturbed upland stream freshwater ecosystems

Exceeds the ANZECC/ARMCANZ (2000) guidelines for livestock watering of beef cattle

	PZ06-S			PZ07-D			PZ07-S	
5/06/2008	10/09/2008	27/02/2009	5/06/2008	9/09/2008	28/02/2009	5/06/2008	9/09/2008	28/02/2009
Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample

Analyte	LOR	Units	ANZECC (2000) and QWQG (2006) - Freshwater Ecosystems	ANZECC (2000) - Livestock Drinking Water - Beef Cattle	ADWG (2004) - Human Drinking Water									
Metals (Dissolved)														
Aluminium	0.01	mg/L	0.055	5	ne	-	<0.01	0.03	-	<0.01	0.02	-	0.04	0.03
Antimony	0	mg/L	ne	ne	0.003	-	<0.001	0.004	-	<0.001	<0.001	-	<0.001	<0.001
Arsenic	0.001	mg/L	0.013	0.5	0.007	0.004	0.002	0.002	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Barium	0.001	mg/L	ne	ne	0.7	0.089	0.067	0.09	0.046	0.065	0.067	0.082	0.138	0.137
Beryllium	0.001	mg/L	ne	ne	ne	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Boron	0.05	mg/L	0.37	5	4	-	0.24	0.25	-	0.35	0.32	-	0.09	0.07
Cadmium	0.0001	mg/L	0.0002	0.01	0.002	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0003	<0.0001	<0.0001	<0.0001
Chromium	0.001	mg/L	0.001	1	0.05	<0.001	0.012	<0.001	<0.001	0.007	<0.001	<0.001	<0.001	<0.001
Cobalt	0	mg/L	ne	1	ne	0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	0.001	mg/L	0.0014	1	2	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	<0.001	<0.001	<0.001
Gallium	0.005	mg/L	ne	ne	ne	-	<0.001	<0.001	-	<0.001	<0.001	-	<0.001	<0.001
Iron	0.05	mg/L	ne	ne	ne	-	0.13	<0.05	-	0.7	0.47	-	0.23	0.63
Lead	0.001	mg/L	0.0034	0.1	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	<0.001
Lithium	0.001	mg/L	ne	ne	ne	-	0.014	0.014	-	0.066	0.076	-	0.025	0.031
Manganese	0	mg/L	1.9	ne	0.5	0.279	0.186	0.123	0.009	0.031	0.027	<0.001	0.151	0.224
Mercury	0.0001	mg/L	0.0006	0.002	0.001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Molybdenum	0.001	mg/L	ne	0.15	0.05	-	0.014	0.012	-	<0.001	0.002	-	<0.001	<0.001
Nickel	0.001	mg/L	0.011	1	0.02	0.011	0.01	0.002	0.002	0.006	0.004	<0.001	<0.001	<0.001
Selenium	0.01	mg/L	0.005	0.02	0.01	-	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01
Strontium	0.001	mg/L	ne	ne	ne	-	1.22	1.42	-	4.88	4.39	-	0.233	0.267
Thorium	0.001	mg/L	ne	ne	ne	-	<0.001	<0.001	-	<0.001	<0.001	-	<0.001	<0.001
Titanium	0.01	mg/L	ne	ne	ne	-	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01
Uranium	0.001	mg/L	ne	0.2	0.02	-	<0.001	<0.001	-	<0.001	<0.001	-	<0.001	<0.001
Vanadium	0.001	mg/L	ne	ne	ne	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc	0.001	mg/L	0.008	20	ne	0.008	<0.005	0.014	<0.005	<0.005	0.007	<0.005	0.006	0.008

freshwater ecosystems

Exceeds the ANZECC/ARMCANZ (2000) guidelines for livestock watering of beef cattle

Location	
Date Sampled	
Sample Type	

	PZ08-D			PZ08-S			PZ09	
6/06/2008	9/09/2008	28/02/2009	6/06/2008	9/09/2008	28/02/2009	8/09/2008	2/03/	2009
Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Duplicate
Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample

			ANZECC (2000) and QWQG	ANZECC (2000) - Livestock Drinking	ADWG (2004) -									
			(2006) - Freshwater	Water - Beef Cattle	Water									
Analyte	LOR	Units	Ecosystems											
Major Ions		•												
Sodium	1	mg/L	ne	ne	ne	1700	1880	2050	288	242	283	1600	1830	1760
Calcium	1	mg/L	ne	1000	ne	327	346	378	105	52	69	460	475	459
Magnesium	1	mg/L	ne	ne	ne	327	337	360	82	46	60	295	325	313
Potassium	1	mg/L	ne	ne	ne	35	42	42	23	18	19	17	16	16
Chloride	1	mg/L	ne	ne	ne	3420	3650	3510	695	335	391	3800	-	4230
Sulphate	1	mg/L	ne	1000	500	1090	1250	1350	84	88	136	817	-	719
Bicarbonate Alkalinity as CaCO3	1	mg/L	ne	ne	ne	401	407	433	272	317	348	111	-	99
Carbonate Alkalinity as CaCO3	1	mg/L	ne	ne	ne	<1	<1	<1	<1	<1	<1	<1	-	<1
Hydroxide Alkalinity as CaCO3	1	mg/L	ne	ne	ne	<1	<1	<1	<1	<1	<1	<1	-	<1
Fluoride	0.1	mg/L	ne	2	1.5	0.2	-	-	0.3	-	-	-	-	-
Nutrients														
Ammonia as N	0.01	mg/L	0.01	ne	ne	-	1.53	1.54	-	0.05	<0.01	2.77	2.31	2.47
Nitrite + Nitrate as N	0.01	mg/L	0.015	ne	ne	<0.01	<0.01	<0.01	<0.01	0.08	0.02	<0.01	0.26	<0.01
Total Kjeldahl Nitrogen as N	0.1	mg/L	ne	ne	ne	-	1.6	2	-	6.4	<0.1	3.1	3.8	2.4
Total Nitrogen as N	0.1	mg/L	0.25	ne	ne	-	1.6	2	-	6.5	<0.1	3.1	4	2.4
Phosphorus (total)	0.01	mg/L	0.03	ne	ne	-	0.22	0.01	-	3.72	0.12	0.36	80.0	<0.01
Reactive Phosphorus - Filtered	0.01	mg/L	0.015	ne	ne	<0.01	-	-	0.011	-	-	-	-	-

Exceeds the ANZECC/ARMCANZ (2000) and QWQG (2006) trigger values for moderately disturbed upland stream freshwater ecosystems

Exceeds the ANZECC/ARMCANZ (2000) guidelines for livestock watering of beef cattle

	PZ08-D			PZ08-S			PZ09	
6/06/2008	9/09/2008	28/02/2009	6/06/2008	9/09/2008	28/02/2009	8/09/2008	2/03/	2009
Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Duplicate
Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample

			ANZECC (2000)	ANZECC (2000) -	ADWG (2004) -									
			and QWQG (2006) -	Livestock Drinking Water - Beef Cattle	Human Drinking Water									
Analyte	LOR	Units	Freshwater Ecosystems											
Metals (Dissolved)		-												
Aluminium	0.01	mg/L	0.055	5	ne	-	<0.01	0.02	-	<0.01	0.02	<0.01	0.02	0.02
Antimony	0	mg/L	ne	ne	0.003	-	<0.001	<0.001	-	<0.001	<0.001	<0.001	<0.001	<0.001
Arsenic	0.001	mg/L	0.013	0.5	0.007	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Barium	0.001	mg/L	ne	ne	0.7	0.038	0.032	0.03	0.272	0.174	0.235	0.061	0.051	0.05
Beryllium	0.001	mg/L	ne	ne	ne	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Boron	0.05	mg/L	0.37	5	4	-	0.73	0.67	-	0.46	0.38	0.13	0.11	0.08
Cadmium	0.0001	mg/L	0.0002	0.01	0.002	<0.0001	<0.0001	0.0006	<0.0001	<0.0001	0.0002	<0.0001	0.0003	0.0006
Chromium	0.001	mg/L	0.001	1	0.05	<0.001	0.011	<0.001	<0.001	0.004	<0.001	0.002	0.002	0.002
Cobalt	0	mg/L	ne	1	ne	<0.001	<0.001	<0.001	0.006	<0.001	<0.001	0.002	0.001	0.001
Copper	0.001	mg/L	0.0014	1	2	<0.001	0.003	<0.001	<0.001	<0.001	<0.001	0.002	0.001	0.001
Gallium	0.005	mg/L	ne	ne	ne	-	<0.001	<0.001	-	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	0.05	mg/L	ne	ne	ne	-	0.84	2.95	-	0.11	<0.05	3.31	2.56	2.5
Lead	0.001	mg/L	0.0034	0.1	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Lithium	0.001	mg/L	ne	ne	ne	-	0.53	0.62	-	0.149	0.182	0.413	0.47	0.396
Manganese	0	mg/L	1.9	ne	0.5	0.119	0.218	0.126	0.673	0.009	0.009	0.335	0.196	0.19
Mercury	0.0001	mg/L	0.0006	0.002	0.001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Molybdenum	0.001	mg/L	ne	0.15	0.05	-	<0.001	<0.001	-	<0.001	<0.001	0.001	<0.001	<0.001
Nickel	0.001	mg/L	0.011	1	0.02	0.008	0.01	0.015	0.005	0.002	<0.001	0.012	0.002	0.003
Selenium	0.01	mg/L	0.005	0.02	0.01	-	0.025	<0.01	-	<0.01	<0.01	0.028	<0.01	<0.01
Strontium	0.001	mg/L	ne	ne	ne	-	6.94	6.43	-	0.568	0.749	39.2	34.4	34
Thorium	0.001	mg/L	ne	ne	ne	-	<0.001	<0.001	-	<0.001	<0.001	<0.001	<0.001	<0.001
Titanium	0.01	mg/L	ne	ne	ne	-	<0.01	<0.01	-	<0.01	<0.01	<0.01	<0.01	<0.01
Uranium	0.001	mg/L	ne	0.2	0.02	-	<0.001	<0.001	-	0.002	0.003	<0.001	<0.001	<0.001
Vanadium	0.001	mg/L	ne	ne	ne	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc	0.001	mg/L	0.008	20	ne	<0.005	<0.005	0.025	<0.005	<0.005	0.01	<0.005	0.008	800.0

freshwater ecosystems

Exceeds the ANZECC/ARMCANZ (2000) guidelines for livestock watering of beef cattle

Location	
Date Sampled	
Sample Type	

PZ10	PZ11-D				
8/09/2008	8/09/2008	2/03/2009			
Primary	Primary	Primary			
Sample	Sample	Sample			

Analyte	LOR	Units	ANZECC (2000) and QWQG (2006) - Freshwater Ecosystems	ANZECC (2000) - Livestock Drinking Water - Beef Cattle	ADWG (2004) - Human Drinking Water			
Major Ions								
Sodium	1	mg/L	ne	ne	ne	771	1280	1410
Calcium	1	mg/L	ne	1000	ne	140	275	293
Magnesium	1	mg/L	ne	ne	ne	124	128	137
Potassium	1	mg/L	ne	ne	ne	11	9	8
Chloride	1	mg/L	ne	ne	ne	1210	2770	2920
Sulphate	1	mg/L	ne	1000	500	626	247	320
Bicarbonate Alkalinity as CaCO3	1	mg/L	ne	ne	ne	139	79	117
Carbonate Alkalinity as CaCO3	1	mg/L	ne	ne	ne	<1	<1	<1
Hydroxide Alkalinity as CaCO3	1	mg/L	ne	ne	ne	<1	<1	<1
Fluoride	0.1	mg/L	ne	2	1.5	-	-	-
Nutrients								
Ammonia as N	0.01	mg/L	0.01	ne	ne	1.02	2.39	2.54
Nitrite + Nitrate as N	0.01	mg/L	0.015	ne	ne	<0.01	<0.01	<0.01
Total Kjeldahl Nitrogen as N	0.1	mg/L	ne	ne	ne	1.8	2.5	3.2
Total Nitrogen as N	0.1	mg/L	0.25	ne	ne	1.8	2.5	3.2
Phosphorus (total)	0.01	mg/L	0.03	ne	ne	1.78	3.13	0.04
Reactive Phosphorus - Filtered	0.01	mg/L	0.015	ne	ne	-	-	-

Exceeds the ANZECC/ARMCANZ (2000) and QWQG (2006) trigger values for moderately disturbed upland stream freshwater ecosystems

Exceeds the ANZECC/ARMCANZ (2000) guidelines for livestock watering of beef cattle

Location	
Date Sampled	
Sample Type	

PZ10	PZ11-D				
8/09/2008	8/09/2008	2/03/2009			
Primary	Primary	Primary			
Sample	Sample	Sample			

			ANZECC (2000)	ANZECC (2000) -	ADWG (2004) -			
			and QWQG	Livestock Drinking				
			(2006) -	Water - Beef Cattle	Water			
Analyte	LOR	Units	Freshwater Ecosystems					
Metals (Dissolved)								
Aluminium	0.01	mg/L	0.055	5	ne	<0.01	0.01	0.02
Antimony	0	mg/L	ne	ne	0.003	<0.001	<0.001	<0.001
Arsenic	0.001	mg/L	0.013	0.5	0.007	0.001	0.003	<0.001
Barium	0.001	mg/L	ne	ne	0.7	0.036	0.081	0.074
Beryllium	0.001	mg/L	ne	ne	ne	<0.001	<0.001	<0.001
Boron	0.05	mg/L	0.37	5	4	0.5	0.15	0.11
Cadmium	0.0001	mg/L	0.0002	0.01	0.002	<0.0001	<0.0001	<0.0001
Chromium	0.001	mg/L	0.001	1	0.05	0.004	0.002	0.002
Cobalt	0	mg/L	ne	1	ne	<0.001	<0.001	<0.001
Copper	0.001	mg/L	0.0014	1	2	0.002	0.001	<0.001
Gallium	0.005	mg/L	ne	ne	ne	<0.001	<0.001	<0.001
Iron	0.05	mg/L	ne	ne	ne	1.58	1.76	1.32
Lead	0.001	mg/L	0.0034	0.1	0.01	<0.001	<0.001	<0.001
Lithium	0.001	mg/L	ne	ne	ne	0.326	0.715	0.81
Manganese	0	mg/L	1.9	ne	0.5	0.197	0.032	0.034
Mercury	0.0001	mg/L	0.0006	0.002	0.001	<0.0001	<0.0001	<0.0001
Molybdenum	0.001	mg/L	ne	0.15	0.05	0.003	0.002	0.004
Nickel	0.001	mg/L	0.011	1	0.02	0.009	0.006	0.003
Selenium	0.01	mg/L	0.005	0.02	0.01	0.019	0.019	<0.01
Strontium	0.001	mg/L	ne	ne	ne	11.4	47.3	42.7
Thorium	0.001	mg/L	ne	ne	ne	<0.001	<0.001	<0.001
Titanium	0.01	mg/L	ne	ne	ne	<0.01	<0.01	<0.01
Uranium	0.001	mg/L	ne	0.2	0.02	<0.001	<0.001	<0.001
Vanadium	0.001	mg/L	ne	ne	ne	<0.01	<0.01	<0.01
Zinc	0.001	mg/L	0.008	20	ne	<0.005	0.006	0.008

freshwater ecosystems

Exceeds the ANZECC/ARMCANZ (2000) guidelines for livestock watering of beef cattle

Figures

DNRW Database Search Results

Appendix A

Caval Ridge Project EIS DNRW Registered Bores

Registered Number	Facility Owner	Facility Name	Status	Easting (m)	Northing (m)	Zone (GDA)
8606	Cherwell Holding	Folsters	Existing	614390	7536451	55
38418	Cherwell Holding	Coal Hole Bore	Existing	608380	7539621	55
62719	Cherwell Holding	Coal Hole Bore	Existing	608044	7538841	55
85499	Skyville	Shellys Bore	Existing	606359	7546888	55
100224	Mitsubishi Gas Company	MGC Moranbah 1	Existing	615843	7567074	55
100225	Mitsubishi Gas Company	MGC Moranbah 2	Existing	614778	7566528	55
100253	Mitsubishi Gas Company	MGC River Paddock 1	Existing	618233	7556847	55
100254	Mitsubishi Gas Company	MGC River Paddock 2	Existing	619668	7557174	55
103210			Existing	616869	7560018	55
13040174	Department of Natural Resources and Water	B1S1	Abandoned and destroyed	617190	7562863	55
13040175	Department of Natural Resources and Water	B2S2	Abandoned and destroyed	616813	7562251	55
13040176	Department of Natural Resources and Water	B3S3	Abandoned and destroyed	616291	7561486	55
13040282	Department of Natural Resources and Water	NAP Issac River Site 1	Existing	605910	7545740	55

Registered Number	Elevation of Ground Level (mAHD)	Elevation of Reference Point (mAHD)	Date Drilled	Lithology Log Available	Stratigraphy
8606	na	na	na	No	
38418	na	na	1/01/1957	Yes	Blenheim Sandstone
62719	na	na	1/01/1986	No	
85499	na	na	30/05/1992	Yes	Blenheim Subgroup
100224	na	na	5/11/1993	No	
100225	na	na	10/10/1994	No	
100253	na	na	25/08/1993	No	
100254	na	na	16/09/1994	No	
103210	na	na	22/09/1999	Yes	
13040174	207.62	na	na	Yes	
13040175	207.94	na	na	Yes	
13040176	204.08	na	na	Yes	
13040282	275.2	275.56	27/08/2004	Yes	Undefined Quaternary, Back Creek Group

Registered Number	Aquifers	Casing Description Available	Water Chemistry Available	Water Levels
8606		No		
38418	Blenheim Sandstone	Yes		1957
62719		Yes		
85499	Blenheim Subgroup	Yes	Field parameters and laboratory results for 1992, 1997	
100224		No		
100225		No		
100253		No		
100254		No		
103210	Blackwater Group	No		
13040174		Abandoned and destroyed		
13040175	_	Abandoned and destroyed		
13040176		Abandoned and destroyed		
13040282	Back Creek Group	Yes		2004 to 2007

BMA Peak Downs Monitoring Well Data

Appendix B

Caval Ridge Project EIS Peak Downs Monitoring Bore Data

Sample Point	Easting (m)	Northing (m)	Sample Date	рН	EC (µS/cm)	Depth to Water (mBTOC)
PB1	612634.076	7550391.974	27/11/2007 9:50	7.06	1474	16.99
			12/09/2007 13:30	6.83	1721	17.14
			25/05/2007 8:55	7.01	1840	16.85
			21/02/2007 8:55	6.96	1810	16.43
			14/11/2006	7.02	2030	16.7
			21/02/2006	7.09	2090	16.24
			9/11/2005	6.99	2490	16.22
			11/08/2005	6.93	2730	16.15
PB2	616273.772	7547283.398	12/09/2007 13:45	Dry	Dry	Dry
			25/05/2007 9:50	Dry	Dry	Dry
			21/02/2007 8:20	Dry	Dry	Dry
			14/11/2006	Dry	Dry	Dry

Installed Monitoring Well Logs

Appendix C

UI	RS				MONI	ΓORIN	NG WELL Pz01	Sheet 1 of 2
Level 14, 240 Qu	URS Australia Pty Ltd Phone +61 7 3243 211 Level 14, 240 Queen St, Brisbane QLD Fax +61 7 3243 215 Drilling Contractor: Capricorn Weston Drilling			Reference:		Client: Location:	BMA Coal Peak Downs QLD	
Logged By:	AW	Bore Size:	165 mm	Relative Level	: mRL	Drill Type:	Rotary Air	
Checked By:	SD	Total Depth:	85.50 m	Coordinates:	mN 5	Drill Model:	UDR	
Date Started: Date Finished:	12-5-08 13-5-08	Casing Size:	ou mm	Permit No:	mE	Drill Fluid:	Air	

PID (ppm)	Sample ID	Legend	Classification	DESCRIPTION OF STRATA Type, plasticity / particle size, colour, secondary / minor components (e.g., "trace"),	Moisture	Depth (m)	WELL CONSTRUCTION DETAILS
PID			Clas	moisture content, consistency / density, and additional observations	Moi	Dep	
		× × × × × ×		Dark brown sandy CLAY and weathered SILTSTONE		1	
		× ×		Cream, light brown, light grey weathered and fractured SILTSTONE		2	
		* * × × × ×		Cream, light grey SILTSTONE		-3 -4	Cement Grout -
		l X X		Light brown, cream SILTSTONE		- 5	
		X X				<u></u> 6 -7	
		× ×		Light brown, dark brown SILTSTONE		8	
		× × × × × × × ×		Light grey, light blue SILTSTONE		9	
		X X				<u>-</u> 10 11	
		X X X X		Dark grey, light blue SILTSTONE COAL		12	
		= [=]		Dark grey CARBONACEOUS MUDSTONE		[13	
		= = =		Dark grey, black CARBONACEOUS MUDSTONE and COAL		14 15	
				COAL		16	
						17	
		× ×		Dark grey SILTSTONE		<u>+</u> 18 <u>+</u> 19	
		= =		Dark grey CARBONACEOUS MUDSTONE COAL		20	
		\times \times		Dark grey SILTSTONE		21 22	
		X X X X		Dark grey, light blue SILTSTONE Light grey, light blue SILTSTONE		23	
		× × × × × × × ×		Light grey, light blue SILTSTONE		24	
		* * *. *.		Dark grey SILTSTONE		25 26	
		: : : :		Light grey fine to medium SANDSTONE Light grey very fine SANDSTONE		27	
						28 29	
						30	
						31	
		::::				-32 -33	
		::::				-34	
						1 35 1 36	
		: : : :		Light grey fine to medium SANDSTONE		37	
		: : : :				38	
				Dark grey very fine SANDSTONE		39 40	
						41	Backfill (Drill -
				Light grey very fine SANDSTONE		42 43	Cuttings)
		::::				44	
		::::				45	
						46 47	
		× × × × × × × × × × × × × × × × × × ×		Light grey, dark grey SILTSTONE		48	
		= =		Dark grey CARBONACEOUS MUDSTONE		49	

MONITORING WELL Pz01

URS Australia Pty Ltd Level 14, 240 Queen St, Brisbane QLD Phone +61 7 3243 2111 Fax +61 7 3243 2199

Project **42626162**

Project Reference:

Caval Ridge EIS

Interva m)			ation	DESCRIPTION OF STRATA	ø)	(F)	WELL CONSTRUCTION DETAILS
Sample Interval PID (ppm)	Sample ID	Legend	Classification	Type, plasticity / particle size, colour, secondary / minor components (e.g., "trace"), moisture content, consistency / density, and additional observations	Moisture	Depth (m)	
		=		Dark grey, black CARBONACEOUS MUDSTONE and COAL		50 51	
				COAL		-52	
				Dark grey CARBONACEOUS MUDSTONE		53 54	
		= = = = = = = = = = = = = = = = = = =		Dark grey SILTSTONE		55	
		× × × × × × × ×				56 57	
		X X		Light grey very fine SANDSTONE		58 59	
				Dark grey fine to medium SANDSTONE		60	
		1::::				61 62	
		: : : :				63	
		1::::				64 65	
		::::				66	
		::::				67 68	
						69	
		: : : :				70 71	
				Dark grey fine SANDSTONE		-72	
		::::		Light grey, dark grey fine to medium		<u>₹</u> 73 ₹74	
		::::		SÄNDSTONE Dark grey fine SANDSTONE		75	
		::::		Light grey fine to medium SANDSTONE		76	
				Dark grey fine SANDSTONE		77 78	Bentonite Seal →
						79 80	
		× × × ×		Dark grey SILTSTONE		81	Gravel Pack —►
		-		Dark grey, light brown CARBONACEOUS MUDSTONE		82 83	
				COAL		84	50 mm uPVC Sc
				Dark grey, black CARBONACEOUS MUDSTONE		85 86	
						87 88 89	
						-90 │	
						91 92	
						93	
						94	
						95 96	
						- 97 ∣	
						98 99	
						-100	
						-101 -102	
						103	
						104 105	
						-106	
						107 108	
						109	
1	I			1		F	

UI	RS		MONITORING WELL F	Sheet 1 of 1
URS Australia Pty Level 14, 240 Que Drilling Contractor	een St, Brisbane QLD	Phone +61 7 3243 2111 Fax +61 7 3243 2199 ton Drilling	Project Reference: Caval Ridge EIS Client: BMA Coal Location: Project No.: 42626162 Client: Peak Downs QLI	ס
Logged By: Checked By:	DG SD	Bore Size: 165 mm Total Depth: 35.00 m	Relative Level: mRL Drill Type: Rotary Air Coordinates: mN	
Date Started: Date Finished:	20-5-08 20-5-08	Casing Size: 50 mm	mE Drill Model: UDR Permit No: Drill Fluid: Air	

UI	RS				MONIT	IONITORING WELL Pz03-D				
URS Australia Pty Ltd Phone +61 7 3243 211 Level 14, 240 Queen St, Brisbane QLD Fax +61 7 3243 219 Drilling Contractor: Capricorn Weston Drilling				Project Reference:			Client: BMA Coal Location: Peak Downs QLD			
Logged By: Checked By:	AW SD		65 mm 2.80 m	Relative Level Coordinates:	: mRL mN	Drill Type:	Rotary Air UDR			
Date Started: Date Finished:	15-5-08 16-5-08	Casing Size: 50	0 mm	Permit No:	mE	Drill Fluid:	Air			

Sample Interval PID (ppm)	Sample ID	pue	Classification	DESCRIPTION OF STRATA Type, plasticity / particle size, colour, secondary / minor components (e.g., "trace"),	Moisture	Depth (m)	WELL CONSTRUCTION I	DETAILS
San		Legend	Clas	moisture content, consistency / density, and additional observations	Mois	Dep		
				Topsoil Cream, light brown highly to extremely weathered		1		
		\		BASALT Grey slightly weathered BASALT		₽ 2		
		X		Beige, cream extremely weathered BASALT		1 3	Cement Grout →	
		X		Light brown extremely weathered BASALT with		₽ 5		
		۱ ٠٠٠٠		clasts of moderately weathered BASALT Grey slightly weathered BASALT		[6		
				Beige, light grey clayey extremely weathered		- 7		
		1		BASALT Cream, light grey clayey extremely weathered		₽ 8		
		× ×		\BASALT		10		
		× × × × × ×		Grey fresh BASALT Dark yellow, orange extremely weathered		<u>+11</u>		
		× ×		SILTSTONE		12		
		,X,,		Mauve, brown, light grey moderately to extremely weathered SILTSTONE		13		
		X.V		Light grey moderately to extremely weathered		14 15		
-		1/1		SILTSTONE Grey, green, fractured moderately weathered		- 16	Backfill (Drill -	
		7,7		BASALT Grey, green moderately weathered BASALT		<u>+</u> 17 -18	Cuttings)	
		7		Dark grey, green BASALT Dark grey BASALT		19		
		$ \lambda' $		Daik grey BAOALT		20		
		1				-21 -22		
		7				23		
		V. 1		Dark grey, orange, light brown BASALT		24 25		
		$\times \times$		Dark brown, light grey extremely weathered		26		
		× × × × × ×		SILTSTONE		27		
		× ×		Light grey extremely weathered SILTSTONE		28 29		
				Dark grey, dark brown highly to extremely weathered CARBONACEOUS MUDSTONE		-30 -31		
		× × × × × ×		Light grey extremely weathered SILTSTONE		32		
		××				33 34		
		× ×		Light grey very fine extremely weathered SANDSTONE to SILTSTONE		35		
		× ×		Light brown, light grey extremely weathered		36		
		× ×		SILTSTONE Dark grey CARBONACEOUS SILTSTONE		37 38	Bentonite Seal ─►	
		× × × ×		Dark grey CARBONACEOUS SILTSTONE and		39	Gravel Pack—►	
				COAL		40		
		× × × ×		Dark grey CARBONACEOUS SILTSTONE and		41 42		50 mm uPVC Scr
		××		COAL / Dark grey SILTSTONE /	 	42		
						44		
						45 46		
						-46 -47		
						48		
						49		

UI	RS				MONITORING WELL Pz03-S						
URS Australia Pty Level 14, 240 Que Drilling Contracto	een St, Brisbane QLD	61 7 3243 2111 61 7 3243 2199	Project Reference:	Caval Ridge EIS 42626162	Client: Location:	BMA Coal Peak Downs QLD					
Logged By:	AW	Bore Size:	165 mm	Relative Level	··	Drill Type:	Rotary Air				
Checked By: Date Started:	SD 16-5-08	Total Depth: Casing Size:	26.50 m 50 mm	Coordinates:	mN mE	Drill Model:	UDR				
Date Finished:	16-5-08			Permit No:		Drill Fluid:	Air				

Sample Interval PID (ppm) OII aldunes	Legend	DESCRIPTION OF STRATA Type, plasticity / particle size, colour, secondary / minor components (e.g., "trace"), moisture content, consistency / density, and additional observations	Well construction details Debth (m) Horizontal design of the construction details
	X.X.X.X.X.X.X.X.X.X.X.X.X.X.X.X.X.X.X.	Topsoil Cream, light brown highly to extremely weathered BASALT Grey slightly weathered BASALT Beige, cream extremely weathered BASALT Light brown extremely weathered BASALT Grey slightly weathered BASALT Beige, light grey clayey extremely weathered BASALT Cream, light grey clayey extremely weathered BASALT Grey fresh BASALT Dark yellow, orange extremely weathered SILTSTONE Mauve, brown, light grey highly to extremely weathered SILTSTONE Light grey highly to extremely weathered SILTSTONE Grey, green, fractured moderately weathered BASALT Grey, green moderately weathered BASALT Dark grey, green BASALT Dark grey, green BASALT Dark grey BASALT Dark grey, orange, light brown BASALT Dark brown, light grey extremely weathered SILTSTONE	0

UR	RS				MONITORING WELL Pz04					
URS Australia Pty Ltd Level 14, 240 Queen Drilling Contractor:		61 7 3243 2111 61 7 3243 2199	Project Reference:	Caval Ridge EIS 42626162	Client: Location:	BMA Coal Peak Downs QLD				
Logged By: All Checked By: SI		Bore Size: Total Depth:	165 mm 93.10 m	Relative Leve Coordinates:	i: mRL mN	Drill Type:	Rotary Air			
	4-5-08 5-4-08	Casing Size:	50 mm	Permit No:	mE	Drill Model: Drill Fluid:	UDR Air			

PID (ppm)	Sample ID	Legend	Classification	DESCRIPTION OF STRATA Type, plasticity / particle size, colour, secondary / minor components (e.g., "trace"), moisture content, consistency / density, and additional observations	Moisture	Depth (m)	WELL CONSTRUCTION DETAILS
						□ 0	proces proces
				Dark brown, light brown soil Light grey, white CLAYSTONE		<u></u>	
				Dark red IRONSTONE		₽ 2	
				Light grey CLAYSTONE		 3 │	Cement Grout →
				Light grey, light blue CLAYSTONE		<u></u> 4 ∣	
				Dark yellow, light grey CLAYSTONE		5	
				Light yellow CLAYSTONE		<u></u> 6 -7	
						-/ 8	
				Light grey CLAYSTONE		₽ 9	
						10	
						-11 │	
				Light grey, purple CLAYSTONE		12	
					L_	13	
				Light grey, white CLAYSTONE		14 15	
						<u>13</u>	
				Light grov, dark vellow (limonite staining)		17	
				Light grey, dark yellow (limonite staining) CLAYSTONE		18	
				Light grey, light blue CLAYSTONE		19	
						20	
						21 22	
				Dark grey CLAYSTONE		23	
				Light grey, dark yellow (limonite staining) CLAYSTONE		24	
				Light brown, dark grey CLAYSTONE		25	
						26	
						27 28	
				Light yellow, dark brown CLAYSTONE		29	
				Light brown CLAYSTONE		30	
				Light blown of the refue		31	
						32	
						33 34	
				Light brown, dark grey CLAYSTONE		35	
		= = = . × ×		Dark grey CARBONACEOUS MUDSTONE Light grey, light blue SILTSTONE		- 36 │	
		× ×		Light groy, light blue die 1010142		37	
		× ×				38	
		× × × × × × × × × × × × × × × × × × ×				39 40	
		× ×		Light blue, light grey SILTSTONE		41	Backfill (Drill →
		\$ \$				42	Cuttings)
		x x x				43	
		$\begin{vmatrix} \hat{x} & \hat{x} \\ x & x \end{vmatrix}$				44 45	
		× ×				45	
		× ×				47	
		× × × ×				48	
		× ×				49	

MONITORING WELL Pz04

URS Australia Pty Ltd Level 14, 240 Queen St, Brisbane QLD Phone +61 7 3243 2111 Fax +61 7 3243 2199

Project **42626162**

Project Reference:

Caval Ridge EIS

Dark grey SILTSTONE
104 105 106 107 107 108 108 109

UI	RS				MONITORING WELL Pz05					
URS Australia Pty Ltd Phone +61 7 3243 2111 Level 14, 240 Queen St, Brisbane QLD Fax +61 7 3243 2199 Drilling Contractor: Capricorn Weston Drilling				Reference:		Client: Location:	BMA Coal Peak Downs QLD			
Logged By:	AW	Bore Size:	165 mm	Relative Level		Drill Type:	Rotary Air			
Checked By: Date Started:	SD 16-5-08	Total Depth: Casing Size:	118.00 m 50 mm	Coordinates:	mN mE	Drill Model:	UDR			
Date Finished:	17-5-08			Permit No:		Drill Fluid:	Air			

PID (ppm)	Sample ID	Legend	Classification	DESCRIPTION OF STRATA Type, plasticity / particle size, colour, secondary / minor components (e.g., "trace"), moisture content, consistency / density, and additional observations	Moisture	Depth (m)	WELL CONSTRUCTION DETAILS
		////		Light brown CLAY, low plasticity		0	
						<u>1</u> 2	
				Dark yellow, light brown CLAY, low plasticity		3	
				Light brown highly to extremely weathered CLAYSTONE		<u></u> 4	
				Cream, light grey highly to extremely weathered CLAYSTONE		- 5	
				CLAYSTONE Light brown, tan highly to extremely weathered		6	Cement Grout →
				\CLAYSTONE /		 7	
				Dark brown, light grey highly to extremely weathered CLAYSTONE			
				Cream, light grey highly to extremely weathered CLAYSTONE		<u></u> 10	
				CLAYSTONE Dark grey, purple CLAYSTONE		[11	
				Dark grey, dark brown CARBONACEOUS		12	
				†\CLAYSTONE /r		1 3	
				Dark grey CLAYSTONE Light grey CLAYSTONE		15	
				Light brown CLAYSTONE		16	
						<u>-</u> 17	
				Light brown, dark grey CLAYSTONE with		18	
				carbonaceous material Dark brown, light grey CLAYSTONE		19 20	
				Dark brown, light grey CLATSTONE		21	
				Dark grey, light grey CLAYSTONE		22	
				Dank grey, light grey OLATOTONE		23	
						24	
						-25 -26	
						27	
						28	
						29	
				COAL		30 31	
				Light grey CLAYSTONE		32	
						- 33	
						34	
				Dark grey, light grey CLAYSTONE		35	
				Light grey CLAYSTONE		36 37	
						-38	
						- 39	
				Dark grey, light grey CLAYSTONE		40	
				Dark grey CLAYSTONE		41 42	
		× ×		Dark grey, black CARBONACEOUS SILTSTONE		42	
		x x		COAL Light grey SILTSTONE		- 44	
		××		Dark grey SILTSTONE		45	
		× × × × × × × × × × × × × × × × × × ×		Light grey SILTSTONE		46	
		$\begin{vmatrix} \hat{x} & \hat{x} \\ x & x \end{vmatrix}$				-47 -48	
		× ×		Dark grey SILTSTONE		49	
		10 0		Daik gley SILTSTONE			

MONITORING WELL Pz05

URS Australia Pty Ltd Level 14, 240 Queen St, Brisbane QLD Phone +61 7 3243 2111 Fax +61 7 3243 2199

Project **42626162**

Pro

Project Reference: Caval Ridge EIS

PID (ppm)	Sample ID	Legend	Classification	DESCRIPTION OF STRATA Type, plasticity / particle size, colour, secondary / minor components (e.g., "trace"), moisture content, consistency / density, and additional observations	Moisture	00 Depth (m)	WELL CONSTRUCTION DETAILS
		× × × × × ×		Light grey SILTSTONE		51	
		* *				-52 -53	
		× × × ×				54	
		X X		Light grey SILTSTONE and very fine		55	
		× × × ×		SANDSTONE		-56 -57	
				Light grey very fine to medium SANDSTONE		58	
		::::				59	Deal-fil (Deill a Fil
		× × × ×		Dark grey SILTSTONE		60 61	Backfill (Drill -> Cuttings)
		::::		Light grey very fine to medium SANDSTONE		62	
		::::				63 64	
						65	
						66	
		::::				67 68	
		::::				69	
						70	
						-71 -72	
						-73	
						-74 -75	
		= = =		Dark grey CARBONACEOUS MUDSTONE and COAL		76	
		::::		Dark grey very fine to medium CARBONACEOUS SANDSTONE		77	
		××		Light grey very fine to medium SANDSTONE		78 79	
		lx xl		Light grey SILTSTONE		80	
		× × × × × × × ×				81	
		$ \times \times $				-82 -83	
		× × × × × ×				84	
		××		Dark grey slightly CARBONACEOUS		85 86	
		\times		SILTSTONE Dark grey SILTSTONE		87	
		* * × × × ×		Dark grey SILTSTONE		88	
		× × × ×		Light grey SILTSTONE		89 90	
		× × × × × ×				91	
		\times				92 93	
		× × × × × × × × × ×				94	
		x x				95	
		× ×		L'ald and and CU TOTONS		96 97	
		× × × × × ×		Light grey sandy SILTSTONE Light grey SILTSTONE		98	
		× × × ×		3 - 3 - 5		99	
		× × × ×		Dark grow fine CARRONACEOUS SANDSTONE		100 101	
		××		Dark grey fine CARBONACEOUS SANDSTONE and COAL		102	
		× × × × × ×		Dark grey SILTSTONE		103 −104	
		× × × ×		Light grov SILTSTONE		104	
		× × × × ×		Light grey SILTSTONE Dark grey SILTSTONE		106	
		X X		Light grey SILTSTONE		107 108	
		X X X X X X		Dark grey SILTSTONE Light grey SILTSTONE		100	
		1× ×		Light giey dictorone		E	

MONITORING WELL Pz05

URS Australia Pty Ltd Level 14, 240 Queen St, Brisbane QLD Phone +61 7 3243 2111 Fax +61 7 3243 2199

Project **42626162**

Project Reference:

Caval Ridge EIS

Sample Interval PID (ppm)	Sample ID	Legend	Classification	DESCRIPTION OF STRATA Type, plasticity / particle size, colour, secondary / minor components (e.g., "trace").	Moisture	Depth (m)	WELL CONSTRUCTION DETAILS
San			Clas	Type, plasticity / particle size, colour, secondary / minor components (e.g., "trace"), moisture content, consistency / density, and additional observations	Moi	☐ 110	
		× × × × × × × × × × × × × × × × × × ×				-111	Bentonite Seal →
		= = =		Dark grey, black CARBONACEOUS MUDSTONE		112 113	Gravel Pack—
		× × × × × ×		Dark grey, black CARBONACEOUS SILTSTONE		- 114	
		~ ~		COAL		115 116	
		× × × × × ×		Dark grey, black CARBONACEOUS SILTSTONE and COAL		- 117	50 min up vC Sc
		××		Dark grey, black CARBONACEOUS SILTSTONE		₹118 119	
						120	
						121	
						122 123	
						124	
						125 126	
						127	
						128 129	
						- 130	
						131 132	
						133	
						134 135	
						-136	
						137 138	
						139	
						140 141	
						141	
						143	
						144 145	
						146	
						147 148	
						-149	
						150 151	
						-152	
						153 154	
						155	
						156 157	
						-158	
						159	
						160 161	
						-162	
						163 164	
						165	
						166 167	
						-168	
						169	

URS		MONIT	Sheet 1 of 2	
URS Australia Pty Ltd Level 14, 240 Queen St, Brisbane QLD Drilling Contractor: Capricorn Wes	Phone +61 7 3243 2111 Fax +61 7 3243 2199 ston Drilling	Project Caval Ridge EIS Reference: Project No.: 42626162	Client: BMA Coal Location: Peak Downs QLD	
Logged By: AW Checked By: SD Date Started: 19-5-08 Date Finished: 19-5-08	Bore Size: 165 mm Total Depth: 84.00 m Casing Size: 50 mm	Relative Level: mRL Coordinates: mN mE Permit No:	Drill Type: Rotary Air Drill Model: UDR Drill Fluid: Air	

Sample Interval PID (ppm)	Sample ID	Legend	Classification	DESCRIPTION OF STRATA Type, plasticity / particle size, colour, secondary / minor components (e.g., "trace"), moisture content, consistency / density,	Moisture	Depth (m)	WELL CONSTRUCTI	ON DETAILS
ñ Δ		ا ت	O	and additional observations	Σ			
				Dark brown stiff CLAY, low plasticity		1		
		Ž.		Light brown, light grey highly to extremely weathered BASALT		2	Cement Grout →	
				Light grey, light brown moderately weathered BASALT		4 5 6	Cement Grout →	
		Ž.		Dark grey, green, light brown moderately weathered BASALT		7		
				Light brown, dark grey SILT with clasts of highly weathered BASALT		9		
		١٧١		Beige, light brown, green SILT with clasts of highly weathered BASALT		11		
				Dark grey, light brown moderately weathered BASALT		13 14		
				Purple, brown moderately to highly weathered BASALT		15 16		
		W:		Light grey, light brown moderately weathered BASALT		17		
				Dark grey, light red moderately weathered BASALT		18 19		
				Purple, brown moderately to highly weathered BASALT		20		
				Light brown silty highly to extremely weathered BASALT		21 22		
		17		Dark brown, light red moderately weathered BASALT		23		
		1,1		Dark grey, green, light brown moderately weathered BASALT		24 25		
		7		Dark grey slightly weathered BASALT Dark grey BASALT		26 27		
		V.		Dark grey BASALT and dark green, dark grey clayey basalt, slightly moist		28		
		7		Dark grey BASALT Dark grey, black CLAY and extremely weathered		29 30		
		× × ×		MUDŠTÓNE /		31		
		× × × × × ×		Light grey SILTSTONE Dark green SILTSTONE		32 33		
		× × × ×				-34 -35		
		××				-36		
		X				-37 -38		
		× × × ×				39 40		
		× × × ×		Dark green, light grey SILTSTONE Light grey SILTSTONE		- 41	Backfill (Drill → Cuttings)	
		* × ×				42 43	Cuttings)	
		× × × ×		Dark green SILTSTONE		44		
		× ×		Light grey SILTSTONE		45 46		
		× × × ×				- 47		
		× × × × × × × × × × × × × × × × × × ×		Light grey SILTSTONE		48 49		
		ıx xl		1 0 0 7 7 7 7 7		É		•

MONITORING WELL Pz06-D

URS Australia Pty Ltd Level 14, 240 Queen St, Brisbane QLD Phone +61 7 3243 2111 Fax +61 7 3243 2199

Project **42626162**

Project Reference:

Caval Ridge EIS

Sample Interval PID (ppm)	Sample ID Federal	Classification	DESCRIPTION OF STRATA Type, plasticity / particle size, colour, secondary / minor components (e.g., "trace"), moisture content, consistency / density, and additional observations	Moisture	Depth (m)	WELL CONSTRUCTION DETAILS
	X X X X X X X X X X X X X X X X X X X	× × × × × × × × × × × × × × × × × × ×	Light grey fine to medium SANDSTONE Light grey fine to medium SANDSTONE Light grey fine SANDSTONE Dark grey fine SANDSTONE Black, dark grey CARBONACEOUS SILTSTONE and COAL COAL Dark grey SILTSTONE		50 51 52 53 54 55 55 57 58 59 60 61 62 63 64 65 66 67 77 77 77 77 77 77 77 77 77 77 77	Bentonite Seal ————————————————————————————————————

UI	RS				Sheet 1 of 1			
Level 14, 240 Qu	URS Australia Pty Ltd Level 14, 240 Queen St, Brisbane QLD Phone +61 7 3243 2111 Fax +61 7 3243 2199 Drilling Contractor: Capricorn Weston Drilling				Project Reference: Project No.: 42626162		BMA Coal Peak Downs QLD	
Logged By:	AW	Bore Size:	165 mm	Relative Level		Drill Type:	Rotary Air	
Checked By: Date Started:	SD 19-5-08	Total Depth: Casing Size:	31.00 m 50 mm	Coordinates:	mN mE	Drill Model:	UDR	
Date Finished:	19-5-08			Permit No:		Drill Fluid:	Air	

erve		DESCRIPTION OF STRATA	WELL CONSTRUCTION DETAILS
Sample Interval PID (ppm)	Legend	DESCRIPTION OF STRATA Type, plasticity / particle size, colour, secondary / minor components (e.g., "trace"), moisture content, consistency / density, and additional observations	Moisture Depth (m)
		Light brown, light grey highly to extremely weathered BASALT Light grey, light brown moderately weathered BASALT Light grey, green, light brown moderately weathered BASALT Light brown, dark grey SILT with clasts of highly weathered BASALT Beige, light brown, green SILT with clasts of highly weathered BASALT Dark grey, light brown moderately weathered BASALT Light grey, light brown moderately weathered BASALT Light grey, light brown moderately weathered BASALT Dark grey, light red moderately weathered BASALT Purple, brown moderately to highly weathered BASALT Dark grey, light red moderately weathered BASALT Dark brown, light red moderately weathered BASALT Dark grey, green, light brown moderately weathered BASALT Dark grey BASALT	0

U	RS			MONITORING WELL Pz07-D				
URS Australia Pt Level 14, 240 Qu Drilling Contracto	een St, Brisbane QLD	9 Reference:			BMA Coal Peak Downs QLD			
Logged By:	AW	Bore Size: 165 mm	Relative Leve	el: mRL	Drill Type:	Rotary Air		
Checked By:	SD	Total Depth: 44.00 m	Coordinates:	mN	Drill Model:	UDR		
Date Started: Date Finished:	18-5-08 18-5-08	Casing Size: 50 mm	Permit No:	mE	Drill Fluid:	Air		

Sample Interval PID (ppm)			ation	DESCRIPTION OF STRATA	40	(u	WELL CONSTRUCTION DETA	ILS
Sample Int PID (ppm)	Sample ID	Legend	Classification	Type, plasticity / particle size, colour, secondary / minor components (e.g., "trace"), moisture content, consistency / density, and additional observations	Moisture	Depth (m)		
				Light brown, tan SILT		0		
				Light brown, light red gravelly CLAY, low ¬ plasticity, gravel clasts of chalcedony, basalt and √		<u>+</u> 2	'	
				$ \cdot $ ironstone, angular to sub-round, up to 20 mm $ \cdot $		 3 │	Cement Grout →	
				Light brown, gravelly silty CLAY, low plasticity, gravel clasts of chalcedony, basalt and ironstone,		[4		
				Sub-angular to round, up to 50 mm Beige, dark yellow SILT		-5 -6		
				Light brown silty CLAY		<u></u> 7		
				Light brown, beige SILT		<u></u> 8 │		
				Light brown, beige, very fine to medium SAND Light brown, silty very fine SAND		 9		
				Light brown, beige, silty very fine SAND		<u></u> 10 11		
				Light brown, light grey, very fine silty SAND		12		
				Cream, white, orange very fine to coarse quartz SAND with minor medium gravel, sub-angular to		13	Backfill (Drill →	
				round, well sorted Orange, white, medium to coarse quartz SAND		14	Cuttings)	
		××		with minor gravel clasts up to 10 mm.		15		
		× × × × × × × ×		sub-angular to round, well sorted, moist Dark brown, orange medium to coarse quartz		16		
		××		L SAND with minor coarse gravel clasts up to 20		18		
				mm, sub-angular to round, well sorted, moist Light grey, light brown fine to coarse SAND,		[19		
		× × × × × × × × × × × × × × × × × × ×		sub-angular to round, well sorted, moist		20		
		××		Dark grey, black sandy clayey extremely weathered SILTSTONE		21 22		
		X X X		Light grey, highly weathered CLAYSTONE		23		
		× ×		Dark grey, CARBONACEOUS CLAYSTONE Dark grey SILTSTONE		24		
		× ×		Dark grey, black CARBONACEOUS MUDSTONE		25		
		= = =		3 3,,,		26		
		= = =				-27 -28		
		= =		Dark grey SILTSTONE		29		
		× × × × × × × ×		Dark grey SILTSTONE		-30	Bentonite Seal —►	
		× ×				₽31		
		× × × ×.		Dark grey sandy SILTSTONE		32 33		
		××		Light grey fine SANDSTONE		34		
		<u> </u>		Light grey, light brown CARBONACEOUS SILTSTONE		35		
		× × ×		Light grey fine to medium SANDSTONE		₩ 36		
		::::		Light grey SILTSTONE Light grey fine SANDSTONE		37 38		
		::::				39		
		× × × ×		Dark grey SILTSTONE		[40		
		= =		Dark grey, black CARBONACEOUS MUDSTONE		41	Gravel Pack—►	
				COAL		42 43	50 mm	uPVC S
		x x		Dark grey SILTSTONE	_	₹44 144		
						45		
						46		
						-47 -48		
						49		

UI	RS			MONITORING WELL Pz07-S				
URS Australia P Level 14, 240 Qu Drilling Contracto	ueen St, Brisbane QLD	Reference:	1_ 3		BMA Coal Peak Downs QLD			
Logged By:	AW	Bore Size: 165 mm	Relative Level	: mRL	Drill Type:	Rotary Air		
Checked By:	SD	Total Depth: 16.00 m	Coordinates:	mN	Drill Model:	UDR		
Date Started:	18-5-08 18-5-08	Casing Size: 50 mm	Permit No:	mE	Drill Fluid:	Air		

	Interva m)	0 1 10		cation	DESCRIPTION OF STRATA	ω ω) E	WELL CONSTRUCTION DETAILS
	Sample Interval PID (ppm)	Sample ID	Legend	Classification	Type, plasticity / particle size, colour, secondary / minor components (e.g., "trace"), moisture content, consistency / density, and additional observations	Moisture	Depth (m)	
			ш		Light brown SILT		- 0 1	
					Light brown, red silty CLAY Light grey, beige CLAY, moderate plasticity,		<u> </u>	
					moist		 3	Cement Grout →
					Light grey, beige CLAY, low plasticity		4	
					Light brown silty CLAY		- 5	
					Beige silty fine SAND		1 6	Bentonite Seal →
					Light brown SILT Light brown, orange fine to medium SAND		<u></u> 8	Gravel Pack →
					Light brown SILT		₽9	
					Beige fine SAND		10	
					Cream, dark yellow fine to medium SAND		₹11 ₹12	50 mm uPVC S
			••••		Light brown, light grey fine to coarse SAND, angular to sub-round		13	
					Brown, orange, clayey fine to coarse SAND, sub-angular to round, well sorted, with minor		14	
			777		+-\gravel clasts up to 10 mm moist / r		15	Collapse
l			1 4. 1.		Brown, orange clayey fine to coarse SAND,		16	NOSANOI
					Brown, orange clayey fine to coarse SAND, sub-angular to round, well sorted with minor gravel clasts up to 20 mm, moist		- 17 -18	
					Dark grey black SANDY CLAY moderate to high		19	
					plasticity, moist to wet - weathered CARBONACEOUS MUDSTONE		20	
							21	
1							-22 -23	
							23 24	
							25	
·							26	
1							-27	
1							-28 -29	
							30	
							31	
-							32	
1							33	
1							34	
							35 36	
							37	
-							-38	
1							39	
١							40	
							41 42	
							43	
-							-44	
							45	
							46	
							47 48	
							49	
L							₽ .~	

UI	RS				Sheet 1 of 2			
URS Australia Pt Level 14, 240 Qu Drilling Contracto	een St, Brisbane QLD	Fax +6	51 7 3243 2111 61 7 3243 2199	Project (Reference:	Caval Ridge EIS 42626162	Client: Location:		
Logged By:	AW	Bore Size:	165 mm	Relative Level:		Drill Type:	Rotary Air	
Checked By: Date Started:	SD 17-5-08	Total Depth: Casing Size:	63.00 m 50 mm	Coordinates:	mN mE	Drill Model:	UDR	
Date Finished:	17-5-08			Permit No:		Drill Fluid:	Air	

PID (ppm)	Sample ID	Legend	Classification	DESCRIPTION OF STRATA Type, plasticity / particle size, colour, secondary / minor components (e.g., "trace"), moisture content, consistency / density, and additional observations	Moisture	Depth (m)	WELL CONSTRUCTION DETAILS
				Light brown, orange fine silty SAND		0 1	
				D Oli T		<u>-</u> 2	
				Brown SILT Brown clayey SILT		- 3	Cement Grout →
		+++		Light brown SILT		- 4	
						-5 -6	
				Light brown, orange fine SAND Light brown, orange SILT		<u></u>	
				Light brown SILT		8	
				Light brown fine SAND		 9 - 10	
				Light house hairs fine CAND		11	
				Light brown, beige fine SAND Light grey fine to medium SAND		[12	
				Beige fine to medium SAND		13	
		,,,,		Light brown, orange, light grey fine to medium SAND		14 15	
				Dark brown, light grey CLAYSTONE		16	
						17	
				Dark grey CLAYSTONE		<u>+</u> 18 <u>+</u> 19	
		////		Dark grey SILTSTONE		<u></u> 20	
		× ×		Daik grey dictorone		21	
		× ×		Light grey SILTSTONE		22 23	
		× × × × × × × × × × × × × × × × × × ×		Dark grey SILTSTONE		24	
						25	
		$ \times \times $				26 -27	
		× × × ×		COAL		28	
				COAL		29	
		× ×		Dark grey, black CARBONACEOUS SILTSTONE		₩30 ₩31	Backfill (Drill -> ::: :: :: :: :: :: :: :: :: :: :: :: :
				COAL		32	
						- 33	
		××		Dark grey, black CARBONACEOUS SILTSTONE		34	
		× × × ×		Dark grey SILTSTONE		35 36	
		× × × × × ×				-37	
		^ ^		COAL		38	
				COAL and dark grey, black CARBONACEOUS SILTSTONE		₹39 ₹40	
		× × × ×		Dark grey, black CARBONACEOUS SILTSTONE	-	41	
		× × × × × × × × × × × × × × × × × × ×		Light grey SILTSTONE		42	
		× ×				43 44	
						45	
		× ×		Dark grey, black CARBONACEOUS SILTSTONE		46	
		× ×		and COAL Dark grey CARBONACEOUS SILTSTONE		47 48	
		××			-	49	
		IÇ Ç		Daik gley SILTSTOINE		Ē	
		××		Dark grey SILTSTONE		49	

URS

MONITORING WELL Pz08-D

URS Australia Pty Ltd Level 14, 240 Queen St, Brisbane QLD Phone +61 7 3243 2111 Fax +61 7 3243 2199

Project **42626162**

Project Reference:

UI	RS			MONITORING WELL Pz08-S						
URS Australia Pty Level 14, 240 Qui Drilling Contracto	een St, Brisbane QLD	Phone +61 7 3243 21 Fax +61 7 3243 21 ton Drilling	Reference:	Caval Ridge EIS 42626162	Client: Location:					
Logged By: Checked By:	AW SD	Bore Size: 165 mm Total Depth: 16.00 m	Relative Lev		Drill Type:	Rotary Air				
Date Started: Date Finished:	17-5-08 17-5-08	Casing Size: 50 mm	Permit No:	mE	Drill Model: Drill Fluid:	UDR Air				

Sample Interval PID (ppm) OI oI oI oI oI	Legend	DESCRIPTION OF STRATA Type, plasticity / particle size, colour, secondary / minor components (e.g., "trace"), moisture content, consistency / density, and additional observations	Moisture	Depth (m)	WELL CONSTRUCTION DETAILS
		Light brown, orange fine silty SAND		0	
				<u></u> 1 − 2	
		Brown SILT Brown clayey SILT		- 3	Cement Grout →
-		Light brown SILT		4	
				-5 -6	Pookfill (Drill
		Light brown, orange fine SAND		7	Backfill (Drill ———————————————————————————————————
-		Light brown, orange SILT Light brown SILT		- 8	Bentonite Seal — Gravel Pack — • • • • • • • • • • • • • • • • • •
-		Light brown fine SAND		9	Olavert ack
		<u> </u>		<u></u> 10 11	
		Light brown, beige fine SAND Light grey fine to medium SAND		- 12	50 mm uPVC Sc
-		Beige fine to medium SAND		- 13	
		Light brown, orange, light grey fine to medium SAND		14	
		SAND / Dark brown, light grey CLAYSTONE /		15 16	Bentonite Seal →
				20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 40 41 42 43 44 45 46 47 48	

UI	RS				MONITORING WELL Pz09					
URS Australia Pty Level 14, 240 Que Drilling Contracto	een St, Brisbane QLD	Phone +61 7 3243 Fax +61 7 3243 ton Drilling		Project Reference:	Caval Ridge EIS 42626162	Client: Location:	BMA Coal Peak Downs QLD			
Logged By: Checked By:	AW SD	Bore Size: 165 mm Total Depth: 77.00 m	-	Relative Level Coordinates:	i: mRL mN	Drill Type:	Rotary Air			
Date Started: Date Finished:	21-5-08 23-5-08	Casing Size: 50 mm		Permit No:	mE	Drill Model: Drill Fluid:	UDR Air			

교 유	ımple ID	Legend	Classification	DESCRIPTION OF STRATA Type, plasticity / particle size, colour, secondary / minor components (e.g., "trace"),	Moisture	Depth (m)	WELL CONSTRUCTION DETAILS
PID (Leg	Cla	moisture content, consistency / density, and additional observations	Moi		
				Dark brown silty CLAY, low plasticity with abundant organic matter Dark brown silty clayey SAND		1 2	Cement Grout →
	<u>:</u>			Beige SILT and extremely weathered SILTSTONE		3 4 5	Cement Grout —➤
				Light brown, light grey silty clayey extremely weathered SILTSTONE		6 7	
		ĬĬ		Light brown clayey SILT and extremely weathered SILTSTONE		8 9 10	
				Brown, red silty CLAY and extremely weathered SILTSTONE Light brown silty CLAY and extremely weathered		11	
				SILTSTONE Beige SILT and extremely weathered SILTSTONE		13 14 15	
	-			Light brown silty CLAY and extremely weathered SILTSTONE Dark brown, dark grey SILT with clasts of moderately weathered SILTSTONE		16 17	
		× × × ×		Light brown, light grey SILT and highly to extremely weathered SILTSTONE Dark brown, light grey SILT and highly to		18 19 20	
				extremely weathered SILTSTONE Light grey SILT Light grey, blue moderately weathered		21 22	
		× × × × × × × × × ×		SILTSTONE Dark grey SILT and clasts of dark grey moderately to highly weathered SILTSTONE		23 24 25	
		× ×		Dark grey, black CARBONACEOUS SILTSTONE Dark grey, black CARBONACEOUS SILTSTONE and COAL		26 27	
		× × × × × × × × × ×		Dark grey slightly weathered SILTSTONE Dark grey SILTSTONE Light grey SILTSTONE		28 29 30	Backfill (Drill →
	-	× × × × × × × ×		Dark grey SILTSTONE and dark grey CLAY, moist Light grey SILTSTONE		31 32 33	Cuttings)
		× × × × × × × × × × × × × × × × × × ×		Dark grey SILTSTONE		34 35 36 37	
		× × × × × × × × × × × × × × × × × × ×				38 39 40 41	
		× × × × × ×		Light grey SILTSTONE		42 43 44	
	-	× × × × × × × × × × × × × × × × × × ×		Dark grey SILTSTONE Light grey SILTSTONE Dark grey SILTSTONE		45 46 47	
	_	× × × × × ×		Dark grey SILTSTONE and dark grey CLAY		48 49	

URS

MONITORING WELL Pz09

URS Australia Pty Ltd Level 14, 240 Queen St, Brisbane QLD Phone +61 7 3243 2111 Fax +61 7 3243 2199

Project **42626162**

Project Reference:

Sample Interval PID (ppm)	Sample ID	Legend	Classification	DESCRIPTION OF STRATA Type, plasticity / particle size, colour, secondary / minor components (e.g., "trace"), moisture content, consistency / density, and additional observations	Moisture	Depth (m)	WELL CONSTRUCTION DETAILS
		× × × × × × × × × × × × × × × × × × ×		Light grey SILTSTONE		50 51	
		× ×				-52	
		x x		Light grey, black SILTSTONE		53	
		××		Light grey SILTSTONE		54	
		x x x x		Dark grey SILTSTONE		55 56	
		× ×		Dark grey SILTSTONE		57	
		× × × ×				58	
		× ×				59	
		× ×		Light grey SILTSTONE		60	
		<i>"///</i>		Light grey, dark grey CLAY, moist		61	Bentonite Seal —
						62 63	
		× × × ×		Light grey SILTSTONE		64	Bentonite Seal →
		× ×		Dark grey SILTSTONE - hard		65	Beritorite Seal —
		X X		Light grey SILTSTONE - Hard		66	
		<i>*///</i>		Light grey CLAY, slightly moist		67	
		* * * * * * * * * * * *		Light grey moderately weathered SILTSTONE		68	Gravel Pack ──
		× × × ×		Dark grey SILTSTONE		₹69 ₹70	
				COAL		71	
						- 72	
		× ×		Dark grey, black, light brown CARBONACEOUS		73	[: : □ : □
		× × × ×		Dark grey, black, light brown CARBONACEOUS SILTSTONE		-74	50 mm uPVC So
		× ×		COAL		75 76	
		× ×		Light grey SILTSTONE		₹76 ₹77	
						80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 90 100 101 105	
						107 108 109	

UI	RS				MONITORING WELL Pz10							
URS Australia Pt Level 14, 240 Qu Drilling Contracto	een St, Brisbane QLD	Phone +61 7 324 Fax +61 7 324 ton Drilling		Reference:		Client: Location:	BMA Coal Peak Downs QLD					
Logged By:	AW	Bore Size: 165 m	ım	Relative Level:	mRL	Drill Type:	Rotary Air					
Checked By:	SD	Total Depth: 83.00	m	Coordinates:	mN	Drill Model:	UDR					
Date Started:	20-5-08	Casing Size: 50 mm	n		mE							
Date Finished:	21-5-08			Permit No:		Drill Fluid:	Air					

PID (ppm)	Sample ID	Legend	Classification	DESCRIPTION OF STRATA Type, plasticity / particle size, colour, secondary / minor components (e.g., "trace"), moisture content, consistency / density,	Moisture	Depth (m)	WELL CONSTRUCTION DETAILS
		////		and additional observations		- 0	recal recal
				Dark grey, orange CLAY, low plasticity Light brown silty CLAY		<u> 1</u>	
						-2 -3	Cement Grout →
				Beige light brown SILT		-4	
						-5 -6	
				Light brown SILT		7	
				Light brown Sici		8	
						₽9 10	
				Light grey, dark brown CLAY and SILT Light brown SILT		<u>₹</u> 11	Backfill (Drill →
				Light brown, beige SILT		<u></u> 12	Cuttings)
				Light grey CLAYSTONE Dark grey, light brown CLAYSTONE		13	
		\longleftrightarrow		COAL COAL	+	[15	
				Lista and Olay (CTC) IT	1	16 17	
				Light grey CLAYSTONE Dark grey CLAYSTONE	1	- 18	
				Light grey CLAYSTONE	1	19 20	
						20	
						-22	
						23 24	
		$\times \times$		Light grey SILTSTONE		25	
		× ×				26 27	
		x x x				28	
		× ×				29	
		× × × × × × × × × × × × × × × × × × ×				-30 -31	
		× × × ×				32	
		× ×				33 34	
		× × × × × ×		Light grey fine sandy SILTSTONE	1	₹-35	
		× × × ×		Dark grey SILTSTONE	1	36 37	
		× ×				38	
		× × × × × × × × × × × × × × × × × × ×				-39	
		× ×				40 41	
		× × × ×				42	
		× ×		Dark grey slightly CARBONACEOUS SILTSTONE	1	43 44	
		×××××××××××××××××××××××××××××××××××××××		Light grey SILTSTONE	1	45	
		× × × × × × × × × × × × × × × × × × ×		Dark grey SILTSTONE		46	
		× ×		Dark grey, black highly CARBONACEOUS SILTSTONE	\bot	47 48	
		x x		Light grey SILTSTONE		49	
		ليريدا		1	1	<u> </u>	1d 1d

URS

MONITORING WELL Pz10

URS Australia Pty Ltd Level 14, 240 Queen St, Brisbane QLD Phone +61 7 3243 2111 Fax +61 7 3243 2199

Project **42626162**

Project Reference:

Sample Interval PID (ppm)	Sample ID	Legend	Classification	DESCRIPTION OF STRATA Type, plasticity / particle size, colour, secondary / minor components (e.g., "trace"), moisture content, consistency / density, and additional observations	Moisture	Depth (m)	WELL CONSTRUCTION DETAILS
		× × × × × × × × × × × × × × × × × × ×		Dark grey clayey slightly CARBONACEOUS MUDSTONE Dark brown MUDSTONE Dark brown MUDSTONE COAL with some highly CARBONACEOUS MUDSTONE COAL with some highly CARBONACEOUS MUDSTONE MUDSTONE		50 51 52 53 55 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 71 72 73 74 75 77 78 79	Bentonite Seal → Gravel Pack → 50 mm uPVC Sc
				MUDSTONE		81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107	

MONITORING WELL Pz11-S and Pz11D

Phone +61 7 3243 2111 Project Reference: Caval Ridge EIS URS Australia Pty Ltd Level 14, 240 Queen St, Brisbane QLD Client: **BMA** Coal Fax +61 7 3243 2199 Location: **Peak Downs QLD Capricorn Weston Drilling** Drilling Contractor: Project No.: **42626162** AW Bore Size: Relative Level: mRL Drill Type: Rotary Air Logged By: 165 mm Checked By: SD Total Depth: 58.00 m Coordinates: Drill Model: UDR mΕ Date Started: 21-5-08 Casing Size: 50 mm Drill Fluid: Air Date Finished: 21-5-08 Permit No:

Interval n)			ation	DESCRIPTION OF STRATA		(ر	WELL CONSTR	UCTION DETAILS
Sample Interva PID (ppm)	Sample ID	Legend	Classification	Type, plasticity / particle size, colour, secondary / minor components (e.g., "trace"), moisture content, consistency / density, and additional observations	Moisture	Depth (m)		
				Light brown, dark brown very fine sandy SILT		0		
				Orange, red, brown very sandy CLAY Dark brown, fine to medium SAND		2	Cement Grout →	
				Dark brown, light brown fine to coarse SAND and		3	8	
				minor fine GRAVEL, angular to sub-round		4	Bentonite seal →	
				Dark brown, light brown fine to coarse SAND and		-5 -6	Gravel pack ─►	
				minor fine GRÄVEL, sub-angular to sub-round, well sorted, very clean		₽ 7		
				Tan fine sandy SILT with some clayey bands		8		50 mm uPVC scre
				Cream, light brown fine to coarse SAND with minor GRAVEL clasts up to 15 mm, sub-angular		9	Bentonite seal	
				to sub-round, well sorted Dark brown, light grey moderately to highly		<u>-</u> 10 -11		
				weathered CLAYSTONE, slightly moist		12	圓	<u></u>
		× × × × × ×		Dark brown, light grey moderately weathered CLAYSTONE		13		
		X X		Light grey slightly weathered SILTSTONE		14	圖	<u> </u>
		× ×		Light grey SILTSTONE		15		
		× ×				<u>-</u> 16 -17	圖	
		× ×				<u>- 17</u>	圖	<u></u>
		× × × × × ×				19		
						20	日	
		$1 \times \times 1$				21 22	Ħ	<u></u>
		× × × ×		Light grey very fine sandy SILTSTONE		23		
		× ×				24	Ħ	
		× × × ×				25		
		× ×		Light grey SILTSTONE		26 27	目	
		× × × ×		Dark grey SILTSTONE		-28	Ħ	=::=::= =::=::=
		× × × ×				29		
		× ×		Dark grey, black SILTSTONE		30	Ħ	
		× × × ×		Dark grey, black CARBONACEOUS SILTSTONE		31	Backfill (drill -	
				COAL		32 33	501go,	
						34		
		× ×		Dark grey, black CARBONACEOUS SILTSTONE		35	圖	
		× ×		Dark grey SILTSTONE		36		<u></u>
		× × × × × ×				<u>-</u> 37 -38		
		× × × × × ×				39	圖	E:::::3
		\times		Light grey SILTSTONE		40		
		× × × × × ×		Dark grey SILTSTONE		41		
		× ×				42 43		
		* * * *		Dark grey SILTSTONE and dark grey CLAY,		43		
		× ×		Dark grey SILTSTONE		45	圖	
		× ×				46		
		× ×				47 48		
		× × × × × × × × × × × × × × × × × × ×		Light grow CILTCTONE and dad array OLAY		48 49		
		lî î		Light grey SILTSTONE and dark grey CLAY,		Ė.	<u> </u>	::::::.:: -::::::::::::::::::::::::::

Sheet 2 of 2

URS

MONITORING WELL Pz11-S and Pz11D

URS Australia Pty Ltd Level 14, 240 Queen St, Brisbane QLD Phone +61 7 3243 2111 Fax +61 7 3243 2199

Project **42626162**

Project Reference:

Sample Interval PID (ppm)	Sample ID	Legend	Classification	DESCRIPTION OF STRATA Type, plasticity / particle size, colour, secondary / minor components (e.g., "trace"), moisture content, consistency / density, and additional observations	Moisture	Depth (m)	WELL CONSTRUCTION DETAILS
		Leger	Class	secondary / minor components (e.g., "trace"), moisture content, consistency / density, and additional observations \slightly moist Light grey SILTSTONE Light grey SILTSTONE, very soft Light grey SILTSTONE and dark grey CLAY, moist	Moist	#ided 50 55 55 55 55 55 55 55 55 55 55 55 55	Bentonite seal ————————————————————————————————————
mikatan bata dan kata kata kata kata kata kata kata ka						89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 108 109	

Falling/Rising Head Test Data

Appendix D

Slug Test Analysis Report

Project: Caval Ridge EIS

Number: 42626162

Client: BMA Coal

Location: Moranbah QLD	Slug Test: Pz01	Test Well: Pz01	
Test conducted by: AW		Test date: 8/06/2008	
Analysis performed by: AW	Pz01 Bouwer & Rice	Date: 30/06/2008	

Aquifer Thickness: 3.50 m

Observation well	К	
	[m/d]	
Pz01	1.00 × 10 ⁻¹	

Slug Test Analysis Report

Project: Caval Ridge EIS

Number: 42626162 Client: BMA Coal

Location: Moranbah QLD	Slug Test: Pz01	Test Well: Pz01	
Test conducted by: AW		Test date: 8/06/2008	
Analysis performed by: AW	Pz01 Hvorslev	Date: 30/06/2008	

Aquifer Thickness: 3.50 m

Observation well	К	
	[m/d]	
Pz01	1.30 × 10 ⁻¹	

Slug Test Analysis Report Project: Caval Ridge EIS

Number: 42626162

Client: **BMA Coal** Location: Moranbah QLD Slug Test: Pz02 Test Well: Pz02 Test date: 8/06/2008 Test conducted by: AW

Pz02 Bouwer & Rice Analysis performed by: AW Date: 1/07/2008

Aquifer Thickness: 10.00 m

Calculation	after	Bouwer	ጼጼ	Rice

Observation well	K	
	[m/d]	
Pz02	5.18 × 10 ⁻³	

Project: Caval Ridge EIS

Slug Test Analysis Report

Number: 42626162

Client: **BMA Coal**

Location: Moranbah QLD	Slug Test: Pz02	Test Well: Pz02
Test conducted by: AW		Test date: 8/06/2008
Analysis performed by: AW	Pz02 Hvorslev	Date: 1/07/2008

Aquifer Thickness: 10.00 m

Observation well	K	
	[m/d]	
Pz02	6.49 × 10 ⁻³	

Project: Caval Ridge EIS

Slug Test Analysis Report

Number: 42626162

Client: **BMA Coal**

Location: Moranbah QLD	Slug Test: Pz03-D	Test Well: Pz03-D	
Test conducted by: AW	Test date: 7/06/2008		
Analysis performed by: AW	Pz03-D Bouwer & Rice	Date: 1/07/2008	

Aquifer Thickness: 4.50 m

Observation well	K	
	[m/d]	
Pz03-D	4.60 × 10 ⁻¹	

Slug Test Analysis Report

BMA Coal

Project: Caval Ridge EIS

Number: 42626162

Location: Moranbah QLD

Slug Test: Pz03-D

Test Well: Pz03-D

Test date: 7/06/2008

Analysis performed by: AW

Pz03-D Hvorslev

Date: 1/07/2008

Client:

Aquifer Thickness: 4.50 m

Calculation after Hvorslev	/
----------------------------	---

Observation well	K	
	[m/d]	
Pz03-D	5.90 × 10 ⁻¹	

Slug Test Analysis Report Project: Caval Ridge EIS

Number: 42626162 **BMA Coal** Client:

Location: Moranbah QLD	Slug Test: Pz03-S	Test Well: Pz03-S
Test conducted by: AW	Test date: 10/09/2008	
Analysis performed by: SD	Bouwer & Rice	Date: 9/10/2008

Aquifer Thickness: 1.50 m

Observation well	К	
	[m/d]	
Pz03-S	8.25 × 10 ⁻²	

Slug Test Analysis Report Project: Caval Ridge EIS

BMA Coal

Number: 42626162

Slug Test: Pz03-S Location: Moranbah QLD Test Well: Pz03-S Test date: 10/09/2008 Test conducted by: AW Hvorslev Date: 9/10/2008 Analysis performed by: SD

Client:

Aquifer Thickness: 1.50 m

Calculation after Hvorslev

Observation well	K	
	[m/d]	
Pz03-S	1.11 × 10 ⁻¹	

Project: Caval Ridge EIS

Number: 42626162

Slug Test Analysis Report

Client: BMA Coal

Location: Moranbah QLD	Slug Test: Pz04	Test Well: Pz04
Test conducted by: AW	Test date: 3/06/2008	
Analysis performed by: AW	Pz04 Bouwer & Rice	Date: 1/07/2008

Aquifer Thickness: 3.00 m

Observation well	K	
	[m/d]	
Pz04	2.60 × 10 ⁻¹	

Slug Test Analysis Report

BMA Coal

Project: Caval Ridge EIS

Number: 42626162

Location: Moranbah QLD

Slug Test: Pz04

Test Well: Pz04

Test date: 3/06/2008

Analysis performed by: AW

Pz04 Hvorslev

Date: 1/07/2008

Client:

Aquifer Thickness: 3.00 m

Observation well	K	
	[m/d]	
Pz04	3.25 × 10 ⁻¹	

Slug Test Analysis Report

Project: Caval Ridge EIS

Number: 42626162

Client: BMA Coal

Location: Moranbah QLD	Slug Test: Pz05	Test Well: Pz05
Test conducted by: AW	Test date: 10/09/2008	
Analysis performed by: SD	Pz05 Bouwer & Rice	Date: 9/10/2008

Aquifer Thickness: 6.50 m

Observation well	К	
	[m/d]	
Pz05	2.49 × 10 ⁻²	

 3.36×10^{-2}

Slug Test Analysis Report

Project: Caval Ridge EIS

Number: 42626162

Client: BMA Coal

Location: Moranbah QLD	Slug Test: Pz05	Test Well: Pz05
Test conducted by: AW		Test date: 10/09/2008
Analysis performed by: SD	Pz05 Hvorslev	Date: 9/10/2008

Aquifer Thickness: 6.50 m

Pz05

Calculation after Hyorslev		
Observation well	К	
	[m/d]	

Slug Test Analysis Report

Project: Caval Ridge EIS

Number: 42626162 Client: BMA Coal

Location: Moranbah QLD Slug Test: Pz06-D		Test Well: Pz06-D
Test conducted by: AW		Test date: 5/06/2008
Analysis performed by: AW	Pz06-D Bouwer & Rice	Date: 2/07/2008

Aquifer Thickness: 2.50 m

Observation well	К	
	[m/d]	
Pz06-D	6.12 × 10 ⁻²	

Slug Test Analysis Report
Project: Caval Ridge EIS

Number: 42626162

Client: BMA Coal

Location: Moranbah QLD Slug Test: Pz06-D		Test Well: Pz06-D
Test conducted by: AW		Test date: 5/06/2008
Analysis performed by: AW	Pz06-D Hvorslev	Date: 2/07/2008

Aquifer Thickness: 2.50 m

Calculation after Hvorslev		
Observation well	K	
	[m/d]	
Pz06-D	7.92 × 10 ⁻²	

Slug Test Analysis Report

BMA Coal

Project: Caval Ridge EIS

Number: 42626162

Client:

Location: Moranbah QLD Slug Test: Pz06-Sb		Test Well: Pz06-S
Test conducted by: AW		Test date: 10/09/2008
Analysis performed by: SD	Pz06-S Bouwer & Rice	Date: 9/10/2008

Aquifer Thickness: 2.60 m

Observation well	К	
	[m/d]	
Pz06-S	1.38 × 10 ⁻¹	

URS Australia Pty Ltd Level 14, 240 Queen St Brisbane, QLD, 4000

Phone: +61 7 3243 2111

Slug	Test	Analysis	Report
------	------	-----------------	--------

Project: Caval Ridge EIS

Number: 42626162

BMA Coal Client:

Location: Moranbah QLD	Location: Moranbah QLD Slug Test: Pz06-Sb	
Test conducted by: AW		Test date: 10/09/2008
Analysis performed by: SD	Pz06-S Hvorslev	Date: 9/10/2008

Aquifer Thickness: 2.60 m

Calculatio	n aftar	Hyorolov	
Calculatio	n aner	nvoisiev	

Observation well	К	
	[m/d]	
Pz06-S	1.91 × 10 ⁻¹	

Slug Test Analysis Report

Project: Caval Ridge EIS

Number: 42626162

Client: BMA Coal

Location: Moranbah QLD	Slug Test: Pz07-D	Test Well: Pz07-D
Test conducted by: AW		Test date: 5/06/2008
Analysis performed by: AW	Pz07-D Bouwer & Rice	Date: 1/07/2008

Aquifer Thickness: 1.50 m

Observation well	К	
	[m/d]	
Pz07-D	2.60 × 10 ⁻¹	

Project: Caval Ridge EIS

Slug Test Analysis Report

BMA Coal

Number: 42626162

Location: Moranbah QLD

Slug Test: Pz07-D

Test Well: Pz07-D

Test date: 5/06/2008

Analysis performed by: AW

Pz07-D Hvorslev

Date: 1/07/2008

Client:

Aquifer Thickness: 1.50 m

Observation well	К	
	[m/d]	
Pz07-D	3.30 × 10 ⁻¹	

Slug Test Analysis Report

Project: Caval Ridge EIS

Number: 42626162

Client: BMA Coal

Location: Moranbah QLD	Slug Test: Pz07-Sb	Test Well: Pz07-S
Test conducted by: AW		Test date: 9/09/2008
Analysis performed by: SD	Pz07-S Bouwer & Rice	Date: 9/10/2008

Aquifer Thickness: 1.70 m

Observation well	K	
	[m/d]	
Pz07-S	2.69 × 10 ⁻¹	

Slug Test Analysis Report

Project: Caval Ridge EIS

Number: 42626162

Client: BMA Coal

Location: Moranbah QLD	Slug Test: Pz07-Sb	Test Well: Pz07-S
Test conducted by: AW	-	Test date: 9/09/2008
Analysis performed by: SD	Pz07-S Hvorslev	Date: 9/10/2008

Aquifer Thickness: 1.70 m

Observation well	K	
	[m/d]	
Pz07-S	3.79 × 10 ⁻¹	

Slug Test Analysis Report

BMA Coal

Project: Caval Ridge EIS

Number: 42626162

Location: Moranbah QLD Slug Test: Pz08-D Test Well: Pz08-D

Test conducted by: AW Test date: 6/06/2008

Analysis performed by: AW Pz08-D Bouwer & Rice Date: 1/07/2008

Client:

Aquifer Thickness: 6.00 m

Observation well	K	
	[m/d]	
Pz08-D	2.60 × 10 ⁻²	

Slug Test Analysis Report

BMA Coal

Project: Caval Ridge EIS

Number: 42626162

Location: Moranbah QLD

Slug Test: Pz08-D

Test Well: Pz08-D

Test date: 6/06/2008

Analysis performed by: AW

Pz08-D Hvorslev

Date: 1/07/2008

Client:

Aquifer Thickness: 6.00 m

Observation well	K	
	[m/d]	
Pz08-D	3.40 × 10 ⁻²	

Slug Test Analysis Report

BMA Coal

Project: Caval Ridge EIS

Number: 42626162

Location: Moranbah QLD

Slug Test: Pz08-Sb

Test Well: Pz08-S

Test date: 9/09/2008

Analysis performed by: SD

Pz08-S Bouwer & Rice

Date: 9/10/2008

Client:

Aquifer Thickness: 2.40 m

. :	-	_		-
Calculation	atter	Bouwer	&&	Rice

Observation well	К	
	[m/d]	
Pz08-S	8.78 × 10 ⁻²	

Number: 42626162

Client: BMA Coal

Slug Test Analysis Report

Project: Caval Ridge EIS

Location: Moranbah QLD	Slug Test: Pz08-Sb	Test Well: Pz08-S
Test conducted by: AW	Test date: 9/09/2008	
Analysis performed by: SD	Pz08-S Hvorslev	Date: 9/10/2008

Aquifer Thickness: 2.40 m

Calculation after Hvorslev

Observation well

K

Pz08-S	1.22 × 10 ⁻¹	
	[m/d]	
Observation well	K	

Project: Caval Ridge EIS

Slug Test Analysis Report

BMA Coal

Number: 42626162

Location: Moranbah QLD Slug Test: Pz09 Test Well: Pz09 Test conducted by: AW Test date: 6/06/2008 Pz09 Bouwer & Rice Analysis performed by: AW Date: 1/07/2008

Client:

Aquifer Thickness: 6.00 m

Observation well	К	
	[m/d]	
Pz09	1.25 × 10 ⁻¹	

Project: Caval Ridge EIS

Slug Test Analysis Report

Number: 42626162

Client: **BMA Coal**

Location: Moranbah QLD	Slug Test: Pz09	Test Well: Pz09
Test conducted by: AW	Test date: 6/06/2008	
Analysis performed by: AW	Pz09 Hvorslev	Date: 1/07/2008

Aquifer Thickness: 6.00 m

Observation well	K	
	[m/d]	
Pz09	1.60 × 10 ⁻¹	

Slug Test Analysis Report

BMA Coal

Project: Caval Ridge EIS

Number: 42626162

Location: Moranbah QLD	Slug Test: Pz10	Test Well: Pz10
Test conducted by: AW		Test date: 6/06/2008
Analysis performed by: AW	Pz10 Bouwer & Rice	Date: 1/07/2008

Client:

Aquifer Thickness: 4.00 m

Calculation after Bouwer && Rice

Observation well	K	
	[m/d]	
Pz10	2.82 × 10 ⁻²	

Project: Caval Ridge EIS

Slug Test Analysis Report

Number: 42626162

Client: **BMA Coal**

Location: Moranbah QLD	Slug Test: Pz10	Test Well: Pz10
Test conducted by: AW		Test date: 6/06/2008
Analysis performed by: AW	Pz10 Hvorslev	Date: 1/07/2008

Aquifer Thickness: 4.00 m

Calculation after Hvorslev

Observation well	К	
	[m/d]	
Pz10	3.60 × 10 ⁻²	

Slug Test Analysis Report

Project: Caval Ridge EIS

Number: 42626162

Client: BMA Coal

Location: Moranbah QLD	Slug Test: Pz11-D	Test Well: Pz11-D
Test conducted by: AW		Test date: 6/06/2008
Analysis performed by: AW	Pz11-D Bouwer & Rice	Date: 1/07/2008

Aquifer Thickness: 3.00 m

Calculation after Bouwer && Rice

Observation well	K	
	[m/d]	
Pz11-D	2.90 × 10 ⁻²	

Slug Test Analysis Report

Project: Caval Ridge EIS

Number: 42626162

Client: BMA Coal

Location: Moranbah QLD	Slug Test: Pz11-D	Test Well: Pz11-D
Test conducted by: AW		Test date: 6/06/2008
Analysis performed by: AW	Pz11-D Hvorslev	Date: 1/07/2008

Aquifer Thickness: 3.00 m

Calculation after Hvorslev

Observation well	K	
	[m/d]	
Pz11-D	3.70 × 10 ⁻²	

Groundwater Monitoring Well Purge Sheets

Appendix E

BORE No: PZO4

Development		200	ON Done by:	AWABS	-				
Development Metho			***	101.1	_				
Time Start			SWL (start)	67.62 (To	<u>(</u>) Volu	me Removed		Bore Depth (start) Bore Depth (end)	96m(ToC)
Time Stoppe			SWL (end)		_ ′ D	ischarge Rate		Bore Depth (end)	-/
Commer	nts							NAPL Present	711/07/2
			Y T T T T T T T T T T T T T T T T T T T					(If yes thickness)	
Field Analyses									
Development									
Time	Vol Removed	EC	pН	T	Redox	Dissolve	d Oxygen	Comments	,
	(L)	(uS/cm)		(C)	(mV)	(%)	(mg/L)	(Color, turbidity)	05/06
									05/0b 67.
									0+.
							~~~		
Purging	Date: (C	)	Done by:	AW/DC				1	
1 41 611 6	Date. 10		_ Done by.	A W/DS	_				
Purge Meth-	od		Purge Denth						
Time Start			SWL (start)			Bore Volume	;	Bore Depth (start)	
Time Stopp			SWL (end)		- Volu	me Removed		Bore Depth (start) Bore Depth (end)	19-20-2
Commer			5 11 (end)	' <u></u>	_	inc Removed		NAPL Present	702-
					137.500			(If yes thickness)	
Field Analyses								(II yes ullekness)_	
Purging									
Time	Vol Removed	EC	pН	Т	Redox	Dissolve	d Oxygen	Comments	
	(L)	(uS/cm)	F**	(Ĉ)	(mV)	(%)	(mg/L)	(Color, turbidity)	
					(1117)	(70)	(IIIg/L)	(Color, turbidity)	
		7 7117/2011111							
			<del> </del>					100	
						******	<del> </del>	-	
Sampling	Date:		Done by:	AW/BS	<u> </u>				
			Done by	411/100	_				
Sampling Meth	od	S	ampling Depth	ı		Groundwate	er Disposal R	ecord	
Time Start	ted			)	-	Date	Litres	Disposal method	
Time Stopp	ed		SWL (end)	)	- devmt			- Spoon monod	
Commer	*****				purging			χ.	
				***************************************	_ r		· · · · · · · · · · · · · · · · · · ·	-	
	**				-				

ORE DEVELOP								BORE No: PZ	
Project No	42626162	Project Name	BMA Caval I	Ridge Ground	water			QC	01-10 av
evelopment									
Development Method Time Started Time Stopped Comments						me Removed scharge Rate		Bore Depth (end)  NAPL Present	
ield Analyses								(If yes thickness)	
evelopment Time	Vol Removed (L)	EC (uS/cm)	рН	T (C)	Redox (mV)	Dissolved	l Oxygen (mg/L)	Comments (Color, turbidity)	
								7.00	
			· · · · · · · · · · · · · · · · · · ·						
urging Purge Method		<b>5</b> [06  08	Done by:						
Purge Method Time Started Time Stopped Comments		5/06/08	Purge Depth		Toč) E	Bore Volume me Removed		Bore Depth (start) & L. O. (To C) Bore Depth (end) NAPL Present (If yes thickness)	
Purge Method Time Started Time Stopped Comments eld Analyses arging			Purge Depth SWL (start) SWL (end)	29 935 1 31 • 24 (1		me Removed		NAPL Present (If yes thickness)	
Purge Method Time Started Time Stopped Comments		EC (uS/cm)	Purge Depth		Toć) E			NAPL Present	
Purge Method Time Started Time Stopped Comments eld Analyses arging	Vol Removed	EC	Purge Depth SWL (start) SWL (end)	29 935 1 31 • 24 (1	Redox	me Removed  Dissolved	l Oxygen	NAPL Present (If yes thickness)  Comments	
Purge Method Time Started Time Stopped Comments eld Analyses arging	Vol Removed	EC	Purge Depth SWL (start) SWL (end)	29 935 1 31 24 (7	Redox	me Removed  Dissolved	l Oxygen	NAPL Present (If yes thickness)  Comments	
Purge Method Time Started Time Stopped Comments eld Analyses arging Time	Vol Removed (L)  Date:	EC (uS/cm)	Purge Depth SWL (start) SWL (end)	29 935 1 31 24 (7	Redox (mV)	Dissolved (%)	l Oxygen (mg/L)	NAPL Present (If yes thickness)  Comments (Color, turbidity)	
Purge Method Time Started Time Stopped Comments eld Analyses arging Time	Vol Removed (L)  Date:	EC (uS/cm)	Purge Depth SWL (start) SWL (end)	29.935 ( 31.024 () T (C)	Redox (mV)	me Removed  Dissolved	l Oxygen (mg/L)	NAPL Present (If yes thickness)  Comments (Color, turbidity)	

#### BORE DEVELOPMENT, PURGING AND GROUNDWATER SAMPLING DATA SHEET BORE No: Project No 42626162 Project Name BMA Caval Ridge Groundwater Done by: AWILSON Development Date: (7) Development Method Time Started SWL (start) Volume Removed Bore Depth (start) Time Stopped SWL (end) Discharge Rate Bore Depth (end) Comments **NAPL Present** (If yes thickness) Field Analyses Development EC Time Vol Removed Dissolved Oxygen pН $\overline{\mathrm{T}}$ Redox Comments (uS/cm) (C) (L) (mV) (%)(mg/L) (Color, turbidity) **Purging** Date: Done by: AW/BS Purge Depth Purge Method Bore Depth (start) \$120 in (tape m. only) Time Started SWL (start) 23 Bore Volume Time Stopped SWL (end) Volume Removed Bore Depth (end) Comments NAPL Present (If yes thickness) Field Analyses Purging Time Vol Removed EC pН T Redox Dissolved Oxygen Comments (L) (uS/cm) (C) (mV) (%) (Color, turbidity) (mg/L)-30b 82 bam C+68 -300 0.67 grey-stightly turbid/clear-supher grow-cloudy/clearer-supher grow-cloudy/turbid. 1 t 11 Tombe out of samp Done by: 301 Sampling Date: AW/BS Sampling Method Sampling Depth **Groundwater Disposal Record** Time Started SWL (start) Date Litres Disposal method Time Stopped SWL (end) devmt

purging

Comments

BORE No: <u>PZ06-s</u>

Development	Date:		Done by:						
Development Method	I								
Time Started			SWL (start)		Volu	me Removed	l	Bore Depth (start)	
Time Stopped	1		SWL (end)				-		
Comments	}		` '.					NAPL Present	
	***************************************							(If yes thickness)	
Field Analyses					*******	T-MC.			7/1
Development									
Time	Vol Removed	EC	pН	T	Redox	Dissolve	d Oxygen	Comments	
	(L)	(uS/cm)		(C)	(mV)	(%)	(mg/L)	(Color, turbidity)	
	-								
· · · · · · · · · · · · · · · · · · ·									
					L l				
Purging	Date: و	05/06/08	Done by:	AW/BS					
Time Stopped			SWL (start) SWL (end)	26.232 (To	) Volu	Bore Volume me Removed		Bore Depth (start) Bore Depth (end)	29.055 (Tol)
Comments	1		SWL (start) SWL (end)	26.232 (Tol 26.25 (To	() Volu			Bore Depth (start) Bore Depth (end) NAPL Present (If yes thickness)	29.055 (Tol)
Comments	1		SWL (start) SWL (end)	26.237 (TOC 26.25 (TO	Volu			NAPL Present	29.055 (Tol)
Comments Field Analyses	16/OK Vol Removed	EC	SWL (start) SWL (end)	26.237 (To( 26.25 (To	Volu Redox	me Removed		NAPL Present (If yes thickness)	29.055 (Tol)
Comments Field Analyses Purging OS/O Time	Ob/OK Vol Removed (L)	(uS/cm)	pH pH	T (C)	E) Volu	me Removed		NAPL Present	29.055 (Tol)
Comments Field Analyses Purging OS/O Time	Ob/OK Vol Removed (L)	(uS/cm)	pH pH	76 .25 (Ta	(C) Volu	Dissolve	d Oxygen	Comments (Color, turbidity)  Arey A Turbid -	29.055 (Tol)
Comments Field Analyses Purging OS/O Time	Ob/OK Vol Removed (L)	(uS/cm)	pH pH	T (C)	Redox (mV) -192 -147	Dissolve	d Oxygen	Comments (Color, turbidity)  Arey A Turbid -	29.055 (Tol)
Comments Field Analyses Purging OS/O Time	Ob/OK Vol Removed (L)		pH pH	T (C)	Redox (mV)	Dissolve	d Oxygen	Comments (Color, turbidity)  Arey A Turbid -	29.055 (Tol)
Comments Field Analyses Purging OS/O Time	Ob/OK Vol Removed (L)	(uS/cm)	pH pH	T (C)	Redox (mV) -192 -147	Dissolve	d Oxygen	Comments (Color, turbidity)  Arey & Turbid -	29.055 (Tol)
Comments Field Analyses Purging OS/O Time  9.36 am 9.50	Vol Removed (L)  OL  13/92	(uS/cm)	pH 7.68 7.74 7.73	T (C) 3.3 25.5 21.9 / 11.9	Redox (mV) -192 -147	Dissolve	d Oxygen	Comments (Color, turbidity)  Arey A Turbid -	turbid
Comments Field Analyses Purging OS/O Time	Ob/OK Vol Removed (L)	(uS/cm)	pH pH	T (C) 3.3 25.5 21.9 / 11.9	Redox (mV) -192 -147	Dissolve	d Oxygen	Comments (Color, turbidity)  Arey A Turbid -	29.055 (Tol)
Field Analyses Purging 15/0 Time  9.36 am 9.50 10.59  Sampling Sampling Method	Vol Removed (L)  OL  JEL  JEL  Date:	(uS/cm) Ranging cond. Ranging	pH 7.68 7.74 7.73	T (C) 3.3 25.5 21.9/11.9 AW/BS	Redox (mV) -192 -143	Dissolve	d Oxygen (mg/L)	NAPL Present (If yes thickness)  Comments (Color, turbidity)  Grey & turbid-  Lug Diey byrum  grey hoown, h	29.055 (Tol)
Field Analyses Purging OSO Time  9.36 am 40.50 Sampling Sampling Method Time Started	Vol Removed (L)  OL  JEL  JEL  Date:	(uS/cm) Ranging cond. Ranging	pH 7.68 7.74 7.73	T (C) 3.3 25.5 27.97/1.9 AW/BS	Redox (mV) -192 -143	Dissolve	d Oxygen	NAPL Present (If yes thickness)  Comments (Color, turbidity)  Grey & turbid-  Leg grey by by- grey hown, h	29.055 (Tol)
Field Analyses Purging Time  9.36 aw 9.50 Sampling Sampling Method Time Started Time Stopped	Vol Removed (L) (L) (J) (J) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D	(uS/cm) Ranging cond. Ranging	pH  7.68 7.74 7.73  Done by:	T (C) 3.3 25.5 27.97/1.9 AW/BS	Redox (mV) -192 -143	Dissolve (%)	d Oxygen (mg/L) 7.71 7.73 6 To Disposal R	NAPL Present (If yes thickness)  Comments (Color, turbidity)  Grey & turbid-  Lug Diey byrum  grey hoown, h	turbid
Field Analyses Purging OSO Time  9.36 am 40.50 Sampling Sampling Method Time Started	Vol Removed (L) (L) (J) (J) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D	(uS/cm) Ranging cond. Ranging	pH  7.68 7.74 7.73  Done by: ampling Depth SWL (start)	T (C) 3.3 25.5 27.97/1.9 AW/BS	Redox (mV) -192 -143	Dissolve (%)	d Oxygen (mg/L) 7.71 7.73 6 To Disposal R	NAPL Present (If yes thickness)  Comments (Color, turbidity)  Grey & turbid-  Leg grey by by- grey hown, h	turbid

BORE No: \$\overline{P2-07-D}

evelopment	Date:	- ·	Done by:						
Development Metho					_				
Time Starte			SWL (start)		Volum	ne Removed		Bore Depth (start)	
Time Stoppe						scharge Rate		Bore Depth (start) Bore Depth (end)	
Comment			5 11 Z (Cha)_			onarge ivace		NAPL Present	
		V-1474014 V.L.			·			(If yes thickness)	
eld Analyses evelopment	PM				,				
Time	Vol Removed	EC	рН	T	Redox	Dissolve	d Oxygen	Comments	1
	(L)	(uS/cm)	F	(C)	(mV)	(%)	(mg/L)	(Color, turbidity)	
					<del>  \ \                                 </del>	(/ 4)	(52)	(Color, tarolally)	
T WANTED TO THE TOTAL OF THE TO						Print.			
						***************************************			
77700				-					
urging	Date: 🖔	<b>6</b> 06/08	Done by: _A	AW/BS					
Durga Matho	A	-,	Dunca Danth						
Purge Metho Time Starte Time Stoppe Comment	ed		Purge Depth SWL (start) SWL (end)	14.14b (T	O E Volum	Bore Volume		NAPL Present	
Time Starte Time Stoppe	ed		SWL (start)	14.14b (1	Volum			_ NAPL Present _ (If yes thickness)	
Time Starte Time Stoppe Comment ield Analyses urging	ddtd		SWL (start)	14.14b (1	Volum			NAPL Present	
Time Starte Time Stoppe Comment	vd dd d	EC	SWL (start)	Т	Volum	me Removed		_ NAPL Present _ (If yes thickness)	
Time Starte Time Stoppe Comment ield Analyses urging Time	ddtd	EC (uS/cm)	SWL (start) SWL (end)	T (C)	Redox (mV)	me Removed	d Oxygen	NAPL Present (If yes thickness)  1.24  Comments (Color, turbidity)	· ·
Time Starte Time Stoppe Comment ield Analyses urging Time	Vol Removed (L)	EC	SWL (start) SWL (end)	Т	Redox (mV)	ne Removed Dissolve	d Oxygen	NAPL Present (If yes thickness)  1.24  Comments (Color, turbidity)	· ·
Time Starte Time Stoppe Comment  ield Analyses arging Time	vd dd d	EC (uS/cm)	pH  pH  7.04	T (C)	Redox (mV)	Dissolve	d Oxygen	NAPL Present (If yes thickness)  1.24  Comments (Color, turbidity)	· ·
Time Starte Time Stoppe Comment  ield Analyses arging Time	Vol Removed (L)	EC (uS/cm)	pH  pH  7.04 6.96	T (C) 2-5	Redox (mV) -196 -228 -211	Dissolve	d Oxygen   (mg/L)     <b>B1A</b> 4     O• 58   O• 59	NAPL Present (If yes thickness)  1.24  Comments (Color, turbidity)	· ·
Time Starte Time Stoppe Comment ield Analyses urging Time	Vol Removed (L)	EC (uS/cm)	pH  pH  7.04	T (C) 2-5	Redox (mV) -196 -278	Dissolve	d Oxygen	NAPL Present (If yes thickness)  1.24  Comments (Color, turbidity)	· ·
Time Starte Time Stoppe Comment  ield Analyses arging Time	Vol Removed (L)	EC (uS/cm)	pH  pH  7.04 6.96	T (C) 2-3	Redox (mV) -196 -228 -211	Dissolve	d Oxygen   (mg/L)     <b>B1A</b> 4     O• 58   O• 59	NAPL Present (If yes thickness)  1.24  Comments (Color, turbidity)	
Time Starte Time Stoppe Comment eld Analyses arging Time  /5/19 /5/32 /5/4/ /5/4/ ampling	Vol Removed (L)  Purpiù	EC (uS/cm)	pH  pH  f.64 6.76 6.84  Done by:	T (C) 2.3	Redox (mV) -196 -278 -211 -197	Dissolve	d Oxygen   (mg/L)     B1/45     O	NAPL Present (If yes thickness)  1.24  Comments (Color, turbidity)  dayk grey, two inglier grey  Inglier grey	· ·
Time Starte Time Stoppe Comment  eld Analyses arging Time  /5.19 /5.32 /5.34 /5.44  ampling Sampling Metho	Vol Removed (L)  (t)  Date:	EC (uS/cm)	PH  PH  PH  POPE  POPE  PH  POPE  PO	T (C) 2-3	Redox (mV) -196 -278 -211 -197	Dissolve (%)	d Oxygen   (mg/L)     BAN     O S S     2 . O Z     or Disposal R	NAPL Present (If yes thickness)  1.24  Comments (Color, turbidity)  dayk grey, two inglier grew-	· ·
Time Starte Time Stoppe Comment  ield Analyses  arging Time  /5/19 /5/32 /5/4/ /5/44  ampling  Sampling Metho Time Starte	Vol Removed (L)  Purping  (t	EC (uS/cm)	pH  pH  G. 694  6.84  Done by: A  ampling Depth SWL (start)	T (C) 2-5	Redox (mV) -196 -228 -211 -197	Dissolve	d Oxygen   (mg/L)     B1/45     O	NAPL Present (If yes thickness)  1.24  Comments (Color, turbidity)  dayk grey, two inglier grey  Inglier grey	· ·
Time Starte Time Stoppe Comment  ield Analyses  urging Time  /5.19 /5.32 /5.44  IS:44  ampling  Sampling Metho Time Starte Time Stoppe	Vol Removed (L)  (t)  Date:	EC (uS/cm)	pH  pH  G. 694  6.84  Done by: A  ampling Depth SWL (start)	T (C) 2-3	Redox (mV) -196 -278 -211 -197	Dissolve (%)	d Oxygen   (mg/L)     BAN     O S S     2 . O Z     or Disposal R	NAPL Present (If yes thickness)  1.24  Comments (Color, turbidity)  dayk grey, two inglier grew-	· ·
Time Starte Time Stoppe Comment  ield Analyses  arging Time  /5/19 /5/32 /5/4/ /5/44  ampling  Sampling Metho Time Starte	Vol Removed (L)  (t)  Date:	EC (uS/cm)	pH  pH  G. 694  6.84  Done by: A  ampling Depth SWL (start)	T (C) 2-5	Redox (mV) -196 -228 -211 -197	Dissolve (%)	d Oxygen   (mg/L)     BAN     O S S     2 . O Z     or Disposal R	NAPL Present (If yes thickness)  1.24  Comments (Color, turbidity)  dayk grey, two inglier grew-	· ·

BORE No: P207-S

Project No	42626162	Project Name	BMA Caval	Ridge Groundv	vater				120/-	>
Development	Date:		Done by:		_					
Development Method										
Time Started			SWL (start)	The WAR	Volu	ıme Removed	d	Bore Depth (start)	)	
Time Stopped			SWL (end)		<b>D</b>	ischarge Rate	e	Bore Depth (end)	)	
Comments					_	_		NAPL Presen	t .	
						777		(If yes thickness	)	
Field Analyses  Development										
Time	Vol Removed	EC	рН	Т	Redox	Dissolve	ed Oxygen	Comments	٦	
	(L)	(uS/cm)		(C)	(mV)	(%)	(mg/L)	(Color, turbidity)		
								***************************************	1	
									-	
			7,11,7,1							
									-	
Purging	Date:	05/06/08	Done by:	AW/BS	_				_	
Purge Method			Purge Depth							
Time Started			SWL (start)	13.487m	TOC	Bore Volume	e	Bore Depth (start	15.3/m	TOC
Time Stopped			SWL (end)		_ Volu	ıme Remove	d	Bore Depth (end	)	1.
Comments	- Novi Date							NAPL Presen	t	
						· · · · · · · · · · · · · · · · · · ·		_ (If yes thickness	)	
Field Analyses Purging										
Time	Vol Removed		pН	Т	Redox	Dissolve	ed Oxygen	Comments	٦	
	(L)	(uS/cm)		· (C)	(mV)	(%)	(mg/L)	(Color, turbidity)	1 , ,	
15:22	46		6-59	2550	23	~	2.38	dan grey-Ver	i tembra	
15:25	84		6.20	23.0	96		2.08	10 Jun - 10	J	
15:28	124		6.22	25.0	13,6	-	1.97	11 11 - 1		
15:37	166		6.35		-6		2.09	11 11 -	4 -1	
Sampling	Date:		Done by:	AW/BS		· · · · · · · · · · · · · · · · · · ·	*		_	
		-	= *							
Sampling Method		. Sa	ampling Depth	- THE STATE OF THE	_ ,		er Disposal Re			
Time Started			SWL (start)			Date	Litres	Disposal method		
Time Stopped			SWL (end)							
Comments		- WARRANGE			_ purging					
					_			700		
				***************************************	_					
				D 4						

Bore Development, Purging and Groundwater Sampling Data Sheet

Page 1 of 1

Checked By:....

· BORE No: 1208-D

Development	Date: _		Done by:						
Development Method									
Time Started			SWL (start)		Volu	me Removed	[	Bore Depth (start)	
Time Stopped			SWL (end)		_ Di	ischarge Rate		Bore Depth (end)	
Comments						J		NAPL Present	
					***		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(If yes thickness)	
Field Analyses Development							,,,,		178788
Time	Vol Removed	EC	рН	Т	Redox	Dissolve	d Oxygen	Comments	
	(L)	(uS/cm)		(C)	(mV)	(%)	(mg/L)	(Color, turbidity)	
*									
						•			
· · · · · · · · · · · · · · · · · · ·	, ,			ď					
	TORRELL.								
				·					
Purging	Date:		Done by:	AW/RS				•	
Purge Method		, a SAIN And	Purge Depth		_			a	. :
Time Started Time Stopped Comments			Purge Depth	77.046	м 70 С Volu	Bore Volume me Removed		Bore Depth (start) 64 Bore Depth (end) NAPL Present (If yes thickness)	4-/m
Time Started Time Stopped Comments			Purge Depth SWL (start)	77.046	м 70С Volu	Bore Volume me Removed	1	Bore Depth (end) NAPL Present	4./m
Time Started Time Stopped Comments Field Analyses		EC	Purge Depth SWL (start)	77.046	м ТОС Volu	me Removed	d Oxygen	Bore Depth (end) NAPL Present	4-1m
Time Started Time Stopped Comments Field Analyses Purging Db 0b	θ√ .   Vol Removed (L)	EC (uS/cm)	Purge Depth SWL (start) SWL (end)	27.046	Volu	me Removed		Bore Depth (end)  NAPL Present  (If yes thickness)	4-1m
Time Started Time Stopped Comments Field Analyses Purging Time	O√. Vol Removed (L)  Project		Purge Depth SWL (start) SWL (end)	27.046 T	Redox (mV)	Dissolve	d Oxygen	Bore Depth (end)  NAPL Present  (If yes thickness)  Comments (Color, turbidity)	
Time Started Time Stopped Comments  Field Analyses Purging Time  C 38	Vol Removed (L)		Purge Depth SWL (start) SWL (end)	27.046 T	Redox (mV)   -262   -271	Dissolve	d Oxygen	Bore Depth (end)  NAPL Present  (If yes thickness)  Comments (Color, turbidity)  Grey Suphor Close	
Time Started Time Stopped Comments Field Analyses Purging Time	O√. Vol Removed (L)  Project		Purge Depth SWL (start) SWL (end)	77. 046 T (C)	Redox (mV) -262 -271 -277	Dissolve (%)	d Oxygen   (mg/L)   1 · 3 7   1 · 1 2   © 6 60	Bore Depth (end)  NAPL Present  (If yes thickness)  Comments (Color, turbidity)  Grey Suphor Close	
Time Started Time Stopped Comments  Field Analyses Purging Time  C 38	Vol Removed (L)		Purge Depth SWL (start) SWL (end)	77.046 T (C)	Redox (mV)	Dissolve (%)	d Oxygen   (mg/L)	Comments (Color, turbidity)  Prey, Suph vo Close  (Color to Color)	
Time Started Time Stopped Comments Field Analyses Purging 0b 0b Time	Vol Removed (L)  Arpis		Purge Depth SWL (start) SWL (end)	77.046 T (C)	Redox (mV) -262 -271 -277	Dissolve (%)	d Oxygen   (mg/L)   1 · 3 7   1 · 1 2   © 6 60	Bore Depth (end)  NAPL Present  (If yes thickness)  Comments (Color, turbidity)  Grey, Suphro Clouder Superior Suphro Clouder	
Time Started Time Stopped Comments  Field Analyses Purging Time  6.38 6.49 7.32	Vol Removed (L)  Propir		Purge Depth SWL (start) SWL (end)	77.046 T (C)	Redox (mV) -262 -271 -277	Dissolve (%)	d Oxygen   (mg/L)   1 · 3 7   1 · 1 2   © 6 60	Bore Depth (end)  NAPL Present  (If yes thickness)  Comments (Color, turbidity)  Grey, Suphro Clouder Superior Suphro Clouder	
Time Started Time Stopped Comments Field Analyses Purging 0b 0b Time	Vol Removed (L)  Arpis ((	(uS/cm)	Purge Depth SWL (start) SWL (end)  pH  6.814 6.61 7.20 6:43	77. 646 T (C)	Redox (mV) -262 -271 -277 -256	Dissolve (%)	d Oxygen   (mg/L)   1-37   1-12   0 602   0 91	Bore Depth (end)  NAPL Present (If yes thickness)  Comments (Color, turbidity)  Grey Sulphur Clos 51 phur Clea	
Time Started Time Stopped Comments Field Analyses Purging Time  638 6 99 7 16  Sampling	Vol Removed (L)  Ampir ((	(uS/cm)	Purge Depth SWL (start) SWL (end)  pH  6.824 6.67 7.20 6:43  Done by:	77. 046 T (C)	Redox (mV) -262 -271 -277 -256	Dissolve (%)	d Oxygen   (mg/L)   1 · 3 7   1 · 1 2   © 6 60	Bore Depth (end)  NAPL Present  (If yes thickness)  Comments (Color, turbidity)  Grey, Suphor Close  Suphor Clear	
Time Started Time Stopped Comments  Field Analyses Purging 0b 0b Time  C 38 6 49 7 16  Sampling  Sampling Method Time Started Time Stopped	Vol Removed (L)  (() (()  Date:	(uS/cm)	Purge Depth SWL (start) SWL (end)  pH  6.824 6.63 7.20 6:43  Done by: ampling Depth	77. 046  T (C)  AW/BS	Redox (mV) -262 -271 -277 -256	Dissolve (%)	d Oxygen (mg/L) 1.37 1.12 0.62 0.91	Bore Depth (end)  NAPL Present (If yes thickness)  Comments (Color, turbidity)  Grey Sulphur Clos 51 phur Clea	
Time Started Time Stopped Comments  Field Analyses Purging Time  Cold Sampling  Sampling Method Time Started	Vol Removed (L)  (() (()  Date:	(uS/cm)	Purge Depth SWL (start) SWL (end)  pH  6.824 6.61 7.20 6:43  Done by: ampling Depth SWL (start) SWL (end)	77. 046  T (C)  AW/BS	Redox (mV) -262 -271 -277 -256	Dissolve (%)	d Oxygen (mg/L) 1.37 1.12 0.62 0.91	Bore Depth (end)  NAPL Present  (If yes thickness)  Comments (Color, turbidity)  Grey, Suphor Close  Suphor Clear	

BORE No: 208 -5

Project No	42626162	Project Name	BMA Caval I	Ridge Groundw	ater				
Development		-							
Development Method Time Started Time Stopped Comments	1		SWL (start) SWL (end)		Volu Di	me Removed ischarge Rate		Bore Depth (end) NAPL Present	t
Field Analyses Development								(If yes thickness)	
Time	Vol Removed (L)	EC (uS/cm)	pH	T (C)	Redox (mV)	Dissolve (%)	d Oxygen (mg/L)	Comments (Color, turbidity)	•• ••
									- - -
Purging	Date:	5/6/08	Done by:	AW/BS	<u>                                     </u>			<u></u>	J
Purge Method Time Started Time Stopped Comments	1		Purge Depth SWL (start) SWL (end)	14.05 m		Bore Volume	l	Bore Depth (start) Bore Depth (end) NAPL Presen (If yes thickness)	
Field Analyses Purging	06/06/08	7.77						Pale	
Time 6:54 3:00 1:14	Vol Removed (L) 3 4 9 4	EC (uS/cm)	pH 6 & 45 6 . 524 6 . 49	(C)	Redox (mV) -9i -78 -92	Dissolve (%)	d Oxygen (mg/L) 3.64 5.30 7.16	Comments (Color, turbidity) (reash brown,	turbid
Sampling	Date:		Done by:	AW/BS	_		<del>- 1</del>	<u></u>	_
Sampling Method Time Started Time Stopped Comment	1		SWL (start)			Groundwate Date	er Disposal Re Litres	Disposal method	

BORE No: P2610

Development	Date:	The state of the s	Done by:	Province in				613691 7548096 i	. 17
Development Meth	od							13480161	M /V
Time Star		West, I	SWL (start)		Volur	ne Remove	1	Bore Depth (start)	
Time Stopp	oed		SWL (end)		_ Di:		e	Bore Depth (end)	_
Comme	nts		· ·		_			NAPL Present	_
								(If yes thickness)	
Field Analyses									******
Development	Tr. ID								
Time	Vol Removed		pН	T	Redox		ed Oxygen	Comments	
	(L)	(uS/cm)		(C)	(mV)	(%)	(mg/L)	(Color, turbidity)	
					-	Traus.			
1000									
Dowaina	Data	( ) = ( les	D 1	L. AXX/DO	<u>.l</u>				
Purging	Date: C	106/08/	Done by:	AW/BS	_				
Purge Meth	od		Purge Depth						
Time Star					_ I	Bore Volume	e	Bore Depth (start) $\approx 86$ .	Ь.
Time Stopp	oed		SWL (end)	4.56	Volu	ne Remove	d	Bore Depth (end)	<u>.</u>
Comme	nts				<del>-</del>			NAPL Present	
			********	7.00		*******		(If yes thickness)	
Field Analyses									
Purging Time	Vol Removed	EC	1T		I B 1 [		1.0		
111110	(L)	(uS/cm)	pН	T	Redox		ed Oxygen	Comments	
11728		18-48	7.29	2-6.6	(mV)	(%)	(mg/L) 1 - 96	(Color, turbidity)	60
11:33	punging	1728	7.36	24.5	-199		1.86	light prown clear	70
11:35	10	1699	7.36	23.4	-146	******	7.45	Light brown clear	
11:41	11		730	- Carlonian	-210	مسين	1.05	100	
11:44	11	1718	7.40	247	-200		101	11 11	
Sampling	Date:		Done by:	AW/BS			1		
Sampling Meth	nod	S	ampling Depth		_	Cronndwat	er Disposal R	agand	
Time Star			SWL (start)		- r	Date	Litres	Disposal method	_
Time Stopp	ped				devmt			Disposer memou	-
Comme	nts								-
		** *******							

#### BORE No: VZ BORE DEVELOPMENT, PURGING AND GROUNDWATER SAMPLING DATA SHEET For PZO9 & OCOY Cater from PZIO NOW USED. Project No 42626162 Project Name BMA Caval Ridge Groundwater Development Date: Done by: Development Method Time Started SWL (start) Volume Removed Bore Depth (start) Time Stopped SWL (end) Discharge Rate Bore Depth (end) Comments NAPL Present (If yes thickness) Field Analyses Development Time Vol Removed EC Dissolved Oxygen pН T Redox Comments (L) (uS/cm) (C) (mV) (%) (mg/L)(Color, turbidity) Purging Done by: AW/BS Purge Method Purge Depth Time Started SWL (start) 19.678 (Ta) Bore Depth (start) \$\approx 78.7(\tau_0)\$ Bore Volume SWL (end) 20. 87(700 Time Stopped Volume Removed Bore Depth (end) Comments NAPL Present (If yes thickness) Field Analyses Purging EC Time Vol Removed pН Redox Dissolved Oxygen Comments (L) (uS/cm) (C) (mV) (%)(mg/L)(Color, turbidity) 770 1.48 Tight brown , c/o. West brown )† O. 1 15 u 60 10 Sampling Date: Done by: AW/BS Sampling Method Sampling Depth **Groundwater Disposal Record** Time Started SWL (start) Date Litres Disposal method Time Stopped SWL (end) devmt Comments purging

BORE No: PZ-12-5

	Project No	4202010Z	Project Name	BMA Caval R	idge Groundy	water				
evelopment	:	Date: _		Done by:						
Developme				_				•		
	me Started		******	SWL (start)	102.4	Volu	ıme Removed		Bore Depth (start)	
Tim	ne Stopped			SWL (end)		D	ischarge Rate	7,000	Bore Depth (end)	- PPV NALA
•	Comments						_		NAPL Present	
	-		***************************************						(If yes thickness)	
ield Analyso evelopment			•					*		
Tim		Vol Removed	EC	pH	T	Redox	Dissolve	d Oxygen	Comments	
		(L)	(uS/cm)	1	(C)	(mV)	(%)	(mg/L)	(Color, turbidity)	
			<u> </u>		(0)	1 (1117)	(/0)	(IIIg/L)	(Color, turbidity)	
***								-		
urging		Date:		Done by:	AW/RS					
				_ Bone by	117/00	_				
Pur	ge Method			Purge Depth						
	me Started			SWL (start)	dny	_	Bore Volume	<b>,</b>	Bore Depth (start)	8.94.6
Tin	ne Stopped			SWL (end)		– Volu	ime Removed	<u> </u>	Bore Depth (start) Bore Depth (end)	<u> </u>
(	Comments			` /-					NAPL Present	
	-	7				7740	*****		(If yes thickness)	
ield Analyse urging	es		7112				-		(if you monitous)_	
Tim	е	Vol Removed	EC	pН	Т	Redox	Dissolve	d Oxygen	Comments	
		(L)	(uS/cm)		(C)	(mV)	(%)	(mg/L)	(Color, turbidity)	
							····			
			- V Parisana			-				
	70700410									
				1			<u>.</u>			
ampling		Date:		Done by:	AW/BS					
				Done by:		_				
Sampli				ampling Depth				r Disposal R		
Sampli Ti	me Started			ampling Depth SWL (start)			Date	er Disposal Re	ecord Disposal method	
Sampli Ti Tin	me Started ne Stopped			ampling Depth SWL (start)		devmt	Date			
Sampli Ti Tin	me Started		Sa	ampling Depth SWL (start)			Date			
Sampli Ti Tin	me Started ne Stopped		Sa	ampling Depth SWL (start) SWL (end)		devmt	Date			

Project No	42626162	Project Name	BMA Caval	Ridge Ground	water ,			$\pi$	lter und PZ109
Development	Date: _		Done by:	********					PENOR
Development Method								Bore Depth (start	0614
Time Started			SWL (start)	<u> </u>	Volu	ıme Remove	<b>i</b>	Bore Denth (start	, 7
Time Stopped			SWL (end)	) .	Γ	ischarge Rat	e	Bore Depth (end	` `
Comments					<del></del> .	C		NAPL Presen	
Field Analyses	· · · · · · · · · · · · · · · · · · ·		** 1664					(If yes thickness	)
Development									
Time	Vol Removed	EC	pН	Т	Redox	Dissolve	ed Oxygen	Comments	7
***	(L)	(uS/cm)		(C)	(mV)	(%)	(mg/L)	(Color, turbidity)	
		TO THE STATE OF TH		***************************************					
P. O. F. F. A. Andrews				7/1/2		1001-4			
						*********			_
Purging	1	6/06/08	Done by:						_]
Purge Method			Purge Depth	ı					
Time Started Time Stopped Comments Field Analyses			Purge Depth SWL (start) SWL (end)	11.782 124.17	TOE)	Bore Volume	3 1	Bore Depth (start Bore Depth (end NAPL Presen (If yes thickness)	t
Time Started Time Stopped Comments Field Analyses Purging		FG (M	SWL (start) SWL (end)	11.782(			7/4	NAPL Presen (If yes thickness)	t
Time Started Time Stopped Comments Field Analyses	Vol Removed	EC (Y	SWL (start) SWL (end)	1) 7,782( ) 24 1 7w	Redox	Dissolve	ed Oxygen	NAPL Presen (If yes thickness)  Comments	t
Time Started Time Stopped Comments Field Analyses Purging Time	Vol Removed (L)	(usatim)	SWL (start) SWL (end)	T (C)	Redox (mV)	Dissolve (%)	ed Oxygen	NAPL Presen (If yes thickness)  Comments (Color, turbidity)	t )
Time Started Time Stopped Comments Field Analyses Purging Time	Vol Removed (L)	(us/cm) Lt - L18	SWL (start) SWL (end)	T (C)	Redox (mV)	Dissolve	ed Oxygen (mg/L)	Comments (Color, turbidity)	tvb.A
Time Started Time Stopped Comments  Field Analyses Purging Time	Vol Removed (L) Pump	(usatim)	SWL (start) SWL (end)	T (C) 76.6 76.8	Redox (mV)	Dissolve (%)	ed Oxygen	Comments (Color, turbidity)	t )
Time Started Time Stopped Comments Field Analyses Purging Time	Vol Removed (L)	(us/cm) Lt - L18	SWL (start) SWL (end)  pH  7.07 7.24 7.52	T (C) 76.6 76.9 25.8	Redox (mV)	Dissolve (%)	ed Oxygen (mg/L)  2 4 4 0 - 80	Comments (Color, turbidity) (Color, turbidity)	tvb.A
Time Started Time Stopped Comments  Field Analyses Purging Time	Vol Removed (L) Puna	(us/cm) Lt - L18	SWL (start) SWL (end)	T (C) 76.6 76.8	Redox (mV)	Dissolve (%)	ed Oxygen (mg/L)	Comments (Color, turbidity)	tvb.A
Time Started Time Stopped Comments  Field Analyses Purging Time	Vol Removed (L) Puna	(us/cm) Lt - L18	SWL (start) SWL (end)  pH  7.07 7.24 7.52	T (C) 26.6 25.8 25.7	Redox (mV)	Dissolve (%)	ed Oxygen (mg/L)  2 4 4 0 - 80	Comments (Color, turbidity) (Color, turbidity)	tvb.A
Time Started Time Stopped Comments  Field Analyses Purging Time    Sampling	Vol Removed (L)  Pump (C) (C) (C) (C)	(180m) 4.48 3.49 3.54	SWL (start, SWL (end)  pH  7.07 7.24 7.52 2.52  Done by:	T (C) 76.6 76.9 25.7 AW/BS	Redox (mV)	Dissolve (%)	ed Oxygen (mg/L) 2 44 0 -80 0 39 0 36	NAPL Presen (If yes thickness)  Comments (Color, turbidity)  (Color, turbidity)  (Color, turbidity)	tvb.A
Time Started Time Stopped Comments  Field Analyses Purging Time  Sampling Sampling Method Time Started	Vol Removed (L)  Pump (C) (C) (C) (C) (C) (C) (C) (Date:	(180m) 4.48 3.49 3.54	SWL (start, SWL (end)  pH  7.07 7.24 7.50 7.50	T (C) 76.6 76.8 25.8 4W/BS	Redox (mV)	Dissolve (%)	ed Oxygen (mg/L) 2 44 0 \$0 0 39 0 26 er Disposal Re	Comments (Color, turbidity)  (Color, turbidity)	tvb.A
Time Started Time Stopped Comments  Field Analyses Purging Time  Sampling  Sampling Method Time Started Time Stopped	Vol Removed (L)  Pump (L) (L) (L) (L) Date:	(180m) 4.48 3.49 3.54	SWL (start) SWL (end)  PH  7.07 7.24 7.50 Pone by: ampling Depth	T (C) 76.6 76.9 25.7 AW/BS	Redox (mV)	Dissolve (%)  Groundwat  Date	ed Oxygen (mg/L) 2 44 0 -80 0 39 0 36	NAPL Presen (If yes thickness)  Comments (Color, turbidity)  (Color, turbidity)  (Color, turbidity)	tvb.A
Time Started Time Stopped Comments  Field Analyses Purging Time  Sampling Sampling Method Time Started	Vol Removed (L)  Pump (L) (L) (L) (L) Date:	(180m) 4.48 3.49 3.54	pH  7.07 7.24 7.52 Done by: ampling Depth SWL (start)	T (C) 76.6 76.9 25.7 AW/BS	Redox (mV)	Dissolve (%)  Croundwate Date	ed Oxygen (mg/L) 2 44 0 \$0 0 39 0 26 er Disposal Re	Comments (Color, turbidity)  (Color, turbidity)	tvb.A

BORE No: 1203-5

	42626162	Project Name	BMA Caval	Ridge Groundy	vater				
Development	Date:		Done by:			,			
Development Method Time Started Time Stopped Comments			SWL (start) SWL (end)		Volu	me Removed ischarge Rate	1	Bore Depth (start) Bore Depth (end) NAPL Present	7
Field Analyses								(If yes thickness)	
Development									
Time	Vol Removed (L)	EC (uS/cm)	pH	T (C)	Redox (mV)	Dissolve (%)	ed Oxygen (mg/L)	Comments (Color, turbidity)	
Purging	Date:		Done by:	AW/BS			-		
Purge Method Time Started Time Stopped Comments			Purge Depth SWL (start) SWL (end)	25.492 25.55	n 700 n Volu	Bore Volume me Removed	3.7 <i>5</i> (	Bore Depth (start) Bore Depth (end) NAPL Present (If yes thickness)	
Field Analyses		٦.		*****	-			_ (II yes unekness)	
Time  Time	Vol Removed (L) 3.75L 7.5L 11.25L 14L	m> EC (us/cm) 14.0b 14.07 13.64 13.54	pH 7.04 6.83 6.80 6.78	T (C) 25 5 25 . 4 25 . 3 25 . 3	Redox (mV) -13 - 21 - 130	Dissolve (%)	ed Oxygen (mg/L) 2. \5 2. \5 3.01 3.61	Comments (Color, turbidity)	to/bid
15:16		<u> </u>			1 1			1	
/5:16 Sampling	Date:	·	Done by:	AW/BS		Mile:	l		

BORE No: 1203-D

	Date:		Done by:	****	_				
Development Method Time Started Time Stopped Comments			SWL (start) SWL (end)		_ Volur _ Dis	ne Remove scharge Rat	d e	Bore Depth (start) Bore Depth (end) NAPL Present	_
Field Analyses Development	AMMU.					7712		(If yes thickness)	
Time	Vol Removed (L)	EC (uS/cm)	рН	T (C)	Redox (mV)	Dissolve (%)	ed Oxygen (mg/L)	Comments (Color, turbidity)	
Purging	Date:	7/8/08	Done by:	AW/BS	<u> </u>		<u> </u>		
Purge Method Time Started Time Stopped Comments Field Analyses	CARTE		Purge Depth SWL (start) SWL (end)	31.757m 31.79 n		ore Volumene Remove		Bore Depth (start) 4 Bore Depth (end) NAPL Present (If yes thickness)	3.1m 70c
Purging Time	Vol Removed	<u></u>			T ~ . T				
144: 2. Z	(L)	(u8/cm). 18.ラム	pH	T (C) 26. 2	Redox (mV)	Dissolve (%)	ed Oxygen   (mg/L)   ノ・テン	Comments (Color, turbidity)	( - 12 -
14:36	pmp u	19.35 19.71 20.02	7.14	25.9	-172 -168 -166 -165		0.42	light grey brown turbs	a JUIPNUV DO SUIPNU IS II
14:115	Date:	<del></del>	Done by:		1-107	· ·	10.19	$QCO7 = P_Z$	-1(
Sampling								$QLOI = f_Z$	$O \leftarrow N$
Sampling Sampling Method	- <del></del> _	Sar	mpling Depth		•	Croundwat	er Disnosal Ra	cord	U = U
		Sa	mpling Depth SWL (start) SWL (end)		_ <u>{</u>	Groundwat Date	er Disposal Re	cord Disposal method	

4. . . .

BORE No: PZOZ

Development	Date:		Done by:		TOTAL STATE OF THE				
Development Method									
Time Started	****		SWL (start)		Volu	me Removed	1	Bore Depth (start)	
Time Stopped			SWL (end)		_ Di			Bore Depth (start) Bore Depth (end)	
Comments					_			NAPL Present	
								(If yes thickness)	
Field Analyses									PALIN
Development	XV.1 D	m.a	1						
Time	Vol Removed		pН	T	Redox		d Oxygen	Comments	
	(L)	(uS/cm)		(C)	(mV)	(%)	(mg/L)	(Color, turbidity)	
		W-100.	*********		_	····			
					<del>                                     </del>		- ***		
Purging	Date:		Done by:	AW/BS	•				
-				11477100					
Purge Method			Purge Depth						
Time Started			SWL (start)	15.653	(TOC)	Bore Volume	ı	Bore Depth (start) 35	13/Tac
Time Stopped			SWL (end)		Volu	me Removed		Bore Depth (end)	
Comments								NAPL Present	
<b>***</b> • • • •			****					(If yes thickness)	
Field Analyses		ms		7	12	***************************************			<del></del>
Purging	X7-1 D 1		1	00	d?				
Time	Vol Removed		pН	T ?	Redox		d Oxygen	Comments	
1/ 1/	(L)	(u8/cm) *		(C) %	(mV)	(%)	(mg/L)	(Color, turbidity)	
16:55	dusal	2.58	7.58	24.2 24.2	-173		1.39	light grey, clear	to slight
16:58	/ u '	ranging	756	24.2	-175		0.40	Oc UNI IC	e 600
701	16		3.8%	24.2	-147		0.27	1	(, )
17:04			7.54	241	-1,22	·	0.57	1	e
17:06	it	/(	7.94	24.1	-/1/		0.68	ις (ς ζς	ره در
Sampling	Date:		Done by:	AW/BS	_				
Sampling Method		Sa	mpling Depth		,	C'	D! 1 D		
Time Started		.,,	SWL (start)				r Disposal Re		
Time Stopped					<u>,</u>	Date	Litres	Disposal method	
			SWL (end)		_ devmt				
Comments					purging				
	*******					*****			
	TOPAGE .						<u>L</u>		
nent, Purging and Groundwat	er Sampling Data	Sheet		Page 1	of 1 A =	73	A	25 30 Checked By:	140********
					16	1 6	,	I B. / - Unecked By:	

BORE No: <u>P204</u>

evelopment	Date:		_ Done by:		_				
Development Method	1								
Time Started			SWL (start)		Volum	ne Removed	t	Bono Donth (stout)	
Time Stopped			SWL (end)				, , , , , , , , , , , , , , , , , , , ,	Bore Depth (start)	
Comment			S II L (GIIL)		_	sonarge Ivan		Bore Depth (end) NAPL Present	
						****		(If yes thickness)	
ield Analyses			* *******					_ (II yes unckness)	
evelopment									
Time	Vol Removed	EC	pН	T	Redox	Dissolve	d Oxygen	Comments	1
	(L)	(uS/cm)	•	(C)	(mV)	(%)	(mg/L)	(Color, turbidity)	
				(0)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(70)	(IIIg/L/)	(Color, turbidity)	
						***			
					···		·		
		****			<del>                                     </del>	****			
					-				
urging	Date:	8/6/08	Day	ANIMO	<u> </u>			<u> </u>	
uging	Date:	0/0/00	Done by:	AW/BS	_				
Purge Method	ł.		Purge Denth						
Purge Method Time Started			Purge Depth		- 70C B	Rora Voluma		David David (dv. A	
Time Started	1		SWL (start)	67.58	M TOC E	Bore Volume		Bore Depth (start)	
Time Started	1		SWL (start)		m TOC E	Bore Volume ne Removed		Bore Depth (end)	
Time Started	1		SWL (start)	67.58	M TOC E	Bore Volume ne Removed		Bore Depth (end) NAPL Present	
Time Started Time Stopped Comment	1		SWL (start)	67.58	m TOC E	Bore Volume me Removed		Bore Depth (end)	
Time Started Time Stopped Comment	1		SWL (start)	67.58	M TOC E	Bore Volume me Removed	i	Bore Depth (end) NAPL Present	
Time Started Time Stopped Comment	d d s	EC	SWL (start)	67.58 67.59,	n ToWolur	ne Removed		Bore Depth (end) NAPL Present (If yes thickness)	
Time Started Time Stopped Comment  celd Analyses  arging	Vol Removed		SWL (start) SWL (end)	67.58 67.59,	n ToWolur	ne Removed	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness)	
Time Started Time Stopped Comment seld Analyses arging Time	Vol Removed (L)	(uS/cm)	SWL (start) SWL (end)	67.58 67.59,	Redox (mV)	Dissolve	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness)	
Time Started Time Stopped Comment  ield Analyses  urging Time	Vol Removed	(uS/cm)	SWL (start) SWL (end)	67.58 67.59, (C)	Redox (mV)	ne Removed	d Oxygen (mg/L)	Bore Depth (end) NAPL Present (If yes thickness)	
Time Started Time Stopped Comment  ield Analyses  urging  Time	Vol Removed (L)		SWL (start) SWL (end)	67.58 67.59,	Redox (mV)	Dissolve	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness)	
Time Started Time Stopped Comment  ield Analyses  urging  Time	Vol Removed (L)	(uS/cm)	SWL (start) SWL (end)	67.58 67.59, (C)	Redox (mV)	Dissolve	d Oxygen (mg/L)	Bore Depth (end) NAPL Present (If yes thickness)  Comments	
Time Started Time Stopped Comment  ield Analyses turging Time	Vol Removed (L)	(uS/cm)	SWL (start) SWL (end)	67.58 67.59, (C)	Redox (mV)	Dissolve	d Oxygen (mg/L)	Bore Depth (end) NAPL Present (If yes thickness)	
Time Started Time Stopped Comment  ield Analyses urging Time  7 27	Vol Removed (L) 2 L	(uS/cm)	pH 7.00 6.74	67.58 67.59, T (C) 24.2 25.7	Redox (mV)	Dissolve	d Oxygen (mg/L)	Bore Depth (end) NAPL Present (If yes thickness)	
Time Started Time Stopped Comment  ield Analyses  urging  Time	Vol Removed (L)	(uS/cm)	SWL (start) SWL (end)	67.58 67.59, T (C) 24.2 25.7	Redox (mV)	Dissolve	d Oxygen (mg/L)	Bore Depth (end) NAPL Present (If yes thickness)	
Time Started Time Stopped Comment  ield Analyses arging Time  7 27  ampling	Vol Removed (L) 254 24 Date:	(uS/cm) 1497 1529	pH 7.00 6.74  Done by:	67.58 67.59, T (C) 24.2 25.7	Redox (mV)	Dissolve	d Oxygen   (mg/L)   3. 2.6   2. 21	Bore Depth (end) NAPL Present (If yes thickness)  Comments (Color, turbidity)  Olcar Support	
Time Started Time Stopped Comment  eld Analyses arging Time  7 27  ampling Sampling Method	Vol Removed (L) 2 L  Date:	(uS/cm) 1497 1529	pH 7.00 6.74  Done by:	67.58 67.59, (C) 24.2 25.7	Redox (mV)	Dissolve (%)	d Oxygen (mg/L) 3. 2.6 2. 21	Bore Depth (end) NAPL Present (If yes thickness)  Comments (Color, turbidity)  Clear Support	
Time Started Time Stopped Comment  eld Analyses arging Time  7 27  ampling  Sampling Method Time Started	Vol Removed (L) 2 L  Date:	(uS/cm) 1497 1529	pH 7.00 6.74  Done by: ampling Depth SWL (start)	67.58 67.59, T (C) 24.2 25.7	Redox (mV)	Dissolve	d Oxygen   (mg/L)   3. 2.6   2. 21	Bore Depth (end) NAPL Present (If yes thickness)  Comments (Color, turbidity)  Olcar Support	
Time Started Time Stopped Comment  eld Analyses  arging Time  7:27  ampling  Sampling Method Time Started Time Stopped	Vol Removed (L) 2 L  Date:	(uS/cm) 1497 1529	pH 7.00 6.74  Done by:	67.58 67.59, T (C) 24.2 25.7	Redox (mV) -207 -195	Dissolve (%)	d Oxygen (mg/L) 3. 2.6 2. 21	Bore Depth (end) NAPL Present (If yes thickness)  Comments (Color, turbidity)  Clear Support	
Time Started Time Stopped Comment  eld Analyses  arging Time  7 27  ampling  Sampling Method Time Started	Vol Removed (L) 2 L  Date:	(uS/cm) 1497 1529	pH 7.00 6.74  Done by: ampling Depth SWL (start)	67.58 67.59, T (C) 24.2 25.7	Redox (mV)	Dissolve (%)	d Oxygen (mg/L) 3. 2.6 2. 21	Bore Depth (end) NAPL Present (If yes thickness)  Comments (Color, turbidity)  Clear Support	

BORE No: PZO

	Date.		Done by:		<del></del>				
Development Method			_						
Time Started			SWL (start)	-	Volu	ne Remove	d	Bore Depth (start)	
Time Stopped			SWL (end)		Di	scharge Rat	te	Bore Depth (end)	
Comments						_		NAPL Present	
							***************************************	(If yes thickness)	
Field Analyses									
Development Time	Vol Removed	EC	рН	Т	Redox	Dissolu	od 0		1
111110	(L)	(uS/cm)	l bu	(C)	1 1		ed Oxygen	Comments	
	(L)	(us/cm)		(C)	(mV)	(%)	(mg/L)	(Color, turbidity)	
			***************************************			******		1000	
~~~						N700-1-1			
Purging	Date:	8/6/08	Done by:	AW/BS		*****			l
			_		_				
Purge Method			Purge Depth		— "TANA"				
Time Started			SWL (start)	8,4380	1 19C I	Bore Volum	ie	Bore Depth (start)	
Time Stopped			CITITY (+ 1)						
~			SWL (end)	86.6m	_ T 🔍 Volu	ne Remove	ed	Bore Depth (end)	
Comments			SWL (end)	86.6m	ToC Volu	ne Remove	ed		
			SWL (end)	86.6m	_ T OC Volui	ne Remove	ed	Bore Depth (end)	
Field Analyses		(SWL (end)	86.6m	_ ToC Volu	ne Remove	ed	Bore Depth (end) NAPL Present	
Field Analyses Purging		ms	777					Bore Depth (end) NAPL Present (If yes thickness)	
Field Analyses	Vol Removed	EC,	pH	Т	Redox	Dissolv	ed Oxygen	Bore Depth (end) NAPL Present (If yes thickness)	
Field Analyses Purging Time	Vol Removed (L)		рН	T (C)	Redox (mV)		red Oxygen (mg/L)	Bore Depth (end) NAPL Present (If yes thickness)	
Field Analyses Purging Time	Vol Removed (L)	EC,	pH 7.00	T (C)	Redox (mV)	Dissolv	ed Oxygen (mg/L)	Bore Depth (end) NAPL Present (If yes thickness)	
Field Analyses Purging Time	Vol Removed	EC (y8/cm) 8-49 4-75	pH 7.00 7.21	T (C) 25.1 25.8	Redox (mV) -252 -222	Dissolv (%)	ed Oxygen (mg/L) /-76 /-49	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) Clear by dark	
Field Analyses Purging Time	Vol Removed (L)	EC (ys/cm) 8 49 4 75 4 20	pH 7.00 7.21 7.76	T (C)	Redox (mV) -252 -222	Dissolv (%)	ed Oxygen (mg/L) /-76 /-49 0-84	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) Clear by dark (Color, turbidity)	
Field Analyses Purging Time	Vol Removed (L) Pump	EC (y8/cm) 8 49 4 75 4 20 4 26	pH 7.00 7.21	T (C) 25.1 25.8 25.9 25.9	Redox (mV) -252 -222 -229 -226	Dissolv (%)	ed Oxygen (mg/L) /-76 /-49 0-84	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) Clear by dark	bubbles on for parameter
Field Analyses Purging Time	Vol Removed (L) Pump	EC (ys/cm) 8 49 4 75 4 20	pH 7.00 7.21 7.76	T (C) 25.1 25.8	Redox (mV)	Dissolv (%)	ed Oxygen (mg/L) /-76 /-49 0-84	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) Clear to dark (Color, turbidity)	bubbles on the
Field Analyses Purging Time	Vol Removed (L) Pump (1)	EC (y8/cm) 8 49 4 75 4 20 4 26	pH 7.00 7.21 7.16 7.18	T (C) 25.1 25.8 25.9 25.9	Redox (mV) -252 -222 -229 -226	Dissolv (%)	ed Oxygen (mg/L) /-76 /-49	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) Clear by olarl (Color, turbidity)	bubbles on for parameter
Field Analyses Purging Time 9,74 9,19 4,24 9,34 Sampling	Vol Removed (L) Pump (1) (1) (1) Date:	EC, (y8/cm) 8 49 4 75 4 20 4 26 3 55	pH 7.00 7.21 7.16 7.18 7.29 Done by:	T (C) 25.1 25.8 25.9 25.9 25.9 AW/B8	Redox (mV) -252 -252 -225 -226 -226	Dissolv (%)	ed Oxygen (mg/L) /-76 /-49 0.84 0.86	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) Clear by dark (t t t t t t t t t t t t t t t t t t t	bubbles on for parameter
Field Analyses Purging Time 9,74 9,34 9,34 Sampling Sampling Method	Vol Removed (L) Pump (1) (1) (1) (1) Date:	EC, (y8/cm) 8 49 4 75 4 20 4 26 3 55	pH 7.00 7.21 7.76 7.18 7.29 Done by: ampling Depth	T (C) 25.1 25.8 25.9 25.9 25.9 AW/BS	Redox (mV) -252 -252 -225 -226 -226	Dissolv (%)	ed Oxygen (mg/L) 1.76 1.49 0.84 0.86 ter Disposal R	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) Clear by dad (((((((((((((((((((bubbles on for parameter
Field Analyses Purging Time 9:14 9:24 Sampling Sampling Method Time Started	Vol Removed (L) Pump (1) (1) (1) Date:	EC, (y8/cm) 8 49 4 75 4 20 4 26 3 55	pH 7.00 7.21 7.18 7.18 7.29 Done by: ampling Depth SWL (start)	T (C) 25.1 25.8 25.9 25.9 25.9 AW/BS	Redox (mV) -252 -222 -229 -226 -229	Dissolv (%)	ed Oxygen (mg/L) /-76 /-49 0.84 0.86	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) Clear by dark (t t t t t t t t t t t t t t t t t t t	bubbles on for parameter
Field Analyses Purging Time 9 /4 9 /9 /9 9 /9 /9 Sampling Sampling Method	Vol Removed (L) Pump (1) (1) (1) Date:	EC, (y8/cm) 8 49 4 75 4 20 4 26 3 55	pH 7.00 7.21 7.76 7.18 7.29 Done by: ampling Depth	T (C) 25.1 25.8 25.9 25.9 25.9 AW/BS	Redox (mV) -252 -252 -225 -226 -226	Dissolv (%)	ed Oxygen (mg/L) 1.76 1.49 0.84 0.86 ter Disposal R	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) Clear by dad (((((((((((((((((((bubbles on for parameter

BORE No: £05 BORE DEVELOPMENT, PURGING AND GROUNDWATER SAMPLING DATA SHEET Project No 42626162 Project Name BMA Caval Ridge Groundwater Development Date: Done by: Development Method Time Started SWL (start) Volume Removed Bore Depth (start) Time Stopped SWL (end) Discharge Rate Bore Depth (end) Comments NAPL Present (If yes thickness) Field Analyses Development Time Vol Removed EC T pН Dissolved Oxygen Redox Comments (L) (uS/cm) (C) (mV) (%)(mg/L) (Color, turbidity) Purging Date: Done by: AW/BS 8/6/08 37.69 m TOC Purge Method Purge Depth 36355 SWL (start) 37.60 m 700 Time Started Bore Volume Bore Depth (start) 8/6/08 SWL (end) 43.70 TOC Time Stopped Volume Removed Bore Depth (end) Comments NAPL Present tr of 106/08. - could not or get pump bailer down veil. (If yes thickness) Field Analyses 8/6/08 Purging Vol Removed Time EC pΗ Redox Dissolved Oxygen Comments (L) (uS/cm) (mV) (Color, turbidity) (%)(mg/L) -181 -185 -176 DUMIN oubove Sampling Date: Done by: AW/BS Sampling Method Sampling Depth **Groundwater Disposal Record** Time Started SWL (start) Date Disposal method Litres Time Stopped SWL (end) devmt Comments purging

Bore Development, Purging and Groundwater Sampling Data Sheet

Page 1 of 1

Checked By:....

BORE No: P204

Development	Date:		Done by:						
Development Method									
Time Started			SWL (start)		Volu	me Removed	1	Bore Depth (start)	
Time Stopped			SWL (end))	D	scharge Rate	·	Bore Depth (start) Bore Depth (end)	
Comments			` ,		_	onar go reac		NAPL Present	
								(If yes thickness)	
Field Analyses								(ii yes unekness)	
Development								•	
Time	Vol Removed		pН	T	Redox	Dissolve	d Oxygen	Comments	
	(L)	(uS/cm)		(C)	(mV)	(%)	(mg/L)	(Color, turbidity)	
					ļ				
				-					
					·				
			<u> </u>				1		
Purging	Date:	11/9/08	Done by:	AW/DG					
Time Stopped		vous sample	SWL (start) SWL (end)	67. 535	Volu	Bore Volume me Removed		Bore Depth (start) Bore Depth (end)	94.51
Time Stopped Comments		mb sample	Directly	67. 535	Volu			Bore Depth (start) Bore Depth (end) NAPL Present (If yes thickness)	94.51
Time Stopped		ms same	Directly	67. 535	Volu			Bore Depth (end) NAPL Present	94.51
Time Stopped Comments Field Analyses		EC	Directly	67. 535 T	Votu	me Removed		Bore Depth (end) NAPL Present (If yes thickness)	94.51
Time Stopped Comments Field Analyses Purging Time		EC (uS/cm)	SWL (end)	T (C)	Volu Redox (mV)	me Removed	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments	94.51
Time Stopped Comments Field Analyses Purging	Vol Removed	EC	SWL (end)	T (C)	Redox	me Removed	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity)	
Time Stopped Comments Field Analyses Purging Time	Vol Removed	EC (uS/cm)	SWL (end)	T	Redox (mV)	me Removed	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments	
Time Stopped Comments Field Analyses Purging Time	Vol Removed	EC (uS/cm)	SWL (end)	T (C)	Redox (mV)	me Removed	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity)	
Time Stopped Comments Field Analyses Purging Time	Vol Removed	EC (uS/cm)	SWL (end)	T (C)	Redox (mV)	me Removed	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity)	
Time Stopped Comments Field Analyses Purging Time 7:29	Vol Removed (L)	EC (uS/cm)	pH 5.09	T (C) 24.1	Redox (mV)	me Removed	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity)	
Time Stopped Comments Field Analyses Purging Time	Vol Removed	EC (uS/cm)	SWL (end)	T (C) 24.1	Redox (mV)	me Removed	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity)	
Time Stopped Comments Field Analyses Purging Time 7/29 Sampling	Vol Removed (L)	EC (uS/cm)	pH 5-09 Done by:	T (C) 24.1	Redox (mV)	Dissolve (%)	d Oxygen (mg/L)	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) Dork grey Clear to Sky	
Time Stopped Comments Field Analyses Purging Time 7:29 Sampling Sampling Method	Vol Removed (L) Date:	EC (uS/cm)	pH 5.09 Done by:	T (C) 24.1	Redox (mV)	Dissolve (%)	d Oxygen (mg/L) 1. Z.4	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) Dock grey Clearte Study	
Time Stopped Comments Field Analyses Purging Time 7:29 Sampling Sampling Method Time Started	Vol Removed (L) Date:	EC (uS/cm)	pH 5.09 Done by: mpling Depth SWL (start)	T (C) 24.1	Redox (mV) -209	Dissolve (%)	d Oxygen (mg/L)	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) Dork grey Clear to Sky	
Time Stopped Comments Field Analyses Purging Time 7:29 Sampling Sampling Method	Vol Removed (L) I Date:	EC (uS/cm) }/0 7	pH 5.09 Done by: smpling Depth SWL (start) SWL (end)	T (C) 24.1	Redox (mV) -209	Dissolve (%)	d Oxygen (mg/L) 1. Z.4	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) Dock grey Clearte Study	
Time Stopped Comments Field Analyses Purging Time 7:29 Sampling Sampling Method Time Started Time Stopped	Vol Removed (L) I Date:	EC (uS/cm) }/0 7	pH 5.09 Done by: mpling Depth SWL (start)	T (C) 24.1	Redox (mV) -209	Dissolve (%)	d Oxygen (mg/L) 1. Z.4	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) Dock grey Clearte Study	

BORE No: P201

		Project Name	BMA Caval J	Ridge Groundy	vater					
Development	Date:		Done by:							
Time Stopped	Time Started Time Stopped Comments		SWL (start) SWL (end)			ime Removed ischarge Rate	1	Bore Depth (end) NAPL Present		
Field Analyses Development	elopment							_ (If yes thickness)		
Time			EC pH (uS/cm)		Redox (mV)	Dissolve (%)	ed Oxygen (mg/L)	Comments (Color, turbidity)		
Purging	Date:	:: 10/9/08 Done by: AW/DG		AW/DG	<u> </u>					
Time Started Time Stopped Comments Field Analyses	18:13 18:44	Ψ´	Purge Depth	8.395 _n 12,66m	A Volu	Bore Volume me Removed	1	Bore Depth (start) A Bore Depth (end) NAPL Present (If yes thickness)	86n	
Purging Time 18:15 18:27 18:36 18:44	c Vol Removed EC p (L) (uS/cm) 15 1 5 790 5 27 20 7360 5. 36 30 7340 5.		pH 5.74 5.51 5.54 5.53	T (C) 27.0 27.6 27.9 27.9	Redox (mV) -301 -324 -325 -322	Dissolve (%)	od Oxygen (mg/L) 1,06 0.08 0.05	Comments (Color, turbidity) Clear, Sulphu 11 11 11 11	odeu	
Sampling	Date:			·						
Time Stopped	Time Started SWI.		mpling Depth SWL (start) SWL (end)		devmt purging	Groundwate Date	er Disposal Ro Litres	Disposal method		

BORE No: P203-D

Project No	42626162	Project Name	BMA Caval	Ridge Groundw	ater			
Development	Date:		Done by:					444
Development Method Time Started Time Stopped Comments	ime Started SWL (start) Volume Removed me Stopped SWL (end) Discharge Rate Comments Ses					Bore Depth (end) NAPL Present		
Field Analyses	Vol Removed EC pH T Redox Dissolved Oxygen				(If yes thickness)			
Time Time	Vol Removed (L)	EC (uS/cm)	рН	T (C)	Redox (mV)	Dissolve (%)	d Oxygen (mg/L)	Comments (Color, turbidity)
Purging	Date:	10/9/08	Done by:	AW/DG				
Purge Method Time Started Time Stopped Comments Field Analyses Purging			Purge Depth SWL (start) SWL (end)	31.73 m	Volu	Bore Volume ime Removed		Bore Depth (start) 42.26 m Bore Depth (end) NAPL Present (If yes thickness)
Time (636 16:53 17:02 17:10	Vol Removed (L) 1 22 32 40	EC (uS/cm) \$11 21410 21430 21450	pH 4.07 5.42 5.62 5.58	T (C) 26.9 26.4 26.5 26.5	Redox (mV) -288 -204 -201 -197	Dissolve (%)	d Oxygen (mg/L) 1:43 6.46 0.22 0.16	Comments (Color, turbidity) Olcar. Sinflar adout. It II II II II II II II II
Sampling	Date:		Done by:	AW/DG				
Sampling Method Time Started Time Stopped Comments	17:11 17:18			31.91m	devmt purging	Groundwate Date	r Disposal Ro Litres	Disposal method

BORE No: P203-5

Project No	42626162	Project Name	BMA Caval F	didge Groundw	ater					
Development	Date:		Done by:		-					
Development Method Time Started Time Stopped Comments	11		SWL (start)		Volun	ne Removed scharge Rate		Bore Depth (start) Bore Depth (end) NAPL Present		
Field Analyses Development						V.,		(If yes thickness)		
Time	Vol Removed (L)	EC (uS/cm)	pН	T (C)	Redox (mV)	Dissolved (%)	l Oxygen (mg/L)	Comments (Color, turbidity)		
Purging		10/9/08	Done by:	AW/DG	-					
Purge Method Time Started Time Stopped Comments	d		Purge Depth SWL (start) SWL (end)	25.525n	Y E Volur	Bore Volume me Removed		Bore Depth (start) Bore Depth (end) NAPL Present (If yes thickness)		
Field Analyses Purging										
Time 16:50 17:00	Vol Removed (L) 4 8	EC (uS/cm) 11260 12470	рН 5.33 5.46	T (C) 25.9 25.7	Redox (mV) -129 -100	Dissolved (%)	Oxygen (mg/L) 2.54 2.65	Comments (Color, turbidity) Light brow/grey, t	inbid, HC	odour
Sampling	Date:		Done by:	AW/DG						
Sampling Method						~ .	n			
Time Started Time Stopped Comment	d d	. Si	SWL (start)		devmt purging	Groundwate Date	r Disposal R Litres	Disposal method		

BORE No: 1202

Development	Date:		Done by:		-				
Time Stopped	Time Started Time Stopped Comments		SWL (start) SWL (end)	Volui Di	me Removed scharge Rate		Bore Depth (end) NAPL Present		
Field Analyses Development	ent							(If yes thickness	
Time	Vol Removed (L)	EC (uS/cm)	рН	T (C)	Redox (mV)	Dissolve (%)	d Oxygen (mg/L)	Comments (Color, turbidity)	
Purging		0/9/08	Done by:		- (,		
Purge Method Time Started Time Stopped Comments	AP2 Pum. 15:11		Purge Depth SWL (start) SWL (end)	25.643m	(PUMP) I Volui	N SCVE Bore Volume me Removed	en)	Bore Depth (sta Bore Depth (er NAPL Prese (If yes thickne	d) ent
Purge Method Time Started Time Stopped Comments Tield Analyses Purging	APZ Pum.	ρ	Purge Depth SWL (start) SWL (end)	25.643 m	(PUMP) I Volu	me Removed		Bore Depth (er NAPL Prese	d) ent
Purge Method Time Started Time Stopped Comments	AP2 Pum. 15:11		Purge Depth SWL (start) SWL (end)	25.643m	Redox (mV) -167 -198 -221	me Removed	en) d Oxygen	Bore Depth (er NAPL Prese (If yes thickne) Comments (Color, turbidity)	id)ent
Purge Method Time Started Time Stopped Comments Field Analyses Purging Time 15:13 15:24 15:37	AP2 Pum. 15 1	EC (uS/cm) 1682 1494	Purge Depth SWL (start) SWL (end) Scase pH 4.36 4.36 4.26	25.643 m 25.643 m 5 ropen T (C) 25.9 25.6 25.6 25.6	Redox (mV) -267 -194	me Removed	d Oxygen (mg/L) 0-7 0-66 0-23	Bore Depth (er NAPL Prese (If yes thicknee	id)ent
Purge Method Time Started Time Stopped Comments Pield Analyses Purging Time 15:13 15:24 15:31	Vol Removed (L) 1 20 26 32 Date:	EC (uS/cm) 1682 1494 1529 1540	Purge Depth SWL (start) SWL (end) Scase (pH) 4.36 4.26 4.19	25.643 m 25.643 m 5 ropen T (C) 25.9 25.6 25.6 25.6 AW/DG	Redox (mV) -167 -194 -198 -221	Dissolve (%)	d Oxygen (mg/L) 0-7 0-66 0-23	Bore Depth (er NAPL Press (If yes thickne) Comments (Color, turbidity) Class 5 wllur Class 1 HC 11 HC	id)ent

BORE No: 1206-D

			× ×	Ridge Groundy					
Development	Date:		Done by:	· · · · · · · · · · · · · · · · · · ·					
Development Method								÷	
Time Started			SWL (start)	·	Volu	ime Removed	1	Bore Depth ((start)
Time Stopped			SWL (end)	V	D	ischarge Rate	•	Bore Depth	
Comments	}					J	······································	NAPL Pi	
							······································	(If yes thick	
Field Analyses								_ (**) ** ********	
Development									
Time	Vol Removed	EC	pН	Т	Redox	Dissolve	ed Oxygen	Comments	
	(L)	(uS/cm)		(C)	(mV)	(%)	(mg/L)	(Color, turbidity)	1
						7.9.1	(8/	(Color, tarotato)	
7/Add drawns		,,,,							
70.11 to 1					1.				
7.7									
Purging	Date:		Done by:	AW/DG	3'		<u> </u>		_
Time Started	Purge Method Time Started Time Stopped Comments		Purge Depth SWL (start) 29, 965 SWL (end)						
Time Stopped Comments			SWL (end)		Volu	Bore Volumo		Bore Depth (Bore Depth NAPL Pr (If yes thick	resent
Time Stopped Comments Field Analyses			SWL (end)	29.965v bes caps	n Volu	ime Removed		Bore Depth NAPL P	(end) resent
Time Stopped Comments Field Analyses Purging		EC	SWL (end)	bos Caps	Volu Still on	ime Removed	1	Bore Depth NAPL Pt (If yes thick	(end) resent
Time Stopped Comments Field Analyses	Vol Removed	EC (uS/cm)	SWL (end)	bos Caps	Volu Stell on Redox	me Removed	od Oxygen	Bore Depth NAPL Pr (If yes thick	(end) resent
Time Stopped Comments Field Analyses Purging Time	Vol Removed (L)	(uS/cm)	SWL (end)	bos Caps T (C)	Volu	ime Removed	od Oxygen	Bore Depth NAPL Pt (If yes thick Comments (Color, turbidity)	(end) resent kness)
Time Stopped Comments Field Analyses Purging Time 09:59	Vol Removed (L)	(uS/cm) (o 5 9	SWL (end)	bos caps T (C) 25-8	Redox (mV)	me Removed	od Oxygen (mg/L)	Comments (Color, turbidity)	(end) resent eness)
Time Stopped Comments Field Analyses Purging Time 09:59	Vol Removed (L) 7 2	(uS/cm) (059 (434	pH Pier	tos caps T (C) 25-8	Redox (mV)	me Removed	od Oxygen (mg/L)	Bore Depth NAPL Pr (If yes thick Comments (Color, turbidity) Clear subh	(end) resent (ness)
Time Stopped Comments Field Analyses Purging Time 09:59 09:75	Vol Removed (L) 7 20	(uS/cm) (089 (U34 (947	pH Pro	tos caps T (C) 25-8	Redox (mV)	me Removed	od Oxygen (mg/L) 1 · 2 · 2 · 3 · 7 0 · 8 S	Bore Depth NAPL Pr (If yes thick Comments (Color, turbidity) Clar. such	(end) resent kness)
Time Stopped Comments Field Analyses Purging Time 09:59 09:75	Vol Removed (L) 2 2 5 40 30	(uS/cm) [089 1434 1947 2005	pH Pro	tos caps T (C) 25-8	Redox (mV)	me Removed	od Oxygen (mg/L) 1 · 2 · 2 · 3 · 7 0 · 8 S	Comments (Color, turbidity) Clear, subh	(end) resent (ness)
Time Stopped Comments Field Analyses Purging Time 09:59 TAA (6:69	Vol Removed (L) 2 2 8 40 90	(uS/cm) (0 & 9 (0 & 9 (4 & 7 2 0 0 5 1993	pH 2 4 12 4 13 7	tos caps T (C) 26.8 26.4 26.8	Redox (mV)	me Removed	ad Oxygen (mg/L) 1 · 2 · 3 7 0 · 85 0 · 26 0 · 37	Bore Depth NAPL Pr (If yes thick Comments (Color, turbidity) Clear, subh	(end) resent kness)
Time Stopped Comments Field Analyses Purging Time 09:59 09:75	Vol Removed (L) 2 2 5 40 30	(uS/cm) [089 1434 1947 2005	pH Pro	tos caps T (C) 26.8 26.4 26.8	Redox (mV) 199 6 6 6 8 8 - 198 - 194	me Removed	od Oxygen (mg/L) 1 · 2 · 2 · 3 · 7 0 · 8 S	Comments (Color, turbidity) Clear, subh	(end) resent (ness)
Time Stopped Comments Field Analyses Purging Time 09:59 09:75 11:12 11:28 Sampling	Vol Removed (L) 2 2 8 40 90 100	(uS/cm) [059 [U34 [U34 [947 2005]993	pH Pier PH	T (C) 25.8 76.1 26.4 26.8 26.6 AW/DG	Redox (mV) 199 00 00 00 00 00 00 00 00 00 00 00 00 0	Dissolve (%)	od Oxygen (mg/L) (1 - 2 - 2 - 3 - 7 - 6 - 2 - 8 - 9 - 2 - 9 2 - 9 - 9 - 9 - 9 - 9 -	Bore Depth NAPL Pr (If yes thick Comments (Color, turbidity) Clear, subb. " " " " " " " " " " " " " " " " " "	(end) resent (ness)
Time Stopped Comments Field Analyses Purging Time On: 59 On: 79 On: 75 IIII IIII Sampling Sampling Method	Vol Removed (L) 2 2 8 9 10 0 14 Date:	(uS/cm) [059 [U34 [U34 [947 2005]993	pH pH land land land land land land land land	T (C) 25.8 26.4 26.8 26.6 AW/DG	Redox (mV) 199 00 00 00 00 00 00 00 00 00 00 00 00 0	Dissolve (%)	ad Oxygen (mg/L) 1 2 2 3 7 0 8 5 0 2 6 0 3 7 0 2 8	Bore Depth NAPL Pr (If yes thick Comments (Color, turbidity) Clar subs	(end) resent kness)
Time Stopped Comments Field Analyses Purging Time 01:54 10:75 11:12 Sampling Sampling Method Time Started	Vol Removed (L) 2 2 3 40 30 100 14 Date:	(uS/cm) [059 [U34 [U34 [947 2005]993	pH pH leave	T (C) 25.8 26.4 26.4 26.8 26.6 AW/DG	Redox (mV) 199 col ox 88 -198 -194 -192	Dissolve (%) Groundwat	od Oxygen (mg/L) (1 - 2 - 2 - 3 - 7 - 6 - 2 - 8 - 9 - 2 - 9 2 - 9 - 9 - 9 - 9 - 9 -	Bore Depth NAPL Pr (If yes thick Comments (Color, turbidity) Clear, subb. " " " " " " " " " " " " " " " " " "	(end) resent (ness)
Time Stopped Comments Field Analyses Purging Time 09:59 09:75 11:12 11:28 Sampling Method Time Started Time Stopped	Vol Removed (L) 2 20 40 90 100 14 Date:	(uS/cm) [059 [U34 [U34 [947 2005]993	pH pH land land land land land land land land	T (C) 25.8 26.4 26.4 26.8 26.6 AW/DG	Redox (mV) 191 al 6 6 6 8 198 - 198 - 194 - 192	Dissolve (%) Groundwat	ad Oxygen (mg/L) 1 2 2 3 7 0 8 5 0 2 6 0 3 7 0 2 8	Bore Depth NAPL Pr (If yes thick Comments (Color, turbidity) Clar subs	(end) resent (ness)
Time Stopped Comments Field Analyses Purging Time 01:54 10:75 11:12 Sampling Sampling Method Time Started	Vol Removed (L) 2 20 40 90 100 14 Date:	(uS/cm) [059 [U34 [U34 [947 2005]993	pH pH leave	T (C) 25.8 26.4 26.4 26.8 26.6 AW/DG	Redox (mV) 199 col ox 88 -198 -194 -192	Dissolve (%) Groundwat	ad Oxygen (mg/L) 1 2 2 3 7 0 8 5 0 2 6 0 3 7 0 2 8	Bore Depth NAPL Pr (If yes thick Comments (Color, turbidity) Clar subs	(end) resent (ness)
Time Stopped Comments Field Analyses Purging Time 09:59 09:75 11:12 11:28 Sampling Method Time Started Time Stopped	Vol Removed (L) 2 20 40 90 100 14 Date:	(uS/cm) [059 [U34 [U34 [947 2005]993	pH pH leave	T (C) 25.8 26.4 26.4 26.8 26.6 AW/DG	Redox (mV) 191 al 6 6 6 8 198 - 198 - 194 - 192	Dissolve (%) Groundwat	ad Oxygen (mg/L) 1 2 2 3 7 0 8 5 0 2 6 0 3 7 0 2 8	Bore Depth NAPL Pr (If yes thick Comments (Color, turbidity) Clar subs	(end) resent (ness)

BORE No: 1206-5

Development			_ Done by:						
Development Method									
Time Started			SWL (start)		Volur	ne Removed		Bore Depth (start	
Time Stopped Comments	SWL (end) Discharge Rate				ð	Bore Depth (end			
Comments					NAPL Preser				
ield Analyses								(If yes thickness	:)
Development								Reserved to the second	
Time	Vol Removed	EC	рН	Т	Redox	Diegolye	ed Oxygen	Comments	٦
	(L)	(uS/cm)	P.A.	, (C)	(mV)	(%)	(mg/L)	Color turbidity	
	()	(40/0111)		(6)	(1111)	(70)	(1118/9.1)	(Color, turbidity)	
						/	. 50		
,									
						,,,,,,			
	. .	10/01-0	·····		<u> </u>				_
urging	Date:	10/4/03	Done by:	AW/DG				• *	
	Date:	10/9/08			·				
Purge Method	_Bails	10/9/08	Purge Depth		· · · · · · · · · · · · · · · · · · ·		7		0
Purge Method Time Started	_Bails	10/9/08	Purge Depth SWL (start)	26.255 ,		Bore Volume	5.2 L	Bore Depth (star	28.8
Purge Method Time Started Time Stopped	Bails	10/9/08	Purge Depth	26.255 ,		Bore Volumene Removed	5.2 L	Bore Depth (end)
Purge Method Time Started	Bails	10/4/08	Purge Depth SWL (start)	26.255 ,		Bore Volume	5.2 L	Bore Depth (end	t
Purge Method Time Started Time Stopped Comments	Bails	10/4/08	Purge Depth SWL (start)	26.255 ,		Bore Volumo ne Removed	5.2 L	Bore Depth (end	t
Purge Method Time Started Time Stopped Comments ield Analyses	Bails	10/4/08	Purge Depth SWL (start)	26.255 ,		Bore Volumo	5.2 L	Bore Depth (end	t
Purge Method Time Started Time Stopped Comments Tield Analyses Purging	Rails_		Purge Depth SWL (start) SWL (end)	26.255	Volur	ne Removed	1	Bore Depth (end NAPL Preser (If yes thickness	t
Purge Method Time Started Time Stopped Comments Field Analyses	Rails. Vol Removed	EC	Purge Depth SWL (start)	26.255 , T	Volur Redox	ne Removed	od Oxygen	Bore Depth (end NAPL Preser (If yes thickness	t
Purge Method Time Started Time Stopped Comments Field Analyses Purging Time	Raule-	EC (uS/cm)	Purge Depth SWL (start) SWL (end)	26.255 , T (C)	Redox (mV)	ne Removed	d Oxygen	Bore Depth (end NAPL Preser (If yes thickness Comments (Color, turbidity)	t
Purge Method Time Started Time Stopped Comments Field Analyses Purging Time	Vol Removed (L) 5.8	EC (uS/cm) 1563	Purge Depth SWL (start) SWL (end)	26.255 , T (C) 25.3	Redox (mV)	Dissolve	ed Oxygen (mg/L)	Bore Depth (end NAPL Preser (If yes thickness Comments (Color, turbidity)	t
Purge Method Time Started Time Stopped Comments Field Analyses Purging Time	Vol Removed (L) 5.8	EC (uS/cm) 1563 c798	Purge Depth SWL (start) SWL (end) pH 4.42	26.255 , T (C) 25.3 25.5	Redox (mV)	Dissolve	ed Oxygen (mg/L) 1171 1 • • • • •	Comments (Color, turbidity)	t
Purge Method Time Started Time Stopped Comments Field Analyses Purging Time	Vol Removed (L) 5.8	EC (uS/cm) 1563	Purge Depth SWL (start) SWL (end)	26.255 , T (C) 25.3	Redox (mV)	Dissolve	ed Oxygen (mg/L)	Bore Depth (end NAPL Preser (If yes thickness Comments (Color, turbidity)	t
Purge Method Time Started Time Stopped Comments Field Analyses Furging Time 11-17 11-26 12-02	Vol Removed (L) 5.8	EC (uS/cm) 1563 c798	Purge Depth SWL (start) SWL (end)	T (C) 25.3 25.3 26.1	Redox (mV)	Dissolve	ed Oxygen (mg/L) 1171 1 • • • • •	Comments (Color, turbidity)	t
Purge Method Time Started Time Stopped Comments Field Analyses Furging Time 1:17 1:26 12:02 ampling	Vol Removed (L) 5.8 41-6 17-4 Date:	EC (uS/cm) 1563 1798 1639	Purge Depth SWL (start) SWL (end) pH 4.42 4.35 Done by:	T (C) 25.3 25.3 26.1	Redox (mV) -202 -201 -128	Dissolve	ed Oxygen (mg/L) 1171 1 • • • • •	Comments (Color, turbidity)	t
Purge Method Time Started Time Stopped Comments Sield Analyses Furging Time 1:-17 11:-26 12:-02 ampling Sampling Method	Vol Removed (L) 5.8 yl-6 17.4 Date:	EC (uS/cm) 1563 1798 1639	Purge Depth SWL (start) SWL (end) pH 4.42 4.35 Done by: ampling Depth	T (C) 25.3 25.3 26.1	Redox (mV) -202 -201 -128	Dissolve (%)	ed Oxygen (mg/L) 1.71 1.99 2.81	Comments (Color, turbidity) Li je	t
Purge Method Time Started Time Stopped Comments Field Analyses Furging Time 1::17 11:26 12:02 ampling Sampling Method Time Started	Vol Removed (L) 5.8 41.6 17.4 Date:	EC (uS/cm) 1563 1798 1639	Purge Depth SWL (start) SWL (end) pH 4.42 4.35 Done by: ampling Depth SWL (start)	T (C) 25.3 25.5 26. [Redox (mV) -202 -201 -128	Dissolve (%)	ed Oxygen (mg/L) 1171 1 • • • • •	Bore Depth (end NAPL Preser (If yes thickness (Color, turbidity) Dork Grey , (wbid)	t
Purge Method Time Started Time Stopped Comments Field Analyses Purging Time 1:-17 -126 -12-02 Fampling Sampling Method Time Started Time Stopped	Vol Removed (L) 5.8 11.4 Date:	EC (uS/cm) 1563 1798 1639	Purge Depth SWL (start) SWL (end) pH 4.42 4.35 Done by: ampling Depth SWL (start)	T (C) 25.3 25.5 26. [Redox (mV) -202 -201 -128	Dissolve (%)	ed Oxygen (mg/L) 1171 1 • • • • • • • 1 2 - 8 1	Comments (Color, turbidity) Li je	t
Time Started Time Stopped Comments Field Analyses Purging Time 1:-17 1:-26 12-02 Sampling Sampling Method Time Started	Vol Removed (L) 5.8 11.4 Date:	EC (uS/cm) 1563 1798 1639	Purge Depth SWL (start) SWL (end) pH 4.42 4.35 Done by: ampling Depth	T (C) 25.3 25.5 26. [Redox (mV) -202 -128	Dissolve (%)	ed Oxygen (mg/L) 1171 1 • • • • • • • 1 2 - 8 1	Bore Depth (end NAPL Preser (If yes thickness (Color, turbidity) Dork Grey , (wbid)	t

BORE No: 1208-D

Project 1	No 42626162									
Development	Date: _		Done by:		177.4.					
Development Meth	od		, 	and the second				•		
Time Start Time Stopp			SWL (start)			ıme Removed		Bore Depth (start)	- N. M	
Comme			SWL (end)		D	ischarge Rate		Bore Depth (end)		
Comme	103					······································	NAPL Present			
Field Analyses							_ (If yes thickness)			
Development										
Time	Vol Removed	EC	pН	T	Redox	Dissolve	d Oxygen	Comments		
	(L)	(uS/cm)		(C)	(mV)	(%)	(mg/L)	(Color, turbidity)		
						···· /• /·· ··· ··· ·· · · · · · · · · ·				
	_									

Purging	Datas		TO 1	431/00						
ruiging	Date:	,	Done by:	AW/DG						
Purge Meth	od		Purge Depth							
Time Start	ed			25.615	 •∕•⁄I	Bore Volume		Bore Depth (start)	64.360	
Time Stopp			SWL (end)		Volu	ıme Removed		Bore Depth (end)		
Comme	nts							NAPL Present		
						·		(If yes thickness)		
Field Analyses Purging										
Time	Vol Removed	EC	pH	T	Redox	Diegolya	d Oxygen	Comments		
	(L)	(uS/cm)	PAT	(C)	(mV)	(%)	(mg/L)	(Color, turbidity)		
17.16	2	0िहर	4.87	27.8	263	(/3/	(N. 018	cleer, no olor.		
17.40	40	5690	4.93	78.3	-330		0.13	cher is shown	e 11 1	
18:01	63	12400	5.06	28.6	-229		0.12	dur · spran	Trailing a	
18:13	7.0	12490	5.06	28.6	-213		0.14	11 11	به قدر ر 1	
11: 20	90	12510	5.03	58.8	- 205		0,12		.2	
Sampling	Date:		Done by:	AW/DG					•	
	APZ		-	761	d funt.					
Sampling Meth		Sampling Depth 39.5 Groundwater Disposa								
Time Start			D True (Bearly)		\	Date	Litres	Disposal method		
Time Stopp			SWL (end)		devmt					
Comme	TUS				purging					
			-/11//							
							I			

BORE No: 1208-5

Project N	0 42626162	Project Nam	e BMA Caval	Ridge Groundy	vater		di se gaptem di i Para di Angel		
Development	Date:		_ Done by:		_		-	994	
Development Metho	d								
Time Starte			SWL (start)		Volu	me Removed	l	Bore Depth (start)	
Time Stoppe	d		SWL (end)		Di	scharge Rate	2	Bore Depth (start)	
Comment	S	•	,					NAPL Present	
								(If yes thickness)	
Field Analyses Development								(s. yes entertiess)	
Time ·	Vol Removed		pН	Т	Redox	Dissolve	d Oxygen	Comments	1
	(L)	(uS/cm)		(C)	(mV)	(%)	(mg/L)	(Color, turbidity)	
1////							-		
			-						
	-				-			100 to 10	
Purging	Date:	L		1.TT/D.C]
urging	Date:		_ Done by:	AW/DG	_				
Purge Metho	đ		Purge Depth						
Time Starte			SWL (start)	13.11 m	-	Bore Volume	4.5L	Bore Depth (start)	15 514
Time Stoppe	d		SWL (end)	J M	- u 3 <i>∙2 ĕ\$</i> Volu	me Removed) <u>T, 9</u> <u>L</u>	Bore Depth (end)	103.51 M
Comment			()	13,7	۰ اور کار ا	mo remove		NAPL Present	
			· · · · · · · · · · · · · · · · · · ·					(If yes thickness)	
icld Analyses								_ (II yes unlocatess)	
urging		*							
Time	Vol Removed		pН	Т	Redox	Dissolve	d Oxygen	Comments	1
	(L)	(uS/cm)		(C)	(mV)	(%)	(mg/L)	(Color, turbidity)	
1730	3	1817	4.79	26:7	-(6		3.24		no odow
17.36	4.5400	1837	4.72	27.1	~ 158		2.72	C. P. P. C. P. P. C. P. P. P. C. P. P. P. P. C. P.	sila olan-
17:45	9.5 day	(861	5.01	25.9	- (3(3-94	Brown, muchy	0 16 -1
							-		- y acon
L 11	<u> </u>				· .]
Sampling	Date:		Done by:	AW/DG					
Sampling Metho	d Baile	c	omnline Dard	13.205.			T-1		
Time Starte	d 17.50		ampling Depth		- (er Disposal Re		
Time Starte			SWL (Start)		- 4	Date	Litres	Disposal method	
Comment	e		SWL (end)		devmt		-		
Comment	.0				_ purging				
	P. (1)	/44-				······································			
	,				_				
ent, Purging and Groundw	ater Sampling Data	Sheet		Page 1	of 1			Check	ed By:
				_				CHECK	оч <i>Оу</i>

BORE No: P2 57D

Development	Date:		Done by:	<i>/</i>					
Development Metho	đ				•				
Time Starte			SWL (start)	\	Volu	ıme Removed	1	Dono Donth (-tt)	
Time Stoppe			SWL (end)	·) 	Bore Depth (start)	· · · · · · · · · · · · · · · · · · ·
Commen			S Trus (ond)		_	ischarge Kait	·····	Bore Depth (end) NAPL Present	
			,					(If yes thickness)	
Field Analyses							,	(II yes unekness)	
Development									
Time	Vol Removed	EC	pI∃	T	Redox	Dissolve	ed Oxygen	Comments	
	(L)	(uS/cm)	1	(C)	(mV)	(%)	(mg/L)	(Color, turbidity)	î
								(Sover, barolity)	
							-	.,	
						***************************************		///	
Purging	Date:		Done by:	AW/DG					
				11(1)00					
Purge Metho			Purge Depth			-			
Time Starte			SWL (start)	14,22	••••	Bore Volume		Bore Depth (start)	44-5
Time Stoppe			SWL (end)		Volu	ime Removed	3	Bore Depth (end)	7
Commen	is							NAPL Present	· · · · · · · · · · · · · · · · · · ·
								(If yes thickness)	
Field Analyses					4				
Purging	Tr. to	5.0			<u> </u>				
Time	Vol Removed		pН	T	Redox	Dissolve	d Oxygen	Comments	
18.6	(L)	(uS/cm)		(C)	(mV)	(%)	(mg/L)	(Color, turbidity)	
114.54		1026	6.00	26.9	-208		0.71	deer, non turbid, slight	- Bullu
15:10	40	3410	5.19	26.6	- 2.73		0.24	>	··· · ••
15:33	80	7820	5,04	26.7	- 266		0.18	4	T)
			4.87	26.8	- 247		0.12	, re ,	. 4
15 44	(00	7890	4.81	26.8.	1		0 22	7	r- y
Sampling	Date:		_ Done by:	AW/DG					
0 1 1 1 1									
Sampling Metho	d	S	Sampling Depth		,	· ·····	er Disposal Re		
Time Starte	d 15:45		SWL (start)	1/20		Date	Litres	Disposal method	
i ime Stoppe	d 15:49		SWL (end)	16,32 m		91 Age 2	-		
Commen	IS	.,,,			_ purging				

BORE No: Pz OFS

Development Method	evelopment	Date:		Done by:							
Time Started SWL (start) Volume Removed Bore Depth (start) Bore Depth (start) Bore Depth (end) SWL (end) Discharge Rate Bore Depth (end) SWL (end) Discharge Rate Bore Depth (end) SWL (end) SWL (end) Discharge Rate Bore Depth (end) SWL (•					_					
Time Stopped SWL (end) Discharge Rate Bore Depth (end) NAPI. Present (If yes thickness)											*
Comments											
Fine Vol Removed EC pH T Redox Dissolved Oxygen Comments Color, turbidity				SWL (end)_		Di	scharge Rate				
Time Vol Removed EC	Comme	1ES							NAPL Present		
File	old Amalesaa		<u></u>						(If yes thickness)		
Time	-								\$,	
(L) (uS/cm) (C) (mV) (%) (mg/L) (Color, turbidity)		Vol Removed	EC		T	T - 5 1 T			<i>i</i>		
Purge Method Purge Depth SWL (start) 13.670 Bore Volume Removed 1.7.4. Bore Depth (start) 15.385	Limo			pri							
Purge Method		(12)	(us/cm)		(C)	(mV)	(%)	(mg/L)	(Color, turbidity)]	
Purge Method											
Purge Method											
Purge Method Purge Depth SWL (start) 13.670 Bore Volume 1.7.1. Bore Depth (start) 15.385				-	·	-				1	
Purge Method Purge Depth SWL (start) 13 6 70 Bore Volume 1.7 \(\) Bore Depth (start) 15 . 385			····	-	·····	-					
Purge Method				J		<u> </u>		<u> </u>			
Time Started SWL (start) 13.670 Bore Volume 1.7.4. Bore Depth (start) 15.385	rging	Date:		Done by:	ΛW/DG						
Time Started Time Stopped SWL (start) 13.670 Bore Volume 1.7.1. Bore Depth (start) 15.385 SWL (end) Volume Removed Bore Depth (start) NAPL Present (If yes thickness) eld Analyses trigging Time Vol Removed EC pH T Redox (U.S/cm) (C) (mV) (%) (mg/L) (Color, turbidity) 15.10 3.45 5.15 26.0 -151 1.36 2.45 5.45 2.57 1.52 1.36 2.45 5.45 2.45 1.36 2.45 5.45 2.57 1.52 1.36 2.45 5.45 2.45 1.36 2.45 5.45 2.45 1.36		•									
Time Stopped Comments SWL (end) Volume Removed Bore Depth (end)					10/0	=		1 77 /			
NAPL Present (If yes thickness) NAPL Present (If yes thickness)					13.640	J	Bore Volume	1.4.	Bore Depth (start)	1.7	· 785
Sampling Method Sampling Depth Time Started Time Stopped Time Started SWL (end) SWL (end) SWL (end) SWL (end) SWL (end) SWL (end) Sissolved Oxygen Comments ((If yes thickness)) Comments ((If yes thickness)) Comments ((If yes thickness))				SWL (end)_		Volu	ne Removed				
Time	Commer	1US							NAPL Present		***************************************
Time	old Amelican						· · · · · · · · · · · · · · · · · · ·		(If yes thickness)		
Time											
(L)		Val Damanad	EO	Y'T		T T				_	
15:10	Time	ľ		p _H							
15:15		(L)					(%)				
mpling Date: Done by: \(\Delta W/\DG\) Sampling Method Sampling Depth Time Started SWL (start) SWL (end) devmt \(\Delta W \) Sampling Started SWL (end) \(\Delta W \) Time Stopped SWL (end) \(\Delta W \) Sync Stopped SWL (end) \(\Delta W \) Time Stopped SWL (end) \(\Delta W \)				5,15	26.0	-151			Park 5-27 bours	5 me	to-bid ty,
mpling Date: Done by: \(\Lambda \text{W/DG} \) Sampling Method Sampling Depth Groundwater Disposal Record Time Started SWL (start) Date Litres Disposal method Time Stopped SWL (end) devmt				4.81					_	_	gi
Sampling Method Sampling Depth Groundwater Disposal Record Time Started SWL (start) Date Litres Disposal method Time Stopped SWL (end) devmt	1,7,0	-1-2-	37	C1 - 10	<u> </u>	-149		0.9	<u> </u>	4	n
Sampling Method Sampling Depth Groundwater Disposal Record Time Started SWL (start) Date Litres Disposal method Time Stopped SWL (end) devmt				· ··-		-					
Sampling Method Sampling Depth Groundwater Disposal Record Time Started SWL (start) Date Litres Disposal method Time Stopped SWL (end) devmt	mpling	Date:		Done by:	ΛW/DG			<u> </u>		ļ	
Time Started SWL (start) Date Litres Disposal method Time Stopped SWL (end) devmt				~ -							
Time Started SWL (start) Date Litres Disposal method Time Stopped SWL (end) devmt			S				Groundwate	r Disposal R	ecord		
Time Stopped SWL (end) devmt						_ [
Comments purging				SWL (end)_		devmt					
	Commer	nts	·			purging			10 (A) (A)		
					-	-					

BORE No: \$205

Project No	42626162	Project Name	BMA Caval	Ridge Groundy	vater					
Development	Date:		Done by:							
Time Stopped	Time Started Time Stopped Comments Analyses		SWL (start) SWL (end)			ime Removed ischarge Rate		Bore Depth (start Bore Depth (end NAPL Presen	t	***
Field Analyses Development						· · · · · · · · · · · · · · · · · · ·		(If yes thickness)		
Time	Vol Removed (L)	EC (uS/cm)	pl-i	T (C)	Redox (mV)	Dissolve (%)	ed Oxygen (mg/L)	Comments (Color, turbidity)		
Purging	Date:	9/9/08	Done by:	AW/DG]	
Time Started Time Stopped Comments Field Analyses		þ	Purge Depth SWL (start) SWL (end)	37.57m	Volu	Bore Volume me Removed		Bore Depth (start) Bore Depth (end) NAPL Present (If yes thickness)		··
Purging Time	Vol Removed	EC	рН	T	Redox	Dissolve	d Oxygen	Comments	1	•
11:01 12:00 13:36 13:08	(L) 40 60 80	(uS/cm) 1109 1064 1678 1075	7.14	(C) 26.4 27.0 26.7 27.1	(mV) -247 -268 -268 -268	(%)	(mg/L) .0 0 .63 0 .47 0 .05	(Color, turbidity) Clear, black and	Sparkling 1	partides Stron
Sampling	Date:		Done by:	AW/DG					1	
Sampling Method Time Started Time Stopped Comments	13:09	· · · · · · · · · · · · · · · · · · ·	swl (end)	6 68.29	_	Groundwate Date	er Disposal Ro Litres	ccord Disposal method		
nent, Purging and Groundwat	ter Sampling Data	Sheet		Page 1	_ [of 1 _ / ₀ / ₄	1/00 54	// 200	? Check	ed Rv.	

BORE No: P2 09

Project No	42626162	Project Name	BMA Caval	Ridge Groundw	/ater	manumanu Agrik (normalagrik) Mengalah Agrik		
Development	Date:		Done by:					
Development Method Time Started Time Stopped Comments			SWL (start) SWL (end)		_ Volu	ume Removed Discharge Rate		Bore Depth (start) Bore Depth (end) NAPL Present
Field Analyses			×					(If yes thickness)
Time Time	Vol Removed (L)	EC (uS/cm)	рН	T (C)	Redox (mV)	Dissolved Ox (%)	cygen (mg/L)	Comments (Color, turbidity)
Purging	Date:	8/9/08	Done by:	AW/DG				
Purge Method Time Started Time Stopped Comments Field Analyses Purging	AP2 Pu 16:36 17:39	My 	Purge Depth SWL (start) SWL (end)	19.443. 23.050	m g Volu	Bore Volume ume Removed		Bore Depth (start) $\stackrel{$\sim$}{\sim}$ 77, 3 w Bore Depth (end) NAPL Present (If yes thickness)
Time 16.40 17:02 17:27 17:31 17:38	Vol Removed (L) 2 40 80 90 100	EC (uS/cm) 1013 7640 12420 12480 12510	pH 7.60 7.28 7.39 7.26 7.15	T (C) 27.5 27.5 27.5 27.8 27.8	Redox (mV) -308 -280 -229 -228 -234		cygen (mg/L) 9-67 2-4 2-24 2-27	Comments (Color, turbidity) Clear Strong Steller odoer
Sampling	Date:		Done by:	AW/DG				n n
Sampling Method Time Started Time Stopped Comments	17:39	Se	SWL (start) SWL (end)	23.050 m 23.050 m			sposal Ro Litres	Disposal method

BORE No: Pall-D

Davalanmané	D.,(Ridge Groundw				A loose	
Development	Date:		Done by:		=				
Development Method									
Time Started			SWL (start))	Volur	ne Removed		Bore Depth (start)	
Time Stopped			SWL (end)			scharge Rate		Bore Depth (start)	
Comments	3				-	3		NAPL Present	
	~- <u>-</u>							(If you thinkness)	
Field Analyses									
Development Time	Val D	. DA							
rime	Vol Removed		pН	T	Redox		d Oxygen	Comments	
	(L)	(uS/cm)		(C)	(mV)	(%)	(mg/L)	(Color, turbidity)	
V b. 11111111111111111111111111111111111									
	-								
			-				·		
Purging	T	0/0/-					<u> </u>		
rurging	Date:	8/9/08	Done by:	AW/DG					
Purge Method Time Started Time Stopped Comments		ⁿ f	Purge Depth SWL (start) SWL (end)	11.997m 28.60m		Bore Volume		Bore Depth (start)	18.135m
Comments	3		` /	-40-60 PL	Volun	ne Removed		Bore Depth (end)	***
Field Analyses	\$			-K0-60 M	Volun	ne Removed		Bore Depth (end) NAPL Present (If yes thickness)	
Field Analyses Purging		EC.						NAPL Present (If yes thickness)	
Field Analyses	Vol Removed	EC (uS/cm)	рН	T	Redox	Dissolve	l Oxygen	NAPL Present (If yes thickness) Comments	
Field Analyses Purging Time	Vol Removed	(uS/cm)	рН	T (C)	Redox (mV)		l Oxygen (mg/L)	NAPL Present (If yes thickness) Comments (Color, turbidity)	
Field Analyses Purging Time	Vol Removed (L)	(uS/cm) 3120	pH 7.28	T (C) 27.2	Redox (mV) -298	Dissolve	1 Oxygen (mg/L) - 0-71	NAPL Present (If yes thickness) Comments (Color, turbidity)	dow
Field Analyses Purging Time	Vol Removed (L) 0.5	(uS/cm) 3120 3760	pH 7.28 7.35	T (C) 27.7 27.0	Redox (mV) -298	Dissolve	1 Oxygen (mg/L) 0-71 0-17	NAPL Present (If yes thickness) Comments (Color, turbidity)	dow
Field Analyses Purging Time 14:24 14:24 14:43	Vol Removed (L) 0.5 20 40	(uS/cm) 3120 3760 3200	pH 7.28 7.35 7.54	T (C) 27.7 27.0	Redox (mV) -298 -307 -3144	Dissolve	1 Oxygen (mg/L) 0.71 0-17 0-16	NAPL Present (If yes thickness) Comments (Color, turbidity)	dow
Field Analyses Purging Time	Vol Removed (L) 0.5	(uS/cm) 3120 3760 3200 7040	pH 7.28 7.35 7.56	T (C) 27.7 27.0 21.1 27.3	Redox (mV) -298 -307 -3144 -309	Dissolve	Oxygen (mg/L) 0.71 0.17 0.18 0.06 0.08	NAPL Present (If yes thickness) Comments (Color, turbidity)	dow -, bubbles on p
Field Analyses Purging Time 14:24 14:24 14:29 14:15:14 15:31	Vol Removed (L) 0.5 20 40 80	(uS/cm) 3120 3760 3200	pH 7.28 7.35 7.56 7.62	T (C) 27.7 27.0 23.1 27.3 27.5	Redox (mV) -298 -307 -3144	Dissolve	1 Oxygen (mg/L) 0.71 0-17 0-16	NAPL Present (If yes thickness) Comments	dow -, bubbles on p
Field Analyses Purging Time 14.24 14.24 14.24 14.3 15.14 15.31	Vol Removed (L) 0.5 20 40 80 100 Date:	(uS/cm) 3120 3760 3760 7040 8650	pH 7.28 7.35 7.56 7.62 Done by:	T (C) 27.7 27.0 23.1 27.3 27.5 AW/DG	Redox (mV) -298 -307 -3144 -309	Dissolve	1 Oxygen (mg/L) 0.71 0.13 0.06 0.08	NAPL Present (If yes thickness) Comments (Color, turbidity)	dour - bubbles on p
Tield Analyses Purging Time 14.24 14.24 14.3 15.14 15.31 Sampling Sampling Method	Vol Removed (L) 0.5 20 40 80 100 Date:	(uS/cm) 3120 3760 3760 7040 8650	pH 7.28 7.35 7.56 7.62 Done by: ampling Depth	T (C) 27.7 27.0 23.1 27.3 27.5 AW/DG	Redox (mV) -298 -307 -3144 -309 -261	Dissolved	1 Oxygen (mg/L) 0.71 0.17 0.18 0.08 0.01	NAPL Present (If yes thickness) Comments (Color, turbidity) Clear Suffer or Lear Suffer or 11 11 1	dowr -, bubbles on p
Tield Analyses Purging Time 14.24 14.24 14.3 15.14 15.31 Sampling Sampling Method Time Started	Vol Removed (L) 0.5 20 40 80 100 Date:	(uS/cm) 3120 3760 3760 7040 8650	pH 7.28 7.35 7.56 7.56 7.62 Done by: ampling Depth SWL (start)	T (C) 27.7 27.0 21.1 27.3 27.5 AW/DG	Redox (mV) -298 -307 -3144 -309 -261	Dissolved	1 Oxygen (mg/L) 0.71 0.13 0.06 0.08	NAPL Present (If yes thickness) Comments (Color, turbidity) Clear Sully or der & 11 4 as a Low Clear, Sully order 11 1 2 cord	down , bubbles on p
Time Time 14.24 14.24 14.24 15.14 15.31 Sampling Sampling Method Time Started Time Stopped	Vol Removed (L) 0.5 20 40 80 100 Date:	(uS/cm) 3120 3760 3760 7040 8650	pH 7.28 7.35 7.56 7.56 7.62 Done by: ampling Depth SWL (start)	T (C) 27.7 27.0 21.1 27.3 27.5 AW/DG	Redox (mV) -298 -307 -3144 -309 -261	Dissolved (%)	1 Oxygen (mg/L) 0.71 0.17 0.17 0.06 0.08 0.01 0.90 r Disposal R	NAPL Present (If yes thickness) Comments (Color, turbidity) Clear Suffer or Lear Suffer or 11 11 1	dow -, bubbles on p
Field Analyses Purging Time 14.24 14.34 15.14 15.31 Sampling Sampling Method Time Started	Vol Removed (L) 0.5 20 40 80 100 Date:	(uS/cm) 3120 3760 3760 7040 8650	pH 7.28 7.35 7.56 7.56 7.62 Done by: ampling Depth SWL (start)	T (C) 27.7 27.0 23.1 27.3 27.5 AW/DG	Redox (mV) -298 -307 -314 -309 -261	Dissolved (%)	1 Oxygen (mg/L) 0.71 0.17 0.17 0.06 0.08 0.01 0.90 r Disposal R	NAPL Present (If yes thickness) Comments (Color, turbidity) Clear Sully or der & 11 4 as a Low Clear, Sully order 11 1 2 cord	dow -, bubbles, on p

BORE No: Pz11-5

Development	Data		BMA Caval I					The state of the s
Development	Date:		Done by:					
Development Met								
Time Sta	rted		SWL (start)		Volu	me Removed	1	Bore Depth (start)
Time Stop	pped		SWL (end)			scharge Rate		
Comm			9 (J. (4 (4)			sonarge ivan	·····	Bore Depth (end)
								NAPL Present
Field Analyses								(If yes thickness)
Development								
Time	Vol Removed	EC	pH	Т	Redox	Dissolve	d Oxygen	Comments
	(L)	(uS/cm)	'	(C)	(mV)	(%)	(mg/L)	(Color, turbidity)
				(0)	(1117) -	(70)	(mg/L)	(Color, turbidity)
							-	
							-	
			<u> </u>					
Purging	Date:	8/9/08	Done by:	AW/DG				
		7/1/						
Purge Met			Purge Depth					
Time Sta	rted		Purge Depth SWL (start)	Dinis	 F	Bore Volume		Boro Donth (stant)
Time Sta	rted		SWL (start)	Dru	T. Volum	Bore Volume) 	Bore Depth (start)
Time Sta Time Stop	rted		Purge Depth SWL (start) SWL (end)	Dru	I Volu	Bore Volumo ne Removeo) 	Bore Depth (end)
Time Sta	rted		SWL (start)	Dru	Volu	Bore Volumo ne Removeo) 	Bore Depth (end) NAPL Present
Time Sta Time Stop Comm	rted		SWL (start)	Dru	T Volui	Bore Volumo ne Removeo	1	Bore Depth (end)
Time Sta Time Stop Comm	rted		SWL (start)	Dru	Volui	Bore Volumo ne Removed		Bore Depth (end) NAPL Present
Time Sta Time Stop Comm	rted pped ents	EC	SWL (start) SWL (end)	Pry	Volui	ne Removed		Bore Depth (end) NAPL Present (If yes thickness)
Time Sta Time Stop Comm Field Analyses Purging	rtedppedentsVol Removed	EC (uS/cm)	SWL (start)	Pry T	Redox	ne Removed	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments
Time Sta Time Stop Comm Field Analyses Purging	rted pped ents	EC (uS/cm)	SWL (start) SWL (end)	Pry	Volui	ne Removed		Bore Depth (end) NAPL Present (If yes thickness)
Time Sta Time Stop Commo Field Analyses Purging	rtedppedentsVol Removed		SWL (start) SWL (end)	Pry T	Redox	ne Removed	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments
Time Sta Time Stop Comm Tield Analyses Purging	rtedppedentsVol Removed		SWL (start) SWL (end)	Pry T	Redox	ne Removed	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments
Time Sta Time Stop Comm Field Analyses Purging	rtedppedentsVol Removed		SWL (start) SWL (end)	Pry T	Redox	ne Removed	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments
Time Sta Time Stop Comm Field Analyses Purging	rtedppedentsVol Removed		SWL (start) SWL (end)	Pry T	Redox	ne Removed	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments
Time Sta Time Stop Comm Field Analyses Purging	rtedppedentsVol Removed		SWL (start) SWL (end)	Pry T	Redox	ne Removed	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments
Time Sta Time Stop Comm Field Analyses Purging	rtedppedentsVol Removed		SWL (start) SWL (end)	Pry T (C)	Redox	ne Removed	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments
Time Sta Time Stop Commo	Vol Removed (L)		SWL (start) SWL (end)	Pry T (C)	Redox	ne Removed	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments
Time Sta Time Stop Commo	Vol Removed (L.) Date:	(uS/cm)	SWL (start) SWL (end) pH Done by:	T (C)	Redox (mV)	Dissolve (%)	d Oxygen (mg/L)	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity)
Time Sta Time Stop Common Field Analyses Purging Time Sampling Sampling Met	Vol Removed (L) Date:	(uS/cm)	pH Done by:	T (C)	Redox (mV)	Dissolve (%)	d Oxygen (mg/L)	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity)
Time Sta Time Stop Common Field Analyses Purging Time Sampling Sampling Met Time Sta	Vol Removed (L) Date:	(uS/cm)	pH Done by: smpling Depth SWL (start)	T (C)	Redox (mV)	Dissolve (%)	d Oxygen (mg/L)	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity)
Time Sta Time Stop Common Field Analyses Purging Time Sampling Sampling Met Time Stat Time Stop	Vol Removed (L.) Date: hod rted ped	(uS/cm)	pH Done by:	T (C)	Redox (mV)	Dissolve (%)	d Oxygen (mg/L)	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity)
Time Sta Time Stop Common Field Analyses Purging Time Sampling Sampling Met Time Sta	Vol Removed (L.) Date: hod rted ped	(uS/cm)	pH Done by: smpling Depth SWL (start)	T (C)	Redox (mV)	Dissolve (%)	d Oxygen (mg/L)	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity)
Time Sta Time Stop Common Field Analyses Purging Time Sampling Sampling Met Time Stat Time Stop	Vol Removed (L.) Date: hod rted ped	(uS/cm)	pH Done by: smpling Depth SWL (start) SWL (end)	T (C)	Redox (mV)	Dissolve (%)	d Oxygen (mg/L)	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity)

BORE No: Pa 10

evelopment	Date:		Done by:		_					
Development Metho Time Starte Time Stoppe Comment	ed		SWL (start) SWL (end)			me Removec scharge Rate		Bore Depth (start Bore Depth (end NAPL Presen	t)	
eld Analyses								(If yes thickness	S)	
evelopment										
Time	Vol Removed (L)	EC (uS/cm)	pl·l	T (C)	Redox (mV)	Dissolve (%)	ed Oxygen (mg/L)	Comments (Color, turbidity)		
	Date;	8/4/08	Done by:	AW/DG						
Purge Metho	d APZ nea		_		******					
Purge Metho Time Starte Time Stoppe Comment	d AP2 pma d 11:47 d 13:03		Purge Depth		IVolu	Bore Volumo me Removed		Bore Depth (start Bore Depth (end NAPL Presen (If yes thickness	l) nt	
Time Starte Time Stoppe	d AP2 pma d 11:47 d 13:03	· ·	Purge Depth SWL (start) SWL (end)	41.8 38 . 43.41		me Removed		Bore Depth (end NAPL Presen (If yes thickness	l) nt	
Purge Metho Time Starte Time Stoppe Comment eld Analyses arging Time	d AP2 pma d 11:47 d 13:03	EC EC	Purge Depth	41.8 38 . 43.41	Redox	me Removed	d Oxygen	Bore Depth (end NAPL Presen (If yes thickness Comments	l) nt	
Purge Metho Time Starte Time Stoppe Comment eld Analyses arging Time	d AP2 pma d 11:42 d 13:03 ts	EC (uS/cm)	Purge Depth SWL (start) SWL (end)	41.8 38 . 43.41 T (C)	Redox (mV)	me Removed	d Oxygen	Bore Depth (end NAPL Presen (If yes thickness Comments (Color, turbidity)	t)s)	l orderes
Purge Metho Time Starte Time Stoppe Comment cld Analyses arging Time	d AP2 pma d 11:42 d 13:03 ts	EC EC	Purge Depth SWL (start) SWL (end)	41.8 58 · 43.41 T (C) 29.0	Redox (mV)	me Removed	d Oxygen (mg/L)	Bore Depth (end NAPL Presen (If yes thickness Comments (Color, turbidity)	t)s)	lour
Purge Metho Time Starte Time Stoppe Comment eld Analyses arging Time	Vol Removed (L) 10 20 30	EC (uS/cm) 986 1013	Purge Depth SWL (start) SWL (end)	41.8 58 · 43.41 T (C) 29.0	Redox (mV)	me Removed	d Oxygen (mg/L)	Bore Depth (end NAPL Presen (If yes thickness Comments (Color, turbidity) Clear, black partic	t)s)	lour bu
Purge Metho Time Starte Time Stoppe Comment eld Analyses arging Time	Vol Removed (L) 10 20 30	EC (uS/cm) 986 1013	Purge Depth SWL (start) SWL (end) pH 7.45 7.44 7.22	T (C) 29.0 28.7 28.8	Redox (mV) 246 249 238	me Removed	d Oxygen (mg/L) 0.52 0.29 0.30	Bore Depth (end NAPL Presen (If yes thickness Comments (Color, turbidity) Clear, black partic 11 11	dy suffer oo	ું કપ
Purge Metho Time Starte Time Stoppe Comment eld Analyses arging Time	Vol Removed (L) 10 20	EC (uS/cm) 986 1013	Purge Depth SWL (start) SWL (end)	41.8 58 · 43.41 T (C) 29.0 28.7 28.7	Redox (mV)	me Removed	d Oxygen (mg/L) 0.52 0.29 0.30	Bore Depth (end NAPL Presen (If yes thickness Comments (Color, turbidity) Clear, black partic 11 4	t)s)	lour bu
Purge Metho Time Starte Time Stoppe Comment eld Analyses arging Time	Vol Removed (L) 10 20 30 40 50	EC (uS/cm) 986 1013	Purge Depth SWL (start) SWL (end) pH 7.45 7.44 47.22 7.23 7.24	T (C) 29.0 28.7 28.8 28.7	Redox (mV) 246 249 238	me Removed	d Oxygen (mg/L)	Bore Depth (end NAPL Presen (If yes thickness Comments (Color, turbidity) Clear black partic 11 11	dy suffer oo	ું કપ
Purge Metho Time Starte Time Stoppe Comment eld Analyses arging Time 12.00 12.19 12.32 12.47 13.03 mpling	Vol Removed (L) 10 20 30 40 50 Date:	EC (uS/cm) 986 1013 88.030 9190 9090	Purge Depth SWL (start) SWL (end) pH 7 45 7 44 7:22 7.23 7.24 Done by:	T (C) 29.0 28.7 28.8 28.7 AW/DG	Redox (mV) -246 -249 -238 -232 -233	Dissolve	d Oxygen (mg/L) 0.52 0.29 0.30	Bore Depth (end NAPL Presen (If yes thickness Comments (Color, turbidity) Clear, black partic 11 11 11	de Sulfar oc	ું કપ
Purge Metho Time Starte Time Stoppe Comment eld Analyses arging Time 12.00 12.19 12.32 12.47 13.03 mpling Sampling Metho Time Starte	Vol Removed (L) 10 20 30 40 50 Date:	EC (uS/cm) 986 1013 88.030 9190 9090	Purge Depth SWL (start) SWL (end) pH 7.45 7.44 7.22 7.23 7.24 Done by:	41.8 \$5.4 T (C) 29.0 28.7 28.8 28.7 AW/DG	Redox (mV) -246 -249 -238 -232 -233	Dissolve (%)	d Oxygen (mg/L) 0.52 0.29 0.30 0.27 0.24 er Disposal R	Bore Depth (end NAPL Presen (If yes thickness Comments (Color, turbidity) Clear, black partic 11 11 4 4	de Sulfar oc	ું કપ
Purge Metho Time Starte Time Stoppe Comment eld Analyses arging Time 12.00 12.19 12.32 12.47 13.03 mpling Sampling Metho Time Starte	Vol Removed (L) 10 20 30 40 50 Date:	EC (uS/cm) 986 1013 88.030 9190 9090	Purge Depth SWL (start) SWL (end) pH 7.45 7.44 7:22 7.23 7.24 Done by: ampling Depth SWL (start) SWL (end)	T (C) 29.0 28.7 28.8 28.7 AW/DG	Redox (mV) -246 -249 -238 -232 -233	Dissolve	d Oxygen (mg/L) 0.52 0.29 0.30	Bore Depth (end NAPL Presen (If yes thickness Comments (Color, turbidity) Clear, black partic 11 11 11	de Sulfar oc	પ્રત પ્રભ

Checked By:....

BORE No: 1206-1

Pevelopment	Date:		_ Done by:	·					
Development Metho	od								
Time Starte			SWI (start	t)	Volu	ma Domovio		P. D. d. ()	
Time Stoppe			SWL (end	d)(i)(i)		ne Kemovec		Bore Depth (start)	
Commen			S H M (CITC			scharge Rate	,	Bore Depth (end)	
							·	NAPL Present	
ield Analyses	··	~~				~		(If yes thickness)	
evelopment						•			
Time	Vol Removed	EC	рН	Т	Redox	Dissolve	d Oxygen	Comments	
	(L)	(uS/cm)	ļ , , , ,	" "(Ĉ)	(mV)	(%)	(mg/L)	(Color, turbidity)	
			-51		- \ <i>,</i>	(70)	(IIIg/12)	(Color, turbidity)	
		711	700				ļ——		
		-9.							
		****					·		
	······································	27/1/			<u> </u>			·	
Purge Metho Time Starte Time Stoppe	nd AP2 Po nd 16:40	27/2/09 emp	Purge Dept SWL (start	th 27.997 v		Bore Volume me Removed	·	Bore Depth (start)	3 84.9 W
Purge Metho Time Starte Time Stoppe Comment	nd AP2 Po nd 16:40	, , .	Purge Dept SWL (start		7 I Volui	Bore Volume me Removed		Bore Depth (start) Bore Depth (end) NAPL Present (If yes thickness)	2 84.9W
Time Starte Time Stoppe	nd AP2 Po nd 16:40	, , .	Purge Dept SWL (start	th t) 29.997 u	Volui	me Kemoved		Bore Depth (end) NAPL Present (If yes thickness)	2 84.9 W
Purge Metho Time Starte Time Stoppe Comment eld Analyses urging Time	Vol Removed (L)	gmp	Purge Dept SWL (start SWL (end	th t) 29.997 w d) 30.51 w	Volui	Dissolve	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments	2 84.9 W
Purge Metho Time Starte Time Stoppe Comment eld Analyses arging Time	Vol Removed (L)	ew.p EC	Purge Dept SWL (start SWL (end	th t) 29.997 u	Volui	me Kemoved	d Oxygen (mg/L)	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity)	
Purge Metho Time Starte Time Stoppe Comment eld Analyses arging Time 17:16:39 -> 50 4:33	Vol Removed (L) 300 35	EC (uS/cm) 1900 1871	Purge Dept SWL (start SWL (end	th t) 29.997 w d) 30.51 w	Redox (mV)	Dissolve (%)	d Oxygen (mg/L)	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity)	STITUS
Purge Metho Time Starte Time Stoppe Comment eld Analyses arging Time 17:16:39 > 50 1:33	Vol Removed (L) \$Q 35 60 90	EC (uS/cm) 1900 1871 1842	Purge Dept SWL (start SWL (end	th t) 29.997 w d) 30.51 w (C) 27.0	Redox (mV)	Dissolve (%)	d Oxygen (mg/L) O.55 O.37	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) UNA SUGHT TURNO - SUCCESSION -	FIEUEUS
Purge Metho Time Starte Time Stoppe Comment eld Analyses arging Time 7:16:39 > 50 4:33	Vol Removed (L) 300 35	EC (uS/cm) 1900 1871	Purge Dept SWL (start SWL (end	th t) 29.997 w d) 30.51 w (C) 27.0 26.8	Redox (mV) ~ 182 ~ 149	Dissolve (%)	d Oxygen (mg/L) 0.55 0.37	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) UNA SUCHT TURNO - SUCHE COMMENTS (LEM SUCHTS TOSIO - SUCHE SUCH SUCH SUCH SUCH SUCH SUCH SUCH SUCH	, s stevens each s stev
Purge Metho Time Starte Time Stoppe Comment eld Analyses arging Time 7:16:39 > 50 4:33	Vol Removed (L) \$Q 35 60 90	EC (uS/cm) 1900 1871 1842	Purge Dept SWL (start SWL (end	th t) 29.99 7 w 1) 30.5 w (C) 27.0 26.8 26.3	Redox (mV) - 182 - 149 - 140	Dissolve (%)	d Oxygen (mg/L) O.55 O.37	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) CLEAR SUGHT TURBID - SUCCESSION - SUCCESSION - SUCESSION -	FIEUEUS
Purge Metho Time Starte Time Stoppe Comment eld Analyses	Vol Removed (L) 30,35 60 103	EC (uS/cm) 1900 1871 1842	Purge Dept SWL (start SWL (end	th t) 29.99 7 w 1) 30.5 w (C) 27.0 26.8 26.3	Redox (mV) - 182 - 149 - 140	Dissolve (%)	d Oxygen (mg/L) 0.55 0.37	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) UNA SUCHT TURNO - SUCHE COMMENTS (LEM SUCHTS TOSIO - SUCHE SUCH SUCH SUCH SUCH SUCH SUCH SUCH SUCH	, s stevens each s stev
Purge Metho Time Starte Time Stoppe Comment eld Analyses arging Time 17:16:39 > 50 1:33 1:56 8:32:14 mpling	Vol Removed (L) 3Q 35 60 90 123	EC (uS/cm) 1900 1871 1842 1813	Purge Dept SWL (start SWL (end	T (C) 27.0 26.3 25.9 AW/SS	Redox (mV) - 182 - 149 - 140 - 113	Dissolve (%)	d Oxygen (mg/L) 0.55 0.37 0.45	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) CLEAR SUGHT TURNO - SUCHER CLEAR USS TURNO	, s stevens each s stev
Purge Metho Time Starte Time Stoppe Comment eld Analyses rging Time 7:16:39 > 50 4:33 4:56 8:32:14 mpling Sampling Metho	Vol Removed (L) SQ 35 60 GO 123 Date: 2	EC (uS/cm) 1900 1871 1842 1813	Purge Dept SWL (start SWL (end	h t) 29.997 w d) 30.51 w (C) 27.0 26.8 26.3 25.9 AW/SS	Redox (mV) - 182 - 149 - 140 - 113	Dissolve (%) **	d Oxygen (mg/L) O·55 O·37 O·45 O·36	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) USA SUGHT TURNO - SUCCESSION -	, s stevens each s stev
Purge Metho Time Starte Time Stoppe Comment eld Analyses urging Time 17:16:39 -> 50 1:33 1:56 8:32:14 mpling Sampling Metho Time Starte	Vol Removed (L) SQ 35 60 GO 123 Date: 8	EC (uS/cm) 1900 1871 1842 1813	Purge Dept SWL (start SWL (end pH 6.67 6.84 6.94 6.89 Done by:	AW/SS	Redox (mV) - 182 - 149 - 140	Dissolve (%)	d Oxygen (mg/L) O·55 O·37 O·45 O·36	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) CLEAR SUGHT TURNO - SUCHER CLEAR USS TURNO	, s stevens each s stev
Purge Metho Time Starte Time Stoppe Comment eld Analyses arging Time 17:16:39 > 50 1:33 1:56 8:32:14 ampling Sampling Metho	Vol Removed (L) SQ 35 60 QO 123 Date: 8	EC (uS/cm) 1900 1871 1842 1813	Purge Dept SWL (start SWL (end	T (C) 27.0 26.3 26.3 25.4 AW/SS	Redox (mV) - 182 - 149 - 140 - 113	Dissolve (%) **	d Oxygen (mg/L) O·55 O·37 O·45 O·36	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) USA SUGHT TURNO - SUCCESSION -	, s stevens each s stev

Bore Develop

Checked By:....

BORE No: 1206-5

Development	Date:		Done by:	-	<u> </u>					
Development Metho Time Starte Time Stoppe Commen	ed		SWL (start) SWL (end)			me Removed ischarge Rate		Bore Depth (start) Bore Depth (end) NAPL Present		
Field Analyses Development				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	270			(If yes thickness)		
Time	Vol Removed (L)	EC (uS/cm)	рН	T (C)	Redox (mV)	Dissolved (%)	l Oxygen (mg/L)	Comments (Color, turbidity)		
N		07/1/	C3 -							
Purging	Date:	2//2/0	Done by:		_					
Purge Metho Time Starto Time Stoppo Commen	d Bailer	<i>2//2/0</i>	7 Purge Depth		n M Volu	Bore Volume me Removed	8 6,1	Bore Depth (start) Bore Depth (end) NAPL Present (If yes thickness)	·	
Purge Metho Time Starto Time Stoppo Commen	d Bailer	EC (uS/cm) 1703 1790 1688	7 Purge Depth		Redox (mV) -84 -51	Bore Volume ime Removed Dissolved (%)		Bore Depth (end) NAPL Present		HC0e
Purge Methor Time Starto Time Stoppo Commen Field Analyses Purging Time	Vol Removed (L) 12.2 13.3 Date:	(uS/cm) 1703 1780 1688	Purge Depth SWL (start) SWL (end) pH 7.61 7.60 7.67	76.214 r 26.28 r 25.3 25.1	Redox (mV) -844 -51	Dissolved	Oxygen (mg/L) 255 4.39	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) Light Gray Light		HC 0°

BORE No: P208-D

	Date:		Done by:					
Development Metho Time Starte Time Stoppe Commen	od od		SWL (start SWL (end			ne Remove charge Ra	edte	Bore Depth (start) Bore Depth (end) NAPL Present
eld Analyses					· · · · · · · · · · · · · · · · · · ·			(If yes thickness)
velopment Time	Vol Removed	F.0	· · · · · · · · · · · · · · · · · · ·					
Time	(L)	EC (uS/cm)	pH	(C)	Redox (mV)	Dissolv (%)	red Oxygen (mg/L)	Comments (Color, turbidity)
V								
rging	Date: 2	28/2/09	Done by:	AW/SS				
Purge Metho Time Starte Time Stoppe Comment	d <u> 8235</u> ' d		Purge Deptl SWL (start SWL (end	75.289 31.40	Bm B M Volun	ore Volum ne Remove		Bore Depth (start) $\frac{2}{3}$ 64.20 M Bore Depth (end) NAPL Present (If yes thickness)
ld Analyses rging								
Time	Vol Removed (L)	m ₅ EC (uS /cm)	рН	T (C)	Redox (mV)	Dissolv (%)	ed Oxygen (mg/L)	Comments (Color, turbidity)
9:00 am : 9:25 am	36 60	10.93	6.75	28:5	-21 -52	(,,,)		
9:49 pm	90	11.18	6.78	28.4	-30		0.65	LESS TURBID -) AIR BUBBLES, SLIGHT SULPHUR ODOC
0:00 pm	105	11:28	6.76	28.6	-44		0.62	TURBIO - CLEAR - LESS AIR BUDBLES, SLIGHT SULANZ C
0:15	120	11:38	6.83	29.6	-69		0.21	CLEAR STREET OF THE BUBBLES, SLIGHT SULPHE COOR
	Date: 2	18-02-09	Done by:	AW/SS				TURBID, AIR BUBBLESPRESE NT, V. SLIGHT SULPHIR. LESS TURBID -> AIR BUBBLES, SLIGHT SULPHIRE ODOR TURBID -> CLEAR -> LESS AIR BUBBLES, SLIGHT SULPHIRE OF CLEAR STURBID -> LESS AIR BUBBLES, SLIGHT CREADING OF CLEAR STURBID -> LESS AIR BUDBLES, SLIGHT SULPHIRE ODOR
npling	1000 104	MD Si	ampling Deptl SWL (start	1	G	roundwat	ter Disposal R	
Sampling Metho Time Starte		. ~.				Date	Litres	Disposal method

BORE No: 1208-5

Project No	42626162	Project Name	BMA Caval	Ridge Groundy	vater					
Development		-	Done by:							
Development Method Time Started Time Stopped Comments	·		SWL (start) SWL (end)			me Removed ischarge Rate	;	NAPL Present		
Field Analyses Development								(If yes thickness)		
Time	Vol Removed (L)	EC (uS/cm)	рН	T (C)	Redox (mV)	Dissolve (%)	d Oxygen (mg/L)	Comments (Color, turbidity)		·
			· · · · · · · · · · · · · · · · · · ·							
Purging	Date:	28/2/09	Done by:	AW/SS					İ	
Purge Method Time Started Time Stopped Comments	Bailey 9:05 9:45	* *	Purge Depth SWL (start) SWL (end)	13.270 13.33,	m Volu	Bore Volume me Removed		Bore Depth (end) NAPL Present		m
Field Analyses Purging								(If yes thickness)		
Time 7:17 9:33 7:45	Vol Removed (L) 4.5 7 13.5	EC (uS/cm) 2 9 2 77 2 29	рН 6.97 7.03 6,99	T (C) 27.0 27.2 27.3	Redox (mV) - 7 13 48	Dissolved (%)	Oxygen (mg/L) 2,77 3,57 3,06	Comments (Color, turbidity) Overge Lyoun 11 11	highly tead	riel organie
Sampling	Date:		Done by:	AW/SS			·			
Sampling Method Time Started Time Stopped Comments	9:50 10:03	San	opling Depth SWL (start) SWL (end)		devmt purging	Groundwater Date	r Disposal Re Litres	Disposal method		
ent, Purging and Groundwate	er Sampling Data :	Sheet		Page 1 d	L of 1					

BORE No: P207-D

Project No	42626162	Project Name	BMA Caval R	idge Groundy	vater			atili ar forta <u>- Mari</u>	
Development	Date: _		Done by:		no.				
Development Method Time Started			SWL (start)		_ Volun	ne Removed		Bore Depth (start)	
Time Stopped Comments			SWL (end)		Dis	charge Rate		Bore Depth (end) NAPL Present	
ield Analyses							·	(If yes thickness)	
evelopment			-						
Time	Vol Removed (L)	EC (uS/cm)	рН	T (C)	Redox (mV)	Dissolved (%)	d Oxygen (mg/L)	Comments (Color, turbidity)	
1741-774-47-18-18-18-18-18-18-18-18-18-18-18-18-18-		14/1/11							•
				7.000.31					
urging	Date: 2	28/2/09	Done by: /	\W/SS					
Time Started Time Stopped Comments	1 13:24		Purge Depth SWL (start) SWL (end)	14.270 r 14.412 m	d E L Volur	Bore Volume ne Removed		Bore Depth (start) Bore Depth (end) NAPL Present (If yes thickness)	
ield Analyses urging						-	*	_	
Time	Vol Removed (L)	n's EC (dis/cm)	рН	T (C)	Redox (mV)	Dissolved (%)	d Oxygen (mg/L)	Comments (Color, turbidity)	
12.34 12.49	30 L 60 U	4.04 3.81	7·08 7·15	30.4 28.8	-105 -127		0.76	CLEAR, SUGHT CHEARY CLEAR, SLIGHT SUCH	ne opar
13 · 04 13 - 24	90 L 105 L	3.96 3.96	7.15	28.8 28.8	-140 -143		0.48	CLEAR, SUBHY SULPH	ur 000ur.
ampling	Date:		Done by: A	AW/SS			<u> </u>	: <u> -</u>	
Sampling Method	1 +3: AP2	PUMP S	ampling Depth_		 . (r Disposal R	acond	
Time Started	1 13:25	4:	SWL (start)		_ `	Date	Litres	Disposal method	
Time Stopped Comments	1 13 - 33		SWL (end)		devmt purging				
	prompt of the second			***	·				

BORE No: \$207-5

Project N	0 42626162	Project Name	BMA Caval I	Ridge Groundw	ater			H # 6 시 시 시 시 시 시 시 시 시 시 시 시 시 시 시 시 시 시		
Development	Date:		Done by:							
Development Method Time Started Time Stopped Comment	d d d		SWL (start) SWL (end)		Volu Di	me Removed scharge Rate		Bore Depth (end) NAPL Present		
Field Analyses Development							·	(If yes thickness)		
Time	Vol Removed (L)	EC (uS/cm)	рН	T (C)	Redox (mV)	Dissolved (%)	i Oxygen (mg/L)	Comments (Color, turbidity)		
Purging	7 0 34	28/2/09	Done by:	AW/SS						
Purge Methor Time Starter Time Stopped Comment	d 13:02 d 13:23	<u> </u>	Purge Depth SWL (start) SWL (end)	13.674n 13.680u	J Volu	Bore Volume me Removed		Bore Depth (end) NAPL Present	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Field Analyses Purging	<u></u>						ė .	_ (If yes thickness)		
Time 13 - 17	Vol Removed (L) 3.5 7 10.5	EC (uS/cm) 422 436 443	рН 6,67 6,53 6,51	T (C) 26.3 26.5 26.5	Redox (mV) - 77 - 86 - 77	Dissolvec (%)	Oxygen (mg/L) O-78 O-34 O-61	Comments (Color, turbidity) black Dark gray, highly the	bid, voots	, organie oday K
Sampling	Date:	**************************************	Done by:					*	J	- May
Sampling Method Time Started Time Stopped Comment	d 14:00 d 14:06	Sa	mpling Depth SWL (start) SWL (end)		devmt purging	Groundwate Date	r Disposal Ro Litres	Disposal method		

BORE No: P205

evelopment	Date:		Done by:						
Development Metho	od				•				
Time Starte			SWL (start))	Volum	ne Removed			•
Time Stoppe	ed		SWL (end)		votui	ne Kemoved		Bore Depth (start)	
Commen			5 11 15 (GHa)	/	DE	scharge Kate	;	Bore Depth (end)	
		· · · · · · · · · · · · · · · · · · ·						NAPL Present	
eld Analyses								(If yes thickness)	Section and the second and the secon
evelopment									
Time	Vol Removed	EC	рН	Т	Redox	Dissolve	d Oxygen		1
	(L)	(uS/cm)		(C)	(mV)	(%)		Comments	
		······································		(0)	(111 4)	(70)	(mg/L)	(Color, turbidity)	
						······	ļ		•
		·		`					
							·-·		
Purge Metho Time Starte Time Stoppe Commen	d AP2 Pv d 16:32	28/2/0 8	Purge Depth SWL (start)		3 <i>m</i> B 5 <i>W</i> Volum	Bore Volume		Bore Depth (start) Bore Depth (cnd) NAPL Present	
Purge Metho Time Starte Time Stoppe Commen	d AP2 Pv d 16:32	, ,	Purge Depth SWL (start)	37.688	<u>3</u> m B 3 W Volun			Bore Depth (end)	
Purge Metho Time Starte Time Stoppe Commen	d AP2 Pu d 16:32 d	mp'	Purge Depth SWL (start) SWL (end)	37. 688 59. 37.	5 W Volun	nc Removed		Bore Depth (end) NAPL Present (If yes thickness)	
Purge Metho Time Starte Time Stoppe Commen Id Analyses	d AP2 for d 16:32 d ls	EC	Purge Depth SWL (start)	37. 688 37. 688 59. 37.	5 W Volun	Dissolved	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments	SULPHIZ ODONA.
Purge Metho Time Starte Time Stoppe Commen Id Analyses ging	d AP2 for d 16:32 d ls	EC (uS/cm)	Purge Depth SWL (start) SWL (end)	37. 688 37. 688 59. 37.	Redox (mV)	Dissolved	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments	SULPHIZ ODONA.
Purge Methor Time Starte Time Stoppe Commen Id Analyses Iging Time	d AP2 fv d 16:32 d ss Vol Removed (L) 30	EC (uS/cm) 1461 us	Purge Depth SWL (start) SWL (end)	T (C)	Redox (mV)	Dissolved	d Oxygen (mg/L)	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) CLEGO SUGUED TURBO Agree	SULPHIZ COOLS
Purge Methor Time Starte Time Stoppe Commen Id Analyses rging Time 17:03 7:35 8:/4	Vol Removed (L) 30	EC (uS/cm) 1461 US 2364 US	Purge Depth SWL (start) SWL (end) pH	T (C) 29.3 29.3 29.3 27.1	Redox (mV) - 187 - 215	Dissolved	d Oxygen (mg/L) (Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) CLEAR SLICHT TURBID ABUNCHER, NO INSECT MATTER.	SULPHIZ COOLD. SUSPENDED. SOUT EREANY SUDE ENE BUBBLES IN FLOW CELL
Time Starte Time Stoppe Commen Id Analyses rging Time 17:03 17:35 8: 14 8: 19	Vol Removed (L) 30 90	EC (uS/cm) 1461 us 2364 us 7100 us	Purge Depth SWL (start) SWL (end)	T (C) 29.2 27.1 26.4	Redox (mV) - 187 - 215 - 212	Dissolved	Oxygen (mg/L) (mg/S) (0.60 0.26	Comments (Color, turbidity) CLEAR SLICHTO TURBIO ABUNCLEAR, NO INSECT MATTER.	SULPHIZ COOLD. SUSPENDED. SOUT EREANY SUDE ENE BUBBLES IN FLOW CELL
Purge Methor Time Starte Time Stoppe Commen Id Analyses Time 17:03 7:35 8: 14 8: 19	Vol Removed (L) 30 90 93	EC (uS/cm) 1461 us 2364 us 7100 us 11260 us	Purge Depth SWL (start) SWL (end) pH 7-52 7-47 7-33 7-21	T (C) 29.2 27.1 26.4 25.9	Redox (mV) - 187 - 215 - 212 - 221	Dissolved	Oxygen (mg/L) (mg/L) (-43 0.60 0.26 0.37	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) CLEAR SUCHTO TURBIO ABUN CLEAR, NO INSECT MATTER. """ CLEAR, NO MATTER, SULPH	SULPHIZ ODOUR. SUSPENDED SOUR ORGANIC SUDGE END BUBBLES IN FLOW CELLY OR ORGANIC SUM, SI
Purge Metho Time Starte Time Stoppe Commen Id Analyses rging Time 13:03 7:35 8: 14 8: 19 8: 25	Vol Removed (L) 30 90 93	EC (uS/cm) 1461 us 2364 us 7100 us 11260 us	Purge Depth SWL (start) SWL (end) pH 7-52 7-47 7-33 7-21 7-19	T (C) 29.3 27.1 26.4 25.9 26.0	Redox (mV) - 187 - 215 - 212	Dissolved	Oxygen (mg/L) (mg/S) (0.60 0.26	Comments (Color, turbidity) CLEAR SLICHTO TURBIO ABUNCLEAR, NO INSECT MATTER.	SULPHIZ COOLD. SUSPENDED. SOUT EREANY SUDE ENE BUBBLES IN FLOW CELL
Purge Methor Time Starte Time Stoppe Commen Id Analyses rging Time 17:03 17:35 8: /4 8: 19 8: 25 Inpling	Vol Removed (L) 30 90 93 95 Date: 6	EC (uS/cm) 1461 us 2364 us 7100 us 11260 us 13200 us	Purge Depth SWL (start) SWL (end) pH 7.52 7.47 7.33 7.21 7.19 Done by:	T (C) 29.3 27.1 26.4 25.9 36.0	Redox (mV) - 187 - 215 - 212 - 231 - 232	Dissolved	d Oxygen (mg/L) (-43) (0.60) (0.37) (0.01)	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) CLEAR SUCHTO TURBIO ABUN CLEAR, NO INSECT MATTER. """ CLEAR, NO MATTER, SULPH	SULPHIZ ODOUR. SUSPENDED SOUR ORGANIC SUDGE END BUBBLES IN FLOW CELLY OR ORGANIC SUM, SI
Purge Metho Time Starte Time Stoppe Commen Id Analyses rging Time 17:03 7:35 8:74 8:19 8:25	Vol Removed (L) 30 90 93 95 Date: 6	EC (uS/cm) 1461 us 2364 us 7100 us 11260 us 13200 us 28 02 09	Purge Depth SWL (start) SWL (end) pH 7.52 7.47 7.33 7.21 7.19 Done by: 7.21	T (C) 29.2 27.1 26.4 25.9 26.0 AW/SS 25.7	Redox (mV) -187 -215 -212 -221 -332	Dissolved (%) O-45	Oxygen (mg/L) (0.60 0.37 0.01	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) CLEAR SLICING TURBIN ABUN CLEAR, NO INSERT MATTER II II II II CLEAR, NO MATTER, SURAN II II II II II II CLEAR, NO MATTER, SURAN II II II II II II III II II II III II II	SULPHIZ ODOUR. SUSPENDED SOUR ORGANIC SUDGE END BUBBLES IN FLOW CELLY OR ORGANIC SUM, SI
Purge Methor Time Starte Time Stoppe Commen Id Analyses Time 17:03 7:35 8: 14 8: 19 8: 25 Inpling Sampling Methor	Vol Removed (L) 30 90 93 95 Date: 64 APA Pum	EC (uS/cm) 1461 us 2364 us 7100 us 11260 us 13200 us 28 02 09	Purge Depth SWL (start) SWL (end) pH 7-52 7-42 7-33 7-21 7-19 Done by: 7-21 mpling Depth	T (C) 29.3 27.1 26.4 25.9 26.0 AW/SS 2s.7	Redox (mV) -187 -215 -212 -221 -332	Dissolver (%) O.45'	0.000 Octobrosal R	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) CLEAR SLICHT TURBID ABUN CLEAR, NO INSECT MATTER II II II CLEAR, NO MATTER, SUITH III CLEAR, NO MATTER, SUITH III III CLEAR SUITH III CLEAR SU	SULPHIZ ODOUR. SUSPENDED SOUR ORGANIC SUDGE END BUBBLES IN FLOW CELLY OR ORGANIC SUM, SI
Purge Methor Time Starte Time Stoppe Commen Id Analyses Time Time 13:03 7:35 8: /4 8: i9 8: 25 Inpling Sampling Methor Time Starte	Vol Removed (L) 30 40 90 93 95 Date: 64 APA Pum d 18:28	EC (uS/cm) 1461 us 2364 us 7100 us 11260 us 13200 us 28 02 09	Purge Depth SWL (start) SWL (end) pH 7.52 7.42 7.33 7.21 7.19 Done by: 7.21 mpling Depth SWL (start)	T (C) 29.3 27.1 26.4 25.9 36.0 AW/SS 25.7	Redox (mV) -187 -215 -212 -231 -232	Dissolved (%) O-45	Oxygen (mg/L) (0.60 0.37 0.01	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) CLEAR SLICING TURBIN ABUN CLEAR, NO INSERT MATTER II II II II CLEAR, NO MATTER, SURAN II II II II II II CLEAR, NO MATTER, SURAN II II II II II II III II II II III II II	SULPHIZ ODOUR. SUSPENDED SOUR ORGANIC SUDGE END BUBBLES IN FLOW CELLY OR ORGANIC SUM, SI
Purge Methor Time Starte Time Stoppe Commen Id Analyses Time 17:03 7:35 8: 14 8: 19 8: 25 Inpling Sampling Methor	Vol Removed (L) 30 90 93 95 Date: 64 AP2 Pum d 18:28 d 18:31	EC (uS/cm) 1461 us 2364 us 7100 us 11260 us 13200 us 28 02 09	Purge Depth SWL (start) SWL (end) pH 7-52 7-42 7-33 7-21 7-19 Done by: 7-21 mpling Depth	T (C) 29.3 27.1 26.4 25.9 36.0 AW/SS 25.7	Redox (mV) -187 -215 -212 -221 -332	Dissolver (%) O.45'	0.000 Octobrosal R	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) CLEAR SLICHT TURBID ABUN CLEAR, NO INSECT MATTER II II II CLEAR, NO MATTER, SUITH III CLEAR, NO MATTER, SUITH III III CLEAR SUITH III CLEAR SU	SULPHIZ ODOUR. SUSPENDED SOUR ORGANIC SUDGE END BUBBLES IN FLOW CELLY OR ORGANIC SUM, SI

BORE No: 1209

Project No	42626162	Project Name	BMA Caval	Ridge Groundw	ater				·		
Development	Date:		Done by:					A face in the second of the se			
Development Method Time Started Time Stopped Comments	d		SWL (start) SWL (end)		Volu Di	me Removed scharge Rate	1	Bore Depth (end) NAPL Present)		
Field Analyses Development								(If yes thickness)			
Time .	Vol Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolve (%)	d Oxygen (mg/L)	Comments (Color, turbidity)	*		
Purging	Date:	2/3/09	Done by:	AW/SS					1	40°	
Purge Method Time Started Time Stopped Comments Field Analyses Purging	1/2:50	MP	Purge Depth SWL (start) SWL (end)	19.872 m	Volui	Bore Volume me Removed	-/	Bore Depth (start) Bore Depth (end) NAPL Present (If yes thickness)		lom	
Time 13:21 13:49 14:18 14:46 14:52	Vol Removed (L) 30 60 90 120	EC (uS/cm) 9590 9666 9770 9810 9796	pH 7.26 7.25 7.23 7.24 7.26	T (C) 31.7 31.5 31.3 31.3	Redox (mV) - 144 - 138 -135 - 137 - 141	Dissolved (%)	d Oxygen (mg/L) 0.38 0.55 0.46 0.36	Comments (Color, turbidity) Clear bulbles on CLEAR, NO BUBBLES, SLEHT CLEAR, NO BUBBLES, SLEHT CLEAR, NO BUBBLES, SLEHT LIEAR, NO BUBBLES, SLEHT	SULPHALLINE.	Slight odour	suler
Sampling Sampling Method Time Started Time Stopped Comments	Date: () 1 AP2 PUW 1 14: 53 1 15: 04	203/09	Done by: mpling Depth SWL (start)	AW/SS			r Disposal R	01		,	
.:			800 (1878)								

BORE No: 1211-5

Development Method Time Started SWL (start) Volume Removed Bore Depth (start) Time Stopped SWL (end) Discharge Rate Bore Depth (end) NAPL Present (If yes thicknet)	Development	Date:		Done by:						
Field Analyses Development	Time Started Time Stopped			SWL (start)		Volur			NAPL Present	
Time							-k		(If yes thickness)_	PAPE 11
Purge Method Purge Depth SWL (start) DM Bore Volume Bore Depth (st Volume Removed Bore Depth (st NAPL Pres (If yes thickness))				рН		l t			· · · · · · · · · · · · · · · · · · ·	
Purge Method Time Started SWL (start) Time Stopped Comments Field Analyses Purging Time Vol Removed (L) (uS/cm) Purge Depth SWL (start) DW Bore Volume Removed Volume Removed NAPL Pres (If yes thicknees) Field Analyses Purging Time Vol Removed (L) (uS/cm) Field T Redox (mV) (%) (mg/L) (Color, turbidity)										
Time Started Time Stopped Comments Field Analyses Purging Time Vol Removed (L) (uS/cm) Field SWL (start) SWL (end) SWL (end) SWL (end) Volume Removed Volume Removed NAPL Pres (If yes thickness) Field Comments (If yes thickness) Field Redox (mV) (mV) (mV) (mg/L) (Color, turbidity)	Purging	Date:	2/3/09	Done by:	AW/SS					
Field Analyses Purging Time Vol Removed EC pH T Redox (mV) (%) (mg/L) (Color, turbidity)	Time Started Time Stopped			SWL (start)	Dry.	FVolum	Bore Volume		Bore Depth (end) NAPL Present	8.9
Time Vol Removed EC pH T Redox (US/cm) (C) (mV) (%) (mg/L) (Color, turbidity)			-						(ii yes uiickiiess)_	
Sampling Date: Done by: AW/SS				pН					1	
Sampling Date: Done by: AW/SS							-			
	Sampling	Date:		Done by:	AW/SS					
Sampling Method Sampling Depth Groundwater Disposal Record			Sa						ecord	
Time Started SWL (start) Date Litres Disposal method Time Stopped SWL (end) devmt Comments purging	Time Stopped			SWL (end)			Date	Litres	Disposal method	

BORE No: $\int Z ||-|$

Development	Date:		Done by:						
Time Stopped	Time Started Time Stopped Comments					ie Removed charge Rate		Bore Depth (start) Bore Depth (end) NAPL Present	
Field Analyses Development				·				(If yes thickness)	
Time	Vol Removed (L)	EC (uS/cm)	рН	T (C)	Redox (mV)	Dissolve (%)	ed Oxygen (mg/L)	Comments (Color, turbidity)	·
					-		7		
Purging	Date:	2/3/09	Done by:	AW/SS					
Purge Method Time Started Time Stopped Comments Field Analyses		*	Purge Depth SWL (start) SWL (end)	12.201	M B Volum	ore Volume ne Removed		Bore Depth (start) Bore Depth (end) NAPL Present (If yes thickness)	
Purging							i		
Time /6:5\$ /7:14 17:34 17:54	Vol Removed (L) 30 60 90 120	EC (uS/cm) 7180 7190 7230 7230	pH 7.38 7.42 7.46 7.47	T (C) 28.9 28.7 28.0 27.6	Redox (mV) ~168 ~161 ~143 ~141	Dissolve (%)	d Oxygen (mg/L) O:94 O:31 O:64 O:28	Comments (Color, turbidity) MEDIUM GREY, EXTREMELY TO MEDIUM GREY, """ LIGHT "" MEDIUM > SUGI VERY LIGHT GREY, V. SUGHT	n n n u g
Sampling Sampling Method	APQ RIM	09-03-09 P Sar	npling Depth		G	roundwate	er Disposal R		
Time Started Time Stopped Comments	_1 8 ∶0≥		SWL (start) SWL (end)		devmt purging	Date	Litres	Disposal method	

BORE No: (20)

Project No Development	Date:	···	Done by:							
Time Started Time Stopped	Development Method Time Started Time Stopped Comments		SWL (start) _ SWL (end) _	Volu	me Removed scharge Rate	1	Bore Depth (start) Bore Depth (end) NAPL Present			
Field Analyses		V 8.45.4	·					(If yes thickness)		
Time	Vol Removed (L)	EC (uS/cm)	рН	T (C)	Redox (mV)	Dissolve (%)	ed Oxygen (mg/L)	Comments (Color, turbidity)		
Purging	Date:	3/3/09	Done by:	\W/SS						
Purge Method Time Started Time Stopped Comments	3 3 40	Pump	Purge Depth SWL (start) SWL (end)	8.207v 9.94 w	1 Volu	Bore Volume me Removed		Bore Depth (start) Bore Depth (end) NAPL Present (If yes thickness)		
Field Analyses Purging			V.///					(II yes therness)		
Time 9:24 10:13 0:41 11:16	Vol Removed (L) 30 L 75 L 105 L 1 35 L	EC (uS/cm) /2490 /3260 5690 5610	6.85 6.85 6.85 6.87 6.81	T (C) 36.1 28.9 29.1	Redox (mV) -100 -124 -96 -89	Dissolve (%)	d Oxygen (mg/L) /- 20 6-43 0-60 0-64	Comments (Color, turbidity) CLEDE, SMALL DIR BUILDER VERY CLEAR, SMALL BLACK VERY CLEAR, 11 11	es side of flow coor foot sulphre sme footices, sulphre of signif	
Sampling	-	3-03-69	Done by: _/	AW/SS			<u> </u>		1 , ,	
Sampling Method Time Started Time Stopped Comments	110.	no s	ampling Depth SWL (start) SWL (end)		devmt purging	Groundwate Date	er Disposal R	Disposal method		

BORE No: P203-D

Project No	42626162	Project Name	BMA Caval R	Ridge Groundwa	nter			
Development	Date:		Done by:					
Development Method Time Started Time Stopped Comments	1		SWL (start) SWL (end)			ne Removed charge Rate		Bore Depth (end) NAPL Present
Field Analyses Development							* ,	(If yes thickness)
Time	Vol Removed (L)	EC (uS/cm)	рН	T (C)	Redox (mV)	Dissolve (%)	d Oxygen (mg/L)	Comments (Color, turbidity)
Purging		3/3/09						
Purge Method Time Started Time Stopped Comments Field Analyses Purging	1 APZ PU 1 17:40 1 10:69	Mρ	Purge Depth SWL (start) SWL (end)	31.758 31.750	A B ŋ Volun	ore Volume		Bore Depth (start) 1 42, 70 m Bore Depth (end) NAPL Present (If yes thickness)
Time 13:06 13:28 13:49 14:09	Vol Removed (L) 32 64 96	EC (uS/cm) 14930 13950 15890 16570	pH 6.73 6.81 6.78 6.70	T (C) BWW 28.6 28.2 28.4 28.4	Redox (mV) -108 -93 -91 -82	Dissolve (%)	d Oxygen (mg/L) (O · 3O (O · 24 (O · 22 (I · 3)	Comments (Color, turbidity) CLEAR, SUGHT TURBIDITY, MODERATE SULPHIZ ORDS, CLEAR, V. LOW TREBIDITY, MODERATE SULPHIZ ORDS. 11 11 11 11 11 CARE.
Sampling Sampling Method Time Started Time Stopped Comments	14.24		mpling Depth SWL (start)	AW/SS	G		r Disposal R	

BORE No: 1203-5

Project No	o 42626162	Project Name	BMA Caval I	Ridge Groundy	/ater			Fig. 6. Black. Fri Burks Fig. 1	
Development	Date:		Done by:	1100	_				1
Time Started	Development Method Time Started Time Stopped Comments		SWL (start) SWL (end)			me Removed scharge Rate		Bore Depth (start Bore Depth (end NAPL Presen)
Field Analyses								(If yes thickness	
Development Time	Vol Removed	EC	рН	T	Redox	Dissolve	d Oxygen	Comments	7
1	(L)	(uS/cm)	1	(C)	(mV)	(%)	(mg/L)	(Color, turbidity)	
						117000			_
Purging	D-1	3/3/09	Done by:	AXXIOO					
Time Starte Time Stopped Comment Field Analyses Purging	d	10.08 slz.	SWL (start) SWL (end)	25.575 25.570	ng I n Volu	Bore Volume me Removed	3.14	Bore Depth (start Bore Depth (end NAPL Presen (If yes thickness) t
Time '	Vol Removed	EC	рН	T	Redox	Dissolve	d Oxygen	Comments	7
13:03 13:26 13:39	(L) 3, 1 6.2 7, 3	(uS/cm) 9460 11040 10930	6,98 6,92 6.96	(c) 30.0 26.8 27.3	(mV) -16 -8 14	(%)	(mg/L) 2.04 2.23 2.88	(Color, turbidity) Light brown - gray,	turbiel
Sampling	Date:		Done by:	AW/SS					_
Sampling Metho	d	Sa	mpling Depth			Groundwate	er Disposal R	ecord	
Time Starte Time Stoppe Comment	d		SWL (start) SWL (end)		devmt	Date	Litres	Disposal method	
						770117			

BORE No: 1202

Development	Date: _		Done by:		_				
Development Method Time Started			CWII (mtm)		37.3	T		.	
Time Started			SWL (start)		_ Volut	ne Removed		Bore Depth (start)	
Comments			SWL (end)		Di:	scharge Rate		Bore Depth (end)	
Comments	14-24	,						NAPL Present	
ield Analyses							·	(If yes thickness)	25.17.5
evelopment									
Time	Vol Removed	EC	рН	. T	Daday I	D!1	1.0		1
Time	(L)	(uS/cm)	pri		Redox		d Oxygen	Comments	
	(L)	(us/cm)		(C)	(mV)	(%)	(mg/L)	(Color, turbidity)	
7200									
			-		_				
		····							
		- /- /- /			1				
ırging	Date:	3/3/09	Done by:	AW/SS					•
Time Started Time Stopped	192 Pom. 15:44	P	Purge Depth SWL (start) SWL (end)	25.693	<u>S</u> w1 I Volu	Bore Volume ne Removec		Bore Depth (end)	
Time Started Time Stopped Comments	192 Pum.		Purge Depth SWL (start) SWL (end)	25.693 ref to	BM I Volui Vecove	ne Removec		Bore Depth (start) Bore Depth (end) NAPL Present (If yes thickness)	
Time Started Time Stopped Comments ield Analyses	192 Pom. 15:44	P	Purge Depth SWL (start) SWL (end)	25.693 A to	BM I Volu Vecove	ne Removec		Bore Depth (end) NAPL Present	
Time Started Time Stopped Comments ield Analyses	192 Pom. 15:44	P	Purge Depth SWL (start) SWL (end) — alleu	25.693 ref to	Vecover	ne Removed		Bore Depth (end) NAPL Present (If yes thickness)	
Time Started Time Stopped Comments icld Analyses urging Time	16:50 Pumped Vol Removed (L)	P Ohy	SWL (start) SWL (end) - alleu	25.693 ref tro	Redox (mV)	ne Removed	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity)	Note that the second of the se
Time Started Time Stopped Comments icld Analyses urging Time	16:50 Pumped	P Ohy EC	SWL (start) SWL (end) - alleu	25.693	Redox (mV)	ne Removed	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity)	Note that the second of the se
Time Started Time Stopped Comments seld Analyses arging Time	16:50 Pumped Vol Removed (L) 30	EC (uS/cm) 1509	SWL (start) SWL (end) alleu pH 7.54	25.693	Redox (mV)	ne Removed	d Oxygen (mg/L) 0.43	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity)	Note that the second of the se
Time Started Time Stopped Comments seld Analyses arging Time	16:50 Pumped Vol Removed (L) 30	EC (uS/cm)	SWL (start) SWL (end) allow pH 7.54 7.84	25.693 M to T (C) 27.5 21.3	Redox (mV) 157	ne Removed	d Oxygen (mg/L) 0 43	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) Clear — Stylly	Note that the second of the se
Time Started Time Stopped Comments cld Analyses irging Time	16:50 Pumped Vol Removed (L) 30	EC (uS/cm) 1509	SWL (start) SWL (end) alleu pH 7.54	25.693	Redox (mV)	ne Removed	d Oxygen (mg/L) 0.43	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity)	Note that the second of the se
Time Started Time Stopped Comments eld Analyses arging Time	16:50 Pumped Vol Removed (L) 30	EC (uS/cm) 1509	SWL (start) SWL (end) allow pH 7.54 7.84	25.693 M to T (C) 27.5 21.3	Redox (mV) 157	ne Removed	d Oxygen (mg/L) 0 43	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) Clear — Stylly	Note that the second of the se
Time Started Time Stopped Comments eld Analyses arging Time 6 0 5 16 25 7 4 7	NP2 Pom. 15:44 16:50 Pumped Vol Removed (L) 30 60 Recored	EC (uS/cm) 1509 1497 2) 30	SWL (start) SWL (end) - alleu pH 7.54 7.84 7.87	25.692 25.692 27.5 27.5 27.5 27.5	Redox (mV) 157	ne Removed	d Oxygen (mg/L) 0 43	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) Clear — Stylly	Note that the second of the se
Time Started Time Stopped Comments cld Analyses rging Time 16:05 16:25 17:44	Vol Removed (L) 30 60 Recore(EC (uS/cm) 1509 1497 2) 30	SWL (start) SWL (end) - alleu pH 7.54 7.84 7.87	25.692 25.692 27.5 27.5 27.5 27.5	Redox (mV) 157	ne Removed	d Oxygen (mg/L) 0 43	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) Clear — Stylly	Note that the second of the se
Time Started Time Stopped Comments eld Analyses arging Time 6 - 0 - 5 6 - 2 5 7 - 4 4	Vol Removed (L) 30 60 Recore(EC (uS/cm) 1509 1497 2) 30	pH 7.54 7.84 7.87 Done by:	25.692 25.692 CO 27.5 27.5 27.5 AW/SS	Redox (mV) 157 -165	Dissolve (%)	d Oxygen (mg/L) 0.43 0.35 2.42	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) Clear — Slightly	Note that the second of the se
Time Started Time Stopped Comments eld Analyses rging Time 6 0.5 16 25 7 4 4	Vol Removed (L) 30 Record Date: C	EC (uS/cm) 1509 1497 2) 30	pH 7.54 7.84 7.87 Done by:	25.692 25.692 27.5 27.5 27.5 AW/SS	Redox (mV) 157 -165	Dissolve (%)	d Oxygen (mg/L) 0.43 0.35 2.42	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) Clear — Slightly 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Note that the second of the se
Time Started Time Stopped Comments eld Analyses rging Time 16:05 16:25 17:44 mpling Sampling Method Time Started	Vol Removed (L) 30 Record Date: (17:45	EC (uS/cm) 1509 1497 2) 30	pH 7.54 7.84 7.87 Done by: ampling Depth SWL (start)	25.692 Auf to T (C) 27.5 27.5 27.5 AW/SS	Redox (mV) 157 -165 -166	Dissolve (%)	d Oxygen (mg/L) 0.43 0.35 2.42	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) Clear — Slightly	No. of the control of
Time Started Time Stopped Comments eld Analyses rging Time 6 0.5 16 25 7 4 4	Vol Removed (L) 30 60 Record Date: (EC (uS/cm) 1509 1497 2) 30	pH 7.54 7.84 7.87 Done by: ampling Depth SWL (end)	25.692 25.692 27.5 27.5 27.5 AW/SS	Redox (mV) 157 -165 -166	Dissolve (%)	d Oxygen (mg/L) 0.43 0.35 2.42	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) Clear — Slightly 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	No. of the last of
Time Started Time Stopped Comments eld Analyses arging Time 6 2 0 5 6 2 25 7 2 4 4 4 4 5 2 5 7 2 4 4 6 3 5 7 3 4 4 4 7 3 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 4 4 7 3 4 7 3 4 4 7 3 4 4 7 3 4 4 7 3 4 4 7 3 4 4 7 3 4 7 3 4 4 7 3 4 4 7 3 4 4 7 3 4 4 7 3 4 4 7 3 4 7 3 4 4 7 3 4 4 7 3 4 4 7 3 4 4 7 3 4 4	Vol Removed (L) 30 60 Record Date: (EC (uS/cm) 1509 1497 2) 30	pH 7.54 7.84 7.87 Done by: ampling Depth SWL (start)	25.692 25.692 27.5 27.5 27.5 AW/SS	Redox (mV) 157 -165 -166	Dissolve (%)	d Oxygen (mg/L) 0.43 0.35 2.42	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) Clear — Slightly 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Note that the second of the se

BORE No: P204

Development	Date: _		Done by:	······································							
Development Method			··								
Time Started			SWL (start)			me Removed		Bore Depth (start)			
Time Stopped			SWL (end)		Di	scharge Rate	,	Bore Depth (end)			
Comments	S					·		NAPL Present			
3° Y Z A Y					-			(If yes thickness)			
icld Analyses Development											
Time	Vol Removed	EC	TIT		<u> </u>						
THIC	(L)	(uS/cm)	pН	T	Redox		d Oxygen	Comments			
	(15)	(us/cm)		(C)	(mV)	(%)	(mg/L)	(Color, turbidity)			
						p==, v., v.					
					-						
	-		-				-				
Post		· · · · · · · · · · · · · · · · · · ·									
								1			
	<u> </u>	2/2/	<u> </u>				<u> </u>				
Purge Method	1	3/3/09	Done by: Purge Depth					· .			
Purge Method Time Started Time Stopped Comments	1 1	3/3/09	Purge Depth SWL (start)		G <i>y</i> I Volu	Bore Volumo me Removed		Bore Depth (end) NAPL Present	295.40		
Time Started Time Stopped Comments Field Analyses	1 1	3/3/09	Purge Depth SWL (start)	67.48	би Т Volui			Bore Depth (end)	295.40		
Purge Method Time Started Time Stopped Comments	1 1	B/3/09 EC	Purge Depth SWL (start) SWL (end)	67.48	Volui	me Removed		Bore Depth (end) NAPL Present (If yes thickness)	295.40		
Purge Method Time Started Time Stopped Comments field Analyses urging Time	Vol Removed (L)		Purge Depth SWL (start)	67.48	Redox	me Removed	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments	295·40		
Purge Method Time Started Time Stopped Comments ield Analyses urging	Vol Removed	EC	Purge Depth SWL (start) SWL (end)	67.48	Volui	me Removed	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity)			
Purge Method Time Started Time Stopped Comments seld Analyses arging Time	Vol Removed (L)	EC (uS/cm)	Purge Depth SWL (start) SWL (end)	67.48 T (C)	Redox (mV)	me Removed	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity)	295.40 - sporc.		
Purge Method Time Started Time Stopped Comments icld Analyses urging Time	Vol Removed (L)	EC (uS/cm)	Purge Depth SWL (start) SWL (end)	67.48 T (C)	Redox (mV)	me Removed	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity)			
Purge Method Time Started Time Stopped Comments ield Analyses urging Time	Vol Removed (L)	EC (uS/cm)	Purge Depth SWL (start) SWL (end)	67.48 T (C)	Redox (mV)	me Removed	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity)			
Purge Method Time Started Time Stopped Comments icld Analyses urging Time	Vol Removed (L)	EC (uS/cm)	Purge Depth SWL (start) SWL (end)	67.48 T (C)	Redox (mV)	me Removed	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity)			
Purge Method Time Started Time Stopped Comments icld Analyses urging Time	Vol Removed (L)	EC (uS/cm)	Purge Depth SWL (start) SWL (end)	67.48 T (C) 27.9	Redox (mV)	me Removed	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity)			
Purge Method Time Started Time Stopped Comments ield Analyses urging Time 18.49	Vol Removed (L) 1 L Date:	EC (uS/cm) !!!!	Purge Depth SWL (start) SWL (end)	67.48 T (C) 27.9	Redox (mV)	me Removed	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity)			
Purge Method Time Started Time Stopped Comments ield Analyses urging Time 18-49 ampling Sampling Method	Vol Removed (L) 2 L Date:	EC (uS/cm) 1111	Purge Depth SWL (start) SWL (end)	T (C) 27.9	Redox (mV)	Dissolve (%)	d Oxygen (mg/L) c·62	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) CLEAR, SULPHIE OPPUR			
Purge Method Time Started Time Stopped Comments seld Analyses arging Time 18-49 Ampling Sampling Method Time Started	Vol Removed (L) 1 Date: BAUER - 66	EC (uS/cm) 1111	Purge Depth SWL (start) SWL (end) pH 6.66 Done by: ampling Depth SWL (start)	T (C) 27.9	Redox (mV)	Dissolve (%)	d Oxygen	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) CLEAR, SIMPHIM OPPUM			
Purge Method Time Started Time Stopped Comments ield Analyses urging Time 18.49 sampling Sampling Method Time Started Time Stopped	Vol Removed (L) 1 L Date: 184168 - 66118.30	EC (uS/cm) 1111	Purge Depth SWL (start) SWL (end) pH 6.66 Done by:	T (C) 27.9	Redox (mV)	Dissolve (%)	d Oxygen (mg/L) C · EQ	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) CLEAR, SULPHIE OPPUR			
Purge Method Time Started Time Stopped Comments Tield Analyses Purging Time 18-49 Sampling Sampling Method Time Started	Vol Removed (L) 1 L Date: 184168 - 66118.30	EC (uS/cm) 1111	Purge Depth SWL (start) SWL (end) pH 6.66 Done by: ampling Depth SWL (start)	T (C) 27.9	Redox (mV)	Dissolve (%)	d Oxygen (mg/L) C · EQ	Bore Depth (end) NAPL Present (If yes thickness) Comments (Color, turbidity) CLEAR, SIMPHIM OPPUM			

CAVAL RIDGE GROUNDWATER IMPACT ASSESSMENT

Groundwater Analytical Laboratory Documentation

Appendix F

Sheet l of 2

CHAIN OF CUSTODY FORM

THIS COLUMN										Container S	Size, Type,	Preservative)	
FOR LAB USE ONLY	FROM:		DATE:		TO:						and Analysi	s		
	URS (AUSTRALIA)				ALS					Conta	ainer Identifi	cation		
lah Cada	Level 14, 240 Quee BRISBANE QLD 4				32 Shand St Stafford QLD 4053									
Job Code:	PO Box 302, BBN				Stallord QLD 4053		Size							
	PO BOX 302, BBN (QLD 4001					Type* Preservative							
	Ph: 07 3243 2111		Fax: 07 3243 2	199			Code							
Due Date:	Project No:		Sampler(s): AW/BS									,		
	42626162 Project Manager:		Signature(s):		A. A							$ \mathcal{O}_i $		
	Stephen Denner		oignature(s).	Environme	en al Division		Analytes					171		
	Agreement No:		Checked:	_ Environme	en al Division sbune k Order		7 111019100	التناملونين الهناون	e 1	(M)				
Custody seal intact?	Released for URS	by: 🛮 🖺 1 🗸		OF Wor	k Order			(, 1		\sim	and		
NO NO		. 100		= 50	807578				There are	A TOWNSON	-	હ		
Sample cold?	Date: 8/6/03	Time: 12	00	EBO	807570			7		-	<			
	Date. Of Co	Time: 5						-	_		· Comments	<u>a</u>		
YES (NO				— mananamanan						<u></u>				
Lab identification	Date Time	Matrix	Sample Number	##################################		<u>}</u>	Total no	Tick reguire	d analytes	/				
13	5/6/08 AM	Water	Pz06-1	<u> </u>		<u> </u>	2_	V	√ ,					
14	5/6/08 AM	April 1	P206 -	- III II I	+ 61-7-3243 7222	P	2	V	\sqrt{r}					
15	5/6/08 PM		P207-1	Telephone .	+017	P	2	$_{i}$		V,				
16	5/6/08 PM	100	P2 07 -3	5	1	P	2	V s	J/		J.			
17	6/6/08 AM	ALCO MA	P208-	D		F	2	Je	V	$\sqrt{}$				
18	6/6/08 AM		P208-3	5		P	2	V/	V,					
19	6/6/08 AM		P210			P	2	V/	J	J		1/		
ර	6/6/68 PM		P2 09			P	2	J _I	J	J				****, , ,
21	6/6/03 FM		PZ11-D			f	2	V,	V,	V		\mathcal{J}_{i}		
22	7/6/08 PM	1	P203-D			P	2	\mathcal{J}_{f}	V/	V,	J,	V/		
23	7/6/09 PM		P203-5			P	2	Jo	1	\sqrt{r}	1	1/		
24	7/6/08 PM		P202			P	2		V	V	V	V		
Remarks:	7 7										***			
						TOTAL								
					Acid Preserved; C = Soc	dium Hydroxide	Preserved;	J = Solvent	Washed Aci	d Rinsed Jar	; S = Solver	nt Washed A	cid Rinsed C	Blass
	Bottle; VC = Hydroc	nioric Acid Pre	served Vial; VS = \$	sulturic										
Courier Job No:	Specify Turnaroun	d Time:			**************************************			N	IOTE: SAMI	PLES MAY (CONTAIN D	ANGEROUS		
200								•		HAZARDOU				
052 788 18														

Sheet 2 of 2

CHAIN OF CUSTODY FORM

PO Box 302, BBN QLD 4001 Type*	
Job Code: BRISBANE QLD 4000 Stafford QLD 4053 Size Type* PO Box 302, BBN QLD 4001 Type* Type*	
PO Box 302, BBN QLD 4001 Type*	
Preservative Preservative	
Ph: 07 3243 2111	1 1
42626162 Sample (S). AVVIDS	
Project Manager: Signature(s):	
Stephen Denner Agreement No: Checked: Analytes	
Sample cold? Date: 8/6/08 Time: 13:00 Date: Time: 2 2 3	
YES (NO)	
_ab Identification	
1 8/6/03 AM Water Pz04 P 2 / / /	
2 3/6/08 AM FZO/	·
3 8/6/09 AM P205	
4 5/6/08 AM QCOI P 2 / / /	
5 5/6/09 PM QCO2	
6 5/6/03 PM QC03 P 1	
7 6/6/08 AM QC04 P 2 / / /	
& 6/6/09 PM QC05 F 1	
6/6/08 PM QCO6 P 1	/
10 7/6/09 AM QCO7 P 2 V	
11 7/6/08 AM \ 1 QC08	
12 8/6/08 AM QC10 P 2 V	
Remarks:	
TOTAL TOTAL Solvent Worked Asid Direct long to Control	Asid Dimand Olana
* Container Type and Preservative Codes: P = Neutral Plastic; N = Nitric Acid Preserved; C = Sodium Hydroxide Preserved; J = Solvent Washed Acid Rinsed Jar; S = Solvent Washed Bottle; VC = Hydrochloric Acid Preserved Vial; VS = Sulfuric	Adu Kiriseu Glass
Courier Job No: Specify Turnaround Time: NOTE: SAMPLES MAY CONTAIN DANGEROU AND HAZARDOUS SUBSTANCES	JS
2527898	

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD) Laboratory : Environmental Division Brisbane

Contact : MR STEPHEN DENNER Contact : Tim Kilmister

Address : GPO BOX 302 Address : 32 Shand Street Stafford QLD Australia

BRISBANE QLD, AUSTRALIA 4001 40

Telephone : +61 32432111 Telephone : +61-7-3243 7222
Facsimile : +61 07 32432199 Facsimile : +61-7-3243 7218

Project : 42626162 Page : 1 of 3

Order number : ----

C-O-C number : ---- Quote number : ES2008URSQLD0041 (EN/001/08)

Site : ----

Sampler : AW/BS QC Level : NEPM 1999 Schedule B(3) and ALS

QCS3 requirement

Dates

Date Samples Received : 10-JUN-2008 Issue Date : 11-JUN-2008 11:51

Client Requested Due Date : 17-JUN-2008 Scheduled Reporting Date : 17-JUN-2008

Delivery Details

Mode of Delivery : Carrier Temperature : 17.5 C, 16.1 C

No. of coolers/boxes : 2 MEDIUM No. of samples received : 24
Sercurity Seal : Intact. No. of samples analysed : 24

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Breaches in recommended extraction / analysis holding times may occur.
- pH holding time is six hours after sampling.
- The recommended holding time for Nitrite, Nitrate +/or reactive phosphorus analysis is 48 hours from the time of sampling.
- Please be advised that we are unable to perform pH & EC for samples QC02, QC03, QC05, QC06 & QC08. These analysis needs an unpreserved container which were not received.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Maggie Kahi.
- Analytical work for this work order will be conducted at ALS Brisbane.
- Sample Disposal Aqueous (14 days), Solid (90 days) from date of completion of work order.

Issue Date : 11-JUN-2008 11:51

Page : 2 of 3 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

process neccessary tasks. Packages r the determination tasks, that are includ- When date(s) and	y for the execution may contain addition of moisture conf	al analyses, such as tent and preparation own bracketed, these	t - EA005: pH	WATER - EA010P Conductivity (PC)	WATER - NT-01 Major Cations (Ca, Mg, Na, K)	WATER - NT-02 (EB/PCT) Major Anions (Cl, SO4, Alkalinity)	WATER - NT-03 (EB) Anions: Minor - Nitrite as N, Nitrate as N, Fluoride, Reactive Phosphorous	WATER - W-03 13 Metals (NEPM Suite)	WATER - W-03T 13 Metals (Total) (NEPM)
Laboratory sample ID	Client sampling date / time	Client sample ID	WATER - pH	WATER	WATEF Major (WATER Major A	WATER - Anions: N Fluoride,	WATEF	WATEF
EB0807578-001	08-JUN-2008 11:00	PZ04	✓	✓	✓	✓	✓	✓	
EB0807578-002	08-JUN-2008 11:00	PZ01	✓	✓	✓	✓	✓	✓	
EB0807578-003	08-JUN-2008 11:00	PZ05	✓	✓	✓	✓	✓	✓	
EB0807578-004	05-JUN-2008 11:00	QC01	✓	✓	✓	✓	✓	✓	
EB0807578-005	05-JUN-2008 15:00	QC02							✓
EB0807578-006	05-JUN-2008 15:00	QC03							✓
EB0807578-007	06-JUN-2008 11:00	QC04	✓	✓	✓	✓	✓	✓	
EB0807578-008	06-JUN-2008 15:00	QC05							✓
EB0807578-009	06-JUN-2008 15:00	QC06							✓
EB0807578-010	07-JUN-2008 11:00	QC07	✓	✓	✓	✓	✓	✓	
EB0807578-011	07-JUN-2008 11:00	QC08						✓	
EB0807578-012	08-JUN-2008 11:00	QC10	✓	✓	✓	✓	✓	✓	
EB0807578-013	05-JUN-2008 11:00	PZ06-D	✓	✓	✓	✓	✓	✓	
EB0807578-014	05-JUN-2008 11:00	PZ06-S	✓	✓	✓	✓	✓	✓	
EB0807578-015	05-JUN-2008 15:00	PZ07-D	✓	✓	✓	✓	✓	✓	
EB0807578-016	05-JUN-2008 15:00	PZ07-S	✓	✓	✓	✓	✓	✓	
EB0807578-017	06-JUN-2008 11:00	PZ08-D	✓	✓	✓	✓	✓	✓	
EB0807578-018	06-JUN-2008 11:00	PZ08-S	✓	✓	✓	✓	✓	✓	
EB0807578-019	06-JUN-2008 11:00	PZ10	✓	✓	✓	✓	✓	✓	
EB0807578-020	06-JUN-2008 15:00	PZ09	✓	✓	✓	✓	✓	✓	
EB0807578-021	06-JUN-2008 15:00	PZ11-D	✓	✓	✓	✓	✓	✓	
EB0807578-022	07-JUN-2008 15:00	PZ03-D	✓	✓	✓	✓	✓	✓	
EB0807578-023	07-JUN-2008 15:00	PZ03-S	✓	✓	✓	✓	✓	✓	
EB0807578-024	07-JUN-2008 15:00	PZ02	✓	✓	✓	✓	✓	✓	

Issue Date : 11-JUN-2008 11:51

Page : 3 of 3 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Requested Deliverables

ALL R	ESULTS	BRISB	ANE
-------	--------	-------	-----

- *AU Certificate of Analysis - NATA Email brisbane@urscorp.com - A4 - AU Sample Receipt Notification - Environmental Email brisbane@urscorp.com - AU Interpretive QC Report (Anon QCI Not Rep) Email brisbane@urscorp.com - AU QC Report (Anon QC Not Rep) - NATA Email brisbane@urscorp.com - Default - Chain of Custody Email brisbane@urscorp.com - EDI Format - MRED Email brisbane@urscorp.com

MR STEPHEN DENNER

- *AU Certificate of Analysis - NATA Email stephen_denner@urscorp.com - A4 - AU Sample Receipt Notification - Environmental Email stephen_denner@urscorp.com - AU Interpretive QC Report (Anon QCI Not Rep) Email stephen denner@urscorp.com - AU QC Report (Anon QC Not Rep) - NATA Email stephen_denner@urscorp.com - Default - Chain of Custody Email stephen denner@urscorp.com - EDI Format - MRED Email stephen_denner@urscorp.com

MS LUCIA PIRES

- A4 - AU Tax Invoice Email lucia_pires@urscorp.com

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EB0807578** Page : 1 of 12

Client : URS AUSTRALIA PTY LTD (QLD) Laboratory : Environmental Division Brisbane

Contact : MR STEPHEN DENNER Contact : Tim Kilmister

Address : GPO BOX 302 Address : 32 Shand Street Stafford QLD Australia 4053

BRISBANE QLD, AUSTRALIA 4001

 Telephone
 : +61 32432111
 Telephone
 : +61-7-3243 7222

 Facsimile
 : +61 07 32432199
 Facsimile
 : +61-7-3243 7218

Project : 42626162 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

 C-O-C number
 : -- Date Samples Received
 : 10-JUN-2008

 Sampler
 : AW/BS
 Issue Date
 : 17-JUN-2008

No. of samples received : 24

Quote number : EN/001/08 No. of samples analysed : 24

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Site

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Kim McCabeSenior Inorganic ChemistInorganicsPhillip Kennedy2IC Environmental LaboratoryInorganics

Environmental Division Brisbane
Part of the ALS Laboratoru Group

32 Shand Street Stafford QLD Australia 4053

Tel. +61-7-3243 7222 Fax. +61-7-3243 7218 www.alsglobal.com

A Campbell Brothers Limited Company

Page : 2 of 12 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

• LCS recovery for EG020F (Filtered Metals) analyses fall outside Dynamic Control Limits. They are however within ALS Static Control Limits and hence deemed acceptable.

Page : 3 of 12 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Sub-Matrix: WATER		Clie	ent sample ID	PZ04	PZ01	PZ05	QC01	QC02
	CI	ient samplii	ng date / time	08-JUN-2008 11:00	08-JUN-2008 11:00	08-JUN-2008 11:00	05-JUN-2008 11:00	05-JUN-2008 15:00
Compound	CAS Number	LOR	Unit	EB0807578-001	EB0807578-002	EB0807578-003	EB0807578-004	EB0807578-005
EA005: pH								
pH Value		0.01	pH Unit	7.00	7.12	7.35	7.05	
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	μS/cm	1120	3480	1070	1840	
ED037P: Alkalinity by PC Titrator		•	рологи	1120	0.400	1010	10-10	
Hydroxide Alkalinity as CaCO3	DMO 240 004	1	mg/L	<1	<1	<1	<1	
Carbonate Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	314	357	316	466	
Fotal Alkalinity as CaCO3	71-52-3	1	mg/L	314	357	316	466	
		•	mg/L	314	307	310	400	
ED040F: Dissolved Major Anions Sulfate as SO4 2-	14808-79-8	1	mg/L	19	95	16	105	
	14808-79-8	'	IIIg/L	19	95	10	103	
ED045P: Chloride by PC Titrator Chloride	16887-00-6	1	mg/L	135	874	157	254	
	10007-00-0	'	IIIg/L	133	074	137	204	
ED093F: Dissolved Major Cations		4		20	444			
Calcium	7440-70-2	1	mg/L	29	111	80	36	
Magnesium	7439-95-4	1	mg/L	11	95	35	42	
Sodium	7440-23-5	1	mg/L	187 <1	440	94	300	
Potassium	7440-09-7	1	mg/L	<u> </u>	3	1	4	
EG020F: Dissolved Metals by ICP-MS		0.004		0.004	0.004	0.004		1
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	<0.001	0.005	
Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Barium	7440-39-3	0.001	mg/L	0.025	0.069	0.062	0.090	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.0001 < 0.001	<0.0001	0.0003	
Chromium	7440-47-3	0.001	mg/L	<0.001 <0.001		<0.001 <0.001	<0.001	
Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001 <0.001	<0.001	<0.001 <0.001	
Copper Lead	7440-50-8	0.001	mg/L mg/L	<0.001	<0.001	<0.001	<0.001	
Manganese	7439-92-1 7439-96-5	0.001	mg/L	0.061	0.150	0.195	0.062	
Manganese Nickel	7439-96-5	0.001	mg/L	0.002	0.150	0.195	0.062	
Vanadium	7440-02-0	0.001	mg/L	<0.01	<0.01	<0.019	<0.01	
Zinc	7440-62-2	0.005	mg/L	<0.005	<0.01	<0.01	0.016	
EG020T: Total Metals by ICP-MS	7 440-00-0	0.000	y. =		-0.000	-0.000	0.010	
Arsenic	7440-38-2	0.001	mg/L					<0.001
Beryllium	7440-38-2	0.001	mg/L					<0.001
Barium	7440-39-3	0.001	mg/L					<0.001
Cadmium	7440-43-9	0.0001	mg/L					0.0003
Chromium	7440-47-3	0.001	mg/L					<0.001
Cobalt	7440-48-4	0.001	mg/L					<0.001

Page : 4 of 12 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

ALS

Sub-Matrix: WATER		Clie	ent sample ID	PZ04	PZ01	PZ05	QC01	QC02
	Cli	ient sampli	ng date / time	08-JUN-2008 11:00	08-JUN-2008 11:00	08-JUN-2008 11:00	05-JUN-2008 11:00	05-JUN-2008 15:00
Compound	CAS Number	LOR	Unit	EB0807578-001	EB0807578-002	EB0807578-003	EB0807578-004	EB0807578-005
EG020T: Total Metals by ICP-MS - Continue	ed							
Copper	7440-50-8	0.001	mg/L					<0.001
Lead	7439-92-1	0.001	mg/L					<0.001
Manganese	7439-96-5	0.001	mg/L					<0.001
Nickel	7440-02-0	0.001	mg/L					<0.001
Vanadium	7440-62-2	0.01	mg/L					<0.01
Zinc	7440-66-6	0.005	mg/L					0.013
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	
EG035T: Total Recoverable Mercury by F	IMS							
Mercury	7439-97-6	0.0001	mg/L					<0.0001
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.2	0.2	0.2	0.4	
EK057: Nitrite as N								
Nitrite as N		0.010	mg/L	<0.010	<0.010	<0.010	<0.010	
EK058: Nitrate as N								
^ Nitrate as N	14797-55-8	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	
EK059: Nitrite plus Nitrate as N (NOx)								
Nitrite + Nitrate as N		0.010	mg/L	<0.010	<0.010	<0.010	<0.010	
EK071: Reactive Phosphorus as P (Dissol	ved)							
Reactive Phosphorus - Filtered		0.010	mg/L	0.023	<0.010	0.010	<0.010	

Page : 5 of 12 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Page : 6 of 12 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Sub-Matrix: WATER		Cli	ent sample ID	QC03	QC04	QC05	QC06	QC07
	CI	ient sampli	ng date / time	05-JUN-2008 15:00	06-JUN-2008 11:00	06-JUN-2008 15:00	06-JUN-2008 15:00	07-JUN-2008 11:00
Compound	CAS Number	LOR	Unit	EB0807578-006	EB0807578-007	EB0807578-008	EB0807578-009	EB0807578-010
EG020T: Total Metals by ICP-MS - Contin	ued							
Copper	7440-50-8	0.001	mg/L	0.001		<0.001	<0.001	
Lead	7439-92-1	0.001	mg/L	<0.001		<0.001	<0.001	
Manganese	7439-96-5	0.001	mg/L	<0.001		<0.001	<0.001	
Nickel	7440-02-0	0.001	mg/L	<0.001		<0.001	<0.001	
Vanadium	7440-62-2	0.01	mg/L	<0.01		<0.01	<0.01	
Zinc	7440-66-6	0.005	mg/L	<0.005		<0.005	<0.005	
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L		<0.0001			<0.0001
EG035T: Total Recoverable Mercury by	FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001		<0.0001	<0.0001	
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L		0.1			0.3
EK057: Nitrite as N								
Nitrite as N		0.010	mg/L		<0.010			<0.010
EK058: Nitrate as N								
^ Nitrate as N	14797-55-8	0.010	mg/L		<0.010			<0.010
EK059: Nitrite plus Nitrate as N (NOx)								
Nitrite + Nitrate as N		0.010	mg/L		<0.010			<0.010
EK071: Reactive Phosphorus as P (Diss	olved)							
Reactive Phosphorus - Filtered		0.010	mg/L		<0.010			<0.010

7 of 12 EB0807578 Page Work Order

: URS AUSTRALIA PTY LTD (QLD) Client

Project : 42626162

Sub-Matrix: WATER	Client sample ID			QC08	QC10	PZ06-D	PZ06-S	PZ07-D
	Client sampling date / time		07-JUN-2008 11:00	08-JUN-2008 11:00	05-JUN-2008 11:00	05-JUN-2008 11:00	05-JUN-2008 15:00	
Compound	CAS Number	LOR	Unit	EB0807578-011	EB0807578-012	EB0807578-013	EB0807578-014	EB0807578-015
A005: pH								
H Value		0.01	pH Unit		7.16	7.04	7.72	7.17
A010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	μS/cm		3280	1840	1950	3480
D037P: Alkalinity by PC Titrator								
lydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L		<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L		<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L		350	474	494	489
otal Alkalinity as CaCO3		1	mg/L		350	474	494	489
D040F: Dissolved Major Anions								
Sulfate as SO4 2-	14808-79-8	1	mg/L		92	105	58	150
ED045P: Chloride by PC Titrator								
Chloride	16887-00-6	1	mg/L		883	256	336	814
ED093F: Dissolved Major Cations			J.					
Calcium	7440-70-2	1	mg/L		110	36	51	75
/agnesium	7439-95-4	1	mg/L		94	41	90	74
Sodium	7440-23-5	1	mg/L		431	298	245	563
Potassium	7440-09-7	1	mg/L		3	4	4	6
EG020F: Dissolved Metals by ICP-MS								
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.005	0.004	0.001
Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Barium	7440-39-3	0.001	mg/L	<0.001	0.054	0.090	0.089	0.046
admium	7440-43-9	0.0001	mg/L	0.0008	<0.0001	0.0002	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
obalt	7440-48-4	0.001	mg/L	<0.001	<0.001	<0.001	0.001	<0.001
Copper	7440-50-8	0.001	mg/L	0.001	<0.001	<0.001	<0.001	<0.001
ead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
langanese	7439-96-5	0.001	mg/L	<0.001	0.095	0.061	0.279	0.009
lickel	7440-02-0	0.001	mg/L	<0.001	0.023	0.004	0.011	0.002
/anadium	7440-62-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
linc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.006	0.008	<0.005
G035F: Dissolved Mercury by FIMS								
lercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
K040P: Fluoride by PC Titrator								
luoride	16984-48-8	0.1	mg/L		0.2	0.4	0.2	0.2
EK057: Nitrite as N								
litrite as N		0.010	mg/L		<0.010	<0.010	<0.010	<0.010
K058: Nitrate as N			5					-

Page : 8 of 12 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

ALS

Sub-Matrix: WATER	Client sample ID			QC08	QC10	PZ06-D	PZ06-S	PZ07-D
	C	lient sampli	ng date / time	07-JUN-2008 11:00	08-JUN-2008 11:00	05-JUN-2008 11:00	05-JUN-2008 11:00	05-JUN-2008 15:00
Compound	CAS Number	LOR	Unit	EB0807578-011	EB0807578-012	EB0807578-013	EB0807578-014	EB0807578-015
EK058: Nitrate as N - Continued								
^ Nitrate as N	14797-55-8	0.010	mg/L		<0.010	<0.010	<0.010	<0.010
EK059: Nitrite plus Nitrate as N (NOx)								
Nitrite + Nitrate as N		0.010	mg/L		<0.010	<0.010	<0.010	<0.010
EK071: Reactive Phosphorus as P (Di	ssolved)							
Reactive Phosphorus - Filtered		0.010	mg/L		<0.010	<0.010	<0.010	<0.010

Page : 9 of 12 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Page : 10 of 12 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

ALS

Sub-Matrix: WATER	Client sample ID			PZ07-S	PZ08-D	PZ08-S	PZ10	PZ09
	C	ient sampli	ng date / time	05-JUN-2008 15:00	06-JUN-2008 11:00	06-JUN-2008 11:00	06-JUN-2008 11:00	06-JUN-2008 15:00
Compound	CAS Number	LOR	Unit	EB0807578-016	EB0807578-017	EB0807578-018	EB0807578-019	EB0807578-020
EK058: Nitrate as N - Continued								
^ Nitrate as N	14797-55-8	0.010	mg/L	0.076	<0.010	<0.010	<0.010	<0.010
EK059: Nitrite plus Nitrate as N (NOx)								
Nitrite + Nitrate as N		0.010	mg/L	0.076	<0.010	<0.010	<0.010	<0.010
EK071: Reactive Phosphorus as P (Dis	ssolved)							
Reactive Phosphorus - Filtered		0.010	mg/L	<0.010	<0.010	0.011	<0.010	<0.010

Page : 11 of 12 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Page : 12 of 12 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

ALS

Sub-Matrix: WATER		Client sample ID			PZ03-D	PZ03-S	PZ02	
	C	lient sampli	ing date / time	06-JUN-2008 15:00	07-JUN-2008 15:00	07-JUN-2008 15:00	07-JUN-2008 15:00	
Compound	CAS Number	LOR	Unit	EB0807578-021	EB0807578-022	EB0807578-023	EB0807578-024	
EK058: Nitrate as N - Continued								
^ Nitrate as N	14797-55-8	0.010	mg/L	<0.010	<0.010	0.241	<0.010	
EK059: Nitrite plus Nitrate as N (NOx)								
Nitrite + Nitrate as N		0.010	mg/L	<0.010	<0.010	0.319	<0.010	
EK071: Reactive Phosphorus as P (D	issolved)							
Reactive Phosphorus - Filtered		0.010	mg/L	<0.010	<0.010	0.010	<0.010	

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

QUALITY CONTROL REPORT

Work Order : **EB0807578** Page : 1 of 11

Client : URS AUSTRALIA PTY LTD (QLD) Laboratory : Environmental Division Brisbane

Contact : MR STEPHEN DENNER Contact : Tim Kilmister

Address : GPO BOX 302 Address : 32 Shand Street Stafford QLD Australia 4053

 Telephone
 : +61 32432111
 Telephone
 : +61-7-3243 7222

 Facsimile
 : +61 07 32432199
 Facsimile
 : +61-7-3243 7218

Project : 42626162 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Site : ---C-O-C number : ---- Date Samples Received : 10-JUN-2008

Sampler : AW/BS Issue Date : 17-JUN-2008

Quote number : EN/001/08 No. of samples received : 24

Quote number : EN/001/08 No. of samples analysed : 24

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

BRISBANE QLD. AUSTRALIA 4001

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Order number

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Kim McCabe Senior Inorganic Chemist Inorganics
Phillip Kennedy 2IC Environmental Laboratory Inorganics

Environmental Division Brisbane
Part of the ALS Laboratoru Group

32 Shand Street Stafford QLD Australia 4053

Tel. +61-7-3243 7222 Fax. +61-7-3243 7218 www.alsglobal.com

A Campbell Brothers Limited Company

Page : 2 of 11 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 11 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

ALS

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EA005: pH (QC Lot	: 677701)									
EB0807578-001	PZ04	EA005: pH Value		0.01	pH Unit	7.00	6.99	0.1	0% - 20%	
EB0807578-016	PZ07-S	EA005: pH Value		0.01	pH Unit	6.98	6.98	0.0	0% - 20%	
EA010P: Conductiv	ity by PC Titrator (QC	Lot: 680379)								
EB0807578-001	PZ04	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	1120	1120	0.0	0% - 20%	
EB0807578-015	PZ07-D	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	3480	3490	0.3	0% - 20%	
ED037P: Alkalinity b	by PC Titrator (QC Lot	: 680378)								
EB0807578-001	PZ04	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit	
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit	
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	314	317	0.9	0% - 20%	
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	314	317	0.9	0% - 20%	
EB0807578-015	PZ07-D	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit	
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit	
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	489	479	2.1	0% - 20%	
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	489	479	2.1	0% - 20%	
ED040F: Dissolved	Major Anions (QC Lot:	: 677877)								
EB0807578-001	PZ04	ED040F: Sulfate as SO4 2-	14808-79-8	1	mg/L	19	19	0.0	0% - 50%	
EB0807578-015	PZ07-D	ED040F: Sulfate as SO4 2-	14808-79-8	1	mg/L	150	152	1.0	0% - 20%	
ED045P: Chloride b	y PC Titrator (QC Lot:	680380)								
EB0807578-001	PZ04	ED045-P: Chloride	16887-00-6	1	mg/L	135	136	0.7	0% - 20%	
EB0807578-015	PZ07-D	ED045-P: Chloride	16887-00-6	1	mg/L	814	819	0.6	0% - 20%	
ED093F: Dissolved	Major Cations (QC Lot	:: 677878)								
EB0807578-001	PZ04	ED093F: Calcium	7440-70-2	1	mg/L	29	30	0.0	0% - 20%	
		ED093F: Magnesium	7439-95-4	1	mg/L	11	11	0.0	0% - 50%	
		ED093F: Sodium	7440-23-5	1	mg/L	187	189	1.1	0% - 20%	
		ED093F: Potassium	7440-09-7	1	mg/L	<1	<1	0.0	No Limit	
EB0807578-015	PZ07-D	ED093F: Calcium	7440-70-2	1	mg/L	75	76	0.0	0% - 20%	
		ED093F: Magnesium	7439-95-4	1	mg/L	74	76	2.1	0% - 20%	
		ED093F: Sodium	7440-23-5	1	mg/L	563	562	0.2	0% - 20%	
		ED093F: Potassium	7440-09-7	1	mg/L	6	6	0.0	No Limit	
EG020F: Dissolved	Metals by ICP-MS (QC	Lot: 677936)								
EB0807575-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
	-	EG020A-F: Arsenic	7440-38-2	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-F: Barium	7440-39-3	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	

Page : 4 of 11 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EG020F: Dissolved I	Metals by ICP-MS (QC	Lot: 677936) - continued								
EB0807575-001	Anonymous	EG020A-F: Cobalt	7440-48-4	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-F: Copper	7440-50-8	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-F: Lead	7439-92-1	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
EB0807575-010	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-F: Barium	7440-39-3	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-F: Copper	7440-50-8	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-F: Lead	7439-92-1	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
EG020F: Dissolved I	Metals by ICP-MS (QC	Lot: 677937)								
EB0807578-019	PZ10	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit	
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.032	0.032	0.0	0% - 20%	
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.073	0.073	0.0	0% - 20%	
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.005	0.004	0.0	No Limit	
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit	
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit	
EB0807598-004	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
	-	EG020A-F: Arsenic	7440-38-2	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-F: Barium	7440-39-3	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-F: Copper	7440-50-8	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-F: Lead	7439-92-1	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	

Page : 5 of 11 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020F: Dissolved	Metals by ICP-MS (QC	Lot: 677937) - continued							
EB0807598-004	Anonymous	EG020A-F: Manganese	7439-96-5	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
EG020F: Dissolved	Metals by ICP-MS (QC	Lot: 678388)							
EB0807578-002	PZ01	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	0.0001	0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.069	0.068	1.6	0% - 20%
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.150	0.151	0.0	0% - 20%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.034	0.034	0.0	0% - 20%
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EG020T: Total Metal	s by ICP-MS (QC Lot: 6	677853)							
EB0807578-004	QC01	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	0.0001	<0.0001	0.0	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	0.005	0.005	0.0	No Limit
		EG020A-T: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Barium	7440-39-3	0.001	mg/L	0.086	0.086	0.0	0% - 20%
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Manganese	7439-96-5	0.001	mg/L	0.059	0.059	0.0	0% - 20%
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.004	0.004	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.007	0.005	36.8	No Limit
		EG020A-T: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EB0807586-001	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-T: Beryllium	7440-41-7	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-T: Barium	7440-39-3	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-T: Cobalt	7440-48-4	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-T: Copper	7440-50-8	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-T: Lead	7439-92-1	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-T: Manganese	7439-96-5	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		<u> </u>	'			·			

Page : 6 of 11 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EG020T: Total Meta	s by ICP-MS (QC Lot:	677853) - continued								
EB0807586-001	Anonymous	EG020A-T: Zinc	7440-66-6	0.005	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-T: Vanadium	7440-62-2	0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
EG035F: Dissolved	Mercury by FIMS (QC	Lot: 682288)								
EB0807509-001	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
EB0807575-004	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
EG035F: Dissolved	Mercury by FIMS (QC	Lot: 682289)								
EB0807578-003	PZ05	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit	
EB0807578-017	PZ08-D	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit	
EG035T: Total Reco	overable Mercury by FI	MS (QC Lot: 681681)								
EB0807559-001	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
EB0807578-009	QC06	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit	
K040P: Fluoride by	PC Titrator (QC Lot:	680381)								
EB0807578-001	PZ04	EK040P: Fluoride	16984-48-8	0.1	mg/L	0.2	0.2	0.0	No Limit	
EB0807578-015	PZ07-D	EK040P: Fluoride	16984-48-8	0.1	mg/L	0.2	0.2	0.0	No Limit	
EK057: Nitrite as N	(QC Lot: 677867)									
EB0807578-001	PZ04	EK057: Nitrite as N		0.010	mg/L	<0.010	<0.010	0.0	No Limit	
EB0807578-015	PZ07-D	EK057: Nitrite as N		0.010	mg/L	<0.010	<0.010	0.0	No Limit	
K059: Nitrite plus l	Nitrate as N (NOx) (QC	Lot: 677865)								
EB0807575-001	Anonymous	EK059: Nitrite + Nitrate as N		0.010	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
EB0807575-010	Anonymous	EK059: Nitrite + Nitrate as N		0.010	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
EK059: Nitrite plus I	Nitrate as N (NOx) (QC	Lot: 677868)								
EB0807578-001	PZ04	EK059: Nitrite + Nitrate as N		0.010	mg/L	<0.010	<0.010	0.0	No Limit	
EB0807578-015	PZ07-D	EK059: Nitrite + Nitrate as N		0.010	mg/L	<0.010	<0.010	0.0	No Limit	
EK071: Reactiv <u>e Ph</u>	osphorus as P (Dissol	ved) (QC Lot: 677866)								
EB0807578-001	PZ04	EK071F: Reactive Phosphorus - Filtered		0.010	mg/L	0.023	0.024	0.0	No Limit	
EB0807578-015	PZ07-D	EK071F: Reactive Phosphorus - Filtered		0.010	mg/L	<0.010	<0.010	0.0	No Limit	

Page : 7 of 11 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA005: pH (QCLot: 677701)								
EA005: pH Value		0.01	pH Unit		7.00 pH Unit	100	98.3	118
EA010P: Conductivity by PC Titrator (QCLot: 680379)								
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	1412 μS/cm	100	90.3	108
ED037P: Alkalinity by PC Titrator (QCLot: 680378)								
ED037-P: Total Alkalinity as CaCO3		1	mg/L		200 mg/L	99.9	77.5	112
ED040F: Dissolved Major Anions (QCLot: 677877)								
ED040F: Sulfate as SO4 2-	14808-79-8	1	mg/L	<1				
ED045P: Chloride by PC Titrator (QCLot: 680380)								
ED045-P: Chloride	16887-00-6	1	mg/L	<1	1000 mg/L	99.8	88.4	110
ED093F: Dissolved Major Cations (QCLot: 677878)								
ED093F: Calcium	7440-70-2	1	mg/L	<1				
ED093F: Magnesium	7439-95-4	1	mg/L	<1				
ED093F: Sodium	7440-23-5	1	mg/L	<1				
ED093F: Potassium	7440-09-7	1	mg/L	<1				
EG020F: Dissolved Metals by ICP-MS (QCLot: 677936)						<u>'</u>		
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.100 mg/L	106	70	130
EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.100 mg/L	109	70	130
EG020A-F: Barium	7440-39-3	0.001	mg/L	<0.001				
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.100 mg/L	97.2	70	130
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.100 mg/L	104	70	130
EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.100 mg/L	102	70	130
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.200 mg/L	101	70	130
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.100 mg/L	105	70	130
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.100 mg/L	103	70	130
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.100 mg/L	99.6	70	130
EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.100 mg/L	99.0	70	130
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.200 mg/L	108	70	130
EG020F: Dissolved Metals by ICP-MS (QCLot: 677937)								
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.100 mg/L	102	70	130
EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.100 mg/L	107	70	130
EG020A-F: Barium	7440-39-3	0.001	mg/L	<0.001	0.400			
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.100 mg/L	99.5	70	130
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.100 mg/L	106	70	130

Page : 8 of 11 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG020F: Dissolved Metals by ICP-MS (QCLot: 677937) -	continued								
EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.100 mg/L	101	70	130	
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.200 mg/L	101	70	130	
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.100 mg/L	106	70	130	
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.100 mg/L	103	70	130	
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.100 mg/L	100	70	130	
EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.100 mg/L	97.4	70	130	
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.200 mg/L	128	70	130	
G020F: Dissolved Metals by ICP-MS (QCLot: 678388)									
G020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.100 mg/L	122	70	130	
G020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.100 mg/L	105	70	130	
G020A-F: Barium	7440-39-3	0.001	mg/L	<0.001					
:G020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.100 mg/L	102	70	130	
G020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.100 mg/L	105	70	130	
G020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.100 mg/L	104	70	130	
G020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.200 mg/L	103	70	130	
G020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.100 mg/L	101	70	130	
G020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.100 mg/L	103	70	130	
G020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.100 mg/L	104	70	130	
G020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.100 mg/L	98.2	70	130	
G020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.200 mg/L	130	70	130	
G020F: Dissolved Metals by ICP-MS (QCLot: 683147)									
G020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.100 mg/L	# 129	79.6	115	
G020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.100 mg/L	126	80.8	130	
G020A-F: Barium	7440-39-3	0.001	mg/L	<0.001					
G020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.100 mg/L	103	86.6	113	
G020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.100 mg/L	101	84.4	128	
G020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.100 mg/L	101	86.6	117	
G020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.200 mg/L	103	85	117	
G020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.100 mg/L	# 125	85.4	117	
G020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.100 mg/L	103	84.1	122	
G020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.100 mg/L	102	86.3	118	
G020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.100 mg/L	100	76.9	117	
G020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.200 mg/L	128	84.2	130	
G020T: Total Metals by ICP-MS (QCLot: 677853)									
G020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.100 mg/L	93.0	70	130	
G020A-T: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.100 mg/L	110	70	130	
G020A-T: Barium	7440-39-3	0.001	mg/L	<0.001					
G020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.100 mg/L	97.8	70	130	
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.100 mg/L	104	70	130	

Page : 9 of 11 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EG020T: Total Metals by ICP-MS (QCLot: 677853)	continued									
EG020A-T: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.100 mg/L	99.2	70	130		
EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.200 mg/L	97.8	70	130		
EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.100 mg/L	102	70	130		
EG020A-T: Manganese	7439-96-5	0.001	mg/L	<0.001	0.100 mg/L	100	70	130		
EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.100 mg/L	100	70	130		
EG020A-T: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.100 mg/L	88.6	70	130		
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.200 mg/L	120	70	130		
EG035F: Dissolved Mercury by FIMS (QCLot: 68228	8)									
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.010 mg/L	100	85.3	117		
EG035F: Dissolved Mercury by FIMS (QCLot: 68228	9)									
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.010 mg/L	106	85.3	117		
EG035T: Total Recoverable Mercury by FIMS (QCLo	ot: 681681)									
EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.0100 mg/L	102	84.2	118		
EK040P: Fluoride by PC Titrator (QCLot: 680381)										
EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	10 mg/L	99.1	72.9	113		
EK057: Nitrite as N (QCLot: 677867)										
EK057: Nitrite as N		0.01	mg/L		0.5 mg/L	108	95.4	119		
		0.010	mg/L	<0.010						
EK059: Nitrite plus Nitrate as N (NOx) (QCLot: 67786	35)									
EK059: Nitrite + Nitrate as N		0.01	mg/L		0.5 mg/L	98.3	85.5	118		
		0.010	mg/L	<0.010						
EK059: Nitrite plus Nitrate as N (NOx) (QCLot: 67786	58)									
EK059: Nitrite + Nitrate as N		0.01	mg/L		0.5 mg/L	95.6	85.5	118		
		0.010	mg/L	<0.010						
EK071: Reactive Phosphorus as P (Dissolved) (QCL	.ot: 677866)									
EK071F: Reactive Phosphorus - Filtered		0.01	mg/L		1 mg/L	100	88.5	116		
·		0.010	mg/L	<0.010						

Page : 10 of 11 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

ALS

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER					Matrix Spike (MS) Re	port	
				Spike	Spike Recovery (%)	Recovery	Limits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED045P: Chloride by	y PC Titrator (QCLot: 680380)						
EB0807578-001	PZ04	ED045-P: Chloride	16887-00-6	80 mg/L	97.5	70	130
FG020F: Dissolved I	Metals by ICP-MS (QCLot: 6779	36)					
EB0807575-002	Anonymous	EG020A-F: Arsenic	7440-38-2	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Beryllium	7440-41-7	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Barium	7440-39-3	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Cadmium	7440-43-9	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Chromium	7440-47-3	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Cobalt	7440-48-4	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Copper	7440-50-8	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Lead	7439-92-1	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Manganese	7439-96-5	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Nickel	7440-02-0	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Vanadium	7440-62-2	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Zinc	7440-66-6	Anonymous	Anonymous	Anonymous	Anonymous
EG020F: Dissolved I	Metals by ICP-MS (QCLot: 6779	37)					
EB0807578-020	PZ09	EG020A-F: Arsenic	7440-38-2	0.100 mg/L	105	70	130
		EG020A-F: Beryllium	7440-41-7	0.100 mg/L	116	70	130
		EG020A-F: Barium	7440-39-3	0.100 mg/L	103	70	130
		EG020A-F: Cadmium	7440-43-9	0.100 mg/L	101	70	130
		EG020A-F: Chromium	7440-47-3	0.100 mg/L	95.8	70	130
		EG020A-F: Cobalt	7440-48-4	0.100 mg/L	103	70	130
		EG020A-F: Copper	7440-50-8	0.100 mg/L	102	70	130
		EG020A-F: Lead	7439-92-1	0.100 mg/L	94.9	70	130
		EG020A-F: Manganese	7439-96-5	0.100 mg/L	113	70	130
		EG020A-F: Nickel	7440-02-0	0.100 mg/L	101	70	130
		EG020A-F: Vanadium	7440-62-2	0.100 mg/L	102	70	130
		EG020A-F: Zinc	7440-66-6	0.100 mg/L	115	70	130
EG020F: Dissolved I	Metals by ICP-MS (QCLot: 6783	88)					
EB0807578-004	QC01	EG020A-F: Arsenic	7440-38-2	0.100 mg/L	102	70	130
	İ	EG020A-F: Beryllium	7440-41-7	0.100 mg/L	107	70	130
		EG020A-F: Barium	7440-39-3	0.100 mg/L	99.9	70	130
		EG020A-F: Cadmium	7440-43-9	0.100 mg/L	104	70	130
	İ	EG020A-F: Chromium	7440-47-3	0.100 mg/L	104	70	130
		EG020A-F: Cobalt	7440-48-4	0.100 mg/L	104	70	130
		EG020A-F: Copper	7440-50-8	0.100 mg/L	104	70	130

Page : 11 of 11 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Sub-Matrix: WATER					Matrix Spike (MS) Rep	oort	
				Spike	Spike Recovery (%)	Recovery	Limits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG020F: Dissolved I	Metals by ICP-MS (QCLot: 678388)) - continued					
EB0807578-004	QC01	EG020A-F: Lead	7439-92-1	0.100 mg/L	102	70	130
		EG020A-F: Manganese	7439-96-5	0.100 mg/L	102	70	130
		EG020A-F: Nickel	7440-02-0	0.100 mg/L	102	70	130
		EG020A-F: Vanadium	7440-62-2	0.100 mg/L	106	70	130
		EG020A-F: Zinc	7440-66-6	0.100 mg/L	113	70	130
EG020T: Total Metal	ls by ICP-MS (QCLot: 677853)						
EB0807578-005	QC02	EG020A-T: Arsenic	7440-38-2	1.000 mg/L	118	70	130
		EG020A-T: Beryllium	7440-41-7	0.100 mg/L	122	70	130
		EG020A-T: Barium	7440-39-3	1.000 mg/L	118	70	130
		EG020A-T: Cadmium	7440-43-9	0.500 mg/L	120	70	130
		EG020A-T: Chromium	7440-47-3	1.000 mg/L	128	70	130
		EG020A-T: Cobalt	7440-48-4	1.000 mg/L	128	70	130
		EG020A-T: Copper	7440-50-8	1.000 mg/L	124	70	130
		EG020A-T: Lead	7439-92-1	1.000 mg/L	128	70	130
		EG020A-T: Manganese	7439-96-5	1.000 mg/L	125	70	130
		EG020A-T: Nickel	7440-02-0	1.000 mg/L	122	70	130
		EG020A-T: Vanadium	7440-62-2	1.000 mg/L	122	70	130
		EG020A-T: Zinc	7440-66-6	1.000 mg/L	123	70	130
G035F: Dissolved I	Mercury by FIMS (QCLot: 682288)						
EB0807509-001	Anonymous	EG035F: Mercury	7439-97-6	Anonymous	Anonymous	Anonymous	Anonymous
G035F: Dissolved I	Mercury by FIMS (QCLot: 682289)						
EB0807578-003	PZ05	EG035F: Mercury	7439-97-6	0.01 mg/L	95.0	70	130
G035T: Total Reco	overable Mercury by FIMS (QCLot:	: 681681)					
EB0807559-001	Anonymous	EG035T: Mercury	7439-97-6	Anonymous	Anonymous	Anonymous	Anonymous
K040P: Fluoride by	y PC Titrator (QCLot: 680381)						
EB0807578-001	PZ04	EK040P: Fluoride	16984-48-8	4.9 mg/L	85.0	70	130
EK057: Nitrite as N	(QCLot: 677867)						
EB0807578-001	PZ04	EK057: Nitrite as N		0.4 mg/L	105	70	130
EK059: Nitrite plus N	Nitrate as N (NOx) (QCLot: 677865						
EB0807570-001	Anonymous	EK059: Nitrite + Nitrate as N		Anonymous	Anonymous	Anonymous	Anonymous
EK059: Nitrite plus N	Nitrate as N (NOx) (QCLot: 677868				-	-	-
EB0807578-014	PZ06-S	EK059: Nitrite + Nitrate as N		0.4 mg/L	102	70	130
	osphorus as P (Dissolved) (QCLo			- ····g· –		-	
EB0807570-001	Anonymous			Anonymous	Anonymous	Anonymous	Anonymou
	/ wionymous	EK071F: Reactive Phosphorus - Filtered		Anonymous	Anonymous	Allonymous	Anonymou

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order : **EB0807578** Page : 1 of 14

Client : URS AUSTRALIA PTY LTD (QLD) Laboratory : Environmental Division Brisbane

Contact : MR STEPHEN DENNER Contact : Tim Kilmister

Address : GPO BOX 302 Address : 32 Shand Street Stafford QLD Australia 4053

BRISBANE QLD, AUSTRALIA 4001

 Telephone
 : +61 32432111
 Telephone
 : +61-7-3243 7222

 Facsimile
 : +61 07 32432199
 Facsimile
 : +61-7-3243 7218

Project : 42626162 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Site : ----

 C-O-C number
 : -- Date Samples Received
 : 10-JUN-2008

 Sampler
 : AW/BS
 Issue Date
 : 17-JUN-2008

Order number : ----

Quote number : EN/001/08 No. of samples received : 24

Quote number : EN/001/08 No. of samples analysed : 24

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Page : 2 of 14
Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not quarantee a breach for all non-volatile parameters.

Matrix: WATER

Evaluation: **x** = Holding time breach; ✓ = Within holding time.

Method	Sample Date	Extraction / Preparation			Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005: pH								
Clear Plastic Bottle - Natural								
QC01,	PZ06-D,	05-JUN-2008				10-JUN-2008	05-JUN-2008	æ
PZ06-S,	PZ07-D,							
PZ07-S								
Clear Plastic Bottle - Natural								
QC04,	PZ08-D,	06-JUN-2008				10-JUN-2008	06-JUN-2008	Jc
PZ08-S,	PZ10,							
PZ09,	PZ11-D							
Clear Plastic Bottle - Natural								
QC07,	PZ03-D,	07-JUN-2008				10-JUN-2008	07-JUN-2008	≯c
PZ03-S,	PZ02							
Clear Plastic Bottle - Natural								
PZ04,	PZ01,	08-JUN-2008				10-JUN-2008	08-JUN-2008	×
PZ05,	QC10							
EA010P: Conductivity by PC Titrator								
Clear Plastic Bottle - Natural								
QC01,	PZ06-D,	05-JUN-2008				13-JUN-2008	03-JUL-2008	✓
PZ06-S,	PZ07-D,							
PZ07-S								
Clear Plastic Bottle - Natural								
QC04,	PZ08-D,	06-JUN-2008				13-JUN-2008	04-JUL-2008	✓
PZ08-S,	PZ10,							
PZ09,	PZ11-D							
Clear Plastic Bottle - Natural								
QC07,	PZ03-D,	07-JUN-2008				13-JUN-2008	05-JUL-2008	✓
PZ03-S,	PZ02							
Clear Plastic Bottle - Natural								
PZ04,	PZ01,	08-JUN-2008				13-JUN-2008	06-JUL-2008	✓
PZ05,	QC10							

Page : 3 of 14 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Matrix: WATER					Evaluation:	: x = Holding time	breach ; ✓ = Within	n holding time
Method		Sample Date	Ex	traction / Preparation	raction / Preparation		Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED037P: Alkalinity by PC Titrator								
Clear Plastic Bottle - Natural								
QC01,	PZ06-D,	05-JUN-2008				13-JUN-2008	19-JUN-2008	✓
PZ06-S,	PZ07-D,							
PZ07-S								
Clear Plastic Bottle - Natural								
QC04,	PZ08-D,	06-JUN-2008				13-JUN-2008	20-JUN-2008	✓
PZ08-S,	PZ10,							
PZ09,	PZ11-D							
Clear Plastic Bottle - Natural								
QC07,	PZ03-D,	07-JUN-2008				13-JUN-2008	21-JUN-2008	✓
PZ03-S,	PZ02							·
Clear Plastic Bottle - Natural								
PZ04,	PZ01,	08-JUN-2008				13-JUN-2008	22-JUN-2008	✓
PZ05,	QC10							
ED040F: Dissolved Major Anions								
Clear Plastic Bottle - Natural								
QC01,	PZ06-D,	05-JUN-2008				11-JUN-2008	03-JUL-2008	✓
PZ06-S,	PZ07-D,							
PZ07-S								
Clear Plastic Bottle - Natural								
QC04,	PZ08-D,	06-JUN-2008				11-JUN-2008	04-JUL-2008	✓
PZ08-S,	PZ10,							·
PZ09,	PZ11-D							
Clear Plastic Bottle - Natural								
QC07,	PZ03-D,	07-JUN-2008				11-JUN-2008	05-JUL-2008	✓
PZ03-S,	PZ02							
Clear Plastic Bottle - Natural								
PZ04,	PZ01,	08-JUN-2008				11-JUN-2008	06-JUL-2008	✓
PZ05,	QC10							

Page : 4 of 14 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Matrix: WATER					Evaluation	x = Holding time	breach ; ✓ = Withir	holding time
Method		Sample Date	E	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED045P: Chloride by PC Titrator								
Clear Plastic Bottle - Natural								
QC01,	PZ06-D,	05-JUN-2008				13-JUN-2008	03-JUL-2008	✓
PZ06-S,	PZ07-D,							
PZ07-S								
Clear Plastic Bottle - Natural								
QC04,	PZ08-D,	06-JUN-2008				13-JUN-2008	04-JUL-2008	✓
PZ08-S,	PZ10,							
PZ09,	PZ11-D							
Clear Plastic Bottle - Natural								
QC07,	PZ03-D,	07-JUN-2008				13-JUN-2008	05-JUL-2008	✓
PZ03-S,	PZ02							
Clear Plastic Bottle - Natural								
PZ04,	PZ01,	08-JUN-2008				13-JUN-2008	06-JUL-2008	✓
PZ05,	QC10							
ED093F: Dissolved Major Cations								
Clear Plastic Bottle - Natural								
QC01,	PZ06-D,	05-JUN-2008				11-JUN-2008	03-JUL-2008	✓
PZ06-S,	PZ07-D,							
PZ07-S								
Clear Plastic Bottle - Natural								
QC04,	PZ08-D,	06-JUN-2008				11-JUN-2008	04-JUL-2008	✓
PZ08-S,	PZ10,							
PZ09,	PZ11-D							
Clear Plastic Bottle - Natural								
QC07,	PZ03-D,	07-JUN-2008				11-JUN-2008	05-JUL-2008	✓
PZ03-S,	PZ02							
Clear Plastic Bottle - Natural								
PZ04,	PZ01,	08-JUN-2008				11-JUN-2008	06-JUL-2008	✓
PZ05,	QC10							·

Page : 5 of 14 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Matrix: WATER					Evaluation	× = Holding time	breach ; ✓ = Withir	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Filtered; Lab-acidified								
PZ07-D,	PZ07-S	05-JUN-2008				11-JUN-2008	02-DEC-2008	✓
Clear Plastic Bottle - Filtered; Lab-acidified								
QC01,	PZ06-D,	05-JUN-2008				13-JUN-2008	02-DEC-2008	✓
PZ06-S								
Clear Plastic Bottle - Filtered; Lab-acidified								
QC04,	PZ08-D,	06-JUN-2008				11-JUN-2008	03-DEC-2008	✓
PZ08-S,	PZ10,							
PZ09,	PZ11-D							
Clear Plastic Bottle - Filtered; Lab-acidified								
QC07,	PZ03-D,	07-JUN-2008				11-JUN-2008	04-DEC-2008	✓
PZ03-S								
Clear Plastic Bottle - Filtered; Lab-acidified								
QC08,	PZ02	07-JUN-2008				13-JUN-2008	04-DEC-2008	✓
Clear Plastic Bottle - Filtered; Lab-acidified								
PZ04,	PZ05,	08-JUN-2008				11-JUN-2008	05-DEC-2008	✓
QC10								
Clear Plastic Bottle - Filtered; Lab-acidified								
PZ01		08-JUN-2008				13-JUN-2008	05-DEC-2008	✓
EG020T: Total Metals by ICP-MS								
Clear Plastic Bottle - Unfiltered; Lab-acidified								
QC02,	QC03	05-JUN-2008	11-JUN-2008	02-DEC-2008	✓	11-JUN-2008	02-DEC-2008	✓
Clear Plastic Bottle - Unfiltered; Lab-acidified								
QC05,	QC06	06-JUN-2008	11-JUN-2008	03-DEC-2008	✓	11-JUN-2008	03-DEC-2008	✓
EG035F: Dissolved Mercury by FIMS								
Clear Plastic Bottle - Filtered; Lab-acidified								
QC01,	PZ06-D,	05-JUN-2008				16-JUN-2008	03-JUL-2008	✓
PZ06-S,	PZ07-D,							
PZ07-S								
Clear Plastic Bottle - Filtered; Lab-acidified								
QC04,	PZ08-D,	06-JUN-2008				16-JUN-2008	04-JUL-2008	✓
PZ08-S,	PZ10,							
PZ09,	PZ11-D							
Clear Plastic Bottle - Filtered; Lab-acidified								
QC07,	QC08,	07-JUN-2008				16-JUN-2008	05-JUL-2008	✓
PZ03-D,	PZ03-S,							
PZ02	•							
Clear Plastic Bottle - Filtered; Lab-acidified								
PZ04,	PZ01,	08-JUN-2008				16-JUN-2008	06-JUL-2008	✓
PZ05,	QC10							

Page : 6 of 14 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Matrix: WATER			Evaluation: × = Holding time breach ; ✓ = Within hold									
Method		Sample Date	Ex	ktraction / Preparation			Analysis					
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation				
EG035T: Total Recoverable Mercury by FIMS												
Clear Plastic Bottle - Unfiltered; Lab-acidified												
QC02,	QC03	05-JUN-2008				16-JUN-2008	03-JUL-2008	✓				
Clear Plastic Bottle - Unfiltered; Lab-acidified												
QC05,	QC06	06-JUN-2008				16-JUN-2008	04-JUL-2008	✓				
EK040P: Fluoride by PC Titrator												
Clear Plastic Bottle - Natural												
QC01,	PZ06-D,	05-JUN-2008				13-JUN-2008	03-JUL-2008	✓				
PZ06-S,	PZ07-D,											
PZ07-S												
Clear Plastic Bottle - Natural												
QC04,	PZ08-D,	06-JUN-2008				13-JUN-2008	04-JUL-2008	✓				
PZ08-S,	PZ10,											
PZ09,	PZ11-D											
Clear Plastic Bottle - Natural												
QC07,	PZ03-D,	07-JUN-2008				13-JUN-2008	05-JUL-2008	✓				
PZ03-S,	PZ02											
Clear Plastic Bottle - Natural												
PZ04,	PZ01,	08-JUN-2008				13-JUN-2008	06-JUL-2008	✓				
PZ05,	QC10											
EK057: Nitrite as N												
Clear Plastic Bottle - Natural												
QC01,	PZ06-D,	05-JUN-2008				11-JUN-2008	07-JUN-2008	×				
PZ06-S,	PZ07-D,											
PZ07-S												
Clear Plastic Bottle - Natural												
QC04,	PZ08-D,	06-JUN-2008				11-JUN-2008	08-JUN-2008	sc sc				
PZ08-S,	PZ10,											
PZ09,	PZ11-D											
Clear Plastic Bottle - Natural												
QC07,	PZ03-D,	07-JUN-2008				11-JUN-2008	09-JUN-2008	×				
PZ03-S,	PZ02											
Clear Plastic Bottle - Natural												
PZ04,	PZ01,	08-JUN-2008				11-JUN-2008	10-JUN-2008	×				
PZ05,	QC10											

Page : 7 of 14
Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Matrix: WATER					Evaluation	breach ; ✓ = Within	vitriiri nolaling time.	
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK059: Nitrite plus Nitrate as N (NOx)								
Clear Plastic Bottle - Natural								
QC01,	PZ06-D,	05-JUN-2008				11-JUN-2008	07-JUN-2008	×
PZ06-S,	PZ07-D,							
PZ07-S								
Clear Plastic Bottle - Natural								
QC04,	PZ08-D,	06-JUN-2008				11-JUN-2008	08-JUN-2008	×
PZ08-S,	PZ10,							
PZ09,	PZ11-D							
Clear Plastic Bottle - Natural								
QC07,	PZ03-D,	07-JUN-2008				11-JUN-2008	09-JUN-2008	×
PZ03-S,	PZ02							
Clear Plastic Bottle - Natural								
PZ04,	PZ01,	08-JUN-2008				11-JUN-2008	10-JUN-2008	×
PZ05,	QC10							
EK071: Reactive Phosphorus as P (Diss	olved)							
Clear Plastic Bottle - Natural	,							
QC01,	PZ06-D,	05-JUN-2008				11-JUN-2008	07-JUN-2008	×
PZ06-S,	PZ07-D,							
PZ07-S								
Clear Plastic Bottle - Natural								
QC04,	PZ08-D,	06-JUN-2008				11-JUN-2008	08-JUN-2008	×
PZ08-S,	PZ10,							
PZ09,	PZ11-D							
Clear Plastic Bottle - Natural								
QC07,	PZ03-D,	07-JUN-2008				11-JUN-2008	09-JUN-2008	×
PZ03-S,	PZ02							
Clear Plastic Bottle - Natural								
PZ04,	PZ01,	08-JUN-2008				11-JUN-2008	10-JUN-2008	×
PZ05,	QC10							

Page : 8 of 14 Work Order EB0807578

: URS AUSTRALIA PTY LTD (QLD) Client

Project 42626162

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				not within specification; ✓ = Quality Control frequency within specification.			
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Alkalinity by PC Titrator	ED037-P	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chloride by PC Titrator	ED045-P	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	4	40	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	5	37	13.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Anions - Filtered	ED040F	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Cations - Filtered	ED093F	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx)	EK059	4	34	11.8	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N	EK057	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
рН	EA005	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus - Filtered	EK071F	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	3	25	12.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
Alkalinity by PC Titrator	ED037-P	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chloride by PC Titrator	ED045-P	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	2	40	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	4	42	9.5	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx)	EK059	2	34	5.9	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N	EK057	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
pH	EA005	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus - Filtered	EK071F	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	2	25	8.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Chloride by PC Titrator	ED045-P	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	2	40	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	4	42	9.5	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Anions - Filtered	ED040F	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Cations - Filtered	ED093F	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Page : 9 of 14 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Matrix: WATER				Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within							
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification				
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation					
Method Blanks (MB) - Continued											
Nitrite and Nitrate as N (NOx)	EK059	2	34	5.9	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement				
Nitrite as N	EK057	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement				
Reactive Phosphorus - Filtered	EK071F	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement				
Total Mercury by FIMS	EG035T	1	20	5.0	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement				
Total Metals by ICP-MS - Suite A	EG020A-T	2	25	8.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement				
Matrix Spikes (MS)											
Chloride by PC Titrator	ED045-P	1	19	5.3	5.0	✓	ALS QCS3 requirement				
Dissolved Mercury by FIMS	EG035F	2	40	5.0	5.0	✓	ALS QCS3 requirement				
Dissolved Metals by ICP-MS - Suite A	EG020A-F	3	37	8.1	5.0	√	ALS QCS3 requirement				
Fluoride by PC Titrator	EK040P	1	19	5.3	5.0	✓	ALS QCS3 requirement				
Nitrite and Nitrate as N (NOx)	EK059	2	34	5.9	5.0	√	ALS QCS3 requirement				
Nitrite as N	EK057	1	20	5.0	5.0	√	ALS QCS3 requirement				
Reactive Phosphorus - Filtered	EK071F	1	20	5.0	5.0	✓	ALS QCS3 requirement				
Total Mercury by FIMS	EG035T	1	20	5.0	5.0	✓	ALS QCS3 requirement				
Total Metals by ICP-MS - Suite A	EG020A-T	2	25	8.0	5.0	✓	ALS QCS3 requirement				

Page : 10 of 14 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH	EA005	WATER	APHA 21st ed. 4500 H+ B. pH of water samples is determined by ISE either manually or by automated pH meter. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Conductivity by PC Titrator	EA010-P	WATER	APHA 21st ed., 2510 This procedure determines conductivity by automated ISE. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Alkalinity by PC Titrator	ED037-P	WATER	APHA 21st ed., 2320 B This procedure determines alkalinity by both manual measurement and automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Major Anions - Filtered	ED040F	WATER	APHA 21st ed., 3120 Sulfur and/or Silcon content is determined by ICP/AES and reported as Sulfate and/or Silica after conversion by gravimetric factor.
Chloride by PC Titrator	ED045-P	WATER	APHA 21st ed., 4500 CI - B. Automated Silver Nitrate titration.
Major Cations - Filtered	ED093F	WATER	APHA 21st ed., 3120; USEPA SW 846 - 6010 The ICPAES technique ionises filtered sample atoms emitting a characteristic spectrum. This spectrum is then compared against matrix matched standards for quantification. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	AS 3550, APHA 21st ed. 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Mercury by FIMS	EG035T	WATER	AS 3550, APHA 21st ed. 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Fluoride by PC Titrator	EK040P	WATER	APHA 21st ed., 4500 FC CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite as N	EK057	WATER	APHA 21st ed., 4500 NO3- I. Nitrite is determined by direct colourimetry by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Page : 11 of 14 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Analytical Methods	Method	Matrix	Method Descriptions
Nitrate as N	EK058	WATER	APHA 21st ed., 4500 NO3I Nitrate is reduced to nitrite by way of a cadmium reduction column followed by quantification by FIA. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite and Nitrate as N (NOx)	EK059	WATER	APHA 21st ed., 4500 NO3- I. Combined oxidised Nitrogen (NO2+NO3) is determined by Cadmium Reduction and direct colourimetry by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Reactive Phosphorus - Filtered	EK071F	WATER	APHA 21st ed., 4500 P-E Water samples are filtered through a 0.45um filter prior to analysis. Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is achieved by FIA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Preparation Methods	Method	Matrix	Method Descriptions
Digestion for Total Recoverable Metals	EN25	WATER	USEPA SW846-3005 Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Page : 12 of 14 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Laboratory Control Spike (LCS) Recoveries							
EG020F: Dissolved Metals by ICP-MS	765975-002		Arsenic	7440-38-2	129 %	79.6-115%	Recovery greater than upper control
							limit
EG020F: Dissolved Metals by ICP-MS	765975-002		Lead	7439-92-1	125 %	85.4-117%	Recovery greater than upper control
							limit

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Matrix: WATER

IVIALIIA. WAIEN							
Method		Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA005: pH							
Clear Plastic Bottle - Natural							
QC01,	PZ06-D,				10-JUN-2008	05-JUN-2008	5
PZ06-S,	PZ07-D,						
PZ07-S							
Clear Plastic Bottle - Natural							
QC04,	PZ08-D,				10-JUN-2008	06-JUN-2008	4
PZ08-S,	PZ10,						
PZ09,	PZ11-D						
Clear Plastic Bottle - Natural							
QC07,	PZ03-D,				10-JUN-2008	07-JUN-2008	3
PZ03-S,	PZ02						
Clear Plastic Bottle - Natural							
PZ04,	PZ01,				10-JUN-2008	08-JUN-2008	2
PZ05,	QC10						

Page : 13 of 14
Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Matrix: WATER

Page : 14 of 14 Work Order : EB0807578

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Matrix: WATER

Method			Ext	raction / Preparation		Analysis				
Container / Client Sample ID(s)		Date extra	racted	Due for extraction	Days	Date analysed	Due for analysis	Days		
					overdue			overdue		
EK071: Reactive Phosphoru	ıs as P (Dissolved) - Analysis Holding Time Compliance									
Clear Plastic Bottle - Natura	al									
PZ04,	PZ01,					11-JUN-2008	10-JUN-2008	1		
PZ05,	QC10									

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.

CLIEN	T: BMA							SAME	PLER:	Andr	ew W	ilson /	Dale (Gould										
ADDRI	ESS / OFFICE:							мові	LE:	0448	853 (04/0	437 3	38 439	9						(AL	S)		
PROJE	CT MANAGER (PM): Step	hen Denne	r					PHON	NE	3243	2146	/ 3243	2128	3						Australiar	Laborator	ry Services I —	Pty Ltd	
PROJE	CT ID: 42626162							EMAII	L REPC	RT TO:	:	steph	en de	enner(<u>@ursc</u>	orp.cc	(undersco	re betwe	een step	ohen and o	lenner)			
SITE: Ca	val Ridge			P.O. NO	.:			EMAII	L INVOI	CE TO:	(if diffe	erent to	report)				-							
250000000000000000000000000000000000000	S REQUIRED (Date):			QUOTE	NO.:			ANAL	YSIS R	EQUIR	ED inc	. 		(note	suite c	odes mu	ist be listed	to attract s	suite price	es) 				
	BORATORY USE ONLY	<u>COMM</u>	ENTS / SP	ECIAL HA	NDLING /	STORAGE C	OR DIPOSAL:					Li (Dissolved)	U (Dissolve		(a)		ĺ		<u>No</u>	otes: e.g. H	ghly conta	aminated sa	amples	
COOLER	RSEAL (circle appropriate)							ł				Disso	Sig)	Li (Total)	U (Total)		ļ		"	g. "High PA	-			
Intact:	Yes No N//	۱						-				a, Li (μť		i⊑				Ex	Extra volume for QC or trace LORs etc.				
	<u>TEMPERATURE</u>					*******		ł				Fe, Ga,	r, Th,	Fe, Ga,	Sr, Th,				•					
CHILLET) Yes No SAMPLE INFORMATION (no	rto: S = Soil V	V-\Mater)		CON	TAINER INF	OPMATION	1				œ,	Se, Sr,	œ,	Se, S		ĺ							
ALS ID	SAMPLE ID	MATRIX	DATE	Time		e / Code	Total bottles	F Y	N Z	8 N 18	¥3	A, A,	Mo, S	Ą, Ą	Mo, S									
	P210	Water	8/9	АМ	P	5P	3	V			J	J	J						1	All av	reen	plastic	cS	
	P211-D	THE CHAPTER	8/9	P/M			7,000	V	T	J,	J,	1	V,							Frozen		Secr		
	P209	and the substitution of th	3/9	PN				J,	V	1/	V,	1	V							as practicable				
	Pz 05	(MA - do-re-)	9/9	PM				V,	1	J	V,	1	W/				i	1	İ					
	P207-5		9/1	PM				J,	J		1	J_{I}	V	,			2 10 2	ironm <i>e</i> Bri	ental D sbane	Pivision				
	P207-D	- dum section (1)	9/9	bW/					J	V,	V,		V				M		∢Ordei	r				
	P208-5		9/19	PM				J	V		V		$\sqrt{}$				Ε	B08						
	P208-D	į	4/9	PM				$\sqrt{}$			V	$J_{/}$	/				Di di nenga		,(770				
	P2 06-5		10/9	AM					$\int_{\mathcal{A}}$	J	$_{L}$	1	1											
	f206-D		10/9	AM				J_{i}	V,	J,	V,		1											
	P2 03-5		10/9	FM		***************************************		V	1		$\sqrt{/}$	V	V				Teleph	one: +6	110 4411 31-7-324	3 7222				
	P2 03 -D	\vee	10/9	PM		<u> </u>	1	J	J	J	1	No.	4							0 / 222				
		RELINQ	UISHED B	<u>Y:</u>									REC	CEIVED						ME	THOD OF	SHIPMENT		
Name:	Andrew Wilser				Date:	[[]9]	08	Nam	е:		<u> </u>	igh					12/9/		Co	on' Note N	0:			
Of:	<u>URS</u>	·			Time:			Of:	AS	<u> 5</u>	B	1:50	m	·		Time:	074	<u> </u>						
Name:	·				Date:			Nam	e:							Date:			Tra	ansport C) :			
Of:					Time:			Of:					-			Time:								

																	_					
CHA	IN OF CUSTODY	DOC	SUME	NTA	ΓΙΟΝ															A		
CLIEN	Г: ВМА						SAMP	LER:	Andr	ew Wi	lson /	Dale (Gould	•								
ADDRI	ESS / OFFICE:						MOBIL	E:	0448	853 C	04 / 0	437 3	38 439	9						(ALS)		
PROJE	CT MANAGER (PM): Stephe	n Denn	er				PHON	PHONE 3243 2146 / 3243 2128 Au										Australian Laboratory Services Pty Ltd				
PROJE	CT ID: 42626162						EMAIL	EMAIL REPORT TO: <u>stephen_denner@urscorp.cc</u> (underscore betweer									een s	stephen and denner)				
SITE: Ca	val Ridge			P.O. NO.	.:		EMAIL	. INVOI	CE TO:	(if diffe	rent to	report)										
RESULT	S REQUIRED (Date):			QUOTE	NO.:		ANAL	YSIS R	EQUIR	ED incl	uding (SUITES	(note -	suite c	odes m	ust be	listed t	o attract	suite	prices)		
FOR LA	BORATORY USE ONLY	COM	MENTS / SP	ECIAL HA	NDLING / STORAGE (OR DIPOSAL:					ved)	olvec		_						Notes: e.g. Highly contaminated samples		
COOLER	OOLER SEAL (circle appropriate)										issol	Diss	otal)	U (Total)						e.g. "High PAHs expected".		
Intact:	Yes No N/A						Li (Dissolved)	Ti, U (Dissolve	Li (Total)	Ti, U (Extra volume for QC or trace LORs etc.						
SAMPLE	TEMPERATURE										, g	T.	Ga,	Ħ,								
CHILLE) Yes No]				F.	Sr, Th,	, Fe	Sr,								
	SAMPLE INFORMATION (note:	S = Soil,	W=Water)		CONTAINER INF	ORMATION	ļ <u>, </u>	8	μo	_	Al, A, B,	, Se,	A, B,	, Se,								
ALS ID	SAMPLE ID	MATRI	X DATE	Time	Type / Code	Total bottles	Ę	NTZ	8 E E	. §	- 3	δ	₹	Mo,								
	P202	Water	10/9	PM	P, 5P	3	1	<u></u>	V	1	V	1								Green plastics frozen		
	F201		10/9	PM	P,5P	3	\checkmark	V			Į.	V								as soon as practicable		
	F204		11/9	AM	P SP	3	~			1		No.					_			(except P204)		
	QCOI	The same of	8/9	PM	γ	ĺ							3							, , ,		
	QC02		9/9	AM	P	1			,,				3,0	W.								
	QC03		10/9	PM	ρ	1								V								
	Q C 04	V	10/9	PM	F,59	3	\checkmark		1	1	\checkmark	1										
	Gathor semples																					
(Yordustivity Std.		•																			
	DH Buffer 400																					
- 1	DH Byte 6-80	}	↓																			
		RELING	QUISHED BY	<u>Y:</u>								REG	CEIVED							METHOD OF SHIPMENT		
Name:	Andrew Wilson				Date: 11/9/09	}	Name	e: 7	. (Cres	raph				Date:	12,	191	08		Con' Note No:		
Of:	URS				Time:		Of: Acg Brisber Time: 0748															
Name:					Date:		Name	e:	1 - 10						Date:					Transport Co:		
Of:					Time:		Of:								Time:					<u> </u>		
l				_												_						

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AG = Amber Glass Unpreserved;

V = VOA Vial HCI Preserved; VS = VOA Vial Sulphuric Preserved; SG = Sulfuric Preserved Amber Glass; H = HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass;

Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle; ASS = Plastic Bad for Acid Sulphate Soils; B = Unpreserved Bag.

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD) Laboratory : Environmental Division Brisbane

Contact : MR STEPHEN DENNER Contact : Tim Kilmister

Address : GPO BOX 302 Address : 32 Shand Street Stafford QLD Australia

BRISBANE QLD, AUSTRALIA 4001 40

Telephone : +61 32432111 Telephone : +61-7-3243 7222
Facsimile : +61 07 32432199 Facsimile : +61-7-3243 7218

Project : 42626162 Page : 1 of 3

Order number : ----

C-O-C number : ---- Quote number : ES2008URSQLD0041 (EN/001/08)

Site : Caval Ridge

Sampler : A. Wilson, D. Gould : NEPM 1999 Schedule B(3) and ALS

QCS3 requirement

Dates

Date Samples Received : 12-SEP-2008 Issue Date : 17-SEP-2008 11:00

Client Requested Due Date : 23-SEP-2008 Scheduled Reporting Date : 23-SEP-2008

Delivery Details

Mode of Delivery: Client Drop offTemperature: 9.6 CNo. of coolers/boxes: 1 LARGENo. of samples received: 19Sercurity Seal: Intact.No. of samples analysed: 19

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Sample(s) have been received within recommended holding times.
- As per phone confirmation Antimony have been added to all samples. 17/9/8
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Maggie Kahi.
- Analytical work for this work order will be conducted at ALS Brisbane.
- Sample Disposal Aqueous (14 days), Solid (90 days) from date of completion of work order.

Issue Date : 17-SEP-2008 11:00

: 2 of 3 : EB0812573 Page Work Order

Client : URS AUSTRALIA PTY LTD (QLD)

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

Some items descriptoress neccessaritasks. Packages in the determination tasks, that are include When date(s) and have been assumed Matrix: WATER Laboratory sample ID	WATER - EG020A-F Dissolved Metals by ICPMS - Suite A	WATER - EG020A-T Total Metals by ICPMS - Suite A	WATER - EG020B-F Dissolved Metals by ICPMS - Suite B	WATER - EG020B-T Total Metals by ICPMS - Suite B	WATER - EG020D-F Dissolved Metals by ICPMS - Suite D	WATER - EG020D-T Total Metals by ICPMS - Suite D	WATER - EN055 Ionic Balance	WATER - NT-01 Major Cations (Ca, Mg, Na, K)		
EB0812573-001	08-SEP-2008 15:00	PZ10	✓		✓		✓		✓	✓
EB0812573-002	08-SEP-2008 15:00	PZ11-D	✓		✓		✓		✓	✓
EB0812573-003	08-SEP-2008 15:00	PZ09	✓		✓		✓		✓	✓
EB0812573-004	09-SEP-2008 15:00	PZ05	✓		✓		✓		✓	✓
EB0812573-005	09-SEP-2008 15:00	PZ07-S	✓		✓		✓		✓	✓
EB0812573-006	09-SEP-2008 15:00	PZ07-D	✓		✓		✓		✓	✓
EB0812573-007	09-SEP-2008 15:00	PZ08-S	✓		✓		✓		✓	✓
EB0812573-008	09-SEP-2008 15:00	PZ08-D	✓		✓		✓		✓	✓
EB0812573-009	10-SEP-2008 15:00	PZ06-S	✓		✓		✓		✓	✓
EB0812573-010	10-SEP-2008 15:00	PZ06-D	✓		✓		✓		✓	✓
EB0812573-011	10-SEP-2008 15:00	PZ03-S	✓		✓		✓		✓	✓
EB0812573-012	10-SEP-2008 15:00	PZ03-D	✓		✓		✓		✓	✓
EB0812573-013	10-SEP-2008 15:00	PZ02	✓		✓		✓		✓	✓
EB0812573-014	10-SEP-2008 15:00	PZ01	✓		✓		✓		✓	✓
EB0812573-015	11-SEP-2008 15:00	PZ04	✓		✓		✓		✓	✓
EB0812573-016	08-SEP-2008 15:00	QC01		✓		✓		✓		
EB0812573-017	09-SEP-2008 15:00	QC02		✓		✓		✓		
EB0812573-018	10-SEP-2008 15:00	QC03		✓		✓		✓		
EB0812573-019	10-SEP-2008 15:00	QC04	✓		✓		✓		✓	✓

Matrix: WATER Laboratory sample ID	Client sampling date / time	Client sample ID	WATER - NT-02 (EB/PCT) Major Anions (Cl, SO4, Alkalinity)	WATER - NT-08 Total Nitrogen + NO2 + NO3 + NH3 + Total P	WATER - W-03 13 Metals (NEPM Suite)
EB0812573-001	08-SEP-2008 15:00	PZ10	✓	✓	✓
EB0812573-002	08-SEP-2008 15:00	PZ11-D	✓	✓	✓
EB0812573-003	08-SEP-2008 15:00	PZ09	✓	✓	✓
EB0812573-004	09-SEP-2008 15:00	PZ05	✓	✓	✓
EB0812573-005	09-SEP-2008 15:00	PZ07-S	✓	✓	1

Issue Date : 17-SEP-2008 11:00

Page : 3 of 3 Work Order : EB0812573

			WATER - NT-02 (EB/PCT) Major Anions (Cl, SO4, Alkalinity)	WATER - NT-08 Total Nitrogen + NO2 + NO3 + NH3 + Total P	WATER - W-03 13 Metals (NEPM Suite)
EB0812573-006	09-SEP-2008 15:00	PZ07-D	✓	✓	✓
EB0812573-007	09-SEP-2008 15:00	PZ08-S	✓	✓	✓
EB0812573-008	09-SEP-2008 15:00	PZ08-D	✓	✓	✓
EB0812573-009	10-SEP-2008 15:00	PZ06-S	✓	✓	✓
EB0812573-010	10-SEP-2008 15:00	PZ06-D	✓	✓	✓
EB0812573-011	10-SEP-2008 15:00	PZ03-S	✓	✓	✓
EB0812573-012	10-SEP-2008 15:00	PZ03-D	1	✓	✓
EB0812573-013	10-SEP-2008 15:00	PZ02	✓	✓	✓
EB0812573-014	10-SEP-2008 15:00	PZ01	✓	✓	✓
EB0812573-015	11-SEP-2008 15:00	PZ04	✓	✓	✓
EB0812573-019	10-SEP-2008 15:00	QC04	✓	✓	✓

Requested Deliverables

MR	STEP	HFN	DENN	IFR
1411 /	016	11-14	DEIM	

•		
- *AU Certificate of Analysis - NATA	Email	stephen_denner@urscorp.com
- A4 - AU Sample Receipt Notification - Environmental	Email	stephen_denner@urscorp.com
- AU Interpretive QC Report (Anon QCI Not Rep)	Email	stephen_denner@urscorp.com
- AU QC Report (Anon QC Not Rep) - NATA	Email	stephen_denner@urscorp.com
- Default - Chain of Custody	Email	stephen_denner@urscorp.com
- EDI Format - MRED	Email	stephen_denner@urscorp.com
RESULTS ADDRESS		
- *AU Certificate of Analysis - NATA	Email	brisbane@urscorp.com

- *AU Certificate of Analysis - NATA Email brisbane@urscorp.com
- A4 - AU Sample Receipt Notification - Environmental Email brisbane@urscorp.com
- AU Interpretive QC Report (Anon QCI Not Rep) Email brisbane@urscorp.com
- AU QC Report (Anon QC Not Rep) - NATA Email brisbane@urscorp.com
- Default - Chain of Custody Email brisbane@urscorp.com
- EDI Format - MRED Email brisbane@urscorp.com

THE ACCOUNTS BRISBANE

- A4 - AU Tax Invoice Email brisbane_accounts@urscorp.com

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EB0812573** Page : 1 of 10

Client : URS AUSTRALIA PTY LTD (QLD) Laboratory : Environmental Division Brisbane

Contact : MR STEPHEN DENNER Contact : Tim Kilmister

Address : GPO BOX 302 Address : 32 Shand Street Stafford QLD Australia 4053

BRISBANE QLD, AUSTRALIA 4001

 Telephone
 : +61 32432111
 Telephone
 : +61-7-3243 7222

 Facsimile
 : +61 07 32432199
 Facsimile
 : +61-7-3243 7218

Project : 42626162 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

C-O-C number : ---- Date Samples Received : 12-SEP-2008
Sampler : A. Wilson, D. Gould Issue Date : 23-SEP-2008

Site : Caval Ridge

No. of samples received : 19
Quote number : EN/001/08

No. of samples analysed : 19

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Kim McCabeSenior Inorganic ChemistInorganicsStephen HislopSenior Inorganic ChemistInorganics

Environmental Division Brisbane
Part of the ALS Laboratoru Group

32 Shand Street Stafford QLD Australia 4053

Tel. +61-7-3243 7222 Fax. +61-7-3243 7218 www.alsglobal.com

A Campbell Brothers Limited Company

Page : 2 of 10 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

• LCS recovery for EG020T (Total Metals) & EG020F (Filtered Metals) fall outside Dynamic Control Limits. They are however within ALS Static Control Limits and hence deemed acceptable.

Page : 3 of 10 : EB0812573 Work Order

: URS AUSTRALIA PTY LTD (QLD) Client

Project : 42626162

Sub-Matrix: WATER		Clie	ent sample ID	PZ10	PZ11-D	PZ09	PZ05	PZ07-S
	Ci	lient samplir	ng date / time	08-SEP-2008 15:00	08-SEP-2008 15:00	08-SEP-2008 15:00	09-SEP-2008 15:00	09-SEP-2008 15:00
Compound	CAS Number	LOR	Unit	EB0812573-001	EB0812573-002	EB0812573-003	EB0812573-004	EB0812573-005
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	139	79	111	289	127
Total Alkalinity as CaCO3		1	mg/L	139	79	111	289	127
ED040F: Dissolved Major Anions								
Sulfate as SO4 2-	14808-79-8	1	mg/L	626	247	817	3	6
ED045P: Chloride by PC Titrator								
Chloride	16887-00-6	1	mg/L	1210	2770	3800	148	34
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	140	275	460	64	29
Magnesium	7439-95-4	1	mg/L	124	128	295	35	16
Sodium	7440-23-5	1	mg/L	771	1280	1600	103	14
Potassium	7440-09-7	1	mg/L	11	9	17	1	6
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	<0.01	0.01	<0.01	0.02	0.04
Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Arsenic	7440-38-2	0.001	mg/L	0.001	0.003	<0.001	<0.001	<0.001
Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Barium	7440-39-3	0.001	mg/L	0.036	0.081	0.061	0.079	0.138
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	0.004	0.002	0.002	0.004	<0.001
Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.002	<0.001	<0.001
Copper	7440-50-8	0.001	mg/L	0.002	0.001	0.002	<0.001	<0.001
Gallium	7440-55-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	0.001
Lithium	7439-93-2	0.001	mg/L	0.326	0.715	0.413	0.004	0.025
Manganese	7439-96-5	0.001	mg/L	0.197	0.032	0.335	0.238	0.151
Molybdenum	7439-98-7	0.001	mg/L	0.003	0.002	0.001	<0.001	<0.001
Nickel	7440-02-0	0.001	mg/L	0.009	0.006	0.012	0.010	<0.001
Selenium	7782-49-2	0.010	mg/L	0.019	0.019	0.028	<0.010	<0.010
Strontium	7440-24-6	0.001	mg/L	11.4	47.3	39.2	0.702	0.233
Thorium	7440-29-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Titanium	7440-32-6	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Jranium	7440-61-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
/anadium	7440-62-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc	7440-66-6	0.005	mg/L	<0.005	0.006	<0.005	<0.005	0.006
Boron	7440-42-8	0.05	mg/L	0.50	0.15	0.13	0.06	0.09
Iron	7439-89-6	0.05	mg/L	1.58	1.76	3.31	0.43	0.23

Page : 4 of 10 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

ALS

Sub-Matrix: WATER		Clie	ent sample ID	PZ10	PZ11-D	PZ09	PZ05	PZ07-S
	CI	lient sampli	ng date / time	08-SEP-2008 15:00	08-SEP-2008 15:00	08-SEP-2008 15:00	09-SEP-2008 15:00	09-SEP-2008 15:00
Compound	CAS Number	LOR	Unit	EB0812573-001	EB0812573-002	EB0812573-003	EB0812573-004	EB0812573-005
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EK055G: Ammonia as N by Discrete Anal	yser							
Ammonia as N	7664-41-7	0.01	mg/L	1.02	2.39	2.77	0.02	0.16
EK057G: Nitrite as N by Discrete Analyse	er							
Nitrite as N		0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EK058G: Nitrate as N by Discrete Analys	er							
^ Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EK059G: NOX as N by Discrete Analyser								
Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EK061: Total Kjeldahl Nitrogen (TKN)								
Total Kjeldahl Nitrogen as N		0.1	mg/L	1.8	2.5	3.1	1.8	25.4
EK062: Total Nitrogen as N								
^ Total Nitrogen as N		0.1	mg/L	1.8	2.5	3.1	1.8	25.4
EK067G: Total Phosphorus as P by Discre	ete Analyser							
Total Phosphorus as P		0.01	mg/L	1.78	3.13	0.36	0.43	3.24
EN055: Ionic Balance								
^ Total Anions		0.01	meq/L	50.0	84.9	126	10.0	3.63
^ Total Cations		0.01	meq/L	51.0	80.4	117	10.6	3.54
^ Ionic Balance		0.01	%	0.94	2.72	3.76	2.82	1.28

Page : 5 of 10 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Page : 6 of 10 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

ALS

Sub-Matrix: WATER		Clie	ent sample ID	PZ07-D	PZ08-S	PZ08-D	PZ06-S	PZ06-D
	CI	lient sampli	ng date / time	09-SEP-2008 15:00	09-SEP-2008 15:00	09-SEP-2008 15:00	10-SEP-2008 15:00	10-SEP-2008 15:00
Compound	CAS Number	LOR	Unit	EB0812573-006	EB0812573-007	EB0812573-008	EB0812573-009	EB0812573-010
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EK055G: Ammonia as N by Discrete Anal	yser							
Ammonia as N	7664-41-7	0.01	mg/L	0.71	0.05	1.53	0.50	0.42
EK057G: Nitrite as N by Discrete Analyse	er							
Nitrite as N		0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EK058G: Nitrate as N by Discrete Analys	er							
^ Nitrate as N	14797-55-8	0.01	mg/L	<0.01	0.08	<0.01	0.01	<0.01
EK059G: NOX as N by Discrete Analyser								
Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.08	<0.01	0.01	<0.01
EK061: Total Kjeldahl Nitrogen (TKN)								
Total Kjeldahl Nitrogen as N		0.1	mg/L	2.4	6.4	1.6	0.7	0.8
EK062: Total Nitrogen as N								
^ Total Nitrogen as N		0.1	mg/L	2.4	6.5	1.6	0.7	0.8
EK067G: Total Phosphorus as P by Discr	ete Analyser							
Total Phosphorus as P		0.01	mg/L	0.45	3.72	0.22	2.03	0.51
EN055: Ionic Balance								
^ Total Anions		0.01	meq/L	39.6	17.6	137	18.2	21.5
^ Total Cations		0.01	meq/L	39.0	17.4	128	17.2	20.6
^ Ionic Balance		0.01	%	0.72	0.81	3.50	2.93	2.34

Page : 7 of 10 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Page : 8 of 10 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

ALS

Sub-Matrix: WATER		Clie	ent sample ID	PZ03-S	PZ03-D	PZ02	PZ01	PZ04
	C	lient sampli	ng date / time	10-SEP-2008 15:00	10-SEP-2008 15:00	10-SEP-2008 15:00	10-SEP-2008 15:00	11-SEP-2008 15:00
Compound	CAS Number	LOR	Unit	EB0812573-011	EB0812573-012	EB0812573-013	EB0812573-014	EB0812573-015
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.0001	<0.0001	<0.0001	<0.0001
EK055G: Ammonia as N by Discrete Ana	lyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.17	1.36	0.24	0.82	1.08
EK057G: Nitrite as N by Discrete Analys	er							
Nitrite as N		0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EK058G: Nitrate as N by Discrete Analys	ser							
^ Nitrate as N	14797-55-8	0.01	mg/L	0.39	<0.01	<0.01	<0.01	0.02
EK059G: NOX as N by Discrete Analyse	r							
Nitrite + Nitrate as N		0.01	mg/L	0.39	<0.01	<0.01	<0.01	0.02
EK061: Total Kjeldahl Nitrogen (TKN)								
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.6	1.6	0.3	1.4	2.1
EK062: Total Nitrogen as N								
^ Total Nitrogen as N		0.1	mg/L	1.0	1.6	0.3	1.4	2.1
EK067G: Total Phosphorus as P by Disc	rete Analyser							
Total Phosphorus as P		0.01	mg/L	1.65	1.86	10.0	0.81	0.52
EN055: Ionic Balance								
^ Total Anions		0.01	meq/L	150	211	17.8	82.3	11.2
^ Total Cations		0.01	meq/L	144	202	18.2	78.5	11.7
^ Ionic Balance		0.01	%	2.04	2.30	1.16	2.36	2.25

9 of 10 EB0812573 Page Work Order

: URS AUSTRALIA PTY LTD (QLD) Client

Project : 42626162

Sub-Matrix: WATER		Clie	ent sample ID	QC01	QC02	QC03	QC04	
	Cli	ient samplii	ng date / time	08-SEP-2008 15:00	09-SEP-2008 15:00	10-SEP-2008 15:00	10-SEP-2008 15:00	
Compound	CAS Number	LOR	Unit	EB0812573-016	EB0812573-017	EB0812573-018	EB0812573-019	
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L				<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L				<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L				666	
Total Alkalinity as CaCO3		1	mg/L				666	
ED040F: Dissolved Major Anions								
Sulfate as SO4 2-	14808-79-8	1	mg/L				1020	
ED045P: Chloride by PC Titrator	11000100		J. Company					
Chloride	16887-00-6	1	mg/L				7290	
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L				323	
Magnesium	7439-95-4	1	mg/L				701	
Sodium	7440-23-5	1	mg/L				3380	
Potassium	7440-09-7	1	mg/L				32	
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L				<0.01	
Antimony	7440-36-0	0.001	mg/L				<0.001	
Arsenic	7440-38-2	0.001	mg/L				<0.001	
Beryllium	7440-41-7	0.001	mg/L				<0.001	
Barium	7440-39-3	0.001	mg/L				0.041	
Cadmium	7440-43-9	0.0001	mg/L				<0.0001	
Chromium	7440-47-3	0.001	mg/L				0.019	
Cobalt	7440-48-4	0.001	mg/L				<0.001	
Copper	7440-50-8	0.001	mg/L				0.003	
Gallium	7440-55-3	0.001	mg/L				<0.001	
Lead	7439-92-1	0.001	mg/L				<0.001	
Lithium	7439-93-2	0.001	mg/L				0.441	
Manganese	7439-96-5	0.001	mg/L				0.461	
Molybdenum	7439-98-7	0.001	mg/L				0.001	
Nickel	7440-02-0	0.001	mg/L				0.012	
Selenium	7782-49-2	0.010	mg/L				0.042	
Strontium	7440-24-6	0.001	mg/L				7.75	
Thorium	7440-29-1	0.001	mg/L				<0.001	
Titanium	7440-32-6	0.01	mg/L				<0.01	
Uranium	7440-61-1	0.001	mg/L				<0.001	
Vanadium	7440-62-2	0.01	mg/L				<0.01	
Zinc	7440-66-6	0.005	mg/L				0.008	
Boron	7440-42-8	0.05	mg/L				3.09	
Iron	7439-89-6	0.05	mg/L				0.90	

Page : 10 of 10 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

QUALITY CONTROL REPORT

Work Order : **EB0812573** Page : 1 of 12

Client : URS AUSTRALIA PTY LTD (QLD) Laboratory : Environmental Division Brisbane

Contact : MR STEPHEN DENNER Contact : Tim Kilmister

Address : GPO BOX 302 Address : 32 Shand Street Stafford QLD Australia 4053

 Telephone
 : +61 32432111
 Telephone
 : +61-7-3243 7222

 Facsimile
 : +61 07 32432199
 Facsimile
 : +61-7-3243 7218

Project : 42626162 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Site : Caval Ridge

C-O-C number : --- Date Samples Received : 12-SEP-2008

Sampler : A. Wilson, D. Gould Issue Date : 23-SEP-2008
Order number : ----

No. of samples received : 19

Quote number : EN/001/08

No. of samples analysed : 19

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

BRISBANE QLD. AUSTRALIA 4001

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Kim McCabe Senior Inorganic Chemist Inorganics
Stephen Hislop Senior Inorganic Chemist Inorganics

Environmental Division Brisbane
Part of the ALS Laboratoru Group

32 Shand Street Stafford QLD Australia 4053

Tel. +61-7-3243 7222 Fax. +61-7-3243 7218 www.alsglobal.com

A Campbell Brothers Limited Company

Page : 2 of 12 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 12 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Repo	icate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)			
ED037P: Alkalinity k	by PC Titrator (QC Lo	t: 760714)										
EB0812573-001	PZ10	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit			
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit			
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	139	140	0.7	0% - 20%			
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	139	140	0.7	0% - 20%			
EB0812635-007	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous			
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous			
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous			
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous			
ED037P: Alkalinity k	by PC Titrator (QC Lo	t: 762170)										
EB0812573-004	PZ05	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit			
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit			
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	289	290	0.3	0% - 20%			
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	289	290	0.3	0% - 20%			
EB0812573-013	PZ02	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit			
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit			
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	531	533	0.4	0% - 20%			
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	531	533	0.4	0% - 20%			
ED040F: Dissolved	Major Anions (QC Lot	t: 759990)										
EB0812491-001	Anonymous	ED040F: Sulfate as SO4 2-	14808-79-8	1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous			
EB0812561-006	Anonymous	ED040F: Sulfate as SO4 2-	14808-79-8	1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous			
ED040F: Dissolved	Major Anions (QC Lot	t: 759992)										
EB0812573-007	PZ08-S	ED040F: Sulfate as SO4 2-	14808-79-8	1	mg/L	88	91	2.8	0% - 20%			
EB0812573-019	QC04	ED040F: Sulfate as SO4 2-	14808-79-8	1	mg/L	1020	1040	1.1	0% - 20%			
ED045P: Chloride b	y PC Titrator (QC Lot:	: 760715)										
EB0812573-001	PZ10	ED045-P: Chloride	16887-00-6	1	mg/L	1210	1200	0.8	0% - 20%			
EB0812635-007	Anonymous	ED045-P: Chloride	16887-00-6	1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous			
ED045P: Chlorida b	y PC Titrator (QC Lot:								•			
EB0812573-004	PZ05	ED045-P: Chloride	16887-00-6	1	mg/L	148	146	1.4	0% - 20%			
EB0812573-013	PZ02	ED045-P: Chloride	16887-00-6	1	mg/L	131	128	2.3	0% - 20%			
	Major Cations (QC Lo				9		1=3					
EB0812491-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous			
	, and tyrrious	ED093F: Calcium ED093F: Magnesium	7439-95-4	1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous			
		ED093F: Magnesium ED093F: Sodium	7440-23-5	1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous			
		ED093F: Sodium ED093F: Potassium	7440-23-3	1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous			
EB0812561-006	Anonymous		7440-09-7	1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous			
LD0012001-000	/ wionymous	ED093F: Calcium	1770-10-2	'	IIIg/L	Anonymous	Anonymous	Allonymous	Anonymous			

Page : 4 of 12 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Repor	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
ED093F: Dissolved I	Major Cations (QC Lot	: 759991) - continued							
EB0812561-006	Anonymous	ED093F: Magnesium	7439-95-4	1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		ED093F: Sodium	7440-23-5	1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		ED093F: Potassium	7440-09-7	1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
ED093F: Dissolved I	Major Cations (QC Lot	: 759993)							
EB0812573-007	PZ08-S	ED093F: Calcium	7440-70-2	1	mg/L	52	53	0.0	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	46	46	0.0	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	242	246	1.6	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	18	18	0.0	0% - 50%
EB0812573-019	QC04	ED093F: Calcium	7440-70-2	1	mg/L	323	323	0.0	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	701	695	0.9	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	3380	3420	1.1	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	32	32	0.0	0% - 20%
-G020F: Dissolved	Metals by ICP-MS (QC								
EB0812491-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
	, , , , , , ,	EG020A-F: Antimony	7440-36-0	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Barium	7440-39-3	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Copper	7440-50-8	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Lead	7439-92-1	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Lithium	7439-93-2	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Nickei	7440-66-6	0.005	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Aluminium	7429-90-5	0.000	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Variadium	7782-49-2	0.010	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Boron	7440-42-8	0.05	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Iron	7439-89-6	0.05	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
EB0812573-008	PZ08-D	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
	1 200 B	EG020A-F: Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Anumony EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Arsenic EG020A-F: Beryllium	7440-30-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Beryllium	7440-39-3	0.001	mg/L	0.032	0.032	0.0	0% - 20%
		EG020A-F: Banum EG020A-F: Chromium	7440-39-3	0.001	mg/L	0.032	0.032	0.0	0% - 50%
			7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Cobalt	7440-40-4	0.001	-	0.003	0.003	0.0	No Limit
		EG020A-F: Copper	7440-50-6	0.001	mg/L	0.003	0.003	0.0	INO LITTIL

Page : 5 of 12 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Repor	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020F: Dissolved	Metals by ICP-MS (QC	Lot: 759443) - continued							
EB0812573-008	PZ08-D	EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lithium	7439-93-2	0.001	mg/L	0.530	0.511	3.6	0% - 20%
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.218	0.221	1.5	0% - 20%
		EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.010	0.011	11.1	0% - 50%
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-F: Selenium	7782-49-2	0.010	mg/L	0.025	0.022	12.7	No Limit
		EG020A-F: Boron	7440-42-8	0.05	mg/L	0.73	0.72	0.0	0% - 50%
		EG020A-F: Iron	7439-89-6	0.05	mg/L	0.84	0.92	8.7	0% - 50%
EG020F: Dissolved	Metals by ICP-MS (QC	Lot: 759444)							
EB0812491-001	Anonymous	EG020B-F: Strontium	7440-24-6	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
	·	EG020B-F: Thorium	7440-29-1	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020B-F: Uranium	7440-61-1	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020B-F: Titanium	7440-32-6	0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
EB0812573-008	PZ08-D	EG020B-F: Strontium	7440-24-6	0.001	mg/L	6.94	7.06	1.6	0% - 20%
		EG020B-F: Thorium	7440-29-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020B-F: Uranium	7440-61-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020B-F: Titanium	7440-32-6	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EG020F: Dissolved	Metals by ICP-MS (QC	Lot: 759445)							
EB0812491-001	Anonymous	EG020D-F: Gallium	7440-55-3	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
EB0812573-008	PZ08-D	EG020D-F: Gallium	7440-55-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
FG020T: Total Metal	Is by ICP-MS (QC Lot:				J				
EB0812504-001	Anonymous	EG020A-T: Antimony	7440-36-0	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
	,	EG020A-T: Lithium	7439-93-2	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-T: Molybdenum	7439-98-7	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-T: Moryodenam	7429-90-5	0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-T: Selenium	7782-49-2	0.010	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-T: Boron	7440-42-8	0.05	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-T: Iron	7439-89-6	0.05	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
EB0812573-016	QC01	EG020A-T: Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Lithium	7439-93-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Molybdenum	7439-98-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-T: Selenium	7782-49-2	0.010	mg/L	<0.010	<0.010	0.0	No Limit
		EG020A-T: Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	0.0	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.0	No Limit
FG020T: Total Motal	Is by ICP-MS (QC Lot:								
EB0812504-001	Anonymous	EG020B-T: Strontium	7440-24-6	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		LG020D-1. Strontlum	7 7 7 2 7 - 0	0.001	9/ _	7 11 10 11 y 11 10 u 0	7 tiloliyiilous	7 thoriyinous	, worrymous

Page : 6 of 12 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Repor	rt	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020T: Total Meta	ls by ICP-MS (QC Lot:	760172) - continued							
EB0812504-001	Anonymous	EG020B-T: Thorium	7440-29-1	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020B-T: Uranium	7440-61-1	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020B-T: Titanium	7440-32-6	0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
EB0812573-016	QC01	EG020B-T: Strontium	7440-24-6	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020B-T: Thorium	7440-29-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020B-T: Uranium	7440-61-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020B-T: Titanium	7440-32-6	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EG020T: Total Meta	ls by ICP-MS (QC Lot:	760173)							
EB0812504-001	Anonymous	EG020D-T: Gallium	7440-55-3	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
EB0812573-016	QC01	EG020D-T: Gallium	7440-55-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
FG035F: Dissolved	Mercury by FIMS (QC				J				
EB0812573-001	PZ10	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.0001	0.0	No Limit
EB0812573-011	PZ03-S	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
	as N by Discrete Analy	· ·			g				
EB0812521-005	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
EB0812558-004	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
	,		7001111	0.01	mg/L	7 thonymous	7 thoriyinodo	, monymodo	7 thonymous
EB0812573-006	as N by Discrete Analy PZ07-D		7664-41-7	0.01	mg/L	0.71	0.74	4.6	0% - 20%
EB0812573-000	QC04	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	1.60	1.49	6.7	0% - 20%
		EK055G: Ammonia as N	7004-41-7	0.01	IIIg/L	1.00	1.49	0.7	070 - 2070
	N by Discrete Analyse			0.04					
EB0812521-017	Anonymous	EK057G: Nitrite as N		0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
EB0812567-003	Anonymous	EK057G: Nitrite as N		0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
	N by Discrete Analyse								
EB0812558-001	Anonymous	EK057G: Nitrite as N		0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
EB0812573-009	PZ06-S	EK057G: Nitrite as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit
	by Discrete Analyser	(QC Lot: 761134)							
EB0812573-001	PZ10	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit
EB0812573-011	PZ03-S	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.39	0.40	0.0	0% - 20%
EK061: Total Kjelda	hl Nitrogen (TKN) (QC	Lot: 759513)							
EB0812400-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
EB0812573-003	PZ09	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	3.1	3.0	3.6	0% - 20%
EK061: Total Kjelda	hl Nitrogen (TKN) (QC	Lot: 759515)							
EB0812573-013	PZ02	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.3	0.2	0.0	No Limit
EB0812612-004	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
EK067G: Total Phos	sphorus as P by Discre	te Analyser (QC Lot: 759514)			_				•
EB0812400-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
EB0812573-003	PZ09	EK067G: Total Phosphorus as P		0.01	mg/L	0.36	0.33	10.7	0% - 20%
FK067G: Total Phon	enhorus as P by Disers	ete Analyser (QC Lot: 759516)			<u> </u>				
EB0812573-013	P702	EK067G: Total Phosphorus as P		0.01	mg/L	10.0	10.5	5.2	0% - 20%
LD0012010-010	1 202	ENDO/G. TOTAL PHOSPHOTUS AS P		0.01	IIIg/L	10.0	10.5	5.2	0 /0 - 20 /0

Page : 7 of 12 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Sub-Matrix: WATER					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)			
EK067G: Total Phos	EK067G: Total Phosphorus as P by Discrete Analyser (QC Lot: 759516) - continued											
EB0812612-004	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous			

Page : 8 of 12 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
ED037P: Alkalinity by PC Titrator (QCLot: 760714)								
ED037-P: Total Alkalinity as CaCO3		1	mg/L		500 mg/L	98.0	77.5	112
ED037P: Alkalinity by PC Titrator (QCLot: 762170)								
ED037-P: Total Alkalinity as CaCO3		1	mg/L		500 mg/L	97.8	77.5	112
ED040F: Dissolved Major Anions (QCLot: 759990)								
ED040F: Sulfate as SO4 2-	14808-79-8	1	mg/L	<1				
ED040F: Dissolved Major Anions (QCLot: 759992)								
ED040F: Sulfate as SO4 2-	14808-79-8	1	mg/L	<1				
ED045P: Chloride by PC Titrator (QCLot: 760715)			J					
ED045-P: Chloride	16887-00-6	1	mg/L	<1	1000 mg/L	101	88.4	110
	10001 00 0		9, 2		1000 1119/2			
ED045P: Chloride by PC Titrator (QCLot: 762171)	16887-00-6	1	mg/L	<1	1000 mg/L	100	88.4	110
ED045-P: Chloride	10007-00-0	'	IIIg/L	~1	1000 Hig/L	100	00.4	110
ED093F: Dissolved Major Cations (QCLot: 759991)	7440 70 0	4		-4				
ED093F: Calcium	7440-70-2 7439-95-4	1	mg/L	<1				
ED093F: Magnesium	7439-95-4	1	mg/L	<1 <1				
ED093F: Sodium	7440-23-5	1	mg/L mg/L	<1				
ED093F: Potassium	7440-09-7	1	IIIg/L	~1				
ED093F: Dissolved Major Cations (QCLot: 759993)	7440.70.0	4		.4				
ED093F: Calcium	7440-70-2 7439-95-4	1	mg/L	<1 <1				
ED093F: Magnesium	7439-95-4	<u> </u>	mg/L	·				
ED093F: Sodium	7440-23-5	1	mg/L	<1 <1				
ED093F: Potassium	7440-09-7		mg/L	<u> </u>				
EG020F: Dissolved Metals by ICP-MS (QCLot: 759443)								
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.500 mg/L	105	76.1	130
EG020A-F: Antimony	7440-36-0	0.001	mg/L	<0.001	0.100 mg/L	94.4	87.7	114
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.100 mg/L	# 74.6	79.6	115
EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.100 mg/L	99.4	8.08	130
EG020A-F: Barium	7440-39-3	0.001	mg/L	<0.001	0.400//			440
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.100 mg/L	99.3	86.6	113
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.100 mg/L	99.5	84.4	128
EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.100 mg/L	96.1	86.6	117
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.200 mg/L	95.6	85	117
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.100 mg/L	92.4	85.4	117
EG020A-F: Lithium	7439-93-2	0.001	mg/L	<0.001				

Page : 9 of 12 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Sub-Matrix: WATER		Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020F: Dissolved Metals by ICP-MS (QCLot: 759443)	- continued							
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.100 mg/L	94.3	84.1	122
EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.100 mg/L	91.4	89.6	110
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.100 mg/L	92.3	86.3	118
EG020A-F: Selenium	7782-49-2	0.01	mg/L		0.100 mg/L	98.8	84.4	122
		0.010	mg/L	<0.010				
EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.100 mg/L	89.5	76.9	117
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.200 mg/L	110	84.2	130
EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	0.50 mg/L	104	70	130
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.50 mg/L	105	70	130
EG020F: Dissolved Metals by ICP-MS (QCLot: 759444)								
EG020B-F: Strontium	7440-24-6	0.001	mg/L	<0.001	0.500 mg/L	93.3	84.1	116
EG020B-F: Thorium	7440-29-1	0.001	mg/L	<0.001				
EG020B-F: Titanium	7440-32-6	0.01	mg/L	<0.01	0.100 mg/L	103	84.2	118
EG020B-F: Uranium	7440-61-1	0.001	mg/L	<0.001				
EG020F: Dissolved Metals by ICP-MS (QCLot: 759445)								
EG020D-F: Gallium	7440-55-3	0.001	mg/L	<0.001				
EG020T: Total Metals by ICP-MS (QCLot: 760171)								
EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.500 mg/L	85.8	74	130
EG020A-T: Antimony	7440-36-0	0.001	mg/L	<0.001	0.100 mg/L	85.1	84.6	112
EG020A-T: Lithium	7439-93-2	0.001	mg/L	<0.001				
EG020A-T: Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.100 mg/L	# 84.2	85.2	111
EG020A-T: Selenium	7782-49-2	0.01	mg/L		0.100 mg/L	91.0	78.9	113
		0.010	mg/L	<0.010				
EG020A-T: Boron	7440-42-8	0.05	mg/L	<0.05	0.500 mg/L	94.6	70	130
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.500 mg/L	94.4	70	130
EG020T: Total Metals by ICP-MS (QCLot: 760172)								
EG020B-T: Strontium	7440-24-6	0.001	mg/L	<0.001	0.500 mg/L	85.3	81.2	115
EG020B-T: Thorium	7440-29-1	0.001	mg/L	<0.001				
EG020B-T: Titanium	7440-32-6	0.01	mg/L	<0.01	0.100 mg/L	88.6	77.9	118
EG020B-T: Uranium	7440-61-1	0.001	mg/L	<0.001				
EG020T: Total Metals by ICP-MS (QCLot: 760173)								
EG020D-T: Gallium	7440-55-3	0.001	mg/L	<0.001				
EG035F: Dissolved Mercury by FIMS (QCLot: 763478)								
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.010 mg/L	106	85.3	117
EK055G: Ammonia as N by Discrete Analyser (QCLot:	761696)							
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.5 mg/L	84.1	70	130
EK055G: Ammonia as N by Discrete Analyser (QCLot:	761697)							
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.5 mg/L	82.4	70	130

Page : 10 of 12 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EK057G: Nitrite as N by Discrete Analyser (QCLot: 75992	20)								
EK057G: Nitrite as N		0.01	mg/L	<0.01	0.5 mg/L	101	70	130	
EK057G: Nitrite as N by Discrete Analyser (QCLot: 75992	23)								
EK057G: Nitrite as N		0.01	mg/L	<0.01	0.5 mg/L	102	70	130	
EK059G: NOX as N by Discrete Analyser (QCLot: 761134)								
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	104	70	130	
EK061: Total Kjeldahl Nitrogen (TKN) (QCLot: 759513)									
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10.0 mg/L	122	70	130	
EK061: Total Kjeldahl Nitrogen (TKN) (QCLot: 759515)									
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10.0 mg/L	79.4	70	130	
EK067G: Total Phosphorus as P by Discrete Analyser(Qu	CLot: 759514)								
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.2 mg/L	102	70	130	
EK067G: Total Phosphorus as P by Discrete Analyser(Qu	CLot: 759516)								
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.2 mg/L	119	70	130	

Page : 11 of 12 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER					Matrix Spike (MS) Report		
				Spike	Spike Recovery (%)	Recovery	Limits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED045P: Chloride by	y PC Titrator (QCLot: 760715)						
EB0812573-002	PZ11-D	ED045-P: Chloride	16887-00-6	400 mg/L	# Not Determined	70	130
ED045P: Chloride by	y PC Titrator (QCLot: 762171)						
EB0812573-005	PZ07-S	ED045-P: Chloride	16887-00-6	40 mg/L	97.5	70	130
G020F: Dissolved	Metals by ICP-MS (QCLot: 75944	(3)					'
EB0812517-009	Anonymous	EG020A-F: Aluminium	7429-90-5	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Antimony	7440-36-0	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Arsenic	7440-38-2	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Beryllium	7440-41-7	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Barium	7440-39-3	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Cadmium	7440-43-9	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Chromium	7440-47-3	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Cobalt	7440-48-4	Anonymous	Anonymous	Anonymous	Anonymou
		EG020A-F: Copper	7440-50-8	Anonymous	Anonymous	Anonymous	Anonymou
		EG020A-F: Lead	7439-92-1	Anonymous	Anonymous	Anonymous	Anonymou
		EG020A-F: Manganese	7439-96-5	Anonymous	Anonymous	Anonymous	Anonymou
		EG020A-F: Molybdenum	7439-98-7	Anonymous	Anonymous	Anonymous	Anonymou
		EG020A-F: Nickel	7440-02-0	Anonymous	Anonymous	Anonymous	Anonymou
		EG020A-F: Selenium	7782-49-2	Anonymous	Anonymous	Anonymous	Anonymou
		EG020A-F: Vanadium	7440-62-2	Anonymous	Anonymous	Anonymous	Anonymou
		EG020A-F: Zinc	7440-66-6	Anonymous	Anonymous	Anonymous	Anonymou
		EG020A-F: Boron	7440-42-8	Anonymous	Anonymous	Anonymous	Anonymou
G035F: Dissolved	Mercury by FIMS (QCLot: 763478	8)					
EB0812573-001	PZ10	EG035F: Mercury	7439-97-6	0.01 mg/L	93.7	70	130
K055G: Ammonia	as N by Discrete Analyser (QCLo	ot: 761696)					
EB0812521-006	Anonymous	EK055G: Ammonia as N	7664-41-7	Anonymous	Anonymous	Anonymous	Anonymou
K055G: Ammonia	as N by Discrete Analyser (QCLo	ot: 761697)					
EB0812573-007	PZ08-S	EK055G: Ammonia as N	7664-41-7	0.8 mg/L	84.1	70	130
K057G: Nitrite as I	N by Discrete Analyser (QCLot:	759920)					
EB0812557-001	Anonymous	EK057G: Nitrite as N		Anonymous	Anonymous	Anonymous	Anonymou
K057G: Nitrite as	N by Discrete Analyser (QCLot:						
EB0812558-002	Anonymous	EK057G: Nitrite as N		Anonymous	Anonymous	Anonymous	Anonymou
K059G: NOX as N	by Discrete Analyser (QCLot: 76			•			,
EB0812573-002	PZ11-D	EK059G: Nitrite + Nitrate as N		0.4 mg/L	84.8	70	130

Page : 12 of 12 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Sub-Matrix: WATER					Matrix Spike (MS) Rep	ort		
				Spike Spike Recovery (%)			Recovery Limits (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EK061: Total Kjeldah	l Nitrogen (TKN) (QCLot: 759513)							
EB0812400-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		Anonymous	Anonymous	Anonymous	Anonymous	
EK061: Total Kjeldah	l Nitrogen (TKN) (QCLot: 759515)							
EB0812573-014	PZ01	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	81.2	70	130	
EK067G: Total Phosp	horus as P by Discrete Analyser (QCLot: 7	759514)						
EB0812400-002	Anonymous	EK067G: Total Phosphorus as P		Anonymous	Anonymous	Anonymous	Anonymous	
EK067G: Total Phosp	horus as P by Discrete Analyser (QCLot: 7	759516)						
EB0812573-014	PZ01	EK067G: Total Phosphorus as P		2 mg/L	100	70	130	

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order : **EB0812573** Page : 1 of 13

Client : URS AUSTRALIA PTY LTD (QLD) Laboratory : Environmental Division Brisbane

Contact : MR STEPHEN DENNER Contact : Tim Kilmister

Address : GPO BOX 302 Address : 32 Shand Street Stafford QLD Australia 4053

BRISBANE QLD, AUSTRALIA 4001

 Telephone
 : +61 32432111
 Telephone
 : +61-7-3243 7222

 Facsimile
 : +61 07 32432199
 Facsimile
 : +61-7-3243 7218

Project : 42626162 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Site : Caval Ridge

C-O-C number : ---- Date Samples Received : 12-SEP-2008
Sampler : A. Wilson, D. Gould Issue Date : 23-SEP-2008

Order number :----

No. of samples received : 19

Quote number : EN/001/08

No. of samples analysed : 19

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Page : 2 of 13 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not quarantee a breach for all non-volatile parameters.

Matrix: WATER

Evaluation: × =	: Holding time	breach : ✓ =	Within I	noldina time.

Method	Sample Date	Extraction / Preparation			Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED037P: Alkalinity by PC Titrator								
Clear Plastic Bottle - Natural								
PZ10,	PZ11-D,	08-SEP-2008				18-SEP-2008	22-SEP-2008	✓
PZ09								
Clear Plastic Bottle - Natural								
PZ05,	PZ07-S,	09-SEP-2008				19-SEP-2008	23-SEP-2008	✓
PZ07-D,	PZ08-S,							
PZ08-D								
Clear Plastic Bottle - Natural								
PZ06-S,	PZ06-D,	10-SEP-2008				19-SEP-2008	24-SEP-2008	✓
PZ03-S,	PZ03-D,							
PZ02,	PZ01,							
QC04								
Clear Plastic Bottle - Natural								
PZ04		11-SEP-2008				19-SEP-2008	25-SEP-2008	✓
ED040F: Dissolved Major Anions								
Clear Plastic Bottle - Natural								
PZ10,	PZ11-D,	08-SEP-2008				17-SEP-2008	06-OCT-2008	✓
PZ09								
Clear Plastic Bottle - Natural								
PZ05,	PZ07-S,	09-SEP-2008				17-SEP-2008	07-OCT-2008	✓
PZ07-D,	PZ08-S,							
PZ08-D								
Clear Plastic Bottle - Natural								
PZ06-S,	PZ06-D,	10-SEP-2008				17-SEP-2008	08-OCT-2008	✓
PZ03-S,	PZ03-D,							
PZ02,	PZ01,							
QC04								
Clear Plastic Bottle - Natural								
PZ04		11-SEP-2008				17-SEP-2008	09-OCT-2008	✓

Page : 3 of 13 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED045P: Chloride by PC Titrator								
Clear Plastic Bottle - Natural								
PZ10,	PZ11-D,	08-SEP-2008				18-SEP-2008	06-OCT-2008	✓
PZ09								
Clear Plastic Bottle - Natural								
PZ05,	PZ07-S,	09-SEP-2008				19-SEP-2008	07-OCT-2008	✓
PZ07-D,	PZ08-S,							
PZ08-D								
Clear Plastic Bottle - Natural								
PZ06-S,	PZ06-D,	10-SEP-2008				19-SEP-2008	08-OCT-2008	✓
PZ03-S,	PZ03-D,							
PZ02,	PZ01,							
QC04								
Clear Plastic Bottle - Natural								
PZ04		11-SEP-2008				19-SEP-2008	09-OCT-2008	✓
ED093F: Dissolved Major Cations								
Clear Plastic Bottle - Natural								
PZ10,	PZ11-D,	08-SEP-2008				17-SEP-2008	06-OCT-2008	✓
PZ09								
Clear Plastic Bottle - Natural								
PZ05,	PZ07-S,	09-SEP-2008				17-SEP-2008	07-OCT-2008	✓
PZ07-D,	PZ08-S,							
PZ08-D								
Clear Plastic Bottle - Natural								
PZ06-S,	PZ06-D,	10-SEP-2008				17-SEP-2008	08-OCT-2008	✓
PZ03-S,	PZ03-D,							
PZ02,	PZ01,							
QC04								
Clear Plastic Bottle - Natural								
PZ04		11-SEP-2008				17-SEP-2008	09-OCT-2008	✓

Page : 4 of 13 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Within	n holding tim
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Filtered; Lab-acidified								
PZ10,	PZ11-D,	08-SEP-2008				17-SEP-2008	07-MAR-2009	✓
PZ09								
Clear Plastic Bottle - Filtered; Lab-acidified								
PZ05,	PZ07-S,	09-SEP-2008				17-SEP-2008	08-MAR-2009	✓
PZ07-D,	PZ08-S							
Clear Plastic Bottle - Filtered; Lab-acidified								
PZ03-S,	PZ03-D,	10-SEP-2008				17-SEP-2008	09-MAR-2009	✓
PZ02,	QC04							
Clear Plastic Bottle - Filtered; Lab-acidified								
PZ04		11-SEP-2008				17-SEP-2008	10-MAR-2009	✓
Clear Plastic Bottle - Nitric Acid; Filtered								
PZ08-D		09-SEP-2008				17-SEP-2008	08-MAR-2009	✓
Clear Plastic Bottle - Nitric Acid; Filtered								
PZ06-S,	PZ06-D,	10-SEP-2008				17-SEP-2008	09-MAR-2009	✓
PZ01								
EG020T: Total Metals by ICP-MS								
Clear Plastic Bottle - Unfiltered; Lab-acidified								
QC01		08-SEP-2008	18-SEP-2008	07-MAR-2009	1	18-SEP-2008	07-MAR-2009	✓
Clear Plastic Bottle - Unfiltered; Lab-acidified								
QC02		09-SEP-2008	18-SEP-2008	08-MAR-2009	1	18-SEP-2008	08-MAR-2009	✓
Clear Plastic Bottle - Unfiltered; Lab-acidified								
QC03		10-SEP-2008	18-SEP-2008	09-MAR-2009	✓	18-SEP-2008	09-MAR-2009	✓
EG035F: Dissolved Mercury by FIMS								
Clear Plastic Bottle - Filtered; Lab-acidified								
PZ10,	PZ11-D,	08-SEP-2008				22-SEP-2008	06-OCT-2008	✓
PZ09								
Clear Plastic Bottle - Filtered; Lab-acidified								
PZ05,	PZ07-S,	09-SEP-2008				22-SEP-2008	07-OCT-2008	✓
PZ07-D,	PZ08-S							
Clear Plastic Bottle - Filtered; Lab-acidified								
PZ03-S,	PZ03-D,	10-SEP-2008				22-SEP-2008	08-OCT-2008	✓
PZ02,	QC04							
Clear Plastic Bottle - Filtered; Lab-acidified								
PZ04		11-SEP-2008				22-SEP-2008	09-OCT-2008	1
Clear Plastic Bottle - Nitric Acid; Filtered								· ·
PZ08-D		09-SEP-2008				22-SEP-2008	07-OCT-2008	✓
Clear Plastic Bottle - Nitric Acid; Filtered								
PZ06-S,	PZ06-D,	10-SEP-2008				22-SEP-2008	08-OCT-2008	✓
PZ01	•							

Page : 5 of 13 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

PZ04

latrix: WATER					Evaluation	× = Holding time	breach; ✓ = Withir	n holding tin
Wethod		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK055G: Ammonia as N by Discrete A	nalyser							
Clear Plastic Bottle - Sulphuric Acid								
PZ10,	PZ11-D,	08-SEP-2008				18-SEP-2008	06-OCT-2008	✓
PZ09								
Clear Plastic Bottle - Sulphuric Acid								
PZ05,	PZ07-S,	09-SEP-2008				18-SEP-2008	07-OCT-2008	✓
PZ07-D,	PZ08-S,							
PZ08-D								
Clear Plastic Bottle - Sulphuric Acid								
PZ06-S,	PZ06-D,	10-SEP-2008				18-SEP-2008	08-OCT-2008	✓
PZ03-S,	PZ03-D,							
PZ02,	PZ01,							
QC04								
Clear Plastic Bottle - Sulphuric Acid								
PZ04		11-SEP-2008				18-SEP-2008	09-OCT-2008	✓
EK057G: Nitrite as N by Discrete Anal	lyser							
Clear Plastic Bottle - Natural								
PZ10,	PZ11-D,	08-SEP-2008				17-SEP-2008	10-SEP-2008	*
PZ09								
Clear Plastic Bottle - Natural								
PZ05,	PZ07-S,	09-SEP-2008				17-SEP-2008	11-SEP-2008	×
PZ07-D,	PZ08-S,							
PZ08-D								
Clear Plastic Bottle - Natural								
PZ06-S,	PZ06-D,	10-SEP-2008				17-SEP-2008	12-SEP-2008	x
PZ03-S,	PZ03-D,							
PZ02,	PZ01,							
QC04								
Clear Plastic Bottle - Natural								

11-SEP-2008

13-SEP-2008

17-SEP-2008

Page : 6 of 13 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		-	Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK059G: NOX as N by Discrete Analyser								
Clear Plastic Bottle - Sulphuric Acid								
PZ10,	PZ11-D,	08-SEP-2008				18-SEP-2008	06-OCT-2008	✓
PZ09								
Clear Plastic Bottle - Sulphuric Acid								
PZ05,	PZ07-S,	09-SEP-2008				18-SEP-2008	07-OCT-2008	✓
PZ07-D,	PZ08-S,							
PZ08-D								
Clear Plastic Bottle - Sulphuric Acid								
PZ06-S,	PZ06-D,	10-SEP-2008				18-SEP-2008	08-OCT-2008	✓
PZ03-S,	PZ03-D,							
PZ02,	PZ01,							
QC04								
Clear Plastic Bottle - Sulphuric Acid								
PZ04		11-SEP-2008				18-SEP-2008	09-OCT-2008	✓
EK061: Total Kjeldahl Nitrogen (TKN)								
Clear Plastic Bottle - Sulphuric Acid								
PZ10,	PZ11-D,	08-SEP-2008	17-SEP-2008	06-OCT-2008	✓	17-SEP-2008	06-OCT-2008	✓
PZ09								
Clear Plastic Bottle - Sulphuric Acid								
PZ05,	PZ07-S,	09-SEP-2008	17-SEP-2008	07-OCT-2008	✓	17-SEP-2008	07-OCT-2008	✓
PZ07-D,	PZ08-S,							
PZ08-D								
Clear Plastic Bottle - Sulphuric Acid								
PZ06-S,	PZ06-D,	10-SEP-2008	17-SEP-2008	08-OCT-2008	✓	17-SEP-2008	08-OCT-2008	✓
PZ03-S,	PZ03-D,							
PZ02,	PZ01,							
QC04								
Clear Plastic Bottle - Sulphuric Acid								
PZ04		11-SEP-2008	17-SEP-2008	09-OCT-2008	1	17-SEP-2008	09-OCT-2008	1

Page : 7 of 13 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Matrix: WATER	Evaluatio	n: x = Holding time breach ; ✓ = Within holding time.

Method				Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EK067G: Total Phosphorus as P by	Discrete Analyser								
Clear Plastic Bottle - Sulphuric Acid	d								
PZ10,	PZ11-D,	08-SEP-2008	17-SEP-2008	06-OCT-2008	✓	17-SEP-2008	06-OCT-2008	✓	
PZ09									
Clear Plastic Bottle - Sulphuric Acid	d								
PZ05,	PZ07-S,	09-SEP-2008	17-SEP-2008	07-OCT-2008	✓	17-SEP-2008	07-OCT-2008	✓	
PZ07-D,	PZ08-S,								
PZ08-D									
Clear Plastic Bottle - Sulphuric Acid	d								
PZ06-S,	PZ06-D,	10-SEP-2008	17-SEP-2008	08-OCT-2008	✓	17-SEP-2008	08-OCT-2008	✓	
PZ03-S,	PZ03-D,								
PZ02,	PZ01,								
QC04									
Clear Plastic Bottle - Sulphuric Acid	d								
PZ04		11-SEP-2008	17-SEP-2008	09-OCT-2008	✓	17-SEP-2008	09-OCT-2008	✓	

Page : 8 of 13 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER

Evaluation: × = Quality Control frequency not within specification : ✓ = Quality Control frequency within specification

Matrix: WATER	not within specification; ✓ = Quality Control frequency within specification.						
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Alkalinity by PC Titrator	ED037-P	4	40	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Ammonia as N by Discrete analyser	EK055G	4	40	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chloride by PC Titrator	ED045-P	4	40	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	18	11.1	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite B	EG020B-F	2	18	11.1	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite D	EG020D-F	2	18	11.1	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Anions - Filtered	ED040F	4	40	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Cations - Filtered	ED093F	4	38	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	4	40	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	4	26	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite B	EG020B-T	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite D	EG020D-T	2	12	16.7	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus as P By Discrete Analyser	EK067G	4	31	12.9	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
Alkalinity by PC Titrator	ED037-P	2	40	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Ammonia as N by Discrete analyser	EK055G	2	40	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chloride by PC Titrator	ED045-P	2	40	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	18	5.6	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	18	5.6	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	2	40	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	26	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite B	EG020B-T	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus as P By Discrete Analyser	EK067G	2	31	6.5	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	2	40	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chloride by PC Titrator	ED045-P	2	40	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	18	5.6	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	18	5.6	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Page : 9 of 13 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Quality Control Sample Type		C	Count		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Dissolved Metals by ICP-MS - Suite D	EG020D-F	1	18	5.6	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Najor Anions - Filtered	ED040F	2	40	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Najor Cations - Filtered	ED093F	2	38	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
litrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
litrite as N by Discrete Analyser	EK057G	2	40	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	26	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Metals by ICP-MS - Suite A	EG020A-T	1	13	7.7	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Metals by ICP-MS - Suite B	EG020B-T	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Metals by ICP-MS - Suite D	EG020D-T	1	12	8.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Phosphorus as P By Discrete Analyser	EK067G	2	31	6.5	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	2	40	5.0	5.0	✓	ALS QCS3 requirement
Chloride by PC Titrator	ED045-P	2	40	5.0	5.0	✓	ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	20	5.0	5.0	✓	ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	18	5.6	5.0	✓	ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.0	5.0	✓	ALS QCS3 requirement
litrite as N by Discrete Analyser	EK057G	2	40	5.0	5.0	✓	ALS QCS3 requirement
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	26	7.7	5.0	✓	ALS QCS3 requirement
otal Metals by ICP-MS - Suite A	EG020A-T	1	13	7.7	5.0	✓	ALS QCS3 requirement
otal Phosphorus as P By Discrete Analyser	EK067G	2	31	6.5	5.0	1	ALS QCS3 requirement

Page : 10 of 13 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Alkalinity by PC Titrator	ED037-P	WATER	APHA 21st ed., 2320 B This procedure determines alkalinity by both manual measurement and automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Major Anions - Filtered	ED040F	WATER	APHA 21st ed., 3120 Sulfur and/or Silcon content is determined by ICP/AES and reported as Sulfate and/or Silica after conversion by gravimetric factor.
Chloride by PC Titrator	ED045-P	WATER	APHA 21st ed., 4500 CI - B. Automated Silver Nitrate titration.
Major Cations - Filtered	ED093F	WATER	APHA 21st ed., 3120; USEPA SW 846 - 6010 The ICPAES technique ionises filtered sample atoms emitting a characteristic spectrum. This spectrum is then compared against matrix matched standards for quantification. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Metals by ICP-MS - Suite B	EG020B-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite B	EG020B-T	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Metals by ICP-MS - Suite D	EG020D-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite D	EG020D-T	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.

Page : 11 of 13 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Mercury by FIMS	EG035F	WATER	AS 3550, APHA 21st ed. 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an
			automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic
			mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by
			SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a
			calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ammonia as N by Discrete analyser	EK055G	WATER	APHA 21st ed., 4500 NH3+-G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite as N by Discrete Analyser	EK057G	WATER	APHA 21st ed., 4500 NO3- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrate as N by Discrete Analyser	EK058G	WATER	APHA 21st ed., 4500 NO3F. Nitrate is reduced to nitrite by way of a cadmium reduction column followed by
			quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate
			calculated as the difference between the two results. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite and Nitrate as N (NOx) by Discrete	EK059G	WATER	APHA 21st ed., 4500 NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Cadmium Reduction
Analyser			and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Kjeldahl Nitrogen as N By Discrete	EK061G	WATER	APHA 21st ed., 4500-Norg-D25mL water samples are digested using a traditional Kjeldahl digestion followed by
Analyser			determination by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	APHA 21st ed., 4500 N org / NO3. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Phosphorus as P By Discrete	EK067G	WATER	APHA 21st ed., 4500 P-B&F This procedure involves sulphuric acid digestion of a 100mL sample to break
Analyser			phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony
			potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using
			Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ionic Balance by PCT and ICPAES	EN055	WATER	APHA 21st Ed. 1030F. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	APHA 21st ed., 4500 Norg - D; APHA 21st ed., 4500 P - H. This method is compliant with NEPM (1999) Schedule
			B(3) (Appdx. 2)
Digestion for Total Recoverable Metals	EN25	WATER	USEPA SW846-3005 Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and
			ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Page : 12 of 13 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Laboratory Control Spike (LCS) Recoveries							
EG020F: Dissolved Metals by ICP-MS	857555-002		Arsenic	7440-38-2	74.6 %	79.6-115%	Recovery less than lower control limit
EG020T: Total Metals by ICP-MS	858449-002		Molybdenum	7439-98-7 84.2 % 85.2-111% Recovery less			
Matrix Spike (MS) Recoveries							
ED045P: Chloride by PC Titrator	EB0812573-002	PZ11-D	Chloride	16887-00-6	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Matrix: WATER

Malix. WAIER								
Method			Extra	action / Preparation			Analysis	
Container / Client Sample ID(s)	Date ext	racted	Due for extraction	Days	Date analysed	Due for analysis	Days	
					overdue			overdue
EK057G: Nitrite as N by Discrete Analyse	er en en en en en en en en en en en en en							
Clear Plastic Bottle - Natural								
PZ10,	PZ11-D,					17-SEP-2008	10-SEP-2008	7
PZ09								
Clear Plastic Bottle - Natural								
PZ05,	PZ07-S,					17-SEP-2008	11-SEP-2008	6
PZ07-D,	PZ08-S,							
PZ08-D								
Clear Plastic Bottle - Natural								
PZ06-S,	PZ06-D,					17-SEP-2008	12-SEP-2008	5
PZ03-S,	PZ03-D,							
PZ02,	PZ01,							
QC04								
Clear Plastic Bottle - Natural								
PZ04						17-SEP-2008	13-SEP-2008	4

Page : 13 of 13 Work Order : EB0812573

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.

,	MSQU	pe.	r previous	EBOS	8175	73	•		17	13	. (<u> </u>	- 1	An	JK!M	/ W	, Jrou	Oursorp, com
ZHAIN OF CUSTODY		•	•		\int													A
CLIENT: BMA							SAMPLER: Andrew Wilson / Shane Stevens											
ADDRESS / OFFICE:	MOBILE: 0448 853 004 / 0427 753 236							(ALS)										
PROJECT MANAGER (PM): Stephe	en Denner				PHON	E	3243	2146	/ 3243	2209	•							Australian Laboratory Services Pty Ltd
PROJECT ID: 42626162				•	EMAIL	REPO	RT TO:	:	steph	<u>en de</u>	enner@	ည်ဂၤနိုင	orp.cc	(under	score	betwe	een st	tephen and denner)
SITE: Caval Ridge	L	P.O. N O .:							rent to					1				
RESULTS REQUIRED (Date):		QUOTE N	10.:		ANAL'	YSIS R	EQUIR	ED incl	uding S		(note -	suite co	odes mu	ıst be lis	sted to	attract	suite pi	rices)
FOR LABORATORY USE ONLY COOLER SEAL (circle appropriate) Intact Yes No. N/A SAMPLE TEMPERATURE	OR LABORATORY USE ONLY COMMENTS / SPECIAL HANDLING / STORAGE OR DIPOSAL: OOLER SEAL (circle appropriate) tact Yes No N/A								, Ga, Li (Dissolvec	Th, Ti, U (Dissolved	, Ga, Li (Total)	Th, Ti, U (Total)	ļ		Ų	ul		Notes: e.g. Highly contaminated samples e.g. "High PAHs expected". Extra volume for QC or trace LORs etc.
CHILLED: Yes No						ļ *			3, Fe	Sr, T	B, Fe,	ر ا			l	i		
SAMPLE INFORMATION (note:	S = Soil, W=Water)		CONTAINER INFO	RMATION] _				Sp.	Se,	Sb, E	8 S				.	ļ	
ALS ID SAMPLE ID	MATRIX DATE	Time	Type / Code	Total bottles	Ę	NT2	N T S	83	₹,	ος V	Ą	δ						
1 1206-5	Water 27/2	PM	P, 5P,N	3	1	/	1		V.	$ \checkmark\rangle$]	Purple bottles frozen
2 Pz 06-D	27/2	PM	PSPN	3		V	V	J		\ \					Ĭ			as soon as
3 P208-5	28/2	AM	PSP N	3	V	V	/		1	\checkmark					\setminus			practicable
4 P208-D	28/2	AM	PSPN	3		7	J		1	V					\leq			
5 P207-5	28/2	AM	PSPN	3	Ĭ	V			1/	1								Environmental Division Brisbane
6 P207-D	28/2	4/1	0 <0 N	3	1		7	17	Ž	$\overline{\mathbf{J}}$:		Work Order
7 P205	28/2	PM	PSPN	3	1	7	Ž	1	J	V	5	`Am	ોંદ વ	¥ 8				EB0903756
3 P209	3/3	PM	DISPN	3	Ĭ,	V		17	J	1	NO	7			NOX	0) par	
9 P711-D	2/3	PM	PSPN	3	Ď		1	7	V			dra	'. 	ROZI	19			
10 P>01	3/3	AM	PSPN	3	\forall	V	J	Ż	1					<u> </u>	95	Ø		
11 PZ 03-5	3/3	PM	PSPN	3	1	V	J,	7	Ĭ	V,			1	abla h	ME	7		-
17 P203-D	3/3	PM	P.SP.N	3	V	1	J	V	1	7				Û			·	_ Telephone : + 01-7-32-6 7222
	RELINQUISHED BY		/ -/							REC	CEIVED	BY		,	1			METHOD OF SHIPMENT
Name: Andrew Wilson	1		Date: 4/3/0	9	Nam	e:	$\mathcal{D}_{\mathcal{C}}$	Yav	\mathcal{L}				Date:	5/3	7/0/	4		Con' Note No:
of: VRS			Time: 11:30			112		<u>~</u>					Time:	135	<u>O</u>			
Name:			Date:		Nam	e:							Date:			,		Transport Co:
Of:			Time:		Of:								Time:					
Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserveed Plastic; AG = Amber Glass Unpreserved; V = VOA Vial HCl Preserved; VS = VOA Vial Sulphuric Preserved; SG = Sulfuric Preserved Amber Glass; H = HCl preserved Plastic; HS = HCl preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle; ASS = Plastic Bad for Acid Sulphate Soils; B = Unpreserved Bag.																		

CHAIN OF CUSTODY	DOCUME	TAT	ION							·								A		
CLIENT: BMA					SAMPLER: Andrew Wilson / Shane Stevens															
ADDRESS / OFFICE:					MOBILE: 0448 853 004 / 0427 753 236															
PROJECT MANAGER (PM): Stephe	en Denner				PHON	E	3243			3 2209								Australian Laboratory Services Pty Ltd		
PROJECT ID: 42626162							RT TO:				nner@	Dursc	orp.cc	(unde	rscore	betw	veen s	tephen and denner)		
SITE: Caval Ridge P.O. NO.:					EMAIL INVOICE TO: (if different to report)															
RESULTS REQUIRED (Date): QUOTE NO.:				ANALY	ANALYSIS REQUIRED including SUITES (note - suite codes must be listed to attract suite prices)										rices)					
FOR LABORATORY USE ONLY	COMMENTS / SPECIAL HANDLING / STORAGE OR DIPOSAL:								Ga, Li (Dissolve	Ti, U (Dissolve	e e	al)						Notes: e.g. Highly contaminated samples		
COOLER SEAL (circle appropriate)									(Diss	(Dis	Li (Total)	(Total)		ļ				e.g. "High PAHs expected".		
Intact: Yes No N/A									, Li) <u>i</u>	a, Li	Ti, U						Extra volume for QC or trace LORs etc.		
SAMPLE TEMPERATURE									Fe, G	Ę	Fe, Ga,	Ä,	ĺ							
CHILLED: Yes No			1						B,	S,	m,	S,								
SAMPLE INFORMATION (note:			CONTAINER INFO		7	NT2	NT8	e e	Sb,	S, Ce	, Sb,	o, Se,								
ALS ID SAMPLE ID	MATRIX DATE	Time	Type / Code	Total bottles	NT1	<u>/z</u> /	/ z /	§ /	/ ĕ	⁄ <u>§</u> ∕	AI,	Mo,						10 1 1 1 1		
13 PZO2	Water 3/3	PM	P, SPN	3	\searrow		/	1	/	1/								Purple bottles Frozen		
14 P204	3/3	PM	PSPN	3	<u> </u>	\sim		<u> </u>	V	ν,								as soon as		
15 QCOI	2/3	PM	P SPN	3	/		$ \sqrt{ }$		V	✓		1						practicable		
16 QCO2	2/3	PM	Ņ	1							\	<u> </u>								
17 QC03	2/3	PM	Ň	1		,					\searrow	<u> </u>								
18 QC04	3/3	PM	P, SP, N	3	\	$\sqrt{}$	1	./		\ \					10 m	1				
19 QCO5	3/3	PM	N								\searrow	\checkmark	X		SEA	Her.	Me	als on		
20 QCOB	3/3	PM	N	Ì							\checkmark	\checkmark		p	$e_{\gamma'}$	And	real	Wilson 9-3-09@ 946/		
	'													~ ,	Bit	Hen	na	Filtered		
																		-		
				-																
RELINQUISHED BY:								-		PEC	CEIVED	BY		•			•	METHOD OF SHIPMENT		
Name: Andrew Wilson			Date: 4/3/09		Name	//							Date:					Con' Note No:		
of: URS			Time: 11 :30		Of:						,		Time:							
Name:			Date:		Name	9:							Date:					Transport Co:		
Of:	Time: Of: Time:																			

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AG = Amber Glass Unpreserved; V = VOA Vial HCl Preserved; VS = VOA Vial Sulphuric Preserved; SG = Sulfuric Preserved Amber Glass; H = HCl preserved Plastic; HS = HCl preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass;

Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle; ASS = Plastic Bad for Acid Sulphate Soils; B = Unpreserved Bag.

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD) Laboratory : Environmental Division Brisbane

Contact : MR STEPHEN DENNER Contact : Tim Kilmister

Address : GPO BOX 302 Address : 32 Shand Street Stafford QLD Australia

BRISBANE QLD, AUSTRALIA 4001 40

Telephone : +61 32432111 Telephone : +61-7-3243 7222
Facsimile : +61 07 32432199 Facsimile : +61-7-3243 7218

Project : 42626162 Page : 1 of 3

Order number : ----

C-O-C number : ---- Quote number : ES2008URSQLD0041 (EN/001/08)

Site : Caval Ridge

Sampler : A.Wilson, S.Stevens QC Level : NEPM 1999 Schedule B(3) and ALS

QCS3 requirement

Dates

Date Samples Received : 05-MAR-2009 Issue Date : 09-MAR-2009 10:22
Client Requested Due Date : 17-MAR-2009 Scheduled Reporting Date : 17-MAR-2009

Delivery Details

Mode of Delivery : Carrier Temperature : 8.0,9.8,24.2,14.8C - Ice present

No. of coolers/boxes : 4 MEDIUM No. of samples received : 20 Sercurity Seal : Intact. No. of samples analysed : 20

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Breaches in recommended extraction / analysis holding times may occur.
- The recommended holding time for Nitrite, Nitrate +/or reactive phosphorus analysis is 48 hours from the time of sampling.
- Sample labelled PZ09 1lt Green Container was received in esky without a lid and sample was spilt throughout the esky.
 - We were unable to salvage this sample. As per our conversation 09/03 due to this analysis of NT2 and TN, NH3 and TP (from NT8) were unable to be performed. We were however able to perform analysis of Nox from the (NT8)
- As per converstion 09/03 samples labelled QC05 and QC06 are to have analysis of dissolved metals.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Maggie Kahi.
- Analytical work for this work order will be conducted at ALS Brisbane.
- Sample Disposal Aqueous (14 days), Solid (90 days) from date of completion of work order.

Issue Date : 09-MAR-2009 10:22

Page : 2 of 3 Work Order : EB0903756

EB0903756-020

03-MAR-2009 15:00

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

process neccessar tasks. Packages r the determination tasks, that are include	may contain addition of moisture conf ed in the package. d/or time(s) are sh med by the labor sampling time is	of client requested al analyses, such as	WATER - EG020A-F Dissolved Metals by ICPMS - Suite A	WATER - EG020A-T Total Metals by ICPMS - Suite A	WATER - EG020B-F Dissolved Metals by ICPMS - Suite B	WATER - EG020B-T Total Metals by ICPMS - Suite B	WATER - EG020D-F Dissolved Metals by ICPMS - Suite D	WATER - EG020D-T Total Metals by ICPMS - Suite D	WATER - EK059G Nitrite plus Nitrate as N (NOx) by Discrete Analyser	WATER - EN055 Ionic Balance
EB0903756-001	27-FEB-2009 15:00	PZ06-S	✓	> -	<u>> □</u>	> F	✓	> F	>	> <u> </u>
EB0903756-002	27-FEB-2009 15:00	PZ06-D	1		✓		1			✓
EB0903756-003	28-FEB-2009 15:00	PZ08-S	✓		✓		✓			✓
EB0903756-004	28-FEB-2009 15:00	PZ08-D	1		✓		✓			✓
EB0903756-005	28-FEB-2009 15:00	PZ07-S	✓		✓		✓			✓
EB0903756-006	28-FEB-2009 15:00	PZ07-D	✓		✓		✓			✓
EB0903756-007	28-FEB-2009 15:00	PZ05	✓		✓		✓			✓
EB0903756-008	02-MAR-2009 15:00	PZ09	✓		✓		✓		✓	
EB0903756-009	02-MAR-2009 15:00	PZ11-D	✓		✓		✓			✓
EB0903756-010	03-MAR-2009 15:00	PZ01	✓		✓		✓			✓
EB0903756-011	03-MAR-2009 15:00	PZ03-S	✓		✓		✓			✓
EB0903756-012	03-MAR-2009 15:00	PZ03-D	✓		✓		✓			✓
EB0903756-013	03-MAR-2009 15:00	PZ02	✓		✓		✓			✓
EB0903756-014	03-MAR-2009 15:00	PZ04	✓		✓		✓			✓
EB0903756-015	02-MAR-2009 15:00	QC01	✓		✓		✓			✓
EB0903756-016	02-MAR-2009 15:00	QC02		✓		✓		✓		
EB0903756-017	02-MAR-2009 15:00	QC03		✓		✓		✓		
EB0903756-018	03-MAR-2009 15:00	QC04	✓		✓		✓			✓
EB0903756-019	03-MAR-2009 15:00	QC05	✓		✓		✓			

Matrix: WATER Laboratory sample ID	Client sampling date / time	Client sample ID	WATER - NT-01 Major Cations (Ca, Mg, Na, K)	WATER - NT-02 (EB/PCT) Major Anions (Cl, SO4, Alkalinity)	WATER - NT-08 Total Nitrogen + NO2 + NO3 + NH3 + Total P	WATER - W-03 13 Metals (NEPM Suite)
EB0903756-001	27-FEB-2009 15:00	PZ06-S	✓	✓	✓	✓
EB0903756-002	27-FEB-2009 15:00	PZ06-D	✓	✓	✓	✓
EB0903756-003	28-FEB-2009 15:00	PZ08-S	✓	✓	✓	✓
EB0903756-004	28-FEB-2009 15:00	PZ08-D	✓	✓	✓	✓

QC06

Issue Date : 09-MAR-2009 10:22

Page : 3 of 3 Work Order : EB0903756

			WATER - NT-01 Major Cations (Ca, Mg, Na, K)	WATER - NT-02 (EB/PCT) Major Anions (Cl, SO4, Alkalinity)	WATER - NT-08 Total Nitrogen + NO2 + NO3 + NH3 + Total P	- `
EB0903756-005	28-FEB-2009 15:00	PZ07-S	✓	✓	✓	✓
EB0903756-006	28-FEB-2009 15:00	PZ07-D	✓	✓	✓	✓
EB0903756-007	28-FEB-2009 15:00	PZ05	✓	✓	✓	✓
EB0903756-008	02-MAR-2009 15:00	PZ09	✓			✓
EB0903756-009	02-MAR-2009 15:00	PZ11-D	✓	✓	✓	✓
EB0903756-010	03-MAR-2009 15:00	PZ01	✓	✓	✓	✓
EB0903756-011	03-MAR-2009 15:00	PZ03-S	✓	✓	✓	✓
EB0903756-012	03-MAR-2009 15:00	PZ03-D	✓	✓	✓	✓
EB0903756-013	03-MAR-2009 15:00	PZ02	1	✓	✓	✓
EB0903756-014	03-MAR-2009 15:00	PZ04	✓	✓	✓	✓
EB0903756-015	02-MAR-2009 15:00	QC01	✓	✓	✓	✓
		1			_	

Requested Deliverables

MR STEPHEN DENNER

 *AU Certificate of Analysis - NATA (COA) 	Email	stephen_denner@urscorp.com
- A4 - AU Sample Receipt Notification - Environmental (SRN)	Email	stephen_denner@urscorp.com
- AU Interpretive QC Report (Anon QCI Not Rep) (QCI_NoAnon	Email	stephen_denner@urscorp.com
)		
 AU QC Report (Anon QC Not Rep) - NATA (QC_NoAnon) 	Email	stephen_denner@urscorp.com
- Default - Chain of Custody (COC)	Email	stephen_denner@urscorp.com
- EDI Format - MRED (MRED)	Email	stephen_denner@urscorp.com
RESULTS ADDRESS		
 *AU Certificate of Analysis - NATA (COA) 	Email	brisbane@urscorp.com
- A4 - AU Sample Receipt Notification - Environmental (SRN)	Email	brisbane@urscorp.com
- AU Interpretive QC Report (Anon QCI Not Rep) (QCI_NoAnon	Email	brisbane@urscorp.com
)		
 AU QC Report (Anon QC Not Rep) - NATA (QC_NoAnon) 	Email	brisbane@urscorp.com
- Default - Chain of Custody (COC)	Email	brisbane@urscorp.com
- EDI Format - MRED (MRED)	Email	brisbane@urscorp.com
THE ACCOUNTS BRISBANE		
- A4 - AU Tax Invoice (INV)	Email	brisbane_accounts@urscorp.com

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EB0903756** Page : 1 of 10

Client : URS AUSTRALIA PTY LTD (QLD) Laboratory : Environmental Division Brisbane

Contact : MR STEPHEN DENNER Contact : Tim Kilmister

Address : GPO BOX 302 Address : 32 Shand Street Stafford QLD Australia 4053

BRISBANE QLD, AUSTRALIA 4001

 Telephone
 : +61 32432111
 Telephone
 : +61-7-3243 7222

 Facsimile
 : +61 07 32432199
 Facsimile
 : +61-7-3243 7218

Project : 42626162 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

C-O-C number : ---- Date Samples Received : 05-MAR-2009
Sampler : A.Wilson, S.Stevens Issue Date : 17-MAR-2009

Site : Caval Ridge

No. of samples received

Quote number : EN/001/08 No. of samples analysed : 20

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

: 20

Signatories Position Accreditation Category

Kim McCabe Senior Inorganic Chemist Inorganics

Environmental Division Brisbane
Part of the ALS Laboratoru Group

32 Shand Street Stafford QLD Australia 4053

Tel. +61-7-3243 7222 Fax. +61-7-3243 7218 www.alsglobal.com

A Campbell Brothers Limited Company

Page : 2 of 10

Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Page : 3 of 10 Work Order EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Project 42626162

Thorium

Titanium

Uranium

Zinc

Iron

Boron

Vanadium

7440-29-1

7440-32-6

7440-61-1

7440-62-2

7440-66-6

7440-42-8

7439-89-6

0.001

0.01

0.001

0.01

0.005

0.05

0.05

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

< 0.01

< 0.001

< 0.01

0.014

0.25

< 0.05

< 0.001

< 0.01

< 0.001

< 0.01

0.015

0.25

0.91

< 0.001

< 0.01

0.003

< 0.01

0.010

0.38

< 0.05

< 0.001

< 0.01

< 0.001

< 0.01

0.025

0.67

2.95

< 0.001

< 0.01

< 0.001

< 0.01

0.008

0.07

Page : 4 of 10 Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

ALS

Sub-Matrix: WATER		Clie	ent sample ID	PZ06-S	PZ06-D	PZ08-S	PZ08-D	PZ07-S
	CI	ient sampli	ng date / time	27-FEB-2009 15:00	27-FEB-2009 15:00	28-FEB-2009 15:00	28-FEB-2009 15:00	28-FEB-2009 15:00
Compound	CAS Number	LOR	Unit	EB0903756-001	EB0903756-002	EB0903756-003	EB0903756-004	EB0903756-005
EG035F: Dissolved Mercury by FIMS	3							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EK055G: Ammonia as N by Discrete	Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.04	0.29	<0.01	1.54	<0.01
EK059G: NOX as N by Discrete Ana	llyser							
Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.02	<0.01	<0.01
EK061: Total Kjeldahl Nitrogen (TKN	ا)							
Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	2.9	<0.1	2.0	<0.1
EK062: Total Nitrogen as N								
^ Total Nitrogen as N		0.1	mg/L	<0.1	2.9	<0.1	2.0	<0.1
EK067G: Total Phosphorus as P by	Discrete Analyser							
Total Phosphorus as P		0.01	mg/L	0.23	0.08	0.12	0.01	0.12
EN055: Ionic Balance								
^ Total Anions		0.01	meq/L	19.3	19.6	20.8	136	4.14
^ Total Cations		0.01	meq/L	18.2	17.9	21.2	139	4.25
^ Ionic Balance		0.01	%	2.98	4.44	0.88	1.08	1.21

Page : 5 of 10 Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Page : 6 of 10 Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

ALS

Sub-Matrix: WATER		Cli	ent sample ID	PZ07-D	PZ05	PZ09	PZ11-D	PZ01
	CI	lient sampli	ng date / time	28-FEB-2009 15:00	28-FEB-2009 15:00	02-MAR-2009 15:00	02-MAR-2009 15:00	03-MAR-2009 15:00
Compound	CAS Number	LOR	Unit	EB0903756-006	EB0903756-007	EB0903756-008	EB0903756-009	EB0903756-010
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EK055G: Ammonia as N by Discrete	Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.64	1.46	2.31	2.54	2.75
EK059G: NOX as N by Discrete Anal	yser							
Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.03	0.26	<0.01	0.17
EK061: Total Kjeldahl Nitrogen (TKN)							
Total Kjeldahl Nitrogen as N		0.1	mg/L	2.1	1.9	3.8	3.2	2.7
EK062: Total Nitrogen as N								
^ Total Nitrogen as N		0.1	mg/L	2.1	1.9	4.0	3.2	2.8
EK067G: Total Phosphorus as P by I	Discrete Analyser							
Total Phosphorus as P		0.01	mg/L	0.11	0.04	0.08	0.04	0.02
EN055: Ionic Balance								
^ Total Anions		0.01	meq/L	40.6	182		91.4	220
^ Total Cations		0.01	meq/L	41.2	176		87.4	207
^ Ionic Balance		0.01	%	0.65	1.87		2.27	3.10

Page : 7 of 10 Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Sub-Matrix: WATER		Clie	ent sample ID	PZ03-S	PZ03-D	PZ02	PZ04	QC01	
	Cli	ient samplii	ng date / time	03-MAR-2009 15:00	03-MAR-2009 15:00	03-MAR-2009 15:00	03-MAR-2009 15:00	02-MAR-2009 15:00	
Compound	CAS Number	LOR	Unit	EB0903756-011	EB0903756-012	EB0903756-013	EB0903756-014	EB0903756-015	
ED037P: Alkalinity by PC Titrator									
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	896	680	538	350	99	
Total Alkalinity as CaCO3		1	mg/L	896	680	538	350	99	
ED040F: Dissolved Major Anions									
Sulfate as SO4 2-	14808-79-8	1	mg/L	497	1080	92	3	719	
ED045P: Chloride by PC Titrator									
Chloride	16887-00-6	1	mg/L	4730	7400	352	164	4230	
ED093F: Dissolved Major Cations			J						
Calcium	7440-70-2	1	mg/L	195	322	36	30	459	
Magnesium	7440-70-2	1	mg/L	560	657	41	12	313	
Sodium	7439-93-4	1	mg/L	2250	3600	413	207	1760	
Potassium	7440-23-3	1	mg/L	13	28	10	1	16	
EG020F: Dissolved Metals by ICP-MS	7 440-03-7	•	9						
Aluminium	7429-90-5	0.01	mg/L	0.02	0.02	0.02	0.02	0.02	
Antimony	7429-90-5	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.006	<0.001	<0.001	
Beryllium	7440-36-2	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	
Barium	7440-39-3	0.001	mg/L	0.120	0.042	0.098	0.065	0.050	
Cadmium	7440-43-9	0.0001	mg/L	0.0001	0.0001	0.0002	<0.0001	0.0006	
Chromium	7440-47-3	0.001	mg/L	<0.001	0.002	0.002	0.001	0.002	
Cobalt	7440-48-4	0.001	mg/L	0.020	<0.001	<0.001	<0.001	0.001	
Copper	7440-50-8	0.001	mg/L	0.002	0.002	<0.001	<0.001	0.001	
Gallium	7440-55-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	
Lead	7439-92-1	0.001	mg/L	0.004	<0.001	<0.001	0.001	<0.001	
Lithium	7439-93-2	0.001	mg/L	0.278	0.464	0.092	0.003	0.396	
Manganese	7439-96-5	0.001	mg/L	0.841	0.482	0.380	0.163	0.190	
Molybdenum	7439-98-7	0.001	mg/L	0.002	0.001	0.026	<0.001	<0.001	
Nickel	7440-02-0	0.001	mg/L	0.023	0.008	0.025	<0.001	0.003	
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	
Strontium	7440-24-6	0.001	mg/L	6.35	7.07	0.820	0.281	34.0	
Thorium	7440-29-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	
Fitanium	7440-32-6	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	
Uranium	7440-61-1	0.001	mg/L	0.013	<0.001	0.002	<0.001	<0.001	
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.01	<0.01	<0.01	
Zinc	7440-66-6	0.005	mg/L	0.018	0.037	0.006	0.008	0.008	
Boron	7440-42-8	0.05	mg/L	1.28	2.79	0.29	<0.05	0.08	
Iron	7439-89-6	0.05	mg/L	0.43	3.26	0.14	2.23	2.50	

Page : 8 of 10 Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Sub-Matrix: WATER		Clie	ent sample ID	PZ03-S	PZ03-D	PZ02	PZ04	QC01
	Cl	ient sampli	ng date / time	03-MAR-2009 15:00	03-MAR-2009 15:00	03-MAR-2009 15:00	03-MAR-2009 15:00	02-MAR-2009 15:00
Compound	CAS Number	LOR	Unit	EB0903756-011	EB0903756-012	EB0903756-013	EB0903756-014	EB0903756-015
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EK055G: Ammonia as N by Discrete Analy	ser							
Ammonia as N	7664-41-7	0.01	mg/L	0.09	1.33	0.07	0.19	2.47
EK059G: NOX as N by Discrete Analyser								
Nitrite + Nitrate as N		0.01	mg/L	0.93	<0.01	<0.01	<0.01	<0.01
EK061: Total Kjeldahl Nitrogen (TKN)								
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.1	1.8	<0.1	0.3	2.4
EK062: Total Nitrogen as N								
^ Total Nitrogen as N		0.1	mg/L	1.0	1.8	<0.1	0.3	2.4
EK067G: Total Phosphorus as P by Discre	te Analyser							
Total Phosphorus as P		0.01	mg/L	0.80	0.04	0.48	0.03	<0.01
EN055: Ionic Balance								
^ Total Anions		0.01	meq/L	162	245	22.6	11.7	136
^ Total Cations		0.01	meq/L	154	227	23.4	11.5	126
^ Ionic Balance		0.01	%	2.49	3.71	1.74	0.79	4.11

Page : 9 of 10 Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Page : 10 of 10 Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Sub-Matrix: WATER		Client sample ID	QC02	QC03	QC04	QC05	QC06
	Clien	nt sampling date / time	02-MAR-2009 15:00	02-MAR-2009 15:00	03-MAR-2009 15:00	03-MAR-2009 15:00	03-MAR-2009 15:00
Compound	CAS Number	LOR Unit	EB0903756-016	EB0903756-017	EB0903756-018	EB0903756-019	EB0903756-020
EG020T: Total Metals by ICP-MS							
Aluminium	7429-90-5	0.01 mg/L	0.04	0.03		0.04	0.04
Antimony	7440-36-0	0.001 mg/L	<0.001	<0.001		<0.001	<0.001
Gallium	7440-55-3	0.001 mg/L	<0.001	<0.001		<0.001	<0.001
Lithium	7439-93-2	0.001 mg/L	<0.001	<0.001		<0.001	<0.001
Molybdenum	7439-98-7	0.001 mg/L	<0.001	<0.001		<0.001	<0.001
Selenium	7782-49-2	0.01 mg/L	<0.01	<0.01		<0.01	<0.01
Strontium	7440-24-6	0.001 mg/L	<0.001	<0.001		<0.001	<0.001
Thorium	7440-29-1	0.001 mg/L	<0.001	<0.001		<0.001	<0.001
Titanium	7440-32-6	0.01 mg/L	<0.01	<0.01		<0.01	<0.01
Uranium	7440-61-1	0.001 mg/L	<0.001	<0.001		<0.001	<0.001
Boron	7440-42-8	0.05 mg/L	<0.05	<0.05		<0.05	<0.05
ron	7439-89-6	0.05 mg/L	<0.05	<0.05		0.05	<0.05
EG035F: Dissolved Mercury by FIMS							
Mercury	7439-97-6	0.0001 mg/L			<0.0001		
EK055G: Ammonia as N by Discrete Ar	nalyser						
Ammonia as N		0.01 mg/L			1.38		
EK059G: NOX as N by Discrete Analys	er						
Nitrite + Nitrate as N		0.01 mg/L			<0.01		
EK061: Total Kjeldahl Nitrogen (TKN)							
Total Kjeldahl Nitrogen as N		0.1 mg/L			1.9		
EK062: Total Nitrogen as N							
^ Total Nitrogen as N		0.1 mg/L			1.9		
EK067G: Total Phosphorus as P by Dis	crete Analyser						
Total Phosphorus as P		0.01 mg/L			0.05		
EN055: Ionic Balance							
^ Total Anions		0.01 meq/L			242		
¹ Total Cations		0.01 meq/L			221		
^ Ionic Balance		0.01 %			4.43		

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

QUALITY CONTROL REPORT

Work Order : **EB0903756** Page : 1 of 12

Client : URS AUSTRALIA PTY LTD (QLD) Laboratory : Environmental Division Brisbane

Contact : MR STEPHEN DENNER Contact : Tim Kilmister

Address : GPO BOX 302 Address : 32 Shand Street Stafford QLD Australia 4053

 Telephone
 : +61 32432111
 Telephone
 : +61-7-3243 7222

 Facsimile
 : +61 07 32432199
 Facsimile
 : +61-7-3243 7218

Project : 42626162 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Site : Caval Ridge

C-O-C number : ---- Date Samples Received : 05-MAR-2009
Sampler : A.Wilson, S.Stevens Issue Date : 17-MAR-2009

Order number : ---No. of samples received : 20

Quote number : EN/001/08 No. of samples analysed : 20

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

BRISBANE QLD. AUSTRALIA 4001

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Kim McCabe Senior Inorganic Chemist Inorganics

Environmental Division Brisbane
Part of the ALS Laboratoru Group

32 Shand Street Stafford QLD Australia 4053

Tel. +61-7-3243 7222 Fax. +61-7-3243 7218 www.alsglobal.com

A Campbell Brothers Limited Company

Page : 2 of 12 Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 12 Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Repor	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
ED037P: Alkalinity b	by PC Titrator (QC Lot:	917420)							
EB0903756-013	PZ02	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	538	540	0.4	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	538	540	0.4	0% - 20%
ED040F: Dissolved	Major Anions (QC Lot:	913201)							
EB0903756-001	PZ06-S	ED040F: Sulfate as SO4 2-	14808-79-8	1	mg/L	37	37	0.0	0% - 20%
EB0903780-003	Anonymous	ED040F: Sulfate as SO4 2-	14808-79-8	1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
ED040F: Dissolved	Major Anions (QC Lot:	913780)							
EB0903675-003	Anonymous	ED040F: Sulfate as SO4 2-	14808-79-8	1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
EB0903756-007	PZ05	ED040F: Sulfate as SO4 2-	14808-79-8	1	mg/L	406	402	1.0	0% - 20%
FD045P: Chloride b	y PC Titrator (QC Lot:								
EB0903756-013	PZ02	ED045-P: Chloride	16887-00-6	1	mg/L	352	354	0.6	0% - 20%
FD093F: Dissolved	Major Cations (QC Lot				3				
EB0903756-001	PZ06-S	ED093F: Calcium	7440-70-2	1	mg/L	42	42	0.0	0% - 20%
	. 200 0	ED093F: Magnesium	7439-95-4	1	mg/L	77	77	0.0	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	203	202	0.8	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	4	4	0.0	No Limit
EB0903780-003	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
	,	ED093F: Magnesium	7439-95-4	1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		ED093F: Sodium	7440-23-5	1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		ED093F: Potassium	7440-09-7	1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
ED093E: Dissolved	Major Cations (QC Lot				J. Company		,	,	,
EB0903675-003	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
	,	ED093F: Magnesium	7439-95-4	1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		ED093F: Sodium	7440-23-5	1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		ED093F: Potassium	7440-09-7	1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
EB0903756-007	PZ05	ED093F: Calcium	7440-70-2	1	mg/L	414	411	0.6	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	435	434	0.0	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	2720	2710	0.6	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	25	25	0.0	0% - 20%
G020F: Dissolved	Metals by ICP-MS (QC								
EB0903600-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
	,	EG020A-F: Antimony	7440-36-0	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous

Page : 4 of 12 Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

ub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
G020F: Dissolved I	Metals by ICP-MS (QC I	Lot: 913180) - continued							
EB0903600-001	Anonymous	EG020A-F: Barium	7440-39-3	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Copper	7440-50-8	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Lead	7439-92-1	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Lithium	7439-93-2	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Boron	7440-42-8	0.05	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Iron	7439-89-6	0.05	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
B0903600-010	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
	EG020A-F: Antimony	7440-36-0	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Barium	7440-39-3	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Copper	7440-50-8	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Lead	7439-92-1	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Lithium	7439-93-2	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Boron	7440-42-8	0.05	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Iron	7439-89-6	0.05	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
G020F: Dissolved I	Metals by ICP-MS (QC I	Lot: 913181)							
B0903600-001	Anonymous	EG020B-F: Strontium	7440-24-6	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020B-F: Thorium	7440-29-1	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020B-F: Uranium	7440-61-1	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020B-F: Titanium	7440-32-6	0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
B0903600-010	Anonymous	EG020B-F: Strontium	7440-24-6	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous

Page : 5 of 12 Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Repor	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020F: Dissolved	Metals by ICP-MS (QC	Lot: 913181) - continued							
EB0903600-010	Anonymous	EG020B-F: Thorium	7440-29-1	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020B-F: Uranium	7440-61-1	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020B-F: Titanium	7440-32-6	0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
EG020F: Dissolved	Metals by ICP-MS (QC	Lot: 913182)							
EB0903600-001	Anonymous	EG020D-F: Gallium	7440-55-3	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
EB0903600-010	Anonymous	EG020D-F: Gallium	7440-55-3	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
FG020F: Dissolved	Metals by ICP-MS (QC								
EB0903756-004	PZ08-D	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	0.0006	0.0007	0.0	No Limit
		EG020A-F: Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.030	0.030	0.0	0% - 20%
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.001	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lithium	7439-93-2	0.001	mg/L	0.620	0.662	6.7	0% - 20%
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.126	0.129	2.2	0% - 20%
		EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.015	0.016	0.0	0% - 50%
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.025	0.024	5.3	No Limit
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	0.02	0.02	0.0	No Limit
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-F: Boron	7440-42-8	0.05	mg/L	0.67	0.69	3.6	0% - 50%
		EG020A-F: Iron	7439-89-6	0.05	mg/L	2.95	2.97	0.6	0% - 20%
EB0903756-013	PZ02	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	0.0002	<0.0001	0.0	No Limit
		EG020A-F: Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.006	0.006	0.0	No Limit
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.098	0.101	2.6	0% - 20%
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	0.002	<0.001	0.0	No Limit
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lithium	7439-93-2	0.001	mg/L	0.092	0.088	5.1	0% - 20%
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.380	0.371	2.6	0% - 20%
		EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	0.026	0.026	0.0	0% - 20%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.025	0.024	0.0	0% - 20%
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.006	0.005	21.2	No Limit

Page : 6 of 12 Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Repor	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020F: Dissolved	Metals by ICP-MS (QC	Lot: 913183) - continued							
EB0903756-013	PZ02	EG020A-F: Aluminium	7429-90-5	0.01	mg/L	0.02	0.02	0.0	No Limit
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	0.01	0.01	0.0	No Limit
		EG020A-F: Boron	7440-42-8	0.05	mg/L	0.29	0.26	11.9	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	0.14	0.11	23.3	No Limit
EG020F: Dissolved	Metals by ICP-MS (QC	Lot: 913184)							
EB0903756-004	PZ08-D	EG020B-F: Strontium	7440-24-6	0.001	mg/L	6.43	6.62	3.0	0% - 20%
		EG020B-F: Thorium	7440-29-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020B-F: Uranium	7440-61-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020B-F: Titanium	7440-32-6	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EB0903756-013	PZ02	EG020B-F: Strontium	7440-24-6	0.001	mg/L	0.820	0.817	0.4	0% - 20%
		EG020B-F: Thorium	7440-29-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020B-F: Uranium	7440-61-1	0.001	mg/L	0.002	0.002	0.0	No Limit
		EG020B-F: Titanium	7440-32-6	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EG020F: Dissolved	Metals by ICP-MS (QC	Lot: 913185)							
EB0903756-004	PZ08-D	EG020D-F: Gallium	7440-55-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
EB0903756-013	PZ02	EG020D-F: Gallium	7440-55-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
FG020T: Total Metal	Is by ICP-MS (QC Lot:	913755)							
EB0903600-001	Anonymous	EG020A-T: Antimony	7440-36-0	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
	, , , , , ,	EG020A-T: Lithium	7439-93-2	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-T: Molybdenum	7439-98-7	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-T: Aluminium	7429-90-5	0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-T: Selenium	7782-49-2	0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-T: Boron	7440-42-8	0.05	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-T: Iron	7439-89-6	0.05	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
EB0903600-011	Anonymous	EG020A-T: Antimony	7440-36-0	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-T: Lithium	7439-93-2	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-T: Molybdenum	7439-98-7	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-T: Aluminium	7429-90-5	0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-T: Selenium	7782-49-2	0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-T: Boron	7440-42-8	0.05	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-T: Iron	7439-89-6	0.05	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
FG020T: Total Metal	Is by ICP-MS (QC Lot:								
EB0903600-001	Anonymous	EG020B-T: Strontium	7440-24-6	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
	,	EG020B-T: Thorium	7440-29-1	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020B-T: Uranium	7440-61-1	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020B-T: Titanium	7440-32-6	0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
EB0903600-011	Anonymous	EG020B-T: Titalium	7440-24-6	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
	,	EG020B-T: Thorium	7440-29-1	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
		EG020B-T: Uranium	7440-61-1	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous
	T.	LOOZOD-1. Oranium	10 01 1	0.00.		7.1.0.1,1.1.0.00	,		,,

Page : 7 of 12 Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EG020T: Total Metal	ls by ICP-MS (QC Lot: 9	913756) - continued								
EB0903600-011	Anonymous	EG020B-T: Titanium	7440-32-6	0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
EG020T: Total Metal	ls by ICP-MS (QC Lot: 9	913757)								
EB0903600-001	Anonymous	EG020D-T: Gallium	7440-55-3	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
EB0903600-011	Anonymous	EG020D-T: Gallium	7440-55-3	0.001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
EG035F: Dissolved	Mercury by FIMS (QC L	ot: 917849)								
EB0903711-001	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
EB0903717-002	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
EG035F: Dissolved	Mercury by FIMS (QC L	ot: 917850)								
EB0903756-002	PZ06-D	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit	
EB0903756-012	PZ03-D	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit	
EK055G: Ammonia	as N by Discrete Analys	ser (QC Lot: 913255)								
EB0903749-009	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
EB0903756-005	PZ07-S	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	<0.01	0.0	No Limit	
EK055G: Ammonia	as N by Discrete Analys	ser (QC Lot: 913256)								
EB0903756-015	QC01	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	2.63	2.58	1.9	0% - 20%	
EK059G: NOX as N	by Discrete Analyser (QC Lot: 913712)								
EB0903721-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
EB0903756-008	PZ09	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.26	0.31	17.2	0% - 20%	
EK061: Total Kjelda	hl Nitrogen (TKN) (QC l	Lot: 912946)								
EB0903753-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
EB0903756-005	PZ07-S	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	0.3	108	No Limit	
EK061: Total Kjelda	hl Nitrogen (TKN) (QC l	Lot: 916545)								
EB0903756-008	PZ09	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	3.8	3.8	0.0	0% - 20%	
EB0904009-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
EK067G: Total Phos	phorus as P by Discret	e Analyser (QC Lot: 912947)								
EB0903753-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	
EB0903756-005	PZ07-S	EK067G: Total Phosphorus as P		0.01	mg/L	0.12	0.08	46.7	No Limit	
EK067G: Total Phos	phorus as P by Discret	e Analyser (QC Lot: 912948)								
EB0903756-015	QC01	EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	<0.01	0.0	No Limit	
EB0903839-009	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	Anonymous	Anonymous	Anonymous	Anonymous	

Page : 8 of 12 Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
ED037P: Alkalinity by PC Titrator (QCLot: 917420)								
ED037-P: Total Alkalinity as CaCO3		1	mg/L		500 mg/L	104	80	114
ED040F: Dissolved Major Anions (QCLot: 913201)								
ED040F: Sulfate as SO4 2-	14808-79-8	1	mg/L	<1				
ED040F: Dissolved Major Anions (QCLot: 913780)						'		
ED040F: Sulfate as SO4 2-	14808-79-8	1	mg/L	<1				
ED045P: Chloride by PC Titrator (QCLot: 917421)								
ED045-P: Chloride	16887-00-6	1	mg/L	<1	1000 mg/L	98.6	90	110
ED093F: Dissolved Major Cations (QCLot: 913202)								
ED093F: Calcium	7440-70-2	1	mg/L	<1				
ED093F: Magnesium	7439-95-4	1	mg/L	<1				
ED093F: Sodium	7440-23-5	1	mg/L	<1				
ED093F: Potassium	7440-09-7	1	mg/L	<1				
ED093F: Dissolved Major Cations (QCLot: 913779)								
ED093F: Calcium	7440-70-2	1	mg/L	<1				
ED093F: Magnesium	7439-95-4	1	mg/L	<1				
ED093F: Sodium	7440-23-5	1	mg/L	<1				
ED093F: Potassium	7440-09-7	1	mg/L	<1				
EG020F: Dissolved Metals by ICP-MS (QCLot: 913180)						'		
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.500 mg/L	94.8	70	130
EG020A-F: Antimony	7440-36-0	0.001	mg/L	<0.001	0.100 mg/L	102	81	121
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.100 mg/L	95.9	75	125
EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.100 mg/L	121	82	130
EG020A-F: Barium	7440-39-3	0.001	mg/L	<0.001				
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.100 mg/L	102	79	123
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.100 mg/L	95.2	84	128
EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.100 mg/L	106	81	117
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.200 mg/L	102	81	121
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.100 mg/L	99.5	83	123
EG020A-F: Lithium	7439-93-2	0.001	mg/L	<0.001				
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.100 mg/L	103	79	125
EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.100 mg/L	102	83	115
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.100 mg/L	102	78	124
EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	0.100 mg/L	104	80	126
EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.100 mg/L	101	72	120

Page : 9 of 12 Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
G020F: Dissolved Metals by ICP-MS (QCLot: 913180) - continued								
G020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.200 mg/L	106	81	130	
G020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	0.50 mg/L	107	70	129	
G020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.50 mg/L	112	76	128	
G020F: Dissolved Metals by ICP-MS (QCLot: 913181)								
G020B-F: Strontium	7440-24-6	0.001	mg/L	<0.001	0.500 mg/L	100	83	117	
G020B-F: Thorium	7440-29-1	0.001	mg/L	<0.001					
G020B-F: Titanium	7440-32-6	0.01	mg/L	<0.01	0.100 mg/L	102	75	125	
G020B-F: Uranium	7440-61-1	0.001	mg/L	<0.001					
G020F: Dissolved Metals by ICP-MS (QCLot: 913182)								
G020D-F: Gallium	7440-55-3	0.001	mg/L	<0.001					
G020F: Dissolved Metals by ICP-MS (QCLot: 913183									
G020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.500 mg/L	93.8	70	130	
G020A-F: Antimony	7429-90-3	0.001	mg/L	<0.01	0.100 mg/L	102	81	121	
G020A-F: Antimony G020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.100 mg/L	96.6	75	125	
	7440-38-2	0.001	mg/L	<0.001	0.100 mg/L	124	82	130	
G020A-F: Beryllium G020A-F: Barium	7440-39-3	0.001	mg/L	<0.001	0.100 mg/L				
G020A-F. Cadmium	7440-43-9	0.0001	mg/L	<0.001	0.100 mg/L	104	79	123	
G020A-F: Cadmium	7440-47-3	0.0001	mg/L	<0.001	0.100 mg/L	95.9	84	123	
G020A-F: Conformation G020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.100 mg/L	102	81	117	
G020A-F: Cobait G020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.200 mg/L	102	81	121	
	7439-92-1	0.001	mg/L	<0.001	0.200 mg/L	100	83	123	
G020A-F: Lead G020A-F: Lithium	7439-93-2	0.001	mg/L	<0.001	0.100 mg/L				
G020A-F: Lithium G020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.100 mg/L	102	79	125	
G020A-F: Maligariese G020A-F: Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.100 mg/L	102	83	115	
G020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.100 mg/L	101	78	124	
G020A-F: Nickei G020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	0.100 mg/L	99.8	80	126	
G020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.100 mg/L	98.6	72	120	
G020A-F: Variadium	7440-66-6	0.005	mg/L	<0.005	0.200 mg/L	104	81	130	
G020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	0.50 mg/L	104	70	129	
G020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.50 mg/L	114	76	128	
G020F: Dissolved Metals by ICP-MS(QCLot: 913184		0.00	9. =	0.00	3.33 g , <u>=</u>		. •	.20	
G020B-F: Strontium	7440-24-6	0.001	mg/L	<0.001	0.500 mg/L	100	83	117	
G020B-F: Thorium	7440-29-1	0.001	mg/L	<0.001	0.300 Hig/L				
G020B-F: Titanium	7440-32-6	0.01	mg/L	<0.01	0.100 mg/L	101	75	125	
G020B-F: Uranium	7440-61-1	0.001	mg/L	<0.001					
		0.001	mg/ E	.0.001					
G020F: Dissolved Metals by ICP-MS (QCLot: 913185 G020D-F: Gallium	7440-55-3	0.001	mg/L	<0.001					
GUZUD-F. Gaillum	7 440-00-3	0.001	IIIg/L	~0.001					

Page : 10 of 12 Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020T: Total Metals by ICP-MS (QCLot: 913755) - cont	inued							
EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.500 mg/L	107	74	128
EG020A-T: Antimony	7440-36-0	0.001	mg/L	<0.001	0.100 mg/L	92.7	80	114
EG020A-T: Lithium	7439-93-2	0.001	mg/L	<0.001				
EG020A-T: Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.100 mg/L	90.3	80	112
EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	0.100 mg/L	86.5	73	119
EG020A-T: Boron	7440-42-8	0.05	mg/L	<0.05	0.500 mg/L	98.4	70	128
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.500 mg/L	108	70	130
EG020T: Total Metals by ICP-MS (QCLot: 913756)								
EG020B-T: Strontium	7440-24-6	0.001	mg/L	<0.001	0.500 mg/L	92.8	73	119
EG020B-T: Thorium	7440-29-1	0.001	mg/L	<0.001				
EG020B-T: Titanium	7440-32-6	0.01	mg/L	<0.01	0.100 mg/L	103	74	120
EG020B-T: Uranium	7440-61-1	0.001	mg/L	<0.001				
EG020T: Total Metals by ICP-MS (QCLot: 913757)								
EG020D-T: Gallium	7440-55-3	0.001	mg/L	<0.001				
EG035F: Dissolved Mercury by FIMS (QCLot: 917849)								
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.010 mg/L	101	84	120
EG035F: Dissolved Mercury by FIMS (QCLot: 917850)								
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.010 mg/L	94.2	84	120
EK055G: Ammonia as N by Discrete Analyser (QCLot: 9°	13255)							
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.5 mg/L	96.2	70	128
EK055G: Ammonia as N by Discrete Analyser (QCLot: 9	13256)							
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.5 mg/L	105	70	128
EK059G: NOX as N by Discrete Analyser (QCLot: 91371)	2)				, and the second			
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	98.4	70	130
EK061: Total Kjeldahl Nitrogen (TKN) (QCLot: 912946)			9/2	0.01	0.0 mg/2	33.1		100
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10.0 mg/L	77.7	70	115
		0.1	IIIg/L	40.1	10.0 Hig/L	11.1	70	110
EK061: Total Kjeldahl Nitrogen (TKN) (QCLot: 916545)		0.1	ma/l	<0.1	10.0 mg/l	81.0	70	115
EK061G: Total Kjeldahl Nitrogen as N		U. I	mg/L	~ U. I	10.0 mg/L	01.0	70	110
EK067G: Total Phosphorus as P by Discrete Analyser (C			,		10 "	00.5		105
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.2 mg/L	90.5	70	130
EK067G: Total Phosphorus as P by Discrete Analyser (C	CLot: 912948)							
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.2 mg/L	101	70	130

Page : 11 of 12 Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

ALS

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER					Matrix Spike (MS) Rep	port	
				Spike	Spike Recovery (%)	Recovery	Limits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED045P: Chloride by	y PC Titrator (QCLot: 917421)						
EB0903756-014	PZ04	ED045-P: Chloride	16887-00-6	40 mg/L	# Not Determined	70	130
EG020F: Dissolved I	Metals by ICP-MS (QCLot: 9131						
EB0903600-002	Anonymous	EG020A-F: Aluminium	7429-90-5	Anonymous	Anonymous	Anonymous	Anonymous
	•	EG020A-F: Antimony	7440-36-0	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Arsenic	7440-38-2	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Beryllium	7440-41-7	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Barium	7440-39-3	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Cadmium	7440-43-9	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Chromium	7440-47-3	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Cobalt	7440-48-4	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Copper	7440-50-8	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Lead	7439-92-1	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Manganese	7439-96-5	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Molybdenum	7439-98-7	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Nickel	7440-02-0	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Selenium	7782-49-2	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Vanadium	7440-62-2	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Zinc	7440-66-6	Anonymous	Anonymous	Anonymous	Anonymous
		EG020A-F: Boron	7440-42-8	Anonymous	Anonymous	Anonymous	Anonymous
G020F: Dissolved I	Metals by ICP-MS (QCLot: 9131	83)					
EB0903756-005	PZ07-S	EG020A-F: Aluminium	7429-90-5	0.5 mg/L	93.7	70	130
		EG020A-F: Antimony	7440-36-0	0.100 mg/L	89.5	70	130
		EG020A-F: Arsenic	7440-38-2	0.100 mg/L	99.8	70	130
		EG020A-F: Beryllium	7440-41-7	0.100 mg/L	119	70	130
		EG020A-F: Barium	7440-39-3	0.5 mg/L	100	70	130
		EG020A-F: Cadmium	7440-43-9	0.100 mg/L	106	70	130
		EG020A-F: Chromium	7440-47-3	0.100 mg/L	93.1	70	130
		EG020A-F: Cobalt	7440-48-4	0.100 mg/L	105	70	130
		EG020A-F: Copper	7440-50-8	0.2 mg/L	102	70	130
		EG020A-F: Lead	7439-92-1	0.100 mg/L	101	70	130
		EG020A-F: Manganese	7439-96-5	0.100 mg/L	103	70	130
		EG020A-F: Molybdenum	7439-98-7	0.100 mg/L	99.1	70	130
		EG020A-F: Nickel	7440-02-0	0.100 mg/L	102	70	130
		EG020A-F: Selenium	7782-49-2	0.100 mg/L	108	70	130
		EG020A-F: Vanadium	7440-62-2	0.100 mg/L	104	70	130

Page : 12 of 12 Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Sub-Matrix: WATER				Matrix Spike (MS) Re	port		
				Spike	Spike Recovery (%)	Recovery	Limits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG020F: Dissolved	Metals by ICP-MS (QCLot: 913183) - cor	ntinued					
EB0903756-005	PZ07-S	EG020A-F: Zinc	7440-66-6	0.2 mg/L	107	70	130
		EG020A-F: Boron	7440-42-8	0.5 mg/L	102	70	130
EG035F: Dissolved	Mercury by FIMS (QCLot: 917849)						
EB0903711-002	Anonymous	EG035F: Mercury	7439-97-6	Anonymous	Anonymous	Anonymous	Anonymous
EG035F: Dissolved	Mercury by FIMS (QCLot: 917850)						
EB0903756-003	PZ08-S	EG035F: Mercury	7439-97-6	0.010 mg/L	78.8	70	130
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 9132						
EB0903749-010	Anonymous	EK055G: Ammonia as N	7664-41-7	Anonymous	Anonymous	Anonymous	Anonymous
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 9132	56)					
EB0903756-018	QC04	EK055G: Ammonia as N	7664-41-7	0.8 mg/L	77.5	70	130
EK059G: NOX as N	by Discrete Analyser (QCLot: 913712)						
EB0903721-002	Anonymous	EK059G: Nitrite + Nitrate as N		Anonymous	Anonymous	Anonymous	Anonymous
EK061: Total Kjelda	hl Nitrogen (TKN) (QCLot: 912946)						
EB0903753-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		Anonymous	Anonymous	Anonymous	Anonymous
EK061: Total Kielda	hl Nitrogen (TKN) (QCLot: 916545)						
EB0903849-009	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		Anonymous	Anonymous	Anonymous	Anonymous
EK067G: Total Phos	sphorus as P by Discrete Analyser (QCL	ot: 912947)					
EB0903753-002	Anonymous	EK067G: Total Phosphorus as P		Anonymous	Anonymous	Anonymous	Anonymous
FK067G: Total Phos	sphorus as P by Discrete Analyser (QCL			•	•		
EB0903756-018	QC04	EK067G: Total Phosphorus as P		1.0 mg/L	98.7	70	130

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order : **EB0903756** Page : 1 of 11

Client : URS AUSTRALIA PTY LTD (QLD) Laboratory : Environmental Division Brisbane

Contact : MR STEPHEN DENNER Contact : Tim Kilmister

Address : GPO BOX 302 Address : 32 Shand Street Stafford QLD Australia 4053

BRISBANE QLD, AUSTRALIA 4001

 Telephone
 : +61 32432111
 Telephone
 : +61-7-3243 7222

 Facsimile
 : +61 07 32432199
 Facsimile
 : +61-7-3243 7218

Project : 42626162 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Site : Caval Ridge

C-O-C number : ---- Date Samples Received : 05-MAR-2009
Sampler : A.Wilson, S.Stevens Issue Date : 17-MAR-2009

Order number :----

No. of samples received : 20

Quote number : EN/001/08

No. of samples analysed : 20

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Page : 2 of 11
Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not quarantee a breach for all non-volatile parameters.

Matrix: WATER

Evaluation: **×** = Holding time breach : ✓ = Within holding time.

Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED037P: Alkalinity by PC Titrator								
Clear Plastic Bottle - Natural								
PZ11-D,	QC01	02-MAR-2009				13-MAR-2009	16-MAR-2009	✓
Clear Plastic Bottle - Natural								
PZ01,	PZ03-S,	03-MAR-2009				13-MAR-2009	17-MAR-2009	✓
PZ03-D,	PZ02,							
PZ04,	QC04							
Clear Plastic Bottle - Natural								
PZ06-S,	PZ06-D	27-FEB-2009				13-MAR-2009	13-MAR-2009	✓
Clear Plastic Bottle - Natural								
PZ08-S,	PZ08-D,	28-FEB-2009				13-MAR-2009	14-MAR-2009	✓
PZ07-S,	PZ07-D,							
PZ05								
ED040F: Dissolved Major Anions								
Clear Plastic Bottle - Natural								
PZ11-D,	QC01	02-MAR-2009				10-MAR-2009	30-MAR-2009	✓
Clear Plastic Bottle - Natural								
PZ01,	PZ03-S,	03-MAR-2009				10-MAR-2009	31-MAR-2009	✓
PZ03-D,	PZ02,							
PZ04,	QC04							
Clear Plastic Bottle - Natural								
PZ06-S,	PZ06-D	27-FEB-2009				09-MAR-2009	27-MAR-2009	✓
Clear Plastic Bottle - Natural								
PZ08-S,	PZ08-D,	28-FEB-2009				10-MAR-2009	28-MAR-2009	✓
PZ07-S,	PZ07-D,							
PZ05								

Page : 3 of 11 Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Matrix: WATER			1		Evaluation	Holding time	breach ; ✓ = Within	n nolaing tin
Method		Sample Date	E)	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED045P: Chloride by PC Titrator								
Clear Plastic Bottle - Natural								
PZ11-D,	QC01	02-MAR-2009				13-MAR-2009	30-MAR-2009	✓
Clear Plastic Bottle - Natural								
PZ01,	PZ03-S,	03-MAR-2009				13-MAR-2009	31-MAR-2009	✓
PZ03-D,	PZ02,							
PZ04,	QC04							
Clear Plastic Bottle - Natural								
PZ06-S,	PZ06-D	27-FEB-2009				13-MAR-2009	27-MAR-2009	✓
Clear Plastic Bottle - Natural								
PZ08-S,	PZ08-D,	28-FEB-2009				13-MAR-2009	28-MAR-2009	✓
PZ07-S,	PZ07-D,							
PZ05								
ED093F: Dissolved Major Cations								
Clear Plastic Bottle - Natural								
PZ11-D.	QC01	02-MAR-2009				10-MAR-2009	30-MAR-2009	✓
Clear Plastic Bottle - Natural	<u> </u>							<u> </u>
PZ01,	PZ03-S,	03-MAR-2009				10-MAR-2009	31-MAR-2009	1
PZ03-D,	PZ02,	00 mm arc 2000					0111111112000	'
PZ04,	QC04							
Clear Plastic Bottle - Natural	Q001							
PZ06-S.	PZ06-D	27-FEB-2009				09-MAR-2009	27-MAR-2009	1
Clear Plastic Bottle - Natural	1 200 5					00 1111 111 2000	27 113 11 (2000	
PZ08-S,	PZ08-D,	28-FEB-2009				10-MAR-2009	28-MAR-2009	1
PZ07-S,	PZ07-D.	20.122.2000					20 1111 11 1 2000	'
PZ05	1207 5,							
Clear Plastic Bottle - Nitric Acid; Filtered								
PZ09		02-MAR-2009				10-MAR-2009	30-MAR-2009	✓
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Filtered			 [I		1
PZ09,	PZ11-D,	02-MAR-2009				09-MAR-2009	29-AUG-2009	1
QC01	1211-0,	02-MAI(-2003				03-1117-11-2003	25 7100 2005	Y
Clear Plastic Bottle - Nitric Acid; Filtered								
PZ01.	PZ03-S,	03-MAR-2009				09-MAR-2009	30-AUG-2009	1
PZ03-D,	PZ03-3,	03-WAR-2009				09-WAR-2009	30-A00-2009	v
PZ04, Clear Plastic Bottle - Nitric Acid; Filtered	QC04							
PZ06-S,	PZ06-D	27-FEB-2009				09-MAR-2009	26-AUG-2009	1
	FZ00-D	21-FEB-2009				03-WAR-2009	20-A0G-2009	V
Clear Plastic Bottle - Nitric Acid; Filtered	D700 D	20 FED 2000				00 MAD 2002	27 ALIC 2000	,
PZ08-S,	PZ08-D,	28-FEB-2009				09-MAR-2009	27-AUG-2009	✓
PZ07-S,	PZ07-D,					I		

Page : 4 of 11 Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)		·	Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020T: Total Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Unfiltered								
QC02,	QC03	02-MAR-2009	10-MAR-2009	29-AUG-2009	✓	10-MAR-2009	29-AUG-2009	✓
Clear Plastic Bottle - Nitric Acid; Unfiltered								
QC05,	QC06	03-MAR-2009	10-MAR-2009	30-AUG-2009	✓	10-MAR-2009	30-AUG-2009	✓
EG035F: Dissolved Mercury by FIMS								
Clear Plastic Bottle - Nitric Acid; Filtered								
PZ09,	PZ11-D,	02-MAR-2009				13-MAR-2009	30-MAR-2009	✓
QC01								
Clear Plastic Bottle - Nitric Acid; Filtered								
PZ01,	PZ03-S,	03-MAR-2009				13-MAR-2009	31-MAR-2009	✓
PZ03-D,	PZ02,							
PZ04,	QC04							
Clear Plastic Bottle - Nitric Acid; Filtered								
PZ06-S,	PZ06-D	27-FEB-2009				13-MAR-2009	27-MAR-2009	✓
Clear Plastic Bottle - Nitric Acid; Filtered								
PZ08-S,	PZ08-D,	28-FEB-2009				13-MAR-2009	28-MAR-2009	✓
PZ07-S,	PZ07-D,							
PZ05								
EK055G: Ammonia as N by Discrete Analyser								
Clear Plastic Bottle - Sulphuric Acid								
PZ09,	PZ11-D,	02-MAR-2009				09-MAR-2009	30-MAR-2009	✓
QC01								
Clear Plastic Bottle - Sulphuric Acid								
PZ01,	PZ03-S,	03-MAR-2009				09-MAR-2009	31-MAR-2009	✓
PZ03-D,	PZ02,							
PZ04,	QC04							
Clear Plastic Bottle - Sulphuric Acid								
PZ06-S,	PZ06-D	27-FEB-2009				09-MAR-2009	27-MAR-2009	✓
Clear Plastic Bottle - Sulphuric Acid								
PZ08-S,	PZ08-D,	28-FEB-2009				09-MAR-2009	28-MAR-2009	✓
PZ07-S,	PZ07-D,							
PZ05								

Page : 5 of 11 Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK059G: NOX as N by Discrete Analyser								
Clear Plastic Bottle - Sulphuric Acid								
PZ09,	PZ11-D,	02-MAR-2009				10-MAR-2009	30-MAR-2009	✓
QC01								
Clear Plastic Bottle - Sulphuric Acid								
PZ09		02-MAR-2009				11-MAR-2009	30-MAR-2009	✓
Clear Plastic Bottle - Sulphuric Acid								
PZ01,	PZ03-S,	03-MAR-2009				10-MAR-2009	31-MAR-2009	✓
PZ03-D,	PZ02,							
PZ04,	QC04							
Clear Plastic Bottle - Sulphuric Acid								
PZ06-S,	PZ06-D	27-FEB-2009				10-MAR-2009	27-MAR-2009	✓
Clear Plastic Bottle - Sulphuric Acid								
PZ08-S,	PZ08-D,	28-FEB-2009				10-MAR-2009	28-MAR-2009	✓
PZ07-S,	PZ07-D,							
PZ05								
EK061: Total Kjeldahl Nitrogen (TKN)								
Clear Plastic Bottle - Sulphuric Acid								
PZ11-D,	QC01	02-MAR-2009	10-MAR-2009	30-MAR-2009	✓	10-MAR-2009	30-MAR-2009	✓
Clear Plastic Bottle - Sulphuric Acid								
PZ09		02-MAR-2009	12-MAR-2009	30-MAR-2009	✓	12-MAR-2009	30-MAR-2009	✓
Clear Plastic Bottle - Sulphuric Acid								
PZ01,	PZ03-S,	03-MAR-2009	10-MAR-2009	31-MAR-2009	✓	10-MAR-2009	31-MAR-2009	✓
PZ03-D,	PZ02,							
PZ04,	QC04							
Clear Plastic Bottle - Sulphuric Acid								
PZ06-S,	PZ06-D	27-FEB-2009	10-MAR-2009	27-MAR-2009	✓	10-MAR-2009	27-MAR-2009	✓
Clear Plastic Bottle - Sulphuric Acid								
PZ08-S,	PZ08-D,	28-FEB-2009	10-MAR-2009	28-MAR-2009	✓	10-MAR-2009	28-MAR-2009	✓
PZ07-S,	PZ07-D,				,			
PZ05								

Page : 6 of 11 Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Matrix: WATER	Evaluation	n: x = Holding time breach;	✓ = Within holding time.

Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK067G: Total Phosphorus as P by Discre	ete Analyser							
Clear Plastic Bottle - Sulphuric Acid								
PZ09,	PZ11-D,	02-MAR-2009	10-MAR-2009	30-MAR-2009	✓	10-MAR-2009	30-MAR-2009	✓
QC01								
Clear Plastic Bottle - Sulphuric Acid								
PZ01,	PZ03-S,	03-MAR-2009	10-MAR-2009	31-MAR-2009	✓	10-MAR-2009	31-MAR-2009	✓
PZ03-D,	PZ02,							
PZ04,	QC04							
Clear Plastic Bottle - Sulphuric Acid								
PZ06-S,	PZ06-D	27-FEB-2009	10-MAR-2009	27-MAR-2009	✓	10-MAR-2009	27-MAR-2009	✓
Clear Plastic Bottle - Sulphuric Acid								
PZ08-S,	PZ08-D,	28-FEB-2009	10-MAR-2009	28-MAR-2009	✓	10-MAR-2009	28-MAR-2009	✓
PZ07-S,	PZ07-D,							
PZ05								

Page : 7 of 11 Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: **WATER**Evaluation: **×** = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.

IVIALITA. WATER				Lvaluation	i. 🕶 – Quality Coi	illioi irequericy i	iot within specification, • - Quality Control frequency within specification.
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Alkalinity by PC Titrator	ED037-P	1	6	16.7	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Ammonia as N by Discrete analyser	EK055G	3	29	10.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chloride by PC Titrator	ED045-P	1	6	16.7	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	4	39	10.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	4	33	12.1	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite B	EG020B-F	4	33	12.1	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite D	EG020D-F	4	33	12.1	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Anions - Filtered	ED040F	4	36	11.1	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Cations - Filtered	ED093F	4	40	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	4	39	10.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	2	5	40.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	6	51	11.8	10.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite B	EG020B-T	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite D	EG020D-T	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus as P By Discrete Analyser	EK067G	4	39	10.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
Alkalinity by PC Titrator	ED037-P	1	6	16.7	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Ammonia as N by Discrete analyser	EK055G	2	29	6.9	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chloride by PC Titrator	ED045-P	1	6	16.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	2	39	5.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	33	6.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite B	EG020B-F	2	33	6.1	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	39	5.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	1	5	20.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	3	51	5.9	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite B	EG020B-T	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus as P By Discrete Analyser	EK067G	2	39	5.1	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	2	29	6.9	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chloride by PC Titrator	ED045-P	1	6	16.7	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	2	39	5.1	5.0	<u>√</u>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	33	6.1	5.0	<u>√</u>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite B	EG020B-F	2	33	6.1	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Page : 8 of 11 Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Dissolved Metals by ICP-MS - Suite D	EG020D-F	2	33	6.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Najor Anions - Filtered	ED040F	2	36	5.6	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Najor Cations - Filtered	ED093F	2	40	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
litrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	39	5.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
litrite as N by Discrete Analyser	EK057G	1	5	20.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	3	51	5.9	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Metals by ICP-MS - Suite A	EG020A-T	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Metals by ICP-MS - Suite B	EG020B-T	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Metals by ICP-MS - Suite D	EG020D-T	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Phosphorus as P By Discrete Analyser	EK067G	2	39	5.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
mmonia as N by Discrete analyser	EK055G	2	29	6.9	5.0	✓	ALS QCS3 requirement
Chloride by PC Titrator	ED045-P	1	6	16.7	5.0	✓	ALS QCS3 requirement
issolved Mercury by FIMS	EG035F	2	39	5.1	5.0	✓	ALS QCS3 requirement
issolved Metals by ICP-MS - Suite A	EG020A-F	2	33	6.1	5.0	✓	ALS QCS3 requirement
litrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	39	5.1	5.0	✓	ALS QCS3 requirement
itrite as N by Discrete Analyser	EK057G	1	5	20.0	5.0	✓	ALS QCS3 requirement
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	3	51	5.9	5.0	✓	ALS QCS3 requirement
otal Metals by ICP-MS - Suite A	EG020A-T	1	20	5.0	5.0	✓	ALS QCS3 requirement
otal Phosphorus as P By Discrete Analyser	EK067G	2	39	5.1	5.0		ALS QCS3 requirement

Page : 9 of 11 Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Alkalinity by PC Titrator	ED037-P	WATER	APHA 21st ed., 2320 B This procedure determines alkalinity by both manual measurement and automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Major Anions - Filtered	ED040F	WATER	APHA 21st ed., 3120 Sulfur and/or Silcon content is determined by ICP/AES and reported as Sulfate and/or Silica after conversion by gravimetric factor.
Chloride by PC Titrator	ED045-P	WATER	APHA 21st ed., 4500 CI - B. Automated Silver Nitrate titration.
Major Cations - Filtered	ED093F	WATER	APHA 21st ed., 3120; USEPA SW 846 - 6010 The ICPAES technique ionises filtered sample atoms emitting a characteristic spectrum. This spectrum is then compared against matrix matched standards for quantification. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Metals by ICP-MS - Suite B	EG020B-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite B	EG020B-T	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Metals by ICP-MS - Suite D	EG020D-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite D	EG020D-T	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.

Page : 10 of 11 Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Analytical Methods	Method	Matrix	Method Descriptions	
Dissolved Mercury by FIMS	EG035F	WATER	AS 3550, APHA 21st ed. 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an	
			automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic	
			mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by	
			SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a	
			calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)	
Ammonia as N by Discrete analyser	EK055G	WATER	APHA 21st ed., 4500 NH3+-G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)	
Nitrite as N by Discrete Analyser	EK057G	WATER	APHA 21st ed., 4500 NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is	
			compliant with NEPM (1999) Schedule B(3) (Appdx. 2)	
Nitrate as N by Discrete Analyser	EK058G	WATER	APHA 21st ed., 4500 NO3F. Nitrate is reduced to nitrite by way of a cadmium reduction column followed by	
			quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate	
			calculated as the difference between the two results. This method is compliant with NEPM (1999) Schedule B(3)	
		14/4	(Appdx. 2)	
Nitrite and Nitrate as N (NOx) by Discrete	EK059G	WATER	APHA 21st ed., 4500 NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Cadmium Reduction	
Analyser			and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)	
Total Kjeldahl Nitrogen as N By Discrete	EK061G	WATER	APHA 21st ed., 4500-Norg-D25mL water samples are digested using a traditional Kjeldahl digestion followed by	
Analyser			determination by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)	
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	APHA 21st ed., 4500 N org / NO3. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)	
Total Phosphorus as P By Discrete	EK067G	WATER	APHA 21st ed., 4500 P-B&F This procedure involves sulphuric acid digestion of a 100mL sample to break	
Analyser			phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony	
			potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using	
			Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)	
Ionic Balance by PCT and ICPAES	EN055	WATER	APHA 21st Ed. 1030F. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)	
Preparation Methods	Method	Matrix	Method Descriptions	
TKN/TP Digestion	EK061/EK067	WATER	APHA 21st ed., 4500 Norg - D; APHA 21st ed., 4500 P - H. This method is compliant with NEPM (1999) Schedule	
			B(3) (Appdx. 2)	
Digestion for Total Recoverable Metals	EN25	WATER	USEPA SW846-3005 Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and	
			ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (1999) Schedule	
			B(3) (Appdx. 2)	

Page : 11 of 11 Work Order : EB0903756

Client : URS AUSTRALIA PTY LTD (QLD)

Project : 42626162

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW 846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
ED045P: Chloride by PC Titrator	EB0903756-014	PZ04	Chloride	16887-00-6	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.

URS Australia Pty Ltd ABN 46 000 691 690 Level 16, 240 Queen Street Brisbane, QLD 4000 Australia GPO Box 302, Queensland 4001 Tel: 61 7 3243 2111 • Fax: 61 7 3243 2199